
APRICOT: Aerospace PRototypIng COntrol
Toolbox. A Modeling and Simulation

Environment for Aircraft Control Design

Andrea Ferrarelli1, Danilo Caporale2, Alessandro Settimi2,3(B),
and Lucia Pallottino2

1 Vehicle Engineering, Università di Pisa,
Largo Lucio Lazzarino 1, 56122 Pisa, Italy

2 Centro di ricerca “E. Piaggio”, Università di Pisa,
Largo Lucio Lazzarino 1, 56122 Pisa, Italy

alessandro.settimi@for.unipi.it
3 Department of Advanced Robotics, Istituto Italiano di Tecnologia,

via Morego, 30, 16163 Genova, Italy

Abstract. A novel MATLAB/Simulink based modeling and simulation
environment for the design and rapid prototyping of state-of-the-art air-
craft control systems is proposed. The toolbox, named APRICOT, is able
to simulate the longitudinal and laterodirectional dynamics of an aircraft
separately, as well as the complete 6 degrees of freedom dynamics. All
details of the dynamics can be easily customized in the toolbox, some
examples are shown in the paper. Moreover, different aircraft models can
be easily integrated. The main goal of APRICOT is to provide a simula-
tion environment to test and validate different control laws with different
aircraft models. Hence, the proposed toolbox has applicability both for
educational purposes and control rapid prototyping. With respect to sim-
ilar software packages, APRICOT is customizable in all its aspects, and
has been released as open source software. An interface with Flightgear
Simulator allows for online visualization of the flight. Examples of control
design with simulation experiments are reported and commented.

Keywords: Aircraft control design · Aircraft dynamics simulation ·
Linear and nonlinear control

1 Introduction

Aircraft planning and control design requires a simulation environment that is
highly configurable based on specific aircraft characteristics or mission objec-
tives. Simulation environments are also necessary to design control systems and
validate flight planning strategies. There are several solutions available as com-
mercial or open source software packages. Among these, most are coded in pro-
gramming languages as Java or C++ and focus on the simulation of specific
vehicles as multirotor aircrafts or on generic aircrafts, see [1,2], while others are
c© Springer International Publishing AG 2016
J. Hodicky (Ed.): MESAS 2016, LNCS 9991, pp. 139–157, 2016.
DOI: 10.1007/978-3-319-47605-6 11

140 A. Ferrarelli et al.

user interfaces for auto-pilot control systems, see [3,4]. In this sense, an easy
to use tool for control design is missing. Other simulators are available with a
commercial licence or closed source, see e.g., [5–7]. Our aim with APRICOT
(Aerospace PRototypIng COntrol Toolbox) is to provide a simulator environ-
ment with a focus on control system design, which is multi-platform, highly cus-
tomizable and open source1. For code, videos and details on APRICOT please
refer to [8]. Moreover, being based on MATLAB/Simulink, it can be easily used
for education purposes or by control system designer for rapid control prototyp-
ing in industry.

The 6 degrees of freedom nonlinear aircraft dynamics can be simulated with
a preferred degree of accuracy, meaning that aerodynamic coefficients, stability
derivatives [9], actuators and sensor dynamics, disturbances in measurements,
wind gusts, control limits and other characteristics can be enabled separately and
with different models by simply changing related MATLAB functions or Simulink
diagrams. Moreover, custom atmospheric models can be used; by default the
International Standard Atmosphere model [10] is implemented. A manual input
interface has also been implemented to perturb the aircraft on-line during the
simulation through an external gamepad to validate the effectiveness of the
implemented control laws in response to various disturbances.

The possibility to visualize the simulation in a detailed 3D environment is
obtained thanks to an interface with the open-source flight simulator FlightGear
[11–13], as shown in Fig. 1. Both the toolbox and the flight simulator support
multiple platforms (MacOS, Linux, Windows). Also, different aircraft models
can be easily loaded from various sources like XML files, DATCOM files and
even custom formats can be easily supported.

Fig. 1. APRICOT simulation animated in Flightgear.

1 APRICOT Software available at http://aferrarelli.github.io/APRICOT/.

http://aferrarelli.github.io/APRICOT/

APRICOT 141

t

sensors Controls

Autopilot

Cable &
actuator

dynamics

y_e

x_e

r

q

psi

p

Theta

Phi

m

Beta

Altitude

Alpha

Airspeed

Visualization

Joystick

Boeing 747
NonLinear Model

MOD2

x

Controls

Thrust

Fig. 2. APRICOT Simulink scheme

The whole system is organized so that it is highly usable and reconfigurable,
in that any detail of the simulation can be easily customized from the aircraft
model to the used control law. In particular, the main features of APRICOT
are the possibility to easily customize the geometric and physical characteristics
of an aircraft for what concerns the model and the environmental disturbances.
In particular, different unmanned aerial vehicle (UAV) models can be included
and simulated in APRICOT such as quadrotors and fixed wings UAVs. As for
the control design, control laws can be implemented with Simulink blocks and
MATLAB functions; several control laws are already provided in the toolbox.
The APRICOT Simulink scheme is reported in Fig. 2.

Another major difference with other simulation environments, where a con-
trol law is typically tested on the subsystem for which it has been designed (e.g.
a longitudinal controller is tested on the longitudinal subsystem), APRICOT
allows multiple controllers to run simultaneously on a subsystem or on the full
system dynamics. In other words, with APRICOT a more realistic behavior can
be reproduced and tested with separated and/or redundant controllers, provid-
ing the control designer with an easy assessment of robustness in presence of
failures.

Other than robustness with respect to failure, control laws can be tested to
track a given flight trajectory. An optimization based planning is used to steer the
system between desired configurations while minimizing fuel consumption and
actuation effort and verifying state constraints. A feed-forward control, based on
the obtained trajectory, can be used jointly with a feedback controller.

For both robustness and tracking purposes, various classical and modern
control techniques, as those reported in [14–16], are available in APRICOT to
control both longitudinal and lateral dynamics. Linear controllers have been
implemented in the toolbox to test the system even while working far from the

142 A. Ferrarelli et al.

operation point around which linear controllers have been designed. Moreover,
within APRICOT the performance assessment can be conducted to analyze the
whole system behaviour due to the full nonlinear dynamics of the model.

The APRICOT control laws are based on pole-placement, Linear Quadratic
Regulator (LQR), Linear Quadratic Gaussian (LQG) and Linear Parameter-
Varying (LPV) techniques and nonlinear Lyapunov based techniques (see, e.g.,
[17–19] for detailed discussions on these methods and similar application exam-
ples). In [20] we illustrate how these control laws have been designed and imple-
mented in APRICOT.

To highlight the APRICOT toolbox characteristics and performance, several
tests have been conducted with a Boeing 747 aircraft model. These experiments
are available in the toolbox as demos and can be used as a guideline for control
development and aircraft customization. The simulator has been tested mainly
on MATLAB R2016a and FlightGear 3.4.0. Some parts of the simulator rely on
the Simulink Aerospace, MATLAB Control System and Optimization Toolboxes.

The paper is organized as follows. In Sect. 2 we illustrate the simulation model
used in APRICOT. The usage and the customization features of the environment
are shown in Sect. 3. Simulation results and performance are reported in Sect. 4.

2 Modeling and Simulation Environment

This section is dedicated to the description of the aircraft dynamics and the
world model necessary to understand and use APRICOT simulator. For a more
formal description and equations please refer to [20].

2.1 Dynamic Equations

The aircraft model considered in this work is based on the full nonlinear 6 DoF
dynamics. This is a classical model available in literature, see, e.g., [14,15], and
can be used as a starting point to customize any aspect of the simulation.

The system has 6 dynamic states xd and 6 kinematic states xk:

xd =
[
V α β p q r

]T
xk =

[
xG yG zG φ θ ψ

]T

where, referring to Fig. 3, V = VT is the airspeed, α is the angle of attack, β is the
sideslip angle. p, q, r are roll pitch and yaw angular rates in body coordinates,
respectively, xG, yG, zG are center of mass coordinates of the aircraft and φ, θ,
ψ are the Euler angles, in fixed frame.

The whole state vector is defined as xT := [xT
d , xT

k]. The input vector is
u = [δth, δe, δa, δr]T , namely the thrust, elevator, aileron and tail rudder com-
mands. The dynamics of xd depends on the forces and moments acting on the
system (i.e., aerodynamic forces, engine thrust and gravitational forces) and it
is expressed in body coordinates.

APRICOT 143

Fig. 3. Aircraft coordinated system, from [21].

2.2 Aerodynamic Forces and Moments

The aerodynamic drag D, lateral YA and lift L forces and moments, L , M
and N , depend on the aircraft geometry, aerodynamic coefficients and dynamic
pressure. They are given in wind axis coordinate frame by

⎧
⎪⎨

⎪⎩

D = CD qdyn S

YA = CY qdyn S

L = CL qdyn S

⎧
⎪⎨

⎪⎩

L = Cl qdyn S b

M = Cm qdyn S c̄

N = Cn qdyn S b

where the parameters S, c̄ and b are aircraft geometric characteristics, see Fig. 4,
and they correspond to the wing area, the mean chord of the wings and the
wing length. The variable qdyn is the dynamic pressure, CD, CY , CL are drag,
lateral and lift aerodynamic coefficients, Cl, Cm, Cn are aerodynamic moment
coefficients.

Fig. 4. Geometry of the aircraft, from [22].

144 A. Ferrarelli et al.

Fig. 5. Surface controls of the aircraft, from [22].

The dynamic pressure is computed as qdyn = 1
2ρV 2 where the air density ρ

is altitude dependent. For this reason an atmospheric model is required, such as
the ISA (International Atmospheric Model) [10] used in this work.

The aerodynamic coefficients depend on the system states and on the control
surfaces (elevator, aileron, rudder) and can be computed around an equilibrium
configuration, see Fig. 5 as described next.

The longitudinal aerodynamic coefficients are
⎧
⎨

⎩

CD(α,M) = CD + CDα
α + CDM

ΔM
CL(α, q, α̇,M, δe) = CL + CLα

α + CLq

qc̄
2V + CLα̇

α̇c̄
2V + CLM

ΔM + CLδe
δe

Cm(α, q, α̇,M, δe) = Cmα
α + Cmq

qc̄
2V + Cmα̇

α̇c̄
2V + CmM

ΔM + Cmδe
δe

where ΔM = (M − M0), M is the Mach number and M0 is the corresponding
trimmed value.

On the other hand the laterodirectional aerodynamic coefficients are
⎧
⎨

⎩

CY (β, δr) = CYβ
β + CYδr

δr

Cl(β, p, r, δa, δr) = Clββ + Clp
p b
2V + Clr

r b
2V + Clδa

δa + Clδr
δr

Cn(β, p, r, δa, δr) = Cnβ
β + Cnp

p b
2V + Cnr

r b
2V + Cnδa

δa + Cnδr
δr

The aerodynamic coefficients derivatives can be obtained from the litera-
ture for different equilibrium configurations, see [20,23] for details. They can be
modified in APRICOT as shown in Sect. 3.

2.3 Other Forces and Actuator Dynamics

The engine response to the thrust lever is modeled for control purposes as a first
order system with transfer function G(s) = τ

s+ τ , where τ > 0. More detailed
models can be easily implemented based on user needs.

The peak thrust and the Specific Fuel Consumption (SFC) of the engine
are not constant but depend on the altitude and the Mach number as shown

APRICOT 145

(a) Engine Thrust and SFC data.

(b) Thrust engine map.

(c) SFC engine map.

Fig. 6. Engine characteristics.

in Fig. 6a. Considering the engine curves and the equilibrium point, 3D engine
maps are generated as in Fig. 6b and c via least squares polynomial fitting.

In the model are also included the actuator dynamics, rise limit and satura-
tion of the control surfaces.

Finally the forces acting on the center of mass of the aircraft, expressed in
body coordinates, are:

⎧
⎪⎨

⎪⎩

X = − cos α D + sinα L − mg sin θ + XT

Y = YA + mg cos θ sinφ

Z = − sin α D − cos α L + mg cos θ cos φ

where XT is the engine thrust.

2.4 Sensor Noise and Wind Gusts

By default, all sensors are affected with a zero mean gaussian noise with a
variance that depends on the output type, therefore on the sensor type. Noise
models for sensors can be customized in APRICOT.

146 A. Ferrarelli et al.

For example, in Table 1 we show the default variance values σ2 considered
for different outputs.

Table 1. Noise variance for longitudinal system.

Output σ2

V 10−2 m/s

θ 10−5 rad

h 0.1 m

Wind gusts are modeled via Simulink blocks. An example model of the wind
speed Vwind is shown in Fig. 7.

Vwind =

⎧
⎪⎨

⎪⎩

0 x < 0
Vm

2 (1 − cos(πx
dm

)) 0 ≤ x ≤ dm

Vm x > dm

Fig. 7. Wind velocity with respect to the travelled distance.

3 APRICOT Environment

In this section we illustrate the main features available to the user to fully cus-
tomize APRICOT environment. Indeed, it has been organized as a collection of
MATLAB scripts, functions and Simulink blocks that can be singularly modified
and tested creating several possible combinations.

First of all, APRICOT initialization process consists of running several
scripts to load information on the aircraft and the world and to configure the
control laws and the flight plan to be tested.

The main steps in the initialization process are represented in Fig. 8. Each
step has associated MATLAB scripts that the user can edit to configure the
simulation environment.

APRICOT 147

Fig. 8. Initialization of the toolbox.

Initialization of the Vehicle. The first script in the initialization process,
named init aircraft.m and reported below, regards the vehicle parameters
and characteristics. The inertial properties and the initial conditions are loaded
into the 6 DoF Simulink Block, reported in Fig. 9, that contains the dynamic
equations.

Initialization of the vehicle - init aircraft.m

1 %Mass of the vehicle

2 mass = 288772; % kg

3 %Inertia tensor for the nonlinear simulink model

4 Inertia = diag ([24675560 44876980 67383260]);

5 Inertia(1, 3) = 1315126;

6 Inertia(3, 1) = 1315126;

7

8 %Initial position in inertial axes [Xe, Ye , Ze]

9 Init_pos = [0, 0, -6096];

10 %Initial velocity in body axes [u, v, w]

11 Init_vel = [252.98 , 0, 0];

12 %Initial Euler orientation [roll , pitch , yaw]

13 Init_ang = [0, 0, 0];

14 %Initial body rotation rates [p, q, r]

15 Init_rot = [0, 0, 0];

The aerodynamic coefficients can be loaded as MAT files into the MAT-
LAB function init aero coefficients.m. Forces and moments are computed
in Aircraft Forces.m by using the derivatives of the aerodynamic coefficients
with respect to each state variable, as shown in Sect. 2.2. This is the output of
the Forces & Moments block of Fig. 9, and the input of the vehicle model.

148 A. Ferrarelli et al.

Fig. 9. Simulink model of a Boeing 747.

An example of aerodynamic coefficients matrix format

1 global CAeroMatrix

2 CAeroMatrix = [CD0 CDa CDap CDq CDM CDde 0 0 0 0 0;...

3 0 0 0 0 0 0 Cyb Cyp Cyr Cyda Cydr ;...

4 CL0 CLa CLap CLq CLM CLde 0 0 0 0 0;...

5 0 0 0 0 0 0 Clb Clp Clr Clda Cldr ;...

6 Cm0 Cma Cmap Cmq CmM Cmde 0 0 0 0 0;...

7 0 0 0 0 0 0 Cnb Cnp Cnr Cnda Cndr];

8

9 save(’CAeroMatrix ’)

The data shown here can be loaded from file, so that the end user does not need
to manually edit this configuration scripts by itself. This can be done by selecting
the path of external files in the MATLAB function Aircraft Forces.m.

The dynamics of the actuators and the engine model are loaded in the
Simulink Block represented in Fig. 10. Here the user can consider the nonlin-
earities in the engine. If a different actuator model is available, e.g. obtained

Fig. 10. Actuators dynamics and engine model.

APRICOT 149

by identification on a dataset, it can be used to replace the default dynamics,
provided that the control interface is the same, i.e., thrust (normalized as [0, 1]
for null to full thrust), elevator, aileron and rudder (normalized in the interval
[−0.5, 0.5]) as input signals and the effective thrust and angles of the control
surfaces as outputs.

The experienced user can nonetheles choose to edit, replace or improve the
provided MATLAB functions and Simulink schemes to customize the default
behavior of any part of the simulator, exception made for the basic rigid-body
equations.

Some key parameters, such as the control law and the disturbance charac-
teristics, can be chosen directly from the control GUI, as shown in Sect. 3.

Initialization of the World. From Aircraft Forces.m, APRICOT uses an
atmosphere model to compute aerodynamic forces and moments. For example,
the ISA model [10] parameters definition is shown below.

Atmosphere model

1 % Atmospheric model

2 alt = abs(h);

3 gamma = 1.4;

4 T0 = 288.15; p0 = 101325; M0 = 0.800488;

5 R = 287.053;

6 T = T0 - 6.5* alt /1000; %Temperature in K

7 press = p0*(1 - 0.0065* alt/T0)^5.2561; %Pressure in Pa

8 rho = press /(R*T); %Density in kg/m^3

9 a = (gamma*R*T)^0.5; %Speed of sound in m/s

10 qdyn = 0.5* rho*V^2; %Dynamic pressure

The wind model is thus loaded in the Simulink Block reported in Fig. 11.

Fig. 11. Wind model.

Initialization and User Interface for the Control Design. Control laws
setup in APRICOT follows the scheme in Fig. 12.

The user can choose to interact with the aircraft control system by means of
a GUI (see Fig. 13) where default or user defined controllers can be loaded either
on the full dynamics model or on the reduced longitudinal or lateral dynamics
models. The GUI is organized in different panels to modify different aspects of
the control laws acting on the aircraft.

150 A. Ferrarelli et al.

Fig. 12. Control walkthrough.

Fig. 13. The APRICOT control GUI.

User can also choose to use a subset of the available inputs and outputs for
a given controller, enabling in this way fail-safe tests in different conditions of
actuation or sensing. The same applies for disturbances, whose entity or models
can be varied to assess the system performances in various conditions. This
is particularly useful when designing a control law. By default the user can
choose between the full nonlinear dynamics to be controlled, or between the
longitudinal and laterodirectional subsystems. The longitudinal subsystem state
vector is taken as xLO = [V, α, q, θ, h]T , with inputs uLO = [δth, δe]T . The
laterodirectional subsystem state vector is taken as xLD = [r, β, p, φ, ψ, y]T ,
with inputs uLD = [δa, δr]T .

APRICOT 151

In [20] the reader can find a more detailed description of the control laws
implemented by default in APRICOT. These are the classical LQR, LQG, LPV
and Lyapunov based nonlinear controllers and can be chosen in the Control
Design panel, reported in Fig. 13.

Input control from an external pad can be enabled in the Gamepad panel, and
the user can choose which commands are related to which control inputs from the
Joystick block, see Fig. 2. The gamepad can be configured to provide disturbances
on the auto-pilot control signals, or to control the airplane manually.

The actuator models described in Sect. 3 can be customized in the Actuators
panel shown in Fig. 13. Moreover, from the Disturbances panel the user can test
its controls under different conditions, as illustrated in Sect. 2.4.

Flight Planning. Flight planning is a critical task as the aircraft is subject
to constraints in actuation, energy consumption and compliance with air traf-
fic control specifications, in order to avoid midair collisions. Besides, control
authority should be minimized whenever possible to extend the life of actuation
surfaces and components. It is then essential to consider these aspects in order
to generate reference trajectories to be used as feed-forward control inputs, and
to validate the generated plans via simulation.

In APRICOT, this is achieved through optimization-based techniques. It is
possible to consider constraints on the system dynamics, states and inputs, or to
obtain plans for unconstrained problems. As shown in Fig. 14, the flight planning
process is divided into three main steps.

Fig. 14. Flight planning process.

As discussed in Sect. 2.3, the fuel consumption of the aircraft is described
through SFC and thrust engine maps. The fuel flow is computed as the product
of SFC times the thrust XT of the engines

ṁfuel = SFC XT .

152 A. Ferrarelli et al.

A simplifying assumption in the planning setup can be made considering
a constant SFC equal to its trimmed value, while the thrust XT is taken as
an optimization variable. It is worth noting that in APRICOT the complete
computation of the fuel flow is used, see Fig. 6, and can also be customized.

Examples of flight plans are given and commented in Sect. 4. The MAT-
LAB functions LOoptfun.m and LDoptfun.m implementing the flight planning
algorithm take as input the following parameters:

– initial conditions,
– final conditions,
– initial time,
– final time,
– discretization period.

4 Simulations

In this section simulation results are reported for different simulated flights with
different controllers among those illustrated in the previous sections, and given
as example demos in APRICOT. The details of the implemented control laws
are provided in [20].

Nonlinear and LQR Controls: First, we compare the performance of a
Lyapunov based controller with an LQR controller on the nonlinear longitu-
dinal dynamics in ideal conditions, i.e., with no disturbances, but considering
the actuator nonlinearities.

In Fig. 15 results are shown when initial condition is x0 = [V, α, q, θ]T =
[262.98, 0.2, −0.2, 0.1]T around the trim condition x̄ = [252.98, 0, 0, 0]T .

The system controlled with the linear control law has higher variations of
angular velocities, angle of attack and sideslip angle with respect to the behaviour
obtained with the Lyapunov based control.

Flight Planning: An example setup for longitudinal and laterodirectional plan-
ning is now illustrated.

For the longitudinal dynamics, we want to compute a plan to steer the system
from the initial configurations x0 = [V, α, θ, q, h]T = [252.98, 0, 0, 0, 6096]T to
the final configurations xf = [V, α, θ, q, h]T = [252.98, 0, 0, 0, 7096]T , subject
to saturations of the control variable as −0.5 ≤ δe ≤ 0.5 and 0 ≤ δth − δth,0 ≤ 1,
with a thrust control at the equilibrim δth,0 = 0.7972. The altitude overshoot is
limited to 10%.

In a similar way the laterodirectional planning is executed considering the
following constraints on the ailerons and the tail rudder, corresponding to a
maximum excursion of ±20◦, and given as −0.5 ≤ δa ≤ 0.5, −0.5 ≥ δr ≤ 0.5.

In this way it is possible to compute trajectories to steer the system between
several waypoints to obtain a complicated path, as that in Fig. 16a whose first
100s are the result of the aforementioned planning problem.

APRICOT 153

(a) Wind speed V .

(b) Angle of attack α.

(c) Angular velocity q.

(d) Sideslip angle β.

Fig. 15. Comparison of Lyapunov and LQR controllers

LQR and LQG Controllers: In the case of LQR and LQG control laws, in
Fig. 16 we assess the performance of the simulator and the flight planner compar-
ing the ideal aircraft trajectory with the simulated one considering the complete
nonlinear model affected by disturbances. Note that for each waypoint reported
in Fig. 16a different aircraft orientations are required and correctly tracked. The
planned and executed trajectories are very close. To better appreciate the system
evolution, videos of experiments are visible on APRICOT website [8].

In Fig. 17 the improvement in the LQG control system performance with
respect to the LQR case in presence of disturbances can be appreciated. This is
due to the disturbance rejection capabilities of the LQG controller, that trans-
lates in reduced oscillations of the aircraft and a more comfortable flight for the
passengers.

LPV Controller: Finally we consider the quadratic cost index

J(t) =
∫ t

0

x(τ)T Qx(τ) + u(τ)T Ru(τ) dτ

154 A. Ferrarelli et al.

(a) 3D Trajectory.

(b) Altitude.

(c) y position.

Fig. 16. Simulation results on the flight plan tracked with the LQG controller.

with diagonal matrices Q and R, obtained for the laterodirectional dynamics
when the aircraft recovers from a severely perturbed initial state with θ = 0.2 and
φ = 0.2, comparing the performance of an LQR and an LPV control law. In this
example, the LPV control law has been obtained with multiple LQR controllers
designed for different values of θ. The longitudinal dynamics is controlled with
a single LQR controller. Simulation results are reported in Fig. 18. The LPV
controller improves the trajectory tracking and energy efficiency performance of
the aircraft with respect to the LQR controller, which is optimized for a single
operating point and performs worse far from it.

4.1 Simulator Performances

A comparison with existing toolboxes has not been possible, mainly due to the
fact that, to the best of authors knowledge, there is currently no other open
source toolbox that has the functionalities of APRICOT. Despite that, we show
some performance indicators obtained for different use cases.

Regarding the flight planning phase, to solve the constrained optimization
problem illustrated in the simulation section we registered an execution time of

APRICOT 155

(a) Wind speed V .

(b) θ Euler angle.

(c) Angle of attack α.

(d) Sideslip angle β.

Fig. 17. Comparison of LQR and LQG controllers with noise and wind gust.

Fig. 18. Comparison between LPV and LQR performance.

156 A. Ferrarelli et al.

1.7 s for the longitudinal dynamics and 0.4 s for the laterodirectional dynamics.
Note that MATLAB Optimization toolbox solvers have been used, hence the
interested user could improve these performances by using ad hoc solvers.

As for the simulation performance with controls in closed loop, we show
different real-time factors (i.e., the ratio between the flight duration and the
simulation execution time) based on the complexity of the control laws. In Table 2
we report this data for each control law. Data have been obtained on a MacBook
Pro laptop with 16 GB of RAM and 2.0 GHz Quad-core i7 CPU.

Table 2. Simulation time and real-time factor for different simulations.

Control law Real-time factor

LQR (without disturbances) 13.7

LQR (with disturbances) 10

LQG (with disturbances) 3.3

LPV (without disturbances) 6

Lyapunov (without disturbances) 5.8

Thanks to the fact that the real-time factor is greater than 1, the animation
with FlightGear runs in real time with 30 frames per second.

5 Conclusions

In this work we presented a novel framework for the design and simulation of
flight planning and aircraft control systems. The toolbox, named APRICOT, is
highly versatile, customizable and provided with user interfaces such as a GUI, a
gamepad interface and an external open source animation environment, namely
Flightgear. The software is released as an open source MATLAB/Simulink tool-
box2 and can be used for control design and system performance evaluations
under different environmental conditions. The entire APRICOT framework is
customizable in all its details. For example, control laws can be tested for robust-
ness with respect to external perturbations or for flight tracking purposes. With
respect to other software solutions, the main strengths of APRICOT are: the
open source nature, the highly configurable control system, the ease of use, the
availability of a complete aircraft dynamics and of the environmental model.

Future developments are directed towards the simulation of quadrotors and
other Unmanned Aerial Vehicles. With the purpose of extending APRICOT
simulation to handle multi-robot systems, the simulation of both aerial and
ground vehicles is under study at the present time, in order to allow the design
of coordination/mission control systems.

2 APRICOT Software available at http://aferrarelli.github.io/APRICOT/.

http://aferrarelli.github.io/APRICOT/

APRICOT 157

References

1. JSBSim. http://jsbsim.sourceforge.net/
2. jMAVSim. https://github.com/PX4/jMAVSim
3. Ardupilot. http://ardupilot.org/
4. PX4. http://px4.io/
5. Bittar, A., Figuereido, H.V., Guimaraes, P.A., Mendes, A.C.: Guidance software-

in-the-loop simulation using X-plane and simulink for UAVs. In: 2014 International
Conference on Unmanned Aircraft Systems (ICUAS), pp. 993–1002. IEEE (2014)

6. Jenie, Y.I., Indriyanto, T.: X-plane-simulink simulation of a pitch-holding auto-
matic controlsystem for boeing 747. In: Indonesian-Taiwan Workshop, Bandung,
Indonesia (2006)

7. Aircraft control toolbox. Princeton Satellite Systems. http://www.psatellite.com/
act/index.php

8. APRICOT. https://github.com/aferrarelli/APRICOT/
9. Heffley, R.K., Jewell, W.F.: Aircraft Handling Qualities Data (1972)

10. Cavcar, M.: The international standard atmosphere (ISA). Anadolu Univ. Turkey
30 (2000)

11. Ondrǐs, D., Andoga, R.: Aircraft modeling using MATLAB/FlightGear interface.
Acta Avionica 15(27) (2013)

12. Nusyirwan, I.F.: Engineering flight simulator using MATLAB, Python and Flight-
Gear. In: SimTecT, Melbourne, Australia (2011)

13. Moness, M., Mostafa, A.M., Abdel-Fadeel, M.A., Aly, A.I., Al-Shamandy, A.: Auto-
matic control education using FlightGear and MATLAB based virtual lab. In: 8th
International Conference on Electrical Engineering, pp. 1157–1160 (2012)

14. Stevens, B.L., Lewis, F.L., Johnson, E.N.: Aircraft Control and Simulation:
Dynamics, Controls Design, and Autonomous Systems. Wiley, Hoboken (2015)

15. Cook, M.V.: Flight Dynamics Principles: A Linear Systems Approach to Aircraft
Stability and Control. Butterworth-Heinemann, Oxford (2012)

16. Tewari, A.: Advanced Control of Aircraft, Spacecraft and Rockets, vol. 37. Wiley,
Hoboken (2011)

17. Chrif, L., Kadda, Z.M.: Aircraft control system using LQG and LQR controller
with optimal estimation-Kalman filter design. Procedia Eng. 80, 245–257 (2014)

18. Marcos, A., Balas, G.J.: Development of linear-parameter-varying models for air-
craft. J. Guidance Control Dyn. 27(2), 218–228 (2004)

19. Härkeg̊ard, O., Glad, T.: Flight Control Design Using Backstepping. Linköping
University Electronic Press, Linköping (2000)

20. Ferrarelli, A., Caporale, D., Settimi, A., Pallottino, L.: Apricot: aerospace proto-
typing control toolbox. Dynamics and control details (2016). https://github.com/
aferrarelli/APRICOT/blob/master/APRICOTExtended.pdf

21. Donald, M.: Automatic Flight Control System. Prentice Hall, Upper Saddle River
(1990)

22. Tewari, A.: Automatic Control of Atmospheric and Space Flight Vehicles: Design
and Analysis with MATLAB R© and Simulink R©. Springer Science & Business
Media, Heidelberg (2011)

23. Caughey, D.A.: Introduction to aircraft stability and control. In: Lecture Notes.
Cornell University (2011)

http://jsbsim.sourceforge.net/
https://github.com/PX4/jMAVSim
http://ardupilot.org/
http://px4.io/
http://www.psatellite.com/act/index.php
http://www.psatellite.com/act/index.php
https://github.com/aferrarelli/APRICOT/
https://github.com/aferrarelli/APRICOT/blob/master/APRICOTExtended.pdf
https://github.com/aferrarelli/APRICOT/blob/master/APRICOTExtended.pdf

	APRICOT: Aerospace PRototypIng COntrol Toolbox. A Modeling and Simulation Environment for Aircraft Control Design
	1 Introduction
	2 Modeling and Simulation Environment
	2.1 Dynamic Equations
	2.2 Aerodynamic Forces and Moments
	2.3 Other Forces and Actuator Dynamics
	2.4 Sensor Noise and Wind Gusts

	3 APRICOT Environment
	4 Simulations
	4.1 Simulator Performances

	5 Conclusions
	References

