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Abstract. The requirements for autonomous systems (of systems) have started
to include the cooperation between heterogeneous assets in order to accomplish
complex missions. Therefore, interoperability – both at the conceptual and
technical level – between different types of systems and domains is essential. In
the M&S community HLA is the reference standard to design, develop and test
interoperable systems of systems. In this article, a HLA-based link between
simulation and an autonomous system using the ROS middleware is presented.
The integration of an Autonomous Underwater Vehicle (AUV), more specifi-
cally the SPARUS II, in a HLA federation using the proposed link has been
tested for a harbour protection mission. For this scenario, the hardware and
software of the AUV has been included in a federation together with a virtual
simulator. The link allows easy inclusion of ROS-based assets in HLA feder-
ations, thereby enriching both the M&S and robotic communities which will
benefit from this approach which allows the development of more complex and
realistic simulated scenarios with hardware- and software-in-the-loop.

Keywords: High level architecture (HLA) � Robot operating system (ROS) �
Interoperability � Autonomous underwater vehicle (AUV) � Autonomous
systems � Hardware in the loop (HIL) � Software in the loop (SIL)

1 Introduction

The development of autonomous systems requires the construction of complex hard-
ware and software systems. To simplify the software development, several robotics
frameworks have been developed in the last years. The aim of the majority of these
frameworks is to provide hardware abstraction, low-level device control, implemen-
tation of commonly-used functionality, and message passing. The best known frame-
works are ROS [1], MOOS [2], Player [3], YARP [4], and OROCOS [5]. One of the
most widely used is the Robotic Operating System (ROS).

Developments in the area of robotics are commonly expensive and lengthy. After
the first stages of design, the hardware (HW) and software (SW) are tested through
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several (re-)defined phases until the final system is deployed. In these phases, the use of
simulation is desired and is widely diffused in the robotic community with simulated
events injected directly in the operating system of the robot. Nevertheless the use of an
approach closer to the M&S community, with the “immersion” of the system in a
simulated scenario by HLA is still not very diffused. By cross-communities this
approach of validation and verification (V&V) of both the SW and HW can be carried
out in more realistic environments prior to their implementation and deployment,
thereby increasing the reliability and robustness of the final systems. Also, new
applications for an existing robotic platform would ideally need to go through a similar
V&V process. Moreover, the use of simulators with synthetic environments is a
complementary approach to the standard simulation used in robotics and will improve
the quality of testing systems, reducing both time and resources for V&V [6].

The use of Modelling and Simulation (M&S) techniques could really benefit
robotics developers. In order to optimize this process, and to promote interoperability,
the developers are advised to follow standards, which for M&S is the High Level
Architecture (HLA) [7] (IEEE standard). The use of HLA allows the creation of
heterogeneous and complex experimental frameworks, even mixed simulated and real
systems simultaneously increasing the richness of the simulations [8]. Two examples of
complex simulations where M&S and HLA are extensively used are NASA [9] and
ESA [10] agencies, but HLA is also the reference standard for the defence sector and in
particular by NATO (STANAG 4603).

The authors of this paper have proposed a new approach to bridge the Robotic and
M&S communities by designing and developing a wrapper to grant HLA-based
interoperability to autonomous systems using the ROS Framework. The main purpose
of developing the connection between HLA and ROS is to minimize the effort of
including existing autonomous ‘ROS systems’ in complex, interoperable and
standards-based simulated scenarios.

To test the proposed wrapper between the M&S standard and the robotic middle-
ware, a HLA federation has been developed including hardware and software in the
loop. The included hardware consisted of an Autonomous Underwater Vehicle
(AUV) called SPARUS II, together with its control architecture COLA2. A maritime
simulator was used, for the representation of a complex maritime scenario in a 3D
realistic environment.

The paper is organized as follows. Section 2 introduced previous cases of HLA in
the robotics field. Section 3 compares the communication system used in ROS and
HLA and it presents the designed middleware. Section 4 explains the use case and the
different elements composing it. Section 5 summarizes the contributions of this paper
and presents the future work.

2 Background

To the best of the author’s knowledge, there is no previous work published with the
purpose of connecting the ROS framework with HLA-based federations. There have
been other developments related to the robotics field and interoperability using HLA;
below, we have highlighted three different examples of HLA and robotics:
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• In 2001, Lane et al. [11] proposed an architecture for Unmanned Underwater
Vehicle (UUV) based on HLA. The team divided the robot in subsystems according
to functionalities and made them interoperable using HLA. This architecture allows
inclusion or replacement of subsystems. Furthermore, they use HLA to perform fast
simulations with simulated sensors. However, they conclude that the effort to
maintain and develop UUV subsystems in this structure requires a lot of extra effort.
Moreover, they doubt that the proposed fast simulation of some sensors was valid
for long term simulations.

• In 2005, Joyeux et al. [12] proposed inclusion of simulation capabilities in an
existent robotic architecture called LAAS. The aim of this work was to enable the
use of the same code in simulation and in real environments, and the combination of
simulated and real elements. In this case, the control architecture was modified
replacing the message passing between elements of the HLA standard.

• In 2011, Nebot et al. [13] presented a new architecture for controlling a group of
heterogeneous robots cooperating to achieve a global goal. In this case the HLA
allows the data distribution and implicit communication among the parts of the
systems, this also allows operation of simulated and real systems simultaneously. In
this case, the sensors and complete vehicles are HLA compliant. A layered control
architecture was proposed where the Player robotics framework controls the low
level modules, HLA distributes the communication and the JADE [14] software
coordinates the cooperation of the robots.

In the literature sub-set mentioned above, the authors have detected as a common goal
the possibility to connect simulated and real systems using a standardized architecture.
The first article considered an overhead to maintain HLA compatibility in the low levels,
whereas others have integrated HLA in the abstracted layers of the hardware. The
mentioned cases have developed a new architecture model based on HLA standards.

The aim of our proposal is to preserve the existent control architecture and its
framework in the system, and to only add a layer to enable interoperability of the
desired parts of the (system of) systems, at software and/or hardware level. This
approach will avoid re-designing the entire system and maintains the manufacturers’
software ‘as is’, i.e. without modifications.

3 ROS-HLA Wrapper

A ROS-HLA wrapper has been developed to guarantee technical and conceptual
interoperability between the robotic system (HW and SW) and the simulated envi-
ronment. This wrapper is installed in the ROS system and is able to centralize the
different communications in the autonomous system and to exchange the desired
information with the HLA federation.

In order to design the wrapper, it was necessary to perform a study of the different
types of communications of both standards to find the most suitable adaptation. Sec-
tion 3.1 summarizes the principal similarities in ROS and HLA. This study points out
the required elements and a unique intermediary module linking the HLA and ROS in
order to respect the requirements of both communications protocols. The details of the
design and implementation are presented in the Sect. 3.2.
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3.1 Comparison of the Communication Protocols in ROS and HLA

To understand the communications it is necessary to remember the aim of the two
frameworks. HLA is designed in order to standardize the exchange of information
between different simulators distributed over a heterogeneous network. ROS, however,
offers support for passing messages between processes mainly in the same system or
over a local network. The aim of this functionality is to share information of sensors,
actuators and algorithms to control the behaviour of a system.

To facilitate the comprehension it is worth to mention the organization of HLA and
ROS. HLA is organized in a federation which is formed by federates. A federate is a
simulator composed by an ambassador and multiple processes; the ambassador is
responsible to share the information. ROS is organized in a more modular form where
each process is called node and is responsible to share the information. A master is
required only to stablish the connection between nodes.

These different characteristics imply some design differences which are explained
in the following:

Network Topology/Structure. The first important difference is the network topology,
HLA uses a centralized network (bus) in order to increase efficiency and to provide
certain functionalities (e.g., time management). This bus of communication is called
runtime infrastructure (RTI). On the other side, ROS uses a decentralized structure
(peer-to-peer), to be more robust against failures and to increase scalability. To resolve
this difference the wrapper will have to centralize all the different ROS communications
in one node and transmit them to the HLA Federation.

Definition of the Shared Information. Both systems share the requirement to define a
document with the structured data shared between the elements. In HLA this document
is called Federation Object Module (FOM), it has to be shared by all the systems in the
federation. It specifies all the information related with the data sharing. ROS uses
separate documents for each type of shared information, which only need to be known
by the processes that use this data. These documents are called messages and are
created using a simple interface definition language (IDL) which only defines the type
and name of the data contained. The proposed wrapper defines a FOM which includes
the information of the message and extends it to fulfil the requirements of HLA.

Communication Style. HLA and ROS systems use two types of communications:
synchronous and asynchronous.

Asynchronous Style. In HLA each kind of data (Object) is composed of two parts: the
Class and the Instance. For example: federate A declares in the federation that it will
include Object_1 when the RTI finds some other, say, federate B which has an Instance
of the Object_1; it will then create a new Instance to receive the information in federate
A. The instance in B is posting the information and the instance in A is reflecting it. On
the other hand, in ROS, each node declares the information to be sent (publish) and to
be received (subscribed) assigning them a name (topic) and type (message). In this
case, when the node is connected to the master at initialization time, it gives this
information to it. The master creates the connection (pipes) between the different nodes
according to publishers and subscribers.
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Synchronous Style. In HLA this communication is called Interactions, and the same
class can perform the function to receive and send interactions through the ambas-
sador. The ROS approaches this communication style, calling it Services, where each
node can declare service servers (receivers) or clients (senders) which are defined by
name (topic) and type (message).

The wrapper is situated between the two communication protocols, so when it
receives information from one framework it has to send it on the other. The wrapper
can create different Objects and Instances according to a configuration file. The
Instances have been modified to include ROS functionalities, when it posts it is due to
the reception of a ROS message (subscription callback) and when it reflects it is
publishing a ROS message. The synchronous communications is limited by the ROS
part being only possible to receive or send interactions, not in a bidirectional manner
like in HLA. So when it receives an HLA Interaction it calls a ROS server, and when it
receives a ROS call it sends an HLA Interaction.

3.2 ROS-HLA Wrapper

The authors adopted the strategy of developing a ROS node which converts the
information from ROS to HLA, and vice versa. Only one node will be required in each
ROS system and it centralizes all the exchange information between the autonomous
system and the federation. This approach isolated the HLA code in one process
avoiding modification of the control architecture existing in the autonomous system.

To adapt the node to different autonomous systems and federations it is necessary to
identify the required information to be exchanged adapting the FOM and developing the
HLA Objects and Interactions together with the ROS messages and services (see
Fig. 1). So for each kind of data exchanged, the user implements the required Class,
Instance, and Interaction which besides the HLA structure includes the ROS func-
tionalities. Figure 2 shows a standard HLA implementation used in all federates. The
wrapper is a ROS node which creates the necessary HLA Classes, Instances, and
Interactions according to the configuration file. This file defines the exchange of
information and the direction of the communication in order to define the correct ROS
initializations. Figure 1 illustrates the description of the wrapper with an object diagram.

Fig. 1. Object diagram of the ROS HLA middleware or wrapper implemented.
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4 Experimental Use Case

The ROS-HLA wrapper presented in this paper has been developed at the NATO
STO’s Centre for Maritime Research and Experimentation (CMRE) in the context of
the Persistent Autonomous Reconfigurable Capability (PARC) project. The aim of the
PARC project is to address the technology and engineering requirements of future
unmanned systems of systems in the maritime domain. It is focused on increasing the
persistence, interoperability and scalability of such systems whilst addressing stan-
dardization, information assurance and cost aspects.

Taking into account the environment and the expertise of the CMRE, the chosen
use case is a harbour inspection scenario, where an AUV has to patrol a harbour area,
visiting several strategic (inspection) points. The harbour has been represented using a
virtual simulator of a maritime scenario and the autonomous system used is the
SPARUS II AUV [15] and COLA2 [16] control architecture, which is ROS based.
Moreover, the control architecture has been divided in two parts: the back-seat con-
trolling the high-level decision and the front-seat at the low-level (i.e. sensors and
actuators). Therefore, the federation designed is composed by three federates (see
Fig. 3): the simulator, the front seat, and the back seat of the SPARUS II AUV. The
Run Time Infrastructure used is the product PitchRTI distributed by Pitch; experi-
mentations based on MAK RTI are also planned.

The following sections introduce a brief description of the SPARUS II AUV and
the COLA2. We also present the new division in COLA2 to split the front seat and
back seat in different systems and the addition of the dynamic simulation.

4.1 Sparus II AUV

The SPARUS II AUV is a lightweight AUV developed by the University of Girona
(UdG) which is controlled using the Component Oriented Layer-based Architecture for

Fig. 2. Class diagram of the HLA architecture implemented by the HLA system developed in
this work.
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Autonomy (COLA2). The COLA2 is a ROS-based control architecture, hence all the
different elements are organized as independent nodes which interact using a
publish/subscribe method (or service calls). The COLA2 has been organized in four
different groups/layers: backseat, front seat, SPARUS simulator and the SPARUS real
hardware. This new semantic separation allows us to organize the COLA2 in a more
usual structure for AUVs. Moreover, it makes it easier to execute the modules inde-
pendently on different machines or federates.

Figure 4 shows the four modules which can be executed on different machines
using the ROS-HLA wrapper to send the information through the RTI. In addition, the
shared information by the HLA and ROS is highlighted in green. Below, we explain
each module and the kind of information which has been selected as input and output.

COLA2 Back-Seat. This group contains all the behaviours of high-level decision
making. In the use case presented in this paper, the SPARUS II AUV is performing
either way-point navigation or navigates according to the commands given by a human
operator. The inputs of this layer are desired positions; trajectory (formed by several
way-points) and navigation information (position and velocity of the AUV). This
information or the Human interaction commands are used to generate the output which
consists of position and velocity commands for the AUV.

COLA2 Front-Seat. This group contains the low-level controls; it is able to mix all
the information received by the sensor and estimate the current position and velocity of
the AUV. On the other hand, it generates the proper commands for the AUV to reach
the desired position or speed. Moreover, there are safety procedures which are enabled
if some error appears in the sensor data. Therefore, the inputs are the position or
velocity commands from the COLA2 backseat and the IMU (acceleration and orien-
tation), GPS (global position in surface), DVL (velocity of the AUV), and Pressure (to
estimate the depth); the outputs are the estimated position and velocity of the AUV,
desired position generated from safety node and thruster set-point.

Simulator and Real Hardware. Depending on the specific application, the vehicle
can be completely simulated, partially simulated or not simulated by using just the real

Fig. 3. Schema of the harbour protection federation composed by three federates.
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hardware. When the real hardware is used, the COLA2 front seat is running on the
system the HLA communication is skipped, using the real hardware connections. When
the vehicle is simulated, the dynamics and sensors simulation can be executed on a
different system than the COLA2 front seat. To simulate the AUV, the node receives
the Set-point of the thrusters, which are then converted to forces applied to the vehicle;
then, using a model of the vehicle, the new position and velocity are estimated. Finally,
the new position and velocity are used to generate the simulated navigation sensors.

4.2 Validation Scenario

In the scenario used for the validation of the ROS-HLA wrapper, the SPARUS II AUV
was put in a water tank and executing the COLA2 front seat. Outside the vehicle, there
are two other systems: the back seat and the environment simulator. The navigation
sensors of the AUV are simulated in the external simulator and sent through HLA to
the COLA2 front seat. The front seat then estimates the position of the vehicle and
according to the commands of the backseat generates the commands for the actuator. In
this scenario the commands are shared between the real hardware and the simulator.
The harbour mission consists of following a trajectory and visiting a set of inspection
points, where the AUV carries out simple operations (search for threats and commu-
nication through gateways), see Fig. 5.

Fig. 4. Schema of COLA2 architecture organized in four different groups.
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In this scenario configuration, both systems (AUV HW and SW in the loop) have
been able to follow the desired trajectory in the virtual environment. Moreover, this
scenario has allowed the validation of the correct exchange of all the different com-
munication protocols. The asynchronous communications of the low-level sensors and
actuators, shared between the COLA2 front seat and the SPARUS II simulator, and the
high-level communications represented by navigation information and position and
velocity commands, shared between the COLA2 backseat and the COLA2 front seat.
The synchronous communications have been tested sending command to start and stop
trajectories and define points to be visited by the AUV using the simulator.

5 Conclusions

This article presented the first steps towards the creation of a HLA-based environment
to connect ROS-based robotic systems. This environment may be used for testing
(V&V), but also for a broader area of applications such as the simulation of a
heterogeneous vehicle/sensor network over the internet. The authors explained the
approach to develop a wrapper connecting the ROS framework with the HLA standard,
which has been designed and implemented with the objective of easily connecting
autonomous systems (hardware- and/or software) to realistic modelling and simulation
HLA- based environments. The proposed wrapper maintains the existing control
architecture, and can be adapted to the user’s requirements. It has been successfully
tested using a SPARUS II AUV in a simulated harbour inspection scenario. The
hardware and software of the AUV have been included in the loop of the simulation
and the different types of communications have been tested.

Future developments of the federation presented will include a more complex
environmental simulator and a simulator for the underwater/radio frequency

Fig. 5. A top view of the simulated harbour scenario with the SPARUS AUV.
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communications between the different assets in the scenario. New missions will for
example include a two AUV scenario, i.e. both a real one at sea and a virtual AUV in a
simulated representation of the real environment. On the other hand, will be investi-
gated the integration of Command and Control (C2) systems in the Federation, in order
to enrich the simulation with the possibility to evaluate the scenario and command the
virtual and real assets.

In this context we envision a continuous effort to improve and expand the M&S
capability to support autonomous systems S&T by contributing in a more consistent
way to all three main areas related to the life cycle of new systems and processes
(Engineering-CD & E-Training), for example by exploring new areas in the future such
as the application of synthetic environments for supporting Human Machine Interface
innovation in scenarios involving autonomous and manned assets in the maritime
framework.
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