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Chapter 8
Computational Strategies for Biological 
Interpretation of Metabolomics Data

Jianguo Xia

Abstract  Biological interpretation of metabolomics data relies on two basic steps: 
metabolite identification and functional analysis. These two steps need to be 
applied in a coordinated manner to enable effective data understanding. The focus 
of this chapter is to introduce the main computational concepts and workflows 
during this process. After a general overview of the field, three sections will be pre-
sented: the first section will introduce the main computational methods and bioin-
formatics tools for metabolite identification using spectra from common analytical 
platforms; the second section will focus on introducing major bioinformatics 
approaches for functional enrichment analysis of metabolomics data; and the last 
section will discuss the three main workflows in current metabolomics studies, 
including the chemometrics approach, the metabolic profiling approach and the 
more recent chemo-enrichment analysis approach. The chapter ends with summary 
and future perspectives on computational metabolomics.
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CSF	 Cerebral spinal fluid
GO	 Gene ontology
GSEA	 Gene set enrichment analysis
LC-MS	 Liquid chromatography mass spectrometry
MSEA	 Metabolite set enrichment analysis
NIST	 National Institute of Standards and Technology
NMR	 Nuclear magnetic resonance
PCA	 Principal component analysis
PLS-DA	 Partial least squares discriminant analysis
OPLS-DA	 Orthogonal partial least squares discriminant analysis
ORA	 Overrepresentation analysis
PCR	 Polymerase chain reaction

8.1  �Introduction

Measuring metabolites and interpreting their biological relevance within the con-
texts of different experimental conditions are the primary objective in metabolomics 
researches. To achieve this objective, two basic steps need to be performed: metabo-
lite identification and functional analysis, with the former providing the necessary 
inputs for the latter operation. These two steps need to be executed in a coordinated 
manner to promote efficient biological understanding. However, significant chal-
lenges remain in both steps.

The ultimate goal of metabolomics is to achieve comprehensive and high-
throughput metabolome measurement. This goal is hampered by at least three major 
obstacles: (1) small compounds have diverse chemical properties, making it diffi-
cult to assay many metabolites simultaneously using a single analytical platform; 
(2) there is no effective amplification technique available to facilitate detection of 
low-abundance metabolites (such as using PCR for DNA molecules); and (3) many 
metabolites lack unique spectral signatures to allow unambiguous compound asign-
ment. Nuclear magnetic resonance (NMR) spectroscopy and gas or liquid chroma-
tography coupled with mass spectrometry (GC- or LC-MS) are commonly used in 
combination to improve the metabolome coverage. Metabolite identification is 
mainly performed by searching the spectral features against a reference spectral 
library. However, searching a comprehensive spectral database often leads to many 
potential hits with similar matching scores, and researchers often need to manually 
choose the most probable identities based on the context and domain knowledge. 
This step represents a key bottleneck in current metabolomics studies. Better algo-
rithms and more context-specific databases are needed to enable high-throughput 
and high-accurate metabolite identifications.

Knowing compound identities is the first step toward biological interpretation of 
metabolomics data. The conventional procedure after this step involves manually 
looking up the metabolites of interest in different compound databases, reading rel-
evant literature, and finally synthesizing the information into a justifiable biological 
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“story” based on the overall information obtained. This approach is subjective and 
time-consuming. Over the past decade, many computer-assisted data interpretation 
strategies have been developed. Among them, functional enrichment analysis using 
a predefined knowledge database has gained wide acceptance in omics data interpre-
tation. The basic idea is to shift the unit of analysis from a single molecule to groups 
of functionally related molecules (i.e., those within the same pathway or biological 
process). This approach directly connects statistical significance with biological 
interpretation. More advanced algorithms have also been recently implemented that 
are able to integrate the dependencies and connectivities among different molecules 
to further reveal the biological insight and to improve system understanding.

Based on their strategies in dealing with metabolite identification and functional 
analysis, current metabolomics workflows can be summarized into three general cat-
egories: the chemometrics approach (also known as untargeted metabolomics), the 
metabolic profiling approach (also known as targeted or quantitative metabolomics), 
and the chemo-enrichment analysis approach (Fig. 8.1). The chemometrics approach 
focuses on identifying and interpreting a subset of spectral features that are found to 
have changed significantly during the experimental studies; the metabolic profiling 
approach aims to comprehensively characterize all metabolites in the spectra before 
subsequent statistical and functional analysis; and the more recent chemo-enrichment 
analysis approach directly maps spectral features into metabolic pathways/networks 
and then tests the enrichment of the collective chemical signals generated from these 
biological processes, which largely avoids the time-consuming step for accurate 
compound assignment.

This chapter is organized into three sections. The first section introduces the main 
computational approaches for metabolite identification from common analytical 
platforms (Fig. 8.1, Step 1); the second section describes the three main bioinfor-
matics approaches for functional enrichment analysis (Fig. 8.1; Step 2); and the last 

Fig. 8.1  The diagram summarizes the three computational strategies for metabolomics data inter-
pretation: the chemometrics approach (top), the metabolic profiling (bottom), and the chemo-
enrichment analysis (middle). The dotted lines delineate the two major steps in the process: 
metabolite identification and functional analysis. Note that these two steps are integrated into a 
single one in the chemo-enrichment approach
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section compares the three metabolomics workflows for biological interpretation. 
Each section is further organized under subtitles describing the computational con-
cepts, the available bioinformatics tools, and their main features.

8.2  �Metabolite Identification Methods

Although it is possible to determine the identity of a single metabolite de novo 
through labor-intensive NMR or MS-based methods, this approach is generally 
infeasible in metabolomics in which hundreds to thousands of compound species 
are measured simultaneously. In practice, compound identification is based on 
matching features from sample spectra against a reference spectral database, and a 
closely matched hit will be considered as the putative identity of the corresponding 
spectral peaks. However, many metabolites do not produce unique, detectable sig-
natures in their NMR or MS spectra to permit unambiguously determination of their 
identities. The situation is further complicated by peak shifts and overlaps typical in 
the spectra of complex biological samples. Direct database search tends to yield 
high percentage of false positives, and further labor-intensive manual refinement is 
usually necessary. To improve the efficiency of metabolite identification, two gen-
eral computational strategies have been employed: (1) limiting the search space to 
only those biologically and biochemically possible candidates by developing more 
context-specific spectral databases, and (2) improving the peak assignment algo-
rithms by incorporating prior knowledge based on spectral dependencies, biochemi-
cal connectivities and biological relationships.

8.2.1  �Compound Identification from NMR Spectra

Proton NMR spectroscopy has been widely used in metabolomics studies involving 
human biofluids. Multiple small-molecule metabolites can be measured simultane-
ously without prior separation, which greatly simplifies the sample preparation 
requirements. NMR spectra are highly reproducible, and samples analyzed from 
one spectrometer will generate near-identical results to those measured on other 
types of spectrometers. These features have made NMR spectroscopy a platform of 
choice for large-scale collaborative metabolomics projects.

The Chenomx NMR Suite (Chenomx, Canada) is a widely used metabolomics 
tool for processing and profiling one-dimensional (1D) proton NMR spectra. The 
main feature of Chenomx is the integration of a powerful interactive visualization 
interface with a reference spectral library for over 600 metabolites that are detectable 
by NMR in common biofluids. Metabolite identification and quantification are 
achieved through manual peak fitting against those reference spectra. Another widely 
used commercial tool is the AMIX software package (Bruker Biospin GmbH, 
Germany), which offers similar features. The company has recently implemented a 
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software (FoodScreener) that supports automated high-throughput targeted metabo-
lomics profiling for wine, honey, and juice using defined spectra libraries.

Compared to commercial tools, public bioinformatics tools for NMR-based 
metabolomics tend to focus on spectral alignment, binning and batch processing [1, 2]. 
They usually lack user-friendly interface or comprehensive spectra libraries to sup-
port manual compound identification. As public NMR spectra libraries become 
increasingly available [3, 4], this situation has begun to change. For instance, the 
Bayesian automated metabolite analyzer for NMR (BATMAN) is an R package 
designed for deconvolution and quantification of metabolites from 1D proton NMR 
spectra of complex mixtures [5, 6]. The Bayesian model incorporates characteristic 
peak patterns of metabolites and also accounts for peak shifts commonly seen in 
NMR spectra of biological samples. BATMAN can compute relative concentrations 
of the compounds together with associated uncertainty estimates using a Markov 
chain Monte Carlo algorithm. The procedure is computationally intensive and usu-
ally requires hours of CPU time to process a single spectrum of common biofluids. 
Bayesil is a web-based tool that supports automated phasing, referencing, baseline 
correction, metabolite identification, and quantification for 1D proton NMR metab-
olomics spectra [7]. The algorithm is implemented based on probabilistic graphical 
models and a prior knowledge of probable biofluid compositions with built-in sup-
port for cerebral spinal fluid (CSF), serum, and plasma. Compared to BATMAN, 
Bayesil can process a spectrum in a few minutes with high precision and recall. For 
excessively overlapped NMR spectra of complex biofluid mixtures, two-dimensional 
(2D) NMR is often used to help resolve spectra ambiguities for metabolite identifi-
cation purpose. The Bruker AMIX package (Bruker Biospin GmbH, Germany) can 
also support 2D NMR analysis. The Java desktop application MetaboMiner and the 
R package rNMR are two public bioinformatics tools for metabolite identification 
from 2D NMR spectra [8, 9].

8.2.2  �Compound Identification from GC-MS Spectra

GC-MS offers a high degree of chromatographic resolution and reproducibility. The 
platform is suitable for measuring volatile, low-molecular mass (<500  Da), and 
thermally stable compounds such as sugars, fatty acids, and amino acids. For large 
and polar compounds, chemical derivatization is often employed to improve their 
volatility and thermal stability. The most commonly used ionization technique in 
GC-MS is electron ionization, which is very robust and reproducible. The character-
istic mass spectral fragmentation patterns can be used to build a spectral library for 
metabolite identification.

Many software tools are available for metabolite identification and quantification 
from GC-MS-based metabolomics data. The automated mass spectral deconvolution 
and identification system (AMDIS) coupled with the National Institute of Standards 
and Technology (NIST) database is probably the most widely used software package 
for GC-MS data analysis [10]. The AnalyzerPro (SpectralWorks, UK) and ChromaTOF 
(LECO, USA) are the two widely used commercial tools for processing and profiling 
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the GC-MS spectra for metabolomics studies. Compared to NMR-based metabolo-
mics data, more public bioinformatics tools are available for GC-MS spectral 
processing, deconvolution, alignment, as well as compound identification. Popular 
tools include BinBase [11], MetaQuant [12], MetabolomeExpress [13], 
MetaboliteDetector [14], TagFinder [15], etc. With the availability of public GC-MS 
spectral databases [16, 17] and our improved knowledge on the metabolite composi-
tions of common biofluids such as CSF, serum, and urine [18–20], the GC-MS-based 
metabolomics is expected to be the most promising platform to deliver automated 
compound identification and quantification for a broad range of biofluids.

8.2.3  �Compound Identification from LC-MS Spectra

Compared to GC-MS, LC-MS typically has lower chromatographic resolution and 
reproducibility. However, LC-MS techniques can access a much broader mass range 
(100–2000 Da) because volatilization or derivatization is not necessary. LC-MS is 
also a better choice for separating and identifying polar and nonvolatile compounds. 
Electrospray ionization and atmospheric pressure chemical ionization are the two 
most common ionization methods used in LC-MS. Both techniques will generate a 
molecular ion whose mass can be searched against a spectral database of known 
metabolites for possible identification. However, due to the finite mass accuracy of 
the MS equipment and the large number of potential formulas, using mass informa-
tion alone is usually insufficient for metabolite identification [21].

To address this issue, many bioinformatics tools employ extra information to 
improve peak assignment and metabolite identification from LC-MS metabolomics 
data. One approach incorporates known chemical reactions among candidate com-
pounds based on the metabolic pathways/networks to improve annotation, as certain 
combinations would make more biochemical sense when they are detected together. 
For instance, the MI-Pack and the ProbMetab are able to use the metabolic pathway 
information obtained from MetaCyc or KEGG to improve metabolite identification 
[22, 23]. The second approach takes into consideration of the dependency structures 
of multiple peaks (isotopologues, adducts, molecular fragments, and multiply 
charged ions) derived from each metabolite in a LC-MS spectrum to improve peak 
annotation. The MetAssign tool has implemented this approach [24]. The core algo-
rithms used in these tools are based on graphical models, with most of them using a 
Bayesian approach to perform probabilistic annotation of metabolites.

8.3  �Functional Analysis Approaches

Most metabolites can potentially participate in multiple functional roles within a 
biological system, and it is difficult to pinpoint the biological processes responsible 
for the profiles observed in a metabolomics experiment. A biological process is 
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typically made of a group of molecules. If a biological process is changed in a study, 
the molecules involved should have a higher potential to be identified as significant 
by the omics platform. Motivated by this concept, functional analysis has shifted the 
unit of analysis from a single molecule to a group of functionally related molecules. 
Instead of testing a single gene or metabolite, researchers now directly evaluate 
whether a group of molecules (representing a biological process) is consistently 
changed (enriched). This approach greatly simplifies the omics data interpretation 
and is more sensitive in detecting subtle but consistent changes occurred in a bio-
logical process.

The functional analysis requires two components: a knowledge database defin-
ing functionally related molecule groups and a statistical algorithm to perform 
enrichment tests. The popular gene set enrichment analysis (GSEA) tool is shipped 
with a comprehensive collection of gene sets in the form of Molecular Signature 
Database (MSigDB), which greatly facilitates the subsequent development of tools 
for enrichment analysis [25, 26]. In metabolomics, except the public metabolic 
pathway databases such as KEGG [27] or MetaCyc [28], a comprehensive collec-
tion of functionally related metabolite groups was unavailable until very recently. 
The first large collection of metabolite sets appeared in 2010 with the publication of 
the MSEA tool containing >6000 groups of metabolites based on pathways, dis-
eases, genetic variants, and cellular compartments [29]. The other useful resource is 
the ConceptMetab database containing >16,000 biologically defined metabolite 
sets developed based on GO, KEGG, and Medical Subject Headings [30]. The 
ongoing developments of ontologies for systematic metabolite annotations are 
expected to greatly facilitate the development of enrichment analysis tools for 
metabolomics [31, 32]. Below I will introduce the three main categories of statisti-
cal approaches for functional analysis for metabolomics data: over-representation 
analysis (ORA), metabolite set enrichment analysis (MSEA), and metabolic path-
way/network analysis.

8.3.1  �Over-representation Analysis (ORA)

The ORA approach is a traditional strategy for enrichment analysis. It starts with a 
list of metabolites of interest and tests whether certain metabolite groups appear 
more often than would be expected by random chance. This type of analysis can be 
performed using Fisher’s exact test, a chi-square test, a hypergeometric test, or its 
binomial approximation. To perform ORA, researchers need to first perform a sta-
tistical comparison such as t-tests or ANOVA and then select significant metabolites 
using a certain threshold or criterion (i.e., adjusted p-values <0.05). Fold change 
values are also considered sometimes during the selection process.

The ORA approach is very flexible to use and is simple to implement. It has been 
implemented in many metabolomics tools and databases including MSEA, MBRole, 
MetaPA, IMPaLA, MPEA, BiNChE, and ConceptMetab [29–31, 33–36]. A com-
mon critic of the approach is related to its somewhat arbitrary threshold to decide 
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whether a metabolite is significant or not. For instance, different cutoffs sometimes 
lead to different interpretations, and ORA cannot be applied if no significant metab-
olites are found in a given study. Another limitation is that all metabolites are treated 
equally after the selection, ignoring their quantitative differences. Despite these 
shortcomings, ORA remains widely used in omics data interpretation [37].

8.3.2  �Metabolite Set Enrichment Analysis (MSEA)

The MSEA approach has been developed to address the shortcomings associated 
with ORA. It directly tests the enrichment of functional groups using the complete 
concentration data without preselection of significant metabolites. The MSEA is 
named after the popular GSEA developed for gene expression data interpretation 
[26]. The original GSEA approach first uses a univariate method to rank all the 
genes and then tests whether the ranks in the gene set differ from a uniform distribu-
tion, using a weighted Kolmogorov-Smirnov test. The p-value for each gene set is 
calculated via permutation tests. Since then, many different variations of the GSEA 
have been developed with different performance characteristics [38]. For instance, 
the GlobalTest method has shown a general improved performance in terms of sen-
sitivity, versatility, and computational efficiency and works especially well if most 
of the molecules within a group are associated with the phenotype in a modest way 
[38]. The algorithm is based on a generalized linear model to test whether a group 
of molecules is significantly associated with a specific phenotype [39].

Several bioinformatics tools have been implemented to support MSEA for 
metabolomics data. The web-based MSEA program (now part of MetaboAnalyst) is 
the first tool with such capacity to support functional analysis for quantitative 
metabolomics data [29, 40]. Like the original GSEA tool, it contains built-in librar-
ies of defined metabolite sets associated with metabolic pathways, diseases, genetic 
variations, cellular compartments, etc. The GlobalTest algorithm is used for quanti-
tative enrichment analysis directly from a metabolite concentration table. Another 
metabolomics tool with MSEA capacity is the MeltDB, which uses a modified 
GSEA method against the metabolite sets defined by the KEGG metabolic path-
ways [41]. With improved functional annotations for metabolite sets such as the 
ConceptMetab and metabolite ontologies [30, 31], more metabolomics tools with 
MSEA support will be developed in the near future.

8.3.3  �Metabolic Pathway and Network Analysis

In the MSEA approach, groups of molecules labeled with biologically meaningful 
names are used to organize a large body of our current knowledge, making it a popu-
lar approach to aid in omics data interpretation. However, this “flat” representation 
of knowledge followed by enrichment tests based on group memberships ignores 
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the connectivities and dependencies among molecules as well as the inherent over-
laps/hierarchies among different groups. For instance, changes at a central location 
within a pathway tend to have a larger impact on its overall functions compared to 
changes at the very downstream. Integrating the functional analysis with pathway/
network topology analysis will help improve the accuracy in ranking the resulting 
list of biological processes.

In gene expression data analysis, the TopGO is probably the first method that 
integrates knowledge about relationships between different GO terms into calculat-
ing the statistical significances to increase the explanatory power of GO enrichment 
analysis [42]. The signaling pathway impact analysis (SPIA) is another approach 
that combines the evidence obtained from classical enrichment analysis with a 
novel type of evidence that utilize the pathway topology to measure the impact on a 
given pathway [43, 44]. Both approaches have been shown to provide increased 
sensitivity and specificity when compared to other methods based solely on enrich-
ment analysis. Many more tools have been implemented to take into consideration 
of pathway topology for enrichment analysis of gene expression data [45]. 
Applications of similar approaches to metabolomics are currently hampered by two 
obstacles: firstly, metabolomics typically can only measure a small fraction of any 
given metabolic pathway at the moment, which greatly limits our ability to evaluate 
the impact on the overall pathway; secondly, the development of a hierarchical 
ontology system for metabolite annotation has not been well established to allow 
easy plug-in by different bioinformatics tools, as is the case of gene ontology system. 
Therefore, current metabolomics tools focus primarily on enrichment analysis and 
visualization of metabolic pathways. The web-based tool MetPA (now part of 
MetaboAnalyst) is the first tool that supports both enrichment analysis and topology 
analysis within the context of KEGG metabolic pathways [36]. The MetScape is 
another tool implemented as a Cytoscape plug-in that is able to incorporate prior 
knowledge of pathways and molecular interactions for metabolomics pathway anal-
ysis and network visualization [46].

8.4  �Metabolomics Workflows for Biological Interpretation

As indicated in Fig. 8.1, current metabolomics workflows can be largely divided 
into three general categories based on their strategies in metabolite identification 
and functional analysis: chemometrics approach, metabolic profiling approach, and 
chemo-enrichment analysis approach. The chemometrics approach focuses on iden-
tifying and interpreting a subset of spectral features that are found to be important 
within the study. It is relatively high throughput, as only the significant features 
need to be characterized. This approach is widely used in exploratory metabolomics 
studies and for discovery of novel biomarkers. A main drawback associated with 
this approach is the difficulties in biological interpretation, as a limited number of 
compounds are usually insufficient to pinpoint the underlying biological processes. 
In contrast to the chemometrics approach, the metabolic profiling approach aims to 
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characterize all detectable metabolites from the spectral data before subsequent 
functional analysis. It generally yields better sensitivity, selectivity, and interpret-
ability but is of very limited use for novel biomarker discovery. The main drawback 
associated with this approach is that the metabolite identification is usually time-
consuming and labor intensive. The chemo-enrichment analysis approach has been 
recently developed to address the limitations associated with both chemometrics 
and metabolic profiling. It aims to estimate biological activities directly from the 
spectral features by mapping all possible metabolite matches to metabolic path-
ways/networks and then comparing the resulting profiles to identify the enriched 
biological processes.

8.4.1  �The Chemometrics Approach

Chemometrics methods are a class of multivariate statistical methods heavily used 
in analytical chemistry and later metabolomics. These methods are especially useful 
for analysis and modeling of high-dimensional complex spectral data in untargeted 
metabolomics, where features (peaks or spectral bins) are highly correlated. The 
two most commonly used chemometrics methods are principal component analysis 
(PCA) and partial least squares discriminant analysis (PLS-DA). PCA aims to proj-
ect a high-dimensional data into a low-dimensional space that captures the most 
variance of the data. The direction of projection is computed based on the data (X) 
only, without referring to the experimental conditions (Y). PCA is suitable for data 
overview and to understand the inherent patterns within the data. There is no guar-
antee that the directions of maximum variance will be the same as the directions of 
the variance associated with the experimental conditions. In contrast, PLS-DA aims 
to project a high-dimensional data X into a low-dimensional space that capture the 
most covariance between X and Y. It is often used to identify the spectral features 
that are different across experimental conditions. Orthogonal PLS-DA (OPLS-DA) 
is a variant of PLS-DA which uses orthogonal signal correction to maximize the 
explained covariance between X and Y on the first component, and the remaining 
components capture variance in X which is orthogonal to Y [47].

The chemometrics approach is composed of three general steps. A chemometrics 
method such as PLS-DA or OPLS-DA is first applied to analyze the spectral data to 
identify significant features associated with the experimental conditions. This step 
can be performed using several commercial or public tools. The SIMCA-P program 
(Umetrics, Sweden) is widely used by the metabolomics community. It offers excel-
lent graphic capabilities and comprehensive analysis options for chemometrics 
methods including PCA, PLS/OPLS-DA, and SIMCA (soft independent modeling 
of class analogy). MetaboAnalyst is a web-based tool that supports comprehensive 
metabolomics data processing, normalization, and chemometrics analysis (PCA, 
PLS-DA, and more recently, Orthogonal PLS-DA [40, 48, 49]. For users who know 
how to program in R, many R packages are available for chemometrics analysis [50, 
51]. After selection of significant spectral features, the second step is to perform 
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compound identification using the tools and resources as described in Sect. 8.2. In 
the third step, the list of identified metabolites will be subject to ORA to find out 
which pathways or biological processes are significantly enriched biological pro-
cesses are significantly enriched for biological interpretation (Sect. 8.3).

8.4.2  �The Metabolic Profiling Approach

Metabolic profiling is often used to validate and expand upon results obtained from 
untargeted analysis. It is also increasingly applied to study variations of metabolite 
concentrations in relatively well-characterized biofluids such as CSF, blood, urine, 
etc. Although the process of metabolite identification and quantification is currently 
a rate-limiting step, this approach offers several distinctive advantages. For instance, 
metabolic profiling significantly improves statistical power by reducing the number 
of features from 1000–10,000 of features peaks to hundreds of metabolites. The 
manual process also largely removes missing values and spectral noises, which 
greatly facilitates downstream statistical analysis and biomarker discovery.

The biggest advantage of metabolic profiling is the ease of data interpretation. 
The complete metabolite concentration table can be directly used for MSEA, meta-
bolic pathway, or network analysis using the tools described in Sect. 8.3. The web-
based tool MetaboAnalyst provides extensive functions for functional analysis and 
interpretation for data generated from metabolic profiling approach. Importantly, 
the metabolite concentration data is very compatible with other omics data and can 
be analyzed together to help pinpoint the biological pathways involved in the exper-
imental conditions. There are several bioinformatics tools that provide support for 
integrated analysis of metabolomics data with transcriptomics data. For instance, 
the MetaCore (Thomson Reuters, USA) allows joint analysis and visual exploration 
within its comprehensive collections of pathway and network [52]. The public tools 
IMPaLA and MetScape can accept a list of metabolites and a list of genes for joint 
analysis and visualization on metabolic networks [34, 46]. INMEX is a web-based 
tool that supports statistical analysis and joint enrichment analysis for data sets from 
transcriptomics and metabolic profiling studies [53].

8.4.3  �The Chemo-enrichment Analysis Approach

The chemo-enrichment analysis approach is a more recent strategy developed to 
facilitate high-throughput interpretation of metabolomics data generated from high-
resolution LC-MS platforms. The key idea is to redefine the metabolite sets, meta-
bolic pathways, or networks using the spectral features (i.e., m/z) of the corresponding 
metabolites and then test the enrichment of these “collective chemical signals” 
within the untargeted metabolomics data. Accurate compound identification is not 
necessary because errors (i.e., incorrect peak assignments) tend to will be randomly 
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distributed, while the true biological signals will be consistent, which can be 
detected by testing the enrichment of their collective chemical signals. The chemo-
enrichment approach directly connects spectral features with biological interpreta-
tions without explicit compound identification. In practice, the metabolite 
identification is performed post hoc for those enriched biological processes of inter-
est. The approach is useful in metabolomics studies for organisms with well-anno-
tated metabolic pathways and networks.

There are a few tools that offer support for chemo-enrichment analysis. The 
mummichog is probably the first bioinformatics tool that implemented the concept 
[54]. It accepts two lists of spectral peaks (i.e., m/z values) – a significant peak list 
(i.e., those identified using t-tests) and a reference peak list (all features detected in 
the MS experiment). The significant peak lists are then searched against a database 
to find all potential matches to metabolic pathways and networks. The result is com-
pared with those obtained based on peak lists randomly drawn from the reference 
peaks to compute statistical significance. The tool is available as a Python program. 
It has been recently implemented in the popular web-based tool XCMS Online to 
reach a broader audience [55]. MarVis-Pathway is a more recent stand-alone bioin-
formatics tool with chemo-enrichment analysis feature. It employs a hypergeomet-
ric-based approach to evaluate the enrichment of metabolic pathways directly from 
the untargeted metabolomics data [56].

8.5  �Summary and Future Perspectives

This chapter introduces several key concepts and recent developments in computa-
tional strategies for metabolomics data interpretation. Compound identification 
constitutes a major bottleneck in current metabolomics studies. Accurate metabolite 
identification requires manual intervention and additional laboratory experiments. 
Advances in both analytical platforms and algorithms are making ways to enable 
high-throughput data interpretation. Integrating high-resolution analytics, context-
specific reference spectral databases, together with advanced algorithms that incor-
porate chemical and biological information, we will be able to achieve accurate and 
high-throughput metabolite identification and biological interpretation.

Identification of metabolites (accurately or approximately) is a prerequisite for 
data interpretation. The list of compounds needs to be put into proper biological 
context by identifying their roles in metabolic pathways, their interconnectivity 
with other metabolites, links to genetic variations, or associations with pathophysi-
ological conditions. The group-based functional enrichment analysis has been 
developed to address this issue. This is an active research area with a wide range of 
tools and implementations available. Given the current limitations of the knowl-
edge databases and the statistical algorithms, the resulting enrichment p-values 
should be treated as a ranking system for data exploration and hypothesis generat-
ing rather than an absolute cutoff for decision-making purpose.
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Compared to transcriptomics, metabolomics is closer to an organism’s phenotype 
and is more sensitive to environmental perturbations. Small compounds represent 
the final products of complex interactions between the host genetics and environ-
ment. The metabolome includes both the endogenous metabolites produced directly 
by the host organism and the compounds derived from microbial, xenobiotic, dietary, 
and other exogenous sources. As a result, metabolomics is increasingly applied to 
study the impact of diet, gut microbiota, and environmental exposures. Developing 
novel bioinformatics tools and specialized knowledge databases to support these 
applications are the new frontiers in the current computational metabolomics.
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