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Abstract. Due to the increasing usage of service and industrial
autonomous vehicles, a precise localisation is an essential component
required in many applications, e.g. indoor robot navigation. In open
outdoor environments, differential GPS systems can provide precise posi-
tioning information. However, there are many applications in which GPS
cannot be used, such as indoor environments. In this work, we aim to
increase robot autonomy providing a localisation system based on pas-
sive markers, that fuses three kinds of data through extended Kalman
filters. With the use of low cost devices, the optical data are combined
with other robots’ sensor signals, i.e. odometry and inertial measurement
units (IMU) data, in order to obtain accurate localisation at higher track-
ing frequencies. The entire system has been developed fully integrated
with the Robotic Operating System (ROS) and has been validated with
real robots.
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1 Introduction

A fundamental problem for an autonomous mobile robot is knowing its current
position and orientation by sensorial observation and previous accurate localiza-
tion. This is still the subject of several researches in the mobile robot community
with the aim of increasing robot autonomy. Although global positioning system
(GPS) is suitable for mobile robot localization in outdoor environment, it is diffi-
cult to be used in an indoor environment. In case GPS is unavailable, localization
using odometry [1] and dead reckoning using IMU sensors [2] may provide an
alternative solution. However, odometry is subject to growing errors over time
and it is hence insufficient for many tasks [3]. The indoor navigation is based
on the exploitation of the environment and of available technologies that allow
localisation even in indoor scenarios. One of the most widely used techniques
is to place landmarks in known environment’s points. In this way mounting
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an on-board robot webcam (focused on the landmarks), the localisation system
uses the information about the position of each landmark to localise the robot
inside the environment [4]. Nevertheless, in presence of obstacles between robot
and landmarks, the relative position can not be evaluated. Moreover, especially
in industrial scenarios, it is usually not well accepted the introduction of land-
marks in the environment. A possible alternative is to take advantage of a priori
knowledge of the environment where the idea is to extract features from the
environment and to compare them with a priori knowledge. For example, in [5]
the choice of the corridor as the working environment has two important reasons.
First, the corridor is a common part of most domestic environments and being
able to navigate in it has potential on its own. Second, it has a very regular and
simple structure, making it easier to start the development of a more general
vision based solutions.

In recent years, smart buildings use wireless sensor network (WSN) as local-
ization systems: in [6], WSN is used as an assistant for odometry and other on
board sensors used by the localisation systems. The main limit of such infrastruc-
ture is its cost, that is not negligible. Another possible infrastructure is based
on cameras placed in known positions in the environment. For example, in [7] a
camera is placed on the ceiling of the hall. A drawback of the proposed method
is the localisation failure in certain situations. For instance in case of bad illu-
mination, markers on the robots can not be detected and localised properly.

The purpose of this work is to create a localisation system based on low cost
devices, in order to verify applicability of the algorithms presented in [8-10]. We
want to identify robots moving in an indoor environment, fusing vision data from
the cameras mounted in the environment, odometry data from the encoders fixed
on the robot’s wheels and IMU data from the IMU sensor mounted on board.
Based on the work proposed in [11], where a single camera is used to localise a
single robot, we develop a localisation system able to manage multiple robots
with multiple cameras. The developed system is environment independent and
hence it does not require any a priori knowledge of the environment. Moreover,
our framework is able to manage an unlimited number of robots and cameras at
the same time. For this reason the system can perform in an indefinitely wide
environment. In addition, a method for on line camera self-calibration is also
proposed. Once the initial calibration of the cameras is done, it is possible to
move each camera while a monocular visual odometry algorithm [12] performs
a continuous real-time calibration of the cameras parameters. To speed up the
visual localisation and to increase accuracy, vision information is combined with
robots sensors using two Kalman-Filters. One of the main problems when dealing
with optical cameras is the illumination of the scene that can change during
robot operation. With the proposed approach failures in detection are avoided
thanks to an on-line calibration of the HSV (Hue, Saturation and Value) values
of the markers colour, performed by an operator. In this way we can change the
colours calibration whenever lights in the environment change increasing robot
autonomy.
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The paper is organized as follows: in Sect.2 we define the visual tracking
system. In Sect.3 the integration of on board sensors is detailed while Sect. 4
is devoted to the experimental set-up and results. Finally Sect.5 presents some
conclusive remarks and the planned future work, such as an extension of the
system to other, more demanding, situations.

2 Visual Tracking Module

The localisation system consists of two different modules. The first is the module
responsible for the localisation of the vehicle through fixed cameras while the
second is dedicated to the integration of the data provided by the first one and
all the other available sensors. The system has been developed so that the two
modules can be implemented independently. In this Section details on the Visual
Tracking Module are provided. On top of each robot are placed two coloured balls
mounted at fixed known distance and such that the midpoint coincides with the
centre of the robot, as shown in Fig. 1.

Fig. 1. Roomba robot equipped with front red marker and back blue marker mounted
at 10cm (Color figure online)

In order to identify each marker position, some sequential operations must
be performed. First, the camera hardware must be calibrated: 8 parameters are
calibrated such that the position and orientation of each camera with respect
to the fixed reference system can be computed. Once images are acquired from
each camera, a filtering operation starts, (e.g. see [13]):

1. Remove image’s noise through a Gaussian blur filter;

2. Convert RGB (Red, Green, Blue) color model to HSV (Hue, Saturation,
Value). In this way we can filter the hue, saturation and value of the neg-
ligible colours, i.e. colours different from those used for the markers;

3. Use morphological operations such as erosion and dilation. The main uses
are:
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— Remove noise;
— Isolate individual elements and join related elements in an image;
— Find intensity bumps or holes in an image.

Once marker contours are identified, a white rectangle is drawn around them
whose center coincides with the marker position in the environment, as shown
in Fig. 2.

&

Fig. 2. Robot is tracked by a camera and its position and orientation is marked with
rectangle centered on passive markers

The center of the marker is reported in pixel coordinate of the camera ref-
erence frame. In order to allow more cameras to identify the same marker a
common reference frame is chosen, e.g. the world reference system.

Marker positions, from different cameras, of the same color are collected
into position arrays, so that it is possible to assign to each robot only the two
position arrays related to the colors of its markers. Each robot manages a private
Kalman filter, which predicts the marker position at the current time instant.
Such prediction is used to reduce false assignments, through the execution of a
spatial filter on the position arrays received from the cameras. Moreover, due to
the fact that the distance between the markers is fixed and known, a second check
is performed to select the pair of markers that respect the given distance. Once
marker positions are selected, the robot position is computed as the midpoint of
the selected markers. Moreover, based on this information, the heading of each
robot can also be computed. A graphical scheme of the entire process described
in this section is reported in Fig. 3, where the software architecture of the visual
tracking module is represented.

In case of obstacles in the environment, the visual tracking module computes
robot position using Kalman filter pure prediction. Such kind of computation is
affected by a fast degradation of the performances decreasing the robot auton-
omy. To mitigate such problem and to improve the dead-reckoning computation,
an integration with other sensors data can be performed as described in Sect. 3.
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Fig. 3. Tracking Visual Module software architecture. The main steps of each cam-
era are: camera calibration, image acquisition, marker position computation, coloured
marker positions array creation, arrays sorting for each robot, robot position and ori-
entation computation (Color figure online)

2.1 Online Calibration

In order to avoid the use of an external infrastructure, that is typically unavail-
able in disaster scenarios in case of search and rescue tasks, the capability of
tracking passive markers with on board cameras has been also developed. More
specifically, by the use of a visual odometry module such as the one proposed
in [12], it is possible to have an online calibration of camera parameters. Online
calibration and tracking with on board cameras allow to localise robots in envi-
ronment parts not reachable by a fixed camera infrastructure, e.g. hidden areas
occluded by obstacles. Moreover, this feature may also be used to avoid local-
isation errors due to unexpected external perturbation of the camera positions
in an infrastructure.

3 On Board Sensor Integration Module

In general, localisation using odometry and dead reckoning using IMU sensors
may provide an alternative solution for robot localisation purposes. Unfortu-
nately, it is well known that odometry from encoders and dead reckoning from
IMU sensors may show substantial errors in the localisation due to wheel slip-
page and drift respectively [14]. These errors can be overcome by integrating
these sensors with the data provided by the visual tracking module proposed in
the previous section. Fusing all these sensor data through two Extended Kalman
filters (EKF's) reduces the robot localisation error. The integration is performed
with two sequential EKF's as shown in Fig. 4. This approach combines the ben-
efits of the three sensor typologies. The visual tracking module can be seen as



Indoor Real-Time Localisation for Multiple Autonomous Vehicles 293

a correction for the estimation obtained based on the on board sensors. On the
other hand, the on board odometry information can be employed to overcome
time-delays that occurs in the vision system, as well as errors due to regions
where no visual markers are available. Referring to Fig. 4, the prediction oper-
ation of the first EKF is executed once a new odometry pose estimation is
available. Since the on board odometry estimation is fast, the estimation of the
robot’s state can be performed at a high frequency. The second and subsequent
EKF is used to integrate the filtered odometry obtained with the first EKF with
the data provided by the visual tracking module. The update step of the second
EKF is executed when a new pose estimation is obtained from the vision track-
ing module and it is employed to correct the estimation performed by the on
board odometry. It is worth noticing that the second EKF has a lower update
frequency with respect to the first one.

SENSORS

Robot N Filtered
Odometry Odometry

EKF 1

Final

EKF 2 - Odometry

Imu Data

Fig. 4. Two EKFs fusing all sensors data. The first ones fuses on-board odometry data,
the second one updates the pose estimation with visual data

Time-delay of the visual tracking module is also an issue which needs to
be tackled. In our vision system, for example, the vision time-delay is about
300 ms and to overcome this problem, the past odometry information is saved in
a buffer. When obtaining a vision estimation, this information is aligned to the
robot’s pose in the past. Thus, the Kalman belief state now corresponds to the
(past) robot’s pose and the update can be performed.

4 Experimental Results and Validation

To facilitate the evaluation of the performance of the proposed approach we
developed a system fully integrated with the well known Robotic Operating
System (ROS) [15]. Such integration lead us to test the framework in a simulation
environment (Gazebo) and in a real world scenario without any change of the
code. In this section, the results and the performances achieved by the proposed
localisation system are reported. Two type of tests have been performed:
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1. Static tests are used to verify the accuracy of the measures of the visual
tracking module;

2. Dinamic tests are used to verify the accuracy of the measures when on board
sensors are integrated with visual tracking module.

4.1 Static Tests

For the evaluation performance of the visual tracking module, two different types
of cameras have been used to test the applicability of the proposed approach to
different hardware:

1. Philips SPC1030NC/00;
2. Logitech HDWebcam C270.

The first test aimed to define the maximum distance from the cameras lens
to perform a localisation of the robots on the floor. Cameras were mounted on
a two meters tall tripod, with fixed pitch angle. Results obtained are that:

1. the Philips SPC1030NC/00 localises robots up to 5m distance;
2. the Logitech HDWebcam C270 localises robots up to 5.5 m distance.

The second test was performed to define the measurement accuracy provided
by the cameras with respect to known positions. The accuracy error obtained
ranged from 2cm to 5cm for both cameras. The cameras have been positioned
in the environment according to the performance determined by the static tests.

4.2 Dynamic Tests

Dynamic tests have been conducted to validate the performance of the proposed
localisation system and in particular the integration of the data from the on
board sensors with the visual tracking module. To verify the functionality of the
proposed framework autonomous vehicles are moved by a remote operator along
a fixed trajectory: a rectangle of 2.5m per 1.5m. Data are recorded once the
robot starts moving until it reaches the initial position. In Fig. 5 odometry data
and filtered odometry (outcomes of the first EKF described in previous section)
are compared in a single rectangle tracking.

As expected, the final pose error in case of the robot odometry (red trajec-
tory) is quite high, for the experiment reported in Fig. 5 the final pose shifted of
approximately 51 cm with respect to the ground truth. On the other hand, when
filtered odometry is used (white trajectory), the final position estimation is, as
expected, affected by a smaller error of 33 cm compared to the ground truth.
These results show that the first EKF improves the estimation of the position
and orientation of the robots, but they are still not satisfactory to allow the
robot operating for a significant amount of time. When visual tracking module
is integrated with on board sensors, the estimation of the final position and ori-
entation is affected by an error of 10 cm compared to the ground truth reducing
the error of the 70 %.
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Fig. 5. The robot’s trajectory using only odometry data is shown in red, the trajectory
using odometry and IMU data is shown in white. The grey squares bound the perimeter
of the rectangle followed by the robot (Color figure online)

A final set of experiments has been conducted to validate the localisation
system in case of a single robot and multi cameras and then in case of multiple
robots and multiple cameras. In the first test the robot is piloted in an indoor area
of 7m x 3m monitored by three cameras located in known positions that focus
three different and possibly overlapping sub-areas of the experiment. In Fig. 6,
a snapshot of the three cameras is reported on the left. Notice that the robot
presence is detected only by the first camera. On the right the real trajectory is
reported in red while the one estimated with the proposed localisation system
is reported in yellow. It is worth noticing that, the proposed method allows a

Fig. 6. In the left there are three acquired images by the cameras at the end of the
experiment. In the right the real trajectory is shown in red and the estimated trajectory
using all the sensors is shown in yellow (Color figure online)
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smooth trajectory estimation even if the robot, while moving, is detected by
different cameras. Hence, no substantial errors occur during cameras switching.
In this case, the visual tracking module integrated with on board sensors, is able
to estimate the robot position with errors less than 10 cm.

A final test has been performed with two different cameras and two robots.
During such experiment robots occurred to be in the same camera field of view
at the same time or in different camera field-of-views. In Fig. 7 it is reported a
snapshot of two different cameras when more than one robots are in their field
of view, at the same time. The proposed system has been able to manage robots
overlapping in the captured image without compromising the robot localisation.
With this experiment the localisation system demonstrates to perform well also
in complex scenarios.

During experiments we have hence obtained very good results in localisation
accuracy and robustness, indeed the mean position error is between 1 to 10cm
and the mean absolute heading angle error is between 1 to 5° validating the
proposed method.

Fig. 7. Two cameras manage two robots at the same time

5 Conclusion

In this paper a simple but efficient algorithm to fuse vision and on-board odom-
etry for accurate indoor localisation using low cost devices has been presented.
For fusing sensors informations, two sequential EKFs are used. The proposed
method is able to combine the high tracking frequency of the odometry with the
accuracy of the vision tracking system. This work allows to create a low cost
indoor localisation system that could be used also in external scenarios, con-
verting visual data in GPS data without any substantial code modification. In
the future we aim to investigate the possibility of employing brightness sensors
to automate the HSV values calibration. In this way each robot would be able
to adjust the HSV values calibration on their markers according to the specific
brightness detected in the robot’s position.
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