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Abstract. Recommender Systems (RSs) in particular the collabora-
tive filtering approaches have reached a high level of popularity. These
approaches are designed for predicting the user’s future interests towards
unrated items. However, the provided predictions should be taken with
restraint because of the uncertainty pervading the real-world problems.
Indeed, to not give consideration to such uncertainty may lead to unrep-
resentative results which can deeply affect the predictions’ accuracy as
well as the user’s confidence towards the RS. In order to tackle this issue,
we propose in this paper a new evidential item-based collaborative fil-
tering approach. In our approach, we involve the belief function theory
tools as well as the Evidential K-Nearest Neighbors (EKNN) classifier
to deal with the uncertain aspect of items’ recommendation ignored by
the classical methods. The performance of our new recommendation app-
roach is proved through a comparative evaluation with several traditional
collaborative filtering recommenders.

Keywords: Recommender systems · Collaborative filtering · Belief
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1 Introduction

Recommender systems (RSs) are considered as a powerful tool to guide users in
their decision making process [8]. That is why, much research has been recently
devoted to the development of RSs aiming to enhance the accuracy and the
performance of the recommendations. One of the most promising recommenda-
tion approaches is the collaborative filtering which is considered as a leading
approach in the RSs field due to its straightforwardness and its high accuracy
[2]. It tends to predict users’ preferences of items not yet rated. For example,
when a user is browsing a movie website in order to get an idea about the new
releases, the system recommend him movies that he had not watched yet by
predicting a rating for each movie. The question that arises here is how far
the system can assume that the computed outputs are certain? In one way or
another, the provided predictions are not perfect and they involve uncertainty
which should not be ignored. In this case, it is obvious that this approach exhibits
some weakness related to its unability to deal with the uncertainty involved in
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the predictions. That is why, we are oriented to the improvement and the exten-
sion of the traditional version of the collaborative filtering in order to deal with
this kind of problems. In fact, a little attention has been paid to the problem
of managing uncertainty in the field of RSs, either by means of fuzzy set theory
[3,4], probability theory [5] or possibility theory [6]. However, the uncertainty
that is generally pervading in the prediction results has not been considered.
Consequently, ignoring this important point can decrease the user’s confidence
towards the system which can deeply affect the quality of recommendations as
well as their reliability. This fact prompted us resorting to a powerful theory
which offers a flexible tool to deal with imperfect information namely the belief
function theory [7]. This theory is appropriate to cope with uncertainty in clas-
sification problems within several machine learning techniques, out of which the
K-Nearest Neighbors (KNN). Indeed, an extension of the classical KNN based
on the belief function framework has been proposed by [18]. Such classifier allows
the objects to belong to not only a specific class.

Thus, the idea behind our new recommendation approach is to take advan-
tage of the belief function tools as well as the Evidential K-Nearest Neighbors
(EKNN) in order to deal with the prediction uncertainty. The proposed method
is able to provide an evidential representation of the ratings given by similar
items as well as the aggregation of their contributions. In this paper, the EKNN
formalism is used to represent both the interactions between similar items and
the processes leading to a richer information content of the final recommenda-
tion. Besides, we show how incorporating uncertainty in the prediction process
leads to more significant and accurate results.

The remainder of this paper is organized as follows: Sect. 2 provides a review
of the Recommender Systems. Section 3 recalls the Evidential K-Nearest Neigh-
bors. Our proposed recommendation approach is presented in Sect. 4. Section 5
exposes its experimental results conducted on a real world data set. Finally, the
contribution is summarized and the paper is concluded in Sect. 6.

2 Recommender Systems

With the continual growth of the available information, RSs have sprung up
as a suitable solution to provide the users with personalized recommendations
[1]. Such systems start by collecting users’ preferences and try to predict their
future evaluation towards unrated items. Generally, RSs fall into three cate-
gories [10] namely the content-based recommender [9], the collaborative filtering
recommender [11] and the hybrid approaches [12]. The first type consists of a
matching process between the contents of the unrated items and those of the
items in which the user has previously expressed an interest. In this category, a
prior access to the item’s features is required which cannot be always the case.
Indeed, when items have a limit number of available features, no content-based
recommender can provide suitable suggestions. Moreover, recommending items
sharing the same features may lead to an overspecialization problem. That is to
say, since content-based approach relies solely on items’ descriptions, this lat-
ter cannot in any case find out different items that may please the user. Such
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phenomenon refers to serendipity which cannot be obtained by this approach
unlike the collaborative filtering (CF). This second type relies on a matrix of
user-item ratings rather than items’ features to predict preferences. By making
use of other users’ ratings, this approach is able to generate recommendations
even when items’ descriptions are not available or hard to extract. Besides, it
can deal with any kinds of content and help users find interesting items that
they might not have discovered otherwise. Surprising the users and recommend-
ing different items even the ones that are dissimilar to those rated in the past
is the key advantage of this approach. The CF is often characterized as either
being model-based or memory-based. The model-based techniques learn a model
to predict the future preferences based on the entire collection of users’ ratings.
The second category, refereed as neighborhood-based, computes the similarity
between users (user-based [14]) or items (item-based [15]) and select the most
similar ones for recommendation. In some applications, hybrid approaches have
also emerged combining two or more recommendation techniques to increase
their performance while leveling out the weakness of each one. However, the CF
in particular the memory-based has remained the most popular and commonly
implemented approach in RSs field due to its simpleness, robustness and its suc-
cess in real-world applications [13]. That is why the new method will be centered
around the memory-based CF approach.

3 Evidential K-Nearest Neighbors

In this section, we recall the basic concepts of the belief function theory as well
as the Evidential K-Nearest Neighbors classifier.

3.1 Belief Function Theory

The belief function theory [16,17], also refereed to Dempster-Shafer Theory
(DST), is among the most used theories for representing and reasoning with
uncertainty. In this theory, a problem domain is represented by a finite set of
elementary events called the frame of discernment and denoted by Θ. The belief
committed to the elements of the frame of discernment Θ is expressed by a basic
belief assignment (bba) which is a mapping function m : 2Θ → [0, 1] such that:

∑

A⊆Θ

m(A) = 1 (1)

Each mass m(A), called a basic belief mass (bbm), quantifies the degree of
belief exactly assigned to the event A of Θ. An event A is called a focal element
if m(A) > 0. The bba which has at most one focal element aside from the frame
of discernment Θ is called simple support function. It is defined as follows:

m(X) =

⎧
⎪⎨

⎪⎩

w ifX = Θ

1 − w ifX = A for some A ⊆ Θ

0 otherwise
(2)
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where A is the focal element and w ∈ [0, 1].
Given two bba’s m1 and m2 induced from two reliable and independent infor-

mation sources, the evidence can combined using Dempster’s rule of combination
defined as:

(m1 ⊕ m2)(A) = k.(m1 ∩©m2)(A) (3)

where (m1 ∩©m2)(A) =
∑

B,C⊆Θ:B∩C=A

m1(B) · m2(C) (4)

and k−1 = 1 − (m1 ∩©m2)(∅) and (m1 ⊕ m2)(∅) = 0 (5)

To make decisions, beliefs can be represented by pigninstic probabilities defined
as:

BetP (A) =
∑

B⊆Θ

|A ∩ B|
|B|

m(B)
(1 − m(∅))

for all A ∈ Θ (6)

3.2 Evidential K-Nearest Neighbors

The Evidential K-Nearest Neighbors (EKNN) [18] is a pattern classification
method based on the belief function theory. This latter improves the classifica-
tion performance over the crisp KNN approach. It allows a credal classification of
the objects which leads to a richer information content of the classifier’s output.

Notations

– Θ = {C1, C2, ..., CM}: The frame of discernment containing the M possible
classes in the system.

– Xi = {X1,X2, ...,Xn}: The object Xi belonging to the set of n distinct objects
in the system.

– X: A new object to be classified.
– NK(X): The set of the K-Nearest Neighbors of X.

EKNN Procedure

The EKNN aims to classify a new instance X based on the information provided
by the training set. A new pattern X to be classified should be assigned to one
class of the NK(X) based on the selected neighbors. However, the knowledge
that a neighbor X belongs to class Cq can be considered as a piece of evidence
that raises the belief that the pattern X to be classified belongs to the class Cq.
That is why, the EKNN technique treats each neighbor as a piece of evidence
supporting a number of hypotheses regarding the class of the object X to be
classified. Indeed, the more the distance between X and Xi is scaled down, the
more the evidence is strong. This evidence can be represented by a simple support
function with a bba verifying:

mX,Xi
({Cq}) = α0 exp−(γ2

q×d(X,Xi)
2) (7)
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mX,Xi
(Θ) = 1 − α0 exp−(γ2

q×d(X,Xi)
2)

where α0 is a constant that has been heuristically fixed to 0.95 and d(X,Xi) is the
Euclidean distance between the object to be classified and the other objects in
the training set. On the other hand, γq has been defined as a positive parameter
assigned to each class Cq. It is considered as the inverse of the mean distance
between all the training patterns belonging to the class Cq.

Once the different bba’s provided by the K-Nearest Neighbors are generated,
they can be combined using Dempster’s rule of combination.

mX = mX,X1 ⊕ ... ⊕ mX,XK
(8)

where {1, ...,K} is the set containing the indexes of the K-Nearest Neighbors.

4 Evidential Item-Based Collaborative Filtering

The idea behind our contribution is to take into account the uncertain aspect
of the predictions made by RSs. To ensure this task, we propose to rely on the
EKNN which is a machine learning algorithm under the belief function frame-
work. The whole process of our proposed evidential collaborative filtering app-
roach is performed in three phases namely the initialization phase, the learning
phase and the prediction phase.

Step1: Initialization Phase

The first step consists of assigning values to the two parameters α0 and γri
to be

used in the next phase. This procedure starts by initializing the parameter α0

and then exploits the user-item matrix in order to compute the second parameter
γri

. The parameter α0 is initialized to the value 0.95 as mentioned in the EKNN
formalism [18]. Note that the initialization of α0 is executed only once while
the γri

computation is performed each time according to the current items’
ratings. In order to ensure the γri

computation, we should firstly find items
having separately exclusive ratings. In other words, we extract the items having
equal values of the provided ratings. According to the selected items, we assign
a parameter γri

to each rating ri which will be computed as the inverse of the
average distance between each pair of items i and j having the same ratings. This
computation is performed based on the normalized Euclidean distance denoted
by d(i,j) and defined as follows:

d(i, j) =

∑
u∈ui∩uj

(ru,i − ru,j)2

|ui ∩ uj | (9)

where ru,i and ru,j correspond to the rating of the user u for the items i and j.
Moreover, ui and uj are the users u who have rated the items i and j.

Step2: Learning Phase

Once the two parameters α0 and γri
have been assigned, the second phase con-

sists in the items’ selection. This selection is performed according to a similarity
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computation as that proposed in [15] by isolating the co-rated items. In our
method, we firstly consider users who have rated common items. Then, we com-
pute for each item j in the database, its distance with the target item i. Given
a target item, we have to spot to its K-most similar items, also referred to the
neighbors, by picking out only the K items having the lowest distances that we
denote by dist(i,j).

Step3: Prediction Phase

The prediction phase is the most important one in RSs since it provides users
with their future evaluations regarding the unrated items. In this section, we
shed light on the prediction process of our contribution. The two key procedures
of this phase are respectively, the bba’s generation and the bba’s combination.

1. The bba’s Generation
Traditional methods in this step, provide the user with a predicted rating
that indicates a score of his future degree of satisfaction given an item. As we
argued in the introduction, the RS cannot draw any certain inference about
the future rating. Even if the ratings provided by the most similar items can
increase our belief about the most probable one, we cannot admit that such
knowledge is certain. In view of this assumption, we emphasize the presence
of uncertainty facet in the predictions through the belief function theory.
In such case, we maintain that different pieces of evidence which involve a
particular hypothesis about the predicted rating can contribute to the final
prediction. Hence, the evidence would be over the ratings provided by the
K-most similar items. The main advantage under this representation is that
the final prediction must be a basic belief assignment which reflects more
credible results. We start by observing the ratings provided by the different
pieces of evidences (i.e. the K-similar items). Accordingly, we generate the
corresponding bba’s.

Using the terminology of the belief function theory, we can define the frame
of discernment corresponding to this situation as:

Θ = {r1, r2.....rn} (10)

where n denotes the number of the possible ratings r that can be provided in
the system.

Since each item involves a particular hypothesis about the predicted rating,
we generate a bba over each rating provided by the similar items as well as
the whole frame of discernment Θ. According to the similarities computed in
the learning phase as well as the two parameters α0 and γri

initially assigned,
we can represent this bba as a simple support function defined as following:

mi,j({ri}) = αri

mi,j(Θ) = 1 − αri
(11)

where i is the target item and j is its similar item such that: j = {1, ..,K},
αri

= α0 exp−(γ2
ri

×dist(i,j)2), α0 and γri
are the two parameters assigned in
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the initialization phase and dist(i, j) is the distance between the items i and
j computed in the learning phase.
In this situation, each neighbor of the target item has two possible hypothe-
ses. The first one corresponds to the value of its provided rating while the rest
of the committed belief is allocated to the frame of discernment Θ. There-
upon, the focal elements of the belief function are the ratings provided by
the K-similar items and Θ. By treating the K-most similar items as indepen-
dent sources of evidence, each one is represented by a basic belief assignment.
Hence, K different bba’s can be generated for each item.

2. The bba’s Combination
In the previous step, we showed how to generate bba’s for each similar item.
Now, we describe how to aggregate these bba’s in order to synthesize the final
belief about the rating of the target item. Using the belief function theory,
such bba’s can be combined using Dempster’s rule of combination. Therefore,
the resulting bba encodes the evidence of the K-Nearest Neighbors regarding
the rating that should be provided to the target item.

mTarget item = mTarget item,Item 1 ⊕ ... ⊕ mTarget item,Item K (12)

This final bba is obtained as follows:

m({ri}) =
1
R

(1 −
∏

i∈iK

(1 − αri
)) ·

∏

rj �=ri

∏

i∈iK

(1 − αrj
) ∀ri ∈ {r1, .., rn} (13)

m(Θ) =
1
R

n∏

i=1

(1 −
∏

i∈iK

(1 − αri
))

where iK = {i1, i2..., iK} is the set containing the indexes of the K-nearest
neighbors of the target item over the user-item matrix, n is the number of
the ratings provided by the similar items, αri

is the belief committed to the
rating ri, αrj

is the belief committed to the rating rj 	= ri, R is a normalized
factor defined by:

R =
n∑

i=1

(1 −
∏

i∈iK

(1 − αri
)

∏

rj �=ri

∏

i∈iK ,

(1 − αrj
) +

n∏

i=1

(
∏

i∈iK

(1 − αrj
)) (14)

Figure 1 illustrates the prediction phase.

5 Experimental Study

We conduct some experiments on the MovieLens1 data set which is one of the
widely used real word data sets in the field of CF. It contains in total 100.000
1 http://movielens.org.

http://movielens.org
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Fig. 1. The prediction phase

ratings collected from 943 users on 1682 movies. Indeed, a study of the choice
of the appropriate metric to be used in CF has been performed in [20] using
MovieLens data set. According to this study, the Euclidean distance achieves
the best results in terms of accuracy. Otherwise, another experimental study [21]
has proven that both Pearson and Cosine are the most appropriate similarity
measures. Hence, the choice of the most suitable metric is still arguable in the CF
framework. That is why, we propose to perform a comparative evaluation over
our proposed method as well as the traditional one using these three different
similarity measures commonly used in the memory-based CF category.

5.1 Evaluation Metrics

To evaluate our approach, we carry out experiments over three evaluation metrics
namely the Mean Absolute Error (MAE) [22], the Root Mean Squared Error
(RMSE) [23] and the Distance criteron (dist crit) [24] defined by:

MAE =

∑
u,i |pu,i − ru,i|

N
, (15)

RMSE =

√∑
u,i(pu,i − ru,i)2

N
(16)

dist crit =

∑
u,i dist crit(i)

N
(17)

where

dist crit(i) =
n∑

i=1

(BetP ({ru,i}) − δi)2 (18)

– ru,i is the real rating for the user u on the item i and pu,i is the predicted
value of the rating. N is the total number of the predicted ratings over all the
users and n is the number of the possible ratings that can be provided in the
system. δi is equal to 1 if ru,i is equal to pu,i and 0 otherwise.
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It is appropriate for all these measures to remain as low as possible in order to
achieve a higher performance of the predictions. Hence, a small value of MAE,
RMSE and dist crit means a better prediction accuracy.

5.2 Experimental Protocol

Working on the MovieLens data set, we follow the same experimental protocol
introduced by [19]. In the first step, we rank the movies available in the data set
according to the number of the provided ratings. Hence, we get:

Nbuser(m1) ≥ Nbuser(m2) ≥ ...Nbuser(m1682)

where Nbuser(mi) is the number of users who rated the movie mi. From the
original MovieLens data set, we extract 10 subsets each of which contains the
ratings provided by the users for 20 movies. The selection of the subsets is
performed by progressively increasing the number of the missing rates. In other
words, since few ratings provided for the total number of items are available,
each subset will contain a specific number of ratings leading to different degrees
of sparsity. For each subset, we randomly extract 20 % of the available ratings
as a test set and the remaining 80 % are used as a training set. We compute
the MAE, the RMSE and the dist crit for each subset by varying each time the
value of the neighborhood size K.

5.3 Experimental Results

Our proposed approach is characterized by its ability to deal with the uncertainty
pervaded in the prediction task. Hence, we will be concerned by showing how this
contribution improves the accuracy of the predictions. That is why, we perform
several experiments over the 10 subsets by varying each time K from 1 to 10.

Performance for Different Sparsity Degrees

Table 1 recapitulates results considering different sparsity degrees and recom-
mendations’ approaches in the two cases namely, certain case and uncertain case.
We mention that the obtained results for each subset correspond to the average
of 10 Nearest-Neighbors in order to have fair results over the four approaches. As
can be seen, the evidential item-based CF has practically better MAE, RMSE
and dist crit values comparing to the three other approaches under a certain
framework. For example, at a sparsity level of 75 %, the MAE of our proposed
method (equal to 0.744) is lower than the MAE of Pearson CF (equal to 0.943)
leading to a reduction of 20 % in the error rate. Similarly, it outperforms both
Cosine (equal to 0.877) and Euclidean CF (equal to 0.851). Besides, the dist crit
corresponding to our approach remains the lowest over the different sparsity
degrees. (e.g. 0.786 compared to 1.283, 1.353 and 1.444 at a sparsity of 95.9 %.)

Performance for Different Neighborhood Sizes

According to the neighborhood size, we can observe a variation of the MAE, the
RMSE and the dist crit corresponding to the four approaches. This variation
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Table 1. Comparison result in term of MAE, RMSE and dist crit

Certain framework Uncertain framework

Measure Sparsity Euclidean Pearson Cosine Evidential

MAE 53 % 0.815 0.839 0.824 0.751

RMSE 1.178 1.231 1.158 1.089

dist crit 1.195 1.27 1.205 0.859

MAE 56.83 % 0.886 0.936 0.87 0.84

RMSE 1.22 1.291 1.215 1.158

dist crit 1.279 1.293 1.251 0.875

MAE 59.8 % 0.853 0.863 0.825 0.761

RMSE 1.223 1.256 1.198 1.135

dist crit 1.217 1.191 1.178 0.795

MAE 62.7 % 0.858 0.905 0.876 0.763

RMSE 1.21 1.267 1.232 1.092

dist crit 1.255 1.308 1.244 0.859

MAE 68.72 % 0.914 0.990 1 0.831

RMSE 1.249 1.367 1.351 1.184

dist crit 1.307 1.372 1.374 0.862

MAE 72.5 % 0.915 0.976 0.917 0.851

RMSE 1.28 1.348 1.272 1.184

dist crit 1.257 1.333 1.29 0.858

MAE 75 % 0.851 0.943 0.877 0.744

RMSE 1.194 1.27 1.212 1.187

dist crit 1.24 1.322 1.266 0.858

MAE 80.8 % 0.792 0.927 0.848 0.718

RMSE 1.112 1.265 1.179 1.079

dist crit 1.214 1.322 1.259 0.837

MAE 87.4 % 0.889 0.958 0.978 0.840

RMSE 1.248 1.309 1.334 1.18

dist crit 1.263 1.317 1.32 0.856

MAE 95.9 % 0.98 0.913 1.13 0.991

RMSE 1.381 1.217 1.527 1.445

dist crit 1.283 1.353 1.444 0.786

is illustrated in Figs. 2, 3 and 4. As seen, the four approaches have almost the
same behavior over the different neighborhood sizes. However, we can observe
that the curve of the evidential item-based CF remains always under those of the
three traditional methods. According to these results, the evidential approach
shows the greatest performance over all the traditional item-based CF methods.
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Fig. 2. The MAE
results

Fig. 3. The RMSE
results

Fig. 4. The dist crit
results

Thereupon, we can conclude that our new approach significantly improves the
prediction accuracy.

6 Conclusion

In this paper, we have proposed a new recommendation approach based on the
Evidential K-Nearest Neighbors. Our approach is based on the generation and
the combination of the different bba’s corresponding to each similar item which
allows an improvement over the crisp results related to the traditional methods.
This solution may increase the user’s confidence towards the system as well as the
accuracy of the provided predictions which would be fully beneficial to the RSs
field especially, nowadays where reliability becomes a crucial parameter to attend
user’s satisfaction. Moreover, the proposed evidential item-based collaborative
filtering approach offers the users the possibility of having a global overview of
their future interests which leads to a better decision making. As future works, we
suggest to introduce uncertainty in the users’ preferences which are considered
as the inputs of our approach.
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