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Chapter 10
Chronic Diseases and Lifestyle Biomarkers 
Identification by Metabolomics

Annalaura Mastrangelo and Coral Barbas

Abstract  Chronic diseases, also known as noncommunicable diseases (NCDs), are 
complex disorders that last for long periods of time and progress slowly. They cur-
rently account for the major cause of death worldwide with an alarming increase in 
rate both in developed and developing countries. In this chapter, the principal 
metabolomic-based investigations on chronic diseases (cardiovascular diseases, 
diabetes, and respiratory chronic diseases) and their major risk factors (particularly 
overweight/obesity) are described by focusing both on metabolites and metabolic 
pathways. Additional information on the contribution of metabolomics strategies in 
the ambit of the biomarker discovery for NCDs is also provided by exploring the 
major prospective studies of the last years (i.e., Framingham Heart Study, EPIC, 
MONICA, KORA, FINRIK, ECLIPSE). The metabolic signature of diseases, which 
arises from the metabolomic-based investigation, is therefore depicted in the chap-
ter by pointing out the potential of metabolomics to explain the pathophysiological 
mechanisms underlying a disease, as well as to propose new therapeutic targets for 
alternative treatments.
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Abbreviations

2AA	 2-Aminoadipic acid
ArAA	 Aromatic amino acids
AUC	 Area under the curve
BA	 Bile acid
BAIBA	 Beta-aminoisobutyric
BCAA	 Branched-chain amino acids
BCKDH	 Branched-chain alpha-keto acid dehydrogenase
BMI	 Body mass index
BWHHS	 British Women’s Heart and Health Study cohort
CE	 Capillary electrophoresis
COPD	 Chronic obstructive pulmonary disease
CVD	 Cardiovascular disease
DM-AA	 Diabetes-predictive amino acid
ECLIPSE	 Evaluation of COPD Longitudinally to Identify Predictive Surrogate 

End-points
EPIC	 European Prospective Investigation into Cancer and Nutrition
FA	 Fatty acids
FAHFA	 Fatty acid esters of hydroxy fatty acid
FAO	 Fatty acids oxidation
FIA	 Flow injection analysis
FINRISK	 National FINRISK study
FSH	 Framingham Heart Study
GC	 Gas chromatography
GD	 Gestational diabetes
HFA	 Hydroxy fatty acids
IFG	 Impaired fasting glycemia
IGT	 Impaired glucose tolerance
IR	 Insulin resistance
KORA	 Cooperative Health Research in the Region Augsburg
LC	 Liquid chromatography
LDLs	 Low-density lipoproteins
LysoPC	 Lysophosphocholine
LysoPEs	 Lysophosphoethanolamines
MDC-CC	 Malmö Diet and Cancer Study-Cardiovascular Cohort
MONICA	 Multinational monitoring of trends and determinants in cardiovascular 

disease
MS	 Mass spectrometry
MS/MS	 Tandem mass spectrometry
mTOR	 Mammalian target of rapamycin
NCDs	 Noncommunicable diseases
NGT	 Normal glucose tolerance
NMR	 Nuclear magnetic resonance
PC	 Phosphocholine
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PCa	 Alkyl-phosphatidylcholines
PL	 Phospholipids
ROC	 Receiver-operating characteristic
SABRE	 Southall And Brent REvisited cohort
S-AMP	 Adenylosuccinate
T1D	 Type 1 diabetes
T2D	 Type 2 diabetes
TMAO	 Trimethylamine N-oxide

10.1  �Chronic Diseases

Chronic diseases, also known as noncommunicable diseases (NCDs), are medical 
conditions that last for long periods of time and progress slowly. Often less visible than 
communicable diseases, they have noninfectious and non-transmissible cause. NCDs 
are currently the major cause of death worldwide (32 %, in 2012), more than all other 
causes combined (68 %, in 2012) [1, 2]. Contrary to common perception, the majority 
of all NCD deaths occur before the age of 70 and mainly in low- and middle-income 
countries where the access to affordable treatment and effective health-care services is 
limited [2]. The rapidly increasing burden of chronic diseases is a global threat for the 
population, not only for the high percentage of deaths but also for its economic, psy-
chological, and social impact. Notably, the indirect costs of chronic diseases (e.g., 
inability to work, loss of productivity, cost of caregivers, among others) in the USA 
amounted to five times their direct costs (i.e., treatments, hospitalization) [3, 4].

The WHO has classified the major chronic diseases in four types as:

•	 Cardiovascular diseases (CVDs)
•	 Cancers
•	 Chronic respiratory diseases
•	 Diabetes

Altogether they accounted for the leading causes of NCD deaths in 2012 (see 
Fig.  10.1) [2]. In the following sections, the principal chronic diseases will be 
described, except for cancers, which are fully discussed in Chap. 9. Additionally, 
the major risk factors leading to chronic diseases will be explored, focusing on 
overweight/obesity as one of the biggest contributors.

10.1.1  �Cardiovascular Diseases

Cardiovascular diseases (CVDs) comprise several disorders of the heart and blood 
vessels including coronary heart disease (which leads to heart attack), cerebrovas-
cular disease (which leads to stroke), rheumatic heart diseases, and other conditions. 
CVDs, particularly heart attack and stroke, are the first cause of death globally, with 

10  Chronic Diseases and Lifestyle Biomarkers Identification by Metabolomics

http://dx.doi.org/10.1007/978-3-319-47656-8_9


238

the low- and middle-income countries showing a substantial increased mortality 
over the years. Currently, over 80 % of cardiovascular deaths occur in developing 
countries with a projection to increase [5].

Heart attack and stroke are usually acute events resulting from inadequate blood 
supply to a portion of myocardium (myocardial ischemia) or of the brain (cerebral 
ischemia); they are strongly associated with atherosclerosis, which consists of lipid 
accumulation in large arteries, that narrows the inner surface of the vessels by 
blocking or severely reducing the normal blood flow. The resulting lack of oxygen 
and glucose induces the death of the cells, thereby damaging the tissue.

Atherosclerosis has a complex etiology; it is initiated by inflammation in the 
endothelial layer of the artery that allows the low-density lipoproteins (LDLs) to 
accumulate in the inner layer of the artery, the intima. LDLs, and their oxidized 
form, then trigger the transmigration of immune cells, particularly monocytes, into 
the intima by creating plaques that become progressively larger with time. The 
plaque formation is a slow and silent process that develops over the years and even-
tually results in the plaque break or in the complete coronary/cerebral artery block-
age (heart attack/stroke) causing premature death if untreated.

Although the recovery from the damage is possible, ischemic events often evolve 
into chronic disabilities that markedly affect the individual long life both emotionally 
and physically. Most importantly, patients who have suffered a heart attack and 
stroke have increased likelihood for second coronary and cerebral events [6].

Hence, prevention of atherosclerosis and CVDs is the most effective measure to 
prevent from premature morbidity, mortality, and disability. Indeed, although the 
drug therapy (i.e., combining aspirin, statins, beta-blockers, and diuretics) is effec-
tive in reducing the number of ischemic events, the identification of high-risk sub-
jects and the preventions from complications remain the best option, both for people 
with established disease and for those at high risk of developing disease.

Fig. 10.1  Pie chart displaying the leading causes of noncommunicable diseases (NCDs) deaths in 
2012 [2] [Source: Global status report on noncommunicable diseases 2014  – World Health 
Organization (WHO)]
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10.1.2  �Chronic Respiratory Diseases

Chronic respiratory diseases are a group of diseases affecting the airways and the 
other structures of the lungs. They include asthma and respiratory allergies, chronic 
obstructive pulmonary disease (COPD), occupational lung diseases, sleep apnea 
syndrome, and pulmonary hypertension [7]. According to the WHO, hundreds of 
millions of people are affected by chronic respiratory diseases, with asthma and 
COPD as the most prevalent lung diseases and major causes of morbidity and mor-
tality worldwide. Indeed, it was estimated that currently 235 million people have 
asthma, whereas 64 million people suffer from COPD. Besides, in 2002, COPD has 
been the fifth leading cause of death globally, and it is expected to become the third 
in 2030 [8].

Asthma and COPD are multifactorial and complex diseases. They are character-
ized by a remarkable heterogeneity both in the clinical course and in their patho-
physiological phenotypes that makes them frequently under-recognized, 
underdiagnosed, undertreated, and insufficiently prevented.

Asthma is a chronic inflammatory disorder mostly common among children 
where it appears with the same incidence as cancer and diabetes [9]. The typical 
symptoms include episodes of wheezing, coughing, chest tightness, and shortness 
of breath, generally in response to environmental exposure to various stimuli (aller-
gens, viral respiratory infections, irritant fumes or gases). Along with a genetic pre-
disposition, they trigger an inflammatory and immune response in the lungs’ airways 
that causes an abnormal narrowing of the airways leading to the typical asthma 
symptoms [7].

In contrast, COPD is a multicomponent and systemic syndrome that affects 
both lungs and organs outside the lungs. It includes conditions such as emphysema 
and chronic bronchitis and is characterized by shortness of breath, cough, and spu-
tum production. The principal underlying cause is cigarette smoking both from 
primary and secondhand exposure that together with occupational dust and chemi-
cals (in high-income country) and indoor and outdoor pollution (mainly in low- 
and middle-income countries) damages the lungs progressively and irreversibly. 
COPD progresses slowly and is mostly asymptomatic until the frequent exacerba-
tions and further reductions in airflow make it clinically apparent, generally by the 
age of 40 [10].

Up to now, no precise diagnosis or definitive therapy is available both for asthma 
and COPD. The diagnosis is typically based on the pattern of symptoms and the 
response to therapy over time and is eventually confirmed by the spirometry test. 
Concerning the therapy, the medicaments commonly employed are bronchodilators 
(long- and short-acting beta-agonist) and corticosteroids that reduce the inflamma-
tion and relieve the symptoms and oxygen administration for patients with chronic 
respiratory failure. Furthermore, avoiding asthma triggers reduces the severity of 
the asthmatic attack [11].

Although the management of these diseases is possible, they remain a health 
threat that need to be monitored over the life span. Indeed, the failure to use appropri-
ate medications or to adhere to treatment can lead to death. Hence, the development 
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of reliable tests for an early and accurate diagnosis, the reduction of the exposure to 
the major risk factors, and prevention strategies to control the progression, exacerba-
tion, and complications of the disease are the essential measure to efficiently manage 
these serious long-term diseases.

10.1.3  �Diabetes

Diabetes is a collection of metabolic diseases characterized by chronic high blood 
glucose levels (hyperglycemia) that, if not well controlled, causes serious damages 
to the whole body (i.e., the heart, blood vessels, eyes, kidneys, and nerves) and other 
long-term consequences that impair the quality of life significantly [12].

The WHO estimates that in 2014 diabetes has affected 422 million people in the 
world, mainly Southeast Asia and Western Pacific Regions, with prevalence among 
adult population. Over the past few decades, diabetes showed a steady rise (the 
incidence of diabetes has quadrupled since 1980), particularly in low- and middle-
income countries, with an increased frequency in children and young people [13]. 
Moreover, in 2012, diabetes was the eighth leading cause of death globally with 3.7 
million deaths, 1.5 million of which directly caused by diabetes and additional 2.2 
million deaths from diseases (i.e., cardiovascular diseases, chronic kidney disease, 
and tuberculosis) related to higher-than-optimal blood glucose [13].

According to the different etiology underlying the insulin deficiency that causes 
hyperglycemia, diabetes has been classified in type 1 diabetes (T1D) and type 2 
diabetes (T2D) [14]. Other conditions characterized by higher-than-optimal blood 
glucose have been described including impaired glucose tolerance (IGT) and 
impaired fasting glycemia (IFG); they are intermediate conditions of hyperglycemia 
that may result in diabetes (mainly T2D). Although these conditions are not estab-
lished diseases, they increase the risk for complications (e.g., CVDs) and have to be 
adequately monitored for life [12]. Additionally, gestational diabetes (GD), which 
is characterized by hyperglycemia and hyperinsulinemia that occur during pregnancy 
and usually remits after pregnancy, has been described as a temporary form of dia-
betes that can be responsible for adverse outcomes during pregnancy, childbirth, 
and future susceptibility to T2D [14, 15].

Concerning T1D, it is characterized by a selective autoimmune destruction of the 
pancreatic β-cells that reduces and eventually eliminates insulin production. 
Commonly with a juvenile onset and with a lesser incidence, it occurs in genetically 
susceptible individuals that are exposed to environmental factors still not well-
defined (hypothetically viral infections, gut microbiota, and specific diet) [16]. In 
contrast, T2D results from gradual depletion in pancreatic β-cells mass and functions 
in response to peripheral insulin resistance that makes the body unresponsive to insu-
lin and stimulates its secretion, thereby leading to β-cell exhaustion from failing to 
compensate the increased insulin demand. Genetic predisposition, ethnicity, older 
age, and environmental risk factors (i.e., overweight/obesity, inadequate physical 
activity, smoking, and poor diet) are the major underlying causes of T2D [13].
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While no prevention strategies have yet been successful for T1D, since its etiol-
ogy is still unknown, T2D is potentially preventable through diet and physical activ-
ity (remarkably more effective than medication) [13]. Besides, even though they are 
chronic progressive diseases, several measures can be carried out to assure long and 
healthy lives for diabetic subjects, including the access to insulin and a strict control 
of glycemia for T1D and lifestyle interventions and early diagnosis for T2D [13]. 
Early diagnosis is particularly important for T2D since its symptomatology is less 
marked than in T1D, and the diagnostic assays generally employed (i.e., fasting 
blood glucose test, oral glucose tolerance tests, measuring glycated hemoglobin) do 
not provide prediabetic and diabetic threshold values [14, 17]. It is noteworthy that 
despite the availability of several diagnostic tests, up to 62 % of T2D cases are undi-
agnosed and untreated [18]. This underscores the need for enhanced diagnostic 
tools to allow the delay or even the prevention of the disease onset and its 
complications.

10.1.4  �Risk Factors

Risk factors for chronic diseases can be gathered into three strongly interrelated 
groups: underlying factors (e.g., globalization, urbanization, socioeconomic deter-
minants, aging), behavioral risk factors (e.g., physical inactivity, alcohol abuse, 
unhealthy diet, tobacco use), and metabolic/physiological risk factors (e.g., hyper-
tension, hyperglycemia, hyperlipidemia, and overweight/obesity) [19].

Urbanization and globalization have greatly influenced the habits of the develop-
ing countries by promoting the rise of untraditional diets; the use of processed foods 
high in saturated fats, salt, and sugar; an increased tobacco and alcohol use; urban 
air pollution; and a more sedentary lifestyle, among others. The chronical exposure 
to these behavioral risk factors then represents the main underlying cause of NCDs 
and premature death. In 2012, alcohol abuse was responsible for 3.3 million deaths, 
with NCDs being responsible for more than half. In addition, tobacco causes six 
million preventable deaths every year, whereas 3.2 million annual deaths have been 
attributed to insufficient physical activity, and 1.7 million annual deaths from CVDs 
were attributed to excess of salt intake [2].

Behavioral risk factors are also responsible for metabolic/physiological altera-
tions including hyperglycemia, hypertension, hyperlipidemia, and overweight/obe-
sity that, in turn, contribute to the progression of the disease toward life-impairing 
complications and premature death.

However, despite the alarming incidence of chronic diseases worldwide, their 
slow evolution and the dependence on modifiable risk factors have influenced pre-
venting measures which are expected to reduce the prevalence of NCDs by 25 % by 
2015 [2].

Among the risk factors for chronic diseases, the condition of being overweight 
and obese is one of the biggest contributors. It can be considered as a model for the 
simultaneous investigation of several risk factors underlying the chronic diseases by 
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providing insights on the interaction patterns that may be responsible for the onset 
of such complex diseases. Indeed, the excess of body weight, which characterizes 
the medical condition of being overweight and obese, results from the interaction of 
genetic and environmental factors and includes at the same time the underlying and 
behavioral risk factors typical of NCDs. Besides, it is usually associated to the met-
abolic and physiological changes, such as hypertension, hyperlipidemia, and hyper-
glycemia, generally present in the NCDs, thereby posing a greater risk for their 
development. Importantly, the increase of NCDs over the years has mirrored the 
prevalence of obesity and overweight (e.g., in 2014, overweight and obesity 
accounted for about 65–80 % of the new cases of T2D in Europe).

10.1.4.1  �Overweight and Obesity

Obesity is a complex condition that affects virtually all age and socioeconomic 
groups, thereby being a global health threat, the “globesity.” In 2014, more than 1.9 
billion adults worldwide were overweight, and over 600 million of which were 
obese, with a predominance of women. Furthermore, according to WHO estimates, 
obesity causes 3.4 million deaths every year, that along with deaths caused by dis-
eases of which obesity is a leading factor, and its strong social and psychological 
impact has placed obesity at the forefront of public health concern [20].

In clinical and epidemiological practice, the body mass index (BMI) is the 
parameter internationally recommended to categorize adult underweight, normal 
weight, overweight, and obesity (see Fig.  10.2). However, since it is an ethnic-
independent measurement, the possibility to employ alternative BMI cutoffs in Asia 
and the Pacific Regions, where the risk of developing chronic diseases is at a lower 
BMI level than populations of European origin, is under evaluation [21].

Moreover, the waist circumference has been employed as additional measure-
ment of obesity for its relationship with the visceral fat which is independent of the 

Fig. 10.2  International classification of adult underweight, overweight, and obesity according to 
BMI [21]
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changes in BMI. It provides sex-specific cutoffs that combined with BMI have dem-
onstrated to have a potential ability to predict the risk of chronic diseases. Indeed, 
higher waist circumference and BMI have been associated with increased risk of 
CVDs and T2D by allowing timely interventions [22].

Currently, behavioral strategies (diet and physical activity) and taxing policies 
(e.g., increased price for sugary beverages and unhealthy food) are the most effi-
cient measures to treat obesity [2]. However, the rapid increase of obesity, particu-
larly in children and developing countries, has boosted the need of strategies aimed 
to preventing and controlling obesity especially in these vulnerable populations. It 
is noteworthy that the incidence of childhood overweight is increasing worldwide 
with 42 million of children (<5 years old) overweight in 2013 [20]. Moreover, child-
hood obesity is strongly associated with higher cardiometabolic risks in adoles-
cence and higher morbidity and mortality from NCDs, mainly T2D and CVDs, in 
adulthood [23–25]. Hence, reducing the prevalence of obesity in children would 
have a long-term effect on reducing the prevalence in adults as well as on the sus-
ceptibility to chronic diseases later in life. Importantly, considerable evidences have 
highlighted that chronic disease risk is present from fetal life and continues cumu-
latively during the life span [26–29]; life-course investigation and interventions are 
thus essential in order to face and control the incidence and the premature mortality 
from NCDs.

10.2  �Metabolomics and Chronic Diseases

The development of chronic diseases is a complex process. NCDs are character-
ized by a progressive dysfunction of metabolic and physiological functions in 
response to chronical exposure to lifestyle factors. From an evolutionary per-
spective, the rapid cultural change has far outpaced the genetic adaptation by 
generating a mismatch between the human evolution and the daily life, thereby 
increasing the susceptibility to chronic diseases [30]. Moreover, because of the 
polygenic nature of human traits and their adaptive nature, the phenotypic expres-
sion of such diseases turned out to be heavily affected by the environment; NCDs 
are indeed considered as a physiological adaptation of the body homeostasis to 
harmful lifestyle behaviors.

Thus, metabolomics, which measures the entire set of metabolites of a wide 
range of biological specimen in a certain time and under particular conditions [31, 
32], has emerged as a versatile and valuable tool to investigate the etiology and the 
pathophysiology of such complex diseases [33]. Indeed, since it is the most proxi-
mal to the phenotype among the omics, it offers the possibility to investigate meta-
bolic pathways that play a role in the overall metabolic dysfunction underlying 
NCDs (either before their onset or during their progression).

Over the years, metabolomics has addressed the investigation of chronic diseases 
by providing an integrated perspective on how metabolites interact in response to 
specific exposures by characterizing metabolic signatures of the diseases [34–37]. 
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Besides, metabolomics has demonstrated predictive, diagnostic, and prognostic 
capabilities that have enabled the study of factors influencing the onset and progres-
sion of chronic diseases [38–40]. Metabolomics studies can be indeed classified 
according to these qualities depending on whether the focus of the study was on the 
identification of the subjects more susceptible to develop a certain disease in the 
future, on the early detection of a currently occurring disease, and on the determina-
tion of features able to predict the disease outcome or the efficacy of a treatment, 
respectively [40].

Thus, while predictive studies have the power to tackle the growth of the chronic 
diseases by anticipating their onset, diagnostic and prognostic studies are able to 
improve the management of an already overt disease, by preventing its adverse out-
come. To achieve this goal, predictive studies require large cohorts (i.e., several 
thousands of participants), where initially healthy subjects are monitored through a 
large period of time (i.e., over 10 years) in prospective study designs. During the 
follow-up period, then, a limited number of healthy subjects will develop the dis-
ease by allowing the identification of risk factors, which are strongly related to the 
disease onset [41] (see Sect. 10.5.3 for more details on the major prospective studies 
of chronic diseases investigated by metabolomics approaches). Concerning diag-
nostic and prognostic studies, they employ instead cross-sectional studies aimed to 
identify biomarkers that allow tracking of the disease state in order to achieve a 
more effective patient stratification and a more accurate characterization of the dis-
ease outcome and the monitoring of the treatment’s effectiveness [42].

Novel biomarkers, thus, hold the promise to be relevant tools in the clinical setting 
(in combination, or not, with traditional biomarkers) by driving a more effective deci-
sion-making process that helps the physician in the daily clinical practice. Additional 
information on the contribution of metabolomics strategies in the ambit of biomarker 
discovery for chronical diseases will be discussed in detail in the following section.

10.3  �Metabolomics and Biomarker Discovery

Biomarkers are classified as screening, diagnostic, and prognostic according to their 
capability on detecting a future disease, a suspected disease, and the progression or 
remission of overt disease, respectively [43]. Since many diseases result in characteristic 
changes in the metabolite profiles, several metabolites have been employed as reliable 
biomarkers for decades [44–47]. Over the last few years, high-throughput technologies 
such as metabolomics, which broaden the coverage of the metabolome, have been 
applied with more frequency in the field of the biomarker discovery [33, 41, 48].

An ideal biomarker should be safe and easy to measure, cost-effective during 
both the discovery and the follow-up processes, and consistent across genders and 
different ethnicities [43]. Regarding the use of metabolites as diagnostic markers, 
one of the major challenges in metabolomics is the validation of the compounds 
statistically significant in small sets of well-selected samples, in a big cohort. While 
there are numerous screening studies in metabolomics research producing potential 
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biomarkers, most of the identified biomarkers have failed to replace existing clinical 
tests. To become a clinically approved test, a potential biomarker should be con-
firmed and validated using hundreds of individuals and should be reproducible, spe-
cific, and sensitive. The reproducibility is assured by validating the biomarkers in 
other study samples, preferably from an independent cohort. In contrast, concerning 
sensitivity and specificity, they are essential features of a biomarker as they measure 
the biomarker’s ability to correctly detect subjects with the target condition (true 
positive rate) and without the target condition (true negative rate), respectively. 
They are generally computed through the receiver operating characteristic (ROC) 
curve analysis which provides the C-statistics or area under the curve (AUC) as a 
measure of the predictive ability of the biomarker model with values that range from 
0.5 (random classification) to 1.0 (perfect classification) [49, 50].

However, in multifactorial disorders such as NCDs, single biomarkers rarely 
own high values of specificity and sensitivity; therefore, a multiple biomarker 
approach has been increasingly employed over the years to select the simplest com-
bination of biomarkers that produces an effective predictive outcome [43].

Biomarkers (alone and more frequently in combination) can be further employed 
to generate risk scores as an estimate of the individual’s risk of developing a certain 
disease in the future. The risk scores are usually generated within prospective stud-
ies that allow exploring the contribution of a new biomarker in an already existing 
predictive model [51]. This assessment is carried out by evaluating the discrimina-
tion power of the new model (model discrimination), the agreement between the 
observed outcome and the expected risk (model calibration), and the possibility to 
refine the stratification of the population into more pragmatic risk categories (i.e., 
reclassification of the subjects from an intermediate risk level to either an upper or 
lower risk level, risk reclassification) [52, 53].

Indeed, it is important to point out that for a metabolite to be employable as a 
biomarker other than in the clinical research, it has to prove to strengthen the predic-
tive model beyond that achieved by conventional biomarkers that are employed in 
the clinical practice [43].

The discovery of new biomarkers is therefore a challenging task that metabolo-
mics has addressed only recently by providing promising findings mainly in the 
field of hypothesis-generating biomarkers. This typology of biomarkers, which is 
focused on explaining the pathophysiological mechanisms underlying a disease, 
aims to understand the metabolic alteration associated with a disease with the ulti-
mate goal of driving the discovery of a more efficient and personalized treatment or 
the design of new drugs from an informed perspective.

10.4  �Study Design and Analytical Considerations

Regarding the workflow in metabolomics, researchers in the field do not agree upon 
the terms, not only for metabolomics and metabonomics, which were originally 
considered as different definitions that nowadays are used indistinctively [31, 32, 
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54], but also for the approach employed (i.e., fingerprinting, global profiling, profil-
ing, among others). Hence, in order to simplify, in the present chapter, they will be 
referred to as targeted or untargeted metabolomics.

In the targeted approach, specific metabolites of known identity are analyzed. In 
mass spectrometry (MS), this often involves the addition of multiple stable isotope-
labeled standards to the biological sample prior to the extraction and derivatization 
steps to control for differences in analyte loss during sample processing and to com-
pensate for ionization-suppression effects. Advantages of targeted methods are that 
(i) identification of compounds is straightforward and (ii) metabolites can be quanti-
fied. A disadvantage is their limited metabolite coverage that can include from a 
small set to several hundred metabolites.

In contrast, untargeted metabolomics involves the simultaneous measurement of 
as many metabolites as possible in a biological specimen. This approach is gener-
ally used in differential analysis of two or more biological or clinical states/treat-
ments; the report consists of differences between the states and is based on signal 
abundances of raw spectral data. The chemical identity of the signals is not known 
a priori, and significant chemical/spectral analysis must be performed to define the 
molecular species. It is noteworthy to point out that while semiquantitative data can 
be employed in the discovery phase, quantitative data is paramount for implementa-
tion in the clinical practice.

In a standard metabolomics workflow, metabolites can come from any biofluid or 
tissue after convenient extraction and can be detected using various chemical detec-
tion platforms including MS and nuclear magnetic resonance (NMR) as the most 
important. Notably, due to the chemical diversity of the metabolites, no single analyti-
cal technique is able to cover the entire metabolome; therefore, whenever possible, a 
combination of platforms has been increasingly applied over the last few years. The 
multiplatform approach, indeed, broadens the metabolite coverage and at the same 
time allows a mutual cross validation of the metabolites that are detected in more than 
one analytical technique. Concerning NMR, it has the potential for high-throughput 
fingerprinting, minimal requirements for sample preparation, robustness of the 
response, and nondestructive nature of the technique. However, only medium to high 
abundance metabolites will be detected with this approach, and the identification of 
individual metabolites based on chemical shift signals, which cause sample clustering 
in multivariate analysis, is challenging in complex mixtures. MS-based metabolite 
detection is instead a powerful tool for investigations of metabolism due to its sensitiv-
ity for low-abundant molecules and flexibility for the detection of multiple chemical 
molecular classes. MS detection platforms are biased in their compatibility of a par-
ticular molecule with a mode of ionization or detection. The ability to globally profile 
highly complex mixtures of plant extracts is enhanced by coupling chromatography 
with MS detection. Thus, a “metabolomics platform” refers to the combination of a 
separation technique and MS. The most commonly utilized metabolomics platforms 
include liquid chromatography–mass spectrometry (LC-MS), gas chromatography–
mass spectrometry (GC-MS), and capillary electrophoresis–mass spectrometry (CE-
MS). Following data acquisition and processing, MS-metabolomics data is often 
expressed as a matrix of molecular features defined by (i) elution time, (ii) mass 
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(mass/charge ratio), and (iii) abundance of the mass signal. Annotating the detected 
molecular feature as a metabolite is the major bottleneck in MS-metabolomics work-
flows [55].

10.5  �Metabolic Signatures of Chronic Diseases

In the past decade, metabolomics has made remarkable progress in providing new 
insights into the systemic alteration underlying NCDs: (1) disease-related metabo-
types have been described that reflect changes in metabolites (i.e., amino acids, 
lipids, and organic acids) in body fluids, organs, and/or tissues as consequence of 
disease or disease-related conditions; (2) the role of new contributors (i.e., gut 
microbiome) in the development and progression of NCDs has been unveiled; (3) 
markers of the disorder’s onset, progression, and prognosis have been identified in 
prospective metabolomic-based studies. The metabolic signature of chronic dis-
eases that arises from these discoveries (Fig. 10.3) will be described in the following 
sections by focusing both on metabolites and metabolic pathways.

10.5.1  �Metabotypes of NCDs

In 2009, Newgard et al. described for the first time a metabotype of obesity and 
insulin resistance (IR) characterized by the increase in branched-chain amino 
acids (BCAA, i.e., leucine, isoleucine, and valine) and related metabolites (i.e., 
propionylcarnitine (C3), isovalerylcarnitine (C5), glutamate) in mice ingesting a 
high-fat diet [36]. This finding was then corroborated by subsequent studies in 
obese and/or diabetic humans and rodents, by identifying BCAA and their by-
products, mainly short-chain acylcarnitines, as sensitive metabolic marker of obe-
sity, IR, and future T2D [56–58]. Interestingly, consistent with these studies, an 
improvement in insulin sensitivity associated with lower BCAA levels was 
described for subjects undergoing weight-loss interventions (i.e., dietary, behav-
ioral, bariatric surgery) [59, 60].

Various hypotheses have been proposed for the increase of BCAA and related 
catabolites in obese and or/diabetic subjects including an increased protein intake, 
increased proteolysis, reduced protein anabolism, or impaired mitochondrial 
catabolism. While several studies have ascribed only a marginal role to the first 
four processes [61–63], the altered BCAA catabolism has been suggested as the 
principal mechanism underpinning such changes [58]. Recent findings have high-
lighted a decrease in BCAA-catabolizing enzymes (e.g., branched-chain alpha-
keto acid dehydrogenase, BCKDH) in the fat and liver of obese genetically 
modified mice and rats; insulin was also linked to BCAA catabolism through its 
action on the hypothalamus [64]. Shin et al. indeed pointed out an inducing effect 
on the hepatic BCKDH, mediated by the insulin signaling in the brain that was 
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found to be responsible for lowering the plasma levels of BCAA, thereby suggest-
ing for the BCAA a role as marker of hypothalamic IR.

The detrimental effects mediated by BCAA have been attributed to their role on 
the overactivation of the mTOR (mammalian target of rapamycin) pathway which 
induces hepatic IR, thus worsening the systemic insulin signaling [65]. High levels 
of BCAA were also found to affect the fatty acids oxidation (FAO); the hepatic 
BCKDH is indeed involved in the catabolism of both BCAA and acylcarnitines, and 
in the case of high BCAA levels, it resulted to be overloaded, thereby producing 
incomplete FAO by-products (i.e., short-chain acylcarnitines) [66]. These metabo-
lites then have been related to the mitochondrial stress and impaired insulin signal-
ing that characterize T2D [67].

Further alterations in the amino acid metabolism were found to be associated to 
CVDs and/or related conditions. Wang et al. postulated that an increase in methyl-
ated arginine species (i.e., N-mono-methylarginine, asymmetrical dimethylargi-
nine, and symmetrical dimethylarginine), which are related to the inhibition of the 
nitric oxide production, may serve as a marker of increased risk of coronary artery 
disease, myocardial infarction, and stroke [68], whereas Wang et  al. revealed 

Fig. 10.3  Metabolic signatures of chronic diseases unveiled by metabolomics. Abbreviations: 
BCAA branched-chain amino acid, S-AMP adenylosuccinate, BAIBA beta-aminoisobutyric, ArAA 
aromatic amino acids, PC phosphocholine, LysoPCs lysophosphocholines, LysoPEs lysophospho-
ethanolamines, FAHFAs fatty acid esters of hydroxy fatty acids, 2AA 2-aminoadipic acid, TMAO 
trimethylamine N-oxide
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changes in the levels of amino acids (glycine, lysine, and cysteine, particularly) in 
young hypertensive men by shedding light on metabolic variations taking place at 
an early stage of hypertension [69].

Changes in amino acid metabolism have been reported also for chronic respira-
tory diseases: Wedes et al. identified the urinary metabolite bromotyrosine, which is 
generated by the enzyme eosinophil peroxidase, as a noninvasive marker of future 
asthma exacerbation in children [70]; Jung et al. described alteration in metabolites 
(i.e., increase in methionine, glutamine, and histidine and decrease in acetate, cho-
line, and arginine) in serum of asthma patients [71]; finally, several studies reported 
a decrease in plasma BCAA in COPD patients concomitant to cachexia [72–74].

A further example of metabotype of respiratory chronic diseases comprises of 
metabolites of the TCA cycle (i.e., succinate, fumarate, oxalacetate, cis-aconitate, 
and 2-oxoglutarate) that were found to be increased in urine and/or serum of asth-
matic patients [71, 75]. High levels of lactate were also found in this patients by 
supporting the hypothesis of an upregulation of the TCA cycle due to a greater effort 
to breathe for the patients with a reduced oxygenation concomitant to the disease 
exacerbation [75].

An additional metabotype made up of lipids (i.e., mainly phospholipids and fatty 
acids) and illustrative of T2D, CVDs, and related conditions has emerged over the 
years by metabolomics and lipidomics approaches.

Phospholipids (PL) are an important class of lipids involved in NCDs. Generally 
described as the main components of the cellular membranes and lipoproteins (HDL 
and LDL mainly), they are involved in various metabolic pathways including sig-
naling events and inflammation that are usually underlying NCDs and their related 
conditions. For instance, Ha and colleagues reported an altered lipid profile com-
prising of several PL metabolites, namely, six lysophosphocholines (LysoPCs 
C14:0, C16:1, C18:1, C18:3, C20:5, and C22:6) and three lysophosphoethanol-
amines (LysoPEs C18:1, C18:2, and C22:6), in case of diabetes; the lipid profile 
was also found to correlate to inflammation, oxidative stress, and future diabetes-
related complications (i.e., arterial stiffness) [76]. Interestingly, also other LysoPCs 
(predominantly with long-chain acyl groups, C ≥ 16) were found to be elevated in 
prehypertensive young men; these lipids then were described to be highly associ-
ated with oxidized LDLs, thereby featuring an increased oxidative stress and inflam-
mation process as potential predictors of future hypertension, atherosclerosis, and 
CVDs [77].

High levels of fatty acids (i.e., palmitic acid, stearic acid, and oleic acid, among 
others) have been also associated to increased risk for T2D and CVDs. Yang et al. 
proposed a link between serum docosahexaenoic, palmitic, and palmitoleic acids 
and prevalence of hypertension [78]. Increased levels of free fatty acids and their 
oxidized by-product (beta-hydroxybutyrate, acetoacetate, and acetone) have been 
also associated to T2D and heart failure [79, 80]. Of note, a new class of fatty acids 
has been recently discovered by untargeted lipidomics, namely, the fatty acid esters 
of hydroxy fatty acids (FAHFAs) that consist of a combination of four fatty acids 
(FA) and four hydroxy fatty acids (HFA) [81]. FAHFAs were described to be pres-
ent in food, synthesizable by mammalian, and at low levels in obese/insulin-resistant 
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humans and mice. Besides, conversely to other fatty acids, FAHFAs were described 
to exert a plethora of beneficial effects on diabetic-related conditions including the 
enhancement of glucose uptake from the bloodstream, improvement of insulin 
secretion and sensitivity, and reduction of inflammation. The FAHFAs’ discovery 
represents therefore an important breakthrough in the field of NCDs and a great 
example of the potential of metabolomics for opening new avenues for the investi-
gation of uncharacterized biochemical pathways in human physiology and diseases 
as well as proposing therapeutic targets for an alternative treatment of metabolic 
diseases.

10.5.2  �New Contributors in Chronic Diseases

The gastrointestinal tract comprises around 1013 cells (1,183–3,180 bacterial phy-
lotypes) in adult’s intestinal microbiome [82], which means 3 × 106 genes (130-fold 
higher than the number in human body) for a metabolically active organ that has 
been proposed as one of the major contributors to human health and disease. Indeed, 
accumulating evidences highlighted the crucial role of the gut microbiota on the 
development of chronic diseases (mainly T2D and CVDs) and related conditions 
(obesity, IR, and atherosclerosis, among others) by its action in several metabolic 
pathways including lipid metabolism, inflammation, energy metabolism, and insu-
lin signaling [83, 84]. In seminal work, Turnbaugh and colleagues demonstrated 
that the transplant of microbiota from obese mice to germfree recipients was able to 
transfer the obese phenotype to the recipients that indeed experienced an increased 
weight gain in comparison to the mice that received a “lean microbiota” [85]. This 
study represented an important new insights into the role of the microbiome in the 
development of a disease or diseases-related condition. Since then, several studies 
have been carried out to investigate the gut microbiota and its relationship with 
health and diseases. Concerning the metabolomic-based investigations, various 
metabolites mirroring the action of the microbiome have been uncovered by provid-
ing new insights into how the microbiota interacts with the host and which meta-
bolic pathways are involved in the gut–host cross talk [86].

Wang et al. identified a novel metabolite, namely, the trimethylamine N-oxide 
(TMAO), with a pro-atherogenic action that was found to be generated by the action 
of the gut microbiota on the dietary phosphatidylcholine (PC) [68]. Dietary PC is 
indeed the main source of the TMAO’s precursors (i.e., choline and betaine) that 
have been previously related to risk for CVDs (i.e., lower levels of choline and 
higher CVD risk). Together these metabolites were also described to increase the 
risk for future cardiovascular events, thereby unveiling an important link between 
dietary intake of lipids, gut microbiota, and future CVD events. Of note, high levels 
of TMAO were also found in the urine of T2D patients by highlighting the potential 
of these metabolites for alternative therapeutical approaches [87]. A further exam-
ple of microbiota-derived metabolites that play a major role in the host metabolism 
is represented by secondary bile acids (BAs, deoxycholate, and lithocholate, among 
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others) which are generated in the gut by the action of the microbiota and reab-
sorbed from the distal ileum through the enterohepatic circulation. BAs have been 
described as signaling molecules through their interaction with the farsenoid X 
receptor and the G-protein-coupled receptor TGR5 in the liver and adipose tissue, 
thus involved in the lipid and glucose homeostasis of the host [88]. Besides, the 
altered bile acid pool has been described as an underlying condition of various dis-
ease and disease-related states. For instance, Zhao and colleagues reported high 
levels of glycochenodeoxycholic acid in plasma of impaired glucose-tolerant sub-
jects [89]; Mastrangelo et al. identified in the increased of taurodeoxycholic acid 
and glycochenodeoxycholic acid in serum samples of obese children a marker of IR 
state [90]; and Shure et al. identified an altered bile acids pool (low levels of cholic 
and muricholic acids and increased deoxycholic acid) in diabetic patients of the 
KORA cohort [91] (see Sect. 10.5.3).

Together with the influence of the gut microbiota, other novel contributors to 
NCDs have been uncovered by metabolomics, namely, the adenylosuccinate 
(S-AMP) and the beta-aminoisobutyric acid (BAIBA) that have been associated 
with T2D and cardiometabolic risk factors, respectively [92, 93]. While Gooding 
et al. unveiled a novel action of S-AMP as a glucose-derived amplifying stimulus of 
insulin secretion, Roberts et al. showed a fascinating effect of BAIBA (by-product 
of the catabolism of thymine or valine) on the browning of the white fat and on the 
stimulation of the beta oxidation in hepatocytes via PPAR-alpha. Briefly, Gooding 
et al. demonstrated the effect of glucose on the production of S-AMP (intermediated 
of the purine/nucleotide pathway) via the pentose phosphate pathway; they have 
also highlighted the stimulating action mediated by S-AMP on insulin secretion 
from human pancreatic beta cells upon normal and diabetic conditions, thereby 
showing a striking ability on rescuing the T2D-impaired secretory function in beta 
cells and suggesting a novel target for therapies. Roberts and colleagues instead 
discovered a novel effect of the BAIBA on the expression of the genes coding for 
brown adipocytes in murine white adipocyte and in human pluripotent stem cells 
during the differentiation to mature adipocytes; they also found an increase of the 
BAIBA during physical activity and a further inverse correlation of the BAIBA to 
cardiometabolic risks by suggesting new metabolic pathways related to the benefi-
cial effect of physical activity.

10.5.3  �Metabolomics in the Epidemiological Setting

Prospective studies are important tools in the epidemiological setting to investigate 
the etiology of a disorder; indeed they offer the possibility to study a large cohort of 
subjects (i.e., thousands of participants) over a period of time (usually for years) by 
allowing the determination of the disease outcomes from initially healthy subjects 
and the eventual association with lifestyle risk factors to which they are exposed. An 
overview of the typical prospective study design is depicted in Fig. 10.4. The major 
prospective studies developed in the last years to address the investigation of NCDs 
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and lifestyle biomarkers by a metabolomics strategy are described in the following 
paragraphs, and their main characteristics and findings are summarized in Table 10.1 
and Fig. 10.5, respectively.

The Framingham Heart Study (FHS) is the first longitudinal study aimed to 
identify the common factors that contribute to CVD. The original cohort (5,209 
men and women between the ages of 30 and 62 from Framingham, Massachusetts) 
was recruited in 1948 and followed up every 2 years. Further cohorts were also 
included (the Offspring Cohort in 1971, the Third Generation Cohort in 2002, the 
Omni Cohort in 1994, and the Second Generation Omni Cohort in 2003), for a 
total of over 15,000 participants for a study that is still ongoing [105]. The study, 
led by the National Heart, Lung, and Blood Institute, in collaboration with Boston 
University, has generated a variety of graded risk scores to estimate the risk of 
several cardiovascular diseases 10–30 years in advance by using a sex-specific 
algorithm that includes smoking habits, blood pressure levels, age, and family 
history of CVD events, among others [106]. Over the years, new technologies 
have emerged and successfully employed in the investigation of the Framingham 
cohorts. Among the metabolomic-based studies, accurate predictors of future car-
diovascular disease, diabetes, and metabolic syndrome (including obesity, dyslip-
idemia, and dysglycemia) were uncovered by studying the offspring and the 
third-generation cohorts. Concerning the risk assessment for diabetes, in 2011, 

Fig. 10.4  Flowchart of a prospective study design
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Wang et al. described fasted levels of five amino acids (i.e., isoleucine, leucine, 
valine, tyrosine, and phenylalanine), at a baseline exposure, as highly associated 
with future onset of diabetes, particularly in predisposed subjects (i.e., obese and 
with high fasting glucose levels) [42]. They further uncovered that a combination 
of three amino acids (i.e., isoleucine, phenylalanine, and tyrosine), the so-called 
diabetes-predictive amino acid score (DM-AA score), predicted future diabetes 
up to 12 years in advance (four- to fivefold higher risk for individuals with the 
highest amino acids score). The findings were also replicated in an independent 
cohort study, the Malmö Diet and Cancer study (MCD, see below), by demon-
strating their generalizability. Notably, a further link was uncovered in the same 
study population between the double-bond content and the carbon chain length of 
lipids (mainly triglycerides) and the risk of diabetes: lipids of lower/higher carbon 
number and double-bond content are associated to an increased/decreased risk of 
future diabetes (12  years in advance) [94]. In 2012, Cheng et  al. identified an 
association between tryptophan metabolism by-products with future CVDs; 
besides, they confirmed the previous findings for the DM-AA score and uncov-
ered a further metabolite (glutamine) as inversely related to future risk of diabetes 
[95]. In 2013, Wang et  al. unveiled a further metabolite (2-aminoadipic acid, 
2-AAA) as strongly associated with future diabetes (up to 12 years in advance), 
both in the discovery (FHS) and replication (MCD) cohorts [96]. Subsequent 
studies on cell-based and animal models have suggested that the 2-AAA might be 
involved in the stimulation of insulin secretion in pancreatic β-cells and the modu-
lation of glucose homeostasis in vivo, respectively [96]. Finally, in 2016, Yin et al. 
investigated the relationship between metabolic profiles, at the baseline level, 

Fig. 10.5  Venn diagram illustrating the metabolites found to be associated with diabetes, cardio-
vascular disease, obesity, and/or dyslipidemia by prospective studies investigated by metabolo-
mics. Bold metabolites were found to be increased in one of the four conditions understudy, 
whereas underlined metabolites were found to be highly associated with insulin resistance
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with risk factors of the metabolic syndrome including obesity, dyslipidemia, and 
dysglycemia [97]. They discovered longitudinal associations between several 
metabolites, such as lipids [e.g., lysoPA(16:0), sphingomyelins, and sitosterol] 
and organic acids (e.g., quinic acid), with one or more features of the metabolic 
syndrome.

The European Prospective Investigation into Cancer and Nutrition (EPIC) is a 
prospective cohort with more than 521,000 study participants (men and women, 
between 35 and 70 years old) enrolled from 23 centers in ten Western European 
countries. Originally designed to explore the association between nutrition and can-
cer, it has included over the years the investigation of other chronic diseases such as 
CVDs and T2D. At the enrolment (1992–1999), detailed information on diet, life-
style characteristics, anthropometric measurements, and medical history was col-
lected; blood samples were also taken and stored in liquid nitrogen at the International 
Agency for Research on Cancer – World Health Organization [107]. Among the 
NCDs investigated, the association between cancer and diet has been the most stud-
ied, whereas upon the study of CVD and T2D and their risk factors, only two cohorts 
were used, namely, a selection of the MDC cohort, the MDC Cardiovascular Cohort 
(MCD-CC, 6,103 participants), and the EPIC-Potsdam cohort (27,584 participants), 
respectively [108, 109]. Concerning the MCD-CC, it was predominantly employed 
to replicate the findings of the FSH study, thereby describing a metabolic profile for 
diabetes and cardiovascular diseases’ prediction. In 2013, the MCD-CC was also 
used by Magnusson et  al. to investigate the predictive capability of the DM-AA 
score described by Wang et al. (see above) both for the onset and the consequences 
of a CVD event [98]. They found that the DM-AA score was able to predict CVD 
events (12 years in advance) by suggesting a possible link between diabetes and 
CVDs. Besides, a link between the amino acid score and an increased propensity 
toward atherosclerosis and inducible ischemia was unveiled. In the same year, 
Floegel et al. described for a subcohort of the EPIC-Potsdam study (2,500 selected 
randomly subjects and 800 T2D cases) a significant association between serum 
metabolites both with increased risk of T2D (e.g., hexose, phenylalanine, and 
diacyl-phosphatidylcholines) and decreased risk of T2D [i.e., glycine, SM(18:0/16:1), 
LPC(18:2), and alkyl-phosphatidylcholines] [99]. These metabolites were further 
included in the predictive model of the German Diabetes Risk score (i.e., ROC AUC 
from 0.847 to 0.912), thereby demonstrating their value as biomarkers. The results 
were then successfully replicated in the prospective KORA study (see below). The 
EPIC-Potsdam subcohort was further employed in 2015 to generate a nested case–
control study for the investigation of the pathophysiology of T2D by using an untar-
geted approach [100]. Alteration in serum carbohydrates (e.g., hexoses), purines 
(e.g., isopentanyladenosine-5-monophosphate), and phospholipids [e.g., LPC(16:0)] 
was found to predict the onset of T2D up to 6 years in advance. Finally, the EPIC-
Potsdam cohort was investigated to evaluate the effect of the specific food consump-
tion (i.e., coffee and red meat) and the incidence of T2D [101, 102]. Sex-specific 
correlations were found by showing an inverse trend between coffee and T2D risk 
only in men and different metabolic profiles according to sex both for coffee and red 
meat consumption. Concerning the coffee consumption, only phenylalanine was 
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found to be slightly associated to T2D, whereas ferritin, glycine, and some lipids 
[i.e., PC(36:4), LPC(17:0), and SM(14:1)] were found to reflect both red meat con-
sumption and increased risk for T2D.

The multinational monitoring of trends and determinants in cardiovascular dis-
ease (MONICA) is a WHO-funded project aimed to monitor the common risk fac-
tors (i.e., cigarette smoking, hypertension, obesity, total cholesterol) leading to 
CVD; a total of 38 populations and 21 countries from all over the word were 
included in the project, and more than ten million of men and women (25–64 years 
old) were surveyed (overall period covered: 1979–1996) [110]. Although the 
MONICA project ended in 1996, the survey on the Augsburg cohort continued and 
derived into the MONICA/Cooperative Health Research in the Region Augsburg 
(KORA) study (18,000 participants) that added the study of diabetes to the investi-
gation of CVDs. The MONICA/KORA study comprises of four surveys (S1 to S4, 
from 1996 to 2001) that were performed with a 5-year interval and followed longi-
tudinally between 4 and 20 years [111]. In 2010 the first metabolomic-based study 
was performed on a subset of the KORA F3 cohort (40 cases and 60 controls, males, 
over 54-year-old) [91]. This pilot study replicated the findings of known biomarkers 
of diabetes (i.e., BCAA, sugar metabolites, ketone bodies) and identified novel 
metabolites (i.e., 3-idroxyl sulfate, glycerophospholipids, free fatty acids, and bile 
acids) related to diabetes under subclinical condition. In 2012, then Wang-Sattler 
et al. investigated a subset of the KORA S4/F4 cohort (876 participants) by unravel-
ing three metabolites (i.e., glycine, LPC(18:2), and acetylcarnitine) as markers of 
prediabetes [38]; the findings were replicated in the EPIC-Potsdam cohort by 
describing a role for glycine and LPC(18:2) as marker both of prediabetes and 
T2D. Besides, the KORA S4/F4 cohorts (S4 n = 4,261, F4 n = 3,080) were further 
investigated to explore the relationship of the metabolic profile with risk factors for 
T2D and CVDs including hypertriglyceridemia and obesity: Mook-Kanamori et al. 
highlighted increased levels of amino acids (i.e., leucine, valine, arginine, proline, 
and phenylalanine) as related to high levels of triglycerides both at the baseline and 
at 7 years follow-up [103], whereas Wahl et al. identified in dyslipidemia (altered 
lipoproteins and triglycerides) and modulated amino acids metabolism (mainly 
BCAA) the features of a potential mitochondrial dysfunction underlying long-term 
weight change [104]. Finally, a further prospective study that derives from the 
MONICA project and employs a metabolomics approach, namely, the National 
FINRISK Study (7,256 participants, overall period 1972–2012) [112], was explored 
by Wurtz et al. by identifying serum level of phenylalanine, monounsaturated fatty 
acids, omega-6 fatty acids, and docosahexaenoic acid as hallmarks for future CVDs. 
The results were further validated in two independent UK cohorts (i.e., Southall and 
Brent REvisited cohort and British Women’s Heart and Health Study cohort) [37].

The Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-
points (ECLIPSE) is a 3-year longitudinal study conducted at 46 centers in 12 coun-
tries. A total of 2,180 COPD patients (men and women aged 40–75, under medication) 
were surveyed every 3 months in order to identify predictors of the COPD progression 
and improve the discrimination of the COPD subtypes [113]. In 2012, Ubhi et al. 
employed a subset of the ECLIPSE cohort for two metabolomic-based investigations 
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that unraveled changes in the metabolism of several amino acids (e.g., serine, sarco-
sine, tryptophan, BCAAs, and 3-methylhistdine, among others) that enabled the strati-
fication of COPD patients (i.e., smoker vs. nonsmokers, patients with and without 
emphysema or with and without cachexia) [73, 114]. Although these findings pro-
vided valuable information in the partially/merely explored field of respiratory chronic 
diseases, none of the metabolomic-based studies investigated the ECLIPSE cohort 
longitudinally, and markers of disease progression and patient’s outcome are still 
lacking to date.

10.6  �Concluding Remarks

Through this chapter we have highlighted the versatility and the striking potential of 
metabolomics to provide new advances in the field of chronic diseases: disease-
related metabotypes were described; crucial players involved in the NCDs are 
unveiled; and finally, a long-term perspective on the disease’s progression was 
pointed out. Even though several limitations still need to be addressed (i.e., the 
improvement of the metabolite identification, the exploiting of the synergies 
between different omics, and the effective use of metabolomics in clinical practice, 
among others), the metabolic signature of diseases that is revealed by the study of 
NCDs is a clear demonstration of the importance of this discipline, not only for 
NCDs but also in the wider context of the human health. The metabolic alterations 
are indeed potentially detectable, understandable, and ultimately treatable by a 
metabolomic-based strategy that thus holds the promise to drive a paradigm shift 
toward the tailoring of the therapy on the altered metabolic pathways rather than on 
the disease’s symptomatology.
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