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Chapter 7
Chemometrics Methods and Strategies 
in Metabolomics

Rui Climaco Pinto

Abstract Chemometrics has been a fundamental discipline for the development of 
metabolomics, while symbiotically growing with it. From design of experiments, 
through data processing, to data analysis, chemometrics tools are used to design, 
process, visualize, explore and analyse metabolomics data.

In this chapter, the most commonly used chemometrics methods for data analysis 
and interpretation of metabolomics experiments will be presented, with focus on 
multivariate analysis. These are projection-based linear methods, like principal 
component analysis (PCA) and orthogonal projection to latent structures (OPLS), 
which facilitate interpretation of the causes behind the observed sample trends, cor-
relation with outcomes or group discrimination analysis. Validation procedures for 
multivariate methods will be presented and discussed.

Univariate analysis is briefly discussed in the context of correlation-based linear 
regression methods to find associations to outcomes or in analysis of variance-based 
and logistic regression methods for class discrimination. These methods rely on 
frequentist statistics, with the determination of p-values and corresponding multiple 
correction procedures.

Several strategies of design-analysis of metabolomics experiments will be dis-
cussed, in order to guide the reader through different setups, adopted to better 
address some experimental issues and to better test the scientific hypotheses.
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Abbreviations

ANOVA Analysis of variance
ASCA ANOVA-simultaneous component analysis
AUC Area under the curve (in the context of ROC curves)
CV Cross-validation
CV-ANOVA Cross-validation – analysis of variance
FWER Family-wise error rate
FDR False discovery rate
GC-MS Gas chromatography coupled to mass spectrometry
HCA Hierarchical cluster analysis
ICA Independent component analysis
iQC Internal quality control (sample)
IS Internal standard
LC-MS Liquid chromatography coupled to mass spectrometry
LOO Leave-one-out procedure in cross validation
MS Mass spectrometry
MWAS Metabolome-wide association studies
MWSL Metabolome-wide significance level
OPLS Orthogonal projections to latent structures
OPLS-DA Orthogonal projections to latent structures – discriminant analysis
OPLS-EP Orthogonal projections to latent structures – effect projection
PC Principal component
PCA Principal component analysis
PLS Projections to latent structures
PRESS Predicted residual error sum of squares
R2X Fraction of variance in the data explained by each latent variable
R2Y Fraction of variance of y/Y explained by each latent variable
ROC Receiver operating characteristic (curve)
Q2 Model statistics to evaluate quality of model prediction
RMSECV Root mean squared error of cross validation
RMSEP Root mean squared error of prediction
SMART Scaled-to-maximum, aligned and reduced trajectories
SUS Shared and unique structures
VIP Variable importance on projection

7.1  Introduction

Metabonomics [1] or metabolomics [2] concerns the study of the metabolome, a 
multivariate ensemble of small molecules that are intermediates and products of 
metabolism. Its main emphasis is on metabolite profiling, at the level of cells or 
organs, of endogenous and/or exogenous metabolites, and on the effects of pertur-
bations of the metabolism caused by disease, environmental, or dietary influences.
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Chemometrics can be defined as “the chemical discipline that uses mathematical, 
statistical, and other methods employing formal logic, to design or select optimal 
measurement procedures and experiments, and to provide maximum relevant chemi-
cal information by analysing chemical data” [3]. It differs from statistics in analytical 
chemistry mainly due to its computer intensive nature, and for being mostly multivari-
ate analysis based [4]. Due to the nature of the signals in chemistry, namely in spec-
troscopy, chemometrics developed around the subject of multivariate analysis, because 
of its ease of interpretation. These are correlation-/projection-based methods, which 
require computationally intensive work. While bioinformatics and chemoinformatics 
are also used for data analysis, they are more related to data mining and use of data-
bases. These disciplines have some overlap with chemometrics and methods like prin-
cipal component analysis (PCA), for instance, are used by all of them.

Chemometrics is intensively used in the metabolomics context due to its experi-
mental design component and to the fact that metabolic systems are multivariate in 
nature, with data mostly a product of 1H NMR spectroscopy and gas/liquid chroma-
tography coupled to mass spectrometry (GC/LC-MS). Metabolomics naturally 
relates to clinical research due to the fact that specific metabolite profiles express 
themselves in a living organism through a resulting health phenotype.

Clinical experiments exist in different areas and contexts, such as understanding 
biological processes and disease mechanisms, in vitro studies of materials of human 
origin, models of human disease processes, follow-up after surgery, epidemiologi-
cal studies, diagnostic and therapeutic methods, effect and mechanism of vaccines 
and drugs, biomarker discovery and disease discrimination, among others [5]. 
Chemometrics may help unravel information from metabolomics in different 
aspects of each of these contexts. Although not specifically designed for clinical 
research, the methods presented in this chapter adapt to the field naturally, as they 
can be used to explore clinical metabolomics data.

This chapter is devoted to the uses of state-of-the-art chemometrics methods and 
their application to metabolomics data in clinical analysis.

7.2  Notation

Notation in the text is as follows: vectors are presented in bold lower-case (e.g. y), 
matrices in bold upper-case (e.g. X) and indexes in italic lower-case letters (e.g. i). 
The metabolite data matrix X consists of samples in i rows and metabolic features 
(or metabolites) in j columns. Each continuous or discrete outcome y (e.g. blood 
pressure) has the same length i as rows in X. To define classes for the two-class case, 
a dummy vector y (e.g. 0 = control; 1 = disease) is built. In case there are more than 
two classes, a dummy matrix Y with one vector per class is built. Confounder fac-
tors, when mentioned, are vectors z with the same length as the rows in X. Qualitative 
confounder vectors are transformed into dummy matrices the same way as described 
for multiple classes. In case there are two or more confounders, they are horizon-
tally concatenated into a matrix Z. Transposed matrix is indicated by using the letter 
“T” in superscript, as in XT.

7 Chemometrics Methods and Strategies in Metabolomics
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7.3  Data Preprocessing

While using univariate analysis, there is no need for variable normalization (unless 
normal distribution is deemed necessary) because each metabolic feature is evalu-
ated separately; however, in multivariate analysis, normalization is of utmost impor-
tance and depends on the analysis in question. As preprocessing, normalization, 
scaling and transformations of data are discussed in Chap. 6 of this book, they will 
not be herein discussed in detail. We assume the samples were already normalized 
with the objective of reducing magnitude effects (e.g. caused by different dilution 
levels), and the variables were scaled in an appropriate way (e.g. 1H NMR was 
Pareto scaled; LC-MS was centred and unit variance scaled) and potentially trans-
formed adequately (log transformation or other). Both 1H NMR and MS data are 
now considered a data matrix X of metabolic features ready for statistical analysis.

7.4  Chemometrics Contexts and Methods

The need for chemometrics tools arises around three decades ago, due to the devel-
opment of more complex instruments with a consequent increase in the number of 
variables, and is propelled by the development of computational capacity. Large- 
scale dataset simultaneous visualization is more difficult in a univariate approach, 
and, for example, multiple regression modelling is constrained by variable colinear-
ity. As referred previously, the chemometrics discipline is based on computing 
intensive methods, in general multivariate, which solves the colinearity problem in 
a covariance-/correlation-based framework.

There are many different multivariate methods for modelling data, as shown in 
previous literature reviews [6–8]. They can be unsupervised (no assumptions made 
on the samples) or supervised (samples are defined into classes, or each sample is 
associated to an outcome yi value). Multivariate methods represent the samples as 
points in the space of the initial variables. The samples can then be projected into a 
lower dimensionality space – into components or latent variables – such as a line, a 
plane or a hyperplane, which can be seen as the “shadow” of the dataset viewed 
from its “best” viewpoint. The coordinates of the samples in the newly defined 
latent variables are defined as the scores, while the directions of variance to which 
they are projected are defined as the loadings. The loadings vector for each latent 
variable contains the weights of each of the initial variables in that latent variable. 
For a certain latent variable, the more a sample score is distant from its centre, the 
higher values it has in some of the initial variables (while potentially having lower 
values in others). Respectively, these initial variables have high weights in the load-
ings vector of that latent variable.

Projection-based linear methods are popular due to the simplicity of interpreta-
tion, thus used when understanding of a system is important. Nonlinear methods 
such as neural networks, support vector machines and random forests are less 
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common in metabolomics when interpretation is needed, and are used mostly for 
prediction of new samples in classification/regression contexts.

At the moment, due to the large amount of features involved in untargeted metab-
olomics, most of the statistical methods are applied previously to compound/metab-
olite identification. Only after finding a smaller number of important statistically 
significant metabolic features (putative metabolites), the analyst proceeds to the 
identification phase, as this may be very time-consuming. Bayesian networks have 
also been recently used in metabolomics but are not purely based on numerical 
metabolomics data. Because of their need for extra information, including metabo-
lite identification and/or information from databases, these methods are considered 
to be more in the bioinformatics than in the chemometrics domain; thus, they will 
not be discussed here.

7.4.1  Multivariate Data Exploration (PCA)

The simplest correlation- and projection-based multivariate analysis linear method, 
and simultaneously the most widely used tool in chemometrics, is principal compo-
nent analysis (PCA) [9–12]. It can be seen as the basis for other multivariate meth-
ods, thus being commonly used to introduce the concept of latent variables, and it is 
widely used as an exploration tool in metabolomics [13].

PCA is a non-supervised method. As it contains no assumptions on the data, it is 
used as a visualization and exploration tool at the start of any analysis, in order to 
detect trends, groups and outliers. It allows simpler global visualization by repre-
senting the variance in a small number of uncorrelated latent variables, which can 
then be understood to be information or random variation.

PCA decomposes the data matrix into principal components (latent variables or 
latent structures) that represent the underlying structure of the data. This allows one 
to represent the structured variance in the data by a smaller number of (latent) vari-
ables, while discarding the noise, thus making it appropriate for dimensional reduc-
tion. A matrix X (of e.g. metabolites) is decomposed by PCA using p components 
as follows: X = T.PT + E, where X has dimensions n × m, T is a n × p matrix of scores, 
P is a m × p matrix of loadings and E is a n × m matrix with residual variance, i.e. not 
included in the latent variable model. Depending on the objective of the analysis, 
the number of components in the model can be decided arbitrarily (e.g. a number 
“large enough”), according to a certain percentage of variance described with that 
number of components (e.g. 95 % of cumulative variance), or by using cross-valida-
tion strategies (which are later described).

An example of a PCA analysis is depicted in Fig.  7.1. Scores are coloured 
according to some meta-information after PCA calculations, in order to understand 
the reasons for the clusters. Samples in the same cluster are similar in the compo-
nents represented, while variables in the same clusters are correlated with each 
other. To see, e.g. which variables are higher/lower in group B, draw a line passing 
in the centre of group B and through zero and then draw a line in the same direction 
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in the loadings plot. Variables 1 are over that line in the same area as samples from 
group B; thus they are in higher values in B than in, e.g. group A (which is on the 
opposite side). Inversely, variables 2 have higher values in group A. Samples C, 
located close to the origin, have average behaviour between A and B. Variables 3 
have no influence in this component, as their weights in the loadings of PC1 and 
PC2 are close to zero. Note that PC1 vs PC2 are being shown, but due to PCA’s 
orthogonality of components, any PC can be plotted perpendicular to each other. In 
addition, sometimes plots of three components (xyz) are used, although they may 
become too complex to visualize due to the number of features involved.

Mathematically, the first principal component is the line that better approximates 
the data, in the least-squares sense. It represents thus the direction of the largest 
variance in the dataset, or in other words, the direction in which the variance of the 
coordinates of the samples is maximized. The dataset information explained by the 
first component can be subtracted from the initial data, and a second component can 
then be calculated from the residuals. Each principal component (PC) represents a 
fraction of the variance in the data – a pattern that can be in higher or lower magni-
tude in each sample – and is unrelated (orthogonal in a linear algebra sense, perpen-
dicular in a geometrical sense) to the others (thus can be drawn perpendicularly to 
each and every other). The orthogonality property of PCA can be easily understood 
if one considers the calculation of each PC at a time. After PCi is calculated from a 
data matrix X, the information it represents is deleted from X. Thus, for the calcula-
tion of the next component PCi+1, that information is not available anymore.

Apart from helping at visualizing trends and groups in the data, an important 
application of PCA is to look for outliers in the samples. Outliers are samples that 
have scores very distant (thus different) from the others. They can be found by 
inspecting the scores or a model’s cumulative measure of distance such as Hotelling 
T2 [14], as well as by inspecting the residuals of the model (large residuals may 
indicate mild outliers). Due to their high leverage during model creation, special 
care must be taken in order to remove them or not, prior to defining a model and 
interpreting it. It may make sense to remove outliers, if one understands they are 
caused by gross errors during sample preparation or instrumental analysis. More 
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Fig. 7.1 PCA scatter plots of scores t1 vs t2 (left) and loadings p1 vs p2 (right) should be inspected 
simultaneously in order to understand the relations between trends and groups observed in the 
samples (score plot) and which variables – metabolites – are responsible for it (loadings plot)
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difficult decisions arise for less extreme samples, in which the large score distance 
to other samples cannot be justified by that, but is the result of correctly measured 
high or low values in some variables. Many different ways exist to look for multi-
variate outliers [15–18]. Robust algorithms, which can better at handling outliers, 
have been developed for PCA [19]. Note: an extensive literature list on PCA can be 
found on http://www.stats.org.uk/pca.

7.4.2  Multivariate Regression (OPLS)

Projection to latent structures (PLS) [20] is a supervised multivariate linear regres-
sion method similar in concept to PCA, which finds the relations between two 
matrices (data X and response Y), by maximizing the covariance of their latent 
variables. It allows to understand which variables (e.g. metabolites) of X are more 
correlated to the response (e.g. calcium levels in blood) and to make predictions for 
new samples.

Orthogonal projection to latent structures (OPLS) [21] is a modification of the 
PLS method. OPLS has the same predictive power as PLS but provides better inter-
pretation of the relevant variables than PLS. It does so by decomposing the data in 
so-called “predictive” information related to the response Y (as concentrations, 
classes), “orthogonal” structured information not related to the response (as instru-
mental, biological variations) and residual variation.

The decomposition of a matrix X by OPLS for the single-y case using p latent 
variables is as follows [22]: X = 1.x̄T+ tp.pp

T + To.Po
T + E, where the data matrix X has 

dimensions n × m, 1 is a vector of dimension n × 1 with ones in all positions, x̅ is a 
vector n × 1 with the column averages of X, tp is a vector of n × 1 predictive scores, 
pp is a vector of n × 1 predictive loadings, To is a n × p − 1 matrix of orthogonal 
scores, Po is a m × p − 1 matrix of orthogonal loadings and E is a n × m matrix with 
residual variance, not included in the latent variable model, as it contains only resid-
ual, nonstructured variation.

The model prediction of a y variable by OPLS is obtained by y = ȳ + tp.qp
T + r, in 

which y is a response vector of dimensions n × 1, ȳ is a vector of dimension n × 1 with 
the average of y in all positions, t is the predictive scores vector from X and q is a 
vector n × 1of predictive loadings from y, while r is a n × 1 vector of y residuals.

Notice that for the single-y case, there can be only one predictive component, 
although many orthogonal ones may exist. Because of the predictive and orthogonal 
variance decomposition, one can look at the predictive score direction from negative 
to positive as an increase in the magnitude of y, which is positively correlated with 
variables in the positive side of the predictive loadings (and inversely correlated 
with variables on the negative side). For the multiple-y case, there may be multiple 
predictive components, reflecting the overlap in information between the matrices 
X and Y. Figure 7.2 illustrates single-y OPLS analysis.

OPLS is the multivariate linear method of choice to, e.g. find metabolic biomark-
ers correlated with a continuous variable, such as calcium score or blood pressure.
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7.4.3  Multivariate Classification/Class Discrimination 
(OPLS-DA)

OPLS discriminant analysis (OPLS-DA) [23] has been largely used in the metabolo-
mics context, and it is now the multivariate linear model of choice for classification/
discrimination [24]. The term classification is used when the objective is to classify 
new objects into one of two or more possible classes (e.g. control, disease A, disease 
B). The term discrimination is used for the two-class case, in which the objective is 
to separate two classes and investigate the causes for class separation (e.g. biomarker 
discovery or which metabolites are in higher/lower concentration in a disease class 
in relation to a control class). Figure 7.3 shows an OPLS-DA example.

Notice that in OPLS the vector y is a continuous variable; in two-class discrimi-
nation, OPLS-DA y is categorical and, thus, defined as a dummy vector of 0/1 for 
the two-class case (for the multiple-y case, it is a dummy matrix with a 0/1 vector 
per class), describing class belonging. Although multi-class OPLS-DA can be cal-
culated, most of the applications in metabolomics use a two-class model, as the 
interpretation is much more straightforward. Strategies for multiple class compari-
son using OPLS-DA are presented later in the chapter.

7.4.4  Note on Orthogonality

PLS was the method of choice for multivariate regression for many years, but OPLS 
has lately seen an increase in metabolomics data analysis, especially for discrimina-
tion and biomarker discovery. The reason is that although the methods explain the 
same variance in both X and Y matrices and have the same predictive capability, 
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Fig. 7.2 Single-y OPLS scatter plots of scores (left) and loadings (right) for predictive component 
1 vs orthogonal component 1, with scores coloured by y variable (e.g. blood pressure). OPLS 
models the y variable in the predictive component; thus samples with positive score t1 (right side 
of the scores plot) are more concentrated on variables on the positive side of p1 (clusters 2 and 7) 
and less concentrated in variables with negative p1 (clusters 1 and 6). The orthogonal variation that 
is seen in the orthogonal scores to1 (up–down) can also be inspected by colouring the scores 
according to different meta-information (e.g. gender, age) or the loadings (e.g. compound class). 
Variables related to a trend in the orthogonal scores are found along the orthogonal component 
loadings po1
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PLS computes latent variables that contain mixed sources of variation, while OPLS 
decomposes the structured variation into predictive and orthogonal. In the simplest 
case, OPLS with only one y variable – or OPLS-DA with two classes – the informa-
tion related to y is contained in the first predictive component, while the orthogonal 
components contain information related to other sources of structured variance, 
while discarding residual variance or noise.

It is important to realize though that orthogonal components contain information 
that is not noise [25] and should be investigated in order to bring more understand-
ing of an experiment. With that in mind, the datasets should be accompanied of the 
most complete amount of meta-information regarding unintended sources of varia-
tion such as sample preparation, experimental conditions and characterization of 
samples and variables as possible. In some cases, patterns and groups of samples (or 
variables) can be seen in the orthogonal scores (colouring them according to the 
meta-information may help), which can be related to that variation, e.g. sample 
batch, gender, age, sample dilution or other stratifications of the data. Then the 
orthogonal loadings should be investigated to see which variables have influence in 
the orthogonal score trends and groups. As all components in the model have their 
variation quantified, that may allow  additional understanding of the relative varia-
tion in the phenomenon in study in comparison to others and, e.g. allow better tun-
ing of experimental conditions in future experiments.

7.4.5  Cluster Analysis

Many cluster analysis methods exist, because as some authors consider, “cluster-
ing is in the eye of the beholder” [26]. Nonetheless, due to its simplicity and 
usefulness, hierarchical cluster analysis (HCA) has been widely used and will 
thus be presented. This is a non-supervised clustering method, used to put in 
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Fig. 7.3 OPLS-DA predictive vs orthogonal scores (left) and predictive loadings (right) for a two- 
class separation (e.g. control vs disease). The disease group, with positive predictive scores, has 
higher values than the control group in the variables with positive p1 (on the right of the loadings 
plot); it has lower values than the control group in the variables with negative p1 (left side of the 
loadings plot). The loadings weights were ordered according to magnitude, for easy visualization 
of its importance, and also the existence of confidence intervals which indicate their statistical 
significance
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evidence natural clustering of samples and/or variables, in the dataset. In case 
both samples and variables are clustered, one can see which clusters of variables 
are defining the clustering of the samples. Although the method is generally used 
for multivariable analysis, its nature is not multivariate, as no latent variables are 
defined.

In one of its forms, the method starts by considering that each single object 
is a cluster. On the first iteration, it finds the minimal distance between two of 
these (single object) clusters and clusters them. In the second iteration, it finds 
again the minimal distance between the updated clusters and clusters them. It 
proceeds the same way until all objects are part of the same cluster. Thus, since 
the beginning (after appropriate normalization/transformation of the objects in 
study), two parameters must be defined: the distance metrics to use and the link-
age type. Distance metrics is related to how one measures “closeness” of two 
objects, and commonly used metrics are the Euclidean and Mahalanobis dis-
tances, or the Pearson and Spearman correlations. Linkage type is related to 
which objects in the current groups are used to calculate those distances, and 
common types are “single” (minimum distance between one object in each 
group), “average” (distance between averages of the objects in the groups) and 
“Ward” (minimum model error increase for merging two clusters). A dendro-
gram of the clustering process can be plotted, in which the length of the bars 
represent the distance between the clusters, together with a heat map of the 
actual data values (see Fig. 7.4).

Considering the samples, and depending on the study context and objective, 
the method can be applied to the actual data (metabolic features values), to its 
PCA scores, PCA distances to model, or any other meaningful transformation of 
the data.

The major advantages of the method are that it is easy to understand and its 
application is straightforward. The major disadvantage is the difficulty in interpret-
ing the data when there are too many samples or too many variables (most common 
in metabolomics).

7.4.6  Independent Component Analysis (ICA)

ICA is a blind source separation method used in signal processing, and it separates 
multivariate signals into additive subcomponents. Its interpretation is similar to 
PCA, but instead of orthogonal components, it calculates non-Gaussian, mutually 
independent ones. Contrary to PCA, ICA does not order the components according 
to variance, and the number of components influences the structure of the compo-
nents themselves; thus an adequate determination of the right number of compo-
nents is of utmost importance. ICA algorithms have been used for analysis of 
metabolomics data, to detect metabolic patterns [27], phenotypes [28], and in class 
discrimination [29].
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7.5  Complementary Strategies for Data Analysis

Most applications of multivariate analysis in metabolomics use PCA for data explo-
ration and then OPLS or OPLS-DA for regression or class discrimination/biomarker 
discovery, respectively. The methods are applied directly to the dataset itself, after 
appropriate preprocessing. Nonetheless, these same methods can be used to analyse 
or visualize the data in creative and helpful ways, depending on the experimental 
design and the objectives of the study. Below we present some of those examples.

7.5.1  OPLS-DA Strategies for Comparison of Discriminant 
Metabolites

As referred in Sect. 7.4.3, OPLS-DA can be used for multiple class discrimination 
and classification, but the direction of class separation may not align over the latent 
variables axes, thus turning interpretation less straightforward. In case the objective 
of the study is to understand the difference of multiple classes (treatments, condi-
tions or disease states) to the same control class, it may be preferable to model each 
of the classes against control separately (e.g. control vs disease A and control vs 
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Fig. 7.4 Example of heat map and dendrograms clustering samples and metabolic features in a 
dataset after HCA using Euclidean distance and average linkage. By looking at the heat map, one 
can have visual clues about which metabolic features are aggregating the samples in clusters. In the 
case of the samples, the horizontal lines in their dendrogram (on the left) are proportional to cluster 
distance; for metabolic features (on the top), it is the vertical bars
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disease B) and then compare the results. Two suggestions on how to do that are 
presented below:

 (a) Comparison of models of two classes vs same control:
In this case, one can use the shared and unique structures (SUS) plot [30]. 

For the two-class case OPLS-DA models always represent the class discrimina-
tion along the predictive (“abscissa” axis) component, which allows straightfor-
ward loadings interpretation. For more than two classes/properties, this 
representation may not be possible to do using only one predictive component; 
thus the class separation may not be along a single axis. For this reason, the 
most convenient way of comparing two models is to create individual models 
for each of the possibilities (e.g. control vs disease A and control vs disease B) 
and then compare their loadings against each other.

From the OPLS (DA) models, different loadings vectors can be obtained. 
The correlation between the predictive score vector and each of the X variables 
is defined as the pcorrel loadings. Being composed of actual correlations, its val-
ues vary between −1 and 1, thus appropriately standardized for inter-model 
comparison. The SUS plot is simply a scatter plot of the pcorrel of two individual 
models. It should be visualized simultaneously with a p-loadings plot with con-
fidence intervals (or any other measure of variable significance), so one can also 
see which variables are significant. Three different situations may arise for each 
of the significant variables:

 (i) If aligned along a positive “/” diagonal, they show the same behaviour in 
both models (e.g. increased concentration of metabolite Xi in disease A vs 
control as well as in disease B vs control).

 (ii) If aligned along a negative “\” diagonal, they show opposite behaviour in 
each model (e.g. increased metabolite concentration of metabolite Xi in dis-
ease A vs control, but decreased in disease B vs control).

 (iii) Aligned along the horizontal/vertical axis shows an effect in one of the 
models, but not in the other.

 (b) Comparison of models of more than two classes vs same control:
  With more than two classes, the SUS plot approach gets complicated. A better 

visualization approach can be made using a network approach, plotting together 
the significant variables from each of the models. When considering, e.g. a small 
number of different diseases in relation to the same control class, the following 
definitions may be used (see Fig. 7.5):

 (i) The different diseases are represented as central nodes, in a different shape/
size and colour than the metabolites.

 (ii) For each disease, its significant metabolites are represented as peripheral 
nodes, connected through directed edges to the disease.

 (iii) The direction (or colour) of the edges indicates if the metabolite is more 
concentrated in the disease (pointing to the disease) or in the control (point-
ing to the metabolite).

 (iv) The edge width can be used to denote the degree of variable significance 
(p-value, correlation, fold change).
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 (v) Colour codes can be used for each metabolite, reflecting the number of 
diseases they are common to or any other relevant information (e.g. chemi-
cal class).

As shown in Fig. 7.5 (left), SUS plot is a scatter plot of pcorrel of two models 
of, e.g. diseases A and B vs control (C). Each pcorrel is a correlation value, thus 
varying between −1 and 1 in each model. Variables (features or metabolites) over 
the positive diagonal are upregulated (A + B+) or downregulated in both diseases 
(A−B−) in relation to control. Variables over the negative diagonal have inverse 
behaviour in each of the diseases (A + B−) or (A−B+) in relation to control. 
Variables over the x-/y-axis are only up-/downregulated in one of the diseases 
(e.g. A+ or B+), but not significantly different from control in the other.

Figure 7.5 (right) shows a network representation of relevant metabolites (small 
circles) obtained for OPLS-DA for comparisons of, e.g. different disease classes 
(A–D, large circles) to the same control. The colour and size of the nodes differentiate 
the disease classes from the metabolites. The edge arrows pointing from a metabolite 
to one of the disease nodes (A–D) indicate that the metabolite level is higher in that 
disease than in the control group and vice versa. As examples, metabolite 1 is statisti-
cally significant in the models of diseases A, B and C. Looking at the arrow directions, 
it is upregulated in A and C and downregulated in B, in relation to control. Metabolites 
2 and 3 are only downregulated in the model of disease C, in relation to control.

In case there are not many variables, but many classes, one can change the roles 
of classes with metabolites in the plots.

7.5.2  Comparisons of Trajectories and Profiles

The modelling of multivariate metabolic trajectories has been used mostly to follow 
time series processes using different strategies or in different subjects. It can be 
applied when the design of experiments uses groups of samples that have a 

A

B

C
D

1

3
2

ModelAC p1 correl

M
o
d
el

B
C
 p

1 
co

rr
el

po
sit

ive
 d

iag
.

A+ B+

–1 1
–1

1

A+A–

B–

B+

negative diag.

A– B+

A– B– A+ B–

Fig. 7.5 Plots for comparing metabolites coming from models from, e.g. different diseases vs 
the same control group

7 Chemometrics Methods and Strategies in Metabolomics



176

sequential dependence (e.g. follow multiple individuals during time). The main idea 
is to use multivariate modelling to follow the evolution of each of the groups of 
dependent samples and then compare their score trajectories. Although not all these 
examples are in the clinical context, they may be adapted to it, if the right experi-
mental design is used.

Using a method called “scaled-to-maximum, aligned and reduced trajectories” 
(SMART) [31], two groups of animals were studied in relation to the effects of 
drugs against control using 1H NMR. The average of the initial time point of each 
individual is subtracted from all the samples of all individuals, to achieve a similar 
start point. The data is then scaled to a common magnitude by using the largest 
magnitude value for each treatment group, prior to using PCA (scores) to visualize 
the average trajectories for each treatment. Similar trajectories correspond to similar 
behaviour of the groups and vice versa. The same strategy can be used in other 
experimental settings.

In another type of application, urine samples of patients following a kidney 
transplant were collected in time and studied using 1H NMR, in order to identify 
profiles for toxicity/rejection or normal recovery [32]. Grafts take different time in 
different individuals until actually start working properly/incorrectly. In this type 
of analysis, each patient was used as their own reference; thus the specific changes 
occurring during time for each individual could be examined. As the samples of 
each individual were not separated into “before” and “after” graft classes, the first 
objective was to identify time samples related to those two moments in the proce-
dure. For that the researchers first used PCA in each patient and selected grouped 
samples in the extreme sides of the scores into the two classes (“before” and “after” 
graft functioning). Then they performed OPLS-DA to discriminate between those 
classes for each patient and collected the predictive discriminant loadings into a 
matrix. Finally, these discriminant loadings – which represent the profile that dis-
criminates “before” and “after” graft for each patient – were used to represent each 
of the patients. PCA was performed in this matrix of loadings  profiles to find a 
common effect profile and the most important metabolites for good patient recov-
ery or kidney rejection.

Finally, we discuss a high-throughput multiple comparison study of transgenic 
tree lines against a common wild type done over several years [33]. The study 
objective was to understand which mutant lines (around five biological replicates 
per line) were more affected by the genetic engineering and which ones were 
similar in metabolic features. A batch effect due to biological and experimental 
variation did not allow the global comparison of phenotypes using the original 
data. The authors used an integrated chemometrics pipeline for the analysis of the 
data, which had the additional advantage of reducing those batch effects. This 
pipeline started with PCA for quality control of the wild-type samples of each of 
the batches separately, to detect outliers. Then, they investigated the existence of 
outliers in the mutants, by projecting the mutant plant samples of each batch in 
their respective batch PCA and looking at how they differed from the ones in their 
group. After the data was cleaned of outliers, they used OPLS-DA for class dis-
crimination between the control samples and each of the mutant lines. This had 
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the objective of finding the pattern (OPLS-DA predictive loadings) for differentia-
tion from control for each of the mutants and also of reducing the batch differ-
ences for global comparison. The loadings representing the differentiation pattern 
were used in representation of each mutant line and visualized using PCA and 
HCA, where clusters of mutants could be visualized, together with correlated 
groups of metabolic features.

7.5.3  Modelling Designed Data (ASCA)

The well-established analysis of variance (ANOVA) is an ensemble of univariate 
methods used to analyse differences among group means. It partitions the variation 
of designed factor treatments and interactions, to evaluate if any of the levels in a 
factor or interaction is statistically different from the others. ANOVA-simultaneous 
component analysis (ASCA) [34, 35], in which ANOVA and PCA work together, 
is designed with similar intent, generalized for the multivariate case. In experi-
ments where there is the possibility to design a balanced experiment, it can be used 
to evaluate which factors and interactions are statistically significant and to find 
which metabolites are relevant in each of those factors. Different types of data scal-
ing may be used to amplify some aspects of the data, thus giving rise to different 
solutions [36].

An example of this type of design would be an experiment in which different 
drug formulations are given to individuals and their metabolic profile is evaluated at 
several time points, in order to understand if a formulation level at a specific time is 
statistically different from the others.

ASCA tests for the statistical significance of levels’ difference in multivariate 
factors using a random permutation approach [37] for the factor(s) of interest. The 
rationale is that if no level is different from the others, the averaging process will 
make the factors approach zero, which should happen in the permuted models, but 
not in a statistically significant factor. For each factor testing, the sample group is 
randomly changed a large number of times and each time the factors are recalcu-
lated. A p-value for the significance of each factor can be calculated, based on the 
frequency of (number of times) factors that have a sum of squares (SSQ) larger than 
the original, non-permuted, factor.

7.5.4  Evaluate Effects on Matched Samples

In case the objective is to study the effect of a treatment, and there are matched 
samples of the type “before” and “after”, the strategy OPLS-effect projections 
(OPLS-EP) [38, 39] can be used.

The method can be seen as a generalization of t-test for paired samples, thus 
similar to investigating if an average if different from zero (in opposition to t-test for 
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unpaired samples, in which the difference between averages of two classes is evalu-
ated). It simply uses subtraction of the “before” sample from the respective “after” 
sample and considers that this difference will reflect the effect of the treatment. If 
MS instruments are used, it has also additional advantages on the reduction of batch 
and drift effects, attained through running the paired samples close to each other in 
the run order, while randomizing its relative position. The assumption is that if 
paired samples are ran close to each other, there is no significant drift between them.

In this strategy, the resulting “after-minus-before” subtracted data is modelled 
using OPLS, using (in general) metabolite data divided by its standard deviation, 
against a y vector with 1  in all its positions. While OPLS-DA on the same data 
would model class discrimination (comparable to unpaired t-test), OPLS-EP mod-
els effect difference (comparable to paired t-test). By plotting the predicted effect 
(Yhat, target value of 1) for each sample, one can understand which samples had 
larger (Yhat >1) or smaller (Yhat <1) effect, while looking at the predictive loadings 
indicates which variables were more important in that effect. The advantage of the 
method is that it looks for an effect, without being in reality a supervised method, as 
the samples have no need for class definition.

7.6  OPLS-Type Model Validation

PCA is mostly used as an exploratory method, and as the inclusion of more compo-
nents has no influence in the previous ones, most times there is no need to decide the 
appropriate number of latent variables to use in the model. The same is not true for 
OPLS-type models. Furthermore, once an OPLS-type model is established, before 
it can be used for prediction, or to decide on the significance of the discriminant 
variables, rigorous validation must be performed [40]. It is worth to mention that 
many times the score plot will look like indicating a good class separation, but later 
validation does not confirm that.

The methods described in the following sections are used in the context of mul-
tivariate analysis, mostly of the OPLS-type, for the selection of an appropriate num-
ber of latent variables and for model validation.

7.6.1  Internal Cross Validation (CV)

During model building, CV is generally used in order to decide on the appropriate 
number of latent variables to include in the model. For each number of latent vari-
ables desired, X is divided into subsets of samples and then one model is built at a 
time, containing all samples except the ones in the corresponding subset. The subset 
samples are then predicted in the corresponding model, and the difference between 
the expected and the predicted value is saved. By doing the same for all subsets, one 
can obtain the predicted residual error sum of squares (PRESS) and additional 
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statistics that allow model quality comparison. The number of latent variables that 
gives the least prediction error is selected for the final model. A root mean squared 
error of cross validation (RMSECV) can be calculated and expressed in the same 
units as the Y variable. One should then evaluate three important statistics:

 (i) R2X: fraction of variance of X explained by each latent variable. Always 
increases with increasing number of components, even when overfitting by 
modelling noise in X. Answers questions (in OPLS-DA) of the type “how 
much of the variation in X is related to the difference between the classes?”

 (ii) R2Y: fraction of variance of y/Y explained by each latent variable. It always 
increases with increasing number of components, as it starts modelling noise 
in X in order to explain y/Y. This statistics answers questions (in OPLS-DA) 
of the type “how good is the separation between the two classes?”

 (iii) Q2: The most important statistic to decide on the quality of the model, it varies 
between[-INF, 1]. It is the fraction of variance of y/Y predicted by each latent 
variable. Because it is based on prediction, the inclusion of noise should not 
increase Q2. However, although it is expected to stop increasing, or to start 
decreasing, after all structured information was modelled, that is not always 
observed. This statistic answers questions (in OPLS-DA) of the type “how well 
can we predict the two classes?”

CV yields different statistic results, depending on how CV groups are defined. A 
commonly used strategy of leaving one sample out (LOO) at each CV round is not 
advised [41], as the perturbation in the data may be too weak to have a significant 
effect. CV should also not be used with replicate samples, as the inclusion of one of 
the replicates allows better predictions of its sisters, and this will inflate the statis-
tics, showing better results than it should. Designed data may also have its prob-
lems, as the removal of some influential samples from a model may destroy the 
structure of the data and not allow them to be well predicted (e.g. as for samples in 
the extremes of the design factors).

In general, CV rounds should be defined in a balanced way, with each round 
containing samples from all quadrants of the experimental design. When dealing 
with datasets containing multiple individuals and samples of, e.g. different disease 
phases of the same individual, a practical advice would be to leave all samples from 
one individual out in each of the CV rounds, due to risk of autocorrelation. This 
strategy removes the contribution of each individual to build a model in each round 
of CV, while evaluating how the samples of that individual match the other individu-
als for each of its disease phases.

7.6.2  Cross Validation Scores (CV-Scores)

During CV, the different samples’ subsets are predicted, and scores can be obtained. 
Because they are predicted from samples that were not used in the same round to 
build an OPLS-DA model, classes in the CV-scores always look less separated than 

7 Chemometrics Methods and Strategies in Metabolomics



180

when visualizing the scores (obtained from the model including all samples). In the 
case of an OPLS regression model, the CV-scores will look less correlated to y. 
Nevertheless, CV-scores should always be visualized as they give a more realistic 
figure of future model prediction quality. Evaluation of CV-scores is in most litera-
ture just visual, but numerical measures can also be adopted [42].

7.6.3  Cross Validation-ANOVA (CV-ANOVA)

Analysis of variance can be used to compare the size of the residuals of two models 
applied to the same data [43]. Here it is adapted as a diagnostic method to evaluate the 
reliability of an OPLS-type model. It compares the y predicted residuals of the model 
with the variation around the global average, using an F-test for comparison of vari-
ances. In case the model predicted residuals are significantly smaller than the variation 
around the average, the null hypothesis of equal residuals of the two models is rejected, 
with a certain confidence level (e.g. 0.05). It is a rapid method as it uses values calcu-
lated during cross validation, and easy to evaluate, as it provides a significance p-value. 
Nevertheless, according to the author’s experience, due to biases and unidentified 
structured information in the data, if CV-ANOVA indicates a bad model, that is most 
certainly true, while if it indicates a good model, that may not necessarily be the case.

7.6.4  Permutation Test

Permutation test is a method to evaluate the statistical significance of the estimated pre-
dicted power, Q2 [22, 44, 45]. In this method, the R2Y (self-prediction) and Q2 (cross-
validated prediction) of a defined model are compared to the ones from a large number 
of models in which the y vector has been randomized, and no good prediction capability 
is expected. The evaluation of the model validity is done by looking at the number of 
“random” models that present better statistics than the one being evaluated, or by look-
ing at the intercept of the linear regression of each of those two statistics [22].

Notice that the R2Y and Q2 values are plotted in function of the correlation of 
each of the randomized y vectors and the actual true y vector. In case high Q2 values 
are found for some “random y” models, one should examine if that correlation is 
high, in which case means that the randomization process created a “randomized” y 
that is very similar to the actual y vector.

7.6.5  External Validation

While the above validation methods can provide an idea of the quality of the models, 
prediction of an external data can elevate our confidence in the model quality to a 
higher level. Depending on the objective of the experiment, more confidence can be 
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deposited in a model that can predict samples that were acquired or processed in dif-
ferent times, machines, by different operators, etc. and were not used for model con-
struction. Sensitivity and specificity can be evaluated in case of OPLS discriminant 
analysis/classification, while continuous measures of prediction error can be calcu-
lated in case of OPLS regression (root mean squared error of prediction, RMSEP).

7.6.6  Comparison of Model Loadings

It is itself an external validation; one can evaluate the validity of models by confirm-
ing the statistical significance of the discriminant variables. If an experiment is 
repeated, the class discrimination should be influenced by the same variables. An 
SUS plot of the two models may be used for that, in which case the same discrimi-
nant variables should be aligned along a positive diagonal.

7.6.7  Receiver Operating Characteristic (ROC) Curves

A well-established technique in clinical essays [46], it is very useful to compare over 
different classification models (using the area under the curve, AUC) or to evaluate 
thresholds for better sensitivity or specificity (using graphical representation). In the 
case of two-class OPLS-DA, after a model is calculated and the predicted classes 
obtained, a ROC curve can be calculated by incrementally moving the discrimination 
threshold between 0 and 1 and plotting the results for each incremental value.

7.7  Significance of Variables in OPLS-Type Regression/
Discrimination

Once an OPLS-type model has been determined and adequately validated, it is in 
general of interest to find out which variables (features or metabolites) are more influ-
ential in the model and to decide on its statistical significance. In order to visualize the 
influence of a variable in the model (regression or class discrimination), one can just 
sort the relevant vectors (p-loadings or VIP) by magnitude. To determine the validity 
of each of the variables, several strategies are described in the following sections.

7.7.1  p-loadings with Confidence Intervals

The p-loadings of the predictive latent variable represent the influence of the vari-
able in the OPLS regression/discrimination. Furthermore, during internal cross vali-
dation (CV), multiple OPLS-type models are produced, while leaving some samples 
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out in these different CV rounds. The p-loadings obtained in each of these CV 
rounds can be averaged and a standard error (error bars, confidence intervals) calcu-
lated with a predefined level of significance (e.g. 0.05). Some authors sort the 
p-loadings by magnitude just for model-influence visualization. Then, for statistical 
significance consider that, for a certain variable, if the error bars do not cross zero, 
the variable is statistically significant (in other words, the absolute value of variable 
minus standard error is larger than zero).

7.7.2  pcorrel and Correlation Threshold

The p-loadings can be rescaled as the correlation coefficient between the variables 
in X and the scores (t) of the OPLS-type model (here defined as pcorrel). These pcorrel 
are correlation values and, thus, have values between the limits [−1–1]. A correla-
tion threshold for a desired level of significance (e.g. 0.05), dependent on the num-
ber of samples, can be obtained from a table of critical values for Pearson correlation. 
The statistically significant variables are the ones which absolute pcorrel larger than 
the adequate critical correlation threshold.

7.7.3  Variable Importance on the Projection (VIP)

This is an established and compact parameter used to summarize the importance of 
each of the X variables in a PLS with >2 components. Important variables have VIP 
larger than 1, while a variable is more irrelevant the lower than 1 is its VIP. There 
are different VIP measures for OPLS [47, 48], and researchers adopt in general the 
one defined in their software package.

7.7.4  Note on Significance of Variables

Some authors choose to select statistically valid features or metabolites only if they 
obey multiple criteria, including some of the ones described above plus others com-
ing from univariate testing. These can be a minimum correlation needed, p-values 
after some multiple testing correction or fold change.

7.8  Univariate Analysis

Univariate analysis has been used in conjunction with multivariate analysis to study 
variation and to test statistical significance of parameters and variables in metabolo-
mics studies. Notice that while multivariate analysis can handle certain amounts of 
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batch and drift variation, univariate analysis should only be used if correction for 
these effects is satisfactory. Nevertheless, new attention has been given to the analy-
sis of metabolomics data using univariate analysis [49], especially in the field of 
epidemiology [50]. Until recently, rare – if any – metabolomics studies were com-
posed of thousands of samples due to its cost but also to issues related to process 
automatization, data handling, processing and reproducibility, among others. 
However, some large-scale metabolite profiling studies have now been done [51], 
mostly in epidemiological research, as metabolomics is expected to measure envi-
ronmental and exogenous exposures more precisely than traditional questionnaires. 
In these studies, linear or generalized linear models are used in univariate analysis 
fashion, while correcting for confounders. These confounders are experimental fac-
tors that may be correlated with the outcome and in that case are not removed using 
OPLS- type multivariate methods.

A word should be said in relation to the use of parametric (e.g. t-tests, Pearson 
correlation) or nonparametric (e.g. Mann–Whitney U test, Spearman correlation) 
strategies. For normal populations, parametric tests are more powerful than non-
parametric ones, but that is not the case for non-normal populations, unequal vari-
ances and unequal small sample sizes, where using a nonparametric test would be 
advantageous. While testing for normality distribution in four datasets, some authors 
found in average 65 % of metabolic features met normality and equality of variance 
assumptions. Still, as it was dependent on the dataset, they suggest to use both strat-
egies, and if there is a large difference in the results, one should look for outliers in 
the dataset [49].

7.9  Multiple Testing Corrections

To decide on the statistical significance of a feature or a metabolite, e.g. if it is or 
not correlated with an outcome or if it has discriminant capacity between two 
classes, univariate methods rely on p-values. Because in metabolomics untargeted 
studies one is looking after thousands of variables, multiple testing corrections 
must be applied. The Bonferroni correction was commonly used in the past, when 
the number of variables was small, but as it corrects for the family-wise error rate 
(FWER) – the probability of at least one false positive – it ends up being too con-
servative. Benjamini–Hochberg and other corrections that control the false dis-
covery rate (FDR) [52, 53] are less conservative and widely applied. Nonetheless, 
due to the high degree of correlation observed in metabolomics data (e.g. adjacent 
intensities in NMR peaks), existence of multiple features for the same metabolite 
(e.g. LC-MS dimers, adducts; NMR signal multiplicity), they are also considered 
not appropriate. Thus, permutation strategies such as the metabolome-wide sig-
nificance level (MWSL) [54] have been developed to control for the FWER, 
which determine more robust p-value thresholds for discovery than the above 
methods.
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7.10  Practical Aspects of Chemometrics in the Context 
of Preprocessing, Pretreatment and Experimental 
Design

Many decisions must be taken when designing a metabolomics experiment, regard-
ing sample type and number, cost, time, human resources, instruments and data 
analysis methods.

The decisions taken will provide answers to different questions; thus a very 
well- defined idea about the methods that will be used for data analysis and inter-
pretation is fundamental, in order to be able to pose objective questions and obtain 
correspondingly appropriate answers. This has a retrospective impact on the 
design of experiments itself. Although not the main focus of this chapter, it seems 
appropriate to include a brief description of different options that can be made, 
which condition the chemometrics data analysis and may be used for batch cor-
rection in MS data.

7.10.1  1H NMR Data: Types of Data Matrices

Different strategies can be used for the preprocessing of 1H NMR data, depending 
on the type of sample (e.g. urine or serum), because of chemical shifts due to physi-
cochemical sample differences. Blood samples are expected not to change much 
due to homeostatic regulation, while urine is known to change more in concentra-
tion as well as in properties, as it is more affected by microbiota, drugs, diet and 
disease [50, 55].

Direct analysis after alignment: if the alignment is good enough, the data can be 
immediately analysed. When using multivariate methods for the data analysis, data 
tend to be scaled by mean centring or Pareto normalization, with optional log trans-
formation, so the spectral structure is kept. In this case, unit variance normalization 
is not used as it gives the same importance to variation in the signal and in the noise 
region, and the loadings do not show spectral structure similar to the data. If large 
“saw-tooth” (inverted peaks) effects are found in the loadings, it is a sign that the 
alignment was not performed perfectly.

Analysis after alignment and binning: if there are some issues with the align-
ment, but the whole spectrum is to be analysed, binning adjacent values can be used. 
If multivariate analysis is used, data should be normalized by centring or Pareto 
normalization, to keep the original spectral structure, with optional log 
transformation.

Analysis after alignment and peak picking: a similar strategy to binning is to 
integrate peaks, but in a more targeted way, thus rejecting noise regions. If multi-
variate analysis is to be used, unit variance scaling can be used, as noise regions are 
not supposed to exist. When using this strategy, the spectral structure is lost.
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7.10.2  MS Data: Reducing Batch and Drift Effects

GC/LC-MS instruments are prone to batch and time drift effects, due to changes in 
instrument sensitivity and intensity, among other effects. Targeted methods correct 
batch and drift effects with the inclusion of labelled internal standards, with which 
a ratio between the target compound and the internal standard can be calculated. For 
untargeted GC-MS and LC-MS, several strategies have been used to correct for 
these effects: inclusion of periodic quality control samples (pooled from all or from 
a group of samples in the experimental set) that are expected to yield the same 
results along time, addition of internal standards to the samples (heavily labelled 
and/or not occurring in the samples) representing different compound classes, and 
experimental design using paired samples (when having samples with and without 
effect). These methods present both advantages and disadvantages, which are tenta-
tively explained below.

Periodic Internal Quality Control (iQC) Samples [56] An adequate volume of 
pooled sample is built by pooling an amount of each of the biological samples. 
Subsamples of this main sample, assumedly with equal composition and concentra-
tion, are interspersed (e.g. every fifth sample) with the biological samples and ran in 
the instrument. For each individual variable, these iQC samples are then modelled 
using locally weighted regression (e.g. robust loess). Once a model is established, 
one can calculate the ratio between each biological sample and the LOESS curve 
(while the iQC samples should all equal 1) for each variable. This method is used 
both for batch and drift correction. While potentially the most adequate correction 
method, its major disadvantage is the increase in the total number of samples, with 
impact on time and cost of the experiment.

Internal Standards (IS) A certain number of quality control labelled compounds, 
not expected to have endogenous expression in the samples, representing different 
chemical/biological classes (e.g. amino acids, fatty acids) are added in the same 
concentration to each biological sample. These compounds are assumed to be in the 
same concentration in each sample. The advantage of the method is that there is no 
need for additional samples. The disadvantage is that the internal standards may not 
be the adequate ones to normalize the data. To correct for batch/drift using internal 
standards, the following strategies have been applied:

 (i) Correction by single or multiple internal standards (IS): if a single IS was 
used, the ratio or log2 ratio between each variable and the IS can be calculated, 
and the variable is considered corrected. If multiple IS were used, the decision 
of which IS shall be used to normalize a certain variable can be done according 
to maximum IS correlation [57] or by minimal retention time difference [58].

 (ii) Correction using multiple IS and PCA: the features representing the IS are nor-
malized dividing each one by their corresponding standard deviation. PCA is 
calculated on this dataset, and the scores of the first component are obtained, 
representing the major batch/drift effect on the dataset. Then the procedure is the 
same as in the previous case. For each variable, the ratio between each sample 
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and the corresponding score value is calculated, normalizing the data. The major 
disadvantage of this method is that it can only correct one major batch/drift effect 
and may even wrongly correct features that were less affected by those effects.

 (iii) Correction using OPLS: a procedure similar in concept to orthogonal signal cor-
rection has been applied to microchannel microarray data using OPLS [59], 
cleaning the data from orthogonal variation that is not common within sets of 
biological replicates. The method uses the data in matrix X and a dummy matrix 
identifying the replicates in a matrix Y. After it identifies the orthogonal informa-
tion, it builds the corrected data matrix using matrix multiplication of predictive 
scores and loadings, plus the residual variance. The strategy seems applicable to 
metabolomics, and a variation of it, using information from the IS samples, has 
been used in the context of batch normalization and drift correction [60].

Experimental Design Using Paired Samples In case there are reference samples, 
like “before” (baseline) and “after” treatment for the same individual, or when using 
multiple time points, or matched case–control, and the objective is to study an effect 
(e.g. of a drug, or disease). In these cases the matched samples can be ran close to 
each other, and the drift between them is assumed as negligible. The baseline sam-
ple can then be subtracted from the effect(s) sample(s), with the result being the 
difference between the two (the effect itself). Local randomization of the matched 
samples is used, to minimize for any sequential bias. While not needing additional 
samples, the major disadvantage of this method is that it is only applicable in situa-
tions where a reference sample exists. Additionally, one will be studying not the 
current metabolite relative levels but the effect’s metabolite relative levels in rela-
tion to baseline. The OPLS-EP method previously mentioned [38] is an example of 
this strategy in practice, for paired samples “before” and “after” effect. Alternatively 
to subtracting a “before” sample (baseline), the average per group of paired samples 
could be subtracted from each of the respective paired samples, in which case the 
baseline sample would be kept for analysis.

7.11  Internet Resources and Software

Following the developments in other omics fields, efforts have been put into creat-
ing internet platforms for automated and semi-automated metabolomics data analy-
sis. Some very good resources are now available, which may require a minimum of 
knowledge of the methods on the side of the researcher to output meaningful data 
analysis results. Among the most well known and commonly used are MetaboAnalyst 
[61–65], metaP-server [66], Workflow4metabolomics [67] and Galaxy-M [68], and 
work is in progress in the large-scale computing for medical metabolomics website 
PhenoMeNal [69]. Finally, the website OMICtools [70] provides a comprehensive 
description of software that can be used for metabolomics data analysis, as well as 
a number of sites that can be used for different purposes in the omics fields.
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7.12  Concluding Remarks

Chemometrics has been heavily used in all steps of metabolomics studies and has 
here been discussed in the context of data analysis in clinical metabolomics contexts. 
Its relevance in this field is due to the complexity and number of variables in metabo-
lomics datasets and the simplicity of interpretation of its results. While other strate-
gies in bioinformatics start appearing that gather information from databases, thus 
needing previous identification of metabolites, chemometrics methods are purely 
numerical, thus finding its own place in the data analysis pipeline. The possibility of 
automation has brought to light some websites that provide statistical calculations, 
chemometrics methods included, without major input from the analyst.
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