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Abstract. Assume a robot operating in a public space (e.g., a library,
a museum) and serving visitors as a companion, a guide or an informa-
tion stand. To do that, the robot has to interact with humans, which
presumes that it actively searches for humans in order to interact with
them. This paper addresses the problem how to plan robot’s actions in
order to maximize the number of such interactions in the case human
behavior is not known in advance. We formulate this problem as the
exploration/exploitation problem and design several strategies for the
robot. The main contribution of the paper than lies in evaluation and
comparison of the designed strategies on two datasets. The evaluation
shows interesting properties of the strategies, which are discussed.

Keywords: Distant experimentation · e-Learning · Mobile robots ·
Robot programming

1 Introduction

With increasing level of autonomy, mobile robots are more and more deployed
in domains and environments where humans operate and where cooperation
between robots and humans is necessary. One of these are public spaces like
libraries, museums, galleries or hospitals which are visited by many people with
no or minimal knowledge of these places and which typically need some help.
A robot for example can guide a human to a specific place, to direct him/her
there or to provide a guided tour through a museum or gallery. In order to act
effectively, the robot has to learn not only places where its help is needed but
also time periods when people ask for help or interact with the robot at such
places.

Imagine for example a commercial building with many offices. The best place
to interact with people in the morning is near elevators as people go usually
to their job and thus the highest probability of interaction is there. On the
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other hand, an entrance to a canteen might be the best place around midday
assuming that people go to the canteen for lunch. The problem is that the robot
does not know this behavior apriori and it has to learn it. Learning of humans
behavior, i.e. where and when humans ask for help, should be done in parallel
with interacting with people as well as with other daily tasks of the robot, which
leads to the exploration/exploitation problem.

Although the problem looks interesting and has practical applicability, it has
not been addressed in the literature. One of the reasons is probably the fact
methods for automated creation and maintenance of environment representa-
tions that model the world dynamics from a long-term perspective appeared just
recently [19]. On the other hand, the work [19] indicates that environment models
created by traditional exploration methods that neglect the naturally-occurring
dynamics might still perform sufficiently well even in changing environments.

Exploration, the problem how to navigate an autonomous mobile robot in
order to build a map of the surrounding environment, has been studied by the
robotics community in last two decades and several strategies which can be an
inspiration to solution of the exploration/exploitation problem were introduced.
The earliest works [9,22,23] use a greedy motion planning strategy, which selects
the least costly action, i.e. the nearest location from a set of possible goal candi-
dates is chosen. Some authors introduce more sophisticated cost functions, which
evaluate some characteristics of the goal and combine them with the distance
cost, which represents the effort needed to reach the goal. For example, expected
information gain computed as a change of entropy after performing the action
is presented in [6], while information gain evaluated as the expected aposteriori
map uncertainty is introduced in [1]. Localizability, i.e. expected improvement
of robot pose estimation when performing the action is used in [18]. Particular
measures are typically combined as a weighted sum. More sophisticated multi-
criteria decision making approach, which reflects the fact that the measures are
not independent is derived in [2,3].

All the aforementioned strategies plan only one step ahead. Tovar et al. [21],
in contrast, describe an approach which selects the best tour among all possible
sequences of goals of the predefined length. We extended this approach in our
previous paper [15], where goal selection is defined as the Travelling Salesman
Problem. The presented experiments show that the strategy which considers
longer planning horizon significantly outperforms the greedy approach.

Another problem related to exploration/exploitation is robotic search which
aims to find a static object of interest in shortest possible time. Sarmiento et al.
[20] assume that a geometrical model of the operating space is known and for-
mulate the problem so that the time required to find an object is a random
variable induced by a choice of a search path and a uniform probability density
function for the object’s location. They determine a set of positions to be visited
first and then find the optimal order by a greedy algorithm in a reduced search
space, which computes a utility function for several steps ahead. A Bayesian net-
work for estimating the posterior distribution of target’s position is used in [8]
together with a graph search to minimize the expected time needed to capture
a non-adversarial (i.e. moving, but not actively avoiding searchers) object.
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The variant of the problem where the model of the environment is unknown
was defined in [16]. A general framework derived from frontier-based exploration
was introduced and several goal-selection strategies were evaluated in several
scenarios. Based on findings in [16], a goal-selection strategy was formulated as an
instance of the Graph Search Problem (GSP), a generalization of the well-known
Traveling Deliveryman Problem and a tailored Greedy Randomized Adaptive
Search Procedure (GRASP) meta-heuristic for the GSP, which generates good
quality solutions in very short computing times was introduced [17].

In this paper, we formulate the exploration/exploitation problem as a path
planning problem in a graph-like environment, where the probability of an inter-
action with a human at a given place/node is a function of time and is not
known in advance. A natural condition is to maximize the number of interac-
tions during a defined time interval. To model probabilities at particular places,
the Frequency Map Enhancement (FreMEn) [11,12] is employed, which models
dynamics of interactions by their frequency spectra and is thus able to predict
future interactions.

Using this model, we designed and experimentally evaluated several planning
algorithms ranging from greedy exploration and exploitation strategies and their
combinations to strategies planning in a finite horizon (i.e. looking for a fixed
finite number of time steps ahead). For the finite horizon variant an algorithm
based on depth-first search was designed and all greedy strategies were used as
a gain for a single step. Moreover, both deterministic and randomized versions
of the strategies, various horizons as well as resolutions of the FreMEn models
were considered.

The rest of the paper is organized as follows. The problem is formally defined
is Sect. 2, the method for representation and maintenance of environment dynam-
ics is introduced in Sect. 3, while the strategies (policies) to be compared are
introduced in Sect. 4. Description of the experimental setup and evaluation
results on two datasets are presented in Sects. 5 and 6. Concluding remarks
can be found in Sect. 7.

2 Problem Definition

To formulate the problem more formally, let G = (V,E) be an undirected graph
with V = {v1, v2, . . . , vn} the set of vertices, and E = {eij |i, j ∈ {0, 1, . . . , n}}
the set of edges. Let also cij be the cost of the edge eij representing the time
needed to travel from vi to vj and pi(t) the probability of receiving an immediate
reward at vertex vi at time t (i.e. probability of interaction with a human at
vertex vi at time t). The aim is to find a policy π : V × T → V that for a given
vertex vi and time t gives a vertex vj to be visited at time t + cij , such that the
received reward in the specified time interval 〈t0, tT 〉 is maximal:

π = arg max
a

tT∑

t=t0

Ra(t),
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where Ra(t) is a reward received at time t if policy a is followed in the time
interval 〈t0, tT 〉.

We dealt with the problem when pi(t) is known in [14], where the task was
defined as the Graph Searching Problem [10]. A search algorithm as a variant
of branch-and-bound was proposed based on a recursive version of depth-first
search with several improvements enabling to solve instances with 20 vertices in
real-time.

The situation is more complicated when pi(t) is not known in advance.
Instead, p∗

i (t), apriori estimate of the reward, is available. In this case, a utility
of visiting a vertex is twofold: (a) a reward received and (b) refinement of a
probability in a vertex:

Ui(t) = αRi(t) + (1 − α)e(p∗
i (t)),

where Ri(t) is a reward received in vi at time t, e(·) is a function evaluating
refinement of the probability in a vertex, and α is a weight.

Given this formulation, the problem can be reformulated as finding a policy
maximizing the utility:

π = arg max
a

tT∑

t=t0

Ua(t),

where Ua(t) is a utility of a vertex visited at time t following the policy a.

3 Temporal Model

Frequency Map Enhancement (FreMEn) [11,12] is employed to inicialize and
maintain particular probabilities p∗

i (t). Unlike traditional approaches dealing
with a static word, the probabilities in our case are functions of time and these are
learnt through observations gathered during the mission. The FreMEn assumes
that majority of environment states is influenced by humans performing their
regular (hourly daily, weekly) activities. The regularity and influence of these
activities on the environment states is obtained by means of frequency transforms
by extracting the frequency spectra of binary functions that represent long-term
observations of environment states, discards non-essential components of these
spectra and uses the remaining spectral components to represent probabilities of
the corresponding binary states in time. It was shown that introducing dynamics
into environment models leads to more faithful representation of the world and
thus to improved behaviour of the robot in robot self-localization [13], search [14]
and exploration [19].

Assume now that the presence of an object in a particular node of the graph
is represented by a binary function of time s(t) and the uncertainty of s(t) by
the presence probability p(t).

The key idea of the FreMEn stands in representation of a (temporal) sequence
of states s(t) by the most prominent components of its frequency spectrum S(ω)
= F(s(t)). The advantage of this representation is that each spectral component
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of P (ω) is represented by three numbers only which leads to high compression
rates of the observed sequence s(t).

To create the FreMEn model, the frequency spectrum S(ω) of the sequence
s(t) is calculated either by the traditional Fourier transform or by the incremen-
tal method described in [11]. The first spectral component a0, that represents
an average value of s(t) is stored, while the remaining spectral components of
S(ω) are ordered according to their absolute value and the n highest compo-
nents are selected. Each component thus represents a harmonic function that is
described by three parameters: amplitude aj , phase shift ϕj and frequency ωj .
The superposition of these components, i.e.

p∗(t) = a0 +
n∑

j=1

ajcos(ωjt + ϕj), (1)

allows to estimate the probability p(t) of the state s(t) for any given time t. Since
t is not limited to the interval when s(t) was actually measured, Eq. (1) can be
used not only to interpolate, but also to predict the state of a particular model
component. In our case, we use Eq. (1) to predict the chance of interaction in a
particular node.

The spectral model is updated whenever a state s(t) is observed at time t by
the scheme described in [11] for details. This is done every time a robot visits
a node v and registers an interaction in the node (sv(t) = 1 in that case) or it
experiences that no interaction was done (sv(t) = 0).

4 Policies

Several utilities leading to different policies can be defined. These utilities are
typically mixtures of exploration and exploitation gains. The exploration gain
of an action expresses the benefit of performing the action to the knowledge of
the environment, i.e. amount of information about the environment gathered
during execution of the action. The exploitation gain then corresponds to the
probability that the action immediately leads to interaction.

More specifically, the exploitation utility of the action a which moves the
robot to the node vi is expressed as the estimated probability of interaction at
a given time:

Uexploitation
a = p∗

i (t),

while the exploration utility for the same case is expressed by entropy in the
node vi:

Uexploration
a = −p∗(t) log2 p∗(t) − (1 − p∗(t)) log2(1 − p∗(t))

Figure 1(a) and (b) shows graphs for these two utilities. Note that while exploita-
tion prefers probabilities near 1, exploration is most beneficial in nodes with
highest uncertainty.
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Fig. 1. Utility functions of exploration and exploitation: (a) exploitation utility, (b)
exploration utility and (c) their mixture with various weights.

A linear combination of exploration and exploitation defines a new utility
which is referred as mixture [11]. Ratio of exploration and exploitation is tuned
by the parameter α (see also Fig. 1(c)):

Umixture
a = αp∗(t) + (α − 1)(p∗(t) log2 p∗(t) + (1 − p∗(t)) log2(1 − p∗(t)))

The disadvantage of this linear combination is that the resulting function has
one peak, which moves based on setting of the parameter α as can be seen in
Fig. 1(c). In fact, a function which prefers (a) uncertain places, i.e. nodes with
probability around 0.5 as well as (b) nodes with high probability of interaction is
preferred. An example of such function is shown in Fig. 2(c). This function was
formed as a combination of two functions (see Figs. 2(a) and (c)) as is expressed
as

Uartificial(t) =
α

1 − p∗(t)
+

1
1 + β( 12 − p∗(t))2
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Fig. 2. Construction of the artificial utility. (a) α
1−p∗(t)

function (b) 3

1+150( 1
2−p∗(t))2

and (c) their sum.
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Fig. 3. Various shapes of the artificial utility with one of the parameters fixed. (a)
β = 100 (b) α = 1

A shape of the resulting artificial utility can be modified by tuning the para-
meters α and β as depicted in Fig. 3.

A randomized version based on Monte Carlo selection is also considered
for each of the aforementioned methods. An action with the highest utility is
not selected, a random action is chosen instead, but the random distribution is
influenced by utilities. In other words, probability of an action to be selected
directly is proportional to its utility: the higher the utility the higher chance to
be selected. This process can be modeled as an “biased” roulette wheel, where
an area of a particular action is equal to its utility.

Strategies using the previously described utilities are greedy in the sense that
they consider only immediate off without taking into account subsequent actions.
This behavior can be heavily ineffective: the greedy strategy can for example
guide a robot into a remote node which can bring slightly more information
than other nodes, but with a risk that no (or little) new information will be
gathered on the way back. Therefore, utilities that consider some finite planning
horizon are introduced. A näıve approach to compute these utilities constructs
all possible routes with the given length and take the route with the highest sum
of utilities of particular nodes1 on the route. This approach is not scalable as
the number of routes exponentially grows with the size of the planning horizon.
Depth-first search in the space of all possible routes is therefore applied with
a simple pruning: if the current sub-route cannot lead to a route with higher
utility than the current optimum, the whole subtree of routes is discarded from
consideration. As will be shown, this technique allows to compute utilities in the
presented experiments in reasonable time.

Moreover, three simple strategies are also considered. The first one is called
Random Walk as it randomly selects a node. A uniform distribution is used
in this case, which means that probabilities of all nodes to be selected are equal.
While Random Walk serves as a low bound for comparison, the Oraculum

1 Exploration, exploitation, mixture or artificial utility can be used as the utility in a
particular node.
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strategy provides an upper bound. As the name suggests, using this strategy to
select a node always results in an successful interaction. The Oraculum strategy
is used only for comparison purposes and employs information about future
interactions which is not known to other strategies.

5 Evaluation on the Aruba Dataset

The first evaluation and comparison of the strategies was performed on the Aruba
dataset from the WSU CASAS datasets [4] gathered and provided by Center for
Advanced Studies in Adaptive Systems at Washington State University. This
dataset contains after some processing2 data about presence and movement of a
home-bound single person3 in a large flat, see Fig. 4 in a period of 4 months. The
data were measured every 60 seconds and the flat was represented by a graph
with 9 nodes.

Robot behavior was simulated and its success of interactions was evaluated
according to the dataset. Given a policy, the robot started in the corridor and
it was navigated to the node chosen by the policy as the best every 60 seconds
assuming that movement between two arbitrary nodes takes exactly 60 seconds.
Every time a new node was reached, the FreMEn model of the node (initially
set to constant 0.5) was updated accordingly. This was repeated for the whole
dataset and for all the greedy strategies described in the previous section. More-
over, several parameter setups were considered for the Artificial strategy. As the
graph is considered to be full and costs of all edges are the same, it has no sense
to evaluate strategies with longer planning horizon.

The results are summarized in several graphs. First, the number of inter-
actions, i.e. the number of time moments when the robot was present at the
same node as the person was tracked, see Fig. 5. As expected Oraculum pro-
vides the best result (we will talk about SuperOraculum in the next paragraph).

Fig. 4. The Aruba environment layout.

2 The original dataset [4] contains one year-long collection of measurements from 50
different sensors spread over the apartment and we filtered this data to contain
information about presence of the person in particular rooms and at particular times.

3 In fact, the person was not present in the flat occasionally or was visited by another
people.
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Fig. 5. The number of interactions done for the particular policies. Note that the
policies in the legend are ordered according to their performance.

The randomized versions of the artificial utility (with α = 3 and β = 200) and
exploitation follow, which are by 8 % better than the other methods. The worst
method is Exploration, which is even worse than Random Walk and its random-
ized version is then just slightly better. This is not surprising as the objective
of exploration guides the robot to not yet visited areas and thus probability of
interaction is small.

The graph in Fig. 6 shows another characteristics of the policies: preci-
sion of the model built by FreMEn. Given a model at some stage of explo-
ration/exploitation, Precision is expressed as a sum of squares of differences of
the real state and the state provides by FreMEn at the stage estimated over all
nodes for all times:

error =
T∑

t=0

N∑

i=1

(statei(t) − p∗
i (t))

2,

where statei(t) is the real state of the node i, T is time of the whole explo-
ration/exploitation process, and N is the number of nodes. First, note master-
fully biggest error for the Oraculum policy. This is caused by the fact, that this
policy guides the robot only to places with a person, thus FreMEn has posi-
tive samples only and it assumes that a person is present at all nodes all time.
Therefore, another policy called SuperOraculum was introduced, which behaves
similarly to Oraculum with one exception: it assumes that there is one person in
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Fig. 6. Progress of FreMEn model precision.

the flat at maximum and thus probabilities of all nodes other than the currently
visited are updated also. This update is done the same way the robot physically
visits a node and recognizes no interaction. As can be seen, error of this policy
is much smaller and serves as a lower limit. Assuming the real policies, the best
one is Exploration, which is even comparable to SuperOraculum, followed by the
Mixture and two Artificial policies. The other strategies provide similar results.
Note also that error of the best strategies almost stabilizes (which means that
the model is learned) after 14 days, while it takes longer time for the others.

Finally, the expected number of humans in the flat as assumed by the FreMEn
model is depicted in Fig. 7. The number for a given FreMEn model is computed
as the average number of nodes, where probability of interaction is higher than
0.5:

num =
∑T

t=0

∑N
i=1(p

∗
i > 0.5)

TN

Note that the real number of humans is lower than one as the person is not
always present in the flat. The results correspond to model precision. Again, the
best estimates are provided by the Exploration, Mixture and Artificial policies,
while the rest highly overestimates the number of humans. When comparing
with the number of interactions, the results are almost reversed: the methods
with a high number of interactions model the dynamics in the environment with
less success than policies with a low number of interactions.
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6 Deployment at a Care Site

Another evaluation was performed on the data collected within the STRANDS
project (http://strands.acin.tuwien.ac.at) during a real deployment of a mobile
robot at the “Haus der Barmherzigkeit”, an elder care facility in Austria [5,7].
The robot was autonomously navigated in the environment consisting of 12
nodes (see Fig. 8) and all interactions were logged each minute during a period

Fig. 8. The graph representing the environment in the hospital.

http://strands.acin.tuwien.ac.at
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Fig. 10. The number of interactions done for FreMEn with (a) order = 2 (b) order = 4.
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of one month, e.g. measurements at 40325 time moments were taken. The data
can not be used directly, as information about interactions is available only for
places, where the robot was present at a given time. A FreMEn model with
order = 2 was therefore built in advance and used as ground truth to simulate
interactions at all nodes and all times: interaction is detected if the model returns
probability higher than 0.5. Contrary to the Aruba experiment, a number of
people in the environment varies in time significantly and the time needed to
move from one node to another one is not constant (the real values are drawn in
Fig. 8). Strategies taking into account a planning horizon are therefore considered
together with the policies evaluated in the previous section. To ensure that the
robot does not stay on a single spot, we introduces an additional penalty for the
current node.

The experiments were performed similarly to the Aruba case. The robot
started in the Kindergarten node and the whole month deployment was simulated
for each strategy. Experiment with each strategy was repeated several times for
the order of the FreMEn model equal to 0, 1, 2, and 4. Note that the order equal
to 0 means a static model, i.e. probability of interaction does not change in time.

The results are shown in Figs. 9 and 10. Generally, the policies planning
several steps ahead significantly outperform the greedy ones for all assumed
orders, even for the static model. The best results are obtained with the variants
employing the artificial and exploitation exploitation utilities followed by mix-
ture. Horizon planning with the exploration utility exhibits a noticeably worse
behavior but still better than the greedy policies. Notice also not good perfor-
mance of pure exploitation for order = 0, which is caused by the fact that the
model is static and exploitation thus guides the robot to the same nodes regard-
less time of the day. It can be also seen that model order plays an important
role for efficiency; the number of interactions increased between order = 0 and
order = 4 by approx. 9 %. Small differences between various lengths of planning
horizons can be explained by randomness of interactions and inaccuracy of the
models. Interactions can be detected at times and places where they are not
expected and do not occur at nodes they are expected by the model.

The proposed horizon planning can be used in real-time. Planning for twenty
minutes horizon takes approx. 15 ms, while 300 ms are needed to plan for 30 min
horizon, 1600 ms for 35 min horizon, 10 s for 40 min horizon, and 220 s for 50 min
planning horizon.

7 Conclusion

The paper addresses the problem of concurrent exploration and exploitation in
a dynamic environment and compares several policies to plan actions in order
to increase exploitation, which is specified as a number of interactions with
humans moving in the environment. Simulated experiments based on real data
show several interesting facts:
– The policies with the highest numbers of interactions build the worst models

and vice versa. Good strategies should be therefore based on exploitation
rather than exploration.
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– Consideration of several steps ahead in the planning process leads to signif-
icant performance improvement. The best policies with a planning horizon
outperform the best greedy ones by 54–80%; the biggest improvement is for
the model which assumes a static environment.

– Although FreMEn does not model dynamics in the environment exactly, it is
precise enough to increase exploitation performance. The higher orders of the
model lead to better results.

The next step is to employ and evaluate the best strategies in a real long-
term scenario. It will be also interesting to design more sophisticated planning
methods, which will be usable in large environments and for longer planning
horizons.
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16. Kulich, M., Přeučil, L., Miranda Bront, J.: Single robot search for a stationary
object in an unknown environment. In: 2014 IEEE International Conference on
Robotics and Automation (ICRA), pp. 5830–5835, May 2014
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