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Chapter 12
Spatial Metabolite Profiling by Matrix-
Assisted Laser Desorption Ionization Mass 
Spectrometry Imaging

Berin A. Boughton and Brett Hamilton

Abstract  Mass spectrometry imaging (MSI) is rapidly maturing as an advanced 
method for spatial metabolite profiling. Herein, we provide an introduction to MSI 
including types of instrumentation, detailed sample preparation, data collection, 
overview of data analysis steps, software, common standards, and new develop-
ments. Further, we provide an overview of MSI in the clinical space over the past 3 
years where MSI has been deployed in diverse research areas including cancer, neu-
robiology, lipidomics, and metabolite profiling and mapping to name only a few. We 
provide several examples demonstrating the applicability of MSI to spatially profile 
metabolites in unique systems requiring special considerations outside of the norm.
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AP-MALDI	 Atmospheric pressure matrix-assisted laser desorption 
ionization

CHCA (or HCCA)	 α-Cyano-4-hydroxycinnamic acid
Cer	 Ceramide
DAN	 1,5-Diaminonapthalene
DESI	 Desorption electrospray ionization
DHAP	 2,5-Dihydroxyacetophenone
DHB	 2,5-Dihydroxybenzoic acid
DMAN	 1,8-Bis(dimethylamino)naphthalene
FA	 Fatty acid
FFPE	 Formalin-fixed paraffin embedded
fNPs	 Functional iron nanoparticles
FT	 Fourier transform
FTICR	 Fourier transform ion cyclotron resonance
FT-IR	 Fourier transform infrared spectroscopy
HCA	 Hierarchical cluster analysis
Hex	 Hexose
IR	 Infrared
IR-MALDI	 Infrared matrix-assisted laser desorption ionization
ITO	 Indium tin oxide
kMSI	 Kinetic mass spectrometry imaging
LDI	 Laser desorption ionization
MALDI	 Matrix-assisted laser desorption ionization
MIPC	 Ceramide phosphoinositol
MRI	 Magnetic resonance imaging
MS	 Mass spectrometry
MSn	 Multistage tandem mass spectrometry
MSI	 Mass spectrometry imaging
MS/MS	 Tandem mass spectrometry
m/z	 Mass-to-charge ratio
NIMS	 Nanostructure-initiator mass spectrometry
OCT	 Optimal cutting temperature
PA	 Phosphatidic acid
PCA	 Principal component analysis
PC	 Phosphatidylcholine
PE	 Phosphatidylethanolamine
PG	 Phosphatidylglycerol
PI	 Phosphatidylinositol
PS	 Phosphatidylserine
ROI	 Region of interest
RP	 Resolving power
SIMS	 Secondary ion mass spectrometry
TIC	 Total ion chromatogram
TOF	 Time of flight
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12.1  �Introduction

Recent major technical advances in mass spectrometry (MS) have increased the scope, 
applicability, and adoption of the technology in a vast array of research areas [1]. The 
number and scope of approved diagnostic clinical applications utilizing mass spec-
trometry are increasing and broadening extremely rapidly. In particular, the applica-
tion of MS to biochemical imaging via mass spectrometry imaging (MSI) has emerged 
as one of the leading spatial analysis technologies for high-throughput molecular 
imaging in biological systems. MSI has been employed to investigate a vast range of 
different spatial biological questions, and there have been many excellent comprehen-
sive reviews published in recent years [1–14]. A recent survey of MSI users has identi-
fied matrix-assisted laser desorption ionization (MALDI) as the dominant ion source 
(95 %), and imaging of small molecules, including drugs, metabolites, and lipids, rep-
resents approximately 80 % of the application of MSI. In this chapter, we provide an 
introduction to MALDI-MSI used for biological-based research.

The “omics” technologies, genomics, transcriptomics, proteomics, and metabo-
lomics (and others), have provided insights into biochemistry, physiology, and biol-
ogy and are at the forefront of discovery in modern systems biology [15]. The 
exquisite specialization and compartmentalization of biological systems also require 
spatial approaches allowing examination of “where things are happening” to unveil 
the full complexity of the underlying biology.

Spatial analysis can be conducted using a number of different techniques, which 
can be broadly categorized into two approaches: (1) in vitro isolation and extraction 
of individual tissue/cell types and (2) in situ, including in vivo, analysis using an 
imaging approach. The suite of technologies available for in situ imaging is enor-
mously powerful and varied, including Fourier transform infrared spectroscopy, 
magnetic resonance imaging, electron microscopy, histochemical and immunolabel-
ing approaches coupled to optical and fluorescence microscopy, and X-ray fluores-
cence microscopy, with each approach taking advantage of different physical and 
chemical properties of the underlying tissue to provide unique insights. MSI has a 
number of advantages over other imaging modalities which are directly derived from 
the capabilities of modern MS instrumentation, which provide molecular specificity, 
high sensitivity for select analytes, and the ability to measure a broad range of ana-
lytes at high mass-resolving power with high mass accuracy across wide mass ranges. 
Even with these advantages, it is still a challenge to provide the depth of coverage 
that may be achieved from alternative approaches. MSI can provide very high lateral 
resolutions for imaging, giving the ability to distinguish the molecular nature of fine 
morphological features within tissues, even down to the single-cell level. Certain 
MSI approaches take advantage of minimal or no sample preparation steps with a 
number capable of ionization directly off sample surfaces. While our spatial resolu-
tion during MALDI imaging experiments has improved in recent years, other imag-
ing modalities can achieve higher spatial resolution, and Caprioli and coworkers 
have sought to integrate, or fuse if you like, these different modalities to combine the 

12  Spatial Metabolite Profiling by MALDI-MSI



294

strengths of different imaging modes for a better outcome [16]. For example, they 
showed that correlating modest resolution MALDI imaging (100 μm) with optical 
scans of H&E-stained tissue allowed the prediction of regions of interest at higher 
spatial resolution – the prediction at 10 μm was verified by MSI acquired at 10 μm 
on a serial section. This advance has the potential to combine the specificity of 
MALDI-MSI with optical images and other modes of imaging. The other advantage 
of being able to use modest resolution MALDI-MSI is that the sample throughput 
can be higher, as very high spatial resolution MSI on large tissue sections is not fast 
enough to be considered high throughput on most MALDI instruments. Recent 
instrumental advances have also increased the speed of which data can be collected.

MSI was first applied to biomedical imaging [17, 18] in the mid-1990s corre-
sponding with the introduction of soft ionization techniques, in particular 
MALDI. MSI has significantly advanced, providing both high lateral (spatial) and 
high mass resolution capabilities using a variety of different ion sources and 
approaches. MSI has found extensive use in molecular pathology and histology 
where the technique is used to map the spatial distribution of proteins and small 
molecules including drugs, lipids, and endogenous metabolites within tissues [1, 
12]. MSI has been demonstrated to have a number of advantages, including a label-
free analysis and the simultaneous multiplex measurement of 100 to possibly 1000 
of analytes in a single imaging experiment, providing rich high density multidimen-
sional data. Combination of MSI with advanced software and data analysis tech-
niques now allows the virtual microdissection and interrogation of the molecular 
makeup of individual tissues. Lately, advances in spatial resolution have placed MSI 
at the forefront of single-cell metabolomics [19, 20], demonstrating an ability to 
measure the metabolism of an individual specialized cell within a subpopulation of 
cells. The development of novel data analysis techniques is opening the doors to 
conducting spatial metabolomics and comparative statistics across multiple samples 
allowing exploration of molecular changes during disease processes and identifica-
tion of biomarkers [21, 22].

12.2  �Mass Spectrometry Imaging

There are four essential steps in a basic MSI experiment: (1) sample selection and 
preparation, (2) desorption and ionization, (3) mass analysis, and (4) image registra-
tion and data analysis [14]. Careful control of each is essential to enable generation 
of high-quality images. In particular, sample selection, storage, and preparation 
have a disproportionate impact on the final results; there are many potential pitfalls 
that must be avoided as many sample preparation steps or techniques have the 
potential to contaminate the tissue section with exogenous material affecting repro-
ducibility, ionization, and image quality. Fundamentally, the MSI process involves 
placing a suitable tissue section into an ion source, ionizing the sample and collect-
ing a series of position-correlated mass spectra. This series of individual mass 
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spectra is collected in a two-dimensional (2D) array across surface of the sample 
using one of a range of different ion sources and mass analyzers. The most common 
approach is a microprobe approach where for each spatial coordinate, a single cor-
responding mass spectrum is collected. The resulting mass spectra represent the 
intensities of ionizable molecules present as their mass-to-charge ratios (m/z) which 
are then correlated with a high-resolution optical image of the tissue or histochemi-
cal stain with each spectrum assigned as an individual pixel for image generation. 
When the intensity value of each respective ion is plotted as an intensity map across 
the 2D array, the resultant reconstructed ion image represents the spatial distribution 
of the corresponding molecule(s). Three-dimensional (3D) approaches are also pos-
sible where serial 2D arrays from sequential tissue sections (or depth profiling) 
from the one tissue sample are measured and then a 3D volume is reconstructed 
computationally [23–25].

12.2.1  �Ionization and Mass Analysis

MSI first relies on the ability to form ions that are then transferred under vacuum 
and measured by the mass analyzer. Currently, the dominant ion source and approach 
is MALDI, due to a range of commercially available instruments, which are capable 
of delivering high spatial and mass resolution, ease of use, and broad range of appli-
cability to a variety of biological applications (Fig. 12.1). In practice, lateral resolu-
tions for MALDI instruments are in the range 5–50 μm. The past 3–5 years have 
seen an explosion in different types of ion sources available, including atmospheric 
pressure MALDI (AP-MALDI) and other specialized sources for ambient ioniza-
tion conditions [26]. Further, a number of popular alternative ion sources exist 
including SIMS, desorption electrospray ionization (DESI), nano-DESI, laser abla-
tion electrospray ionization (LAESI), and atmospheric pressure MALDI.  When 
undertaking MSI at very high spatial resolution, there is a significant trade-off with 
sensitivity, because the decreased sampling area will reduce the total number of ions 
available for detection. In short, MSI experiments will usually involve some kind of 
trade-off between spatial resolution and sensitivity; however, advanced mass ana-
lyzers and detectors are now allowing the measurement of very low numbers of ions 
that to some degree mitigates losses in sensitivity at high lateral resolution.

The mass analyzer is the core component of a mass spectrometer, enabling deter-
mination of mass-to-charge ratio (m/z) of an ion. The type of mass analyzer used 
and spectral resolution also have a direct impact on the ability to conduct MSI 
experiments (Table 12.1). The most common mass analyzers used on MSI instru-
ments include time of flight (TOF) and Fourier transform (FT), encompassing both 
orbitrap and ion cyclotron resonance (FTICR) instruments. To distinguish differing 
metabolites in tissues, there is a clear need for accurate mass and high mass-
resolving instruments and/or the use of tandem MS. Low mass resolution instru-
ments can lead to misidentification or misinterpretation due to inability to resolve 
peaks of similar mass in MS scans. Ion traps have been used for imaging studies, 
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Fig. 12.1  Matrix-assisted laser desorption ionization (MALDI) approach. (1) Sample selection 
and preparation: sample tissues are first frozen and then cryo-sectioned with resulting thin sections 
mounted directly to a target. A thin layer of chemical matrix is typically applied across the surface 
of the tissue using a spray deposition or sublimation approach; (2) MALDI: molecules are desorbed 
from the surface by preferential absorption of UV or IR light energy by the matrix, localized phase 
transfer generates an evolving gas plume, ions may be pre-formed in the solid phase or generated 
in the gas phase by ion addition or abstraction from the respective analyte; (3) mass analysis: indi-
vidual position-correlated mass spectra are collected in a uniform array; (4) image registration and 
data analysis: spectra are combined to generate a data cube. MSI data is then defined by x,y loca-
tion, m/z, and ion signal intensity. Individual ion images are reconstructed by plotting the ion signal 
intensity for a single (or multiple) m/z as a false color image across the 2D grid correlated with an 
optical image. Further statistical analysis may be conducted to identify spatial segmentation or 
comparative analysis across sections
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and while being lower resolution mass analyzers, they do offer the possibility to 
perform targeted MSI experiments at MS2 or MSn level, where product ions can 
monitored. This approach can be useful if there is sufficient signal for MSn events, 
and even though the MSI would be displayed for a particular product ion, whole MS 
and MSn spectra are acquired, meaning compound ID can be made by comparing 
full MSn spectra acquired during MSI analysis to spectra from standard materials. 
Undoubtedly, higher mass resolution is very useful in MSI experiments, where sam-
ple purification and fractionation are not possible and sample cleanup is limited, but 
MSn experiments using ion traps also have potential to identify compounds during 
MSI analysis.

The ability of a mass spectrometer to distinguish one mass peak from an ion 
close in mass is described by both mass resolution and resolving power (RP). MSI 
experiments are less sensitive than analyses that orthogonally separate analytes 
prior to measurement and detection; this is directly due to the extremely complex 
biological matrix of the tissues where vast concentration ranges of chemical enti-
ties are present with differing chemistries and molecular sizes (e.g., proteins, lip-
ids, organic acids, amino acids, carbohydrates, inorganic ions, etc.). For MALDI 
experiments, the presence of high abundance low-molecular mass ions generated 
directly from the matrix employed can lead to significant interfering signal. Higher 
mass resolution allows easier identification of contributing ions and exclusion of 
interference from the presence of other chemical entities. Higher mass-resolving 
power is essential for high mass accuracy, whereby a higher RP allows identifica-
tion of the center of peak and determination of the mass error, with low mass error 
allowing unambiguous assignment of a molecular formula aiding in identification. 
Modern high-resolution instruments are capable of <10 parts per million (ppm) 
mass error for TOF and <2  ppm mass error for FT instruments. Measurements 
conducted on low mass resolution instruments are typically operated in a targeted 

Table 12.1  List of common mass analyzers and instrument configurations detailing: mass 
resolution, approximate mass range, MS/MS capabilities, and acquisition speed

Mass analyzer/
configuration Mass resolution

Mass 
range (Da) MS/MS MSn

Acquisition 
speed

Ion trap ~1000 50–4000 Yes Yes Medium
TOF 2500–40,000 20–

500,000
No No Fast

TOF/TOF >20,000 20–
500,000

Yes No Fast/very fast

IT-TOF 10,000 50–20,000 Yes Yes Fast
IT-orbitrap >100,000 40–4000 Yes Yes Slow
FTICR >200,000 10–10,000 Yes Yes Slow
Ion mobility QTOF 13,000/40,000 Up to 

40,000
Yes No Fast

TOF time of flight, TOF/TOF tandem TOF, IT ion trap, FTICR Fourier transform ion cyclotron 
resonance, QTOF quadrupole time of flight, Da dalton
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tandem MS approach to provide molecular selectivity where specific fragment 
ions of single analytes are monitored, providing both molecular specificity and 
increased sensitivity. MSI measurements using higher resolution detectors pro-
vide the ability to unambiguously resolve a peak from the complex spectra that is 
generated allowing untargeted profiling-type techniques. The other exciting 
aspect of performing MSI with mass analyzers offering extreme resolution is that 
in addition to the mass accuracy measurement and the oft referred to isotope enve-
lope, one can also measure the fine structure of each isotope peak. This fine struc-
ture is due to the very small differences in mass that exist in naturally occurring 
isotopes, for example, 34S will be slightly lower in mass than 18O, and if our ana-
lyzer is capable of very high resolution, these species can be resolved and observed 
separately. This fine structure is characteristic of the chemical composition and 
can be used along with mass accuracy and traditional isotope envelope measure-
ment to confirm molecular formulae. This approach has shown great utility in the 
metabolite world. For protein samples, an on-tissue digestion would be required, 
given the mass range of FTICR analyzers. This approach is very exciting too, 
because it opens the possibility of “peptide mass fingerprint”-type experiments – 
whereby if we confirm the presence of several peptides that emanate from an 
individual protein, we essentially have protein identification during an MSI analy-
sis. This approach is important because it removes the requirement for successful 
MS2 experiments.

A hybrid approach that uses ion mobility coupled to mass spectrometry (IM-MS) 
that first separates ions by their mobility in a carrier gas followed by detection by 
MS has recently been developed [27, 28]. IM-MS offers the ability to orthogonally 
separate ions in the gas phase with similar m/z but different shapes via collisional 
cross section (CCS), providing a number of benefits including better signal to noise 
ratio (S/N) and the potential to separate isomers according to their shape and charge 
[29–32]. The application of IM-MS to MALDI-MSI experiments provides much 
promise for the analysis of lipids, peptides, and proteins; however, the benefits of 
IM-MS for small molecule analysis are slowly being unveiled as higher ion mobility 
resolving instruments are developed.

12.2.2  �Sample Preparation

Prior to analysis, tissues must be collected and stored. The steps taken during both 
tissue collection and storage are critical for successful MSI analysis and often vary 
depending upon the analyte of interest. Most experiments will have a distinct timing 
mismatch between sample collection and analysis, requiring the storage of samples 
for a period of time. For most MSI analyses, tissue samples are typically flash-
frozen to quench metabolism and to retain the spatial distribution of analytes and 
are sectioned or prepared at a later time point. Care must be taken to retain the tissue 
morphology during the freezing process and to preserve an accurate representation 
of the native tissue; soft tissues may deform and take the shape of the container 
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(tube or tray) within which they are frozen. Typically, to protect delicate tissues, 
structures, and small metabolites, a gentle freezing approach is recommended, 
including freezing in the atmosphere over liquid nitrogen or in cold carbon dioxide 
atmosphere over dry ice; alternatively, samples may be dipped into isopentane/liq-
uid nitrogen or isopentane/dry ice slurries. Alternatively, a number of heat and 
microwave tissue stabilization methods have been developed for proteins and pep-
tides [33–35].

Once samples are frozen, tissues and analytes are generally stable for months to 
years when stored at −80 °C. Embedding tissues within an external matrix is a com-
mon approach and is often required to ensure that suitable sections are generated 
from fragile tissue types that may have a tendency to fracture and crumble during 
sectioning. A number of different embedding media have been successfully demon-
strated, including agarose [36], gelatin [20, 37–41], and aqueous carboxymethylcel-
lulose solutions (1–5 %) [42, 43]. In general, the easier the frozen matrix is to 
section or the closer the properties of the matrix are to the tissue being sectioned, the 
easier it will be to generate suitable sections of tissue for analysis.

Standard histological workflows utilize optimal cutting temperature (OCT) 
compound (a solution containing ~4 % polyethylene glycols (PEG)) as an embed-
ding medium, but this is strongly discouraged for MSI research due to absorption 
into the tissue and smearing of OCT across the tissue surface during cryo-section-
ing, which has been shown to directly lead to ion suppression effects and loss of 
analyte signals [44].

While cryo-sectioning is the most commonly used method for sample prepara-
tion to access internal metabolites, there are other alternatives for tissue section-
ing. Depending on the analysis method and instrument used, tissues must be 
prepared differently for imaging purposes, and a number of factors must be consid-
ered. External surfaces can be readily analyzed by mounting tissues directly to 
sample stages using double-sided tape, but for the measurement of internal distri-
butions of metabolites, tissues must first be sectioned at an appropriate thickness 
to expose the underlying tissue. In particular, the type of analytes and their stabil-
ity and turnover must be considered. Both the sample height and morphology may 
have a large effect upon the number of ions generated (due to laser focusing) and, 
for linear TOF instruments (LDI and MALDI), mass accuracy and resolution (due 
to changes in flight path length). Instruments where the detector is decoupled from 
the source, such as QIT, LIT, FTICR, and orbitrap instruments, are not reliant upon 
the sample thickness and are only limited by the physical configuration of the 
sample stage.

An established technique for generating thin sections from hard tissues has been 
recently adapted to MSI applications for delicate and difficult tissues [45]. The 
Kawamoto method uses an adhesive film to capture thin sections during cryo-
sectioning. Once the tissue is adhered to the film, it can be transferred then fixed to 
a standard slide and prepared in the normal manner for MSI [46, 47].

For previously fixed tissue samples, there are a number of sample preparation 
protocols that have been developed for formalin-fixed paraffin-embedded (FFPE) 
mammalian tissue specifically for MSI analysis [48]. Previously, FFPE tissues have 
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been considered only suitable for examination of the distribution of metals, pro-
teins, peptides, and other polymeric biomolecules in tissues due to the fixation 
extracting and degrading small molecules. More recently, the possibility of imaging 
small molecules from FFPE tissues has been demonstrated [49–51]. For proteins, 
peptides, and glycogens, further tissue preparation steps are required to retrieve 
antigens lengthening the sample preparation process.

Some tissue types can be very difficult to frozen section, such as secretory 
tissues, among other things. These tissue types benefit from a tissue fixation 
approach; however, FFPE fixation using formaldehyde renders the intact pro-
teins inaccessible. This can be a problem especially for studies where transcrip-
tome libraries do not exist – as the peptides that would be observed after antigen 
retrieval and enzymatic digest are meaningless in the absence of a transcriptome 
library. One approach for these types of sample is to utilize a fixation approach 
that does not involve the protein cross-linking caused by formaldehyde [52]. 
RCL2 and PAXgene Tissue are two products that can be used to fix tissue, which 
do not cross-link the proteins. Once fixed, the tissue is dehydrated (ethanol gra-
dient) and cleared (xylene) prior to paraffin impregnation in much the same man-
ner as routine tissue processing. This approach results in a paraffin-embedded 
tissue that can be sectioned very easily using a microtome. The only caveat is 
that the sectioned tissue cannot be floated on a water bath for mounting onto a 
slide, as the proteins are soluble. The carefully placed tissue section is heat 
mounted to a glass slide and then deparaffinized using xylene. At this stage, the 
tissue can have matrix applied in the same manner as any other tissue. For pro-
tein analysis, the samples are very good because the dehydration and clearing 
remove the lipids and other species that often reduce the sensitivity during an 
MSI analysis. However, the approach is clearly not ideal for analyte classes sol-
uble in ethanol or xylene.

Once mounted to the sample carrier, the tissues are typically dehydrated under 
vacuum prior to either matrix deposition or direct analysis. Prior dehydration 
avoids any shrinkage of tissues leading to changes in sample morphology within 
the instrument. In MALDI-MSI using TOF detection, where a voltage is applied to 
the sample stage, samples are usually mounted either on glass slides coated with 
conductive indium tin oxide (ITO) or on reusable metal sample stages (steel or 
gold-coated steel). Samples are either directly freeze-thaw mounted to the surface 
or adhered using conductive double-sided tape [53]. Freeze-thaw mounting is gen-
erally performed by transferring the cut tissue section to the top of the sample 
holder (slide, plate) and then gently warming the holder from the underside using 
body heat. The tissue section quickly thaws and adheres to the surface of the holder. 
Once mounted, the sections are warmed and transferred to a vacuum desiccation 
chamber and dried under reduced pressure for at least 15 min before any further 
steps are conducted. Tissue sections may degrade rapidly and must either be stored 
under vacuum or, for longer periods, at −80 °C [54]. For MALDI-MSI, application 
of the matrix has been shown to stabilize analytes within the tissue to oxidation and 
degradation processes.
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12.2.3  �Tissue Washing

A commonly accepted principle of MSI analysis is to conduct the minimal amount 
of sample preparation steps, to avoid metabolite degradation, and to retain the dis-
tribution of analytes. However, a number of tissue washing steps can be conducted 
to either increase the sensitivity for certain analytes or to remove background salts 
to decrease salt adducts [55–57]. Mounted sections can be carefully dipped into 
washing solutions and then dried, before further processing such as enzymatic 
digestion or application of matrix. These steps have been successfully employed to 
increase the ionization of selected metabolites (including lipids, proteins, and pep-
tides) in mammalian systems.

12.2.4  �MALDI Matrix Application and In Situ Protein 
Digestion Strategies

MALDI relies upon an exogenous matrix, consisting typically of either small 
organic molecules or inorganic UV absorbent nanoparticles, which must be applied 
by one of a number of different techniques. Further, the achievable lateral resolution 
is dependent upon the size of the matrix crystals, which is in turn dependent upon 
the application technique employed. There are a number of approaches used to 
apply a MALDI matrix that can be separated into two different strategies, involving 
either dry deposition or wet deposition and extraction. The first, dry deposition 
strategy, deposits the matrix without any solvents to the top surface of a tissue sec-
tion by one of two common techniques, employing handshaking of dry fine crystals 
of matrix onto the sample through a sieve or the use of a sublimation apparatus. A 
sublimation approach for deposition of matrix provides very uniform coatings with 
very small crystal sizes (typically in the range of 1–5 μm), allowing imaging with 
high spatial resolution. It is becoming one of the preferred approaches for small-
molecule and lipid imaging [58].

Wet deposition strategies have also had significant attention, and there are many 
different techniques available for specific analyte classes. Wet deposition is one of 
the most common techniques for matrix deposition for MALDI-MSI analysis and 
is essential to conduct in situ protein digests. To conduct an in situ protein diges-
tion, a protease, generally trypsin or α-chymotrypsin, is deposited in a buffered 
solution. Once uniform application of enzyme has been achieved, the sample is 
incubated in a humid atmosphere for a period of time, to allow localized digestion 
before drying and matrix application for MALDI-MSI. Matrix is first dissolved in 
a suitable solvent, then small droplets are applied to the surface of the tissue to be 
imaged, micro-extraction of endogenous molecules takes place at the solvent-tis-
sue interface, and, as the solvent dries, analytes co-crystallize with the dissolved 
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matrix. The achievable lateral resolution of a wet deposition technique is predomi-
nantly dependent upon the droplet size maintained during matrix deposition. There 
are several different techniques reported in the literature, including homemade 
solutions and a range of commercially available instruments, ranging from manual 
airbrushing (where success is highly dependent upon the operator) to more con-
trolled robotic spraying (HTX Imaging TM-Sprayer, HTX Technologies LLC, 
Carrboro, NC, USA; SunChrom SunCollect and SunCollect II plus+, SunChrom 
GmbH, Friedrichsdorf, Germany), automatic droplet deposition through piezo-
electric vibration (ImagePrep, Bruker, Bremen, Germany), inkjet printing (ChIP 
1000, Shimadzu Corp., Japan) with standard inkjet printers [59], robotic spotting 
(Labcyte Portrait 630 Spotter – no longer available), and automatic protein diges-
tion robots (SunChrom SunDigest, SunCollect II plus+, SunChrom). Once deposi-
tion conditions have been optimized for specific solvents, matrix and concentration, 
number of passes or spray cycles, temperatures, and drying, it is possible to achieve 
very small crystal sizes of 5–20+ μm (in the longest dimension), allowing high-
resolution imaging. A combination approach of initial dry deposition using subli-
mation followed by in situ “rehydration/recrystallization” by vapor exchange 
provides excellent results for protein and peptide imaging [7].

12.2.5  �Matrices for MALDI Analysis

There are a large number of matrices that are either in common use or have been recently 
reported in the literature for MALDI, including the main stalwarts 2,5-dihydroxybenzoic 
acid (DHB) [60], 2,5-dihydroxyacetophenone (DHAP) [61], sinapinic acid (SA) [62, 
63], and α-cyano-4-hydroxycinnamic acid (CHCA) [64–66], which are typically used 
for positive-mode MALDI analysis. Recently, lithium salts of DHB, SA, CHCA, and 
vanillin have been demonstrated as suitable matrices for imaging hydrocarbons as the 
lithiated adduct [67]. 9-Aminoacridine (9-AA) [41, 68], 1,8-bis-dimethylaminonaph-
thalene (DMAN) [38, 69], and 1,5-diaminonaphthalene (DAN) [20, 41, 60] were 
reported for negative-mode analyses. 2-Aminoethyl-N-2-aminonaphthalene has also 
been reported as a suitable matrix [70]. Recent use of the plant metabolites quercetin and 
morin [71], which are structural isomers, as matrices for both positive- and negative-
mode analysis, has demonstrated vastly increased detection of phospholipids in mam-
malian tissues when using high-resolution FTICR-MS.

More recently, DAN has been adopted for plant-based imaging, which requires 
very low laser energy and very small crystal size [41]. DAN has been used for MSI 
imaging in both positive and negative modes at very high spatial resolution (how-
ever, caution is required when using DAN as it is suspected to be a carcinogen). 
Further, DAN is also chemically reactive with the ability to form gas phase radicals, 
to induce in-source decay, and to conduct gas phase reductions of disulfide bonds 
[72, 73]. The use of an ambient-pressure MALDI source allows the use of volatile 
matrices, including liquid ion matrices and also water in the form of ice for 
IR-MALDI within frozen tissues [74]. Nanoparticles and colloids have been 
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reported as suitable matrices for MALDI-MSI, including the use of silver and gold 
nanoparticles for the imaging of waxes and phospholipids [75–79]. Furthermore, 
functional iron nanoparticles (fNPs) have been demonstrated in mammalian tissues 
[80]. In the case of small-molecule matrices, these can be readily removed post-MSI 
acquisition, washed with a suitable solvent such as ethanol or aqueous solutions, 
and then subjected to histochemical staining [7].

12.3  �Data Analysis

12.3.1  �Analytical Software and Data Analysis Techniques

MSI experiments generate huge volumes and highly complex data; due to these 
properties, there is a requirement for advanced software and computational data 
analysis techniques to extract meaningful results from the data. Data analysis of 
MSI datasets was in the beginning largely limited to manual identification and 
mapping of individual ions but has in recent years advanced significantly and to 
incorporate advanced clustering and comparative visualization tools allowing 
spatial segmentation, identification, and comparison of multiple ions. Commercial 
data analysis packages include BioMap (Novartis, Basel, Switzerland), 
FlexImaging and ClinProTools (Bruker Daltonik, Bremen, Germany), HDI (high-
definition MALDI MS imaging) coupled to MassLynx and MarkerLynx (Waters, 
Manchester UK), ImageQuest (Thermo Scientific, Waltham, MA, USA), 
MALDIVision (PREMIER Biosoft), SCiLS Lab (SCiLS Bremen, Germany), and 
TissueView (AB Sciex, based on BioMap). Recent adoption of the common 
mzML data format standard (www.imzml.org) [81] by instrument vendors and 
incorporation into a variety of tools or directly into the vendor software (such as 
FlexImaging) has allowed export of instrument-specific data into a common for-
mat, which has aided the development of vendor-independent tools for data analy-
sis and application of advanced statistical techniques to identify underlying 
metabolite distributions and co-localizations. Open-source software packages 
include Datacube Explorer (FOM-AMOLF, Amsterdam, Netherlands) [82], 
Metabolite Imager (University of Texas) [83], MIRION (Justus Liebig University) 
[84], MSiReader (North Carolina State University) [85], OpenMSI (Lawrence 
Berkeley National Lab, CA, USA, http//openmsi.nersc.gov) [86], Cardinal [87], 
SpectViewer (www.maldi-msi.org), OmniSpect [88], MSIQuant [89], LabMSI 
[90], MSI.R [91], and MALDIquant [92]. Many of the current packages for MS 
image analysis have been developed incorporating only visualization and simple 
clustering techniques such as hierarchical cluster analysis (HCA) and principal 
component analysis (PCA).

Due to the inherent heterogeneity of MSI data, preprocessing and spectral “denois-
ing” are recommended to obtain better results [93–95]. Preprocessing includes steps 
for baseline subtraction and smoothing, peak alignment and mass recalibration 
across the entire dataset, normalization of signal intensity, peak-picking, and data 
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reduction steps. A number of publications have provided detailed analysis pathways 
and suitable tools to examine MSI data [86, 93]. Once preprocessing steps are com-
plete, there are three types of unsupervised approaches to identify hidden patterns 
and spatial distributions of metabolites: component analysis, spatial segmentation, 
and self-organizing maps. The first, component analysis, has been dominated by the 
use of principal component analysis (PCA), although other methods have been used 
to uncover the variation in MALDI-MSI data, including nonnegative matrix factor-
ization, maximum autocorrelation factorization, and latent semantic analysis (see 
review by [93]). PCA represents the spatial patterns of molecules in terms of the set 
of score images, but PCA has a number of limitations including negative values 
(which are not present in the data) and difficulty in determining co-localized ion 
images for identified patterns of distribution. Spatial segmentation is a robust 
approach to examine MSI data where a segmentation map displays different regions 
in the tissues with distinct molecular composition [93]. A common approach is to use 
hierarchical cluster analysis (HCA), which is directly incorporated into FlexImaging. 
More recently, advanced spatial segmentation clustering techniques have been devel-
oped that cluster m/z values with distinct regions of the tissue [21, 94] and are incor-
porated directly into the commercial software SCiLS Lab. The third area is an 
emerging data analysis technique that makes use of unsupervised self-organizing 
maps (SOM) [96, 97] and growing self-organizing maps [98] that reduce the dimen-
sionality of the data and allow identification of hidden patterns within the data.

Three-dimensional mass spectrometry imaging (3D-MSI) has been reported 
[99–101] and reviewed previously [5]. 3D-MSI is conducted using one of two 
approaches: (1) depth profiling on the same tissues by conducting sequential raster-
ing events [5], which is common for SIMS [102, 103] but has also been reported for 
laser ablation electrospray ionization, which was used to depth profile plant leaf 
tissue [23], or (2) by combining multiple two-dimensional MSI measurements con-
ducted on serial tissue sections from a single sample. Individual datasets are com-
putationally reassembled to generate 3D volume reconstructions of individual ion 
distributions; for this purpose, researchers have used software such as Amira (www.
fei.com), Image J (imagej.nih.gov/ij), MATLAB (www.mathworks.com), and more 
recently SCiLS Lab (www.scils.de) to generate 3D images.

12.3.2  �Reporting Standards and Online Repositories

Recent guidelines for the reporting of MSI datasets have been published [104]. The 
article outlines the detailed metadata and contextualizing of information that is 
required to fully describe an MSI dataset, and it provides eight specific reportable 
areas: (1) tissue samples, including the type and how the tissue was sampled; (2) tis-
sue preparation, including methods such as washing and matrix application steps; (3) 
optical image, detailing information about the corresponding optical images used for 
MSI analysis; (4) data acquisition, detailing the instrument and parameters used to 
acquire the data; (5) mass spectra preprocessing, detailing the parameters used 
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to baseline subtract, to smooth, and to align spectra, for intensity normalization 
methods, for peak picking, and for data reduction methods; (6) MSI visualization, 
including methods for peak picking and image generation parameters; (7) compound 
identification, including all procedures used to identify individual metabolites; and 
(8) data analysis, detailing procedures, methods, and software used. Current report-
ing standards for identification in metabolomics experiments, including definitions 
for tentative, putative, and confirmed identification, have been previously published 
[105] and at the time of publication are currently being reviewed and updated. For 
MSI experiments, the ability to confirm identifications is all the more difficult due to 
the inability to separate isobaric compounds. Future release of reporting standards 
for MSI experiments in 2017 will provide detailed guidelines for MSI identification 
strategies. A common public repository has also recently been announced, where 
MSI datasets can be deposited for storage and later retrieval [106]. More recently, 
SCiLS Lab has announced SCiLS in the Cloud (www.scils-lab.com), an online 
engine capable of sharing imaging and statistical analysis results in collaborative 
manner. A spatial metabolomics analysis server has been released by the Alexandrov 
group and is available at www.alpha.metasp.eu; the OpenMSI project also offers 
online data analysis and sharing (http://openmsi.nersc.gov).

12.4  �Applications

MALDI-MSI has been extensively deployed in biomedical research with several 
1000 studies published since the early 1990s. A PubMed (http://www.ncbi.nlm.nih.
gov/pubmed) survey of recently published literature over the years 2013 to June 
2016 returns 833 publications with MALDI mass spectrometry imaging. A selec-
tion of publications from the total are referenced below along with examples of 
imaging lipids, peptides, and special metabolites in novel, complex, and difficult 
tissue types. Further, filtering to within the clinical space shows a broad range of 
research areas, a large number of different applications, and a dominance of the use 
of MALDI instruments for analysis (Fig. 12.2). A third of publications focus upon 
cancer (n = 104) with nearly another third on neurological disease (n = 84), reflect-
ing this breakdown a third of analytes studies are lipids (34 %) followed by proteins 
and peptides (29 %) and then drugs and small molecules (24 %). The breakdown 
reflects that lipids derived from biological membranes are readily abundant, require 
few sample preparation steps, and are easily observed by MALDI-MSI.

12.4.1  �Lipids

Many disease models in cancer and neurobiology display significant changes in the 
lipid profile reflecting dramatic changes in lipid metabolism [6, 21, 107–112]. For 
these types of analysis, samples require relatively few preparation steps, 
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Fig. 12.2  (a) Total numbers of publications by disease type and research area over 2013–2016, (b) 
Type of analyte, (c) Type of ionization source

cryo-sectioning of fresh frozen tissues, mounting, dehydration, and application of 
matrix prior to imaging. An example of the complex distribution of lipid within 
class and between differing classes, including fatty acids, phospholipids, ceramides, 
and gangliosides in kangaroo cerebellum, is shown in Fig. 12.3. Analysis in nega-
tive ionization mode is capable of tentatively identifying up to 236 different lipids 
and metabolites. Lipids and metabolites were identified by using the Metaspace 
metabolite annotation engine (www.alpha.metasp.eu) using an accepted FDR of 
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Fig. 12.3  Distribution of different lipid classes in kangaroo cerebellum. Lipids and metabolites 
were identified by using the Metaspace metabolite annotation engine (www.alpha.metasp.eu) 
using an accepted FDR of <0.2<0.1 and an accepted mass error of <5 ppm. Sagittal section of 
kangaroo brain cerebellum, 20 μm thick section, thaw mounted to glass slide with 1,8-bis (pyrro-
lidinyl) naphthalene matrix (5  mg mL−1 in acetone) applied by spray deposition using a HTX 
TM-Sprayer (8 passes, 150 μL min−1 flow rate, 2 mm track spacing with 1 mm offset for repeat 
passes and 90° offset for alternate passes). Data generated on a 7 T Bruker SolariX XR MALDI-
FTICR-MS in negative ionization mode, 150 × 150 μm spot array, 150,000 mass resolution at 
400 m/z. Images were generated in Compass flexImaging 4.1 employing TIC normalization and 
scaled from 0 to 100 % of maximum ion intensity for respective ions.
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<0.1. There are distinct differences in the distribution of two of the most common 
and simple fatty acids FA (18:0) vs. FA (18:1), differing only by a single unsatura-
tion. The unsaturated FA (18:1) is found in high amounts within the white matter 
and distributed throughout the gray matter vs. the fully saturated species FA (18:0) 
having a preferential distribution to the gray matter. Differences in the distribution 
of phospholipids, PA, PE, PI, PS, and cardiolipins, ceramides including sulfated 
species, MIPC, and various gangliosides are observed; in particular, the simpler 
sulfated hexose ceramides (SHexCer (d36:1), SHexCer (d42:3)) are found in the 
axon-rich white matter versus the more complex MIPC and ganglioside species 
(GM1, Type IV Antigen, GalNAc-GM1) found in the gray matter where the major-
ity of the neuronal cell bodies are found.

12.4.2  �Proteins and Peptides

Proteins, the biochemical engines of cells, and endogenous peptides including tachy-
kinins, secretins, opioids, pancreatic peptides, and a range of other biochemically 
active peptides are the next most popular area of research in MSI [113–122]. Proteins 
can be imaged whole (but images tend to be dominated by the most abundant pro-
teins), or for greater coverage, proteins are generally digested in situ to generate a 
series of peptides. A variety of different animal species produce venoms, which are 
cocktails of specialized peptide toxins, evolved for the capture of prey or defense 
against predators. Research into toxic venoms has developed into a significant area of 
study, in particular in the development of antivenoms and as a potential source of 
novel chemotherapeutics. More recently, spatial approaches have been applied to 
examine in vivo localization in the venom gland to better understand evolution of the 
toxic peptides and packaging for deployment. Within an organism venoms are gener-
ally generated in very delicate secretory tissues (glands) requiring highly specialized 
sample preparation methodology to preserve the structure and distribution of endog-
enous molecules. A recent study investigated the nature of the venoms present in the 
gland from a centipede, Thereuopoda longicornis (Fig. 12.4) [123]. Further, the study 
looked to determine whether compartmentalization in the gland existed. A venom 
gland was fixed using RCL2, dehydrated through an ethanol gradient, cleared with 
xylene, and impregnated with paraffin. The section was then deparaffinized using 
xylene prior to matrix application using an ImagePrep system (Bruker). Results dem-
onstrated a heterogeneous distribution of differing venom peptides with the venom 
glands, providing insights into the evolution of venoms across centipede orders.

12.4.3  �Endogenous Metabolites, Drugs, and Small Molecules

Imaging of endogenous metabolites and development of spatial metabolomics 
techniques and tools are a rapidly expanding area [124–126]. Special or highly 
specific metabolites from different species, labeled drugs, or compounds are 
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Fig. 12.4  MALDI-MSI experiment performed in linear positive mode at 50 μm resolution using 
CHCA as matrix. The sample is the venom gland from a centipede, Thereuopoda longicornis, which 
was fixed using RCL2, dehydrated through an ethanol gradient, cleared with xylene, and impreg-
nated with paraffin. Section was deparaffinized using xylene prior to matrix application using an 
ImagePrep system (Bruker). The aim of the study was to investigate the nature of the venom present 
in the gland and to determine whether compartmentalization exists (Further details can be found in 
Undheim et al. [123], Reprinted by permission from PNAS 2015, Copyright © 2015)

12  Spatial Metabolite Profiling by MALDI-MSI



310

attractive targets for small-molecule MSI [124, 127–139]. These types of com-
pounds may be readily imaged by taking advantage of their specific chemical prop-
erties and use of high mass accuracy capabilities of MS. An example is brominated 
alkaloid analytes from marine sponge samples [140]. The brominated species were 
easy to observe due to the characteristic isotope pattern that bromine confers to 
organic molecules. Further, the sponge sample presented many difficulties to pre-
pare for sectioning, as the brominated alkaloids were very soluble in organic sol-
vents, making typical fixation approaches impossible. Sectioning was ultimately 
achieved by embedding in OCT, prior to frozen sectioning. Pieces of the frozen 
sponge were dropped into the OCT; thawed sponge sample allowed too much dif-
fusion of OCT into the sample. The sections were washed in multiple rinses of 
water to remove as much OCT as possible due to the deleterious impact of OCT on 
collecting MS.  Prepared sections had CHCA matrix applied using ImagePrep 
(Bruker). Figure 12.5 shows the average mass spectrum observed across the tissue 
along the distribution of two brominated analytes at m/z 619 and 574 – the third 
figure overlays these two compounds (619, blue; 574, green) to highlight the dif-
ference in their location across the tissue.

12.5  �Future Directions

Kinetic mass spectrometric imaging (kMSI) has recently been developed as a new 
analytical approach to examine combined spatiotemporally resolved metabolism. 
A single MSI experiment provides only a static snapshot of the underlying molec-
ular distribution of any metabolite. By incorporation of stable isotope labeling, 
metabolic flux within an organism can be examined and has been demonstrated 
for the turnover of and biosynthesis of lipids in a tumor model (Fig. 12.6) [141]. 
Multimodal imaging is an emerging theme, which involves combing two or more 
imaging modalities to provide deeper insights into biology. A simple form of mul-
timodal imaging is already adopted in many MSI workflows which involves gen-
erating a histochemical stained section of tissue, either a serial section or in some 
cases the same piece of tissue on which an MSI measurement has been conducted 
and then co-registering a high-resolution optical images with the acquired MSI 
data. This approach provides more in-depth information (tissue/cell-type distribu-
tion) and can aid in sample interpretation. The combination of MALDI and SIMS 
has been used extensively in plant and animal MSI imaging [142–145], where the 
former has been used to generate lower resolution images across a wide area and 
SIMS used for very high-resolution imaging of a smaller subsection of the tissue. 
High-resolution magnetic resonance spectroscopic imaging (MRSI) has also been 
combined with MSI to examine choline metabolites and cations in tumor cells 
[146]. More recently, the hybrid predictive technique called image fusion has 
been reported and combines high spatial resolution but low chemical specificity 
information, such as images generated from optical microscopy at high magnifi-
cation, coupled to lower spatial resolution but high chemical specificity 

B.A. Boughton and B. Hamilton



311

100

400 500 600 700 m/z

100

100
618 620 622 624 626 m/z

574 576 578 580 582 584 m/z

Fig. 12.5  MALDI-MSI of marine sponge, Stylissa flabella, at 200 μm spatial resolution over a 
mass range of 200–1100 m/z using CHCA as a matrix. The sponge sample presented many difficul-
ties to prepare for sectioning; the analytes of interest, brominated alkaloids, were very soluble in 
organic solvents, making fixation approaches impossible. Sectioning was ultimately achieved by 
embedding in OCT, prior to frozen sectioning. Pieces of the frozen sponge were dropped into the 
OCT; thawed sponge sample allowed too much diffusion of OCT into the sample. The sections 
were washed in multiple rinses of water to remove as much OCT as possible. Prepared sections had 
CHCA matrix applied using ImagePrep (Bruker). Brominated analytes were easy to observe due 
to the characteristic isotope pattern that bromine confers to molecules. The figure above shows the 
average mass spectrum observed across the tissue along the distribution of two brominated ana-
lytes at m/z 619 and 574 – the third figure overlays these two compounds (619, blue; 574, green) 
to highlight the difference in their location across the tissue (Further information can be obtained 
in the following references  – Yarnold et  al. [140] (Reprinted with permission from Molecular 
Biosystems, Copyright © 2012)
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information, such as MSI data, to computationally predict the distribution of 
chemicals in the tissue sections [16]. New instrumentation is constantly being 
developed and recent developments include the Bruker RapiFlex TOF/TOF capa-
ble of high speed imaging (up to 80 pixels per second). Data generated from this 
instrument is being combined with ultrahigh mass resolution FTICR-MS imaging 
(relatively slow imaging) to take advantage of the benefits of each instrument to 
collect data quickly and provide molecular specificity [122]. Ion sources are being 
developed, including the MALDI-2-MS source, which incorporates a second 
post-ionization UV laser to generate gas phase photoionization of metabolites 
within the gas plume [147]. Data analysis remains a bottleneck; however, emerg-
ing MSI data analysis techniques that enable analysis of ultra-high-resolution 
MSI data and incorporate spatial segmentation will enhance discovery of spatially 
resolved metabolism. Further, development of unsupervised techniques that 

Fig. 12.6  Example of kinetic mass spectrometric imaging  – experimental workflow for using 
kMSI to define spatial heterogeneity of lipid composition and biosynthesis. (a) A tumor-bearing 
mouse is administered 2H2O-enriched water to incorporate deuterium into tissue as a result of 
active metabolism. (b) The deuterium-enriched tumor is excised, sectioned, and imaged using 
NIMS. An individual mass spectrum is generated for each pixel every 50 μm, with spectra com-
prised of isotopologues from both 2H-labeled and unlabeled lipid molecules. (c) Serial sections of 
the tumor are used for histopathology correlation with kMSI results. (d) Deconvolution of spectra 
is performed to separate 2H-labeled and unlabeled lipids. Intensity images are generated to show 
the spatial distribution for both newly synthesized and preexisting lipids (Reprinted by permission 
from Macmillan Publishers Ltd: Scientific Reports, 3:1656 [141]. Copyright © 2013)
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utilize the spatial information within an MSI dataset and statistical techniques to 
discover co-occurring metabolites and significant differences in regions of tissue 
will unlock the power of MSI analysis speeding discovery processes.

12.6  �Conclusion

MALDI-MSI has demonstrated application in a vast range of spatial biochemical 
and metabolomics research; the application of ultra-high-resolution and high mass 
accuracy MS provides the ability to distinguish molecular species very close in 
mass and accurately identifies molecular formula. High lateral resolution imaging is 
providing unique spatial insight into the distribution and function of many different 
analyte classes, and the rich, multidimensional, highly dense data is currently pro-
viding unique insights into the vast chemical complexity and specialization found 
within biological systems that is not possible using other methods. Challenges still 
exist including the development of technical methodology to examine specific 
classes of metabolites and advanced computational analysis to examine the data 
produced.
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