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Preface

This book was inspired by the 5th International Summit on Hurricanes and Climate
Change, held in Chania, Greece, in June 2015. This ongoing series of conferences
brings together leading experts from around the world to discuss work on the
relationship between hurricanes, climate, and the assessment of hurricane risk.
Hurricanes are among nature’s most powerful and destructive phenomena. They
have captured the interest of atmospheric researchers for more than 75 years, as
before satellite observations became routinely available, they often struck with little
or no warning. Tropical cyclones cause physical and economic disruption not only
to societies in the tropics and subtropics but to the mid-latitude regions as well. Their
destructive power comes not only from high winds and heavy rains but from storm
surge and the potential to spawn tornadoes as they make landfall. The impacts of
tropical cyclones fall most heavily on less developed nations, but developed nations
have also suffered extreme hardship.

Early research established an understanding of the climatological and dynamic
character of tropical cyclones, as well as their evolution and lifecycle. These
advances led to an increase in forecast skill. The development of technologies,
such as radar and satellite techniques, along with better monitoring methods, has
led to a reduction in error for track and intensity forecasts. Additionally, studies
have examined changes and variability in the occurrence of tropical cyclones.
By understanding the interannual and interdecadal variability in tropical cyclone
occurrence, societies can be better prepared and can position resources better for
aiding impacted areas.

Today we understand that there is an intimate relationship and cooperation
between atmospheric and oceanic conditions and processes leading to the devel-
opment of tropical cyclones. Changes in climate will influence the occurrence and
intensity of tropical cyclones in the future, even though the nature of these changes
is not yet entirely clear. This book is comprised of ten chapters that present cutting-
edge research which attempts to answer outstanding questions that remain in our
understanding of tropical cyclones, whether this research endeavors to uncover their
historical character, dynamics, societal impacts, and what the future may bring.

v



vi Preface

The first and second chapters discuss the climatological history of tropical
cyclones. The first reviews research from the last decade in the subject of pale-
otempestology. This field endeavors to piece together the occurrence of tropical
cyclones on the timescale of centuries and millennia or the climatological behavior
of tropical cyclones before the observational record (about 160 years). These studies
find that long-period behavior in the El Niño and Southern Oscillation phenomenon,
the North Atlantic Oscillation, and location of the ITCZ are some factors that
control periodicity on the century and millennial timescales. This work also reveals
that tropical cyclone activity today is not at an historical high level going back to
the mid-Holocene. The second chapter focuses on tropical cyclone landfalls along
the southeast US coast, and the authors find that the locus of landfalls has shifted
about 1ı latitude further north. Thus, this study provides critical guidance for policy
makers and those whose responsibility includes disaster preparedness.

The dynamic, thermodynamic, and kinematic behavior of tropical cyclones is
another topic of wide interest, and Chaps. 3, 4, and 5 explore various aspects of
tropical cyclone lifecycles. Chapter 3 examines the relationship between sea surface
temperatures and tropical cyclone intensity in the eastern North Pacific, an area
that has not been studied as extensively as other tropical cyclone basins. Using
statistical methods, the authors find generally that sea surface temperatures exert
a greater influence on tropical cyclone intensity than in other basins, in particular
when compared with the North Atlantic.

The next chapter reviews both in situ and remote sensing methods that have
been developed for estimating tropical cyclone winds. Better estimates will lead
to better forecasts, which is of benefit to societies exposed to tropical cyclone risks.
The authors note that each method has their strengths and weaknesses, but the use
of different methodologies could, for example, lead to differing conclusions about
trends in tropical storm intensity. They recommend the continued improvement of
satellite-based techniques in order to improve the current state of the art.

The fifth study examines a new concept impacting tropical cyclone genesis over
land called the “Brown Ocean.” In recent years, there have been a few notable cases
of tropical cyclones intensifying over land. Conventional wisdom holds that these
storms should decay once over land. However, if enough surface moisture is present,
then tropical cyclones can actually strengthen over land if the latent heat flux is
sufficient.

The techniques of risk management have become increasingly important in
tropical cyclone studies, and the next chapter proposes a novel statistical analysis
of tropical cyclone risk, both in the Atlantic basin and along the coast of China.
The authors conclude that standard methods of risk assessment may underestimate
tropical cyclone risk factors such as storm surge and wave height.

The topic of the final four chapters is the ability of models to project aspects
of tropical cyclone occurrence on the timescales of decades or longer. Decadal
projection of various phenomena in atmospheric science has been a topic of
considerable interest in the last 5 years. The first of these chapters studies the use of
the next generation general circulation models in assessing tropical cyclone risk in
a warmer world. The authors propose that these models, with increased resolution,

http://dx.doi.org/10.1007/978-3-319-47594-3_3
http://dx.doi.org/10.1007/978-3-319-47594-3_4
http://dx.doi.org/10.1007/978-3-319-47594-3_5
http://dx.doi.org/10.1007/978-3-319-47594-3_3
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will be able to reveal smaller-scale structures in future events, as well as provide
the basis for the study of topics such as teleconnectivity between tropical cyclone
basins and occurrence-to-landfall rates. The second of these chapters examines
multidecadal simulations of tropical cyclone occurrences by basin. However, the
authors also discuss the limitations of the models and tracking algorithms, the
influence of model physics, and an overview of our current understanding and future
direction of tropical cyclone activity research.

Forecasting the frequency of landfalling storms in the Atlantic basin on the
seasonal and decadal timescales is the subject of the third modeling chapter. The
authors use the UK Met Office’s seasonal forecasting algorithm and demonstrate
that there is significant skill in some regions due to the strong El Niño and Southern
Oscillation signal, but lower skill in other places where this signal is not strong. The
Met Office algorithm does produce successful multi-year forecasts of landfalling
storms, and the authors point out that their methodology will identify decadal-scale
active and inactive regimes for subregions within the Atlantic basin. The final chap-
ter studies future changes in rainfall intensities associated with tropical cyclones,
with a focus on landfalling storms. The authors performed a model sensitivity study
to examine the relative impact of warmer sea surface temperatures only versus a
doubling of atmospheric carbon dioxide concentration only and compare these to
a control run. They found that tropical cyclone precipitation is more intense when
sea surface temperatures increase. When atmospheric carbon dioxide concentration
is doubled, tropical cyclone rainfall actually decreased slightly. Lastly, the study
found that rainfall accompanying landfalling tropical cyclones increases and that
the greater uplift of moist low-level air forced by landfall plays a significant role in
increased vulnerability of coastal regions to tropical cyclone impacts.

Tampa, FL, USA Jennifer M. Collins
Columbia, MO, USA Anthony R. Lupo
Melbourne, Australia Kevin Walsh
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Chapter 1
Recent Advances in the Emerging Field
of Paleotempestology

Joanne Muller, Jennifer M. Collins, Samantha Gibson, and Leilani Paxton

Abstract Roughly 35 % of the world’s 7.4 billion people are in the path of
tropical cyclones, and coastal populations are expected to increase in the coming
century. To understand the future damage that tropical cyclones could impose on
an ever-growing coastal population, it is critically important to better understand
the relationships between tropical cyclones and climate. Large-scale features of the
climate system have been shown to affect tropical cyclone activity, for example,
the El Niño Southern Oscillation (ENSO) has been shown to influence tropical
cyclone frequency in all oceanic basins on seasonal, yearly, and decadal timescales.
However, the relatively short observational record (<160 years) is inadequate for
identifying the climatic influences on tropical cyclones over centennial to millennial
timescales. Paleotempestology, a relatively new science, helps to resolve this
issue by extending the instrumental record back several thousands of years. Over
the past two decades, the number of paleotempestology records has increased
substantially for sites along the Northwest Atlantic Ocean, Gulf of Mexico and
Caribbean Sea, the South Pacific Ocean, and the Northwest Pacific and Indian
Ocean regions. The most obvious characteristic of these records is that they reveal
extended alternating periods of either greater or lesser tropical cyclone activity over
centennial and millennial timescales. In these studies, researchers have shown that
large-scale climatic features such as ENSO, sea surface temperatures (SSTs), the
latitudinal position of the intertropical convergence zone (ITCZ), and the North
Atlantic Oscillation (NAO) are likely driving the alternating long-term behavior of
tropical cyclones in global oceanic basins. This review paper will focus on recent
paleotempestology studies from multiple global sites and endeavor to synthesize the
results and interpretations.

J. Muller (�) • S. Gibson
Department of Marine and Ecological Sciences, Florida Gulf Coast University, Fort Myers,
FL 33965, USA
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Keywords Paleotempestology • Hurricanes • Tropical cyclones • Storm over-
wash • El Niño Southern Oscillation • Return periods • Sea surface tempera-
tures • North Atlantic Oscillation • Intertropical convergence zone • Proxies •
Historical records

1 Introduction

The North Atlantic Basin provides the longest observational record of tropical
cyclone activities spanning the past 160 years (Landsea et al. 2012). Examination
of this record reveals significant interannual and interdecadal variability in tropical
cyclone activity, which can be related to regional- and global-scale climatic
phenomena such as sub-Saharan drought, El Niño Southern Oscillation (ENSO)
events, and changes in sea surface temperatures (SSTs) in the Main Development
Region (MDR; Gray 1990; Landsea et al. 1996; Elsner and Kara 1999). However,
due to the brevity of the historical record, it is impossible to assess whether such
variability occurs at longer centennial to millennial timescales. This question can
be addressed by means of paleotempestology, a relatively new research field that
utilizes geological, biological, and written documentary techniques to study past
tropical cyclone activity (Liu and Fearn 1993; Donnelly et al. 2001a; Hippensteel
2011; among others).

Paleotempestology seeks to develop tropical cyclone activities over a large
range of timescales, from day-by-day reconstructions to millennial-scale recon-
structions. Since the early 1990s significant progress has been made in the field
of paleotempestology with new developments in research theory, methodology, and
understanding. As a result, paleotempestology has become an important component
of quaternary paleoclimatology (Liu 2004; Nott 2004; Fan and Liu 2008) not only in
its basic scientific research application but also in its practical application to society.
This research has allowed for tropical cyclone return period calculations that extend
back beyond the historical record for selected coastal areas, potentially providing
empirical data for risk assessments by insurance companies, civil planners, and
emergency management officials (Liu 2004).

In 2008, Fan and Liu (2008) published a comprehensive review on the develop-
ment of paleotempestology proxy techniques, methodologies, and research achieve-
ments at the global scale. The review outlined all potential paleotempestology
archives and their relevant proxies, in addition to the widely accepted climatic
interpretations in the field of paleotempestology in 2008. Since the publication
of this review paper, there have been a number of advances in the field. This
review chapter presents recent paleotempestology advances that have contributed
important information to our understanding of paleotempestology dynamics. We
will summarize these studies and their findings in the following pages.
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2 Recent Developments in Paleotempestology Proxies

As discussed in Fan and Liu (2008), there are a number of archives that provide
information on past tropical cyclone activity. The more commonly used archives
include (1) historical documentary records; (2) speleothem, coral-ring, and tree-
ring archives; (3) beach ridges and cheniers; and (4) coastal lacustrine, lagoonal,
and marsh overwash facies, while less common archives include (5) shallow-marine
storm sequences, (6) estuarine storm-related rhythmites, and (7) storm deposits in
atoll lagoons and inner reef flats. Since Fan and Liu’s review paper publication in
2008, advances in the field are mostly confined to the more commonly used archives
outlined above and coastal karst basins, a relatively new type of paleotempestology
archive. Therefore, this review chapter will focus on these paleotempestology
archives and the climatological interpretations from these recent works. In addition
we will provide some information on the potential difficulties facing the field of
paleotempestology.

2.1 Historical Documentary Records

Tropical cyclones are often catastrophic disasters to society as they pose hazards to
humans such as high winds, heavy rain, storm surge, powerful waves, potential tor-
nadoes, coastal flooding, landslides, etc. These societal impacts are often recorded
in historical written records after the beginning of literal history. Documentary
records of tropical cyclones are sometimes archived in official histories, gazettes,
newspapers, and civilian writings such as travel logbooks, diaries, poems, etc. (Fan
and Liu 2008). Since 2008, few studies have been published that utilize historical
documentary records. However, in 2016, Trouet et al. used documented Spanish
shipwrecks to look at tropical cyclone variability in the Caribbean during the
Maunder Minimum (MM; 1645–1715 CE), a period defined by the most severe
reduction in solar irradiance in documented history (1610–present). This research
utilizes a combined documentary time series of Spanish shipwrecks in the Caribbean
(1495–1825 CE) and a tree-growth suppression chronology from the Florida Keys
(1707–2009 CE). Trouet et al. (2016) found a 75 % reduction in decadal-scale
Caribbean tropical cyclone activity during the MM that also correlates with cool
North Atlantic SSTs, El Niño-like conditions, and a negative phase of the North
Atlantic Oscillation (NAO). It is suggested that these conditions are primarily
modulated by reduced solar irradiance during the MM time period. The study also
highlights the need for a better understanding of oceanic and atmospheric responses
to radiative forcing in order to improve our future tropical cyclone projection skills.

In 2014 Bossak et al. undertook a study of historic Georgia tropical cyclones.
They analyzed the frequency trends, intensity over time, seasonality, zone of
formation, time from formation to landfall, and spatial distribution for Georgia’s 14
recorded tropical cyclone landfalls in HURDAT2. They noted a declining number
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of tropical cyclones, both in Georgia and immediately neighboring coasts, since
1851. In each successive 50-year interval, the frequency of tropical cyclones that
make landfall in Northeast Florida, Georgia, and South Carolina has decreased.
As of 2017, Welford et al. (this volume, Chap. 2) extended this Georgia record
through the examination of temporal and spatial tropical cyclone landfall trends
along the Georgia coast from 1750 to 2012. Since 1750, 18 of the 24 recorded
tropical cyclones that made landfall along the Georgia coast occurred between 1801
and 1900, yet the tropical cyclone intensities have declined since 1851. This study
also demonstrates that the mean location of landfall along the Georgia coast has
shifted 60 km north and hence closer to Savannah. Whether this change represents a
movement due to anthropogenically enhanced global radiative forcing and Atlantic
SSTs or a change in tracks due to NAO forcing or a statistical anomaly is impossible
to establish. Certainly, CNAO or �NAO indices affect the location of the subtropical
high and the resultant track of tropical cyclones around the periphery of the high
pressure (Welford et al. this volume, Chap. 2).

2.2 Speleothem, Coral-, and Tree-Ring Archives

2.2.1 Speleothems

Tropical cyclones produce large amounts of precipitation with distinctly lower
•18O values than typical low-latitude thunderstorms. This isotopic signal of tropical
cyclones can thus be incorporated into the calcium carbonate of stalagmites in
limestone caves, in tropical cyclone prone regions.

In 2008, Frappier published a four-step screening method used to select stalag-
mites with the goal of developing a proxy record of individual tropical cyclone
rainfall events (Frappier 2008). Field and laboratory criteria were combined to
develop a process for pre-screening speleothem samples to screen out candi-
date stalagmites whose characteristics indicated lower sensitivity to storm–water
infiltration. The approach was designed to increase the likelihood that selected
stalagmites would increase the signal to noise ratio of the target phenomenon in the
resulting proxy records. Hallmarks of this approach include (1) establishing a priori
scientific targets, (2) applying sample criteria in the form of contraindicators, and
(3) organizing the sample screening protocol into a series of practical stages. The
overall approach to stalagmite selection presented here supports cave conservation
and can be adapted readily by others in support of different scientific goals.

In 2014, Haig et al. published research that used a new tropical cyclone activity
index (CAI) which is the average accumulated energy expended over the tropical
cyclone season within range of the site, accounting for the number of days since
genesis and the intensity and size of the storm relative to its distance from the site
at each point along its track. The CAI allows for a direct comparison between the
modern instrumental record and long-term paleotempestology (prehistoric tropical
cyclone) records derived from the •18O of seasonally accreting carbonate layers

http://dx.doi.org/10.1007/978-3-319-47594-3_2
http://dx.doi.org/10.1007/978-3-319-47594-3_2
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of actively growing stalagmites. The CAI showed that the low levels of storm
activity which have occurred on the mid west and northeast coasts of Australia are
unprecedented over the past 550–1500 years (Fig. 1.1). Their results also revealed a
repeated multi-centennial cycle of tropical cyclone activity, the most recent of which
commenced around AD 1700. The present cycle includes a sharp decrease in activity
after 1960 in Western Australia. This is in contrast to the increasing frequency and
destructiveness of Northern Hemisphere tropical cyclones since 1970 in the North
Atlantic Ocean and the western North Pacific Ocean (e.g., Emanuel 2005).

2.2.2 Corals

Corals in stormwash deposits have previously been used as an indicator of tropical
cyclone activity (Fan and Liu 2008); however, new research is being conducted to
determine if corals themselves may be used as a direct proxy. Corals are sensitive
to, and can record, the •18O values of the waters in which they grow and should thus
be able to record the changes in precipitation associated with a tropical cyclone.

In 2011, Kilbourne et al. published a study that investigated the usefulness
of coral skeletal •18O as a means of reconstructing past tropical cyclone events.
Isotopic modeling of rainfall mixing with seawater shows that detecting an isotopic
signal from a tropical cyclone in a coral requires a salinity of �33 psu at the time
of coral growth, but this threshold is dependent on the isotopic composition of both
fresh and saline end-members. Unfortunately, a comparison between coral •18O and
historical records of tropical cyclone activity, river discharge, and precipitation from
multiple sites in Puerto Rico showed that tropical cyclones are not distinguishable
in the coral record from normal rainfall using this approach at these sites.

In 2008, Hetzinger et al. presented a •18O record from a brain coral situated
in the Atlantic tropical cyclone domain. This record showed equal sensitivity
to SST and seawater •18O variations, with the latter being strongly linked to
precipitation. The authors demonstrate that this coral-based proxy record (•18O)
captures the multidecadal variations associated with the Atlantic Multidecadal
Oscillation (AMO) and the tropical cyclone activity (Fig. 1.2) that interestingly
exhibits a long-term increase over the last century. This study raises new possibilities
in extending the limited AMO observational record using corals and therefore the
ability to gain new insights into the mechanisms underlying the AMO and its effects
on long-term tropical cyclone variations.

2.2.3 Tree Rings

Tropical cyclones impact trees in a variety of ways, which can then be measured
through an analysis of the annual growth bands, •18O and •13C values within the
’-cellulose, and even statistical correlations between the rings and isotopic values.
The recognition of tree rings as a valuable proxy for tropical cyclones has increased
the need for refinement of the methodologies by which tree cores are extracted and
the data are analyzed.
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Fig. 1.1 Cyclone activity index (CAI) over the last 1500 and 700 years (Modified from ref. Haig
et al. 2014). a, c, Cape Range (a) and Chillagoe (c); black line indicates smoothing of the series
(smoothed data were not used in the statistical analysis). Gray shading indicates the r.m.s.e. of the
model. b, d, Wavelet power spectra (Morlet wavelet) of Cape Range (b) and Chillagoe (d). Power
increases from blue to red, black contours indicate regions above the 1 % significance level, and the
white areas are regions subject to edge effects. The spectra have lag-autocorrelation coefficients of
0.75 (Cape Range) and 0.78 (Chillagoe) (Software provided by C. Torrence and G. Compo (http://
atoc.colorado.edu/research/wavelets/))

http://atoc.colorado.edu/research/wavelets/
http://atoc.colorado.edu/research/wavelets/
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Fig. 1.2 (a) Comparison between coral •18O and the index of accumulated cyclone energy (ACE)
for the North Atlantic (Modified from ref. Hetzinger et al. 2008). Data shown are for the peak
months of the Atlantic tropical cyclone season, August-September-October (ASO), and were
averaged using a 5-year running filter. The correlation is high (r D –0.66) and significant at
the 1 % level, assuming 14 degrees of freedom (1920–2002); r D –0.52 for unsmoothed ASO
data (not shown), 1918–2004. The correlation is also stable for detrended values (r D –0.50 for
unsmoothed ASO data and r D –0.67 for 5 years means, the same time intervals as above). Dashed
line represents the upward trend seen in coral •18O over the 1920–2002 time period. The trend is
statistically significant at the 0.1 % level, assuming 9 degrees of freedom. (b) Comparison between
coral •18O and the AMO index (North Atlantic SST averaged between 0 and 70ıN; Enfield et al.
2001). Seasonal mean values were removed from the monthly data before averaging to annual
resolution. Then an 11-year running filter was applied. The correlation is high (r D –0.86) and
statistically significant at the 5 % level, even with only four effective degrees of freedom. AMO
Atlantic Multidecadal Oscillation, ASO August-September-October, STD standard deviation

Both Li et al. (2011) and Kagawa et al. (2015) have determined ways by which
the process of extracting ’-cellulose can be hastened without losing, if not gaining,
accuracy in the stable isotope analysis. Li et al. (2011) took advantage of the
unique ability of tree rings, among other paleotempestite archives, to retain intra-
annual climate signals by extracting the ’-cellulose directly from the whole wood
spline and foregoing both the peeling and grinding methods. Kagawa et al. (2015)
increased the versatility of single-batch processing of tree rings through the creation
and evaluation of the “cross-section method” whereby they created a prototype
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polytetrafluoroethylene (PTFE) case, choosing PTFE due to its nonreactive nature,
which could entirely house the tree-ring lath throughout the chemical and drying
processes. Freeze-drying the ’-cellulose laths showed to be the optimal method of
drying with minimum splitting and shrinkage of the ’-cellulose and left minimal
contamination, and the process then follows standard methods. Both processes
provide statistically similar measures in •13C and •18O integrity; however, the new
process presented by Li et al. (2011) and expanded upon by Kagawa et al. (2015) is
quicker and more cost-effective which allows for the processing of more samples.

Because dendrochronology relies upon the way that trees respond to their
environment, different environments and tree species may pose different kinds of
problems when interpreting tree-ring patterns. In 2011, Lewis et al. utilized a multi-
tree approach to interpreting tree-ring response to a known climatic driver within a
Texas preserve. Through a composite analysis of the •18O values, they discovered
that sometimes individual trees within a stand would record false positives whereas
other times they would not record the storm event at all. By comparing the tree-
ring •18O values within this study to known climatic trends, Lewis et al. were able
to determine that climatic trends such as seasonally uncharacteristic high or low
precipitation, drought, and a strong El Niño event could lead to either of these
issues. In extending the range of dendrochronological studies, Harley et al. (2011)
determined that the South Florida slash pine, the pine species with the southernmost
range, is a suitable candidate for tree-ring dating. As a tree species that reliably
produces only one growth band per year in a subtropical environment and is most
heavily influenced through rainwater, the South Florida slash pine can be used to
determine tropical cyclone activity as far south as the Florida Keys. In 2012, Knapp
and Hadley also addressed the issue of expanding dendrochronological research
but in the Pacific Northwest portion of the United States where high wind events
were correlated with extratropical and tropical cyclones. Through this study, Knapp
and Hadley were able to provide a 300-year analysis of windstorms within the
Pacific Northwest, spanning the time frame between the Little Ice Age and the
current climate regime while also identifying the major correlation between the high
wind events within the context of the ENSO and non-ENSO phases and the Pacific
Decadal Oscillation.

2.3 Beach Ridges

Beach ridges are parallel ridges that form on sandy coastlines and largely consist of
coarse sand and shell fragments. Nott and other researchers have found that the cliffy
coarse-grained beach ridges in Northeastern, Northern, and Western Australia have
been deposited by the wave action usually associated with intense tropical cyclones
(Rhodes et al. 1980; Nott et al. 2009; Forsyth et al. 2010; Nott 2011a; Nott and
Forsyth 2012). Each ridge in the plain is initially deposited at the rear of the beach.
Over time a sequence of ridges develops to form a plain of between 10 and 30 shore
parallel ridges. The addition of each new ridge causes the plain to prograde seaward.
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The developing ridge at the rear of the beach increases in elevation over time
with successive tropical cyclone-generated marine inundation events. Progressively
higher marine inundations are required to continue depositing sediment onto the
sand ridge as it increases in height (Nott and Forsyth 2012). The ridges generally
attain a maximum elevation of 4–6 m above mean sea level. Therefore only the
largest marine inundations can deposit sediment onto the crests of ridges at this
height; hence, the final sedimentary unit on each ridge crest registers the largest
marine inundation responsible for depositing the ridge (Nott and Forsyth 2012). The
geology has been supported by meteorological and oceanographic models to deter-
mine the origin of a sequence of 29 shore parallel sand beach ridges in Northeastern
Australia (Nott et al. 2009). The results suggest that the ridges were constructed by
waves and that the final form or height of the ridges is a function of high-energy
tropical cyclone-generated waves plus storm tides (Nott and Forsyth 2012).

The beach ridges of sand, shell, and a mixture of sand and shell in Australia
show a variable tropical cyclone history throughout the late Holocene. Forsyth
et al. (2010) identified two periods of tropical cyclone inactivity between 3380 and
2480 years and between 1440 and 440 CE in a coarse-grained beach ridge sequence
near Tully Heads in North Queensland. They also identified periods of activity here
between 5000 and 4500 CE and a very active period between 4100 and 3400 CE.
At Wonga Beach, several hundred kilometers to the north, Forsyth et al. (2010)
recognized a 1200-year period of heightened tropical cyclone activity between 2100
and 900 CE, while prior to this a 1700-year period of tropical cyclone inactivity
occurred between 3800 and 2100 CE (Fig. 1.3). Nott (2011a) also identified a 1700-
year period of tropical cyclone inactivity between 5400 and 3700 CE from a pure
shell beach ridge record at Shark Bay, Western Australia. Nott et al. (2009) identified
a 1000-year period of tropical cyclone inactivity between 1820 and 850 years in
a sand beach ridge sequence south of Cairns, North Queensland (Fig. 1.3). Nott
et al.’s 6000 year-long record of intense tropical cyclones (Nott et al. 2009) implies
that extreme tropical cyclones occurred considerably more frequently than that
suggested by the short historical record for this region (Fig. 1.3).

On a sidenote, in 2009, Donnelly et al. published an article that addressed the
use of beach ridges in sea-level reconstructions. Some authors have argued that the
beach ridges along the Gulf of Mexico represent sea-level highstands in the past.
They argue that beach ridges cannot be built by storms because storms are typically
erosional and the rate of beach ridge formation is considerably slower than the
recurrence rate of storms at any one location (Tanner 1995; Morton et al. 2000). This
is obviously not the case for beach ridges formed along the NE Australian coast,
as discussed by Nott and Forsyth above (Nott and Forsyth 2012). Furthermore,
Donnelly argues that for every direct strike many more tropical cyclones would
traverse the Gulf of Mexico, significantly increasing the overall wave climate during
tropical cyclone seasons and potentially leading to an increase in the frequency
of constructional swells (Otvos 1995, 2000). Increases in “fair-weather” swell
frequency and height during periods of more tropical cyclone activity in the Gulf
of Mexico may provide an alternative explanation for beach ridges developing a
few meters above their contemporaneous sea level.
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Fig. 1.3 Beach ridge cross-sections and chronologies (Shark Bay is dated using radiocarbon, and
remainder using OSL) (Modified from ref. Nott and Forsyth 2012)

2.4 Coastal Lacustrine, Lagoon, and Marsh Overwash
Deposits

Most long-term paleotempestological records are created using preserved tropical
cyclone overwash signatures. As a tropical cyclone nears the coast, it produces
strong winds and storm surge. The storm surge will often breach the barrier island
and/or dune system, depositing foreshore, offshore, and dune sediments into back-
barrier lagoons, coastal lakes, or marshes. Due to close coastal proximity and
their significantly different geomorphological and sedimentological depositional
characteristics, coastal lacustrine, lagoon, and marsh deposits are ideal locations
for recording high-energy storm surge associated with tropical cyclone events. In
this case, tropical cyclone-deposited marine sediments differ from back-barrier
lagoon or lake sediments in a number of ways, such as grain size, diatom faunal
and foraminifera composition, and percent CaCO3 and organics. By obtaining
radiometrically determined age-control points throughout a core and using the
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abovementioned proxies to analyze overwash layers, it is possible to generate a
much longer tropical cyclone record than the short-term instrumental/historical
record. In recent years, a number of paleotempestology studies have been published
that utilize coastal lacustrine and lagoonal deposits. These studies can largely be
divided up into short-term (or modern) records and longer-term records.

2.4.1 Modern Records

Before 2008 few studies have assessed the sedimentary mechanism or distribution
pattern of storm deposits in back-barrier lakes, lagoons, and marshes attributed
to the overwash processes of recent known tropical cyclones. In recent years,
Williams (2009, 2010, 2011a, b, 2012) has published multiple studies that focus on
the better understanding of modern overwash deposits. Both Williams (2009) and
Williams and Flanagan (2009) studied overwash deposits associated with Hurricane
Rita along the southwest Louisiana coast. Rita’s storm surge and accompanying
waves transported sand and mud into woodland and freshwater marsh environments
leaving a sedimentary deposit that is up to 0.5 m thick and extends at least 500 m
inland. Analysis suggests two distinct phases of deposition: a thin layer of finer
sand and mud and an overlying thicker layer of coarser sand. These findings
suggest deposition from suspension of offshore sand and mud in an early stage
of storm surge inundation. This layer is overlain by coarser sand with an abrupt
termination 100–150 m inland that was likely deposited as a traction load, formed
at a later stage of storm surge inundation. Williams (2010) documents similar
storm surge sedimentation for Hurricane Ike on the McFaddin National Wildlife
Refuge. Again two distinct styles of sedimentation are found: a thick, sandy
washover fan, extending about 150 m inland, deposited as traction load, and an
underlying thinner, finer, more organic-rich blanket of sediments extending more
than 2.7 km inland, deposited from suspension. This specific study also shows
that storm surge sedimentation can extend a considerable distance inland, with the
implication that paleotempestology studies could potentially be conducted farther
inland. Williams also studied shell bed tempestites in part of southwest Louisiana’s
Chenier Plain (2011a). The shell bed tempestites are predominantly composed of
disarticulated bivalves, probably reworked and transported landward from skeletal
remains offshore. The shell bed has an erosional base, is bioclast supported,
normally graded, and has common mud rip-up clasts. Williams demonstrates that
the Hurricane Ike shell bed is a valuable analog for older palaeotempestological
investigations and that tropical cyclones have likely contributed to the construction
of both modern berm ridges and paleo-beach ridges on this Louisiana coastal plain.
Another study from the southwest Louisiana Chenier Plain (Williams 2013) denotes
overwash layers as storm-surge-deposited sand enclosed by marsh sediments. The
sand layers have sharp basal contacts, extend hundreds of meters into the marsh,
and contrast in lithology and microfossil assemblages with enclosing marsh deposits
(Fig. 1.4). Based on the modern analogs of Hurricanes Audrey (1957), Rita (2005)
and Ike (2008), and consideration of nearby landfalling tropical cyclones in the
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Fig. 1.4 (a) Wedge core A10 showing sand beds of Hurricanes Audrey and Rita, separated by
a few centimeters of muddy organic-rich marsh sediment (Modified from ref. Williams 2013).
Dashed lines indicate sharp basal contact of each Sand Bed. (b) Core T6-1 showing the sharp
contact between sand beds of Hurricanes Ike and Rita. Marsh plants, in growth position and rooted
in the buried marsh surface, are encased in Tropical Cyclone Rita’s sand bed. Photograph taken
approximately 8 months after landfall of Hurricane Ike; by 20 months after landfall, Hurricane
Ike’s deposit was no longer recognizable having been obscured by bioturbation

historical record, it was determined that the storm intensity threshold of the study
site is equivalent to a category 3 hurricane. In many of these studies, Williams
(2009, 2010, 2011a, b, 2012) shows that the characteristics of the storm surge
deposits, including texture, thickness, inland penetration, and preservation, reflect
the intensity and proximity of the landfalling tropical cyclones.

Liu et al. (2011) investigated the patterns and processes of recent storm deposi-
tion in coastal lakes by conducting sediment coring, coupled with hydrodynamic
measurements, before and after Hurricane Gustav and Ike in Bay Champagne,
Lafourche Parish, LA. Two-bottom-mounted conductivity, temperature, and depth
sensors (CTDs) deployed on August 29, 2008, 3 days before Hurricane Gustav’s
landfall, recorded a maximum storm surge of �2.7 m. A segment of loose sediment,
occurring in the middle of this storm deposit, was probably formed by the reworking
of the upper part of the Gustav storm deposit by Hurricane Ike, 12 days later.
In 2014, Naquin et al. also published a study that looked at geological processes
induced by tropical cyclones in Bay Champagne. Within each marine incursion
layer, terrestrial elemental concentrations, as determined by XRF, display large
depletions. Grain size analysis of a portion of the core (30–86 cm) indicates the
presence of two series of sequential high-energy storm deposits followed by intense
fluvial flooding within Bay Champagne. These events are attributed to Hurricane
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Katrina/Rita in 2005 and Gustav/Ike in 2008. The studies of Liu et al. (2011) and
Naquin et al. (2014) highlight the difficulty in differentiating overwash deposits
laid down in the same year. This impacts the field of paleotempestology, where, for
example, going back through time two overwash layers may be interpreted as one
thick overwash layer.

Horton et al. (2009) also studied Hurricane Katrina and Rita’s overwash layers
in Mississippi and Alabama salt marshes. Horton et al. noted a three-dimensional
sediment distribution of tropical cyclone-induced storm surge deposits that tapered
landward, overlying salt marsh sediment. A sharp erosional boundary between the
pre-storm surge and storm surge sedimentary units was observed by a change in
color and lithology. The overlying storm surge sediment unit was coarser than the
pre-storm surge unit with a lower organic content. Foraminiferal analyses revealed
a virtual absence of tests within the storm surge sediments, whereas abundant
agglutinated foraminifera were found in the underlying salt marsh deposits.

2.4.2 Difficulties in Using Tropical Cyclone Overwash Records

As demonstrated above, by better understanding the depositional characteristics
of the modern-day tropical cyclone record, in different geographical regions,
researchers can progress the field of paleotempestology. However, the study of the
modern-day record has also identified potential weaknesses in the research field,
and paleotempestology has become more contentious in recent years because the
exact nature of storm deposition and preservation is somewhat unclear. The general
consensus is that overwash sand layers occurring in coastal lakes and marshes are
a reliable proxy for major tropical cyclones, rather than minor tropical cyclones or
winter storms (Liu and Fearn 1993, 2000; Liu 2004; Liu et al. 2008; Donnelly et al.
2001a, b, 2004; Donnelly and Webb 2004; Scileppi and Donnelly 2007; Donnelly
2005; Donnelly and Woodruff 2007). There are a number of factors that contribute
to the deposition and preservation of overwash archives. In general, overwash is
an artifact of storm surge, and storm surge varies with tropical cyclone intensity
(decreasing tropical cyclone central pressure), speed of forward storm movement,
radius of maximum winds, bathymetry, and coastal configuration. In addition, one
must consider the site and its preservational integrity, including overwash sediment
source; postdepositional erosion; postdepositional lagoonal productivity, including
bioturbation and sediment reworking; and lagoonal sediment accumulation rates.
Finally, the physical characteristics and geomorphology of the lagoonal barrier and
its vulnerability to being breached by storm surge must be considered. Many of the
below studies find that at certain geographic locations, not all tropical cyclones are
recorded in the geologic record. Why certain storm events are recorded, and others
are not, is generally a combination of the above factors.

Using Hurricane Ivan as a modern analog, Liu et al. (2011) demonstrate that
the storm surge associated with this category 3 hurricane caused sand deposition
in the southern basins of Little Lake and Middle Lake but not in the center of the
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larger Lake Shelby site (Bianchette 2007) confirming that the proxy record from
the center of Lake Shelby is sensitive to direct hits by catastrophic hurricanes of
categories 4 and 5 only. This research has been advanced by modeling efforts such
as those of Elsner et al. (2008) who developed a statistical model that quantitatively
links the tropical cyclone return period (frequency) with the tropical cyclone return
levels (intensities) for the Lake Shelby area using information derived from both the
historical record (AD 1851–2005) and the proxy record. Their study also confirmed
that it takes landfalling intense tropical cyclones with wind speeds of at least 64 m s1

(i.e., middle of the category 4 range) to deposit an overwash sand layer in the center
of this particular site. Another modeling study by Woodruff et al. (2008) applied a
simple advective-settling model to constrain the coastal flooding intensities required
to transport clastic overwash deposits to various distances behind the barrier. They
found that the topmost overwash deposits in the core could be attributed to four or
five most intense tropical cyclones that have struck Puerto Rico since ca. AD 1820.

In 2011, Hippensteel pointed out inconsistencies in overwash signatures from
the back-Folly Island barrier marshes in South Carolina. Sedimentological and
micropaleontological analysis of 15 gouge-auger cores revealed a lack of spatio-
lateral continuity for paleotempestology deposits. The offshore-indicative cal-
careous microfossil content of some storm deposits was taphonomically altered
or destroyed, and in many cases cores taken 10 m apart provided significantly
different storm records. Hippensteel cautions that the combination of bioturbation,
erosion, and taphonomic degradation of the foraminifera and sedimentary signatures
leaves the comprehensive and complete character of the storm record from the
Southeastern Atlantic in doubt. In 2011, Otvos also pointed out some of the same
inconsistencies in paleotempestology records where the diversity of topographic,
hydrodynamic, and sedimentological settings and factors as well as postdeposi-
tional settings account for major difficulties in correlating individual sand layers
with specific prehistoric tropical cyclone events. This complicated or prevented
identification of discrete tropical cyclones, their velocity categories, calculations
of recurrence interval probabilities, and accurate risk assessment. Otvos (2011)
recommended that the stable isotope method be used in organic-enriched limnic
and brackish muds of paralic basins; which may further refine, detail, quantify, and
supplement sand layer-based storm proxy signals for improved storm archiving and
correlation on the interregional-to-hemispheric scale. Numerous researchers have
embarked on a scrutiny of carefully collected detailed data from several worldwide
localities. In time, these studies will elucidate the highly variable prehistoric record
of tropical cyclone intensities and frequencies on a global scale.

2.4.3 Long-Term Records

Most of the recent long-term lacustrine, lagoon, and marsh overwash studies are
constrained to sites along the North Atlantic Basin coastlines, with a few studies
from the Western Pacific margins.
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Along the western Caribbean coastline, McCloskey and Keller (2009) proposed
that a combination of short- and long-term atmospheric oscillations has resulted in
latitudinal movement of the tropical cyclone zone and location of landfall through
the Holocene. McCloskey and Keller (2009) support this theory with a 5,000-
year-old paleotempestology record from the coast of Belize. They calculate that
on average major hurricanes make landfall along the coast of Belize once every
decade, over the past 500 years. A temporal clustering of tropical cyclones suggests
two periods of hyperactivity between �4500 and 2500 BP, which supports a
regional model of latitudinal migration of tropical cyclone strike zones. McCloskey
and Knowles (2009) support the paleotempestology reconstruction with a GIS-
based approach to demonstrate that currently intensity changes of the Bermuda
High result in a large latitudinal spread of tropical cyclone track and landfall
location across the western North Atlantic, while a literature-based examination of
paleoclimatic evidence supports the view that long-term changes in the pole-equator
temperature gradient have resulted in significant latitudinal migration of the general
North Atlantic atmospheric system throughout the Holocene, with a heightened
(reduced) gradient moving the entire system southward (northward). McCloskey
and Knowles’ model suggests that the location of tropical cyclone landfall since the
mid Holocene is controlled by a millennial-scale migration of the tropical cyclone
zone (paralleling latitudinal movement of the entire system), complicated by the
superimposition of a higher frequency variation in track location (controlled by
intensity oscillations).

Along the eastern Gulf of Mexico coastline, Ercolani et al. (2015) used sediment
cores from a back-barrier lagoon in Naples, FL to demonstrate the potential
importance of MDR SSTs in driving tropical cyclone landfalls. The authors noted
an active period of tropical cyclone overwash from 1000 to 500 years BP and an
inactive period from 500 to 150 years BP. Ercolani et al. observed an increased
number of paleotempestites when MDR SSTs are warmer, coinciding with the
Medieval Warm Period, and very few paleotempestites when MDR SSTs are cooler,
coinciding with the Little Ice Age. Results from Ercolani et al. are correlated with
other Gulf of Mexico paleotempestology studies such as Lane et al. (2011) and
Denomee et al. (2014) (both discussed below in “Coastal karst basins”) that indicate
that MDR SSTs have been a key long-term climate driver of tropical cyclone strikes
(Fig. 1.5). This topic was addressed by Mann et al. in 2009 and is expanded on
below in Sect. 4.

Several recent studies have been published from sites along the western North
Atlantic coastline, more specifically Massachusetts. Besonen et al. (2008) examined
annual terrestrially deposited varves spanning the last 1000 years in a lake near
Boston, MA. The varves are millimeter-scale siliciclastic/biogenic sedimentary
couplets that reflect the seasonal cycle of sedimentation in the lake. Each couplet
is deposited annually, but throughout the sequence, there are unusually thick layers
of graded sediments (coarser grained at base and fining toward the top of each
layer). These thicker beds are composed of terrestrial and organic detritus which
correspond in nearly all cases to the passage of a category 2–3 hurricane (Saffir–
Simpson scale) close to the catchment. Besonen et al. (2008) found that there
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Fig. 1.5 Comparison to other paleotempestology and climate records (Modified from ref. Ercolani
et al. 2015). (a) Southwest Florida (b) Lane et al. (2011), northern Florida (c) Denommee et al.
(2014), Belize (d) Mann et al. (2009) SST reconstruction MDR North Atlantic. HT refers to “high
threshold” meaning those storms that generated a deposit at least as coarse as the strongest historic
storm to hit the field site. Tropical cyclone events include tropical storms to major hurricanes, not
exclusively intense tropical cyclones. The gray box identifies similarities among the records

was centennial variation in the record, the twelfth to sixteenth centuries had a
significantly higher level of tropical cyclone activity (up to eight extreme events
occurring per century) compared to the eleventh and seventeenth to nineteenth
centuries when only two to three per century was the norm. They attributed the
more active periods to warmer tropical Atlantic SSTs such as occurs in La Niña
conditions and the inactive centuries to cooler tropical Atlantic SSTs. Boldt et al.
(2010) presented another paleotempestology overwash study from a coastal marsh
in Massachusetts (Mattapoisett Marsh). Event layers deposited during historic time
match well with known severe tropical cyclone strikes. The fifteenth and sixteenth
centuries are among the most active of the last 2000 years with seven events
occurring over that time, with some overlap in elevated tropical cyclone activity seen
by Besonen et al. (2008) in the twelfth to sixteenth centuries. The authors pointed
out that significant variation in the number of intense tropical cyclones is seen, but
there is relatively constant tropical cyclone frequency over the last 2000 years.
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In 2015 Donnelly et al. published a long, well-resolved 2000-year-old overwash
record from Salt Pond, MA (Fig. 1.6). A total of 35 event layers were deposited
over the last 2000 years with the highest frequencies found between 1420–1675 CE
and 150–1150 CE. This study indicates considerable changes in the frequency of
overwash deposits over the last 2000 years, with historically unprecedented intervals
of event-bed deposition. Donnelly et al. (2015) demonstrated that there are several
intervals in the fourth to seventh centuries, eleventh century, and fifteenth to early
seventeenth centuries which exceed that of the calculated centennial frequency of
landfalling tropical cyclones in this region (0.9 events per century) derived from the
162-year NOAA best-track dataset. Hence, compared to modern event frequencies
in the region, significant portions of the 2000-year Salt Pond record exceed what
would be expected based on random event occurrence alone.

Along the western Atlantic margin, Toomey et al. (2013a) reported on a new
type of tropical cyclone overwash history developed from 7000 years of coarse-
grained deposits in sediment cores taken from the leeward margin of the Great
Bahama Bank. At this site, storms are thought to be an important mechanism
for transporting coarse sediment from shallow carbonate platforms to the deep-
sea and bank-edge sediments. The results from this study agree with previous
studies which have emphasized the role of ENSO and the West African Monsoon
in controlling late Holocene tropical cyclone frequency and indicate that insolation
may be important in the forcing mechanism of the North Atlantic storm intensity on
millennial timescales. Indeed, the low frequency of storm events near the Bahamas
during the mid-Holocene indicates that increased Northern Hemisphere insolation
and a related northward shift of the intertropical convergence zone (ITCZ) may have
worked to decrease major North Atlantic hurricane development.

In the North Western Pacific, Woodruff et al. (2009) published sediment core
results from two coastal lakes located on the island of Kamikoshiki in Southwestern
Japan (Lake Namakoike and Lake Kaiike) that provide evidence for the response of
a back-barrier beach system to episodic coastal inundation over the last 6400 years.
Periods of barrier breaching are concurrent with an increase in ENSO frequency,
indicating that ENSO has potentially played a key role in governing typhoon
variability during the mid-to-late Holocene. An inverse correlation is observed
between tropical cyclone reconstructions from the western North Atlantic and the
Kamikoshiki site, which may indicate an oscillating pattern in tropical cyclone
activity between the western Northern Atlantic and the western North Pacific, or
at least between the western Northern Atlantic and regions encompassing Southern
Japan. The two kamikaze typhoons which contributed to the failed Mongol invasions
of Japan in 1274 AD and 1281 AD occur during a period with more frequent
marine-sourced deposition at the site, suggesting that the events took place during
a period of greater regional typhoon activity. In 2015, Woodruff et al. presented
another Japanese coastal lake record that extends back 2000 years. The complete
reconstruction indicates periods of greater flood activity relative to the modern
beginning ca. 250 CE and extending past the timing of the kamikaze events to 1600
CE. Similar to Woodruff et al. (2009), they interpret the greater regional typhoon
activity to greater El Niño activity relative to the modern and the preferential
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Fig. 1.6 Comparison of Salt Pond reconstruction with Caribbean and Gulf of Mexico tropical
cyclone proxy records, reconstructed MDR SST, modeled tropical cyclone activity, and Cariaco
Basin runoff (Modified from ref. Donnelly et al. 2015) (a) Event-bed frequency at Salt Pond,
MA. (b) Intense tropical cyclone event-bed frequency from Spring Creek Pond, FL (Brandon
et al. 2013). (c) Intense tropical cyclone event-bed frequency from Mullet Pond, FL (Lane et al.
2011). (d) Event-bed frequency from Lighthouse Blue Hole, Belize (Denommee et al. 2014).
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steering of storms toward Japan. In addition, they also note the paired kamikaze
typhoons in their sedimentary record and support accounts of them playing an
important role in preventing the conquering of Japan by Mongol fleets.

Also in the western North Pacific, Williams et al. (2016) presented typhoon
overwash results from coastal marshes, ponds, and swales along the Gulf of
Thailand. In this first paleotempestology study in Thailand, cores from two low-
energy settings on the Gulf of Thailand coast – a coastal marsh near Cha-am
and beach ridge plain swales near Kui Buri – reveal geologic evidence of up to
19 typhoon strikes within the last 8000 years. The sand layers have sharp upper
and lower contacts with finer sediments located below and above the sand layers.
Possible explanations for this variability in the typhoon record are that typhoons
were more frequent and/or more intense in Southeast Asia in the mid-Holocene
because of climatic changes associated with the Mid-Holocene Warm Period or that
the record reflects site sensitivity changes resulting from a mid-Holocene sea-level
highstand.

In the Central South Pacific (Tahaa, French Polynesia), a 5000-year record
of overwash deposition from Toomey et al. (2013b) shows strong coherence
between recent coarse-grained deposits and observed cyclone events. The long-
term reconstructions highlight a period of higher coarse overwash flux between
approximately 2900 and 500 year BP, compared with the modern, and an earlier
active period between 5,000 and 3800 years BP. Over the later interval (2900–
500 years BP), higher than background storm activity is observed near the Bahamas,
while a general decrease in storm activity near Japan is observed. Central South
Pacific and North Atlantic tropical cyclone activities are different during the earlier
active interval (5000–3800 years BP), possibly driven by orbital changes in storm
season insolation. These relationships are unexpected given modern observations
that indicate tropical cyclone activity in the North Atlantic and central South
Pacific increase during opposite ENSO phases. The Tahaa cyclone reconstruction
also highlights a period of relative quiescence around French Polynesia today and
likewise the potential risk in the future should levels of activity increase to those
observed prior to 500 years BP.

J
Fig. 1.6 (continued) (e) Event-bed frequency at Laguna Playa Grande, Vieques (Donnelly and
Woodruff 2007). (f) MDR SST anomaly reconstruction (purple) with 95 % uncertainty envelope
(gray) (Mann et al. 2009). NOAA ERSST MDR SST data for 1870–2006 (black) (Mann et al.
2009). (g) Smoothed modern annual Atlantic tropical cyclone counts (red) and statistical model
estimates of basin-wide tropical cyclone counts from 500 to 1850 CE (blue) (Mann et al. 2009).
(h) Ti record from Cariaco Basin sediments thought to reflect changes in terrestrial runoff and
the position of the ITCZ (Haug et al. 2001). Gray shading is interval between 250 and 1150 CE
when all sites have heightened intense-hurricane-related event beds. Diagonal gray shading is
interval between 1150 and 1400 CE when Caribbean and Gulf of Mexico sites have heightened
intense-hurricane-related event beds and the North American east coast is inactive. Beige shading
is interval between 1400 and 1675 CE when only the North American east coast is active
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2.5 Coastal Karst Basins

Coastal karst basins (CKBs), which are features such as sinkholes, blue holes,
and underwater caves, provide alternative paleotempestology archives on carbonate
landscapes. Continual dissolution and modification of carbonate terrain over qua-
ternary timescales create a variety of basin-like features in limestone bedrock (van
Hengstrum and Scott 2011; van Hengstrum et al. 2015b). These features are able to
record the signature of tropical cyclones going back thousands of years.

A number of paleotempestology studies have been published from Apalachee
Bay, North Florida, along the Gulf of Mexico. Lane et al. (2011) reported on
Mullet Pond, a 4500-year subaerial sinkhole record of tropical cyclone activity
located within Apalachee Bay. Approximately 3.9 storms per century occur in
this paleorecord, this number being greater than that of previously published
paleotempestology records from the region. Intervals of both anomalously high and
low storm frequency were identified; however, the rate at which smaller layers were
deposited is interpreted to be relatively constant over the last five millennia. Lane
et al. suggest that significant variability in tropical cyclone frequency may only
have occurred for the highest magnitude events. The frequency of high magnitude
events peaked near six storms per century between 2800 and 2300 years ago.
These events were relatively rare with about 0–3 storms per century occurring
between 1900 and 1600 years ago and between 400 and 150 years ago (Fig. 1.5).
A marked decline in the number of large storm deposits, which began around
600 years ago, persisted through present with below average frequency over the
last 150 years when compared to the preceding five millennia. This was backed up
by a hydrodynamic modeling study that demonstrated that Apalachee Bay is far
more susceptible to tropical cyclone surge than historically observed (Lin et al.
2014). Climatological-hydrodynamic modeling (including a method to account
for storm size uncertainty), historical observations, and paleotempestology records
were combined to investigate local surge risk. The mean return period of the extreme
events with estimated surge levels above 5 m is about 40 years, whereas it is about
400 years according to the recent historical storm database (Lin et al. 2014).

Approximately 20 km north of Mullet Pond lies Spring Creek Pond, a coastal
sinkhole that contains a 2500-year record of tropical cyclone activity (Brandon et al.
2013). The authors identified and dated 34 storms layers, and an inverse modeling
technique is developed to constrain the landfall wind speed of the storms from
the grain size of their resultant deposits. The authors show that (1) applying the
inverse model to the sediment deposits from the historic (post-1851 CE) record
results in landfall wind speeds that are consistent with storms reported in the best-
track dataset, (2) all deposits throughout the 2500-year record are capable of being
produced by tropical cyclones, including a seemingly anomalous layer dated to
600 years BP, and (3) the Spring Creek Pond record of intense tropical cyclone
occurrence is consistent with the above-described reconstruction from Mullet Pond
(Lane et al. 2011) with both records indicating a period of increased intense tropical
cyclone frequency between 1700 and 600 years ago and decreased intense storm
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frequency from 2500 to 1700 and 600 years ago to the present. The variation
in intense tropical cyclone strike frequency, particularly the drop in activity at
600 years BP, is potentially the result of inferred shifts in Loop Current penetration
into the Gulf of Mexico.

van Hengstum et al. (2015a) presented records of late Holocene storminess and
coastal temperature change from a Bermudian submarine cave that is hydrograph-
ically circulated with the coastal ocean (Fig. 1.7). Erosion of terrestrial sediment
into the submarine cave provides a “storminess signal” that provides evidence for
increased storm activity during the Little Ice Age (150–600 calibrated years (cal.
years) BP) and centered at 1700 and 3000 cal. years BP. van Hengstum et al.
(2015a) noted that understanding the driver of this storminess signal will require
higher-resolution storm records to disentangle the contribution of tropical versus
extratropical cyclones and a better understanding of tropical cyclone activity during
hemispheric cooling periods. Most importantly, however, the signal in Bermuda
appears more closely correlated with proxy-based evidence for subtle Atlantic
Meridional Overturning Circulation (AMOC) reductions than with NAO phasing.

Gischler et al. (2008) reported on a hurricane-induced overwash record from a
blue hole in Belize. The blue hole record consisted of undisturbed, annually layered
biogenic carbonate muds and silts with intercalated coarser-grained storm beds.
Storm event beds are most common during AD 650–850, around AD 1000, during
AD 1200–1300, and AD 1450–1550. Major storm beds are rare during the past
500 years BP. Denommee et al. (2014) also presented a highly detailed sedimentary
proxy record of paleotropical cyclone strikes from the blue hole of Lighthouse
Reef, Belize. Denomee et al. demonstrated that active tropical cyclone regimes have
occurred when both MDR SSTs and NAO mode are high, while inactive tropical
cyclone regimes correlate with low MDR SSTs and NAO mode (Fig. 1.5).

Fig. 1.7 A conceptual model illustrating the point source effect in Walsingham Cavern, where
terrestrial sediment enters the subaerial fissure-collapse entrance in the subtropical forest (Idwals
Nature Preserve) and is laterally transported into the cave (Modified from ref. van Hengstum et al.
2015a). Temperature monitoring in Walsingham Cavern from 2010 to 2011 indicates that tidal
pumping causes seawater to primarily enter the submarine cave from the adjacent lagoon (Castle
Harbour). Some seawater, however, is advecting into the submarine cave through the karst that is
derived from the upper 75 m of the Sargasso Sea
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van Hengstum et al. (2014) presented an overwash record from a blue hole
on Great Abaco Island, the Bahamas. The authors found that overall tropical
cyclone activity, including all intensities of events, has been variable over the last
millennium. A noteworthy quiescent interval occurs from 1150 AD to 1300 AD,
coincident with increased El Niño activity and a weakened African easterly jet.
Based on SSTs, the African easterly jet, and ENSO activity alone, the climate
system at 1350 AD appears to begin creating favorable conditions for tropical
cyclone activity in the North Atlantic. By 1500 AD, tropical cyclone activity was
encouraged by elevated SSTs, invigorated West African Monsoon, and decreased
El Niño events. After 1600 AD, the climate system was likely beginning to hamper
cyclogenesis by decreasing SSTs and the African easterly jet, although depressed
El Niño activity also persisted. Tropical cyclone activity recorded at this site
(Northwest Caribbean, 26ıN) compared to that at Mullet Pond (Gulf of Mexico,
29ıN) (Lane et al. 2011) appeared antiphased over the last millennium, yet these
sites reside at similar latitudes. This may indicate that regional ocean-atmospheric
dynamics in different North Atlantic Ocean sub-basins may be playing a larger role
modulating regional paleotropical cyclone activity than previously considered.

3 Paleotempestology-Generated Landfall Frequencies
and Return Periods

Forecasting future tropical cyclone impacts requires sophisticated modeling, pred-
icated on accurate initialization data. The official NOAA database of historical
tropical cyclone tracks (HURDAT) along the Florida coast, for example, only
extends back in time to 1851. However, this data is used for purposes along
a spectrum from statistically estimating annual expected return frequencies to
modeling the impacts of global climate change and sea-level rise on shoreline
change; hence, a longer and more complete dataset would result in greater accuracy
at initialization. More recently the field of paleotempestology has been working
to generate tropical landfall frequencies and return periods that extend back much
further in time (thousands of years) for specific geographical regions.

Along the eastern Australian coastline, Nott and Jagger (2013) used a generalized
extreme value distribution and Bayesian analysis of a beach ridge plain record of
extreme tropical cyclone-generated marine inundations to calculate return rates.
Using this approach, the return period of the marine inundation generated by
Cyclone Yasi was determined. Cyclone Yasi, which occurred on 3 February 2011,
had a central pressure of 929 hPa at landfall near Mission Beach approximately
150 km south of Cairns, Northeast Australia. Nott and Jagger (2013) find that the
beach ridge calculated return periods for Cyclone Yasi type storms appear to differ
considerably from estimates determined using a probability-based approach (which
extrapolates from the short historical record).
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For Apalachee Bay, FL, Lin et al. (2014) found that the mean return period for
extreme tropical cyclones, with estimated surge levels above 5 m, is approximately
40 years in both climatological-hydrodynamic modeling and the paleotempestology
record, whereas it is about 400 years according to the historical storm database.
Therefore, both the climatological-hydrodynamic modeling and the overwash-
deposit-based long-term reconstructions indicate that Apalachee Bay is far more
susceptible to tropical cyclone surge than historically observed. Thus Lin et al.
found that due to its limitation and biases, relying on the historical storm record
may greatly underestimate the risk of extremes for Apalachee Bay. Donnelly
et al. (2015) came to a similar conclusion by correlating five previously published
paleotempestology records from multiple sites along the east coast of North
America, the Bahamas, and Puerto Rico. Donnelly et al. found that periods of
frequent intense tropical cyclone landfalls exceeded historical levels at all five sites
over the last 2000 years. Like Lin et al., this study also found that the historical
storm record from these geographical regions may be underestimating the risk of
tropical cyclones across these locations.

Elsner et al. (2008) quantitatively compared estimated return periods using the
historical record and the paleotempestology record from Lake Shelby, Alabama.
In the paleotempestology record, the minimum return level of overwash events
recorded in sediment cores was estimated using a modern analog (Hurricane Ivan
of 2004) to be 54 ms�1 (105 kt) for a return period of 318 years, based on 11
events over 3500 years. The expected return level of rare hurricanes in the historical
record (1851–2005) at this location and for this return period is estimated using a
parametric statistical model and a maximum likelihood procedure to be 73 ms�1

(141 kt), with a lower bound on the 95 % confidence interval of 64 ms�1 (124 kt).
The results between the paleotempestology record and the historical record are
not significantly different. Therefore the estimated sensitivity of Lake Shelby to
overwash events is consistent with the historical record, given the model. These
recent studies highlight the potential importance of verifying return periods derived
from the historical record with return periods derived from the paleotempestology
record for different geographical locations.

4 Advances in the Understanding of Climate Change-Driven
Tropical Cyclone Dynamics

Including recent research outlined in this book chapter and previously published
research, numerous paleotempestology records exist for the Western Atlantic Ocean,
Gulf of Mexico, Caribbean Sea, South Pacific Ocean, and fewer records from
the Northwest Pacific and Indian Oceans (Nott 2011b). In recent years the field
of paleotempestology has significantly progressed the understanding of long-term
tropical cyclone dynamics and the possible climate drivers associated with long-
term tropical cyclone trends.
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In the South Pacific Ocean, Haig et al. (2014), Nott (2010), and Forsyth et al.
(2010) among others identified millennial-scale variability in tropical cyclone
activities over the last 6000 years. Haig et al. (2014) used speleothem records
to demonstrate that the low levels of storm activity, which have occurred on
the mid west and northeast coasts of Australia, are unprecedented over the past
550–1500 years. Their results also revealed a repeated multi-centennial cycle of
tropical cyclone activity, the most recent of which commenced around AD 1700.
The present cycle includes a sharp decrease in activity after 1960 in Western
Australia. This is in contrast to the increasing frequency and destructiveness of
Northern Hemisphere tropical cyclones since 1970 in the Atlantic Ocean and the
western North Pacific Ocean. Nott (2004, 2011a) and Nott et al. (2009) also noted
millennial-scale variability in tropical cyclones along the Australian coastline. Like
Haig, Nott also noted that the long-term trends associated with the Australian
paleotempestology records indicate that the frequency of intense tropical cyclones
has decreased into the modern day. And in 2012 Nott and Forsyth pointed out the
presence of substantial gaps in ridge plain formation over the late Holocene along
the NE Australian coast. These gaps are most likely due to periods when fewer
high intensity tropical cyclones made landfall (Nott and Forsyth 2012). They noted
that some of the overwash sedimentary records from the North Atlantic Basin also
have major gaps suggestive of periods of tropical cyclone inactivity. Periods of
inactivity in the North Atlantic Basin have been previously related to time periods
dominated by El Niño (Donnelly and Woodruff 2007). Comparisons with paleo-
ENSO records from Ecuador (Moy et al. 2002) suggested the same may be true of
the NE Australian sites (Fig. 1.8) between approximately 3500 and 2500 cal. years
BP. However a later phase of tropical cyclone inactivity along the NE Australian
coastline (�1800 to �900 years BP) does not correlate well with a higher ENSO
index (Fig. 1.8). In addition, there is not a clear coincidence between the major
periods of El Niño suggested by the paleo-ENSO record and all of the periods of
lower tropical cyclone activity in the North Atlantic and Southwest Pacific, or the
periods of heightened tropical cyclone activity in the Northwest Pacific and east
Indian Oceans and the Gulf of Carpentaria (Nott and Forsyth 2012, Fig. 1.8).

In the Southwest Pacific, along the Gulf of Thailand, Williams et al. (2016) used a
sediment overwash record to show that the frequency of tropical cyclone strikes was
two to five times greater from 3900 to 7800 cal. years BP compared to 0–3900 cal.
years BP. They interpret this increase in more frequent and/or more intense tropical
cyclones as either a response to an increase in mid-Holocene SSTs or that the record
reflects site sensitivity changes due to a mid-Holocene sea-level highstand. The
possible link to SSTs and a greater frequency of intense tropical cyclone strikes
could have important societal implications, given possible consequences of ongoing
global warming.

Many more records have become available for the North Atlantic Basin (Western
Atlantic Ocean, Gulf of Mexico, and Caribbean Sea) than that of the Pacific. A
number of these studies show a clear relationship between tropical cyclones and
SSTs (Besonen et al. 2008; Denommee et al. 2014; Ercolani et al. 2015; Hetzinger
et al. 2008; Trouet et al. 2016), where higher/lower SSTs in the MDR result in
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Fig. 1.8 Global phases of tropical cyclone activity and inactivity over past 5000–7000 years
(Modified from ref. Nott and Forsyth 2012)

relatively higher/lower tropical cyclone activity. Many of these studies also point
to the NAO as a key climate driver of tropical cyclone activity (Denommee et al.
2014; Hetzinger et al. 2008; Trouet et al. 2016), where a more positive phase
of NAO results in higher tropical cyclone activity in the North Atlantic Basin.
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The importance of SSTs and the NAO was also proposed by Mann et al. (2009)
(Fig. 1.9), where authors gathered previously published paleotempestology data
from five sites along the North Atlantic Basin that covered the past 1500 years
(US Atlantic coast and Puerto Rico). In addition to the paleorecords, a previously
published statistical model of the climatic conditions, principally the NAO, SSTs,
and ENSO, over the past 1500 years was presented. Both approaches suggest greater
regional tropical cyclone activity, or at least as great as the recent (post mid-1990s)
increase in activity, occurred during the Medieval Warm Period between AD 900
and 1100. Since this time, regional tropical cyclone activity has decreased until the
recent increase. They attribute the heightened medieval tropical cyclone activity to
La Niña-like conditions and relatively warm tropical Atlantic SSTs.

Liu and Fearn (1993, 2000) were the first to propose the long-term position of
the Bermuda High as an important driver of North Atlantic Basin tropical cyclone
landfall position. They proposed that shifts in the position of the Bermuda High
were responsible for millennial-scale oscillations in the cycle of North Atlantic
tropical cyclone activity. This work has been expanded on by a number of recent
works (McCloskey and Keller 2009; Malaizé et al. 2011; McCloskey and Liu
2012; van Hengstum et al. 2016). In 2009, McCloskey and Knowles noted that a

Fig. 1.9 Modern Atlantic tropical cyclone counts (red) compared both with statistical model
estimates of tropical cyclone activity based on modern instrumental (AD 1851–2006; black) and
proxy-reconstructed (AD 500–1850; blue) climate indices and an estimate of basin-wide land-
falling North Atlantic tropical cyclone activity (AD 500–1991) derived from regional composites
of overwash sediments (green) (Modified from ref. Mann et al. 2009). All series were smoothed
at multidecadal (40-year) timescales. The sediment composite record was standardized to have
the same mean and multidecadal variance as the statistical model estimates. Uncertainties for the
statistical model estimates (gray shading, indicating 95 % confidence intervals) take into account
the uncertainty in the statistical model itself (gray shading) and – in the case of the proxy-
reconstructed indices (gray shading) – the additional uncertainty due to the uncertainties in the
proxy-reconstructed climate indices. Uncertainties for the sediment composite record (thin dashed
black curves indicating upper and lower limits of the 95 % confidence interval) are derived from
jackknifing of the full composite with respect to each of the five contributing regional estimates
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strong north or south migration of the ITCZ would be accompanied by similar,
if not precisely simultaneous, movements of the Bermuda High and the tropical
cyclone zone (McCloskey and Knowles 2009). McCloskey and Keller showed two
periods of increased tropical cyclone activity from 5500 to 2500 cal. years BP
along the coast of Belize corresponding to an investigation from St. Martin in
the French West Indies (Bertran et al. 2004) that noted an increase in tropical
cyclone activity between 4900 and 2600 cal. years BP. Both sites are at the same
latitude (18ıN), thereby supporting the hypothesis of latitudinally coherent periods
of increased tropical cyclone activity (McCloskey and Keller 2009). Furthermore,
this period correlated to a period of generally southern ITCZ migration, while the
period of hyperactivity observed by Liu and Fearn (2000) on the Gulf Coast roughly
correlated to a northern ITCZ movement (Haug et al. 2001). Therefore McCloskey
proposed a climatically controlled zone of tropical cyclone landfall slowly migrating
north and south across the Caribbean. van Hengstum et al. (2016) invoke a similar
hypothesis using a 3000-year-old Northern Bahamas (Abaco Island) sinkhole record
to demonstrate that the ITCZ has likely helped modulate intense tropical cyclone
strikes on the western North Atlantic margin on millennial to centennial scales. The
paleotempestology reconstruction closely matches a previous reconstruction from
Puerto Rico (Donnelly and Woodruff 2007) and documents a period of elevated
intense tropical cyclone activity on the western North Atlantic margin between
2500 and 1000 years BP that coincides with a more northerly ITCZ position. van
Hengstum et al. (2016) stipulated that it is the Atlantic Meridional Mode (AMM)
that is associated with an anomalous meridional SST gradient across the mean ITCZ
latitude and a cross-gradient atmospheric boundary layer flow, which shifts the
ITCZ toward the warmer hemisphere. A positive phase of the AMM is associated
with a strong meridional SST gradient, a northward shift in the ITCZ, and decreased
vertical wind shear in the tropical Atlantic.

In 2014 Wallace et al. used multiple published records from the Gulf of Mexico,
Caribbean Sea, and western North Atlantic Ocean coastlines to better understand
various climatic modes of variability. Wallace et al. noted that during the mid-
Holocene, tropical cyclone activity appears to have been dominated by Northern
Hemisphere insolation and a northward shift of the ITCZ toward the warmer
hemisphere (Toomey et al. 2013a), as rapid atmospheric temperature shifts that
occur during ENSO activity could potentially drive tropical cyclones. This was
supported by a climate model (Korty et al. 2012). Donnelly et al. (2015) furthered
the understanding of these long-term climate drivers by correlating five previously
published paleotempestology records with a new well-resolved paleotempestology
record from Salt Pond, Massachusetts. The study revealed that periods of frequent
intense tropical cyclone landfalls, that exceeded historical levels, occurred at all
sites over the last 2000 years (Fig. 1.6). Many prehistoric tropical cyclone event
beds contained more coarse sediment than historical events, which may suggest that
prehistoric events achieved greater intensity relative to historical tropical cyclones.
The study demonstrated that centennial-scale shifts in MDR SST and associated
ITCZ migration played an important role in driving basin-wide changes in intense
tropical cyclone activity. Persistently warm MDR SST’s drove heightened levels of
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intense tropical cyclone activity across much of the western North Atlantic between
ca. 250 and 1400 CE; however, activity along the east coast was suppressed between
1150 and 1400 CE. A shift in intense tropical cyclone activity from the Caribbean
and Gulf of Mexico to the east coast occurred at the onset of the Little Ice Age (ca.
1400 CE). At this time, many Caribbean and Gulf of Mexico paleotempestology
reconstructions observed less tropical cyclone activity, which has mostly been
explained by relatively cooler MDR SSTs and a southward shift of the ITCZ
(Fig. 1.6). The ensuing interval of heightened intense tropical cyclone activity
confined to the east coast between about 1400 and 1675 CE may have been driven
by a combination of increased tropical transition cyclogenesis and elevated SSTs off
the east coast. Multiple authors (Donnelly et al. 2015; McCloskey et al. 2013; van
Hengstum et al. 2016; among others) pointed out the potential importance of SST
and ITCZ position because future anthropogenic warming focused in the Northern
Hemisphere will likely favor a more northerly ITCZ position, which may in turn
return the western North Atlantic margins to an active tropical cyclone period.

5 Conclusions

The most evident characteristic of the above-paleotempestology records is that the
majority reveal alternating periods of either greater or lesser tropical cyclone activity
over time periods extending back as far as 6000 years. The theme emerging from the
recent research is that tropical cyclone behavior, in multiple oceanic basins, is not
stochastic over the long term and it appears that periods of greater or lesser tropical
cyclone activity have been due to variations in climatic conditions, rather than just
random variability over a consistent climatic regime. It has also been shown in
multiple paleotempestology studies that periods of frequent intense tropical cyclone
landfalls of the past may have exceeded that of the recent (last �200 years) tropical
cyclone record. Therefore it becomes extremely important to understand the climatic
conditions associated with these “active” time periods.

The studies discussed in this review chapter, along with other studies, indicate
the importance of multiple long-term climate drivers. In the Pacific Basin, SSTs
and ENSO seem to be important aspects of the climate regime in driving long-term
tropical cyclone variability. In the North Atlantic Basin, SSTs, and thus AMO, have
been shown to be very important to the frequency and intensity of tropical cyclone
activity. In addition, positive (El Niño) and negative (La Niña) phases of ENSO
continue to show an important influence on hurricane landfalls along the western
Atlantic Ocean margins, where negative ENSO phases promote the development
of tropical cyclones in the North Atlantic Basin. More recently researchers have
been focused on the importance of the ITCZ position. Research shows that a more
northerly position of the ITCZ, coincident with warm SSTs in the MDR, promotes
cyclogenesis and potential tropical cyclone intensity in the MDR by increasing low-
level vorticity and decreasing vertical wind shear and sea-level pressure. In addition,
ITCZ latitudinal position can influence the position of the Bermuda High. It has been



1 Recent Advances in the Emerging Field of Paleotempestology 29

suggested that a more northerly ITCZ position results in a more northerly Bermuda
High position, which may in turn steer tropical cyclones to make landfall in different
geographical locations. In order to better understand the long-term climate drivers
of tropical cyclones, and therefore the future behavior of tropical cyclones, more
paleotempestology records are needed. But what is clear now is that any simulations
of long-term tropical cyclone behavior need to account for climatic influences such
as those discussed above (SSTs, NAO, ENSO, AMM, and AMO).

In the last few decades, we have learned a great deal about long-term tropical
cyclone dynamics through the field of paleotempestology. This important field of
study allows us to extend the relatively short instrumental record back in time
and gather information on the potential climate drivers associated with long-term
tropical cyclone dynamics. However it is important to keep in mind that this is
not a perfect science. Many paleotempestology studies have shown that overwash
sand and/or shell layers occurring in coastal lacustrine, lagoon, and marsh settings
do not record all tropical cyclone events and are only a reliable proxy for major
hurricanes, rather than minor tropical cyclones or winter storms. In addition,
studies have shown that some field sites may lack spatio-lateral continuity, where
correlating individual sand and/or shell layers with specific prehistoric tropical
cyclone events is impossible. For this reason it is important to continue the study
of the modern paleotempestology record and its relationship to known tropical
cyclone events (as discussed above in “2.4.1 Modern Records and 2.4.2 Difficulties
in using Tropical Cyclone Overwash Records”). Paleotempestology studies using
multiple approaches (both archives and proxies) as discussed in this chapter
add significant confidence to paleotempestology records through cross validation
and the development of new paleotempestology proxies. In addition, new proxy
development, such as stable isotopes, to supplement sand/shell layer-based storm
proxy signals may further refine the field of paleotempestology.
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Chapter 2
Archival Evidence of Secular Changes
in Georgia Hurricanes: 1750–2012

Mark R. Welford, Brian H. Bossak, and Ethan J. Gibney

Abstract North Atlantic hurricanes present the greatest recurring meteorological
hazard along the southern and eastern shores of the USA. Since the late 1800s,
in contrast to much of the Southeastern USA, the Georgia coast has experienced
infrequent hurricane landfalls, particularly in recent decades. As a result, coastal
storm preparedness complacency appears to be rampant along the Georgia coastline.
Both local and state governments were unprepared for shadow evacuation during
Hurricane Floyd in 1999. The study described here includes an examination of
temporal and spatial trends in hurricane landfall along the Georgia coast from 1750
to 2012. Since 1750, 18 of the 24 recorded hurricanes that made landfall along
the Georgia coast occurred between 1801 and 1900, yet the hurricane intensities
have declined since 1851. Most critically our data establishes that the mean location
of landfall along the Georgia coast has shifted 60 km north and hence closer
to Savannah. Future efforts to re-characterize hurricane surge zones and improve
evacuation infrastructure along the Georgia coast must reevaluate this threat.
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North Atlantic hurricanes present the greatest recurring meteorological hazard along
the southern and eastern shores of the USA. The most significant magnitude of such
storms is experienced at the location(s) where landfall occurs, although significant
impacts from wind and rain accompany hurricanes (and their weaker constituents
as tropical storms and tropical depressions) as they move inland or tangent to a
shoreline. While storm surges, especially to the northeast of the location of hurricane
landfall, can and are very destructive, more recent tropical cyclones have been
associated with effects from high winds and inland flooding. Since the late 1800s, in
contrast to much of the Southeastern USA, the coastline of Georgia has experienced
infrequent hurricane landfalls, particularly in recent decades. This study includes an
examination of temporal and spatial trends in hurricane landfall along the Georgia
coast from 1750 to 2012.

The North Atlantic hurricane database (HURDAT2) contains data on tropical
cyclones occurring in the North Atlantic basin as far back as the year 1851. Analysis
of tropical cyclone activity across the time series contained in HURDAT2 suggests
large temporal and spatial variability in hurricane landfalls. This variability in
tropical cyclones combined with an influx of people moving to coastal zones within
the state of Georgia since the most recent hurricane landfall is potentially associated
with coastal storm preparedness complacency that appears to be rampant along
the Georgia and Northern Florida coasts (Kaiser 2014; Wang and Kapucu 2007).
According to the US Census, since 1980, the population of Georgia has increased
by nearly 5 million with more than 200,000 more people living permanently in
the coastal counties of Chatham (where Savannah is located adjacent to South
Carolina), Bryan, Liberty, McIntosh, Glynn, and Camden (located adjacent to
Florida) (Table 2.1; US Census 1995, 2000, 2015). Many of the new residents along
Georgia’s coastal zones may not have experience with hurricanes and therefore
potentially underestimate the possibility of hurricane destructiveness (Gladwin and
Peacock 1997). In addition, while many new coastal residents may underestimate
hurricane destructiveness, many other newcomers might overestimate risk, leading
to potentially dangerous shadow evacuation events, whereby people leave potential
landfall sites when they were not required to and thus exacerbate the hazard potential

Table 2.1 Georgia and Georgia’s coastal counties populations from 1960 to 2014

Year 2014 est. 2010 2000 1990 1980 1970 1960

Georgia 10097343 9687653 8186453 6478216 5463105 4589575 3943116
Chatham 283379 265128 232048 216935 202226 187767 188299
Bryan 33906 30233 23417 15438 10175 6539 6226
Liberty 65198 63453 61610 52745 37583 17569 14487
McIntosh 14214 14333 7144 8634 8046 7371 6364
Glynn 82175 79626 67568 62496 54981 50528 41954
Camden 52027 50513 43664 30167 13371 11334 9975
Totals 530899 503286 435451 386415 326382 281108 267305
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of coastal storms (Gladwin and Peacock 1997). For example, in 1999 a shadow
evacuation occurred as Hurricane Floyd was projected to potentially track onshore
in Northern Florida and Georgia. The resulting shadow evacuation along the Georgia
coast overwhelmed the north and east lanes of I-95 and I-16, respectively, near
Savannah (Dash and Gladwin 2007). This particular shadow evacuation event was
part of one of the largest hurricane evacuations and traffic jams in US history,
with estimates of more than 2.5 million people in Florida, Georgia, South Carolina,
North Carolina, and Virginia leaving their homes to escape the potential landfall of
Hurricane Floyd (Baker 2000). In South Carolina, 25 % of households took two or
more cars compounding the traffic congestion along the evacuation routes (Wolshon
et al. 2001; Dow and Cutter 2002). Many of those fleeing the approaching storm
were trapped along the established evacuation routes, with many divided highways
becoming unidirectional – which still did little to relieve the tremendous amount
of traffic at standstill. If the storm had made landfall in locations where multitudes
were essentially stuck on evacuation routes, the risk of significant harm could have
been greatly magnified.

The most recent hurricane landfall along the Georgia coastline was Hurricane
David (Saffir-Simpson Hurricane Wind Scale (SSHWS) Category 2) in 1979, and,
as previously mentioned, the last major evacuation occurred during Hurricane Floyd
(SSHWS Category 2) in 1999. The “Sea Islands” hurricane of August 27, 1893
(SSHWS Category 3, 16 ft surge) that killed between 1000 and 2000 people and
left upward of 30,000 people homeless is ranked among the five deadliest US
hurricanes to impact the country in recorded history (Fraser 2006; HVRI 2014).
In fact, it is quite likely that this storm killed many more people than is currently
estimated in historical accounts, but estimates of those killed were mostly restricted
to white, landowning Americans (Fraser 2006; HVRI 2014). Just 12 years prior, the
sixth deadliest hurricane in US history, the Savannah hurricane of August 27, 1881
(SSHWS Category 2), caused 335 deaths in Savannah (Fraser 2006). Historical
records indicate that although Georgia has avoided significant hurricane landfalls
in the last couple of decades, the coastline of Georgia itself is not immune to
destructive, deadly hurricanes.

Researchers (e.g., LaVoie 2011) have stressed the importance of identifying
historical, pre-HURDAT2 tropical cyclones in order to understand long-term trends
in tropical cyclone activity, especially in light of a possible association between
the frequency and intensity of tropical cyclones and anthropogenic climate change
(Webster et al. 2005; Maue 2009, 2011). In order to better characterize the risk of
hurricane landfall over time, we utilized historical records and HURDAT2 data to
examine hurricane impacts along Georgia’s coastal counties to develop a long-term
dataset (1750–2012) of coastal Georgia hurricanes. Given our temporal constraints,
we did not model synthetic tropical cyclone tracks, although such efforts have
proved useful over longer time scales (e.g., Elsner et al. 2008; Woodruff et al.
2008). We generated track maps of hurricanes present in our records using ArcGIS.
Utilizing this reconstructed data, we estimated return intervals for all intense (or
major) hurricanes in the area of study (SSHWS 3 or higher). Our goal was to
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improve and enhance the existing knowledge of the long-term record of severe
coastal storms and improve the risk characterization of hurricane impacts along
Georgia’s coastal counties.

1 Description of Data and Methods

North Atlantic hurricanes have been historically documented for hundreds of years;
however, few regional chronologies exist that include tropical cyclone activity prior
to 1851. These works include Poey (1855), Tannehill (1938), Ludlum (1963),
Dunn and Miller (1960), Millas (1968), Fernandez-Partagas and Diaz (1996),
Fraser (2006), Chenoweth (2006), Chenoweth and Divine (2008), Mock (2008),
Mock et al. (2010), LaVoie (2011), Chenoweth and Mock (2013), and Chenoweth
(2014). In previous work, we noted a decreasing trend in coastal Georgia hurricane
frequency in the period from 1851 to 2012 (Bossak et al. 2014). This trend appears
to mirror regional decreases in hurricane activity along the eastern shore of the
USA (Keim et al. 2007; Zandbergen 2009; Maue 2011). Thus, extending coastal
Georgia’s hurricane record back in time to 1750 by utilizing documentary records,
such as diaries, newspapers, ship logs, military records, and weather records, is
another critical step toward evaluating the significance of our prior findings and
better understanding of long-term hurricane activity along Georgia’s coastline.
Estimated storm tracks were developed from the historical data and observations
and then compared and contrasted with Chenoweth’s (2006) proposed storm tracks.
Although quantitative meteorological data is scarce prior to 1851, qualitative data
from historical archives are plentiful even for Georgia, which contained a somewhat
more sparsely populated coastal region compared with states such as South Carolina
or Massachusetts. Although geological proxies, such as tree-ring isotope records
(e.g., Miller et al. 2005) and sediment records (e.g., Liu and Fearn 2000; Elsner et
al. 2008; Ercolani et al. 2015), in coastal barrier island cores are useful for detecting
prehistoric overwash patterns with characteristics of strong hurricane landfalls, they
are not used for our analysis due to spatial, temporal, and intensity issues that have
yet to be resolved with high confidence. For example, in one study, ten barrier island
core samples along the Gulf of Mexico were analyzed for overwash evidence of
Hurricane Opal of 1995, a Category 4 hurricane; however, only one of the ten cores
contained an overwash sand layer (Elsner et al. 2008).

An extensive inventory of documentary information located in state, federal,
personal, and business websites including all the websites listing historic news-
papers from Florida, Georgia, and South Carolina and NOAA’s compilation by
Sandrik and Landsea (2003) was conducted as part of this research project. All
hurricane and tropical storms that possibly impacted the Georgia coast identified
in academic journal articles, books, professional papers, and monologues were
tabulated. Extensive use was made of Fraser (2006) as a reference volume because
it provides an in-depth chronology of historical hurricanes affecting South Carolina
and coastal Georgia from the late 1600s to 2004. Data from these sources generated
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a potential tropical cyclone candidate list of 61 hurricanes and/or tropical storms
that impacted the Georgia coast from 1750 to 1850. Primary sources (newspapers,
diaries, ship logs/weather records) were then used to evaluate each individual storm
and narrow the candidate list further.

2 Newspapers

Newspapers from the period prior to 1851 occasionally contained detailed weather
descriptions of Georgia tropical cyclones dating as far back as the late eighteenth
century. These descriptions sometimes included details of the storm including the
estimated time frame of storm impact, wind direction, wind intensity, rainfall,
storm surge, and damage to buildings and trees and specific details about the
geographic extent of damage, ship wrecks, and deaths (Ludlum 1963; Mock 2004;
Chenoweth 2006). Historically, Savannah served as the state’s primary site of
maritime, urban, and economic activity; as a result many newspapers within the
research period relevant to this study (1751–1850) were printed in the surrounding
area. Specifically, 13 newspapers from Savannah provide some details about
tropical cyclones that impacted Georgia. Relevant newspapers that were examined
for hurricane-related information included the Columbian Museum (1796–1799),
Gazette of the State of Georgia (1783), Georgia Gazette (1763–1802), Royal
Georgia Gazette (1781), Savannah Republic (1802–1903), Georgia Republican
and State Intelligencer (1802–1808), Savannah Evening Ledger (1808–1815),
Savannah Daily Republic (1820), Savannah Republican (1816–1855), Savannah
Mercury (1828–1829), Savannah Gazette (1817), Daily Republican (1839–1840),
and The Savannah Museum (1822).

Milledgeville, which is currently a small-sized city in central Georgia, served
as the state’s capital from 1804 to 1868. As a result, numerous influential news-
papers were printed in the city during this period of time. These papers regularly
reported on regional stories and reprinted news accounts from other regional
or state newspapers. We examined eight newspapers published in Milledgeville
for hurricane-related information, including Federal Union (1830–1872), Georgia
Argus (1810–1815), Milledgeville Intelligencer (1808), Reflector (1817–1819),
Georgia Journal (1809–1847), Southern Recorder (1820–1872), Southern (1828),
and the Standard of Union (1836–1841). The following excerpt from the Georgia
Journal provides an example of a Milledgeville newspaper report on what was
later determined to be the strongest tropical cyclone to impact Savannah during the
nineteenth century (1824):

Georgia Journal, Tuesday, September 28: “HURRICANE-After some days of heavy threat-
ening weather, with profuse showers of rain, the wind commenced blowing on Tuesday
afternoon about 5 o’clock, from the N.E. accompanied with rain, from which time it
continued increasing until 2 o’clock the following morning during which it blew a complete
hurricane. Shortly after 2 o’clock the wind suddenly changed to the S. E. where it continued
about an hour and a half, and then gradually abated. Our city has not experienced anything
of a like nature that will bear a comparison with it, since the dreadful storm of 1804.”
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In addition, 11 newspapers from other areas in the state were reviewed for hurri-
cane information including the Albany Patriot (1845–1866), Athenian (1827–1832),
Cherokee Phoenix (1828–1834), Columbus Enquirer (1828–1890), Columbus Sun
(1828–1890), Georgia Messenger (1823–1847), Macon Telegraph (1826–1908),
Upper Georgia Whig (1847), Southern Banner (1833–1837), Southern Miscellany
(1842–1849), and the Southern Whig (1838–1850).

Prior to the mid-1830s, most newspapers in the state were published on a weekly
basis and were biased toward news associated with the date of publication. Thus,
weaker storms, or storms that impacted areas with sparse populations during a
period of several days prior to print, were not necessarily considered newsworthy
enough to warrant inclusion. In general and as would be expected, newspaper reports
contained more extensive information concerning stronger storms and their impacts.
An exception to the emphasis on the most recent storms occurred when documentary
letters or contributed articles from other regional newspapers were reprinted several
weeks after the occurrence of a particular storm.

The newspapers that were utilized for the historical (pre-1851) portion of this
research project are archived in a variety of sources, including The Digital Library
of Georgia, the Library of Congress, the University System of Georgia’s Interlibrary
Loan, Georgia Historical Society, and various websites. A total of 40 newspapers
were examined for this historical hurricane research. In addition, the research team
visited the Georgia Historical Society’s Savannah location on several different
occasions in person to scan the newspaper archives and peruse the microfiche
newspapers on file.

3 Diaries/Letters

Private diaries, journals, and letters provide useful documentation of the impact
of tropical cyclones at, and immediately after, landfall. These documents often
contain large amounts of weather-related information such as daily weather activity
and have proven useful for tropical cyclone reconstruction (Sullivan 1986). Many
documents contained valuable information on weak tropical cyclones that would
not have warranted inclusion in newspapers. The following excerpt is an account by
Aaron Burr, Vice President of the United States of America, who was visiting John
Couper in St. Simons when a hurricane passed directly over St. Simons Island and
the city of Darien, Georgia:

Wednesday, September 12, 1804.
On Friday last, hearing that Mr. Couper had returned and was very seriously ill, I took a

small canoe with two boys, and went to see him. He lay in a high fever. When about to return
in the evening, the wind had risen so that, after an ineffectual attempt, I was obliged to give it
up, and remain at Mr. C.’s. In the morning the wind was still higher. It continued to rise, and
by noon blew a gale from the north, which, together with the swelling of the water, became
alarming. From twelve to three, several of the out-houses had been destroyed; most of the
trees about the house were blown down. The house in which we were shook and rocked so
much that Mr. C. began to express his apprehensions for our safety. Before three, part of the
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piazza was carried away; two or three of the windows bursted in. The house was inundated
with water, and presently one of the chimneys fell. Mr. C. then commanded a retreat to a
storehouse about fifty yards off, and we decamped, men, women, and children. You may
imagine, in this scene of confusion and dismay, a good many incidents to amuse one if one
had dared to be amused in a moment of much anxiety. The house, however, did not blow
down. The storm continued till four, and then very suddenly abated, and in ten minutes it
was almost a calm. I seized the moment to return home. Before I had got quite over, the gale
rose from the southeast and threatened new destruction. It lasted great part of the night, but
did not attain the violence of that from the north; yet it contributed to raise still higher the
water, which was the principal instrument of devastation. The flood was about seven feet
above the height of an ordinary high tide. This has been sufficient to inundate great part of
the coast; to destroy all the rice; to carry off most of the buildings which were on low lands,
and to destroy the lives of many blacks. The roads are rendered impassable, and scarcely a
boat has been preserved. Thus all intercourse is suspended. The mail-boat, which ought to
have passed northward last Saturday, and by which it was intended to forward this letter, has
not been heard of. This will go by a man who will attempt to get from Darien to Savannah
on foot, being sent express by the manager of Major Butler; but how, or whether it will go
on from Savannah, is not imagined.

Major Butler has lost nineteen negroes (drowned), and I fear his whole crop of rice,
being about two hundred and sixty acres. Mr. Brailsford, of Charleston, who cultivates in
rice an island at the mouth of the Alatamaha, has lost, reports say, seventy-four blacks. The
banks and the buildings on the low lands are greatly injured. We have heard nothing from
the southward, nor farther than from Darien northward.

Davis, Matthew L. (1837). Memoirs of Aaron Burr. New York: Harper & Brothers.

4 Ship Logs

Although ship logbooks can provide detailed climatological information, there are
limitations when searching for data specific to hurricanes. Little information is
provided on the landfall location of hurricanes. Also, logbook entries may be scarce
during hurricane season due to ships seeking refuge of harbors. Despite these
limitations, ship log databases were explored as part of this study. Here are two
examples from the Navy Department Library:

Gun Boat #164 sank in a squall at St. Mary’s Georgia. 20 drowned. 16 Sep. 1813.

From the same storm, a letter by Commodore Hugh Campbell to the Secretary
of the Navy:

The Saucy Jack privateer, of Charleston, lying ready to sail, is now lying high and dry on a
marsh that must be at least 5 feet above the level of low tide. She draws 14 feet, seven feet
being the common rise.

5 Meteorological Records

Early instrumental data and meteorological records occasionally included obser-
vations of temperature, precipitation, wind speed, wind strength, cloudiness, and
barometric pressure. The Live Oak Public Libraries and the Fort Pulaski National
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Monument were contacted to obtain any meteorological records available from 1750
to 1850. Unfortunately, neither the Live Oak Public Libraries nor the Fort Pulaski
National Monument had any such records to provide for this study. The meteoro-
logical register (1831–1842) was also examined, which included monthly weather
records from Oglethorpe Barracks in Savannah and Ft. Marion in St. Augustine,
but neither of these yielded viable data suggestive of hurricane activity. However,
several residents of early Savannah owned barometers and recorded barometric
pressure readings. Barometric pressure readings below 29 in Hg are generally
considered to be consistent with the presence of hurricanes or strong tropical storms,
and the magnitude of the reading itself provides information on extrapolated storm
intensity. But reliable barometric readings indicative of hurricanes were not found
among the weather diaries analyzed at the Georgia Historical Society.

The Georgia Historical Society in Savannah, GA, possesses original meteoro-
logical observations for Savannah (listed in the Society’s index under “Savannah
Meteorological Tables, MS 700”). The observations available were from January
1828 through December 1828 and January 1836 through December 1836. These
observations were limited and did not identify any possible hurricanes.

Intensities (weak vs. strong) of historical hurricanes (1750–1850) were deter-
mined by using estimates of the Saffir-Simpson Hurricane Potential Damage
Scale as a foundation. Death toll, storm surge, and reported damage to crops,
infrastructure, and ships were examined for each hurricane candidate in-line with
methodologies noted by Chenoweth and Mock (2013); however, we did not feel sure
enough of our ability to replicate their methodology as described, nor our limited
data sets to estimate hurricane intensities as other than either weak or strong.

6 Creation of Hurricane Trajectories

Michael Chenoweth (2006) describes the reanalysis of Poey’s previously published
chronology of Atlantic basin tropical cyclones using 5606 newspapers and 456
logbooks from numerous archives. Our tracks were constructed using methods
similar to those employed in Scheitlin et al. (2010). We initially utilize explicit
latitude/longitude (lat/lon) pairs provided in Chenoweth’s analysis. These pairs
represent the known or estimated location of the center of a tropical cyclone based
on ship records, personal accounts, and newspapers. In cases where there are at
least two lat/lon pairs given for a storm, the points are plotted as x and y values
using ESRI’s ArcGIS. A line is then drawn connecting the two points. If there are
additional points, lines are drawn connecting these subsequent points. Next, to show
how storms may have moved between oft-distant points, the tracks are adjusted (i.e.,
bent) based on information gathered from the historical literature. Finally, the tracks
were smoothed using a Bezier interpolation smoothing algorithm. For storms not
appearing in Chenoweth’s analysis, we estimated storm paths from information
determined through the historical literature. Based on this collated information,
rough tracks are again drawn in ArcGIS and then smoothed as described earlier.
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A sum total of 40 newspaper periodicals (including all publications available
from 1750 to 1850), 22 journals/diaries, 9 ship log/weather record databases, 10
hurricane chronologies, 31 books, and 62 websites (including descriptions and
articles) were utilized to develop the historical hurricane candidate list. Upon further
analysis, we concluded that ten hurricanes impacted coastal Georgia between 1750
and 1850 (eight direct impacts and two indirect impacts). To increase confidence in
our storm counts, each storm that was considered a hurricane in the final database
contained at least three separate primary evidentiary sources (Table 2.2).

Table 2.2 Hurricanes that directly impacted Georgia’s coastline: 1750–2012: A total of 24
hurricanes occurred during the period of study

Intensity Intensity
Date Name Peak At landfall County

Sept 8–16, 1752 – – Strong
Sept 3–12, 1804 – – Strong McIntosh/C
Oct 4–5, 1811 – – Weak St. Marys/S
Sept 16–17, 1813 – – Strong St. Marys/S
Aug 1–9, 1817 – – Weak St. Marys/S
Sept 7–15, 1824 – – Strong McIntosh/C
Aug 11–19, 1830 – – Weak Chatham/N
Aug 1–7, 1837 – – Weak Duval, Fl/S
Sept 30-Oct 10, 1842 – – Weak Glynn/C-S
Oct 5–13, 1846 – – Weak Levy, Fl/S
Oct 19–22, 1853 – SSHWS 2 SSHWS 1 Offshore
Sept 7–12, 1854 – SSHWS 3 SSHWS 3 Chatham/N
Sept 1–13, 1878 – SSHWS 2 SSHWS 1 Offshore
Aug 21–29, 1881 – SSHWS 2 SSHWS 2 Liberty
Aug 21–27, 1885 – SSHWS 3 – SC/N GA
Aug 15–30, 1893 – SSHWS 3 SSHWS 3 Chatham/N
Sept 22–30, 1896 – SSHWS 3 SSHWS 2 Inland
Aug 30-Sept 1, 1898 – SSHWS 1 – SC/N GA
Sept 25-Oct 6, 1898 – SSHWS 4 SSHWS 4 Camden/S
Aug 23–30, 1911 – SSHWS 2 SSHWS 1 SC/N GA
Sept 6–19, 1928 – SSHWS 5 SSHWS 1 Offshore
Aug 5–14, 1940 – SSHWS 1 SSHWS 1 SC/N
Oct 9–16, 1947 – SSHWS 1 SSHWS 2 Chatham/N
Aug 25-Sept 6, 1979 David SSHWS 5 SSHWS 2 McIntosh/C

*S D Southern GA coastline
C D Central GA coastline
N D Northern GA coastline
SSHWS D Saffir-Simpson Hurricane Wind Scale Category (1, 2, 3, 4 or 5)
WEAK D SSHWS Category 1 or 2 (estimated)
STRONG D SSHWS Category 3, 4 or 5 (estimated)
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7 HURDAT2

This study also assessed the 14 hurricanes in the HURDAT2 database that made
direct landfall along coastal Georgia during the period 1851–2012. Note that
HURDAT2 includes a state designation where a hurricane makes direct impact along
a coastal region (i.e., hurricane force winds are experienced and/or the center of the
storm crosses the coast), and thus our definition of landfalls is synonymous with
HURDAT2 state designations. Figure 2.1 illustrates the tracks of all coastal Georgia
landfalls since 1751, including the HURDAT2 data.

8 Results

Our data identify five characteristics associated with the time series of Georgia
hurricanes. First, 75 % (18/24) of all coastal Georgia hurricanes since 1750 occurred
between 1801 and 1900 (Table 2.2 and Fig. 2.2). Second, there is no significant dif-
ference in the proportion of Category 1 hurricanes in comparison to the proportion
of Category 2, 3, and 4 hurricanes between 1850 and 2012 (Table 2.2 and Fig. 2.3).

Fig. 2.1 Track maps of hurricanes making landfall along coastal Georgia between 1750 and 2012
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Fig. 2.2 Frequency of Hurricanes Striking Coastal Georgia: 1750–2012. Only the 24 hurricanes
known to have made landfall or strongly impacted the Georgia coastline are included in this graph

0

1

2

3

4

5

6

7

8

9

17
51

-1
76

0

17
61

-1
77

0

17
71

-1
78

0

17
81

-1
79

0

17
91

-1
80

0

18
01

-1
81

0

18
11

-1
82

0

18
21

-1
83

0

18
31

-1
84

0

18
41

-1
85

0

18
51

-1
86

0

18
61

-1
87

0

18
71

-1
88

0

18
81

-1
89

0

18
91

-1
90

0

19
01

-1
91

0

19
11

-1
92

0

19
21

-1
93

0

19
31

-1
94

0

19
41

-1
95

0

19
51

-1
96

0

19
61

-1
97

0

19
71

-1
98

0

19
81

-1
99

0

N
um

be
r 

of
 L

an
df

al
l

Weak

Strong

Fig. 2.3 Number of hurricanes affecting Georgia coast – 1751-1990 (weak is Category 1; strong
is Categories 2, 3, 4). These include all those hurricanes that made the candidate list from 1751 to
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Fig. 2.4 Coastal Georgia Seasonality of Landfall from 1750 to 2012: Number of hurricane
landfalls during hurricane season (June 1-November 30), by coastal region, from 1750 to 2012.
There is no record of a Georgia hurricane landfall in the months of June, July, or November, with a
peak landfall month of August. Data is from the North Atlantic Hurricane Database (HURDAT2)
and historic records pre-1850

Third, on average, estimated intensities for the landfalling hurricanes recorded along
coastal Georgia and neighboring regions (NE Florida and South Carolina) have
decreased since 1851 (Table 2.2 and Fig. 2.3; Bossak et al. 2014, Fig. 2.3) with
storm intensity peaking between 1880 and 1900. Fourth, our data indicates that more
hurricanes, recorded along the Georgia coast, are occurring early in August since
1851 (HURDAT2) (Fig. 2.4). Lastly, the mean location of hurricane landfall along
the Georgia coast, based on the estimated storm tracks assembled from the candidate
list of historical hurricanes, has moved northward along the coast by approximately
60 km (Fig. 2.5).

9 Discussion

After careful review of the data, several questions surround the pattern of landfalls
observed, particularly in light of recent climate change scenarios and their impact
on tropical cyclone frequency and intensity. For example, why did nine strong
hurricanes strike Georgia in the late 1800s, but only one made landfall in the
late 1900s (Figs. 2.2 and 2.3)? What is the long-term nominal risk for hurricane
landfall along the Georgia coast: is it more or less common for Georgia to
experience so many (or so few) landfalls within a 100-year interval during the
nineteenth (twentieth) century (Figs. 2.2 and 2.3)? The paucity of Atlantic sea
surface temperature (SST) data prior to the operation of weather satellites in the
1960s hinders developing an adequate explanation for this temporal variability
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Fig. 2.5 Spatial Distribution of hurricanes based on line density analysis along coastal Georgia
counties between 1750–1850 and 1851–2012

in hurricane impacts along the Georgia coast. Nevertheless, decadal variations in
Atlantic SST (Atlantic Multidecadal Oscillation (AMO)), seasonal and temporal
variations in Western Sahel rainfall, spatial-temporal variations in North Atlantic
Oscillation (NAO), and fluctuations in El Niño-Southern Oscillation (ENSO) all
play a role, along with a number of other climatologic factors, in either suppressing
or enhancing Atlantic hurricane activity. The following is a speculative discussion
of the possible role Atlantic SST, AMO, NAO, and ENSO might have played
in the changes in hurricane frequency observed along the Georgia coast since
1751.

Decadal variations in hurricane activity have been tied to changes in Atlantic
SST structure (Gray 1990). Variability in Western Sahel rainfall that affects North
Atlantic hurricane formation (Gray 1990) appears related to fluctuations in the
intensity of the thermohaline circulation (THC) in the North Atlantic (Gray et al.
1997). The NAO affects the position of the North Atlantic subtropical high cell
and sea-level pressure patterns, with a resultant impact on the tracks of Atlantic
basin tropical cyclones. When the NAO index is positive and the subtropical high is
located more to the north and east, the East Coast of the United States is at higher
risk for hurricane landfalls, and in contrast, when the NAO index is negative and
the subtropical high is located more to the south and west, the Gulf Coast has a
greater risk of hurricane landfalls (Elsner et al. 2000). The NAO also appears tied
to decadal variations in the formation of deep water off Iceland (Kushnir 1994).
In fact, in coupled atmospheric-ocean models, a positive NAO appears to increase
THC and meridional heat transport in the North Atlantic (Hakkinen 1999). In the
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1950s, the NAO index was positive, the Atlantic SSTs were relatively warm, and
six hurricanes hit the East Coast, while just one hit the Gulf Coast region. In the
1960s, the NAO index was negative, the Atlantic SSTs were relatively cool, and
six hurricanes made landfall along the Gulf Coast with none making landfall along
the East Coast (Elsner et al. 2000). Elsner et al. (2000) infer that the NAO was
mostly positive during the period from 1851 to 1951 suggesting that the large
incidence of Georgia hurricane landfalls, especially in the 1880s and 1890s, was
possibly associated with a subtropical high located more to the north and east,
relatively warm Atlantic SSTs, a strong THC, and a positive AMO (Klotzbach et
al. 2015). The high incidence of hurricane landfalls along the Georgia coast in the
later 1800s (1881, 1885, 1893, 1896, Aug 1898, Sept 1898; Table 2.2 and Figs. 2.2
and 2.3) appears associated with a positive AMO (Klotzbach et al. 2015) but is
split by one known period of high ENSO activity in 1890 (Garcia-Herrera et al.
2007).

ENSO events can suppress the formation of North Atlantic hurricanes (Golden-
berg et al. 2001; Collins and Roche 2010); for instance, between 1991 and 1994,
there were few Atlantic hurricanes (Landsea et al. 1996) due in part to a long-
lasting El Niño event from 1991 to 1995 (Trenberth and Hoar 1996). La Niña, the
cold phase of ENSO, promotes weak vertical shear in upper-level winds across the
Atlantic and above-normal Western Sahel rainfall (Elsner et al. 2000). These works
suggest that ENSO events might suppress, for a short period, physical processes
controlled by a positive NAO, THC, and wet Western Sahels that determine decadal-
long forcing of hurricane formation. Therefore the 8-year break between 1885 and
1893 might be a possible function of the 1890 ENSO event.

The proportion of weak and strong hurricanes from 1751 to 2012 appears to have
held steady, but the number of both weak and strong hurricanes affecting Georgia’s
coast, including those that make landfall, has declined since 1851, particularly since
the two-decade landfall activity peak of 1880–1900 (Fig. 2.3; Bossak et al. 2014).

What impacts will future global climatic change have on the seasonality, location
of landfalls, and changes in hurricane intensity along the Georgia coastline?
The temporal variability in historic and HURDAT2 data, the seasonal change in
hurricane landfall, the migration north of the mean location of hurricane landfall
along the Georgia coast, and even the reduction in frequency of hurricane landfalls
in coastal Georgia are observations that may or may not be associated with long-
term climate trends. Global climatic change driven by increased CO2 levels is
leading to increased variability, number, and intensity of both hurricanes (Webster
et al. 2005; Knutson et al. 2010) and tornadoes (Trapp et al. 2007; Diffenbaugh et al.
2013) and increases in the number of warmer ocean temperature anomalies (Elsner
et al. 2000; Virmani and Weisberg 2006).

Modeling suggests that anthropogenically enhanced global radiative forcing will
lead to a 6–34 % decrease in hurricane frequency but an increase in hurricane
intensity of 2–11 % by 2100 (Knutson et al. 2010). Our data might illustrate the
early beginning of this shift in frequency (see Bossak et al. 2014) or suggest that
hurricane trajectories since 1751 have shifted northward in possible response to
enhanced global radiative forcing, with the end result that Georgia has experienced a
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reduction in landfalls over the last 100 years (Table 2.2 and Fig. 2.3). Our data could
also be anomalous given that anthropogenically enhanced global radiative forcing
may increase Atlantic SSTs, which in turn may lead to increased Western Sahel
rainfall that has been robustly associated with an increase in number and intensity
of Atlantic hurricanes in prior research (Gray 1990).

Data suggest that the peak in hurricane landfalls along the Georgia coast has
shifted from September during the period 1750–1850 to August during the period
1851–2010 (Fig. 2.4). Elsner et al. (2000) found that since 1801, the average landfall
for East Coast hurricanes is September 6. However, data paucity hinders making a
robust, defendable statement that Georgia landfalls represent a new trend in the
seasonality of East Coast hurricanes. One question which needs further research is
whether the hurricane season is increasing in duration with hurricanes occurring
both earlier (e.g., 2005 hurricane season, Virmani and Weisberg 2006) and later
in the traditional season (e.g., Hurricane Sandy). Our data suggests an increase in
hurricanes occurring in August since 1851, which is earlier than the seasonal peak
described in Elsner et al. (2000).

A line density analysis of hurricane tracks illustrates that between 1750 and 1850
and from 1851 to 2012, the mean location of hurricane landfall along the Georgia
coast moved north by approximately 60 km (Fig. 2.5). Liberty and McIntosh
counties (among the least densely populated Georgia coastal counties) experienced
the highest frequency of hurricanes in coastal Georgia between 1750 and 1850,
whereas the highest frequency of hurricanes occurred near Chatham County
between 1851 and 2012 (Fig. 2.5). Whether this change represents a movement
due to anthropogenically enhanced global radiative forcing and Atlantic SSTs or
a change in tracks due to NAO forcing or a statistical anomaly is impossible to
establish. Certainly, CNOA or �NOA indices affect the location of the subtropical
high and the resultant track of hurricanes around the periphery of the high pressure.
If this change is sustained in the future, the potential financial and human toll along
coastal Georgia may return to the very high levels experienced in the late 1800s.
The locus of hurricane landfall between 1851 and 2012 is Chatham County, where
Savannah is located. This is troubling because since 1960, Chatham County and
Savannah have seen a significant increase in human population (Table 2.1) and a
related increase in infrastructure and are the most populated of coastal counties
in Georgia (Table 2.1). Between 1960 and 2010, Chatham County’s permanent
population increased by 99,000 people, 80,000 of which have been added to
Chatham County since 1980. Thus the largest growth in Chatham’s population has
occurred since the last hurricane landfall that of Hurricane David in 1979. These
data mirror the storm preparedness complacency along the Georgia coast noted in
prior research (Kaiser 2014; Wang and Kapucu 2007). Since the early historical
period of 1750–1850, the locus of hurricane landfall has moved away from the least
populated coastal county of McIntosh (with only 14,214 current residents) to the
most populated: Chatham County with 283,379 residents (US Census 1995, 2000,
2015). Moreover, the 1999 Hurricane Floyd evacuation overwhelmed Chatham
County’s three evacuation routes of I-16, I-95, and US 80 (Dash and Gladwin 2007).
Yet the only response in the intervening years has been to set up a protocol to open
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eastbound lanes on I-16 to westbound traffic during hurricane evacuations from
Savannah (Chatham County Emergency Management 2012).

10 Strengths and Weaknesses

A study focusing solely on coastal Georgia’s present and historical hurricane record
is novel. Our methodology suggests that historical data analysis can be used to fill
in potential gaps in the near-term landfall record based on geological proxy data (Lu
and Liu 2003). Georgia was established as a colony in 1732, and the first Georgia
newspaper published was the Georgia Gazette in 1763; therefore, historical records
before 1800 are limited. Because of this limitation, it is possible that undocumented
hurricanes made landfall along Georgia’s coast prior to 1800. Moreover, we were
unable to conclusively identify a number of other hurricanes or tropical storms that
might have made landfall or tracked along the Georgia coast (Table 2.3). This list
represents storms that only have one or two documents supporting their existence.

A small sample size will typically yield insignificant statistical results. Due to
a lack of sufficient wind speed and barometric pressure records prior to 1851,
historical documents were heavily relied upon to determine whether winds were
at hurricane force and, if so, whether the storm was weak (Cat 1, 2) or strong (Cat
3, 4, 5).

Table 2.3 Other possible hurricanes that either made landfall or tracked along the Georgia coast
between 1750 and 1850

Date Type Location C4 C5 C6 C7

Oct 22, 1780 Hurricane Moved from NW Florida over
Georgia, made ocean nr Valdosta

Yes Yes

Oct 7 1783 Hurricane Grazed Georgia coast: Yes Yes
Aug 23–28, 1787 Hurricane Grazed Georgia coast, landed SC Yes
Sept 19, 1787 Hurricane Storm surge killed 23 along SC &

GA coasts: Jordan ’History of
Storms’

Yes Yes

Sept 8–9, 1811 Hurricane Hurricane very close to GA shore Yes Yes
late Aug 1819 TS Possible TS landfall Darien Yes Yes
Sept 27-28, 1822 Hurricane Brushed Savannah, severe SC, 25

ships washed ashore, 200 drowned
Yes Yes

June 2–3, 1825 TS Landfall St Augustine, moved back
out to see, hit Tybee hard

Yes Yes Yes

12–13 Oct 1848 TS Hurricane force winds from St
Marys to Savannah but offshore

Yes Yes Yes

C4 Fraser 2006
C5 Chenowth 2006
C6 Sandrik & Landsea 2003
C7 LaVoie 2011
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11 Conclusions

Georgia’s coastal population has increased despite the underlying threat of a
destructive hurricane in any given year (Fraser 2006). According to US Census
Bureau (2010, 2015) data, 283,379 people reside in Chatham County, which
encompasses metropolitan Savannah. This represents an 18 % increase from the
2000 population, which was recorded 1 year after the Hurricane Floyd evacuation
along the southeastern US seaboard (US Census Bureau 2015) and a 29 % increase
from the 1990 population recorded 1 year after Hurricane David hit just south of
Savannah (US Census Bureau 1995, 2015). This growth is occurring faster than
proportional increases in transportation infrastructure, such as Highway 80, which
still serves as the only evacuation route for the entire population of Tybee Island
(population of 3054, US Census Bureau 2015), as well as I-95 (N/S) and I-16 (E/W)
that serve as primary evacuation routes along Georgia’s coast. Given the potential
for destructive hurricanes (nine between 1800 and 1850) to make landfall in this
region, an evacuation-related disaster remains a high risk.

Significant numbers of tourists frequent the coastal counties of Georgia; in
particular, Savannah attracted in 2014 13.4 million visitors, of which 7.6 million
were overnight visitors spending over $2.5 billion and generating $20.7 million in
hotel/motel tax revenue (Savannah Chamber of Commerce 2015). In excess of 90 %
of the overnight visitors were involved in leisure travel and hence were tourists
(Savannah Chamber of Commerce 2015). Although April, May, and June are the
busiest months, there is little variation around the mean suggesting that each month
Savannah attracts nearly a million visitors. Savannah’s principal attraction is the
city’s historic architecture that although located high above any hurricane storm
surge (Chatham Emergency Management 2015) is susceptible to wind damage. The
Savannah hurricane of August 27, 1881 (SSHWS Category 2), caused 335 deaths
in Savannah, yet the population was only 30,709 (Fraser 2006; US Census Bureau
2000). Today a similar-sized hurricane, if it had an orientation of between 65 and 90ı

to the coast, could inflict significant damage and potentially impact local residents
and visitors. However, the Savannah hurricane of August 27, 1881, was only 1 of
24 hurricanes in this study that hit Savannah, therefore suggesting the likelihood of
just such a reoccurrence is very small indeed.

At the same time that the population of Chatham and other coastal Georgia
counties is increasing, FEMA released new proposed flood maps in 2015 for
Georgia coastal counties that will allow the property elevation covered by FEMA
to drop as flood elevations will drop between 1 and 3 ft (Glynn County FIRM maps
2015). This will mean many V-designated insurance zones will move to an A zone
(V or velocity zones are the most flood prone and subject to both mandatory and the
highest flood insurance rates). Zone Vs are subject to inundation by a 1 % annual
chance flood event (FEMA 2015). Zone As are located landward of Zone V and
occur where breaking wave heights occur between 1.5 and 3 ft during storm surges
(FEMA 2015). For households moving from Zone V to Zone A, this will represent
a significant reduction in insurance costs:
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“My understanding is that Glynn County has fared extremely well,” Hardman said. “FEMA
has been very kind.”

“We have no history of flooding, no history of hurricanes (in 40 years) and I think that’s
been accurately reflected by the new FEMA maps,” Hardman said. “It’s nice to be able to
accurately portray the historical picture in future estimates.” Jack Hardman, a Nationwide
Insurance agent. (Hobbs 2015)

Given the spatiotemporal variability of hurricane landfalls that this research
identifies between 1750 and 2010, the changes proposed by FEMA and statements
by insurance agents and the rapid explanation of Chatham county and Savannah
are deeply worrying. Even more worrying is that research by Webster et al. (2005)
and Knutson et al. (2010) clearly suggests that anthropogenically enhanced global
radiative forcing will lead to an increase in hurricane intensity of 2–11 % by 2100.
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Chapter 3
Near-Time Sea Surface Temperature
and Tropical Cyclone Intensity in the Eastern
North Pacific Basin

Jerry Y. Jien, William A. Gough, Ken Butler, Vincent Cheng,
and George Arhonditsis

Abstract Although a significant relationship between near-time sea surface
temperature (SST) and tropical cyclone (TC) intensity has been found for many
major TC basins, this topic has not been explored in the eastern North Pacific (ENP)
basin. When the main development region of the (ENP) Ocean is subdivided into
eastern (EDR) and western (WDR) development regions, SSTs show a weak, yet
significant, positive relationship with intensities of the six-hourly TC observations
and storms’ maximum strengths only in the WDR. This SST-storm intensity
relationship is most apparent for the maximum lifetime TC intensity of WDR
major hurricanes. The maximum strength of major hurricanes in the ENP basin is
more clearly established in the WDR where SST is at least 25 ıC, well below the
minimum SST value that is observed in the North Atlantic basin.

When intensity observations are binned into SST intervals, the upper bound
value of TC intensity is found to increase with SST. Compared to the previous TC
climatological analysis (Whitney and Hobgood (1997) J Clim 10(11):2921–2930),
the maximum relative wind speed has increased for SST bins of 27 ıC (>26.5 ıC and
<27.5 ıC) or higher. While a linear function was determined previously as the best
empirical fit for the ENP maximum potential intensity (ENPMPI) for each SST bin
(Whitney and Hobgood (1997) J Clim 10(11):2921–2930), other means of curve
fitting such as the exponential decay (increase form) function also show skill at
representing the SST-dependent ENPMPI in the WDR. When storm observations
are regionally stratified, the rate of increasing maximum potential intensity with SST
flattens out towards the highest SST category. Under the ambient condition in which
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the theoretical MPI is assumed along ENP storm tracks, the updated relationship of
the outflow temperature with SST resembles an inverse (negative) sigmoid curve.

Keywords Sea surface temperature • Eastern North Pacific basin • Tropical
cyclone intensity • Maximum potential intensity • Western development region
• Eastern development region • Exponential decay • Outflow temperature • Max-
imum lifetime intensity • Correlation • Statistical relationship • Empirical func-
tion • Relative wind speed • Sea surface temperature bin

1 Introduction

Sea surface temperatures (SSTs) have been long thought to be one of the major
determining factors in limiting the structure and development of tropical cyclones
(Miller 1958; Gray 1968; Merrill 1988; Evans 1993; DeMaria and Kaplan 1994;
Whitney and Hobgood 1997; Saunders and Lea 2008). Spatial differences of SST
anomalies have also been associated with the interannual variability of the El Niño–
Southern Oscillation (ENSO) signal to influence regional tropical cyclone (TC)
activity (Chu 2004; Diamond et al. 2013; Wood and Ritchie 2013; Patricola et al.
2014; Zhang and Wang 2015; Boucharel et al. 2016) and landfall impacts (Landsea
et al. 1998; Goldenberg et al. 2001; Raga et al. 2013; Martinez-Sanchez and Cavazos
2014) due to changes in TC strength. However, recent research indicates that
the development of TCs depends on more than just the absolute value of SST.
As confirmed in the data-sparse eastern North Atlantic basin (Wu et al. 2010),
Vecchi and Soden (2007), for example, noted that local differences in SST from
the zonal or all-tropical mean provided a more effective metric to account for TC
intensification than local SST itself. Such derivation of “relative SST” has shown
a significant relationship to the storm intensity index (Zhang and Wang 2015) and
some practicality in the field of seasonal TC forecast (Caron et al. 2015) in the
eastern North Pacific (ENP) basin, where TCs are most active on a per unit area and
time (Collins and Roache 2011). Despite this remote/regional control of the local
TC intensity, the near-time SST remains one of the primary indicators in regulating
the upper boundary of storm intensity and its lifetime maximum wind speed.

Miller (1958) proposed a direct relationship between SST and the minimum sea-
level pressure in the surrounding air below the storm eye. Within the context of
future climate change scenarios, Emanuel (1987) pointed out that the maximum
reduction in sea-level pressure experienced through SST warming pertains only
to the reduction of the lowest sustainable pressure achieved by the most intense
TC. While a range of environmental conditions could influence the lifetime storm
intensity (Gray 1968), SST has been acknowledged to influence a storm’s maximum
lifetime intensity. However, this direct relationship appears to be less important at
explaining TC intensity above a certain SST value (Evans 1993; Michaels et al.
2006). For example, because dynamic forcings such as vertical wind shear are
found to be key in determining the intensities of North Atlantic storms (Gray 1984;
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Saunders and Lea 2008), it appears TC intensity could be more sensitive to other fac-
tors such as atmospheric dynamical influences rather than a single thermodynamic
limit alone (Michaels et al. 2006).

SSTs have been found to act as a cap to limit TC intensity at a global scale
(Merrill 1988), while outflow temperature at the upper troposphere is critical at
determining its maximum potential intensity (MPI; Bister and Emanuel 1998).
Using the most reliable storm observations for each TC development basin, intensity
data were binned according to the corresponding SST groups to derive empirical
relationships of SSTs and their maximum sustained TC winds for the North Atlantic
Ocean (DeMaria and Kaplan 1994), Northwestern Pacific Ocean (Zeng et al.
2007) and ENP Ocean (Whitney and Hobgood 1997) and, most recently, Bay of
Bengal (Kotal et al. 2009), part of the North Indian basin. While the extent of
the relationship of SST-TC intensity varies among basins, a positive correlation
between the maximum TC intensity and SST is generally agreed for all TC areas.
However, the fact that most TCs do not achieve their SST-bounded MPI suggests
other mechanisms are at play.

Instead of assigning each TC observation according to the SST group that it
was detected, maximum sustained winds of all TC tracks were directly linked to
SST values (Evans 1993; Michaels et al. 2006). However, results of correlating SST
values with TC intensities of multiple basins also caution against the overreliance
of a single SST predictor at explaining the sustained maximum TC winds (Evans
1993; Henderson-Sellers et al. 1998; Goldenberg et al. 2001). Such an attempt
to determine the nature of the SST-TC relationship is further complicated by a
storm’s self-inflicted SST cooling along its tracks (Mei and Pasquero 2013). Using
a relatively higher-resolution SST dataset, Michaels et al. (2006) shared a similar
concern in addressing TC intensification by using SSTs alone. Although an SST
threshold of 28.25 ıC had been determined for North Atlantic TCs to reach major
hurricane strength (50 m s�1 or greater), further SST warming does not substantially
contribute to the rise of maximum TC wind speeds (Michaels et al. 2006).

Observations of TC intensity have been linked to climatological SSTs in multiple
basins (Evans 1993) and updated for the North Atlantic TCs (Michaels et al. 2006).
However, such research for the ENP basin has been only presented in Whitney
and Hobgood (1997) but has not yet been evaluated statistically. Though it had
been determined that ENP storm intensities respond to SST change as found in
other basins (Evans 1993; Michaels et al. 2006), there may be differences in which
ENP storm intensity shows its SST dependence. For instance, ENP storm intensity
may be more responsive to thermodynamic limitation when ocean heat sources
from both the sea surface and thermocline are considered (Balaguru et al. 2013;
Jin et al. 2014). In addition, spatial pattern of SST anomalies may be expressed
through ENSO in contrasting storm strength and impacts between local hurricane
seasons (Raga et al. 2013; Wood and Ritchie 2013; Martinez-Sanchez and Cavazos
2014). Nevertheless, a direct attribution of near-time SST values to TC winds would
also be an improvement over previous basin-wide studies (Emanuel 2005; Webster
et al. 2005) and reveal how contemporaneous SST would facilitate the ultimate TC
intensity at different levels of storm strength.
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The effect of SST on maximum ENP storm intensity was better understood
by attributing the SST category as a determining factor on the upper bound of
MPI. Based on the exponential function in fitting the maximum TC intensity
using SST in the North Atlantic basin (DeMaria and Kaplan 1994), a linear
function has been extended for ENP storms (Whitney and Hobgood 1997). After all
storms’ translational speeds have been removed from the six-hourly observations of
sustained winds, the eastern Pacific MPI (EPMPI; m s�1) is developed as such:

EPMPI D C0 C C1 .SST/ ; (3.1)

whereas SST (ıC) is associated with a slope (parameter estimate) of
C1 D 79.17262 m s�1 and a y-intercept (constant) of C0 D 5.361814 m s�1 ıC�1.
However, it has been nearly two decades since this empirical relationship on the
effect of SST on maximum ENP storm intensity was first documented (Whitney and
Hobgood 1997). Due to the SST warming observed worldwide (Xie et al. 2010) and
locally (Ralph and Gough 2009), we hypothesize that the upper bound of maximum
ENP storm intensity should have also shifted. If this direct relationship holds, then
EPMPI pertaining to each SST group is expected to increase as well. As such, the
SST-dependent theory of MPI can be refined using the most recent (1982–2013)
SST climatological dataset which has a higher temporal-spatial resolution.

The objective of this study is to quantify and update the relationship between
TC intensity and its underlying SSTs for ENP storms. Though there is more than
one convention (Collins and Mason 2000; Ralph and Gough 2009) to derive the
longitudinal boundary as to how the main development region of the ENP basin
should be subdivided, to better understand its relationship with its environment,
there is a general agreement that the local storm activity should be longitudinally
stratified into eastern (EDR; 10–20ıN and 85–112ıW) and western (WDR; 10–
20ıN and 112–140ıW) development regions. Hence, regional differences of how
TC intensity responds to SST fluctuation will be investigated. Given the previous
understanding of the regional sensitivity to environmental influences (Collins and
Mason 2000; Ralph and Gough 2009; Jien et al. 2015), it is expected that intensities
of all WDR storm observations and their lifetime maxima would be more sensitive
to SST changes.

Section 2 describes details of the TC and SST datasets and methods used
to analyze them. Section 3 provides one rationale for dividing the ENP basin
longitudinally when examining possible environmental linkages. In Sect. 4 we
explore the spatial misalignment of the warmest SST and maximum storm intensity.
Section 5 explores the impact of SST on the maximum lifetime intensity. Section 6
updates the empirical functions by incorporating SST as the dependent variable
using the most recent TC climatology. As an update from the work of Whitney
and Hobgood (1997), Sect. 7 relates to the update of the outflow temperature at the
top of storm clouds (assuming ambient MPI is attained), followed by conclusion in
Sect. 8.
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2 Data and Methods

Storm track data from the Central Pacific region and eastern North Pacific basins
are retrieved from the best track HURDAT2 (Landsea and Franklin 2013) of the
National Hurricane Center. This dataset records TC characteristics such as a storm’s
1-min maximum sustained wind speed and its geographic positions at six-hourly
intervals. Although non-developing tropical depressions are better integrated in the
current storm dataset, the possible incompleteness of the early record led to our
exclusion of storm data during the pre-satellite era. Due to uncertainty in wind
speed estimation below the tropical storm designation, all non-developing tropical
depressions are excluded in our analysis.

Modifications from the previous HURDAT (Davis et al. 1984) version include
the maximum radii distances of 34 kt (18 m s�1), 50 kt (26 m s�1) and 60 kt
(31 m s�1) at all four quadrants of cardinal directions. In addition, reports of storm
track positions other than the synoptic (00, 06, 12 and 18 Z) timeframes, when
locations of intensity maxima and landfalls are detected, were recently added to the
storm dataset after 2012. Because the goal of the study is to refine the analysis of
the relationship of SST and TC intensity from Whitney and Hobgood (1997), the
consideration of TC climatology in the study coincides with the data availability of
the daily SST dataset, covering the period of 1982–2013.

Since only storm data within the ENP boundary, as defined in this study, are of
interest for this work, a total of 1445 six-hourly TC observations that lie west of
140ıW were eliminated. During the 32-year span, a total of 496 ENP storms were
associated with 12,657 six-hourly TC observations, approximately 25.5 six-hourly
observations per TC. In comparison, an average of 24.1 six-hourly observations
are associated with each storm during the 1963–1993 period from Whitney and
Hobgood (1997), a slightly shorter storm duration per TC than the analysis period
of the study. Of the 1445 ENP storm observations eliminated beyond 140ıW,
84 of them had continued to track further westward, past the International Date
Line.

Daily mean SST values are retrieved from Optimum Interpolation SST dataset
from the National Oceanic and Atmospheric Administration/National Climatic Data
Center (NOAA/NCDC) with a spatial resolution of 0.25ı by 0.25ı.1 This refined
spatial-temporal resolution of SST record had been applied to investigate the TC-
induced SST response (Hart et al. 2007; Dare and McBride 2011a) but has not been
applied to update the relationship of ENP TC intensity with SST. Of the 12,657 six-
hourly observations, 188 were observed over land. Hence, SST values over 12,469
TC observations from 1982 to 2013 are matched and extracted based on the linear
interpolation of nearby SST grids. Because TCs had been shown to reduce local
SST, averages of SST values 1 week prior to and after each storm passage at each TC

1NOAA High-Resolution SST data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado,
USA, from their Web site at http://www.esrl.noaa.gov/psd/.

http://www.esrl.noaa.gov/psd/
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position are also included to monitor the progression of SST-dependent TC intensity.
In total, a time series of 15 days of SSTs are obtained in association with each TC
position.

The SST control of the maximum TC intensity has been established by a
clear statistical linkage when SST is treated as a continuous variable. However,
because there remain uncertainties in the measurement of storm wind speed at
the tropical depression stage, records with wind speed below 18 m s�1 are often
considered unreliable (Collins 2010). While the SST effect at various TC stages is
of inherent interest, only maximum wind speeds for named storms (NS, sustained
wind speed between 18 and 32 m s�1), hurricanes (H, sustained wind speed
between 33 and 50 m s�1) and major hurricanes (MH, sustained wind speed greater
than 50 m s�1) are quantitatively related to the underlying seawater temperature.
Any TC observation over land is of necessity associated with missing SST data.
Consequently, a total of 188 observations and 2 storms that had their maximum
lifetime intensities detected onshore are removed from the correlation analysis.

To update the previous Eastern Pacific Maximum Potential Intensity developed
over the 1963–1993 period (Whitney and Hobgood 1997), all TC tracks are binned
into a total of 13 SST groups from 19 to 31 ıC, each with a 1 ıC range. As an
alternative way to demonstrate the impact of SST on TC intensity, daily SSTs 7 days
prior to storm arrivals were averaged and rounded to the nearest whole number. As
evidence of local SST warming, additional storm intensity data at the 30 ıC and
31 ıC SST categories are included in our analysis and added from a range of 19 to
29 ıC groups (at the 1 ıC SST interval) during the 1963–1993 TC climatological
record (Whitney and Hobgood 1997). The maximum intensity values at each SST
group are extracted to develop an empirical function that best fit these data points.
Results were repeated for each of the ENP Main Development Region (MDR)
subdivisions. Due to a lack of data for SST groups below 19 ıC (23 ıC), 27 (16)
observations were removed from WDR (EDR).

To further understand the longitudinal variation of ENP storm activity and how
TC intensity would respond to SST differences, the TC track record is longitudinally
binned into subdivisions of the MDR: EDR and WDR (Fig. 3.1). The regional

Fig. 3.1 The subdivision of the ENP Main Development Region (MDR) into the EDR and WDR
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affiliation of each storm is directly linked to the region where a storm’s maximum
intensity is achieved (Collins and Roache 2011). For example, if a storm is formed in
EDR but attained its maximum intensity in WDR, it is considered as a WDR storm.
Additionally, for Sects. 5, 6 and 7, storm observations are partitioned into EDR
or WDR according to their six-hourly positions, and their intensities are directly
related to the underlying SST measurements. To compare with previous analysis
performed by Whitney and Hobgood (1997), the relative velocity of storm track
is compiled and calculated by subtracting its translation speed from the maximum
wind speed. Translation speed is calculated by dividing the total distance travelled
6 h before and after the storm’s current position, except at the initiation and
dissipation points where six-hourly movements between the first two points and
last two points are computed respectively (DeMaria and Kaplan 1994; Whitney and
Hobgood 1997; Mei et al. 2012). The average translation speed for 12,657 tracks
is about 4.4 m s�1, comparable to the value of 4.7 m s�1, noted in Whitney and
Hobgood (1997).

3 Longitudinal Division of ENP Basin

Of the 496 ENP storms identified, many did not remain within the region where
they first formed. Table 3.1 shows that if storms are regionally separated based on
locations where they were originally detected, more than three quarters of seasonal
storm counts were derived from EDR. However, many had achieved their maximum
winds and spent the majority of their lifespan after entering the WDR. During this
type of transition, others have suggested that these EDR-originated systems should
be designated as WDR storms (Collins and Mason 2000; Collins and Roache 2011).
As such, there tends to be a greater number of WDR storms produced during any
storm season within a given annual cycle. Of the total 496 ENP storms between 1982
and 2013, the EDR-to-WDR storm ratio is approximately 3:4. In other words, a net
movement of EDR-originated storms into WDR occurs every season. Although it

Table 3.1 Annual/seasonal numbers of storm genesis in terms of named/tropical storms (NS),
hurricanes (H) and major hurricanes (MH) are stratified between EDR and WDR averaged from
1982 to 2013 based on the location where the peak intensity is established. Total storm count is
also sorted according to where storms were initially detected

EDR WDR
Initial 11.8 3.8

NS 6.7 8.8

H 3.6 5.0

MH 3.0 5.6
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is much more common for WDR storms to originate from the EDR, Rosa (1994)
is the only exception where its region of translocation is reversed. Rosa (1994)
originated in the WDR and unconventionally migrated to the EDR, where it peaked
as a Category 2 (wind speed greater than 42.7 m s�1) storm prior to dissipation over
Mexico.

When the six-hourly TC observations are regionally assigned to where each
of the 496 ENP storms attained its maximum lifetime intensity, TCs that tracked
beyond 140ıW are also included. Of all six-hourly track records associated with
WDR storms, only 19 out of 8679 WDR storm tracks are recorded to have reached
land. In comparison, a greater proportion (170 out of 5425) of EDR storm track
points made landfall. While WDR storms are generally expected to travel westward,
sometimes passing over Hawaii, only one had crossed Hawaii. This is due to a
combination of the fact that Hawaii has a smaller land surface and that most of WDR
storm landfalls on the North American continent require westerly winds to induce
strong TC recurvature. Interestingly, when comparing the average translational
speed between EDR and WDR landfalling storms, significant differences were
detected. The average translation speed (15.3 m s�1) associated with these EDR
landfalling storm records is almost twice as large as the average (7.4 m s�1) of all
landfalling WDR storm tracks. Part of the difference is due to an overall more rapid
recurvature of EDR storms when making landfalls.

During the period of 1982–2013, the annual average number of ENP storm count
has been decreasing. This is mostly attributed to a below-normal number of WDR
storms. On the other hand, the number of EDR storms stays relatively the same.
Using the Theil-Sen slope estimator, a reduction of 0.17 WDR storms per year
(5.3 storms over 32 years) is observed to be statistically significant at the 5 %
significance level (Fig. 3.2). This value is large considering the seasonal average
of storm count is 8.8 storms in the region. Since WDR storm activity represents a
significant proportion of ENP storm activity, this reduction of WDR storm count is
a major contributor to a decreasing trend (significant at p < 0.05, not shown) of total
ENP storms during the same time period.

During an average hurricane season, more than half of the total ENP storm count
(15.5) became WDR storms. However, the most recent (1981–2013) TC climatology
indicates that the number of EDR-originated WDR storms has diminished. Trend
analysis shows the annual proportion of these transitioning WDR storms to the total
ENP storm count has decreased significantly (p < 0.05) averaging to a reduction
of 5.1 WDR storms over the time period (Fig. 3.3). In addition, the reduced
WDR storms match well with the diminishing number of EDR-to-WDR storms.
As such, this downward trend implies seasonal WDR storm frequency is becoming
less reliant on EDR for storm initiations, leading to further storm growth and
development in the WDR.

While a reduced number of WDR storms may seem that WDR storm seasons
are progressively less active, it should be interpreted more carefully. Most of the
downward trend of total WDR storm (Fig. 3.2) is explained by the lack of transfer
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Fig. 3.2 Annual proportions of WDR storms to all ENP storms from 1982 to 2013

Fig. 3.3 Annual proportions of EDR-derived WDR storms to the total WDR storm count from
1982 to 2013

of storms from the EDR to WDR (Fig. 3.3). At the same time, the number of
WDR storms that originated within the WDR boundary has remained stable. In fact,
numbers of WDR hurricanes and major hurricanes have both increased significantly
(Collins and Mason 2000).
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4 Displacements of Maximum TC Intensity and Maximum
SST and Initial Genesis Point

Under the influence of tropical easterly flow, ENP storms predominantly track
westward and gradually divert poleward, over cooler tropical water prior to dis-
sipation. Many of them can be traced as far upstream as African easterly waves
that only intensify to TC strength after crossing the North Atlantic, the Caribbean
Sea and the Gulf of Mexico (Molinari et al. 1997; Thorncroft and Hodges 2001).
While most storms form close to the North American coast, these storms typically
undergo intensification and obtain their maximum lifetime intensity distant from the
coast. Figures 3.4a, b show the northwest tendency for storms before gaining peak
intensity. On average, it requires a storm to shift 3.7ı northward and 9.6ı westward
of its original identification point to achieve its maximum lifetime wind speed.

Fig. 3.4 (a) Distribution of latitudinal differences between the locations of storm genesis and
maximum lifetime intensity for all ENP storms from 1982 to 2013 and (b) same as (a), but for
longitudinal differences. Each histogram is outlined with a normal curve (in blue)
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Fig. 3.5 (a) Distribution of latitudinal differences of locations between storm genesis and
maximum lifetime intensity for EDR and WDR storms from 1982 to 2013 and (b) same as (a),
but for longitudinal differences

When storms are separated into EDR and WDR subregions, regional variations
of latitudinal (Fig.3.5a) and longitudinal (Fig. 3.5b) differences are observed despite
the average locations of their maximum lifetime intensities being found northwest
of their initial detections. While the mean latitudinal difference between the initial
storm detection and its maximum intensity of EDR storms is only 0.4ı northward
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of WDR storms, WDR storms’ mean longitudinal difference is 5.3ı westward of
EDR storms. Although a greater longitudinal shift is detected for WDR storms,
it is mostly attributed to the fact that 58 % of WDR storms were initiated in the
EDR and experienced longer periods of intensification than those WDR storms that
were originated within WDR. However, even if WDR storms that originated from
EDR are removed, WDR’s mean longitudinal difference is still maintained at 2.4ı

greater, significant at the 5 % confidence interval, than that of EDR storm’s average
longitudinal shift. The ability for WDR storms to track over a greater distance
before achieving maximum intensity is linked to a longer longitudinal shift. This
is supported by a clear right-tailed distribution for longitudinal differences, mainly
attributed to WDR storms (Fig. 3.5b).

Although ocean temperature tends to be higher where storms initially formed,
their genesis locations are not necessarily the highest SST experienced during a
storm’s lifecycle. The higher SST tends to provide the most optimum condition for
TC development. However, its maximum lifetime intensity is rarely achieved where
the highest SST is encountered. On average, the maximum intensity is located north-
west of where the highest weekly SST is found a week prior to the storm passage.
The resulting latitudinal (Fig. 3.6a) and longitudinal (Fig. 3.6b) differences are more
evenly distributed compared to displacements between maximum intensity and
initial storm genesis location (Fig. 3.4a, b). Such a comparison also demonstrates
that the highest SSTs are experienced closer to maximum lifetime intensities than
initial genesis locations of ENP storms. An average delay of 1.7 days is observed
for a storm to establish peak intensity after experiencing its warmest seawater versus
approximately 3 days after a storm was first generated. This coincidence where the
highest storm intensity is matched with the highest SST was found for only 18
storms, representing less than 4 % of the total storm count.

The spatial misalignment of maximum SST and maximum intensity is generally
displayed by North Atlantic storms though the extent of displacement differs
compared to ENP storms. While two-thirds of North Atlantic storms met their
maximum SSTs within 5ı latitude of maximum lifetime intensity (Michaels et al.
2006), 83 % of ENP storms had done so. Overall, this latitudinal displacement for
ENP storms’ maximum intensity is 2.2ı northward of where maximum SST is
achieved, only half of North Atlantic storms’ displacement (Michaels et al. 2006).
These comparisons relative to North Atlantic storms signify ENP storms’ stronger
linkage to areas with the highest SST in acquiring maximum intensity.

For storms that took an eastward recurvature or landfall, the highest SSTs are
often found near shore when their strengths are diminishing, possibly in conjunction
with extratropical transitioning. Interestingly, peak intensities for these storms took
less time to establish than those that experience warmest SST at their earliest stage
of development. As contrasting environmental conditions near shore and in the open
water could dictate a difference of TC development, the WDR reveals a strong
longitudinal displacement (Fig. 3.7b) between locations of the warmest SST and
maximum lifetime intensity (Fig. 3.7a). Although this could also be attributed to
WDR storms that have encountered the maximum SST while they were still in
the EDR, 137 (or 40 %) of WDR storms match this criterion. This is lower than



3 Near-Time Sea Surface Temperature and Tropical Cyclone Intensity. . . 67

Fig. 3.6 (a) Distribution of latitudinal differences between the locations of maximum SST and
maximum lifetime intensity for all ENP storms from 1982 to 2013 and (b) same as (a), but for
longitudinal differences. Each histogram is outlined with a normal curve (in blue)

those storms (58 %) that formed in EDR but achieved maximum lifetime intensities
in WDR. Even when these storms are excluded, storms that attained maximum
intensity and maximum SST in the WDR still maintain a 2ı westward bias over
EDR storms.

5 Correlation Between SST and TC Intensity

5.1 All Observations

Since the onset of a storm induces a cold wake (due to turbulence-induced entrain-
ment below surface waters) and thus obscures the SST-TC intensity relationship, a
7-day SST average prior to the storm arrival was used to correlate with the intensity
observations. Possibly due to a large sample size (n D 12,469), Fig. 3.8 shows the
linear regression fit is significant (p < 0.001) despite a slope of 0.889 and R2 value of
0.020 for storm track positions observed prior to crossing the westernmost boundary
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Fig. 3.7 (a) Distribution of latitudinal differences between locations of maximum SST and
maximum lifetime intensity for EDR and WDR storms from 1982 to 2013 and (b) same as (a),
but for longitudinal differences

division at 140ıW. Such a low value for the coefficient of determination implies that
SST is a rather weak predictor for storm intensity.

Though the explained variance is small, yet significant, it is higher than a similar
correlation analysis performed in the North Atlantic basin (Michaels et al. 2006).
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Fig. 3.8 Scatterplot and regression fit for all observations of TC intensity against the weekly SSTs
averaged over 7 days prior to storm passage

If storm tracks that traversed west of the ENP boundary are also included (not
shown), the linear regression is still significant. Such a significant linkage between
SST and TC intensity is consistent with that of Ralph and Gough (2009), which
considered the correlation of TC activity of all storm strengths and basin-wide SSTs
at a monthly scale. Although our analysis shows that the explained variance is small,
this association of near-time SSTs and TC wind speeds is consistent with Michaels
et al. (2006). Though SST certainly provides a certain degree of influence on the
upper bound of TC intensity, SST is clearly far from being the sole control of TC
intensity. Even when elevated SSTs are observed, other atmospheric factors such as
wind shear diminish TC strength (Landsea et al. 1998; Maue 2009). The fact that
the R2 in the present study is higher than a similar analysis conducted for North
Atlantic storms (Michaels et al. 2006) may indicate greater SST influences on ENP
storm intensities.

Upon investigating how TC intensity is related to SST at a daily scale, the
temperature measurement at the ocean surface demonstrates a two-way, SST-TC
relationship. Though it is shown in Fig. 3.8 that SST directly contributes to TC
intensification, storm passage is capable of cooling the ocean surface at least a week
prior to its arrival. The strength of SST reduction depends on storm translation speed
and its intensity (Cione and Uhlhorn 2003; Mei and Pasquero 2013). For instance,
a slow-moving storm with high winds would likely enhance the process of vertical
mixing by drawing cold water underneath. The result of this cold wake left behind a
TC may impede its own development and impose a negative impact on the formation
and development of potential storms nearby (Bender and Ginis 2000).

Figure 3.9 shows the SST averages 7 days before and after (total of 15 days) for
locations of all 12,469 storm tracks. Generally, this cooling remained for at least
1 week since the storm has departed, with the greatest SST reduction experienced
during the period between 1 day before onset until the day of storm arrival. Such
a sharp drop in the ocean surface temperature is likely the result of a greater
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Fig. 3.9 Daily SST response (with standard error) to the influence of storm passage over a 15-day
time series

vertical mixing due to a close proximity to the radius of maximum winds and storm
movement, which entrains cooler waters beneath the sea surface. Such a cooling
effect lasts longer and is more pronounced for locations that experience storms with
lower translation speeds and higher storm intensities (Dare and McBride 2011a).
Compared to the North Atlantic TCs, since the average translation speed is higher
in that basin, SST reduction associated with a slower storm movement is generally
greater in the ENP basin.

When all 12,469 observations of storm intensity are correlated with their
same-day SSTs (i.e. Day 0), a weak relationship is found (slope D 0.63078
and R2 D 0.01094). Although the result of a linear least-squares fit maintains its
statistical significance (p < 0.001), the fact that the greatest SST decrease occurs
during the day prior to storm arrival weakens the near-time SST-TC intensity
relationship. The effect of SST cooling on the SST-TC intensity relationship is likely
to be most important when storms are undergoing rapid intensification, particular
during September, the peak month of the ENP hurricane season (Kaplan et al. 2010).
Once the TC-induced rate of SST cooling diminishes, storms are found to intensify
at a faster rate (Cione and Uhlhorn 2003).

While the choice of daily SST at least a week before storm arrival does not
dramatically change the explained variance for the linear fit with TC intensity
(Table 3.2), the use of the weekly SST dataset (Michaels et al. 2006) may not be
as closely aligned to the initial storm detection as the daily time interval data. For
instance, when a storm has just formed, the SSTs averaged during the past week may
be more critical at determining storm genesis than TC intensification. Figure 3.10
compares a 15-day time series of SST averages centred at the genesis stage and the
time when a storm’s peak intensity is observed. From the day before until the day
after the detection of maximum lifetime intensity, the most dramatic SST decline
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Table 3.2 Regression
analysis of storm intensity of
all EDR and WDR
observations with daily SST
at 7 days prior to storm
passage with Day 0 being the
arrival day of storm passage

Region/days before EDR WDR
Slope R2 Slope R2

7 �0.79 0.01 1.55 0.06
6 �0.81 0.01 1.56 0.06
5 �0.72 0.00 1.60 0.06
4 �0.67 0.00 1.61 0.06
3 �0.69 0.00 1.60 0.06
2 �0.67 0.00 1.62 0.06
1 �0.63 0.00 1.59 0.06
0 �1.43 0.02 1.32 0.04
7-day average �0.79 0.00 1.64 0.06

Fig. 3.10 Same as in Fig. 3.9, but the 15-day SST is centred around the storm genesis and
maximum lifetime TC intensity. Dashed lines represent the daily range of the highest rate of SST
reduction

can be discerned. This is mostly likely due to a combination of a slower translation
speed and a strong TC wind speed in churning up colder water from below (Mei and
Pasquero 2013). Since weak TC winds are associated with fast-moving, decaying
storms, virtually little to no SST recovery is observed past the storm genesis stage.
In contrast, the average SST recovery at only those locations that just experienced
peak storm intensities is 0.06 ıC higher than the average of all TC observations.

5.2 MDR Subdivisions

When TC observations are subdivided and binned into EDR and WDR, the
sensitivity of TC intensity to SST is regionally distinct. With the addition of a
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Fig. 3.11 (a) Relative wind speeds for all EDR storm observations and (b) same as (a) but for all
WDR storm observations

linear regression of least-squares fit, Fig. 3.11a, b shows a scatterplot of EDR
(WDR) storm intensity and SST averaged over a 7-day period prior to TC detection.
Compared to EDR, despite a rather low explained variance, WDR storm intensities
are more responsive to SST differences. In fact, the slope is nearly twice as large for
MDR storms during any day of the week prior to the TC arrival. From Table 3.2, the
worst fit is found at Day 0, when the negative (positive) slope is strongest (weakest)
at EDR (WDR). In the EDR, this corresponds to the time when the greatest rate of
SST reduction due to storm influences is observed (Fig. 3.12). This SST reduction in
EDR continues until a local minimum is observed 2 days after the storm appearance.
While the temperature of the ocean surface is noted to reduce at a slower pace a week
prior until the day before EDR storms arrive, SST is observed to start cooling only
4 days prior to TC arrival until the local minimum appears the day after the WDR
storm passage.
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Fig. 3.12 Same as Fig. 3.9, but separated for storm passages of EDR and WDR observations.
Dashed lines represent the reference SSTs of local minima over for EDR and WDR

Subdividing ENP storm observations into EDR and WDR sectors is also
critically important to the understanding of the regional difference in which TC
wind speed responds to SSTs at different storm development stages. In particular,
the relationship of WDR storm intensity with the underlying SST shows a greater
significance when the maximum lifetime intensity is examined. Such a finding
of SST control over the maximum lifetime TC intensity would not have been
possible if the ENP basin had not been subdivided. Similar to the above result,
little association with SST is detected on the day when maximum relative wind
is detected. On average, the greatest correlations are observed 2 days before TC
arrivals when the impact of TCs on ocean temperature is less pronounced. This
observation has been previously hypothesized but not proven until the use of the
daily SST dataset. In terms of ocean surface cooling, EDR storm observations
generate greater SST reductions at least a week prior to storm geneses and the
attainment of maximum intensities; however, TC passages at both regions display
little evidence of SST recoveries (Figs. 3.13a, b). However, dramatic differences of
SST responses between EDR and WDR are noticed for locations that experience
passages of maximum lifetime intensities (Fig. 3.13b). EDR storm records tend to
be accompanied by greater SST reduction than WDRs.

Regional sensitivity for the maximum lifetime intensity to SSTs is found to
differ between EDR and WDR storms. Figure 3.14a, b depicts the scatterplots of
maximum lifetime intensity of relative winds with average weekly SSTs, 7 days
prior to TC arrival for all 283 (213) WDR (EDR) storms. Comparatively, the SST
range when WDR major hurricanes (Fig. 3.14a) have established peak intensities
is shorter, and on average colder, than that of EDR major hurricanes (Fig. 3.14b).
Specifically, this study found the importance of an SST of 25 ıC (24 ıC), above
which all but one major hurricane (hurricanes) has established peak intensities in
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Fig. 3.13 (a) Same as Fig. 3.12, but for the average SST conditions during storm genesis and (b)
same as (a) but during the maximum lifetime intensity

WDR. Meanwhile, such SST limitation is less clear in EDR, with most of its major
hurricanes established at SSTs higher than 27 ıC. Compared to the maximum SST
level of 28.25 ıC that is required to attain the maximum lifetime intensity of North
Atlantic major hurricanes (Michaels et al. 2006), this SST requirement in WDR is
dramatically lower. Comparison studies within and between major TC development
basins suggest the SST requirement to sustain major hurricanes is not uniform.

Although an SST threshold of 28.25 ıC is identified for North Atlantic storms
to achieve maximum strengths of major hurricane status, Michaels et al. (2006)
show North Atlantic TC winds that achieved maximum intensities past this SST
requirement have little to no relationship with corresponding SSTs. Even if only
the intensities of major hurricanes were investigated, SST does not seem to be the
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Fig. 3.14 (a) Scatterplot and linear regression of maximum lifetime intensity of relative velocity
for EDR storms (N D 213) and daily SSTs averaged a week prior to maximum storm strength
and (b) same as (a) but for WDR storms (N D 283). The dashed lines with cooler (warmer) SST
indicates the requirement for hurricane (major hurricane) genesis

overriding factor in determining the maximum TC winds. However, in the ENP
basin, the maximum intensity of WDR major hurricanes demonstrates significant
relationship with daily SSTs. Figure 3.15 shows the SST and TC intensity for WDR
major hurricanes 3 days before relative winds are achieved. A linear regression
analysis on this day has the highest slope and explained variance. To compare
with the previous result shown in the North Atlantic basin (Michaels et al. 2006),
this correlation test was also replicated using maximum winds (relative velocity C

translation speed); and, the result also shows similar statistical significance at
p < 0.01. Though maximum intensities of WDR major hurricanes are critically
dependent on SST conditions, many WDR storms remain weakly developed
despite encountering favourable SST conditions that are well above the minimum
requirement (25 ıC) to attain the maximum strength of major hurricanes. In contrast,
while maximum lifetime TC intensity for all EDR storms is not found to positively
correlate with ocean surface temperature, a weak, but positive, relationship was
found for maximum winds of EDR major hurricanes and their underlying SSTs.



76 J.Y. Jien et al.

Fig. 3.15 Scatterplot and linear regression of maximum lifetime intensity of relative velocity for
WDR storms that reached major hurricane strength with SST 3 days before maximum storm
strength

6 Upper Bound of TC Intensity by SST Groups

In addition to statistically linking SSTs to observations of TC winds, the impact of
increasing SST on the maximum sustained winds can also be explored by stratifying
records of TC wind speed into SST groups based on the work of DeMaria and
Kaplan (1994). By rounding average SST values a week prior to TC arrival to the
nearest integer, TC winds have generally maintained the same relationship with
increasing SSTs as found by Whitney and Hobgood (1997). Overall, warmer SSTs
are able to sustain a higher maximum TC intensity. Compared with Whitney and
Hobgood (1997), an update to the current TC record shows that the maximum
intensities at some of the highest SST categories are increasing.

Table 3.3 summarizes the 1982–2013 storm intensities in each SST bin, updated
from 1963 to 1993 climatology (Whitney and Hobgood 1997). Two extra (30 ıC
and 31 ıC) SST bins are now required, though it has been noted that there were
few storm observations from 1963 to 1993 climatology that encounter SSTs greater
than 29.5 ıC. Similar proportions (77 %) of the total TC intensity observations were
found in the 26 ıC or higher SST bins, though the highest average TC intensity
has shifted from 26 ıC (Whitney and Hobgood 1997) to 27 ıC bin (Table 3.3).
A gradual decrease in the average TC intensity with increasing SST is partly due
to degrading storms recurving over shallow and warm water prior to dissipation at
landfall. It could be also attributed to a tendency for storms to form and develop
over the highest SSTs and slowly decay while passing over cooler water (Whitney
and Hobgood 1997).

Though the total number of analysis years is 1 year more than that of Whitney
and Hobgood (1997), there are an additional 1595 SST observations associated
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Table 3.3 Summary of TC intensity records stratified into SST bins

SST (ıC) Sample size Average intensity (m s�1) Maximum intensity (m s�1)

19.0 34 7.4 12.2
20.0 74 8.5 16.2
21.0 148 10.2 28.3
22.0 280 12.2 38.8
23.0 475 13.8 40.1
24.0 714 16.4 48.7
25.0 952 21.6 55.7
26.0 1,386 24.4 60.0
27.0 2,367 24.4 66.3
28.0 3,304 21.4 68.5
29.0 1,966 20.4 74.9
30.0 708 20.1 78.2
31.0 34 18.6 50.4

Fig. 3.16 Anomaly of TC observations in each SST bin during 1982–2013 compared to 1963–
1993

with the TC record. This value is large considering that the average number of
the SST-TC record between 1963 and 1993 per year is 356.8, roughly averaging
36 more observations/year during the 1982–2013 period. Although it is difficult to
attribute the recent spurt of TC activity to climate change due to an inconsistent
monitoring of TC tracks when compared with data prior to the 1970s, the recent
SST warming has shifted the corresponding surge of TC observations towards the
distribution with higher SST values. Figure 3.16 shows that most of the surge in
TC detection associated with SST warming occurs preferentially in the higher SST
bins. Likewise, less of an increase in TC observations are observed to be distributed
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Table 3.4 Details on storms that attained the highest relative winds at each SST bin

SST
(ıC) Year Name

Latitude
(ıN)

Longitude
(ıW)

Maximum
winds
(m s�1) Strength

Relative
winds
(m s�1) Region

19.0 2001 NARDA 16.3 139.6 15.4 TD 12.2 WDR
20.0 2005 KENNETH 16.5 139.4 23.1 NS 16.2 WDR
21.0 2013 GIL 13.7 138.2 33.4 H 28.3 WDR
22.0 2004 ISIS 16.3 135.7 43.7 H 38.8 WDR
23.0 2008 CRISTINA 14.1 133.7 46.3 H 40.1 WDR
24.0 1995 ADOLPH 17.8 108.8 51.4 MH 48.7 EDR
25.0 2006 EMILIA 30.8 125.2 59.2 MH 55.7 WDR
26.0 1988 CARLOTTA 21.7 123.7 64.3 MH 60.0 WDR
27.0 1984 NORBERT 19.4 116.3 72.0 MH 66.3 WDR
28.0 1998 KENNA 18.3 108.3 74.6 MH 68.5 EDR
29.0 1997 LINDA 17.7 110.3 79.7 MH 74.9 EDR
30.0 1997 LINDA 17.1 109.6 82.3 MH 78.2 EDR
31.0 2009 JIMENA 15.7 105.5 54.0 MH 50.4 EDR

Fig. 3.17 Storm relative winds at the maximum intensity and 99th, 95th, 90th and 50th intensity
percentiles at all SST bins after translation speeds have been accounted

at lower SST values. Thus, this improvement of thermodynamic condition is
able to allow storms to extract energy to reach higher maximum TC intensities.
Consequently, storms (in Table 3.4) that are responsible for achieving the highest
maximum intensity in each SST bin differ from those found in Table 3.2 of Whitney
and Hobgood (1997). TCs Linda (1997), Kenna (2002) and Rick (2009) had all
exceeded the maximum strength of Trudy (1990), which was found to be the most
intense storm from an earlier 1963 to 1993 period (Whitney and Hobgood 1997).

Since it is of interest to understand the effect of SSTs on storm intensity, only
the maximum, 99th, 95th, 90th and 50th, percentiles of TC winds are plotted in
Fig. 3.17. Initial linear increases are noted for 90th percentiles or above though the
rate of increase flattens, or even decreases, as bins of higher SSTs are approached.
Only the maximum intensity values maintained a linear growth rate with increasing
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Fig. 3.18 Scatterplot and regression line drawn for the maximum storm intensity attained by each
SST bin with and without the maximum intensity at the 31 ıC bin

SSTs. Because Fig. 3.18 shows that the maximum intensity dips dramatically at the
31 ıC bin, its value is not included in the empirical derivation of MPI (Eq. 3.2),
possibly due to a lack of observation in the highest SST category. Using a locally
weighted scatterplots smoothing known as LOWESS (not shown), the fit is best
described as a linear relationship. The updated (1982–2013) relationship between
empirical MPI and SST in the ENP basin has an equation of the form

ENPMPI D A .SST/ C B; (3.2)

where ENPMPI (m s�1) represents the revised ENP maximum potential intensity,
with a constant of B D �91.4863 m s�1 and a slope of A D 5.7975 m s�1 ıC�1.
Overall, 96 % of total data variance is explained by ENPMPI. Compared to Whitney
and Hobgood (1997), this updated ENPMPI sees an increase in slope showing the
linear fit is stronger than the past TC climatology (Fig. 3.18).

When the ENP MDR is subdivided, it is evident that there are regional differences
in the distribution and magnitude of TC intensities among the SST bins. A warmer
(colder) SST condition is experienced in the EDR (WDR), where 16 (slightly over
a thousand) TC track records are associated with SST bins lower than the 23 ıC
category (Tables 3.5 and 3.6). Towards the upper bound of TC intensity distribution,
over 95 % of EDR storm observations (Table 3.5) are in the 26 ıC category or
greater, while only 64 % for the WDR (Table 3.6). When the maximum intensity is
regionally compared for each SST bin, maximum intensities observed in the WDR
are higher at SST categories of 25 ıC and 27 ıC (Table 3.6), while the highest
attained TC intensities at other SST bins are higher in the EDR (Table 3.5). Although
maximum TC intensity is not unanimously favoured within a particular ENP MDR
subdivision, the average storm intensity at each SST bin is consistently stronger in
the EDR (Table 3.5).
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Table 3.5 Same as in Table 3.3 but for six-hourly TC observations in EDR

SST (ıC) bin Sample size Average intensity (m s�1) Maximum intensity (m s�1)

<23.5 16 20.9 45.3
24 33 23.6 52.2
25 48 29.1 48.7
26 178 30.2 60.3
27 597 27.8 62.7
28 1,728 22.3 73.3
29 1,714 18.1 78.2
30 685 16.7 62.2
31 27 13.3 33.1

Table 3.6 Same as in Table 3.3 but for six-hourly TC observations in WDR

SST (ıC) bin Sample size Average intensity (m s�1) Maximum intensity (m s�1)

<18.5 27 6.9 11.8
19 34 7.4 12.2
20 74 8.5 16.2
21 148 10.2 28.3
22 278 12.1 38.8
23 461 13.8 40.1
24 681 16.1 45.2
25 904 21.4 55.7
26 1,208 23.2 60.0
27 1,770 24.6 66.5
28 1,576 24.3 66.2
29 252 21.2 68.7
30 23 12.0 21.9
31 7 10.7 13.7

When maximum, 99th, 95th, 90th and 50th, percentiles of TC intensity are
plotted for the EDR (Fig. 3.19a) and WDR (Fig. 3.19b), regionally specific positive
relationships are observed for TC intensities. In the EDR, a smoother increase
in the maximum TC intensity (1.7 m s�1 per ıC) is observed while the average
WDR intensity experiences a steeper (5.6 m s�1 per ıC) increase. At TC intensities
of lower percentiles, this increase is slower towards the higher SST categories
for both regions. When the average intensity within each SST bin is compared
between regions, observations from both regions show less sensitivity to higher SST
conditions than the maximum intensity. Differences between the two regions are
dramatically different for TC winds at the higher percentiles. WDR storm intensities
greater than the 90th percentile of each SST bin are more dependent on SSTs than
for EDR storms.

Since the ENP basin exhibits longitudinally different SST conditions for TC
development, ENPMPI derived above might not best represent the upper limit of
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Fig. 3.19 (a) Same as Fig. 3.17, but only for EDR storm observations and (b) same as Fig. 3.17,
but only for WDR storm observations

maximum intensity as a function of SST category when local storms are regionally
divided. Based on the above findings, the MPI in the EDR (ENPMPIe) and the
WDR (ENPMPIw) may require different empirical models than that performed for
the entire basin. Due to a limited record of maximum TC intensity associated with
each SST bin (Table 3.5), only data from 24 to 30 ıC bins are used for ENPMPIe.
By examining the LOWESS curve (Fig. 3.20), it appears a linear function is still the
most suitable function in describing the data distribution (up to 29 ıC) for ENPMPIe,
with an equation of

ENPMPIe D Ae .SSTe/ C Be; (3.3)

where ENPMPIe (m s�1) has a constant of Be D �35.756 m s�1 and Ae D 3.64 m
s�1 ıC�1. However, compared with ENPMPI, ENPMPIe’s residual standard error
has grown to 7.637 m s�1. An ANOVA was attempted to compare the difference
in residual error between a linear and a curve (polynomial) fit. Though a curve fit
leads to a smaller error (3.73 m s�1), it is not statistically different from the error
associated with a linear function fit (p > 0.05).

For WDR observations, while the distribution of maximum TC intensity is
observed to shift towards higher SST bins, the LOWESS curve indicates the growth
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Fig. 3.20 Scatterplot for maximum storm intensity attained by each SST bin of all EDR
observations. A locally weighted scatterplot smoothing (LOWESS) is applied

rate of maximum TC intensity starts to slow at the 26 ıC SST bin. Interestingly,
this is also generally observed as the minimum SST requirement for TC genesis and
development (Palmén 1948; Dare and McBride 2011b). This flattening of growing
maximum TC intensity appears to initiate at even cooler SST bins for the lower
percentile curves (Fig. 3.19b). As such, even with a higher SST, other environmental
influences may be more important in determining the ultimate maximum TC
intensity. When linear and quadratic (curve) functions are compared for data fitting,
both functions had parameter estimates that are found to be highly statistically
significant. Overall, the ANOVA results indicate that the reduced predicted error
of a quadratic fit is significantly lower than that of a linear function (p < 0.01).
Thus, a linear function is deemed inadequate to represent ENPMPIw. Instead, an
exponential decay (increase form) function is found to be more suitable with the
following equation:

ENPMPIw D Cw C Bwe�Aw.SST�To/; (3.4)

where To (ıC) is specified as the reference temperature and Aw, Bw and Cw are
constants of the parameter estimates. With To D 29 as the highest SST bin, using
a non-linear least-squares fit, Aw D 100.40171, Bw D �29.90966 and Cw D 0.11039.
Figure 3.21 shows the data and the fitted function for ENPMPIw, with a residual
standard error of 2.764 m s�1. Comparatively, a linear regression fit generated an
error of 4.192 m s�1. The choice of the exponential decay function in the form of
(3.4) is indicative of the flattening of the fitted curve, starting at the 26 ıC SST bin.
Though it was not taken into consideration for the function fit, the reduced slope
is also evident for North Atlantic storms at SST bins above 28 ıC (DeMaria and
Kaplan 1994). In our case, due to data limitations, there remains some uncertainty
for the reduced growth to continue beyond the 29 ıC bin, the reference SST bin
below which ENPMPIw applies.
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Fig. 3.21 Non-linear least-squares (NLS) fitting of maximum storm intensities bounded by SST
bins at WDR, with the LOWESS curve added

7 Outflow Temperature

In addition to SST, TC maximum potential intensity is also limited by the outflow
temperature near the tropopause for various TC basins (Wing et al. 2015). A cooler
outflow temperature provides a more efficient mechanism at raising MPI through
the effective removal of energy at the storm top. The calculation of the outflow
temperature relies on surface conditions of SST and sea-level pressure, as well as
temperature, pressure and relative humidity at various tropospheric levels (Bister
and Emanuel 1998). Data used to construct an environmental sounding in the
spatial-temporal overlap of the six-hourly ENP storm tracks are obtained from the
NCEP North American Regional Analysis (Mesinger et al. 2006).

Through studies using reanalyzed atmospheric data (Wing et al. 2007, 2015;
Emanuel et al. 2013) and idealized experiments in modelling the storm’s environ-
ment (Ramsay 2013; Wang et al. 2014), it has been shown that maximum TC winds
(minimum sea-level pressure) have noticeably increased (reduced) with decreasing
outflow temperature. In contrast to the upper-tropospheric condition, the slowly
increasing North Atlantic SST demonstrates the cooling of the outflow temperature
is relatively more important in contributing to the recent increase in the potential
intensity of North Atlantic storms (Emanuel et al. 2013). However, the consistency
of the rising North Atlantic potential intensity derived from the NCEP-reanalyzed
data has been challenged when data from other reanalysis products were compared
(Vecchi et al. 2013).

To compare the regional difference of outflow temperature in the ENP basin,
Fig. 3.22 shows the recent trend of the outflow temperature at two central locations
that were arbitrarily selected to represent the EDR, at 10ıN 105ıW, and WDR, at
10ıN 125ıW. Overall, the WDR representation demonstrates a significant cooling
of nearly 6 ıC between 1982 and 2015, while the EDR representation has only
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Fig. 3.22 The outflow
temperatures (1982–2015)
required to achieve theoretical
maximum potential intensity
at 10ıN 105ıW and 10ıN
125ıW are plotted to
represent locations in EDR
and WDR respectively
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Fig. 3.23 The relationship of outflow temperatures vs. SSTs that is required to reach maximum
potential intensity for EDR and WDR storm observations (1982–2013)

experienced one-fourth of the WDR’s cooling rate during the same period. A greater
rate of cooling in the outflow temperature reveals the overall WDR has become
less stabilized, supporting a more favourable upper-atmospheric environment for
storm development, as reflected in the growing number of ENP major hurricanes
towards the end of the twentieth century (Collins and Mason 2000). This cooling
trend lends support to the earlier analysis in which the recent increase in the
maximum storm intensity is attained at each SST category in the WDR. Although
Fig. 3.22 does not reflect the outflow temperatures required to establish MPI along
existing storm tracks, such regional difference in the upper-tropospheric temperature
offers support for the relative difference of storm intensities between EDR and
WDR.

To test if the outflow temperature that is required to achieve theoretical MPI
varies within the ENP basin, Fig. 3.23 plots the outflow temperatures of EDR
and WDR storm observations against SSTs. During the 1982–2013 period, the
averaged outflow temperature as a function of SST category reflects a slightly
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cooler outflow temperature at the 25–30 ıC SST interval in the EDR, where
stronger maximum surface wind speed and lower minimum sea-level pressure were
empirically determined. When data of both regions are combined, the shape of
data distribution is similar to WDR and resembles a reversed (negative) sigmoid
curve, which does not entirely resemble the SST-outflow temperature relationship
from Whitney and Hobgood (1997). In particular, our analysis shows the out-
flow temperatures of WDR storms associated with SSTs below the 24 ıC bin
exhibit a warmer atmosphere near the cloud top. This is reflected by a rapid
decrease of the upper-tropospheric temperature within a SST range between 23.5
and 25.5 ıC. The slow-cooling outflow regions, corresponding to SSTs higher
than 25.5 ıC, is reflected by a slower increase in the maximum WDR storm
winds (Fig. 3.21). As such, this empirically calculated MPI at the highest SST
condition is rarely obtained through real-time storm observations and could also
vary due to storm track variability (Wing et al. 2007, 2015; Kossin and Camargo
2009).

8 Conclusions

For TC development basins worldwide, SSTs have been recognized, directly
(Evans 1993) and indirectly through ENSO influences (Chu 2004), as the major
thermodynamic limit of maximum TC intensity. While local SST increase tends in
general to elevate storm intensity, remote SST changes (Vecchi and Soden 2007)
and upper-tropospheric temperatures (Bister and Emanuel 1998) could enforce
significant impacts on the upper limit of TC intensity. As the long-term conditions
of the ocean surface shift to a warmer condition, TC intensities are expected to
strengthen with SST increase. Although the spatial-temporal resolution of SST
data has remained a challenge in pinpointing the SST condition underlying storm
tracks, near-time (daily) SST data with a spatial resolution of 0.25ı by 0.25ı are
employed to document its extent of impact on ENP storm winds. Due to the spatial
sensitivity of ENP storm intensity to environmental conditions, the limiting effect
of SST on ENP storm strength is demonstrated to vary within this region. Because
the inhibiting effect of the rate of SST decrease is stronger (weaker) during EDR
(WDR) storm passage, the SST impact on TC intensity is greater for WDR storm
observations and their maximum lifetime intensities.

Two ways of exploring the SST-TC intensity relationship are presented in
the study: (1) correlating SST values with TC intensity and (2) stratifying TC
observations into SST bins of 1 ıC interval and then relating TC intensities of all TC
data points with SST category. Although the direct SST measurement is not the only
factor contributing to TC intensity, this association for ENP storms is stronger than
that of North Atlantic storms. Using the linear least-squares regression, the results of
the study indicate a statistically significant relationship exists between SST and TC
intensity. Alternatively, though SST anomalies calculated by subtracting local SST
from the ENP Main Development Region (MDR) SST average have been recently
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demonstrated to have a greater association with local storm count and intensity
(Zhang and Wang 2015), the effect of relative SST as an anomaly from the zonal-
mean SST and its impact on the regional sensitivity of ENP storm intensities are
still unknown. Further investigation of the maximum lifetime intensity of major
hurricanes shows the SST influence on TC intensity is greatest for the most intense
storms. Stratification of TC winds according to near-time SST bins supports the
previous finding of the SST-dependent MPI in the ENP basin, indicating a stronger
relationship when the most recent TC climatology is compared to the past.

Under a regional difference in SST conditions, ENP storms are longitudinally
divided to understand regional sensitivity of storm intensity to an SST limit.
Compared to the EDR, intensities for WDR storm observations are more responsive
to SST fluctuations. When the maximum winds of WDR storms are considered and
categorized into different levels of TC intensity, major hurricanes display a stronger
association with contemporaneous SST values. In contrast to the North Atlantic
region where an absence of such a relationship was found (Michaels et al. 2006),
subdividing MDR has facilitated a regional variation in which the maximum TC
intensity is correlated with SST. An examination of minimum SST requirements to
achieve certain TC strengths also reveals regionally distinct SST ranges to achieve
peak intensities for hurricanes and major hurricanes. Compared to the SST limit
(28.25 ıC) for attaining major hurricanes in the North Atlantic basin, lower SST
values are observed where most of the EDR (27 ıC) and WDR (25 ıC) major
hurricanes are established in the ENP.

In contrast to Whitney and Hobgood (1997), an updated ENP storm climatology
reveals that the relationship between the outflow temperature and corresponding
SST required to attain theoretical MPI is non-linear even when storm groups are
longitudinally divided. While the association between maximum storm intensity
with SST has increased with a changing climate, when the ENP MDR is subdivided,
such linkage is stronger for WDR storm observations until a certain SST limit is
approached. Part of this observed relationship may be attributed to a less potent
SST reduction inflicted by WDR storm passages. However, such a contrast in the
regional TC intensity can also be steered by the outflow temperature near cloud tops.
Past the 25 ıC SST bin, where the maximum storm intensities of most WDR major
hurricanes would have already been sustained, the decay in the growth rate of MPI
is marked by a slower reduction of the outflow temperature in the upper troposphere.

Despite a downward trend experienced in the transport of EDR-originated WDR
storms, SST warming supports the strengthening of the strongest storms. However,
WDR storms indicate such a response becomes non-linear with a slower rate
of increase as warmer SSTs are approached. In addition, the association of TC
intensity to SST is further challenged by observations of relatively weak intensity
over warm SSTs before progressing and intensifying over cooler waters. As such,
future studies involving the thermodynamic limit of TC intensity may need to
incorporate the ocean heat content by taking into account of not only SST but
also energy generated across the entire thermocline depth (Balaguru et al. 2013;
Jin et al. 2014). The incorporation of the total ocean heat content may reveal
a latitudinal, as opposed to longitudinal, contrast in the relationship of SST-TC
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intensity (Balaguru et al. 2013). Although other atmospheric factors could also
have an important role in modifying TC intensity, the application of near-time SST
greatly contributes to the understanding that, in addition to the regional difference
of SST requirement for genesis and intensification of major hurricanes, the eventual
intensity of major hurricanes in the WDR are greatly limited by SST conditions
encountered prior to the peak of its lifetime intensity.

With the realization of higher maximum lifetime intensity and MPI under the
future scenario of continuous SST warming, future increase of ocean temperatures
may raise the intensity of damaging storm winds. Since stronger storms tend to be
sustained over longer distances, SST warming may also lengthen TC influence for a
greater spatial extent. Upon landfall, storm tracks may extend further inland, posing
a direct threat to coastal safety. From a forecasting point of view, the possibility
of an extended TC influence upon landfalling TCs may result in the broadening of
uncertainties associated with near-time projection of storm path. Consider as the
strongest TC to exist in the western hemisphere since the satellite era, Hurricane
Patricia (2015), as well as other potent storms, had reinvigorated efforts at further
investigating the ENP storm outlook under a continuously evolving climate.
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Chapter 4
Modern Tropical Cyclone Wind Observation
and Analysis

Christopher C. Hennon and Ethan E. Wright

Abstract Direct observation of the maximum wind in tropical cyclones is
extremely rare because of the violence of the environment, the paucity of ocean-
borne observing stations, and the remoteness and size of the storms. Besides raising
confidence in historical tropical cyclone climate records – which are currently
inadequate for climate studies – accurate measurements of the tropical cyclone wind
structure and other characteristics are particularly important to more accurately
forecast storms, thus mitigating economic and human loss. Large amounts of
resources have been devoted to develop innovative methods to adequately observe
these systems. This chapter will present an overview of the observing systems and
instruments that are used to observe tropical cyclone winds in the early twenty-
first century, including in situ and remote sensing approaches. Techniques used
to determine the maximum wind speed in the frequent absence of more direct
observations are also discussed.

Keywords Tropical cyclone • Observation • SFMR • GPS dropwindsonde
• Doppler radar • Scatterometer • AMSU • Dvorak technique • H*Wind
• HIRad • Aerosonde • SATCON

1 Introduction

Tropical cyclones (TCs) develop and spend most of their life cycle over oceans,
creating difficulties in measuring their properties and making accurate predictions
about how they will evolve. There are many ways of defining the intensity of a TC,
including minimum pressure, size, and several different characteristics of the wind
field. Typically the maximum sustained wind (MSW), or the strongest wind speed
measured over a certain averaging period, is the most desired property used to deter-
mine TC intensity. There are several good reasons for this. In operations, storms are
categorized by MSW according to the Saffir-Simpson scale (Schott et al. 2012),
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which remains the most publicly visible classification of TC intensity today. Also,
TC wind directly impacts coastal residents through wind damage and drives storm
surge – a devastating advance of water that destroys coastal structures and poses a
large risk for human life. Finally, MSW historically is the most pervasive variable
recorded in forecast agency TC data records, called “best-track” (BT) data. BT data
are post-storm analyses predominantly composed of quality-controlled observations
and estimates of wind where observations are scarce.

A consistent, accurate diagnosis of the MSW and associated wind field in a
TC is critical for the computer models that are used to predict where a storm
moves and how strong it will be when it arrives. It is also vitally important for
understanding how the nature of TCs may be changing through time (i.e., as a
response to climate change). Despite the demonstrated importance of TC wind data,
accurate measurements of TC wind fields rarely occur, especially outside of the
North Atlantic basin because:

1. The nature and location of TCs make direct observation logistically difficult.
2. Observation platforms that can accurately measure winds in these extreme

environments (aircraft, buoys) are expensive to deploy and maintain, limiting
their scope.

3. Satellites can capture nearly all TCs but the quality of the wind data and inherent
limitations of space observation limit accurate MSW estimates.

4. Even in well-observed storms, only a relatively small portion of the storm is
observed at any given time – the “true” wind field remains elusive (Nolan et al.
2014).

The uncertainties in the TC wind field inherent during the observation phase
and inconsistencies in how global agencies handle the MSW lead to problems with
post-storm wind data. For example, the averaging period for the MSW varies across
global forecast agencies. The World Meteorological Organization (WMO) standard
is a 10-min average, which is followed by the Japan Meteorological Agency (JMA).
However, the US National Hurricane Center (NHC) and the US Joint Typhoon
Warning Center (JTWC) use a 1-min average. Changing technology and procedures
at various agencies has also led to an increase in uncertainty in TC wind records
through time. This divergence of standard procedures arises from a vacuum of
quality observations since TCs form, develop, and typically decay over areas of
ocean basins where direct observation of their characteristics is rare. It is no surprise
then that the historical TC record contains errors and inconsistencies that frustrate
researchers and generate ambiguity about TC responses to climate change.

It is important then to review and understand the strengths, weaknesses, and
general characteristics of the tools and procedures that are used to measure and
diagnose TC wind. This chapter will examine the instruments and techniques of
modern day (early twenty-first century) TC wind observation in the context of
operational applications. The following section details the instruments and means of
measuring TCs from inside the storm. This will be followed by a brief overview of
the satellite systems that are employed in the TC forecasting and analysis processes.
Finally, applied techniques for determining the MSW and the nature of the full TC
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wind field will be discussed. Unless otherwise stated, all references to MSW in this
chapter correspond to the US definition of MSW, which is the 1-min average wind
speed at a 10-m neutral height above the surface.

2 In Situ Observation

Direct observation of TCs is rare, even in modern times. Rappaport et al. (2009)
note that aircraft reconnaissance, the most desirable method for obtaining quality
measurements of TC wind, occurs in only about 30 % of the total life cycle of TCs
in the North Atlantic. Outside of the North Atlantic, where more than 85 % of all
TC activity occurs, there have been no regular reconnaissance missions since 1987.
In this section we introduce and briefly examine the methods and instruments that
are commonly used to directly measure the TC MSW. Some of the instruments
described below (stepped frequency microwave radiometer, Doppler radar) are
remotely sensed data, but we include them in this section since they are measured
from within the TC.

(a) Aircraft reconnaissance
TC observations from aircraft are generally regarded as the best method

to obtain high-resolution wind (and other meteorological) data for several
reasons. Missions, especially those with more than one aircraft, can cover a
wide area of the storm in a short time (several hours). The data collected
on those missions are transmitted back to the operational forecast center
almost instantaneously and can be made available to forecasters soon after.
Recent technological developments with onboard instrumentation, specifically
the adoption of the stepped frequency microwave radiometer (SFMR) and
Global Positioning Satellite (GPS) dropwindsondes (both discussed below),
have dramatically increased the value of aircraft missions. However, the high
cost of transforming and maintaining aircraft for safely flying into the violent
cores of TCs has prevented every country but the USA from regularly flying
operational missions, leaving less than 5 % of all global TC synoptic times (00,
06, 12, 18 Coordinated Universal Time, or UTC) influenced by this high-quality
data. It should be noted that as of this writing, Japan is planning to restart active
aircraft reconnaissance in the western Pacific in 2016 for at least a 5-year period.

Reade (2014) describes the interesting history of TC aircraft reconnaissance,
which began with several informal flights during the mid-1940s. Both the US
Navy (USN) and Air Force (USAF) began regular missions in the western
Pacific in 1944; the USAF also began missions in the North Atlantic the
same year. The 53rd USAF Weather Reconnaissance Squadron, now commonly
known as the “Hurricane Hunters,” was first activated around this time and
continues to fly missions today, primarily in the North Atlantic. Collins and
Flaherty (2014) provide a comprehensive overview of the Hurricane Hunters,
including their history, aircraft, and instrumentation used. Before the regular
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satellite observation of ocean basins began in the 1960s, many planes were
flown with the purpose of finding storms. Once storms were found or otherwise
reported by island residents or shipping interests, subsequent aircraft missions
estimated the wind speed through visual inspection of the ocean surface.
Additionally, pressure readings were made and then used to estimate the MSW
based on established pressure-wind relationships.

Eventually, instrumentation was developed to accurately measure the relative
wind speed at the aircraft flight level. Flight-level winds are still recorded by
every reconnaissance mission today and have served as a valuable source of
data when more desirable surface measurements of wind speed, through the
SFMR or GPS dropwindsonde, were not available. To translate the flight-level
wind to the MSW, a reduction is typically employed to account for the higher
frictional effects in the boundary layer. Powell et al. (1996) discuss the issues
with reducing flight-level winds to surface winds and have found that flight-
level winds are typically within 20 % of the true surface wind.

Accurate reductions of flight-level wind are highly dependent on the vertical
profile structure of TCs, which until recently has been difficult to measure due
to obvious logistical challenges and safety concerns. However, the development
of GPS dropwindsondes has provided forecasters and analysts with an expanded
picture of the TC environment. Work with GPS dropwindsonde data in TC cores
has led to changes in the flight-level wind reduction algorithms, which now
reduce winds to 90 % of the 700-mb flight-level wind (e.g., Landsea et al. 2004).

(b) GPS dropwindsondes
A dropwindsonde is a package of instruments contained in a cylindrical

copper case that is ejected from the bottom of an aircraft. As the dropwindsonde
falls toward the ocean surface, it records and transmits measurements of
temperature, humidity, pressure, and wind at a very high frequency (2 Hz)
back to the aircraft. From typical launch altitudes (�700 mb, or 6 km above
sea level), dropwindsondes typically provide 7 min of data before splashing
into the ocean, falling under parachute at a velocity of 10–16 m s�1. At
those vertical velocities, GPS dropwindsondes measure atmospheric parameters
approximately every 5 m.

Dropwindsondes were originally tracked via a network of Omega naviga-
tional stations (see Govind (1975) for information on these early versions of
the modern dropwindsonde). After extensive use in measuring the tropical
atmosphere during the Global Atmospheric Research Program Atlantic Trop-
ical Experiment (GATE) program (1974), Omega dropwindsondes were first
deployed in the environmental wind field of a TC during Hurricane Debby
(1982) by National Oceanic and Atmospheric Administration (NOAA) WP-
3D (P3) aircraft (Burpee et al. 1984). The potential improvement of TC
forecasts was recognized early on, and deployment of Omega dropwindsondes
continued through 1993 in both the North Atlantic and eastern Pacific. For
example, Burpee et al. (1984) demonstrated that computer model TC track
forecasts improved 16–30 % when dropwindsonde data was included in the
model analysis field.
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Even with the newly found success of incorporating Omega dropwindsonde
observations into numerical forecast models, there were still challenges to
the system of using Omega signals to derive wind speeds. On occasion,
thunderstorm activity decreased the signal strength of Omega transmissions and
reduced the reliability of the wind speed data retrieved from the instruments
(Smalley 1979). There were also large data losses in the low levels of the
troposphere due to Omega signal propagation (Hock and Franklin 1999). In
the mid-1990s budget constraints were also threatening the continued operation
of the worldwide Omega network (Rappaport et al. 2009).

The latest generation of dropwindsonde instruments overcame these chal-
lenges by incorporating GPS technology into dropwindsondes. Led by the US
National Center for Atmospheric Research (NCAR) and the German Aerospace
Research Establishment (DLR), development of the GPS dropwindsonde was
completed in 1996 and boasted numerous advantages over the Omega systems –
including higher wind speed accuracy and sampling rates, which increased the
vertical resolution of wind speed measurements (Hock and Franklin 1999). In
addition, GPS dropwindsondes are also able to measure winds in the lowest
portions of the atmosphere, providing forecasters with a true in situ 10-m wind
speed.

Improvements in track and intensity forecasts of TCs continued to be
realized with the regular use of GPS dropwindsondes – first from drops in the
TC environment and then in the inner core of TCs themselves. Aberson and
Franklin (1999) document significant forecast improvements in track (32 %)
and intensity (20 %) of the Geophysical Fluid Dynamics Laboratory (GFDL)
hurricane model when GPS dropwindsonde vertical profiles from the outer
TC environments were included in the model run. On 3 August 1997, NOAA
P3 aircraft measured the first vertical profiles in a hurricane eyewall when
dropwindsondes were deployed into Hurricane Guillermo. By the very next
season, the USAF Hurricane Hunters regularly included GPS dropwindsondes
in all of their operational missions.

Winds measured by GPS dropwindsondes are considered to be the gold
standard; however, some care must be taken when interpreting the data. Franklin
et al. (2003) collected approximately 600 soundings from inside or close to the
eyewalls of 17 hurricanes in part to describe the vertical profile of wind speed.
They suggested that single observations of wind speed by dropwindsondes
should not be considered representative as a sustained wind speed, since the
sonde responds almost immediately to any high-frequency variation in the wind
field (i.e., turbulence); rather, estimates of surface MSW should be obtained
through a longer averaging period. This requires either averaging the wind
speed as the dropwindsonde falls through the boundary layer (500 m to the
surface) and then decreasing the value by 20 % to account for frictional effects
near the surface or averaging just the lowest 150 m and then adjusting to
the surface using a mean dropwindsonde-based eyewall profile. In either case,
Franklin et al. (2003) demonstrate that GPS dropwindsonde data have proven
extremely valuable in understanding the nature of the TC wind field.
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(c) Stepped frequency microwave radiometer (SFMR)
One of the biggest weaknesses of GPS dropwindsondes is the low areal

coverage of the instrument. On typical reconnaissance missions, there are a
limited number of dropwindsondes that provide only point measurements of
wind. The development and operational use of the SFMR on board Hurricane
Hunter and NOAA P3 aircraft provides a highly accurate estimate of the
MSW over a much larger area. The SFMR is an instrument that determines
the MSW by directly measuring the radiative emission of the sea surface,
expressed as a brightness temperature (e.g., Uhlhorn and Black 2003). The
nature of the sea state has a strong relationship to brightness temperature, as
wind creates increased surface roughness, breaking waves, and seafoam (Jones
et al. 1981). For example, Barrick and Swift (1980) demonstrated that the
percentage of foam coverage due to wave breaking increases monotonically
with wind speed.

Uhlhorn and Black (2003) provide a good description of the modern SFMR
instrument and its use in hurricanes. The SFMR contains a downward-pointing
antenna that passively reads nadir (orthogonal to the surface) brightness
temperatures at six different frequencies ranging from 4.55 to 7.22 GHz (C-
band); the diversity of frequencies allows for estimation of both surface wind
speed and rainfall. Wind speeds are estimated through the application of
a geophysical model function (GMF) that relates the surface emissivity to
wind. The emissivity is a function of surface foam from wave breaking –
which is strongly correlated with the local wind speed – and a contri-
bution from the atmosphere, which is accounted for in a forward radia-
tive transfer model (Ulaby et al. 1981). Originally conceived and developed
in the late 1970s and first flown into Hurricane Allen (1980), the SFMR
and its GMF have undergone a number of improvements during the 1980s
and 1990s. By 2008, the SFMR was installed on all USAF and NOAA
reconnaissance aircraft, supplementing the wind data provided by GPS drop-
windsondes. SFMR data are even more critical when dropwindsondes stop
transmitting wind data close to the ocean surface, a frequent occurrence in
strong TCs.

SFMR wind speeds have been carefully validated against GPS dropwind-
sonde data that have been adjusted to account for time averaging and the
standard 10-m measuring height (Uhlhorn and Black 2003; Uhlhorn et al.
2007). Uhlhorn and Black (2003) compared 249 paired samples of SFMR
measurements from 1998, 1999, and 2001 with GPS dropwindsonde data.
Figure 4.1 shows the scatterplot comparison of all points. Note the positive
bias (C2.33 m s�1) in the SFMR data and the RMSE value of 3.31 m
s�1. Uhlhorn and Black attribute some of the errors to the generation of
foam on the ocean surface from something other than local wind, such as
the known dependence of the retrieval on wind fetch. An analysis of SFMR
wind errors based on storm quadrant (different quadrants have different wave
generating properties) supports this idea. Subsequent work (Uhlhorn et al.
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Fig. 4.1 SFMR-GPS surface wind speed comparisons from Uhlhorn and Black (2003). The
solid line indicates perfect correlation, and the dashed line indicates the best fit (© American
Meteorological Society. Used with permission)

2007) led to the development of an updated SFMR algorithm that corrected
this high bias and made extreme wind speed retrievals (>60 m s�1) more
accurate.

(d) Buoys
Ocean buoys have traditionally provided the most accurate measurement

of near-surface TC winds – but of course only when the storm passed
near enough to the instrument. There are essentially two types of buoys:
moored and free floating (“drifters”). There are over 1000 active drifters at
any time worldwide, but most do not have wind sensors and thus do not
regularly contribute to TC wind measurement. However, there have been
some targeted experiments where wind-equipped drifters have been dropped
ahead of approaching TCs in the Atlantic and Pacific basins (Niiler et al.
2003).

The accuracy of buoy wind measurements is perceived to be very high
(e.g., Gilhousen 1987) – so high that almost all of the remotely sensed
wind data discussed later uses buoy data for validation. However, there are
still concerns that must be considered when measuring high winds with
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buoys. Buoys employing mechanical anemometers risk failure when wind
speeds exceed 25 m s�1, and there may be a low bias introduced due
to wave sheltering effects during large swells generated in TCs. Howden
et al. (2008) performed an analysis of buoy-measured winds by a sonic
anemometer (a design less susceptible to failure) during a close passage of
Hurricane Katrina (2005). Their results suggested that many buoy measure-
ments in TCs may be further biased low because of a failure to account
for buoy pitch and roll, which exposes the anemometer to the wind at an
angle.

(e) Ship and surface stations
Of course the biggest disadvantage to using buoy wind data both opera-

tionally and in research is the scarcity of TC overpasses. Most moored buoys
are stationed near coastal areas, and a measurement of the area where the
TC MSW may occur happens infrequently. A similar challenge is encoun-
tered with using ship-mounted anemometers to measure TC winds – ships
typically avoid TCs – so wind observations in the strongest parts of the
storm are rare. Approximately 4000 ocean-going vessels currently participate
in the WMO’s Voluntary Observing Ship (VOS) program, in an effort to
alleviate the dearth of surface ocean observations. Accurate wind observations
from ships, even those with anemometers, are difficult in high winds. Wave
activity pitches and rolls the ship, causing artificial variance in observations.
Furthermore, wind shielding from high swells, as with buoy data, is also a
concern.

Surface-based observations of wind only occur when a TC is in close
proximity to a coastline or offshore platform. The US National Data Buoy
Center (NBDC) established the Coastal-Marine Automated Network (C-
MAN) in the early 1980s in an effort to formally maintain meteorological
observation in US coastal areas. These stations have been installed on
lighthouses, beaches, offshore platforms, and near-shore islands. Because
of the diversity of wind exposure through the C-MAN network, the wind data
can exhibit significant variability across short distances. Stations constructed
in areas where land-induced friction plays a significant role typically record
lower wind speeds compared to marine-exposed stations as well as ships
and buoys (Dunion and Velden 2002). In addition to the C-MAN network,
TCs are observed by more regular observation stations near the coast,
such as National Weather Service Automated Surface Observing Stations
(ASOS).

Similar to mechanical anemometers mounted on buoys, land-based mechan-
ical anemometers are also susceptible to failure at higher wind speeds. It is
thus quite rare to find suitable land station wind speed data to verify very
strong TC landfalls. Hurricane Andrew (1992) had long been classified a
Category 4 hurricane on the Saffir-Simpson scale at landfall in South Florida
because the MSW was determined principally by reconnaissance flight-level
winds reduced to the surface. Surface anemometers, particularly the C-MAN
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station at Fowey Rocks, Florida, failed before measuring the peak winds in
the storm’s eyewall. A subsequent reanalysis of the storm by Landsea et al.
(2004) upgraded Andrew to a Category 5 based primarily on new surface
wind reduction factors that were determined from new GPS dropwindsonde
data.

(f) Doppler radar
Doppler radar can determine local wind velocities by bouncing radiation

off of particles (e.g., rain, ice) embedded in the flow. Surface-based Doppler
radars have been shown effective at determining horizontal wind speeds in TCs.
Tuttle and Gall (1999) modified a method originally conceived by Rinehart
and Garvey (1978) to track reflectivity echoes (TREC). They showed that
TREC was particularly effective in the lower few km of the storm where
vertical wind shear is relatively weak. Radar winds were typically within
10 % of aircraft measurements in the storm and rarely were off by more
than 10 kt. Harasti et al. (2004) further investigated the use of TREC and
other methods for applying Doppler radar data to TC winds. Modifications
were made to TREC and the ground-based velocity track display (GBVTD)
algorithm to make them more accurate and operationally friendly; for example,
the data were converted to ground-relative wind speeds. Based on test cases
in two TCs with reconnaissance data, Harasti et al. (2004) showed that both
TREC and GBVTD were able to retrieve the MSW of a TC with an accuracy
�2 m s�1.

Of course, the application of ground-based Doppler radar is limited to times
when TCs move near the radar site. Both NOAA and NASA have installed
Doppler radar systems on board aircraft to increase the reach of the radar. The
Imaging Wind and Rain Airborne Profiler (IWRAP, Fernandez et al. 2005)
is a dual-frequency radar that is mounted on the NOAA P3 aircraft, which
typically flies at lower altitudes (2–4 km) in TCs. NASA has developed and
installed the High-Altitude IWRAP (HIWRAP, Li et al. 2008) on board its
Global Hawk unmanned high-altitude (18–20 km) aircraft (Sect. 4c). Wind
retrieval algorithms applied to IWRAP and HIWRAP data have shown skill
in retrieving the horizontal winds in TCs. For example, Guimond et al. (2014)
showed that IWRAP wind retrievals at nadir had errors of �4.0 m s�1 when
compared to flight-level winds in Hurricane Isabel (2003). Although this
error is about twice as high as ground-based Doppler winds, it is still quite
remarkable given the challenges of accounting for the movement of the aircraft
itself.

3 Remote Observation

Although the in situ measurement of TCs is ideal, in reality, such observations are
rare. Fortunately, the situation has become progressively better in recent decades
as a number of satellite systems have filled in the gaps. This section will examine
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three of the more popular systems used to observe TC winds: geostationary orbiting
environmental satellite (GOES) cloud track winds, scatterometers, and microwave
sounders.

(a) GOES (cloud-drift winds)
Understandably there is much focus on determining the MSW, which occurs

near the TC core. But the strength and distribution of the wind field around the
periphery (�50–500 km from the center) are also of importance to forecasters
and other maritime interests. Typically, reconnaissance aircrafts do not sample
that area of the storm, and overpasses over buoys or ships are too infrequent. To
fill in this gap of quality surface wind observations, a technique was developed
to track cumuliform clouds in 15-min sequences of GOES visible channel
images (Velden et al. 1998). An accurate assessment of the cloud level and a
reasonable transition to a 10-m wind could provide valuable wind data away
from the central core.

Dunion and Velden (2002) verified GOES winds against GPS dropwind-
sonde data from three 1998 TCs (Bonnie, Danielle, and Georges) at radii
ranging from 400 to 1600 km from the TC centers (500 collocated points total).
They found a RMSE of approximately 5 kt for the GOES cloud-drift winds –
certainly accurate enough to be used with confidence. Further comparisons of
surface-adjusted GOES winds were made with in situ data (ships, buoys, and
stations on lighthouses and oil platforms). The RMSE was similar, with an
overall value of �5.5 kt.

The GOES cloud-drift winds have been successfully incorporated into
H*Wind, a TC wind data assimilation and objective analysis system discussed
in Sect. 4b. Further research using water vapor and IR channels have led to the
creation of a large number of useful products, including wind shear, vorticity,
and convergence analyses across any ocean basin. These are accessible in
near real time on the Cooperative Institute for Meteorological Satellite Studies
website at the University of Wisconsin–Madison (CIMSS 2015).

(b) Scatterometers
Scatterometers have proven to be successful at retrieving both surface wind

speed and direction in the vicinity of TCs. These active microwave scanners
operate by emitting pulses of Ku-band (13.4 GHz) or C-band (5.3 GHz)
radiation toward the ocean surface, where the energy interacts with capillary-
scale (<1-cm wavelength) waves. The intensity of the backscatter is proportional
to the magnitude of the surface wind stress, which is then translated to a wind
speed via a GMF. Furthermore, the orientation of the capillary waves provides
scatterometers with data to retrieve the wind direction as well. Scatterometers
have been observing TCs regularly since the European ERS-1 and ERS-2
missions during the 1990s. The USA joined the scatterometer community
when NASA successfully launched the NSCAT instrument in September 1996.
NSCAT was shown to be very accurate (Freilich and Dunbar 1999) in retrieving
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both wind speed and direction, thus encouraging the subsequent scatterometer
missions (SeaWinds) after NSCAT’s failure in June 1997.

SeaWinds, on board the QuikSCAT satellite, was launched in 1999 and
provided almost continuous coverage of ocean vector winds for 11 years. The
instrument was briefly joined by a twin instrument on board the Japanese
satellite ADEOS-II in late 2002, providing nearly twice daily global coverage
of ocean winds until the failure of ADEOS-II in October 2003. The instruments
on SeaWinds were Ku-band scatterometers that provided 25-km resolution data
across a nearly 800 km wide swath. The coverage and accuracy of SeaWinds
ocean vector winds was a boon to TC forecasters (e.g., Brennan et al. 2009),
who could now estimate storm wind radii more accurately and determine the
existence of closed surface circulations in immature TCs with more confidence.
There were also demonstrated improvements in storm track forecasting when
scatterometer data were assimilated into models.

There are several well-known limitations with scatterometer wind retrievals
that constrain their application to TCs. Ku-band scatterometers are sensitive
to rain. Drops enhance the roughness (and backscatter) at the ocean surface,
disassociating the surface roughness with the actual wind speed. Rain also
attenuates the signal in the atmosphere, reducing the backscatter received at
the satellite. The net effect is a function of the true surface wind speed (often
unknown) and the intensity of the rain (also not accurately known). Therefore,
surface wind retrievals thought to be contaminated with rain are frequently
“flagged” and ignored or used with caution by analysts. In general, it has been
shown that rain leads to a high retrieval wind speed bias for TCs at tropical storm
wind speeds and below, while there is a progressively low bias in retrieved wind
speeds at higher intensities (e.g., Brennan et al. 2009). Furthermore, even in
ideal conditions, the wind retrievals will “saturate” or maximize at about 45 m
s�1, regardless of the TC intensity. C-band scatterometers, like the European
ASCAT, are particularly prone to saturate at higher wind speeds (although they
are generally less sensitive to rain). Because of these reasons, it is not possible
to use scatterometer winds to estimate the MSW in most TCs, since retrievals in
the eyewall region typically contain the highest rain rates and are most likely to
saturate the signal. Nevertheless, active scatterometer missions such as ASCAT,
OceanSat, and RapidScat (on board the International Space Station) continue to
provide valuable wind data for many TCs.

(c) Advanced Microwave Sounding Unit (AMSU)
As with scatterometer data, microwave sounding units enjoy the advantage

of “seeing through” clouds which frequently obscure the central area of TCs. By
measuring the vertical structure of the TC core temperature, microwave sound-
ing data can be converted into a wind field by mapping core temperatures to
surface wind speeds when they are known from GPS or SFMR measurements.
Microwave sounders were originally conceived and deployed in the 1960s; the
deployment of the Microwave Sounding Unit (MSU) aboard the Television and
Infrared Observation Satellite (TIROS-N) in 1978 marked the first high-quality
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observations of vertical profiles of atmospheric temperature and water vapor
content from space. The current generation of microwave sounders is the
Advanced Microwave Sounding Unit (AMSU), first launched into orbit in 1998
aboard the NOAA-15 satellite (Goldberg 1999).

The AMSU is a cross-track scanning radiometer that passively measures
electromagnetic radiation. A scanning mirror cycles through 30 separate
angles – ranging from 1.67 to 48.33ı – of the earth’s surface every 8 s.
With an effective ground resolution of 48 km and a swath width of 2343 km
(e.g., Kidder et al. 2000), the AMSU is able to adequately measure most TCs
regularly, although the coarse resolution can limit the skill and confidence in
measuring the inner core of TCs – which may be much smaller. There are 20
combined frequency channels, subdivided into temperature (AMSU-A) and
moisture sounding (AMSU-B) groups.

The vertical profile of atmospheric temperature is determined by measuring
the brightness temperature at a number of levels. As mentioned previously,
the MSW can then be estimated either by correlating the strength of the TC
warm core to more well-known estimates of MSW or through employing
pressure-wind relationships. Kidder et al. (2000) performed a correlation study
between the warm core and the MSW and found that the upper-level warm core
anomaly could be used to estimate MSW to an accuracy of 10 m s�1. Demuth
et al. (2004) showed even better success by calculating a surface pressure and
geopotential height fields through the hydrostatic and gradient wind equations.
They analyzed 100 cases during the 1999–2001 seasons and found that the mean
absolute error was 5.3 m s�1 when compared to BT data, which is comparable to
error experienced through the use of the Dvorak technique (Sect. 4a). Another
advantage of this method is that wind radii estimates can be easily determined
through the application of these balance equations.

The latest generation from the AMSU family is the Advanced Technology
Microwave Sounder (ATMS), which combines all of the channels from AMSU-
A and AMSU-B into one instrument. ATMS provides a more efficient platform
for collecting vertical soundings of temperature and moisture with a wider swath
and better horizontal resolution than AMSU (26 km vs. 48 km at nadir). It is one
of five instruments on board the Suomi National Polar-orbiting Partnership (S-
NPP) satellite, launched in 2011.

Today, the strengths and limitations of the AMSU instrument are well
understood. The wind retrievals are one of many sources considered by analysts
and forecasters in determining the MSW, although its significance operationally
is routinely overshadowed by the use of the Dvorak technique (Sect. 4a),
especially when other data sources (e.g., SFMR, GPS dropwindsondes)
are absent. AMSU winds also serve as an important source in MSW
superensemble techniques currently in development, such as SATCON
(Sect. 5c).
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4 Applied Techniques

The evolution of scatterometers and microwave sounders into more useful sources
of TC wind data continues today. One shortcoming in the operational use of these
and other polar-orbiting observing platforms is the irregularity of TC overpasses.
In the tropics, gaps between subsequent satellite swaths are at their largest. Even
in the most ideal situation, a satellite may observe a TC no more than twice a day.
The use of geostationary data (cloud track winds, Sect. 3a), which allows for near-
continuous observation of TCs, has limited ability to determine winds anywhere
near the TC core. Without an ideal way of measuring the MSW, researchers have
developed a number of applied techniques that build upon the strengths of these
individual systems. This section will examine two of these: the Dvorak technique
and H*Wind.

(a) Dvorak Technique
The Dvorak technique (Dvorak 1972, 1975, 1984) is an algorithm developed

in the 1970s and improved upon during the 1980s that uses visible and/or
infrared geostationary imagery to estimate the MSW. It was the first and still
the only reliable method of determining the MSW based on the characteristics
of the cloud pattern in a satellite image. In fact, the algorithm has been adopted
at every TC forecast agency in the world and remains the most widely used
method for determining MSW. Velden et al. (2006) provide an extensive review
on the Dvorak technique; here, we will provide a brief description of how the
algorithm works and its accuracy.

The technique can be used with visible or IR imagery; however, the IR
version (called the enhanced IR or EIR) is generally more accurate and is
the least subjective. Figure 4.2 shows an enhanced IR image of Supertyphoon
Haiyan (2013), a storm which went on to inflict catastrophic damage to the
Philippines. The gray shades are the traditional enhancement used for the
Dvorak technique and represent the cloud brightness temperatures. The first
step in estimating the MSW is to find the center of the storm, which in this
case is relatively easy since Haiyan has a clear “eye.” Step 2 is to determine
the “cloud pattern,” which could be one of four choices: curved band, shear,
eye, or embedded center. A curved band pattern will present itself as a comma-
type cloud and generally will translate to a weaker system. Embedded center
storms are circular in appearance but the center of the storm will be covered
with clouds. Shear storms have an exposed circulation center (separate from the
main area of convection) and can be difficult to identify in IR imagery. In this
case, it is clear that Haiyan is exhibiting an eye pattern.

Once the cloud pattern is identified, a number of pattern-specific features are
determined; for example, in eye patterns it is important to identify the cloud
color (brightness temperature range) that completely surrounds the eye, how
thick it is, and how large of a difference in temperature exists between it and
the warmest cloud pixel in the eye. All of these factors have been shown to
be related to the strength of the MSW. This process produces what is called a
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Fig. 4.2 Infrared-enhanced image of Supertyphoon Haiyan (2013) in the western Pacific Ocean.
Image courtesy of the Cooperative Institute for Meteorological Satellite Studies (CIMSS),
University of Wisconsin-Madison

“Data T” number, which has a value between 1.0 and 8.0 and can be related to
MSW through the use of a lookup table (Table 4.1). Next, a number of rules
and constraints are applied to limit the effect of transient features in the satellite
image that could lead to a false intensity. For example, it has been observed
that TCs rarely change intensity by more than 1.0 Data T numbers in a 6-h
period. Once the rules are applied, a “current intensity” or CI number is used to
determine the MSW through the same lookup table (Table 4.1).

Knaff et al. (2010) performed a verification study of Dvorak estimates.
They compared the MSW from the Dvorak estimate to the BT MSW for those
times that were influenced by aircraft reconnaissance data (i.e., when there was
aircraft data ˙2 h from the BT time). Figure 4.3 shows the bias, mean absolute
error (MAE), and root-mean-square error (RMSE) by BT intensity for Dvorak
estimates from two different agencies. There is a clear dependence of Dvorak
accuracy on storm intensity – errors generally increase at higher intensity, while
a high negative bias develops. Knaff et al. attribute this bias to the nature of
the cold cloud tops in the North Atlantic basin, which rarely achieve the low
temperatures observed in western Pacific storms – the area from which the
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Table 4.1 EIR Dvorak T
number conversion to
maximum sustained wind (kt)

T number Maximum wind (kt)

1.0 25
1.5 25
2.0 30
2.5 35
3.0 45
3.5 55
4.0 65
4.5 77
5.0 90
5.5 102
6.0 115
6.5 127
7.0 140
7.5 155
8.0 170

Dvorak technique was originally developed. In general, the 12-kt RMSE for
hurricane-strength storms is quite remarkable given that the MSW estimates
originate from only IR images.

Despite its demonstrated successes, MSW estimates from the Dvorak tech-
nique are frequently scrutinized because the process is inherently subjective
and vulnerable to user error, especially when users are not sufficiently trained.
Large differences in Dvorak estimates for the same storm image have been
demonstrated (e.g., Nakazawa and Hoshino 2009), leading to many of the
heterogeneities in BT data discussed in the opening of this chapter. These
differences arise from the uncertainties involved with identifying the proper
cloud pattern, the diverse set of rules and constraints that local agencies have
developed to “tune” the technique to their area of interest, and limitations in
applying the technique in certain situations like “pinhole eyes” (very small eyes
barely resolved in satellite imagery) or “midget typhoons” (very small TCs that
appear to not obey the normal Dvorak rules). An automated Dvorak technique,
now called the Advanced Dvorak Technique (ADT, Olander and Velden 2007),
was developed to mitigate many of these challenges in the manual routine. User
subjectivity is taken out of the process through the application of automated
storm center and pattern determination schemes. Final intensity estimates are
corrected through an analysis of North Atlantic and Pacific storms. Presently,
the ADT is frequently consulted in operations as another viable estimate of
MSW, and improvements to the system are continually made.

In the absence of regular, high-quality observational data, the Dvorak
technique continues to overwhelmingly influence global TC MSW estimates.
Despite its limitations and the continuing increase in the quantity and quality of
wind observations, there is little evidence that the Dvorak technique will fade
in importance over the next few decades.
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Fig. 4.3 (Top) biases, (middle) MAEs, and (bottom) RMSEs associated with Dvorak tropical
cyclone intensity estimates (kt) from the Satellite Analysis Branch (SAB) and the Tropical Analysis
and Forecast Branch (TAFB) that were made with ˙2 h of an aircraft reconnaissance fix. The
verification is based on the BT intensities at those times, and the analysis domain was the Atlantic
basin. The number of cases is provided in the bottom panel (caption and figure from Knaff et al.
(2010), Figure 3) (© American Meteorological Society. Used with permission)
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(b) H*Wind
Any observations of TC wind are heterogeneous in space and time. Instru-

ments aboard polar-orbiting satellites, such as scatterometers and microwave
sounders, will fly over a TC at different times of day. Buoy, ship, and surface
station measurements are sporadic at best. Reconnaissance aircrafts are in a
storm for a number of hours and will only sample a small portion of the
environment. Given this situation, it is difficult for forecasters and analysts
to merge the disparate observations into a cohesive evaluation of the storm’s
intensity. In turn, the assimilation of the TC into numerical model analysis
fields will suffer, resulting in inferior forecasts of storm track and intensity.
During times of rapid change in the TC structure and/or intensity, the problem
is exacerbated.

This issue has long been recognized in the TC community; one popular
solution is the data assimilation and analysis system called H*Wind (Powell
et al. 1998). H*Wind is composed of a data server that collects wind data from
a number of platforms, including aircraft data, scatterometers, surface stations,
buoys, GOES cloud-drift winds, Doppler radar, and more. The data are quality
controlled and transformed to a storm-relative framework. The H*Wind user
can control the time window of observations to consider, the weights applied
to each, and even the algorithms used to adjust the data to the standard 10-m,
1-min sustained criteria. The user can also exclude suspicious observations or
entire datasets. The H*Wind analysis algorithm is then run, producing a gridded
isotach analysis (�2-km resolution) of the mean state of the TC centered around
the analysis time.

Figure 4.4 shows an H*Wind analysis of Hurricane Wilma (2304 UTC 21
October 2005) as the storm interacted with the Yucatan Peninsula. The data
that were used for the analysis are shown at the top of the image, including the
time window for each. Overall the storm, especially outside the inner core, is
symmetrical with discontinuities noted at the land/sea interface. This is because
the analysis is accounting for the type of exposure (land vs. marine) that the
wind is experiencing. This symmetrical pattern is common in H*Wind analyses.
It arises when the analysis algorithm experiences sparse observations (common)
and tends to smooth out the wind field. The MSW of the storm near this time
is shown as a “C” symbol just to the northeast of the center and is probably
near a SFMR or GPS dropwindsonde measurement in the eyewall. Without
aircraft data, reliable analyses of TCs are not possible as SFMR and GPS
dropwindsonde data are generally required to measure the MSW in TCs with
some confidence. Below the analysis image, other relevant information that may
be useful for assessing the storm impact is given to the user (e.g., storm kinetic
energy, wind/wave destructive potential).

H*Wind has served as a valuable tool in TC research, particularly as a
validation tool for some remote sensing platforms (e.g., Laupattarakasem et al.
2010). Though never adopted for real-time use because of time constraints in
an operational setting, TCs are still actively analyzed, and archived real-time
storm analyses are still available through Risk Management Solutions/H*Wind
Scientific (RMS 2016).
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Fig. 4.4 H*Wind isotach analysis of Hurricane Wilma (2005) centered at 2304 UTC
21 October 2005
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5 Experimental Approaches

Despite the broad consensus that aircraft reconnaissance is the optimal mode of TC
wind observation, there is little evidence to suggest that there will be any significant
increase in the frequency of recon missions. Reade (2014) highlights a number of
countries that are planning to begin regular missions, but cost and other logistical
challenges ensure that TCs will remain poorly sampled for many years to come. Yet
there have been several promising developments in data collection and analysis that
promise to improve our ability to observe TC winds more accurately and frequently.
Although currently experimental, the following all have the potential to move the
needle forward, either through increased coverage in space and/or time or better
accounting for errors in current wind estimates.

(a) HIRad
As discussed earlier, the SFMR is a valuable instrument capable of accu-

rately measuring surface wind in TCs. Perhaps the biggest limitation of the
SFMR is that accurate measurements of wind can only be obtained at near
nadir, severely limiting the amount of storm coverage. Recent work on off-
nadir measurements using the SFMR, called HIRad (Cecil et al. 2015), offer the
potential to cover much larger areas of the storm from a single reconnaissance
flight. A specialized antenna allows for measurements of surface brightness
temperature up to 40ı off nadir, allowing for a swath of wind speed and rain
rate measurements of more than 50 km from an aircraft flying at 20-km altitude
with the application of a specialized GMF. If the data at the edges of the swath
can be shown to be accurate, this would be a large step forward in measuring
TC winds.

The HIRad instrument has been flown into several TCs for testing, including
Hurricanes Earl (2010), Karl (2010), Ingrid (2013), Gonzalo (2014), Joaquin
(2015), and Patricia (2015). Figure 4.5 shows the retrieved surface wind speed
from a flight through Hurricane Patricia. The data resolution is quite fine
(1–3 km), and it is clear that many details of the surface wind near the core
of the TC can be resolved, including the calm eye and the intense eyewall.
Qualitative comparisons with nearby GPS dropwindsonde measurements show
promise; however, the initial passes through all these systems have uncovered
large errors, particularly in deciphering between the wind and rain signals in
the brightness temperature field. Thus, HIRad remains an experimental platform
for now.

(b) Aerosondes
In recent years, unmanned aerial vehicles (UAVs), or aerosondes, have

been developed for TC reconnaissance. Originally constructed in the early
1990s (Holland et al. 2001), aerosondes contain a number of meteorological
instruments that can potentially provide measurements in difficult environments
such as TCs. The first successful flight into a mature TC was conducted on 16
September 2005 into Tropical Storm Ophelia. The drone was able to report
winds and other data, including sea surface temperature, from the TC boundary
layer – a place where safety concerns prohibit the flight of manned aircraft.
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Fig. 4.5 HIRad wind speed retrievals (colors, in kt) through Hurricane Patricia (2015) with
trajectories and wind barbs from GPS dropwindsondes overlaid (Figure courtesy of Daniel Cecil
(NASA))

Reports from the time (e.g., NOAA 2006) were optimistic that a continuing
UAV observation program would return big benefits to the TC community
and fill in critical thermodynamic and dynamic data near the US coastline.
However, there appears to have been little movement toward routine operational
deployment of UAVs. In the research arena, NASA uses its Global Hawk aircraft
to fly into TCs as part of a number of experiments. Unlike the UAV flown into
Ophelia, the Global Hawk aircraft are designed to fly high-altitude missions
over a long (�24 h) duration. In addition to a sounder and lidar that provide
high-resolution temperature, humidity, and aerosol data, the Global Hawk has
the ability to release dropwindsondes, allowing for the vertical measurement of
wind speed. Recently, several flights were made into Hurricane Edouard (2014)
as part of the Hurricane Severe Storm Sentinel (HS3) mission, where the Global
Hawk dropped dozens of dropwindsondes in or near the eye. The HIWRAP
Doppler instrument discussed in Sect. 2f is also flown aboard the Global Hawk
aircraft.
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(c) Satellite Consensus Algorithm (SATCON)
SATCON (Velden and Herndon 2014) is a weighted consensus algorithm

that uses MSW evaluations from the ADT (Sect. 3a), two different AMSU
sounder algorithms, and a Special Sensor Microwave Imager Sounder (SSMIS).
Weights are calculated based on the type of TC cloud scene (determined
objectively) being evaluated. For example, errors in the ADT vary depending
on whether the TC has an eye, a cloud shield over the center, or some other
pattern such as shear. Errors in AMSU sounding MSW estimates, as described
above in Sect. 3c, depend on the scan geometry of the sensor relative to the
TC eye size and position. SATCON produces estimates of both MSW and
minimum sea level pressure using unique weights for each parameter. Recently,
a theoretical pressure-wind relationship was employed to create a new input into
the consensus – the MSW from the SATCON MSLP.

Figure 4.6 shows a series of SATCON MSW estimates compared to its
individual members, the human-based Dvorak technique, and the NHC BT
MSW during the intensification phase of Hurricane Patricia (2015) in the eastern
Pacific. This is an interesting case because Patricia was the strongest TC ever
measured in the western hemisphere; this created challenges in estimating the
intensity of Patricia using the Dvorak and ADT techniques, which historically
underestimate high-end intensities. An additional unique aspect of this time
series is that reconnaissance aircraft did sample the storm near peak intensity,

Fig. 4.6 SATCON MSW estimates (red line) for the intensification phase of Hurricane Patricia
(2015). Shown for comparison are intensity estimates from its microwave ensemble members
(shapes), the Dvorak technique (black dots), and the BT intensity from the US National Hurricane
Center (black line) (Figure courtesy of Derrick Herndon (SSEC, University of Wisconsin))
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which directly contributed to the higher BT intensities seen on 23 October
and increased confidence in their values. SATCON clearly outperformed its
members during the first 2 days of the storm but underestimated Patricia at
peak intensity (175 kt vs. 185 kt). When evaluated over many storm times
that were influenced by reconnaissance data, Velden and Herndon (2014) show
that SATCON’s average RMSE outperforms the subjective Dvorak estimates by
�10 %. Work continues on refining and adding inputs into SATCON, including
the subjective Dvorak technique.

6 Conclusion

It may now be a little clearer why we began this chapter with words of caution
about the quality of historical BT data. The observation platforms and instruments
described here rarely if ever measure TCs at the same time. They all have particular
strengths and weaknesses that must be accounted for. The “gold standard” for TC
wind observation – data from aircraft reconnaissance missions such as SFMR and
GPS dropwindsondes – is currently regularly collected for only North Atlantic basin
storms. Intensities of TCs outside those directly observed in the North Atlantic
are strongly influenced by analyst interpretations of geostationary imagery (Dvorak
technique), which can lead to dramatically different conclusions when using BT
records for assessing trends. For example, Webster et al. (2005), Wu et al. (2006),
and Kossin et al. (2007) found an increase, decrease, and no change, respectively,
in the frequency of severe typhoons in the western Pacific between a recent and
earlier time period. Webster and Wu used different agency BT records, while Kossin
applied an objective intensity algorithm to homogeneous IR satellite data. Kossin
et al. (2013) provide a good source for further reading on the differences in global
BT data.

Until high temporal and spatial observations of TCs can occur, there will always
be a large degree of uncertainty in the MSW value. Nolan et al. (2014) investigated
the utopian idea of having a dense network (spaced 11-km apart) of anemometers
that measure the eye and eyewall of a TC with no instrument error. Simulations show
that this network would still underestimate the MSW in a 60-m s�1 hurricane by 5 m
s�1 through undersampling. Our best chance in the next few decades of achieving
or exceeding this benchmark is through the continued development and successful
deployment of satellite-based systems that can provide regular, dense coverage of
TCs. If we can rely less on interpretation of geostationary imagery for MSW, the
more likely a satisfactory BT record will be possible.
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Chapter 5
Inland Tropical Cyclones and the “Brown
Ocean” Concept

Theresa Andersen and Marshall Shepherd

Abstract In several regions of the world, tropical cyclones have been known to
maintain or increase strength after landfall without transitioning to extratropical
systems. It is hypothesized that these inland areas help sustain tropical cyclones
when there has been plentiful rainfall, leading to unusually wet soil and strong
latent heat release. Additionally, given the symmetric structure of warm-core
cyclones, the atmosphere should tend toward barotropic conditions that mimic an
ocean environment. Observational and modeling studies support this “brown ocean”
concept, providing a global climatology of inland tropical cyclones, pinpointing
regions that are more favorable for re-intensification, and analyzing individual
cyclones to better understand the associated land-atmosphere feedbacks.

Keywords Brown Ocean • Convective available potential energy (CAPE) •
Extratropical transition • HYDRUS model • Landfalling hurricanes • Latent heat
flux (LHF) • Modern-Era Retrospective Analysis for Research and Applications
(MERRA) • Planetary boundary layer (PBL) • Radar • Saffir-Simpson scale •
Satellite • Soil moisture • Tropical cyclone maintenance or intensification
(TCMI) • Weather Research and Forecasting model (WRF)

1 Introduction

Broadly defined, a tropical cyclone (TC) is a center of low pressure that develops
over the oceans within tropical and subtropical latitudes. Such latitudes provide ade-
quate Coriolis force and warm sea surface temperatures to sustain the storm (Frank
1977). A critical component of TCs (hereafter referring to tropical storms, hurri-
canes, typhoons, and cyclones) is the latent heat flux associated with evaporation
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from the ocean surface. Such storms transfer heat from the ocean surface to the
atmosphere through condensation. This energy transfer is the fuel supply for the TC.

Most TCs weaken after landfall because the ocean-based moisture supply is
removed. The lack of adequate latent heat flux coupled with increased friction,
increased wind shear, and larger temperature gradients is not conducive to main-
taining a warm-core structure and tropical characteristics. However, scholars have
recently identified several cases where TCs maintain their strength or even intensify
overland (see Andersen and Shepherd 2013).

A common way that this phenomenon occurs is through the process of extra-
tropical transition (ET). When a TC transitions, the temperature field becomes
increasingly asymmetric, and the storm becomes a cold-core structure (i.e., the
geostrophic winds increase with height because of the increasingly baroclinic
atmosphere or the presence of temperature/density gradients). Roughly 46 % of
Atlantic tropical cyclones undergo extratropical transition according to Hart and
Evans (2001). Hurricane Sandy (Shepherd 2012) is a well-known example of an
ET that caused significant damage in the densely populated Northeast USA. In the
western North Pacific, three types of ET have been characterized by Klein et al.
(2000). Complex ET is described as a preexisting front interacting with a TC to
generate a new ET cyclone. Compound ET occurs when a mid-latitude cyclonic
storm and a TC merge to produce a new ET cyclone. The third type is a dissipating
TC that demonstrates recurvature (Klein et al. 2000).

However, some TCs have been observed to maintain their strength (and tropical
characteristic) or even intensify overland without ET. Tropical Storm Erin intensi-
fied overland in Texas and Oklahoma in 2007. Doppler radar measurements detected
an “eye” over central Oklahoma (Fig. 5.1). Arndt et al. (2009), Evans et al. (2011),
and Kellner et al. (2012) suggested that latent heat fluxes from antecedent rainfall
and anomalously moist soils over Texas and Oklahoma may have contributed to the
intensification. Our analysis of satellite-derived rainfall in the region leading up to
the event supports that finding (Fig. 5.2).

Using a mesoscale model, Chang et al. (2009) found that monsoonal depressions
remain intense overland when a significant rainfall preceded landfall. Emanuel et al.
(2008) also noticed that vertical heat fluxes from wet, hot sandy regions of northern
Australia may have been playing a role in the intensification of cyclones. The
authors noted that antecedent moisture or precipitation from the TC itself could be
the source of this particular land-atmosphere feedback. Both Kishtawal et al. (2012)
and Chen (2012) have also discussed the role of inland characteristics (soil heat flux
and/or friction) on TC intensity or life cycles in India and China, respectively. In
2015, Tropical Storm Bill lingered for days after making landfall in Texas. Later in
the chapter, a more detailed analysis of Tropical Storm Bill is presented.

A series of seminal papers (Andersen and Shepherd 2013; Andersen et al. 2013)
has advanced the “Brown Ocean” theory. This theory is based on the “Green Ocean”
analogy that has been put forth to describe the contributions of the Amazon forest to
the regional hydroclimate regime (Wang et al. 2000). The Brown Ocean concept
refers to tropical cyclones that maintain or increase strength after landfall. This
work was possibly the first comprehensive and global assessment of the concept
of tropical cyclone maintenance or intensification (hereafter referred to as TCMI).
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Fig. 5.1 Remains of Tropical Storm Erin (2007) over Oklahoma with an “eye” (Figure provided
by National Weather Service (NWS) Norman Forecast Office)

Beyond scientific curiosity, there are societally relevant reasons why the study of
TCMIs warrants attention. TCs account for more than 15,000 deaths annually and
over $1.5 billion in damage (Rakhecha and Singh 2009). The National Hurricane
Center also noted that inland flooding causes 59 % of the fatalities from landfalling
hurricanes (Rappaport 2014). Shepherd et al. (2007) showed that rainfall is a
significant hazard of landfalling hurricanes but can also be critical for regional water
supplies and drought mitigation. Climate change may also impact the intensity and
frequency of TCs (Shepherd and Knutson 2007). Though initially controversial,
most literature suggests that climate change will likely lead to more intense and
perhaps longer-lived TCs, with a reduction in the overall frequency (Bender et al.
2010; Hill and Lackmann 2011; Murakami et al. 2012). Kossin et al. (2014) also
noted that the latitude at which hurricanes experience maximum intensification may
be migrating poleward.

Although scientific studies highlight the hazards of TCs and even the potential
risk from inland storms, there is still more focus on the storms prior to landfall.
Post-landfall warnings or classifications are given little consideration. The well-
known Saffir-Simpson scale is largely based on wind speed, and it does not
always quantify the post-landfall damage potential, which is largely rainfall-driven
(Senkbeil and Sheridan 2006; Kantha 2010). Senkbeil and Sheridan (2006) offered a
classification system for post-landfall TCs in the USA that better quantified the risks
to urban areas and populated coastal regions. The classification system included
maximum sustained winds, gustiness, rainfall, pressure, storm surge, and duration.
At a minimum, it is increasingly necessary to better represent the rainfall and flood
risks associated with landfalling TCs and TCMIs.
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Fig. 5.2 TRMM 3B43 monthly average three-hourly precipitation rate (mm/h) for Tropical Storm
Erin (May–August 2007) (Source: NASA Giovanni website)

2 TCMI: Background, Climatology, and Physical Processes

Andersen and Shepherd (2013) set out to create a global climatology of TCMIs to
better understand spatial and temporal patterns of the events. The tropical cyclone
data were obtained from the International Best Track Archive for Climate Stew-
ardship (IBTrACS, http://www.ncdc.noaa.gov/oa/ibtracs/ Knapp et al. 2010) during
the satellite era (1979–2008). They incorporated atmospheric and environmental
data relevant to the TC events from NASA’s Modern-Era Retrospective Analysis
for Research and Applications (MERRA, http://gmao.gsfc.nasa.gov/research/merra/
intro.php). The compelling results are summarized in Fig. 5.3.

The TCs were first classified according to their track and strength (i.e., whether
the storm tracked inland and, if so, was it still intact?). Over the 30-year period,
227 TCs tracked inland after making landfall (ITCs). Of the ITCs, 45 maintained or
increased strength inland (MIs) based on the maximum sustained wind speed and
central pressure. Seventeen of those underwent extratropical transition, mainly over
North America. Sixteen of the MIs continued as warm-core structures (TCMIs);

http://www.ncdc.noaa.gov/oa/ibtracs/
http://gmao.gsfc.nasa.gov/research/merra/intro.php
http://gmao.gsfc.nasa.gov/research/merra/intro.php
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Fig. 5.3 Tropical cyclones that exhibited maintenance or intensification overland from 1979 to
2008 globally (Figure courtesy of NASA/Kathryn Hansen)

these primarily occurred over Australia. The remaining 12 MIs were found to be
hybrid storms, not distinctly warm- or cold-core; these occurred over the USA,
India, and China. Although China and the USA experience the most tropical cyclone
landfalls, Australia sees the most TCMI cases (Fig. 5.4). Northern Australian soil
is sandy and may have relatively high sensible and latent heat fluxes during the
hurricane season that contribute to the intensification phenomenon. This finding is
consistent with Emanuel et al. (2008).

The TCMI climatology suggests that these systems thrive in inland environments
that mimic tropical conditions. TCMIs prefer quasi-barotropic environments and
generally do not encounter strong temperature gradients post landfall. Low-level
temperature gradients at the time of intensification indicate that TCMIs are associ-
ated with significantly smaller 850-hPa temperature ranges compared with ETs.

Tropical cyclones derive their energy from ocean surface evaporation and latent
heat release. Therefore, to remain warm-core structures overland, a moisture-rich
environment may need to exist. According to the data, soil moisture gradients
existed in the vicinity of the intensification regions, consistent with the Brown
Ocean concept. Over north-central Australia, three strong intensification events
occurred consecutively: Sam in December 2000, Wylva in February of 2001, and
Abigail in March 2001. In this region, TCs themselves are a primary source of
precipitation and may provide the soil moisture needed to force subsequent TCMI
events.



122 T. Andersen and M. Shepherd

Fig. 5.4 Historical TCMI events by region. The hurricane symbol represents the location at time
of inland maintenance or intensification. The symbol size represents the central pressure fall
(0–9 hPa), and tone represents the sustained maximum wind speed increase (0–15C knots) since
landfall or previous maximum overland (Image credit: Andersen and Shepherd (2013))

An analysis of the surface energy fluxes indicates that tropical cyclones were
sustained following high latent heat fluxes (LHFs) and rainfall events near the
peak of the hurricane season. The area-mean LHF leading up to the TCMI events
averaged 70 W m�2, the LHF threshold for TCMI occurrence for this dataset
(Andersen and Shepherd 2013).

Wetter soils tend to absorb more radiation compared with dry soils due to the
high heat capacity of water (Radcliffe and Šimůnek 2010). These wet soils increase
evaporation to produce a moist, unstable boundary layer (Clark and Arritt 1995;
Bosilovich and Sun 1999; Lynn et al. 1998). Strengthened moisture transport,
rainfall reinforcement, and an associated latent heat trigger are important factors for
inland-tracking storm intensity (Dong et al. 2010; Kishtawal et al. 2012). Emanuel
et al. (2008) performed simulations using a TC model coupled to a one-dimensional
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soil model to determine the role of large vertical heat fluxes from recently moistened
soil in cyclone redevelopment in Australia. The results indicated that warm, wet
soils may help to maintain or energize landfalling TCs through surface heat transfer.
In Asia, freshwater bodies and wetlands are hypothesized to supply energy to
typhoons (Chen 2012) and Shen et al. (2002) found that a 0.5 m layer of water
is sufficient to reduce landfall decay.

2.1 One-Dimensional Model Studies

Previous work has suggested that TCMIs are unique to Australia because of the
ability of sandy soil to rapidly release huge amounts of energy when moistened
(Emanuel et al. 2008). Andersen et al. (2013), however, sought to simulate the soil
profiles of four major TC intensification regions. Energy flux values leading up to
four TCMI events, one in each region, were generated to assess the feasibility of
the Brown Ocean concept. The analysis was performed using the HYDRUS-1D
numerical water and heat flow model and MERRA atmospheric data. Andersen
et al. (2013) determined the trends and magnitudes of the surface energy fluxes
before a cyclone entered the intensification region and compared the simulated
energy flux values to observed values over the tropical ocean. In their analysis,
the soil temperature and heat fluxes from the model runs were used to assess the
surface conditions prior to the tropical cyclone. In southeastern China, northern
Australia, and central India, the temperatures decreased slightly with time, while
soil temperatures in the south-central USA increased. The USA and Australia had
the greatest diurnal fluctuations and highest maximum temperatures, possibly due
to high solar radiation during the day and radiational cooling at night.

In the regions where intensification was to occur, the LHF was highest in the
afternoons/evenings and lowest in the mornings. As solar radiation warmed the
boundary layer throughout the day, evaporation increased along with the LHF. The
LHF values were consistently higher in China and India. In the USA and Australia,
the LHF trend closely followed the precipitation trend due to the overall drier
conditions. The daily maximums for all regions often reach 200 W m�2. The soil
texture did not appear to have a significant effect on the LHF magnitudes across
regions; however, the diurnal changes were sharper over Australia (Andersen and
Shepherd 2013; Andersen et al. 2013).

LHFs within TCs are not precisely known due to the lack of accurate obser-
vations. However, remote sensing observations and algorithms have been used to
calculate reasonable estimates (Guimond et al. 2011). According to Zhang and
Rossow (1997), the mean annual LHF peaks around 115–125 W m�2 near 15ıN/S.
Trenberth and Fasullo (2007) estimate that the typical LHF over the tropical ocean
is approximately 120 W m�2. Satellite-derived LHF estimates of the pre-TC ocean
environment are approximately 100–200 W m�2 (Liu et al. 2011). In the western
North Pacific, TC LHF maxima have been estimated as 150–190 W m�2 (Gao and
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Chiu 2010). According to the Andersen et al. (2013) HYDRUS study, daytime LHF
values over the study regions of southeastern China, south-central USA, northern
Australia, and central India easily exceed these estimates.

Compared with observations, HYDRUS underestimated the pre-storm maximum
LHF values (up to 140 W m�2 in Australia). Despite this bias, the HYDRUS inland
fluxes were remarkably higher than the ocean fluxes (>200 %) in China and India.
In the USA and Australia, the land and ocean fluxes were nearly equal. The results
indicated that just before the passage of a cyclone, the land surface is capable of
producing a daytime LHF magnitude that is comparable to that over the ocean.
Because of the area-averaging method used with HYDRUS, the moisture fluxes
produced were likely conservative. Considering LHF is a primary contributor to TC
formation and intensification, the land surface may play an important role in aiding
the maintenance and intensification of TCs when soils are moist.

2.2 Three-Dimensional Model Studies

Numerical weather models are valuable tools for studying the feedbacks between the
land surface and landfalling TCs. Evans et al. (2011) utilized the Weather Research
and Forecast (WRF) model to simulate the re-intensification of Tropical Storm Erin
(2007) over Oklahoma. A control simulation and eight sensitivity simulations were
run with varying soil moisture conditions. They found that the final intensity of
the vortex was linked to maintenance of planetary boundary layer (PBL) moisture
over preexisting wet soil. Lin et al. (2010) studied the landfall of Hurricane Isabel
over the complex terrain of the Appalachian Mountains using WRF coupled with
the Advanced Circulation Model. The model accurately reproduced orographically
enhanced rainfall and the general wind field; however, wind maxima were displaced.
Similarly, Xie and Zhang (2012) found that accurate TC track forecasts are essential
in determining flood potential in Taiwan due to topographical forcing.

Zhang et al. (2011) used WRF to simulate land surface effects on Typhoon Sepat
(2007) in China and found that the model successfully reproduced the typhoon
track and rainfall. Sensitivity experiments revealed that sensible heat flux (SHF)
and latent heat flux (LHF) maintained the cyclone and spiral structure overland.
Moreover, the distribution and intensity of the rain field were dependent on accurate
soil moisture content initialization (Zhang et al. 2011). In a sensitivity study of North
Atlantic TCs to soil parameters, Kishtawal et al. (2012) revealed that the intensities
of hurricanes Rita and Katrina were impacted by changes in surface roughness and
soil heat capacity. However, the impacts were limited compared to the observational
analysis and suggest a need for improvement in modeled surface feedbacks.

While approaching land, TC wind speed may be reduced as a result of momen-
tum loss due to land surface roughness. However, the radial wind component may
increase in the PBL, which produces inflow and enhanced moisture convergence
(Au-Yeung and Chan 2010; Zhu 2008). Likewise, higher moisture availability
overland can help to sustain TCs by increasing condensation and latent heat
supply (Tuleya and Kurihara 1978; Tuleya 1994). Studies have found that moisture
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distribution along the coast, land roughness variation, and small-scale surface
features are important factors influencing TC intensity and track post landfall (Au-
Yeung and Chan 2010; Bozeman et al. 2012; Zhu 2008). Soil heat capacity and
conductivity are also important characteristics that influence the surface temperature
and cyclone decay process (Tuleya 1994; Kishtawal et al. 2012). Over northern
Australia, it has been suggested that large vertical heat fluxes from recently wetted,
hot, sandy soil help to intensify inland-moving TCs (Emanuel et al. 2008). In India,
overland monsoon depressions have been observed to maintain intensity longer if
the area received prior rainfall (Chang et al. 2009).

Building on observational analyses and Andersen et al. (2013), the authors
employed WRF to evaluate the sensitivity of Cyclone Abigail (2001) to a range
of soil moisture conditions. Northern Australia is particularly unique because its
soil characteristics and recent studies confirm that TCMIs are more common in this
geographic region of the world (Emanuel et al. 2008).

TC Abigail began as an area of low pressure in the Coral Sea on 22 February
2001. Two pressure centers merged and tracked westward. Just before making
landfall in eastern Australia, the system intensified. At 0000 UTC on 24 February,
the system made landfall near Cairns and subsequently weakened. The highest
recorded wind speed was 65 kts. Abigail redeveloped and intensified overland
twice. The first time was around 1 March 0600 UTC when the pressure dropped to
998 hPa. The second intensification occurred around 3 March 0000 UTC at which
time the pressure dropped to 992 hPa. The latter time period is the focus of this
paper. Thermal wind analysis indicates Abigail maintained a warm core for the
duration of both intensification periods (Andersen and Shepherd 2013). The tropical
cyclone structure and rainbands are apparent in HURSAT visible satellite imagery
(Fig. 5.5). Near Halls Creek, a clear eye formed on 1 March 1700 UTC and was
apparent until 3 March 0600 UTC. The six-hourly precipitation peaks at 0.8300 and
the wind direction changes around 2 March. The low-pressure center can be seen on
the Bureau of Meteorology (BOM) surface analyses.

WRF version 3.5 was configured for a single processor with basic nesting
and compiled for a real data simulation. A single simulation domain spanning
275 � 325 horizontal grid points at 8 km resolution and 34 vertical levels is utilized
(Fig. 5.6). The initial and boundary conditions are provided by the National Centers
for Environmental Prediction (NCEP) FNL (Final) Operational Global Analysis
1.0ı�1.0ı data (NCEP FNL 2000). The product is prepared every 6 h from the
Global Data Assimilation System (GDAS). The data are available on the surface
and 26 pressure levels between 1000 and 10 hPa. According to Evans et al. (2011),
1ı data are useful for mesoscale studies of soil moisture impacts on vortices. Higher-
resolution data can introduce unrealistic convective-scale feedbacks. The simulation
time begins 2 March 2001 0000 UTC (24 h before intensification) and ends 3 March
2001 0600 UTC. The United States Geological Survey (USGS) land use map of the
study area shows that it is dominated by savanna, shrubland, and grassland.

The unified Noah land surface model was used for surface physics (Chen and
Dudhia 2001). It includes soil temperature and moisture in four layers, fractional
snow cover, and frozen soil physics. The Yonsei University (YSU) scheme is
used for PBL physics (Hong et al. 2006). It is a nonlocal-K scheme with an
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Fig. 5.5 HURSAT visible satellite image of Cyclone Abigail 3 March 2001 0100 UTC. It has a
characteristic tropical cyclone structure with a low-pressure center and spiraling rainbands

explicit entrainment layer and parabolic K profile in an unstable mixed layer. The
fifth-generation Pennsylvania State University-NCAR Mesoscale Model (MM5)
similarity scheme, based on Monin-Obukhov with the Carlson-Boland viscous
sublayer, is used for surface layer physics (Skamarock et al. 2008). The KF cumulus
option, a deep and shallow convection sub-grid scheme, is utilized (Kain and Fritsch
1990). The KF scheme has been identified as superior to alternative convective
schemes for TCs in many studies (Prater and Evans 2002; Ma and Tan 2009;
Deshpande et al. 2012). In a study of heavy rainfall events in Korea, activating
the cumulus parameterization at intermediate resolutions (e.g., 9 km) improved
the simulation results (Lee et al. 2011). A summary of the model configurations
is shown in Table 5.1.

For this study, a control run and two sensitivity tests were developed. The
control run (CONTROL) was used to verify the model, identify discrepancies with
historical records, and represent the actual soil moisture scenario for the case study.
Similar to Kellner et al. (2012), the sensitivity tests were a DRY run (50 % reduced
soil moisture content) and a WET run (50 % increased soil moisture content) at
initialization.
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Fig. 5.6 WRF Domain and soil types
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Table 5.1 WRF-ARW parameters and configurations

Model parameter Configuration

Version WRF-ARW v3.5 (Skamarock et al. 2008)
Domain 275 � 325 � 34
Horizontal grid spacing 8 km
Duration 30 h, 0000 UTC 2 Mar–0600 UTC 3 Mar 2001
Initial and boundary conditions 6-hourly 1.0ı�1.0ı NCEP FNL operational analyses
Microphysical parameterization Purdue-Lin (Chen and Sun 2002)
Boundary layer parameterization YSU (Hong et al. 2006)
Surface layer parameterization MM5 similarity (Skamarock et al. 2008)
Land surface parameterization Unified Noah land surface model (Chen and Dudhia 2001)
Longwave radiation
parameterization

RRTM scheme (Mlawer et al. 1997)

Shortwave radiation
parameterization

Dudhia scheme (Dudhia 1989)

Cumulus parameterization Kain-Fritsch (Kain and Fritsch 1990)

Using a percentage allows for the majority of the gridpoint values to decrease
(increase) while still maintaining extremes. To prevent the modified values from
exceeding 100 %, a 0.65 threshold was implemented (note: no control values
over land masses were excluded as a result because all values were below the
threshold). All of the other parameters remain the same for the three cases. The
simulations are compared quantitatively and qualitatively in terms of surface LHF,
precipitation, total precipitable water (PW), minimum central pressure, wind fields,
and convective available potential energy (CAPE).

CONTROL, DRY, and WET simulations were run with parameterizations similar
to ocean-based TC studies. The domain and soil types are found in Fig. 5.6. The
results indicate that a decrease in the initial soil moisture results in a weaker cyclone
with less precipitation, reduced LHF, higher pressure, and weaker winds, whereas
the opposite is true when increasing the initial soil moisture (Fig. 5.7). The output
from the control run was more similar to the wet run than to the dry run, which
highlights the anomalously wet conditions during Cyclone Abigail’s intensification.
The findings suggest that WRF captures land surface feedbacks related to landfalling
tropical systems: specifically, soil moisture content and associated moisture fluxes
influence cyclone intensity and structure.

3 2015 Case Study

In 2015, another possible “Brown Ocean” storm affected the central USA. Tropical
Storm Bill traversed Texas, Oklahoma, and Arkansas following several weeks of
record rainfall (Fig. 5.8). The remnants of Bill lingered for several days, and it was
hypothesized that the “Brown Ocean” was partially responsible. Bill maintained its
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Fig. 5.7 The 6-h precipitation (mm) for DRY (left) and WET (right) simulations valid 0000 UTC
3 March 2001

Fig. 5.8 Rainfall (in inches) associated with Tropical Storm Bill (2015). Note: 1 in D 25.4 mm.
(Courtesy of NOAA. https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Tropical_
Storm_Bill_2015_United_States_rainfall.gif/800px-Tropical_Storm_Bill_2015_United_States_
rainfall.gif)

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Tropical_Storm_Bill_2015_United_States_rainfall.gif/800px-Tropical_Storm_Bill_2015_United_States_rainfall.gif
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Tropical_Storm_Bill_2015_United_States_rainfall.gif/800px-Tropical_Storm_Bill_2015_United_States_rainfall.gif
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Tropical_Storm_Bill_2015_United_States_rainfall.gif/800px-Tropical_Storm_Bill_2015_United_States_rainfall.gif
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Fig. 5.9 Passive microwave image from the NASA Global Precipitation Measurement mission
satellite of the remnants of Tropical Storm Bill over Oklahoma. 17 June 2015 at 1552 UTC (Source:
NASA)

tropical characteristics throughout most of the life cycle. On 17 June 2015, Bill was
downgraded to a tropical storm after landfall but remained fairly organized. The
rainfall totals actually exhibited a secondary maxima near southern Oklahoma with
significant inland impacts in Kentucky and Indiana.

Radar data also indicated that Bill maintained a tropical storm-like structure well
inland in the same way that Tropical Storm Erin did in 2007. Figure 5.9 shows that
spiral banding is quite evident as the storm moved into Oklahoma.

Figure 5.10 shows the antecedent rainfall over the region prior to Bill’s landfall.
The antecedent rainfall in the 3 months prior to the landfall of Tropical Storm Bill
clearly indicated that ample soil moisture would have been present under the track
of Bill. This storm offers a nice case study for future scholarly work on the “Brown
Ocean” theory.
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Fig. 5.10 TRMM 3B43 monthly average three-hourly precipitation rate (mm/h) for Tropical
Storm Bill (April to June 2015) (Source: NASA Giovanni website)

4 Conclusions

Scholarly literature has continually indicated that tropical cyclones, under certain
conditions, can maintain or intensify strength overland. While many of these cases
can be explained by synoptic extratropical transitioning, both observational and
modeling analyses suggest that a “Brown Ocean” effect is also a factor. The
“Brown Ocean” is characterized by three observable conditions: (1) a barotropic
lower atmosphere with minimal horizontal temperature variations, (2) sufficient
antecedent soil moisture, and (3) latent heat flux values from surface evaporation
that reach at least 70 Wm�2.

Future studies will be required to exploit emerging observations and modeling
systems, such as the Soil Moisture Active and Passive (SMAP) mission and
advanced coupled atmosphere-land modeling systems (e.g., NASA Unified WRF
(NU-WRF) and coupled Land Information System (LIS)). Future lines of research
must continue to refine our understanding of the roles of soil moisture on inland
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TC processes and determine whether assimilating soil moisture into models can
improve storm intensity and precipitation forecasts. Ultimately, serious considera-
tion of inland TC classification systems may also be needed.
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Chapter 6
Typhoon/Hurricane Disaster Prediction
and Prevention for Coastal, Offshore,
and Nuclear Power Plant Infrastructure

Liu Defu, Liu Guilin, Wang Fengqing, and Han Longzhi

Abstract With an increasing tendency of natural hazard frequency and intensity,
risk assessment of some design codes for coastal defense infrastructure should be of
paramount importance in influencing the economic development and protection of
life in China. Comparison between existing extreme statistical models like Gumbel,
Weibull, P-III distribution or probable maximum typhoon/hurricane (PMT/PMH),
and design basis flood (DBF) with our proposed univariate and multivariate
compound extreme value distribution (CEVD and MCEVD) showed that all the
planned, designed, and constructed coastal infrastructure for cities and nuclear
power plants that use the accepted, traditional safety regulations is menaced by
the possibility of future typhoon/hurricane disasters and cannot satisfy the safety
requirements that accompany the increasing tendency of extreme natural hazards.
The disasters caused by Hurricane Katrina (2005), Rita (2005), and Sandy (2012)
have validated the 1982 CEVD and 2006 MCEVD predicted extreme hazards in
New Orleans, the Gulf of Mexico, and Philadelphia areas. The 2013 Typhoon Fitow
disaster in China also validated the 2006 MCEVD predicted results.

Keywords Typhoon/hurricane disasters prediction and prevention • Compound
extreme value distribution (CEVD) • Multivariate CEVD • Poisson-nested logistic
trivariate compound extreme value distribution (PNLTCEVD) • Stochastic simu-
lation method – P-ISP • Standard project hurricane (SPH) • Probable maximum
hurricane (PMH) • API recommendations • Coastal • Offshore and nuclear power
plant • Design code calibration • Joint probability safety assessment
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1 Introduction

China has a wide continental slope to dissipate tsunami energy. If an M9 earthquake
occurs at the Manila trench or Ryukyu trench, the wave height produced by a
tsunami at the south and southeast China coast would be no more than 5–6 m (Liu
et al. 2007). The World Meteorological Organization estimates that about 90 % of
all natural disasters are extreme meteorological hazards like typhoons, hurricanes,
and tropical cyclone-triggered disasters in the Pacific, Atlantic, and Indian oceans,
the Caribbean Sea, and the Gulf of Mexico areas. In 1972, Typhoon Rita made
landfall on the Dalian port in the North Bohai Bay of China, causing severe damage.
The severe Typhoon Nina in 1975 induced 1631 mm of rainfall in 3 days. Around
Banqiao Dam and downstream 64 reservoir dams collapsed. The flooding resulted
in more than 171,000 deaths and affected 12,000,000 people. The Banqiao Dam
was designed by a Pearson Type III distribution to withstand a 1000-year flood.
Our study found that, using traditional extrapolation (such as a Pearson type III
model), it was difficult to determine the design return period for the extreme events
induced by typhoons. According to the randomness of annual typhoon occurrence
frequency along different sea areas, frequency can be considered as a discrete
random variable. Typhoon characteristics or typhoon-induced extreme sea events
are continuous random variables based on the order statistics and theory of measure,
and using these variables, the compound extreme value distribution (CEVD) can be
derived (Liu et al. 2001).

During the past few years, CEVD has been developed into multivariate com-
pound extreme value distribution (MCEVD) and applied to predict and prevent
typhoon-induced disasters for coastal areas, offshore structures, and estuarine cities
(Defu et al. 2006; Liu et al. 2001, 2006, 2011a, b). Many applications of MCEVD
in engineering design and risk analysis show the scientific and practical value of
its predicted results in China and abroad (Nafaa et al. 1991; Ochi 1982; Quek and
Cheong 1992; Muir and El-Shaarawi 1986; Norwegian Det Norsk Company 1988;
KORDI 2004; China Ministry of Transportation 1986). As mentioned in “Summary
of Flood Frequency Analysis in the United States” (Kirby and Moss 1987): “The
combination of the event-based and joint probability approaches promises to yield
significantly improved descriptions of the probability laws of extraordinary floods.”
MCEVD is the model which follows the development direction of the extraordinary
flood prediction hoped for by Kirby and Moss (1987). Four publications of
the CEVD (Liu et al. 2001; Liu 1982) and MCEVD (Liu et al. 2006, 2008)
were cited as experimental evidence of prevention criteria for hurricane disasters
(Chowdhury et al. 2009). Considering the regional differences, we will use feet
for the USA and meters for China as the unit of water level in the process of
analysis.



6 Typhoon/Hurricane Disaster Prediction and Prevention for Coastal. . . 137

2 Development Process of the Multivariate Compound
Extreme Value Distribution (MCEVD)

During the past years, CEVD and MCEVD have been applied to more than 50
coastal, offshore, and hydraulic projects in China and abroad. The theory of CEVD
is also well cited in the international literature and used for extreme sea hazard study
in the North Sea and around the Korean coast (Norwegian Det Norsk Company
1988; KORDI 2004), further justifying the use of MCEVD as a good model for
typhoon (or hurricane) disaster prediction. Our proposed methods detailed in Liu et
al. (2001, 2006, 2009) and Liu (1982) are used as design criteria of wind-structure
interaction experimentation for mitigating hurricane-induced US coastal disasters
(Chowdhury et al. 2009).

The derivation of the MCEVD is as follows:
Let N be a random variable (representing the number of storms in a given year),

with their corresponding probability:

P fN D kg D pk; k D 1; 2; : : : I

and

.�11; : : : ; �n1/ .�12; : : : ; �n2/ : : : : : :

be an independent sequence of independent identically distributed random vectors
(representing the observed extreme sea environments in the sense defined above
within the successive storms) with common probability density g(•). Then we are
interested in the distribution of:

.X1; : : : ; Xn/ D .�1i; : : : ; �ni/

where �1i is the maximum value of

�1j; 1 � j � N; N D 1; 2; : : : : : :

This represents the maximum annual value of the principal variable, together
with the simultaneously occurring values of the concomitant variables. There is a
reasonable approximation in the definition of (X1, : : : , Xn), also valid for N D 0,
because no extreme value of interest can occur outside the storm in the case of
N D 0. The more detailed discussion of the model correction in case of p(N D 0)
can be found in reference Liu et al. (2008, 2009).

When the multivariate continuous cumulative distribution is G(x1, : : : xn), then
we can derive the MCEVD as:

F .x1; : : : ; xn/ D

1X

iD1

pi � i �

Z xn

�1

: : :

Z x1

�1

Gi�1
1 .u/g .u1; : : : ; un/ du1 : : : dun (6.1)
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where G1(u1) is the marginal distribution of G(x1, : : : , xn) and g(u1, : : : un) is the
density function.

This can be proved as follows:

F .x; y; z/ D P .X < x; Y < y; Z < z/

D P

 
1[

iD0

fX < x; Y < y; Z < zg
\

fn D ig

!

D
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iD0

P .X < x; Y < y; Z < z jn D i / � P .n D i/

D

1X

iD0

piP .X < x; Y < y; Z < z jn D i /

D p0 � Q .x; y; z/ C

1X
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=

;

where (U, V, W) and (�1, �1, −1) are statistically independent and their probability
distribution function is G(x,y,z).
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is the characteristic function of A
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When the case of n D 0 is ignored, Eq. 6.2 can be approximated as formula (6.3):

F .x; y; z/ D p0 C

1X

iD1

pi � i �

Z z

�1

Z y

�1

Z x

�1

Gi�1
i .u/g .u; v; w/ dudvdw (6.3)

Therefore, formula (6.1) is proved.

2.1 Poisson-Gumbel Compound Extreme Value Distribution
(P-G CEVD) and Its Applications

When G(x1, : : : , xn) is the probability distribution function of the unit-variant
random variable x, then formula (6.1) can be simplified to:

F.x/ D

1X

iD0

piŒG.x/�i (6.4)
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When typhoon occurrence frequency can be fitted to a Poisson distribution,
typhoon-induced wave or wind is fitted to a Gumbel distribution, as in formula (6.5):

G.x/ D e�e�x
D exp f� exp Œ�˛ .x � �/�g (6.5)

where ˛ and � are parameters of Gumbel distribution.
Then the Poisson-Gumbel compound extreme value distribution (P-G CEVD)

can be derived as (Liu 1982):

F .x; y/ D

1X

iD0

piŒG.x/�i D

1X

iD0

e��� �
i

iŠ
ŒG.x/�i D e��Œ1�G.x/� D 1 � P (6.6)

The typhoon-induced extreme wave (or wind speed) with return period T (1/p)
can be calculated by formula (6.7):

HP D � C XP=˛ (6.7)

where

XP D �1n

�
�1n

�
1 C

1n .1 � P/

�

��

� D n
N is the yearly mean value of typhoon frequency.

N is the total number of years.
n is the total typhoon number.

˛ D �n=S

� D H � yn=˛

)

H; S: mean value and standard deviation of typhoon-induced wave.
�n, yn can be calculated by typhoon number.

2.2 Comparison Between P-G CEVD, Gumbel, and P-III
Distributions

Observed typhoon-induced wave data in the East China Sea from 1953 to 2006 are
used to statistically check for agreement with the Gumbel, P-III, and P-G CEVD
distributions. The Kolmogorov-Smirnov test was used to measure the goodness of
fit and based on the 20 years moving average data sampling used for calculation
maximum deviation between empirical and theoretical distributions as in formula
(6.8):
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Dn D sup
�1<x<1

jFn.x/ � F0.x/j (6.8)

where Fn(x) is the empirical distribution and F0(x) is the theoretical distribution.
The standard deviation is defined as:

d D

vuuuut

nX

iD1

.pl � pj/2

n � 1
(6.9)

where pl and pj are the theoretical and empirical values, respectively.
The estimated Dn and d for the Gumbel, P-III, and P-G CEVD models are shown

in Figs. 6.1 and 6.2.
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Fig. 6.1 Comparison of calculated K-S statistic Dn between three statistical models for wave data
in the East China Sea, 1953–2006

Fig. 6.2 The same as Fig. 6.1 for the comparison of calculated standard division d
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Table 6.1 Relative error of
predicted return value �h
between three models

100 a 50 a 20 a
Model �h �h �h

Gumbel 26 % 25 % 23 %
P-III 26 % 25 % 22 %
P-Gumbel 18 % 17 % 16 %

Figures 6.1 and 6.2 and Table 6.1 show that P-G CEVD is a more reasonable
model for extreme wave prediction than traditional models.

The P-G CEVD was used to design wave prediction for more than 40 coastal
structures of China and was accepted in the 2013 “China Code for Sea Port
Hydrology” as a recommended model for design wave prediction (China Code for
Sea Port Hydrology 2013).

2.3 Poisson-Weibull Compound Extreme Value Distribution
(P-W CEVD) and Its Application Along US Coasts

Long-term hurricane data show that frequencies of hurricane occurrence along
the US Atlantic East Coast and Gulf of Mexico coast agree with the Poisson
distribution (see Fig. 1 in Schwerdt et al. 1979). Hurricane central pressure, wind
velocities, wave heights, and storm surges agree with the Weibull distribution.
Therefore, a Poisson-Weibull compound extreme value distribution (P-W CEVD)
is presented to predict hurricane central pressure, wind velocities, wave heights, and
surges.

The Weibull distribution is given in formula (6.10):

G.x/ D 1 � exp
n
�
� x

b

�ro
(6.10)

The P-W CEVD can be derived as:

Xp D

�
�1n

�
�

1

�
1n .1 � p/

�� 1
r

� b (6.11)

where b and r are parameters of the Weibull distribution, while

� D
n

N

is the yearly mean value of hurricane frequency.

http://dx.doi.org/10.1007/978-3-319-47594-3_\#Fig1


6 Typhoon/Hurricane Disaster Prediction and Prevention for Coastal. . . 143

0

C B A 1 2 3 4

24.5

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5
P0 (inHg)

P0 per 50 yr

P0 per 1000 yr

P0 for SPH

P0 for PMH

5 10 15

Distance (N. M1x102)

ZONE

H
ur

ric
an

e 
ce

nt
ra

l p
re

ss
ur

e

20 25 30

Fig. 6.3 Comparison of hurricane center pressures between CEVD predicted values and NOAA
proposed design codes (see Liu 1982, Fig. 6)

2.4 Poisson-Nested Logistic Trivariate Compound Extreme
Value Distribution (PNLTCEVD)

As mentioned above, the frequency of hurricane occurrence can be fitted to the
Poisson distribution (Fig. 6.3):

Pi D
e���i

iŠ

By substituting a nested-logistic trivariate distribution (Norwegian Det Norsk
Company 1988) for the continuous distribution into formula (6.3), the PNLTCED
can be obtained. The nested-logistic trivariate distribution is expressed as:

G fx1; x2; x3g D exp �

"("�
1 C �1

x1 � �1

�1

��1=.˛ˇ�1/

C

�
1 C �2
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#ˇ

C

�
1 C �3

x3 � �3

�3

��1=.˛ˇ�3/

9
=

;

˛3

5

(6.12)

http://dx.doi.org/10.1007/978-3-319-47594-3_Fig6
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in which � j, �j, ¢ j are the shape, location, and scale parameters of the marginal
distributions G(xj) to xj (j D 1, 2, 3), respectively. The dependent parameters ˛ and
ˇ can be obtained by moment estimation:

b̨D

p
1 � r13 C

p
1 � r23

2

b̌D

p
1 � r12

b̨

where ri,j is correlation coefficient, i•j, i, j D 1, 2, 3.
Let

sj D

�
1 C �j

xj � �j

�j

��1=�j

j D 1; 2; 3

then formula (6.12) can be written as
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C s3
1=˛

�˛�
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and the corresponding probability density function is
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The trivariate layer structure (˛ – outside layer, ˇ – inside layer) shows that the
correlation between x1 and x2 is stronger than those among x1, x3 and x2, x3.
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As shown above, PNLTCED can be obtained through the estimation of parame-
ters of the marginal distributions and their dependent parameters.

The new model has some advantages:

(a) Considering the hurricane occurring frequency.
(b) Considering the combination of trivariate environmental factors induced by

hurricane.
(c) Considering the dissymmetry of two dependent parameters.
(d) It has the simple structure and is easy to be applied in engineering applications.

2.5 Solution of MCEVD by Stochastic Simulation Method:
P-ISP

Coastal engineering not only takes up coastline resources that are valuable and
nonrenewable but also requires huge investment. Thus, the failure of coastal struc-
tures would cause enormous economic loss and possible environmental pollution.
Therefore, the reliability analysis of coastal engineering in extreme sea state should
be taken into account. Freudenthal was the first author who proposed the use of
structural reliability theory. In recent years, reliability analysis has found more
and more applications. The Monte Carlo method (MC method), the first-order
reliability method (FORM), and the design point method (JC method) are the three
methods that have been widely used to estimate the failure probability of structures.
Compared with the FORM, JC method, and MC method, the MCEVD-based P-ISP
method is regarded as a relative accurate method for reliability analysis of structure
(Bea 2007; Blake and Gibney 2011; Casson and Coles 2000; China Code for Sea
Port Hydrology 2013; China Ministry of Transportation 1986).

The multivariate joint probability distribution usually has a very complex
mathematical form; solution of high-dimensional MCEVD needs a stochastic
simulation method, such as a Monte Carlo method. However, the use of this method
inevitably requires great computational efforts, and large variances exist when the
analyzed joint probabilities are small. Hence, different sampling methods have been
developed to reduce the number of simulations and to decrease the variance, among
which the importance sampling procedure (ISP) is an efficient method (Liu et al.
2011c; Defu et al. 2015).

The basic idea of the ISP method consists of concentrating the distribution of
the sampling points in the region of great importance, i.e., the part that mainly
contributes to the joint probability instead of spreading them out evenly over the
whole range of definition of the involved parameters. In particular, the multi-normal
distribution centering on the design point (the most unfavorable design condition)
is defined as the important sampling distribution. ISP thus requires an optimization
procedure to find the design point. The joint probability can then be evaluated by a
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weighted sampling procedure. A most significant advantage of ISP method is that it
can also be used in the original space where data is deficient, regardless of the type
of the basic random variables.

The transformation of the basic variables into a vector of independent standard
normal variables, which may be difficult for correlated variables, is avoided. The
weighted sampling is not affected by any non-Gaussian distribution because the
actual joint probability is calculated by the use of the original distribution. For
formula (6.1), we can generate N groups of x1, x2, : : : xn and record the number
of groups that lead to a limit state function �0; if this number is M, the evaluation
of formula (6.1) can be estimated by:

F .x1; x2; : : : xn/ D lim
N!1

M

N
(6.15)

Let x denote an n-dimensional random vector. Its corresponding joint probability
density function is fx(x) formula (6.1) which can be rewritten as:

F.x/ D

“

g.x/�0

: : :

Z
I Œg.x/ � 0�

fx.x/

hx.x/
hx.x/dx (6.16)

in which x is the n-dimensional random vector, x D x1; x2 : : : xnI g.x/ � 0 is the joint
probability domain decided by limit state function, and g.x/ D 0I I Œg.x/ � 0� D�

1; g.x/ � 0

0; g.x/ > 0
is the characteristic function; hx(x) is usually called the weighting

density function (Defu et al. 2015), from which the samples are generated in the
simulation procedure. Then the expected value of joint probability is expressed as:

bF .x/ D
1

N

NX

iD1

I Œg.x/ � 0�
fX .xi/

hX .xi/
(6.17)

in which N denotes the simulation times and xi is the i-th simulation vector.
As shown above, the main advantage of ISP is that samples are generated

according to the density function hx(x) rather than the original density function fx(x).
The efficiency of ISP is higher than basic Monte Carlo simulation.

The variance of
_

F.x/ is derived as follows:

Var
�_

F.x/
�

D
1

N

"
E

�
I Œg.x/ � 0� :

fx.x/

hx.x/

�2

� F.x/2

#
(6.18)

It can be seen that if the forms of hx(x) and fx(x) are similar, the variance will be
less.
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The sampling procedure of MCEVD can be carried out as follows:

(a) For a given œ, a random number K which satisfies the Poisson distribution is
initially generated.

(b) If K > 0, K groups of x1, x2, : : : xn are then generated according to the multivari-
ate joint normal density function hx(x). The design point x* which is derived by
using a second-moment method can be taken as the sampling center.

(c) From K groups of (x1, x2, : : : xn), select .x1; x2; : : : xn/ jx1 D Maxx1i
1�i�K

as the

annual maximum value of the metoceanic factors(wind speed, wave height, and
current) induced by the typhoon.

(d) Repeat step a to c for N times; the N year samples satisfying MCEVD are
generated.

It should be noticed that x1, x2, : : : xnare correlated variables with different kinds
of non-Gaussian or Gaussian distributions. This method can be used to predict long-
term joint probability of typhoon characteristics and other multivariate typhoon-
induced environments with different kinds of marginal distributions and different
correlation coefficients between variables.

These features affect disaster intensity and consequence directly. Thus, in our
opinion, the analysis of typhoon characteristic combinations and the corresponding
disaster consequences in different areas should be an important part of typhoon
disaster zoning. The typhoon characteristics are usually described by using the
maximum central pressure difference (�P), the radius of maximum wind speed
(Rmax), the speed of movement of the typhoon center (s), the minimum distance
between the typhoon center and the target site (ı), and the typhoon direction of
movement (	 ). But one of the chief advantages lies in taking the annual typhoon
frequency (�) into account as a discrete random variable in the MCEVD model. In
addition, this model can take into account secondary typhoon disasters, for example,
when Typhoon Nina occurred in 1975 in China and induced the dam collapse of the
Banqiao Reservoir that led to a tragic loss of life or when Typhoon Bilis in 2006
caused a terrible loss of life in the land provinces. In this study, the typhoon duration
from landfall to dissipation (t) is also considered in the prediction model. For the
analysis procedure of the multivariate joint probability which combines a kind of
discrete distribution (�) and six kinds of continuous distributions (�P, Rmax, s, ı,
	 , t), a stochastic simulation technique based on the theory of MCEVD is a valid
way to solve such a six-dimensional non-Gaussian problem.

It should be noted that the solution of the multidimensional joint probability
problem is a contour surface with some probability value. In the application
process, when aiming at different objectives, for instance, (�P) reflects typhoon
intensity, (Rmax) reflects the area influenced by the typhoon, (s) reflects the intensity
of typhoon-induced surges and waves, and (t) reflects the inland areas affected
intensely and should be selected as the dominant factors, respectively, to calculate
the unique solution of joint probability for the assessment of different disaster
consequences. This procedure is taken as the first layer of the double-layer-nested
multi-objective probability model, which is offered as the basis for typhoon disaster
zoning.



148 L. Defu et al.

In the simulation procedure P-ISP, it is necessary to input the mean value
of typhoon frequency (œ), the marginal distribution of the six kinds of typhoon
characteristics (P-ISP is suitable for normal, uniform, exponential, Rayleigh, Gum-
bel, Weibull, lognormal, gamma, and Fréchet distributions), the mean value and
standard deviation of each variable group, the matrix correlation coefficients among
the variables, and the limit state equation. Then the joint probability of different
typhoon characteristics with some typhoon occurrence frequency can be calculated
as the output. Comparing this method with the basic Monte Carlo method, P-ISP
performs more quickly and accurately, so it has been successfully applied to the
joint probability analysis of typhoon-induced extreme sea environmental loads such
as wind, wave, storm surge, current, etc., for different kinds of offshore structures,
leading to a risk assessment of coastal and hydraulic structures (Defu et al. 2015).

3 Hurricanes Katrina and Rita of 2005 and Hurricane Sandy
of 2012 as a Validation of CEVD 1982 Predicted Results

3.1 Comparison Between 1982 PWCEVD Predicted Results
and NOAA-Proposed SPH and PMH

In 1979, the US National Oceanic and Atmospheric Administration (NOAA)
divided the Gulf of Mexico and Atlantic coasts into seven areas according to
hurricane intensity, in which corresponding standard project hurricane (SPH)
and probable maximum hurricane (PMH) were proposed as hurricane disaster
prevention criteria (Schwerdt et al. 1979). Using CEVD (Liu 1982; Harris 1963), the
predicted hurricane central pressures with return period of 50 years and 1000 years
were close to SPH and PMH, respectively, except that for the sea area nearby New
Orleans (zone A) and East Florida (zone 1) coasts, hurricane intensities predicted
using CEVD were more severe than NOAA proposed values. In these regions, SPH
and PMH only correspond to CEVD predicted 30–40 years and 120 years return
values, respectively.

In 2005, Hurricanes Katrina and Rita attacked coastal areas of the USA, causing
the deaths of about 1833 people and an economic loss of $108 billion in the city of
New Orleans (Blake and Gibney 2011; McTaggart-Cowan et al. 2008) and destroyed
more than 110 oil platforms in the Gulf of Mexico. The disaster implied that
using SPH as the flood-protective standard was a main reason for the catastrophic
outcome (Liu et al. 2008; Bea 2007; Resio 2007; Mittal 2005a). Figure 6.3 and
Table 6.2 indicate that CEVD predicted results are more reasonable than the safety
regulations proposed by NOAA. An important reason for the hurricane Katrina and
Rita disasters may be that NOAA proposed unreasonable SPH and PMH.
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Table 6.2 Comparison between NOAA and PWCEVD predicted central pressure

Zone NOAA In/hpa CEVD In/hpa Hurricane In/hpa

A SPH 27.8/941.0 50 years 26.9/910.8 Katrina
PMH 26.3/890.5 1000 years 25.6/866.8 26.6/902.0

1 SPH 27.1/919.3 50 years 26.7/904.0 Rita
PMH 26.1/885.4 1000 years 24.6/832.9 26.4/894.9
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Fig. 6.4 CEVD predicted hurricane storm surge from Hurricane Sandy for locations along
Atlantic coast (see Liu 1982, Fig. 8)

3.2 2012 Hurricane Sandy Induced Flooded Area as
a Validation of the 1982 CEVD Predicted Storm Surge

Hurricane Sandy is the second costliest hurricane in the USA. Damage was $75
billion and at least 233 people killed (Wikipedia 2016). In 1982, based on the
1926–1960 observed data, we used CEVD to predict the storm surge which was
induced by the 100-year return period hurricane for the Philadelphia area. We chose
this site based on the following reasons:

(a) We have 1926–1960 observed data in this area.
(b) Philadelphia was indeed affected by Sandy’s storm surge and that the area is

vulnerable to hurricane-induced storm surges.

The result was about 10 ft and was close to the storm surge of 10.62 ft that was
observed on October 30, 2012, at 08 h:06; the Hurricane Sandy-induced water level
is shown by the dotted line in Fig. 6.4. But the surge predicted by NOAA was only
7.52 ft.
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3.3 Hurricane Katrina and Hurricane Sandy as a Validation
of MCEVD Predicted Results

Here, the 55-year (1950–2004) measured data of hurricane winds, hurricane effect
duration (provided by NOAA and Unisys), and the simultaneous Mississippi water
level (hurricane process data, provided by the USACE) are used for the long-term
joint probability prediction of Hurricane Katrina. Sometime after the establishment
of the seven zones (as shown in Fig. 6.3) was proposed, the Gulf of Mexico and
Atlantic coasts were divided into 11 regions according to regional planning for
hurricane hazard (Gray 2003).

Following the requirements of the MCEVD calculation procedure, a statistical
check shows that the frequency of hurricane in this area fits to a Poisson distribution
(Fig. 6.5). The diagnostic checks show that all of the data of the wind speed (Ws),
water level (Wl), and hurricane duration (Wd) fit to the generalized extreme value
distribution (Fig. 6.6a–c). Using MCEVD, a single contour surface for wind speed,
hurricane inference duration, and water level for each joint return period can be
obtained, as shown for the 100-year joint return period in Fig. 6.7. Thus, there should
be different combinations of duration and wind speed that can result in the same
joint return period of surge.

As shown in Tables 6.3 and 6.4 and Fig. 6.8, the MCEVD predicted 100 years
of return values not only validated by 2005 Hurricane Katrina but also by 2012
Hurricane Sandy.

Fig. 6.5 Curve fitting of
hurricane frequency for the
Gulf of Mexico and Atlantic
coast
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Fig. 6.6 (a) Distribution diagnostic testing of water level for the Gulf of Mexico and Atlantic
coast. (b) Distribution diagnostic testing of hurricane duration for the Gulf of Mexico and Atlantic
coast. (c) Distribution diagnostic testing of wind speed for the Gulf of Mexico and Atlantic coast
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Table 6.3 The calculated
results with different joint
return period for New Orleans

1000 years 100 years 50 years 10 years

Ws (m/s) 89.4 70.6 64.2 44.1
Wl (m) 7.6 4.11 3.35 2.04
Wd (h) 149 107 96 60

Table 6.4 Comparison of 100-year wind speed (m/s) for New Orleans (2005) and New Jersey
zones (2012)

Methods
Liu et al.
(2006)

Coles and
Simiu (2003)

Casson and
Coles (2000)

Georgiou et al.
(1983)

100-year return value for
zone 3 (New Orleans) 70.0 46.0 38.0 39.0
100-year return value for
zone 9 (New Jersey) 60.0 40.0 36.0 35.0
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Fig. 6.8 Comparison of 100 years – hurricane wind speed using different methods over different
regions (see Liu et al. 2009; Coles and Simiu 2003; Casson and Coles 2000; Georgiou et al. 1983,
Fig. 6)

4 Corrections to SPH/PMH and API Recommendations
Proposed by NOAA Based on Observed Wave Damage
to Fixed Platforms by 2005 Hurricanes Katrina and Rita

In 2005, Hurricanes Katrina and Rita destroyed more than 110 platforms in the
Gulf of Mexico (Fig. 6.9a). There were many platforms with reported wave-in-
deck (WID) damage, attributed to the crest of the large hurricane wave hitting the
platform decks and causing major damage. The catastrophic failures and damage of

http://dx.doi.org/10.1007/978-3-319-47594-3_Fig6
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Fig. 6.9 (a) Hurricanes Katrina and Rita destroyed and damaged 110 platforms. (b) Platform
deck height compared to predicted wave crest height, for A-1 (high consequence), A-2 (medium
consequence), and A-3 (low consequence) API RP2A (2002) design deck height recommendations
and the new design height proposed in the current study
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platforms in GOM region show the deficiencies of API recommendations (American
Petroleum Institute 2002, 2007; Det Norske Veritas 2002).

API RP2A (2002) categorizes platforms according to the consequence of failure,
designated as A-1 for high consequence, A-2 for medium consequence, and A-3
as low consequence (American Petroleum Institute 2002). The report by Forristall
shows a comparison of the deck elevation for the destroyed platforms (there were 76
cases where the deck elevation was available) at the location. The circles in Fig. 6.9b
show the deck heights of individual platforms and the triangles show the wave crest
heights predicted by Forristall. The curves A-1, A-2, and A-3 designate the deck
heights recommended by API RP2A. For example, at a water depth of about 325 ft,
the destroyed platform’s deck height is about 42 ft and the wave crest height is
about 60 ft. Thus, the wave crest height was almost 18 ft higher than platform
deck clearance. It is then no surprise that the platform was destroyed (American
Petroleum Institute 2002, 2007).

After Hurricanes Katrina and Rita, API issued Bulletin 2INT-DG, which provides
procedures for using the hurricane conditions contained in BULL 2INT-MET for the
associated type of platforms. API Bulletin 2DG updates specific recommendations
for cellar deck elevation as the “new design” that accounts for a typical 5 m air
gap above the 100-year wave crest and also an additional allowance of 15 % of the
crest elevation to account for local wave effects (Energo Engineering 2007; Mittal
2005b).

Further, some of the primary causes of damage were wave, wind, and current
forces greater than 100 years’ conditions and foundations that were unable to
support the fixed platform for the additional load level experienced from the
increased metocean conditions beyond the industry-accepted standard for survival.

The SPH was the initial model used to determine how strong the hurricane pro-
tection system should be in order to protect the New Orleans, Louisiana, area from
flooding due to hurricanes. The US Army Corps of Engineers began developing the
model with the United States Weather Bureau (USWB). Subsequently, the USWB
defined a probable maximum hurricane (PMH) as one that may be expected from the
most severe combination of critical meteorological conditions that are “reasonably
possible” for the region.

The original project designs of SPH were developed against the assumption that
hurricane might strike the coastal Louisiana region once in 200–300 years. However,
the standard was developed before the Saffir-Simpson hurricane scale came into use,
and, in the SPH model, the features of the storm fit poorly with the scale. The model
projected a storm roughly equivalent to a fast-moving Category 3 hurricane; other
features more closely resemble a much more severe Category 4. In fact, Hurricane
Katrina was a Category 5 hurricane before making landfall in Louisiana, and storm
surge heights correlate better with pre-landfall wind speeds than wind speeds at
landfall (Needham and Keim 2014).

In the design of a fixed platform, the topside structure should normally have
adequate clearance above the design wave crest. Any topside structure of piping not
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having adequate clearance would be affected by waves and current. The loss of the
air gap and deck inundation has a large impact in reliability due to the following
factors:

(a) Large increase in hydrodynamic loading
(b) Large increase in the uncertainty associated with hydrodynamic loading
(c) Potential increase in dynamic sensitivity

In order to provide adequate clearance to resist these large forces and overturning
moments by waves, API (American Petroleum Institute 2002, 2007) gives some
recommendations as follows:

(a) Omnidirectional guideline wave heights with a nominal return period of
100 years, together with the applicable wave theories and wave steepnesses,
should be used to compute wave crest elevations above storm water level,
including guideline storm tide.

(b) A safety margin, or air gap, of at least 5 ft should be added to the crest elevation
to allow for platform settlement, water depth uncertainty, and the possibility of
extreme waves in order to determine the minimum acceptable elevation of the
bottom beam of the lowest deck to avoid waves striking the deck.

The predictions of the lowest deck height of the platforms by different designers
may differ greatly for there is no clear definition of the “applicable wave theories”
in the API recommendations. In addition, API just offers the reference standards of
guideline storm tide in American sea regions by graphical interpretation; it cannot
provide any reference value for platform design in other countries influenced by
typhoons or hurricanes.

The definition of water level and deck height is shown in Fig. 6.10. The height
of significant wave (Hs) is the average height of the highest one third of the waves
in the record, and the crest height is the vertical distance from the top of the wave
crest to the still water. LAT is the lowest astronomical tide. Still water level is the
average water surface elevation at any instant, excluding local variation due to waves
and wave setup, but including the effects of tides, storm surges, and long-period
seiches. For other uncertain factors such as subsidence of the platform and sea bed,
the present author gives 1.5 m recommended height in this study (Xie et al. 2010).

Therefore, Hs, storm surge, and tide are taken as variables in PNLTCED for
calculation of the required deck height in this section.

Using PNLTCED, a single contour surface for wave, surge, and tide for a
specified joint return period can be obtained. Because tide has its well-predicted
law of motion, its periodical change is varied by other factors such as geographical
influences. The astronomical tide height was taken as 2.45 m (19 years of return
period) in the present paper, and then we obtain the combination of Hs, surge, and
tide with 100-year return period (Fig. 6.10).

Different standards give different relations between the crest height, Hs, and
maximum wave height (Hm). The ratio of crest height/Hm D 0.6 was adopted in
the present paper (Xie et al. 2010). In the API standard, the relationship of Hs and
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Fig. 6.10 The definition of water levels and the lowest deck height for marine platforms. LAT
lowest astronomical tide

Table 6.5 Hs and concomitant surge samples of South China Sea (1979–1987)

Typhoon
no.

Hs

(m)
Surge
(m)

Typhoon
no.

Hs

(m)
Surge
(m)

Typhoon
no. Hs (m)

Surge
(m)

197909a 4.6 0.46 198211 4.5 0.87 198508 3.2 0.24
197910 3.3 1.09 198219 3.4 0.29 198519 3.6 0.28
197915 3 0.21 198305 2.6 0.27 198607 2.1 0.35
197919 3.4 0.61 198310 3.3 0.58 198615 5.3 0.49
198001 2.1 0.18 198402 1.3 0.5 198617 2.5 0.39
198002 2.3 0.48 198403 1.6 0.15 198700 1.2 0.18
198003 5 0.26 198406 2 0.66 198701 1.5 0.26
198004 4.3 0.41 198407 2.5 0.19 198704 4.7 0.36
198101 4.5 0.93 198409 3.7 0.77 198705 2.2 0.17
198102 4.5 0.15 198504 2 0.19 198707 3.9 0.43
198209 2.2 0.52 198506 3.4 0.32 198711 2.8 0.69

aNo. 9 typhoon in 1979

Hm is Hm/Hs D 1.7–1.9. According to the rules and regulations for the construction
and classification of mobile offshore drilling rigs in China, Hm D minf2H1/3, Hbg,
where Hb is the critical wave height of breaking waves. In the South China Sea,
water depth is 25.0 m, the sea bottom gradient is 1/300 (Xie et al. 2010).

A traditional addition method which defined the maximum level as the sum of
MHWS (mean high water level spring tide), 100-year storm surge and 100-year
crest height, was used to compare with the prediction by MCEVD. The comparison
and calculated results were shown in Table 6.5 (1 and 2 in Table 6.6 are two
combinations with 100-year return period) (Defu et al. 2015).
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Table 6.6 Comparison of traditional method and MCEVD method

Traditional
addition
method

Hs (m) Crest height
with
100-year
return
period (m)

Surge with
100-year
return
period (m)

Tide and air
gap (m)

Deck
elevation
above LAT
(m)

5.56 6.78 1.23 11.96
MCEVD
method

Joint probability of 100-year return period 2.45 C 1.5 13.19
Hs (m) Crest height

(m)
Surge (m) 12.91

1. 5.95 7.26 1.98
2. 5.62 6.86 2.10

Note that the tidal datum of deck elevation in this paper is different from the
definition in API (Schwerdt et al. 1979). API adopted the mean lower low water
(MLLW) which was only used in the USA. In order to extend its applicability and
operability, LAT was used in the present paper (Defu et al. 2015), and the most
severe combination of the surges, tides, and crests can be obtained by MCEVD.

This example shows results for 33 typhoons in the East China Sea and selects
the significant wave height (Hs), concomitant surge, and corresponding tide of each
process as samples (Table 6.6).

5 2013 Typhoon Fitow Validation of 2006 MCEVD Predicted
Disaster in Shanghai City

Shanghai City is located in the estuarine area of Yangtze River in China. Historical
observed data shows that the typhoon-induced storm surges and rainstorm flood,
coupled with the astronomical spring tide, had threatened the security of Shanghai.
Based on the long-term (1970–2005) typhoon characteristics around Shanghai area
(Table 6.7), the double-layer-nested multi-objective probability model (Liu 1982)
was used to predict combined effect of storm surge, rainstorm flood, and spring tide
on Shanghai City (Liu et al. 2009; Defu et al. 2013).

In 2013, Typhoon Fitow induced significant losses in China. As shown in
Table 6.8, the water level induced by 2013 Typhoon Fitow in Yangtze River was
5.15 m, but the recommended 500 years of return period warning water level
calculated by the China design code was 4.80 m in this area, which only corresponds
to the 50-year return value predicted by MCEVD.
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Table 6.7 Marginal distribution of typhoon characteristics for Shanghai

Typhoon
characters Distribution type Mean value

Standard
deviation

Distribution
parameters

œ Poisson œ D 1.76
�P (hPa) Gumbel 21.89 14.96 a D 0.073,

b D 14.45
Rmax (km) Lognormal 45.79 25.22 � D 3.71,

¢ D 0.5
s (m/s) Gumbel 30.19 15.95 a D 0.07,

b D 22.4
• (km) Uniform 44.37 169.63 a D �294.57,

b D 333.84
™ (ı) Normal 15 37.36 
 D 15,

¢ D 37.36

Table 6.8 Comparison between disaster prevention design criteria for Shanghai City

Model Return period (a) Design value (m)

MCEVD 100 5.89
50 5.10

China design code 1000 5.86
Shanghai warning water levela 500 4.80
Typhoon Fitow observed water level 5.15

aCalculated by China Design Code

6 Risk Assessment for Nuclear Power Plant (NPP) Against
Sea Hazards

6.1 Joint Probability Safety Assessment for NPP Coastal
Defense Infrastructure Against Typhoon Disaster
in the South China Sea

MCEVD can be used for joint probability safety assessment for NPP coastal defense
along China coast against typhoon attacks (Harris 1963; Defu et al. 2013). Nuclear
power plant L is located at the coast of the South China Sea, where the combined
extreme external events are dominated by waves. Based on the China and IAEA
safety regulations, the L-NPP calculated design water level is shown in Table 6.9.

The predicted results of storm surge, wave height, and spring tide with different
joint return periods by MCEVD are shown in Table 6.10.

It can be seen from Table 6.9 that the MCEVD predicted 500-year return values
of storm surge, spring tide (4.2 C 2.8 D 6.9 m), and wave height (7.9 m) should be
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Table 6.9 Present design
criteria for coastal defense of
L-NPP

Design water level Design value (m)

DBF 6.35
PMSS 5.30
Extreme wave height 6.6
Design low water level �1.93

Harris (1963) and Liu et al. (2013)

Table 6.10 Joint probability
of storm surge, wave height,
and corresponding spring tide
for L-NPP

Return period (year) 100 500 1000

Storm surge (m) 3.3 4.2 4.7
Spring tide (m) 2.4 2.7 3.2
Wave height (m) 6.9 7.9 8.7

more severe than DBF (6.35 m) with 100-year return period wave height (6.6 m),
rather than the IAEA-recommended 10,000 years of return values (Defu et al. 2015).

6.2 Joint Probability Safety Assessment for QS NPP Defense
Infrastructure in Qiantang River Estuarine Area,
East China Sea

The combination of typhoon-induced storm surge with the strongest spring tide
in the Qiantang River estuarine always leads to disasters. The observed maximum
surge and spring tide is more than 9 m. The QS NPP is located on the south coast
of the estuarine Qiantang River and faces to the East China Sea, where the highest
severe spring tide in China always occurs.

The height of the constructed breakwater is 9.76 m. So the joint probability safety
assessment of combined extreme external events for coastal defense infrastructure
dominated by spring tide should be taken into account.

As the severest extreme external events for QS NPP are the combined effect
of spring tide and surge, a two-dimensional joint probability model can be used
to calculate the corresponding joint probability density function and cumulative
distribution function (Fig. 6.11a, b). The joint probability distribution of spring tide,
storm surge, and corresponding extreme wave with 1000-year joint return period
can be seen in Fig. 6.12.

Risk assessment for NPP coastal defense is based on the as low as reasonably
practicable (ALARP) principle (Fig. 6.13). Joint probability risk assessment for
the abovementioned two constructed nuclear power plants shows that the coastal
defense infrastructure of both NPPs cannot satisfy the 10�3 combined extreme
external events risk according to the ALARP principle (Det Norske Veritas 2002).
This means that the risk to constructed infrastructure is unacceptable.
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Fig. 6.11 (a) Probability density distribution of spring tide and storm surge for the QS NPP. (b)
The same as (a) for the cumulative probability distribution of spring tide and storm surge

The joint probability safety assessment for NPP coastal defense infrastructure
against extreme external hazards shows that the China and IAEA recommended
safety regulations appear to have some vague definitions and different kinds of
uncertainties. Both of the two constructed NPPs are located along the South China
Sea and the East China Sea where the dominant external events are wave and spring
tide, and the China and IAEA recommended safety regulations are much lower
than 1000-year return period typhoon-induced sea hazards predicted by DLNMPM
(Table 6.11).
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Fig. 6.13 Schematic diagram illustrating the “as low as reasonably practicable (ALARP)” concept,
by Det Norske Veritas (Liu et al. 2012)

Table 6.11 Combined
extreme external events with
joint return period for QS
NPP by PNLTCED

Extreme event
Joint probability Spring tide (m) Surge (m) Wave (m)

100 4.2 3.0 2.5
500 5.0 3.5 3.0
1000 5.5 4.0 3.5
10,000 6.5 4.8 4.0
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7 Conclusion

With the increasing tendency of the frequency of natural hazards and their intensity,
from 1949 to 2014, during the past 55 years, vast coastal and hydrological
disaster prevention levees and floodwalls have collapsed and led to more than
310,900 deaths and a severe economic loss in China. The first and second costliest
hurricane disasters in the US history occurred only in an interval of 7 years.
Extreme typhoon/hurricane hazards menaced some important construction engi-
neering projects designed by traditional codes. For example, 2006 Typhoon Saomai
induced a 3.76 m surge and 7 m waves, causing 240 deaths, sinking 952 ships, and
damaging 1594 others in Shacheng Harbor. If the typhoon had landed 2 h later, then
the simultaneous occurrence of the typhoon surge of 3.76 m and high spring tide of
3 m with a 7 m wave would have been close to the MCEVD predicted 500-year joint
return period of 7.3 m wave, 3.5 m surge with simultaneous 3.0 spring tide, which
is much over the height of the constructed 9.76 m breakwater for the nuclear power
plant in this coastal area.

We hope that lessons from Hurricanes Katrina and Sandy and Typhoon Fitow are
taken into account for NPP safety organizations in China and IAEA.
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Chapter 7
The Use of Global Climate Models for Tropical
Cyclone Risk Assessment

Alison Cobb and James Done

Abstract As tropical cyclones (TCs) make landfall in increasingly populated
regions, the costs rise and are likely to continue rising in the future. The likely
scenario of the TCs themselves changing in the future together with rising seas
due to climate change will compound the problem. TC risk assessment needs
to undergo a step change for society to properly confront this new era of TC
risk. Next-generation global climate models (GCMs) are poised to bring about
this change, and this chapter explores the potential role of GCMs in TC risk
assessment. Long-term global climate model simulations are beginning to capture
key TC characteristics that cause damage, thereby bringing a wealth of new risk-
related information that presents a potentially powerful transformation of TC risk
assessment. These physically based datasets will support better understanding of TC
activity on longer timescales, exploration of events outside the range of the historical
record, quantification of clustering, and discovery of teleconnected risks across TC
basins. The integration of GCMs with risk assessment is a rapidly developing field,
yet still in an exploratory phase, and a number of barriers need to be overcome
including treatment of model error and understanding how to effectively integrate
GCM information with risk assessment.
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1 Introduction

Tropical cyclones (TCs) are the largest contributor to weather and climate impacts
in the USA (Smith and Katz 2013), driving 41 % of the inflation-adjusted US
insured loss from 1995 to 2014. Annual TC losses are highly volatile: the 2004–
2005 US hurricane seasons caused in excess of $150 billion in damages (Pielke
Jr. et al. 2008), a significant increase from the annual average normalized damage
of $10 billion. Most damage occurs when TCs make landfall, impacting all
major societal infrastructure systems (transportation, communication, water supply,
energy, sanitation) in addition to the potential for immediate loss of life and property.

It is not only the TC wind field but also heavy precipitation that drives damage.
Subtropical storm Allison in 2001, for example, brought 940 mm of rain to the port
of Houston, Texas (Beven et al. 2003), despite not reaching hurricane status and
remains one of the deadliest and costliest subtropical storms to impact the USA.
Storm surge also exacts a heavy toll, such as the heavy surge damage to New
York, New Jersey, and Connecticut in 2012 brought by Hurricane Sandy (Blake
et al. 2013). TCs can also cause significant damage while at sea, mainly to the
offshore industry, where loading on offshore structures is a complex function of
the wind field, ocean current, and ocean waves (Done et al. 2015). In addition
to population and infrastructure impacts, TCs can have major impacts on the
natural environment, including causing declines in fisheries and wildlife populations
(Sheikh 2005). Hurricane Wilma, for example, resulted in drastic structural changes
to the ecosystem in Lake Okeechobee, South Florida (Xuan and Chang 2014), the
second largest freshwater lake in the USA.

Society is entering a new era of catastrophes in which TCs are causing more
damage than in the past (Kunreuther and Michel-Kerjan 2009). Quantified economic
losses have seen steep rises in recent years (Smith and Katz 2013; Weinkle et al.
2012; Pielke Jr et al. 2008), largely due to significant increase in exposure (Weinkle
et al. 2012; Höppe and Pielke 2006; Stewart et al. 2003). The US population
grew by 125 million from 1960 to 2008, with the coastal population increasing by
84 % (Lloyd’s 2011), totaling more than $1.1 trillion in property exposure within
storm-surge risk zones (King 2013). The trend in the losses (Fig. 7.1) indicates an
approximate doubling of economic and insured losses every 15 years. Noneconomic
sociocultural impacts have seen similar rises (Adger et al. 2013). Evidence that
the TCs themselves have changed in recent decades (Holland and Bruyère 2014)
together with sea-level rise (Solomon et al. 2007) has likely compounded the
problem. For risk assessment to be a useful tool that can help society properly
confront this new era of increasing TC risk, it must undergo a step change in its
ability to simulate TCs; account for changes in exposure, sea level, hazard, and
vulnerability; and better communicate the risk assessment results and the potential
actions that could reduce risk.

Increases in risk are likely to continue in the future as populations continue to
increase and migrate to vulnerable coastal regions. The likely scenario of the TCs
themselves changing in the future due to climate change will compound the problem
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Fig. 7.1 Annual overall and insured losses (in US$ bn) 1980–2015 (Source: Topics GEO – Natural
Catastrophes 2015 (Munich Re 2016))

(IPCC 2012; Walsh et al. 2016). TC potential intensity is directly related to the sea
surface temperature (SST, Emanuel 1991; Holland 1997; Knutson et al. 2010) with
a climate sensitivity of TC maximum wind speed of 5 % per degree Kelvin rise. It
appears that the dominant effect of increasing carbon dioxide is increasing upper
ocean temperatures (Zhao et al. 2013), with the 0–700 m layer experiencing 64 % of
the total ocean warming to date (Rhein et al. 2013). The long-term impact of recent
and future predicted increases in SSTs on the TC climate is hotly debated (e.g.,
Villarini and Vecchi 2012a, b; Bender et al. 2010; Emanuel et al. 2008; Holland and
Webster 2007). However, there is general consensus on an increase in the incidence
of high-intensity TCs (Murakami et al. 2012; Hill and Lackmann 2011; Elsner et
al. 2008). There is less confidence on future changes in the frequency of weak to
moderate intensity TCs.

In addition to changes to TC intensity, other important changes are anticipated.
Maximum wind speeds have migrated poleward over the past decades and will
continue to do so in a warming climate (Kossin et al. 2014), exposing new regions
to TC impacts. There is also an indication that TCs may extend farther inland in
the future (Vecchi, personal communication) and a substantial future increase in
TC rainfall (Villarini et al. 2014). Compounding these expected changes in the TCs
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themselves is rising sea level, and the rate of rise is perhaps accelerating (Church
et al. 2013; IPCC 2012). There is less confidence in changes to TC tracks, TC
size, and the incidence of extratropical transitioning storms (Emanuel, personal
communication; Walsh et al. 2016).

These changes could lead to more damaging events in the future (Morss et al.
2011) and the possibility of high-impact events outside the range of our experience
that would render traditional risk assessment practice ineffective (Milly et al. 2008).
Indeed, studies point to future increases in TC-related insurance losses (Mendelsohn
et al. 2012; Raible et al. 2012; Schmidt et al. 2010), largely driven by increased value
and amounts of exposed coastal property. Mendelsohn et al. (2012) found that future
increases in income are likely to more than double TC losses even without climate
change, from US $26 billion per year to $53 billion by 2100, concentrated in North
America, East Asia, and Central America-Caribbean. The recent rise and projected
increases in TC losses further drive the need for risk assessment, risk communica-
tion, and accounting for changes in exposure, sea level, hazard, and vulnerability to
undergo a step change to enable society to manage this increasing risk.

Next-generation global climate models (GCMs) are poised to bring about this
change. Decades of government investment have supported the development of
leading physical and dynamical representations of the climate system that provide a
wealth of new information on key damaging parameters and present an opportunity
to transform TC risk assessment by including climate physics.

GCMs are based on a set of equations of motion, thermodynamics, and radiative
transfer and are the primary tools for developing a theory of climate and climate
change. The atmosphere and ocean are broken down into a three-dimensional grid,
over which the equations are calculated. The size of the grid boxes determines
the resolution or scale that can be captured. As resolution increases, the realism
of physical processes is enhanced, yet resolution is restricted by computational
power; doubling resolution requires approximately ten times as much computing
power. Other demands on computational power include the complexity of the
representation of fine-scale physical processes such as radiation, rainfall and
convection; the simulation length; and the number of simulations. However, novel
approaches to focus detail in a region of interest while retaining a global grid (Slingo
et al. 2009; Weller et al. 2010; see Chap. 8 for a full discussion) have shown success
in simulating TC climate (Hashimoto et al. 2015; Zarzycki and Jablonowski 2015).

GCMs have the potential to transform risk assessment practice, yet a number of
barriers need to be overcome. Some are exploring the use of TC climate information
from GCMs in long-range planning fields such as water resources, infrastructure
design, and catastrophe finance, but the use of GCM information is in its infancy.
The full value of GCMs has yet to be realized, but presents an opportunity to
align developing climate science with climate risk assessment to create potentially
transformative strategies for reducing losses from future TCs.

The aim of this chapter is to explore the potential role of next-generation
GCMs in TC risk assessment and is framed toward risk practitioners interested
in understanding the potential role of GCMs in risk assessment and to physical

http://dx.doi.org/10.1007/978-3-319-47594-3_8
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scientists interested in exploring TC risk problems. The information needed for TC
risk assessment is established first in Sect. 2, together with an overview of current
practice for risk assessment. Section 3 outlines the potential role of GCMs for TC
risk assessment, starting with an overview of the TC climate information currently
produced by GCMs, moving to an overview of the current use of GCMs in the risk
arena, and ends by identifying the future potential role of next-generation GCMs for
TC risk assessment. A summary is presented in Sect. 4.

2 Current Practice in TC Risk Assessment

Accurate assessments of TC risk are necessary for well-informed risk management.
This includes planning future infrastructure and developing sound, informed policy.
An enabling tool to identify and quantify risk is the catastrophe (CAT) model.
CAT models are fundamental to risk management (Grossi et al. 2005) and were
developed to address the need for more precise risk information. Public planners,
disaster managers, and the insurance and reinsurance industries are increasingly
reliant on CAT models. This increasingly diverse group of users is driving the need
for the development of CAT models that are flexibly adaptable to inform emergency
management, risk pricing, risk transfer structuring, insurer capital adequacy, and in
assessing the financial strength of insurers and catastrophe bonds.

The four main components of a CAT model are hazard, exposure, vulnerability,
and loss, as depicted in Fig. 7.2. First, the hazard phenomenon is defined (in our

Fig. 7.2 (Top) Components of a catastrophe model. (Bottom) Schematic exceedance probability
(EP) curve, showing the exceedance of loss amount Dn in a given time period given by
probability Pn
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case, a TC) and a hazard event set is generated. Each hazard event is defined
by a specific magnitude and location and is assigned a probability of occurrence.
Second, the exposure or infrastructure at risk is characterized using construction and
occupancy types, building height, age, and design codes and assigned a geographic
location. Third, the vulnerability or damage susceptibility of the exposure (World
Bank 2014) is quantified, based on physical relationships between a characteristic
or combination of characteristics of the hazard and damage. Finally, the expected
loss is calculated, based on direct losses including the cost to repair and/or replace a
structure and indirect losses including business interruption and relocation costs.
Together, the hazard event set, exposure, and vulnerability components yield a
probabilistic risk analysis. This probabilistic approach to catastrophe loss analysis is
the most appropriate way to handle the abundant sources of uncertainty inherent to
the hazard, exposure, and vulnerability components. CAT model output is quantified
and presented in a way that is useful to the diverse range of stakeholders (often
presented as an exceedance probability curve depicted in Fig. 7.2) Grossi et al.
(2005).

A potential role for GCMs in TC risk assessment, as detailed in Sect. 3, would
therefore be to inform the hazard component of a TC CAT model. The hazard
component of hurricane loss models are computationally inexpensive to run, thereby
allowing for the generation of a hazard event set large enough to develop robust
statistics. The hazard event set is typically derived from a synthetic TC track
database (e.g., Hall and Sobel 2013; Arthur et al. 2008; Hall and Jewson 2007;
Rumpf et al. 2007; Vickery et al. 2000a). Tens of thousands of synthetic tracks
are generated through repeated random sampling of local and regional historical
TC parameters, such as track location, forward speed and heading, maximum wind
speed, and rate of change of wind speed. Spatial wind fields, known as the wind
footprints, are constructed along the synthetic tracks using simple parametric wind
field models (e.g., Wang et al. 2015; Holland et al. 2010; Willoughby et al. 2006;
Vickery et al. 2000b). These models are lacking in an important way for loss
prediction. The Holland et al. (2010) wind field model goes some way to include
major asymmetries and smaller-scale structural details such as double eye-walls,
yet crucially these models behave particularly poorly at landfall. Hurricane wind
fields change drastically when they make landfall, involving a complex interaction
with the system and the underlying surface (Zhu 2008), yet it’s common to use a
simple wind speed decay function (Kaplan and DeMaria 1995). Attempts have been
made to combine simple wind field models with dynamical atmospheric models of
varying complexity (Vickery et al. 2009; Khare et al. 2009) to capture these complex
surface effects.

Some models also capture changes in the storm wind field due to extratropical
transition (Loridan et al. 2015). Storm surge is sometimes included using the
synthetic storm footprints to drive a surge model (Lin et al. 2012), thereby creating
coastal flood footprints. Rainfall is also sometimes included (e.g., Grieser and
Jewson 2012) based on historical rainfall statistics (Lonfat et al. 2007) or physical
principles (Langousis and Veneziano 2009). Hazard models vary widely in their
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level of complexity, and differences among the resulting risk assessments are large,
common, and critically dependent on model assumptions.

When CAT models were first used in the early 1990s, they revolutionized the
way society understands and manages risk. However, despite their increasing level
of sophistication, TC CAT models are deficient in a number of important ways.
Traditional hazard modeling has relied on sampling from probability distributions
fitted to historical TC data. The historic record of TC activity is the longest for
the North Atlantic, where records start in 1851, yet the limitations of historical
observations are well known, including undercounting in the pre-satellite era and
intensity errors throughout (Vecchi and Knutson 2008; Landsea 2007).

Use of an historical archive as a base dataset has the following significant
limitations:

• Possible artificial trends due to changes in data collection methods and unknown
errors.

• The assumption of stationarity and not accounting for how risk may have changed
in the past or how it may change in the future (Stewart et al. 2003). The impacts of
recent climate variations and apparent shifts in TC climate (Holland and Webster
(2007) and the resulting losses revealed deficiencies in the current state of CAT
modeling.

• Unresolved temporal variability and trends by the short archive lengths. Esti-
mates of hurricane wind risk based directly on the historical record suffer from
the overall scarcity of events, particularly in regions that experience infrequent
but sometimes devastating storms.

• Lack of information on critical hazard parameters that relate to loss such as TC
size.

• Assumption of independence between perils and the occurrences of a peril.

Risk managers increasingly require predictive hazard information to enable
appropriate planning and adaptation to the risk of today and tomorrow. Commonly
missing risk-relevant processes include clustering of events in time and space (where
occurrence rates are higher than expected by chance), inter-basin correlations of TC
activity, information on events outside our historical experience, and on the relative
importance of modes of climate variability. Many of these knowledge gaps may be
met through inclusion of physical climate science to inform risk assessment. GCMs
are one enabling tool (Shackley et al. 1998) to connect the needed information with
developing climate science, as described in the next chapter.

3 The Role of Global Climate Models

This section outlines the role of GCMs for TC risk assessment, starting with an
overview of the TC climate information currently produced by GCMs. An overview
of the current use of GCMs in the risk arena follows and ends by identifying the
future role of next-generation GCMs for TC risk assessment.
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3.1 GCM-Simulated TC Climate

This subsection summarizes the capacity of GCMs to simulate the key damaging
TC parameters, while Chap. 8 presents a more comprehensive overview of GCM-
simulated TC climates in general.

GCMs with grid sizes in the range 20–100 km commonly perform well in captur-
ing the geographic distribution of TCs, their frequencies, inter-basin differences and
correlations, and interannual variability (e.g., Strachan et al. 2013; Zhao et al. 2009),
but exhibit significant model sensitivity (Shaevitz et al. 2014; Zhao et al. 2013) even
when used to reanalyze TCs in historical climate (Cobb et al. in preparation). At
these grid sizes, however, details of TC wind fields are not captured (McDonald et
al. 2005). Gentry and Lackmann (2010) found a grid size on the order of 1 km is
needed to represent structural details of TCs and peak wind speeds.

Recent GCMs have been run using grid spacings of 10–25 km, at which many
key damaging TC parameters start to become resolved (e.g., Shaevitz et al. 2014;
Bacmeister et al. 2016). In particular, peak wind speeds are improved, yet there
remains a need for bias correction (e.g., Tye et al. 2014). However, it’s not only
peak wind speed that drives damage. Recent work demonstrated the importance of
TC size in driving losses (Zhai and Jiang 2014; Czajkowski and Done 2014), and
Holland et al. (2016) recognized the importance of forward speed (and therefore
duration of winds) for loss. GCMs are beginning to provide information on such
details as the area of the damaging winds and forward speed that combined control
the duration of damaging winds. GCMs can also quantify and elucidate the physical
mechanisms of TC clustering (Jagger and Elsner 2012; Mumby et al. 2011; Camargo
et al. 2007), and TC rainfall (Villarini et al. 2014). However, rainfall distribution
and intensity result from complex processes and depend on multi-scale interactions,
including track, intensity, topography, and environmental vertical shear. As a result,
caution should be exercised in the direct use of rainfall from GCMs. Details
that remain out of reach in current GCMs are eye-wall replacement cycles, rapid
intensification, and TC-related tornadoes. Such detail can be obtained through
statistical and dynamical downscaling, but are not discussed further here.

GCMs also bring benefits owing to their globally connected simulation system
such as the physical connections between TC basins and other teleconnected risks,
the occurrence and geographic locations of extratropical transitioning storms, the
connections between basin and landfall activity, and the potential for upscaling of
small-scale processes onto the large-scale climate (Schenkel and Hart 2015).

GCMs also provide a rich dataset to better understand TC activity on longer
timescales, as it is influenced by climate change (as discussed in Sect. 1) and
climate modes of variability such as the Indian Ocean Dipole (Saji et al. 1999),
the Pacific Decadal Oscillation (Goh and Chan 2010), the Atlantic Multidecadal
Oscillation (AMO, Wang et al. 2008), and the Atlantic Meridional Mode (Vimont
and Kossin 2007). Such modes of variability have also been shown to control
landfall occurrence (Villarini et al. 2012; Bove et al. 1998). Indeed, Elsner and

http://dx.doi.org/10.1007/978-3-319-47594-3_8
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Bossak (2004) found elevated US coastal activity during La Niña and when the
NAO is weak, with the strongest signals along the Gulf Coast and Florida.

3.2 Application to TC Risk Assessment

Decades of government investments have supported the development of leading
GCMs that are today used in many applications in the public and private interest,
including air quality, agriculture, transport, energy, and water resources. Yet, GCMs
were not designed with such applications nor indeed TC risk assessment, in mind.
Rather they were developed to inform a theory of climate. Only now has sufficient
computational power become available to conduct global climate simulations in
sufficient detail to capture key damaging characteristics of TCs, thereby bringing
a wealth of new risk-related information that represents a potentially powerful
transformation of TC risk assessment.

Many of the knowledge gaps outlined in the previous section may be met
through inclusion of physical climate science to inform risk assessment. These full
dynamical and physical models of TC climate can provide:

• Consistent data across spatial and temporal scales
• Sufficient simulation length to reliably sample extremes and resolve variability

and change
• Physically based response to climate variability and change
• Physically based events outside the range of the historical record
• Information on key TC parameters that cause damage
• Information on TC clustering in time and space
• Comprehensive treatment of uncertainty

Potential applications of GCMs to risk assessment include:

• A new view of TC climate from which to develop synthetic event sets and to
better interpret the historical record and recent changes (Bonazzi et al. 2014;
Strachan 2007)

• Views of future TC climate relevant decision-making (Douglas 2011)
• Application of simple TC risk indices and diagnostics to GCM output (Done

et al. 2015)
• A base dataset to inform the development and calibration of simple, computa-

tionally efficient models
• Detailed reanalysis of past events
• Better understanding of the hazard drivers of loss

Although GCMs can generate temporally and spatially detailed projections of TC
climate far into the future, this information is not without error and bias, and this has
slowed the uptake of GCMs into risk assessment. Error and bias can arise from many
sources including model physics and dynamics, model grid spacing, and internal
model variability (Roberts et al. 2015; Strazzo et al. 2013). Compounding the
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quantification of error are data sparseness and short historical records (McDonald
et al. 2005), making it difficult to assess GCM skill. Raible et al. (2012) state that
“these state-of-the-art models still yield contradicting results, and therefore they
are not yet suitable to provide robust estimates of losses due to uncertainties in
simulated hurricane intensity, location and frequency.” However, errors in GCMs
and the historical record are largely unrelated, thereby providing independent and
complementary assessments of risk and improved estimates of uncertainty.

The integration of GCMs with risk assessment is a rapidly developing field, yet
still in an exploratory phase and far from being operationally routine. Established
public-private partnerships such as the Willis Research Network are applying the
latest TC climate science to our understanding risk. Leading catastrophe modeling
companies are also exploring the use of GCMs. A few pilot demonstration studies
have recently appeared in the academic literature. Vitolo et al. (2010) demonstrated
the use of a GCM-based event set for TC risk assessment in the West Pacific.
Two hundred years of GCM tracks were bias corrected for intensity and resampled
to generate a synthetic event set. The GCM-based event set provided assessment
of multidecadal variations in TC risk and teleconnections to other basins that
uncovered seemingly unrelated risk.

Emanuel (2013) applied the statistical-deterministic model of Emanuel et al.
(2006, 2008) to simulate a large number of TCs. This approach seeds potential
TCs into climate states statistically sampled from GCMs. GCM winds drive a beta
and advection model to propagate the TCs, while SST, wind shear, and convective
stability drive TC intensity. This is a computationally efficient creation of a large
physically based event set. Emanuel (2011) applied this model to quantify a climate
change emergence timescale in damage to an idealized portfolio of exposure along
the US coast. There remains large uncertainty on how changes in future landfalling
TCs will contribute to future TC damage (Emanuel 2011). Mendelsohn et al. (2012)
further coupled this approach with exposure and vulnerability drivers of loss to
quantify climate change impacts on TC damage. This approach has since been
extended to assess storm-surge risk (Lin et al. 2012) and at city scales for Tampa
in Florida, Cairns in Australia, and Dubai in the Persian Gulf (Lin and Emanuel
2016). Figure 7.3 shows synthetic TC tracks generated using the approach of
Emanuel et al. (2006) within 200 km of Cairns, Australia. The storm-surge results
are also highly sensitive to the climate model used, and this large variation among
model predictions reflects uncertainties in GCM projections due to both systematic
difference and internal climate variability (Lin et al. 2012).

Kishtawal (personal communication) seeded GCM climate change projections of
steering flow over the Atlantic basin with passive tracers to infer future changes in
US TC landfall risk. Gettelman (personal communication) used the Swiss Re hazard
model to resample TC track data output from a small ensemble of high-resolution
climate change GCM projections and coupled them with measures of exposure to
explore plausible future damage scenarios. Raible et al. (2012) performed a similar
approach using two different GCMs, noting the need to bias correct TC intensities
and show even the sign of future losses depends on the GCM used, concluding that
GCMs are not yet ready to be incorporated in loss assessments.
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Fig. 7.3 Six thousand two hundred synthetic storms simulated using the Emanuel et al. (2006)
model applied to NCEP-NCAR reanalysis data (1981–2000) that pass within 200 km of Cairns,
Australia, with a maximum wind speed greater than 21 ms�1. The green circle shows the 200-km-
radius area around Cairns. The red portion of each track shows the 100-h period before and during
landfall (Source: Ning Lin, Princeton, plotted using data from Lin and Emanuel (2016))

3.3 Future Potential of GCMs for TC Risk Assessment

The initial studies that incorporated GCM information into TC risk assessments
were summarized in the previous section. In this section, the future potential of
next-generation GCMs for risk assessment is outlined.

The direct use of today’s GCM-simulated TC information is unlikely, given the
high computational cost of generating sufficiently large event sets and known model
bias and error. A more likely and more appropriate application of GCMs to risk
assessment is to combine the information with the historical record. Risk managers
do not necessarily seek explicit predictions, yet understanding the physical reasons
for a change in TC climate may be evidence enough to reflect this in risk pricing
and capital calculations.

Given the strong evidence that the TC climate is far from stationary, one
immediate application of GCMs is to use their view of TC climate to inform
interpretation of the historical record. This has the advantage of connecting the
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use of GCMs to historical experience, something practitioners are more confident
about than future projections. One fruitful entry point for the use of GCMs is to
use their output to modify the results of CAT models. Connecting GCMs to current
practice lowers the barriers to entry by practitioners tied by regulatory restrictions
and increases credibility and familiarity by generally cautious sectors. One way this
could be achieved is by using GCMs to provide scenarios of TC climate that can
be used to adjust or weight event rates according to a user’s confidence and opinion
of a given outcome or collection of outcomes. Another immediate opportunity is
to couple GCMs with simple measures of exposure to make simple, first-order
assessments of risk and provide a risk-screening tool to alert risk managers on the
need to investigate further.

Ranger and Niehörster (2012) suggested that natural variability would be the
dominant driver of the level and volatility of wind-related tropical cyclone risk
over the coming decade, but alongside climate change, it will be possible to
experience new levels of risk within the decade. GCMs are now being run at TC-
resolving resolution for 1,000s of years (Vecchi et al. personal communication).
This unprecedented dataset allows for improved quantification of decadal and
multidecadal variability of TC risk across the TC basins.

Emerging GCM large ensemble studies (e.g., Kay et al. 2015) provide the
foundation to quantify the range in TC risk for a given future emissions scenario.
For example, Done et al. (2014) used a dynamical ensemble to show up to 40 %
of seasonal basin TC frequency is essentially unpredictable. TC risk models may
benefit from accounting for this new view of uncertainty, in support of decisions
robust to the quantified uncertainty. Computational resource constraints aside, the
optimal approach to TC risk modeling is based on ensembles of high-resolution
global simulations. Given finite resources and competition between model complex-
ity, simulation length, and resolution, a combined statistical-dynamical approach (as
described in the previous section, e.g., Lin and Emanuel 2016) offers a practical
alternative and has significant scope for development.

Another important contribution next-generation GCMs can make to risk assess-
ment derives from their global modeling framework, thereby allowing us to
challenge the event independence assumption commonly made in risk assessments.
From clustering in time and space and teleconnected risk across basins to joint
probabilities of the multi-hazard nature of TCs, next-generation high-resolution
GCM information promises a wealth of untapped risk information.

A key potential role for next-generation GCMs is in informing effective adap-
tation strategies in disaster risk reduction (DRR). A key decision in DRR is the
choice of risk assessment methodology, and the demand for risk assessment data and
modeling tools in the DRR community is high (World Bank 2014). Future changes
in TC climate derived from GCM data may be used to quantify the protection levels
needed for existing infrastructure, quantify the cost-benefit of stronger building
codes accounting for future TC climates (Simmons, personal communication),
support resilient agricultural practice (Lloyd’s 2011), support land use planning
(Burby 1998), and highlight previously unknown risk. For example, the landfall
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of Hurricane Catarina in 2004 in Brazil, where it was commonly believed that TCs
would not make landfall, caused devastating effects, as no buildings were designed
for such an extreme event.

One recent example of the integration of GCM data into a community risk
model is the National Center for Atmospheric Research’s Global Risk Resilience
and Impacts Toolbox (GRRIT). GRRIT is a public domain community model
under development that aims to bring advanced techniques, data, and understanding
within reach of decision-makers and planners to aid society in reducing weather
and climate vulnerability, building economic resilience, and improving disaster
recovery. A major component is access by the toolbox through web services to a
variety of GCM datasets held in a number of different locations and varying widely
in size and complexity. GRRIT provides a tool to understand the value of GCM data
for risk assessment.

In all of these applications, transparency in risk assessment is becoming the stan-
dard required by regulators and rating agencies and a core principle as partnerships
develop between academia, public policy institutions, and the insurance industry to
improve our understanding of TC risk through collaborative and public research.
The Florida Commission on Hurricane Loss Projection Methodology (FCHLPM)
was set up (Grossi et al. 2005) such that any CAT model to be used in establishing
residential rates must be publicly approved.

A key factor controlling the uptake of GCM data in risk assessment will be the
alignment of the information produced with the information needed. Dilling and
Lemos (2011) found that “nearly every case of successful use of climate knowledge
involved some kind of iteration between knowledge producers and users,” thereby
necessitating the involvement of risk practitioners in the developmental trajectory
of GCMs. Understanding current information needs is therefore a key first step
(Wilby and Dessai 2010). Only then can we build capacity to generate the needed
information. Realizing the full value of GCMs for TC risk assessment may proceed
through iteration between information provision and information need. The value
may indeed turn out to be negligible for some applications but many practitioners
and climate science itself stand to benefit. Ultimately, this will transform how
scientists and practitioners conceptualize global climate modeling.

Grand challenges such as these cannot be met in isolation. This transformation
requires interdisciplinary expertise and training (Elsner et al. 2009) to understand
interactions between climate risk, risk perception, and risk communication, but
success ultimately hangs on sustained iteration of solutions. Societal response
requires information that is useful and usable, and decision-makers must perceive
the information to be scientifically sound, relevant, and produced and communicated
in an unbiased conduct (Cash et al. 2003). The social sciences and humanities have
a key role to play in helping society respond to the challenges posed by climatic
and other environmental changes, from identifying stakeholders to establishing
methods to convey scientific information in an applicable way. For example, the
National Center for Atmospheric Research’s Communicating Hazard Information
in the Modern Environment project seeks to reduce harm and enhance resilience by
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bringing together physical and social science expertise to study the flow of societal
information and decisions as a hurricane approaches and arrives.

4 Summary

As tropical cyclones (TCs) make landfall in increasingly populated regions, the costs
rise and are likely to continue rising due to future increases in exposure and wealth.
The likely scenario of the TCs themselves changing in the future together with rising
seas due to climate change will compound the problem. Current risk assessment
practice leans heavily on catastrophe (CAT) models that have traditionally relied
on historical data to assess risk. Use of historical data lacks accounting for how
risk may have changed in the past or how it may change in the future. In addition,
the short archives poorly capture temporal variability and trends, and records
commonly lack information on critical TC parameters. Moreover, these models
commonly assume independence between events. For risk assessment to be a useful
tool that can help society properly confront this new era of increasing TC risk, it
must undergo a step change in its ability to simulate TCs; account for changes
in exposure, sea level, hazard, and vulnerability; and better communicate the risk
assessment results and the potential actions that could reduce risk.

Next-generation global climate models (GCMs) are poised to bring in a new era
of risk assessment capability. Only now has sufficient computational power become
available to conduct global climate simulations in sufficient detail to capture key
damaging TC characteristics on long timescales, thereby bringing a wealth of new
risk-related information that presents a potentially powerful transformation of TC
risk assessment.

Specifically, GCMs provide a rich physically based dataset to understand TC
activity on longer timescales, influenced by climate change and variability, and
the opportunity to explore events outside the range of the historical record. Events
such as the devastating landfall of Hurricane Catarina in 2004 in Brazil, where it
was commonly believed that TCs would not make landfall, could be anticipated.
Moreover, emerging large GCM ensemble simulations provide the foundation to
assess confidence in the simulated TC climates. Current state-of-the-art GCMs
have been run using grid spacings of 10–25 km, at which many key damaging TC
parameters such as TC size start to become resolved. GCMs can also quantify and
elucidate the physical mechanisms of TC clustering, uncover teleconnected risks
across TC basins, and quantify connections between basin and landfall rates.

The integration of GCMs with risk assessment is a rapidly developing field,
yet still in an exploratory phase and a number of barriers need to be overcome.
The direct use of today’s GCM-simulated TC information is unlikely, given the
high computational cost of generating sufficiently large event sets and known
model bias and error. For example, error and bias may arise due to insufficient
resolution of current GCMs to simulate all of the processes involved in tropical
cyclone development. Direct use of single or sets of current GCMs in hurricane
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risk management, without an appropriate treatment of uncertainty, could lead to
potentially costly maladaptation and unnecessary risks (Ranger and Niehörster
2012), therefore inclusion of an estimate of uncertainty is vital.

One fruitful entry point for GCMs is to use the output to augment the historic
record and modify the results of CAT models. Connecting GCMs to current practice
lowers the barriers to entry by practitioners tied by regulatory restrictions and
increases credibility and familiarity. In a changing climate with an increasing
population, coordination between climate scientists and the risk management
industry will help to reduce future damage. A key factor controlling the uptake of
GCM data in risk assessment will be the alignment of the information produced with
the information need, thereby necessitating the involvement of risk practitioners in
the developmental trajectory of GCMs. GCM data are already being explored to
support disaster risk reduction efforts, and GCM data are being incorporated into
community risk models such as the National Center for Atmospheric Research’s
Global Risk Resilience and Impacts Toolbox to understand its full value.

The full value of GCMs has yet to be realized, but presents an opportunity to
align developing climate science with climate risk assessment to create potentially
transformative strategies for reducing losses from future TCs.
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Chapter 8
High-Resolution Multi-decadal Simulation
of Tropical Cyclones

Michael F. Wehner, Kevin A. Reed, and Colin M. Zarzycki

Abstract Recent advances in high-performance computing technologies are
enabling multiple climate modeling groups to perform global multi-decadal
simulations at tropical cyclone-permitting resolutions. This chapter discusses
the developing state of the art of such high-resolution modeling. These
global atmospheric models, with horizontal resolutions in the 10–50 km range,
simulate strong gradients in temperature and moisture far more realistically than
contemporary mainstream climate models at coarser resolution. With these models,
simulated tropical cyclones exhibit a surprising degree of realism in terms of both
the physical characteristics of individual storms and their long-term statistical
behavior. Experience with the Community Atmospheric Model version 5 is used
as an example to demonstrate the strengths and weaknesses of this new class of
climate models.

Keywords Tropical cyclones • Hurricanes • High-resolution global climate
models • Variable-resolution • Hurricane tracking • Cyclogenesis • Climate
change • High-performance computing

1 Introduction

The numerical simulation of tropical cyclones has a rich history, and its roots can be
traced back to some of the earliest studies in atmospheric models with the successful
implementation of convective parameterizations (Kuo 1965; Ooyama 1969). The
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use of atmospheric models for decadal simulations of tropical cyclones (TCs) has
been in practice for well over two decades. The first study to utilize a general
circulation model (GCM) to perform decade-long simulations of tropical cyclones
was produced by Broccoli and Manabe (1990) and consisted of experiments at
two horizontal resolutions of roughly 500 and 200 km. The simulations resulted
in a reasonable global climatology of tropical storm-like features compared to
the observed climatology; however, the regional distribution lacked skill. The
Broccoli and Manabe (1990) study was also the first to perform simulations with
increased greenhouse gas concentrations to quantify how tropical cyclones may
change in an altered climate. This work was expanded upon at finer grid spacings
of approximately 125 km with noted improvement in storm climatology (Bengtsson
et al. 1995, 1996). Numerous studies with various models at grid spacing greater
than 100 km followed these initial studies and a more complete summary can be
found in Walsh (2008).

In addition to these early GCM simulations, limited-area models have also been
used in recent decades for decadal projections of tropical cyclone statistics in
present-day and future climates for specific ocean basins. These downscaling studies
have often utilized grid spacings as fine as approximately 20 km. Examples of
experiments that use limited-area models with prescribed sea surface temperatures
to investigate cyclone statistics for the North Atlantic are Knutson et al. (2008) and
Bender et al. (2010). For such studies, the large-scale atmospheric conditions at the
lateral domain boundaries, such as temperature, water vapor, and wind velocities,
are often derived from low-resolution coupled GCM climatologies or reanalysis
data. Furthermore, coupled-atmosphere-ocean configurations of such models (e.g.,
Knutson et al. 2001) have been utilized to explore the impact of ocean coupling on
tropical cyclones.

While the use of limited-area models to simulate tropical cyclone statistics is
reasonably well established, the forcing from lateral boundary conditions can have
a strong impact on the climatology of the atmospheric state within limited-area
models. Errors in these boundary conditions can have profound effects on tropical
cyclogenesis due to biases in wind shear, steering flow, sea surface temperature, and
atmospheric thermodynamics which can lead to errors in storm track density and
pattern. Hence, direct downscaling of current generation coupled climate models
such as those in the database of the Coupled Model Intercomparison Project
version 5 (CMIP5) is subject to larger errors in tropical cyclone statistics that are
downscalings of observationally constrained reanalysis products.

The usage of GCMs for simulating tropical cyclones has been limited by insuf-
ficient horizontal and vertical grid spacings, which are limited by computational
resources. Despite these limitations, conventional GCMs have demonstrated the
ability to produce tropical cyclones, even at coarse horizontal resolutions on the
order of 100 km (Knutson et al. 2010; Wehner et al. 2014). However, tropical
cyclones simulated in GCMs at these resolutions are of much weaker intensity and
larger size than observed storms (Walsh 2008). Because of the reduced intensities,
the number of trackable storms in coarse resolution GCMs is generally substantially
lower than observed.



8 High-Resolution Multi-decadal Simulation of Tropical Cyclones 189

Recent advancements in computer architectures currently permit multi-decadal
high-resolution GCM simulations with grid spacings in the 10–50 km range.
However, such models still face many challenges in accurately representing both
the physical and statistical behavior of tropical cyclones. The storm size and count,
the representation of the intense convection, and the interplay of large-scale and
small-scale processes have not been demonstrated to have converged. Subgrid-scale
parameterizations have generally been adopted from the tuned coarser models and
are usually not aware of the change in scale. Nonetheless, comparison of the tropical
cyclone statistics between this class of global simulations with observations of the
last two to three decades show a remarkable degree of realism (Bacmeister et al.
2014; Reed et al. 2015; Roberts et al. 2015; Strachan et al. 2013; Wehner et al. 2014;
Zhao et al. 2009). For climate change experiments, the impact of increased carbon
dioxide (and other greenhouse gases) and/or increased, prescribed sea surface
temperatures (SSTs) has been investigated. Recent examples of such studies include
Oouchi et al. (2006), Zhao et al. (2009), Sugi et al. (2009), Wehner et al. (2010),
Murakami and Sugi (2010), Held and Zhao (2011), Murakami et al. (2012), Villarini
et al. (2014), Scoccimarro et al. (2014), Lin et al. (2015), and Wehner et al. (2015).

In addition to advances in uniform high-resolution GCMs, recent progress has
also been made in techniques permitting local mesh refinement within GCMs. Mesh
refinement techniques allow for limited regions of high resolution within the global
domain. These refinement areas can be tailored to particular research questions and,
therefore, offer an attractive approach to simulating regional tropical cyclone activ-
ity in GCMs. There are two main types of mesh refinement used in models. Static
mesh refinement techniques, where a multi-resolution grid is fixed at initialization
and remains the same for the entirety of the model run, have been included in GCM
frameworks for tropical cyclone investigations (Caron et al. 2011; Chauvin et al.
2006). A more recent example of such an approach is Zarzycki and Jablonowski
(2014) which utilized an unstructured variable resolution mesh of approximately
25 km over the North Atlantic basin. An alternative technique is adaptive mesh
refinement, where a grid dynamically refines/coarsens based on a particular features
being present in the model. For example, a certain vorticity threshold in tropical
regions within a 100 km simulation may trigger an automatic refinement to 25 km
to better resolve cyclogenesis and the corresponding storm lifetime. Challenges
such as multi-scale subgrid physical parameterizations, dynamic computational
load balancing in massively parallel simulations, and the development of suitable
refinement threshold criteria for cyclogenesis are areas of ongoing research before
adaptive techniques could be a viable option for long-term simulations of tropical
cyclones in climate models.

2 Uniform High-Resolution Global Atmospheric Modeling

The Community Atmospheric Model version 5 (CAM5) is typical of the global
atmospheric component sub-models in the broader class of coupled general cir-
culation models found in the CMIP5 database. The public-release version of the
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model is supported at a horizontal resolution of approximately 100 km at the
equator and 30 vertical levels extending into the lower stratosphere (Ghan et al.
2012; Neale et al. 2012). Increases in the horizontal resolution to an approximate
grid spacing of 25 km using the finite volume (FV) dynamical core with minimal
changes to the physical parameterizations have shown marked improvements to the
realism of individual storms, including tropical cyclones (Bacmeister et al. 2014;
Wehner et al. 2014). These improvements are most apparent in the sharper gradients
of moisture and temperature in the higher-resolution version of the model when
compared to lower-resolution models. As a result, many characteristics of extreme
storms compare favorably with available observations. Depending on the details of
the storm-tracking algorithm, the global number of simulated tropical cyclones in
multi-decadal integrations can match present-day climatology. This high-resolution
version of CAM5-FV even produces some intense hurricanes (Categories 4 and 5),
although not all other current models at this resolution can also do so. The low-
resolution (100 km) public-release configuration is typical of CMIP5-class climate
models and is revealed to produce far too few tropical cyclones. Relaxation of
tracking algorithm thresholds can increase the storm counts, albeit with less physical
realism, but not to a significant fraction of the observed values (Wehner et al. 2015).

Despite the good performance in simulating the total number of tropical
cyclones with the 25 km version of CAM5-FV, the simulated spatial distribution
has some significant biases. Figure 8.1 shows the tropical cyclone track density

Fig. 8.1 Distribution of tropical cyclone track density of tropical cyclones that reach (top row)
tropical storm (cat. 0–5), (middle row) hurricane (cat. 1–5), and (bottom row) intense hurricane
(cat. 4 and 5) wind speeds for observations, CAM5-FV, and CAM5-SE (see labels). Track density
is defined as the number of storm tracks within a 5ı radius of a given point per year. Note that the
color scale differs for each row
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of the high-resolution version for CAM5-FV compared to observations. Note that
the observations, the International Best Track Archive for Climate Stewardship
(IBTrACS, Knapp et al. 2010), are shown over the same time period (1980–2005)
as the CAM5 simulations. The largest discrepancy in the high-resolution model is
in the central Pacific with the model generating far too many storms there than are
observed, as well as the western Pacific where CAM5-FV produced too few storms,
although the total number of simulated Pacific storms is reasonable. Such errors
are likely the result of biases in the large-scale circulation simulated by the climate
model. Each tropical cyclone-permitting global climate model has its own unique
set of large-scale errors. Increases in horizontal resolution alone do not generally
reduce these errors in regions without significant local orography (Bacmeister
et al. 2014; Wehner et al. 2014). Rather, such errors are more likely the results
of deficiencies in subgrid-scale parameterizations. As most modeling groups have
tuned these parameterizations of unresolved processes to coarser resolutions, errors
in large-scale circulation features can actually be greater at the higher resolution
necessary for tropical cyclogenesis.

Recent work by Reed et al. (2015) has suggested that the simulation of tropical
cyclone climatology in CAM5 is also sensitive to the choice of dynamical core. The
dynamical core is the main fluid flow component of an atmospheric model and is a
discretization of the Navier–Stokes equations, the relevant equations of motion for
the atmosphere. As the largest errors in simulated large-scale climatological fields
are often traceable to errors arising from the subgrid-scale parameterizations, it is
not obvious that the dynamical core should have such a large effect on simulated
tropical cyclone properties. CAM5 permits the selection of three different dynamical
core approaches and two different sets of physical parameterizations. Reed et al.
(2015) showed that a spectral-element (SE) dynamical core produces stronger
storms, resulting in more hurricanes and major hurricanes over a 26-year simulation
than does the FV approach when using nearly identical physical parameterization
packages. This is despite the fact that the CAM5-FV simulation produces a slightly
more favorable environment for intense storms based on analysis of the large-scale
climatology. Figure 8.1 also displays the track density for the CAM5-SE simulation
from Reed et al. (2015) and Bacmeister et al. (2016). When comparing CAM5-SE to
CAM5-FV, there is a reduction in the bias of track density in the west Pacific, but the
bias in the central Pacific is worse. CAM5-SE also shows decreased tropical cyclone
activity in the North Atlantic. This work demonstrates that internal uncertainties
due to model design choices are not fully understood in the current generation
of high-resolution simulations. It is worth noting that many previous studies have
investigated the more commonly understood sensitivity of tropical cyclones to the
choice of physical parameterizations (e.g., Bacmeister et al. 2014; Kim et al. 2012;
Reed and Jablonowski 2011a,b; Zhao et al. 2012), which is not discussed here.

Tropical cyclone-permitting climate models are a critical tool toward developing
a theoretical understanding of the effect of climate change on tropical cyclone
statistics (Walsh et al. 2015). The Hurricane Working Group (HWG) of the US
Climate Variability and Predictability Research Program (CLIVAR) developed
four idealized test configurations to explore the effects of increased sea surface
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temperature (SST) and increased atmospheric carbon dioxide concentrations both
separately and jointly on future tropical storm behavior in warmer climates (http://
www.usclivar.org/working-groups/hurricane; Held and Zhao 2011). The warmer
configurations imposed a uniform 2K increase to a base case 1990 SST climatology.
Model performance in simulating the 1990 baseline case varied considerably.
However, most of the models that contributed to the study, including the high-
resolution version of CAM5-FV, produced stronger storms in the tail of their tropical
storm distributions as measured by wind speed and minimum central pressures.
A likely mechanism for such behavior is that when an intense tropical cyclone
occurs, the large-scale conditions of low wind shear, high sea surface temperature,
and high humidity are ideal. In the warmer simulations, the average wind shear
conditions in tropical cyclogenesis regions do not change much, but average values
of sensible and latent heat are larger due to increases in temperature and humidity.
Hence, when the conditions are ripe for an intense storm to occur, it becomes
stronger due to the increase in available energy. The models were less conclusive
in regard to the number of lower intensity storms (Walsh et al. 2015). Most of
the models, including the high-resolution version of CAM5 (Wehner et al. 2015),
produced significantly fewer storms in the uniform 2K warmer configurations. This
reduction was demonstrated to be a result of both the warmer surface and elevated
air temperature aloft (driven by the increased greenhouse gas concentration), with
the latter being the larger contributor.

The US CLIVAR HWG test problems present an opportunity to test conceptual
models of the response of tropical cyclones to changes in the relevant large-
scale climatological fields. The maximum potential intensity (MPI) index gives
a bulk measure estimate of the highest possible wind speed and lowest possible
central pressures of a “perfect” tropical cyclone modeled as a Carnot engine
transporting energy from the ocean surface to the stratosphere (Emanuel 1987).
Using changes in the monthly averaged surface temperatures and pressures as well
as the vertical profiles of air temperature and humidity from the high-resolution
version of CAM5.1, changes in MPI correctly predicted that the most intense
simulated storms had higher winds and lower central pressures in the warmer test
problems (Wehner et al. 2015). The magnitude of the MPI changes in maximum
wind speed was also reasonable when compared to the changes in the ten most
intense simulated storms in each configuration. The genesis potential index (GPI)
uses the MPI together with vorticity, humidity, and wind shear to estimate the
cyclogenesis density and has been tuned to observe values through reanalyses
(Camargo et al. 2007; Emanuel and Nolan 2004). However, this bulk measure
of tropical storm activity fails to correctly predict the decrease in the number of
storms in the high-resolution CAM5.1 US CLIVAR HWG test problems as SST is
uniformly increased (Wehner et al. 2015). A more sophisticated approach follows
a downscaling approach designed by (Emanuel 2013) which “seeds” small-scale
vorticity disturbances into the large-scale climatological conditions. This approach
also predicts an increase in tropical cyclone activity (Walsh et al. 2015). Similarly,
the low-resolution version of CAM5.1 also fails to predict the sign of the response

http://www.usclivar.org/working-groups/hurricane
http://www.usclivar.org/working-groups/hurricane
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of its high-resolution counterpart. Since neither bulk measures of cyclogenesis nor
direct tracking results in low-resolution models are guaranteed to faithfully replicate
the behavior of models capable of actually producing hurricane category winds,
confidence in projected future changes in tropical cyclone statistics derived from
the low-resolution models in the CMIP5 database is undermined.

Fixed SST numerical experiments imply that the ocean is of infinite heat capacity.
This is of course not true, and a cold wake of reduced SST is often observed
behind large tropical cyclones due to the mixing of colder water at depth to the
surface (Mei and Pasquero 2013; Price 1981). This serves as a negative feedback on
storm intensity (Cione and Uhlhorn 2003). In addition to the effect on the tropical
cyclone itself, this mixing also transports warmer surface waters to the subsurface
thermocline (Li et al. 2015; McClean et al. 2011). Fully coupled global ocean–
atmosphere models at tropical cyclone-permitting resolutions are at the very limit
of existing computational technologies. The requisite multi-century spin-ups of such
models demanded by the long time scales in the ocean are currently prohibitively
computationally intensive, and experience is limited. Long-term biases in ocean sea
surface temperatures may also deleteriously impact tropical cyclone climatology,
as demonstrated by Small et al. (2014) using a 25 km version of CAM coupled to a
prognostic ocean model. However, preliminary simulations reveal that the cold wake
phenomena can be reproduced (Li et al. 2015; McClean et al. 2011). Furthermore,
the relaxation time of the cold wake back to “normal” temperatures was recently
found to be sensitive to ocean model resolution, with mesoscale eddy-permitting
configurations responding more quickly (Li et al. 2015). As an alternative, long
spin-up simulations can be avoided through the use of slab or mixed-layer ocean
models, and early attempts to develop such configurations are ongoing (e.g., Hirons
et al. 2015).

3 Variable-Resolution Global Modeling

Recent developments in numerical techniques have allowed for global simulations
to be performed with regional refinement. Variable-resolution GCMs (VRGCMs)
allow for targeted use of computing resources, as in regional climate or limited-area
models, but do so within a global framework, allowing for a more physically and
mathematically consistent treatment of the atmosphere in addition to eliminating the
need for lateral boundary conditions to drive nested domains. Tropical cyclones are a
natural fit for these frameworks as their spatial distribution is well defined, leading to
obvious choices for refinement location. Storms are also generally restricted based
on their genesis location, allowing for individual ocean basins to be easily isolated
for regional studies, provided any nonlocal TC genesis precursor features remain
adequately resolved in unrefined regions of the mesh (such as North Atlantic tropical
waves and El Nino–Southern Oscillation (ENSO) teleconnections in Zarzycki and
Jablonowski (2014) and Zarzycki et al. (2015)).
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Fig. 8.2 Two different grids in the Community Atmosphere Model (left) with simulated tropical
cyclone trajectories (right) from 23-year historical AMIP simulations. Tropical cyclone trajectories
are color-coded by storm intensity on the Saffir–Simpson scale. Horizontal resolution of top model
grid and base resolution of bottom model grid is 100 km. Static refinement in lower panels results
in 25 km grid spacing over the North Atlantic (Results from Zarzycki and Jablonowski 2014)

Recently, a variable-resolution option (Zarzycki et al. 2014b) has been
implemented into the SE dynamical core of CAM5 (Dennis et al. 2012a; Taylor
et al. 1997; Taylor 2011), allowing for regionally refined simulations using the same
framework as the uniform simulations discussed above. An example of tracked
tropical cyclones from Zarzycki and Jablonowski (2014) is shown in Fig. 8.2. The
top panels show results from a multi-decadal Atmospheric Model Intercomparison
Project (AMIP, Gates 1992) historical simulation on an unrefined, CMIP-class,
100 km grid. The bottom panels show results from an identical model setup except
using a grid with 100 km grid spacing everywhere except over the North Atlantic,
where the horizontal resolution is increased to 25 km. The impact of finer grid
spacing is clearly highlighted in the trajectories shown on the right in Fig. 8.2,
with the regionally refined simulations able to achieve a significantly more realistic
representation of both the spatial distribution and intensity of Atlantic storms. The
fact that the bottom right panel is well matched to the results seen with the globally
uniform simulations seen in Fig. 8.1 (albeit a simulation using a different dynamical
core, but with the same set of subgrid parameterizations), lends further credence
to the use of VRGCMs as a tool for regional tropical cyclone assessments. While
VRGCM development remains in the early stages, other studies using different
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models have found similar promising results with respect to tropical cyclones
(Caron et al. 2011; Hashimoto et al. 2015).

The variable-resolution mesh in Fig. 8.2 (bottom) contains 13,340 elements,
compared to 86,400 for a globally uniform mesh of the same resolution (25 km).
Assuming a variable-resolution model that is able to scale with the number of
grid cells (as CAM-SE has demonstrated (Zarzycki et al. 2014a)), regional tropical
cyclone studies can be dramatically improved by decreasing the computational cost
to simulate at a particular horizontal resolution. In the case above, the variable-
resolution simulation only cost one-sixth of the CPU hours of an equivalent simula-
tion utilizing high-resolution over the entire global domain. For a fixed computing
load, this opens up additional simulation enhancements, such as increased resolution
or longer run-time. It also may allow for the addition of ensemble members, which
has been shown to improve the interannual correlation of tropical cyclones in high-
resolution hindcasts forced with historical observed SSTs (LaRow et al. 2008).
However, we note that while variable-resolution runs can be substantially less
computationally expensive than uniform resolution calculations, they are by their
very nature more targeted simulations and of less general applicability in a spatial
sense. Hence, the decision to use variable resolution methods is a trade-off between
reduced computational cost and limitations on the variety of analyses that can be
performed on the model output.

4 Tracking

A wealth of automated detection algorithms has been developed to objectively find
and quantify tropical cyclones in gridded climate data. The majority of published
techniques employ a similar strategy. First, cyclone centers are defined by either a
near-surface (generally 850 hPa) vorticity maximum or sea-level pressure minimum.
Following this, warm-core criteria are typically applied to exclude mid-latitude
cyclones. A surface wind speed threshold must also be surpassed, and all of these
criteria need to be met for a minimum period of time, typically 1–3 days.

While the general formulation is similar among popular detection mechanisms,
a great deal of variety exists in the particular criteria used. The choice of vorticity
maximum or sea-level pressure minimum as the tropical cyclone center, as well as
the applicable threshold value for either, differs between schemes. The warm-core
detection criteria are also variable, with some schemes seeking a particular air tem-
perature anomaly at one or multiple pressure surfaces (e.g., Murakami et al. 2012;
Vitart et al. 1997; Zhao et al. 2009), others utilizing geopotential thicknesses (e.g.,
Tsutsui and Kasahara 1996), and others focusing on a negative gradient in vorticity
with height (indicating a warm core via the thermal wind relation (e.g., Bengtsson
et al. 2007; Strachan et al. 2013). Additionally, some apply basin- (Camargo and
Zebiak 2002) or resolution-specific (Murakami and Sugi 2010; Walsh et al. 2007)
thresholds to produce results which more closely match observed tropical cyclones,
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others implement additional exclusionary criteria based on geographic location
(such as latitude restrictions in many trackers or the removal of monsoon lows
in Murakami et al. 2012), and others tune based on PDFs of relevant variables
generated within a particular climate simulation (Camargo and Zebiak 2002).

As the horizontal grid spacings of climate models increase, analyzing data sets
becomes more cumbersome due to growing file size. Recently, MapReduce-style
(Dean and Ghemawat 2008) techniques have been used to parallelize existing
code (e.g., Prabhat et al. 2012; Zarzycki and Jablonowski 2014) to leverage high-
performance computing capabilities for tropical cyclone-tracking purposes. In these
cases, candidate cyclones are first detected in a time-independent fashion, allowing
for data files (generally ranging from three hourly to daily) to be spread out among
many processors. Following the completion of this processing, candidate cyclones
are sorted and then connected to other nearby points in space and time to merge
tropical cyclones into their particular trajectories.

Of particular concern is whether the wide range of algorithms used contributes to
uncertainty in tropical cyclone results. Extremely intense tropical cyclones generally
have very well-defined features (vorticity maximum, warm core, etc.) that are
picked up universally across algorithms. However, weaker storms are likely more
difficult to track, particularly since the observational record of less intense, short-
lived storms is questionable itself (Landsea et al. 2010). Some techniques may
miss these storms altogether, although schemes that track large numbers of weaker
storms may be more susceptible to false alarms. Using CLIVAR HWG data, Horn
et al. (2014) found broad agreement in projected changes in future tropical cyclone
count, particularly when homogenizing for certain thresholds which are common
among tracking algorithms, such as wind speed and storm duration. However, other
differences still existed, likely due to fundamental differences across the mechanics
of the algorithms, implying that additional work is necessary to close the gap
between published schemes. Recently, tracking on reanalysis products provided a
potential avenue for this assessment (e.g., Murakami 2014; Strachan et al. 2013).
The utility of using the current class of reanalysis products (at or coarser than
approximately 50 km grid spacing) may be questionable due to a systematic weak
bias when comparing reanalysis TCs to observations (Schenkel and Hart 2012),
but as higher-resolution reanalysis products become available, it is likely their
usefulness in developing and tuning tracking algorithms will increase.

5 Assessing Model Quality of Tropical Cyclone
Statistics Simulation

Model intercomparison studies of CMIP5 class are often constrained to large-
scale metrics of seasonally or annually averaged quantities (Myhre et al. 2013).
Multi-model assessment of extreme weather in these models has been confined
mostly to daily or longer indices averaged over large regions (Grotjahn et al.
2015; Sillmann et al. 2013). The improved realism of simulated storms from
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high-resolution climate models offers additional opportunities to assess model
quality. Short-duration hindcast experiments of actual individual or idealized storms
can provide valuable insight into errors arising from dynamical cores and the
physical parameterizations of the climate model (Reed and Jablonowski 2011a,b,
2012; Zarzycki and Jablonowski 2015). However, the present discussion will be
confined to performance metrics describing the statistical behavior of simulated
tropical cyclones in multi-decadal simulations.

The simulated annual average distribution of tropical cyclones is perhaps the
most fundamental measure of a model’s ability to characterize the statistics of these
intense storms. However, as noted in Sect. 4, identifying tropical cyclones in long
simulations is subject to uncertainties. Furthermore, even during the satellite era,
observations do not provide a fully complete record of the global climatology of
tropical cyclones. In particular, short-duration weak storms were not uniformly
tracked by the hurricane centers as observational technologies advanced, resulting
in spurious trends (Landsea et al. 2010). As most of the errors in tracking simulated
storms also arise from weak storms, comparison of simulated and observed storm
statistics at wind speeds above a critical threshold, say 33 m/s (or category 1 or
greater on the Saffir–Simpson scale), is less dependent on the choice of tracking
scheme. However, this can be problematic for some models, even in the less
than 30 km resolution class, if their distributions of wind speeds are biased low.
In fact, the number and intensity distribution of simulated tropical cyclones is
highly dependent on a large number of factors as discussed in Sect. 2 and has
not yet been demonstrated to converge in any model as resolution is increased.
Nonetheless, given its importance, modeling groups often compare to the global
number of tropical cyclones and in some cases tune their models to that number,
although this may bias climate change studies. The spatial distribution of simulated
tropical cyclones is also of fundamental importance if high-resolution climate
models are to provide useful information to the impact community. The simplest
model performance metric in this regard is to divide the ocean basins into somewhat
arbitrary regions and count the simulated storms and/or their fraction of the total
in each of the regions. Table 8.1 shows the annual global and selected basin
number of storms for several high-resolution models under contemporary forcing
factors and an observational estimates as for three different instantaneous maximum
wind speeds defined by the Saffir–Simpson scale. The observations are from the
International Best Track Archive for Climate Stewardship (IBTrACS) observed
track database (Knapp et al. 2010).

Comparison of tracked storms from simulations to observational datasets such
as IBTraCS should be performed with caution. The observations are a hand-
crafted product constructed in an entirely different manner than a model storm
tracker. Likewise, as discussed in Sect. 4, comparison between model results that are
obtained by different tracking methods can also be problematic. In Table 8.1, two
different sets of storm counts are provided for CAM5-FV. The set labeled CAM5-
FVa comes from Wehner et al. (2014) using the GFDL method and threshold values
published in (Knutson et al. 2007). The set labeled CAM5-FVb comes from the
same tracker used with CAM5 in Reed et al. (2015) which is based on a more
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recent method from GFDL (Zhao et al. 2009) with substantially lower counts
than the earlier analysis despite being applied to exactly the same model output.
However, the comparison of CAM5-FVb and CAM5-SE used the same tracker
(Reed et al. 2015), revealing a true difference in tropical cyclone statistics between
a few models.

The basins in Table 8.1 are perhaps the most natural division of the world’s
oceans, but more detailed comparison of simulated and observed track and cyclo-
genesis densities are also revealing. Also, models typically produce a few storms
in the South Atlantic. Although only a few tropical cyclones have been observed
there, it is not a well-observed region. Another interesting metric is the fraction of
Atlantic storms that originate in the Caribbean (Camp et al. 2015; Roberts et al.
2015). This detail has proven to be difficult for contemporary 25 km models to
reproduce. A further refinement on basin-wide storm counts is to separately account
for land-falling storms (Camp et al. 2015; Vecchi and Villarini 2014). While many
simulated storms recurve poleward at some point in their evolution, in some models
with cyclogenesis biases too far to the east, the fraction of storms that make landfall
is too low even if their simulation of the basin-wide number of storms is correct.
Such errors can limit the usefulness of a model for tropical cyclone impact studies.

The simulated tropical cyclone frequencies in Table 8.1 can be further augmented
by considering the number of storm days per year as a measure of basin-wide
cyclonic activity as typically used by the hurricane seasonal forecast community
(Gray 1979; Wehner et al. 2010). However, measures based on Saffir–Simpson cat-
egories are defined by point-wise maximum wind speeds only. Integrated measures
of tropical cyclone properties such as accumulated cyclonic energy, ACE (Bell et al.
2000), Power Dissipation Index, PDI (Emanuel 2005, 2007), and integrated kinetic
energy, IKE (Powell and Reinhold 2007) provide a more holistic description of
overall storm intensities. Wind speeds alone provide an incomplete measure of the
impacts of tropical storms (Wendel 2015). The Cyclone Damage Potential (Holland
et al. 2016) and the Hurricane Hazard Index (Wendel 2006) also incorporate the
spatial extent of high winds to assess the potential for impacts from tropical storms.
Application of model evaluation metrics based on observational estimates of these
quantities to high-resolution atmospheric models will likely prove more informative
than simple counting based on the Saffir–Simpson scale.

Each ocean basin has its own seasonal cycle of tropical cyclogenesis. The
timing of the beginning and end of these stormy periods provides another model
performance metric. Depending on the basin, the seasonality is a function of the
magnitude of sea surface temperature and wind shear in the cyclogenesis regions.
Figure 8.3 shows seasonal cycle of North Atlantic tropical cyclones as simulated
by the variable-resolution model described in Sect. 3, compared to the IBTraCS
observations. The model (25 km CAM-SE, red) reproduces the correct observed
(IBTraCS, blue) annual peak for all TCs (Fig. 8.3a) with September being the
most active month, followed by August, and then October. When only hurricanes
and major hurricanes are considered (Fig. 8.3b–c), the peak is shifted 1 month too
early in the simulations, although the model does an adequate job reproducing the
peridocity of storm formation. When absolute values are plotted (Fig. 8.3d–f), it is
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Fig. 8.3 Simulated seasonal cycle of (left) TC, (middle) hurricane, and (right) major hurricane
formation rates in North Atlantic ocean. (a–c) Comparison between (red, right y-axis) a 25 km
variable-resolution CAM5 simulation and (blue, left y-axis) IBTraCS observations and are
normalized using separate axes. (d–f) Storm formation rates on the same scale and also include
a 100 km coarse simulation (dark green). The calendar month (in numeric format) is labeled on the
x-axis in all figures (From Zarzycki and Jablonowski 2014)

clear that the model is biased slightly low in the overall number of TCs produced
(similar to the CAM-SE North Atlantic results in Table 8.1), but that the cycle is
significantly more realistic than that demonstrated by a coarser 100 km model (dark
green) (Zarzycki and Jablonowski 2014).

Improvement in the seasonal cycle of TCs as a function of resolution is not
limited to the North Atlantic. In the North Indian, the observed tropical cyclone
seasonality is bimodal with a peak in March and a second larger peak in November
before and after the monsoon season (Li et al. 2013). In prescribed SST experiments,
models can reproduce this bimodality (Wehner et al. 2014). Other studies utilizing
high-resolution configurations have shown similar reproductability in other ocean
basins as well (e.g., Zhao et al. 2009).

The interannual variations in tropical cyclone number in some basins are strongly
controlled by the state of the oceans. For instance, in the North Atlantic, both the
El Nino–Southern Oscillation (ENSO) and the Atlantic Meridional Mode (AMM)
modulate tropical cyclogenesis (Gray 1984; Patricola et al. 2014). Several analyses
of prescribed SST experiments examined the relationships between simulated and
observed time series of annual tropical cyclone counts finding relatively high
correlations in some basins (Roberts et al. 2015; Zhao et al. 2009).
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Fig. 8.4 Scatterplot of instantaneous maximum wind speed versus minimum central pressure of
tracked storms in CAM5-FV and the IBTRACS observations over the period 1979–2005. Left:
North Atlantic. Right: Northwest Pacific (Figure courtesy of Cheng-Ta Chen, National Taiwan
Normal University)

Performance metrics describing the physical characteristics of simulated tropical
cyclones are also an important part of a complete model assessment. A scatterplot of
the instantaneous maximum wind speed versus minimum pressure for each tracked
storm provides a picture of how well the dynamical core responds to high vorticity
flow. Figure 8.4 shows this pressure–wind relationship for North Atlantic and West
Pacific basins as simulated the CAM5-FV model at a resolution of approximately
25 km compared to the IBTrACS observations. Quadratic fits to each scatterplot
are shown in the background of Fig. 8.4. Further quantitative analysis could also be
performed when comparing such scatterplots. Other scatterplots, such as storm radii
versus maximum wind speed or minimum pressure would also reveal much about
how resolution impacts the structure of simulated tropical cyclones.

Direct usage of simulated paths and statistics for studies of tropical cyclone
impacts must be made with caution. Systematic errors in the position of simulated
tracks may under- or overestimate landfall frequency although corrections could be
imposed. Errors in the total basin-wide storm count and/or seasonality must also be
carefully considered. Furthermore, cumulus convection parameterizations are still
necessary for models in the 10–50 km range. As these parameterizations were not
developed for these resolutions, errors in total precipitation may also need to be
corrected for usage in tropical cyclone-related inland flooding analyses.

6 Computational Performance Issues,
Analysis, and Scalability

Since the seminal study by Oouchi et al. (2006), computers have continued to
increase in peak speed enabling other modeling groups to extend their models to
tropical cyclone-permitting horizontal resolutions. Although Moore’s law continues
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to increase peak speeds of the largest available supercomputers, the doubling of
transistor density approximately every 18 months is no longer used to increase
processor clock speeds because of energy consumption and cooling considerations
(Donofrio et al. 2009). Rather, machine designers have used these additional
components to increase the number of on-chip processors. This has important
implications for the software design of climate models. Scalability to large number
of processors, at least tens of thousands, is necessary to fully utilize the most recent
hardware designs (Dennis et al. 2012b). Scalability to 100,000 processor cores or
more will likely be indispensable in the not too distant future to fully exploit many-
core chip based machines (Wehner et al. 2011).

As spatial resolution increases, sub-daily output becomes ever more interesting
due to the increased realism of the simulated weather. For some tropical cyclone-
tracking schemes, eight surface variables are required at six hourly intervals. For
other studies, three hourly or even hourly outputs can be informative about the
diurnal cycle. Furthermore, the sub-daily output of variables at multiple vertical
levels can inform about the structure of storms. Tens to hundreds of terabytes of
model output can justifiably be saved from multi-decadal simulations at order 25 km
resolution. However, overall throughput of model simulations can be adversely
affected by this volume and frequency of data output. For instance, the CAM-SE
will scale without output to well over 30,000 processor cores through a combination
of MPI tasks and OpenMP threads (Dennis et al. 2012b; Mirin and Worley 2011).
At such processor counts, careful usage of parallel i/o libraries is required in order
to avoid serial bottlenecks. Attention must be paid to the specifics of the parallel
file systems (e.g., Mizielinski et al. 2014). However, available high-performance
machines such as edison.nersc.gov, a Cray XC30, have a limited number of i/o
nodes. Hence, parallel output does not scale past more than 256 pio tasks (pio is a
parallel i/o library using pnetcdf) for the 25 km version of CAM-SE on that machine
when a large three hourly output dataset is specified. As a practical matter, overall
performance is degraded by this poor i/o scaling such that using more than about
8000 processor cores is ineffective. Such limitations have been found on other, very
different architectures such as the Blue Gene Q (mira.alcf.gov). There are a number
of yet to be implemented fixes to this problem, including more effective usage of the
parallel file systems (in this case, LUSTRE) by pnetcdf/pio as well as asynchronous
i/o protocols to overlap output with computation on a separate set of i/o processors.

Some might argue that such large volumes of output data are unnecessary as some
analyses, such as parts of the tracking algorithm, can be performed in-core during
the model integration. In fact, this statement is true if the analysis to be performed
is independent of time or can be simply accumulated as model time advances.
However, multi-decadal, tropical cyclone-permitting climate model simulations are
so computationally intensive that only a few groups can perform them. We argue
here that this class of integration is most effectively used as a community-shared
resource. Since it is impossible for a modeling group to anticipate how external users
may creatively use the model output, distribution of large datasets is unavoidable
if the model output is to be used by the wider scientific community. Fortunately,
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advanced file transfer protocols such as GLOBUS (www.globus.org) fully utilize
network bandwidth to facilitate the movement of large amounts of data between
computing centers.

Such large datasets present significant challenges for offline analyses. In order
to reduce the workflow turnaround time, analysts must restructure their algorithms
to use parallel, multiprocessor programs. Many common analyses can indeed be
structured so that at least one dimension is embarrassingly parallel, that is not
requiring any interprocessor communications. In many cases, as noted in the
previous paragraph, this dimension can be time. For example, the interpolation from
an irregular model mesh to a regular latitude–longitude mesh or the construction
of spatial averages falls into this category. By contrast, calculating time-dependent
quantities such as monthly averages or values above a threshold may be cast
as embarrassingly parallel in space. Such parallel processing tasks are easily
programmed by dividing the entire problem up at the start of the analysis calculation
and reassembling at the end. Bottlenecks often occur during the i/o phase of
analysis calculations. This can be particularly acute when trying to read many files
simultaneously to initialize the analysis as the parallel tasks can be in contention
for the available i/o resources. This reinforces the notion that well-designed climate
modeling supercomputer centers must invest in special purpose analysis machines
(e.g., Lawrence et al. 2013), with large memories and fast i/o in addition to the large
number crunchers necessary to run the actual climate models.

7 Future Directions

Direct simulation of the multi-decadal statistics of tropical cyclones has only
recently become possible. This new area of climate modeling offers many new
challenges and opportunities as available computational resources continue to
increase. Certainly, coupling of tropical cyclone-permitting atmospheric models to
mesoscale eddy-permitting ocean models is among the most difficult of current
research efforts. Consortia in both Europe (the PRIMAVERA project1) and in the
USA (the ACME program2) has been formed to specifically develop new climate
models of this class. These efforts, in addition to existing ones, recognize that
the increased realism in simulated weather systems, of which tropical cyclones
are just one class, leads to more credible local and regional simulation of present
and future climate. Public and private decision-makers require much more localized
information than current CMIP5-class models can easily provide. The significant
resources currently being devoted to developing global atmospheric models resolved
in the range of 10–25 km is motivated in part by these policy needs.

1https://www.primavera-h2020.eu/
2http://climatemodeling.science.energy.gov/projects/accelerated-climate-modeling-energy/

www.globus.org
https://www.primavera-h2020.eu/
http://climatemodeling.science.energy.gov/projects/accelerated-climate-modeling-energy/
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Internationally, the endorsement by the CMIP panel of the HighResMIP protocol
(https://dev.knmi.nl/projects/highresmip) for the next climate model intercompari-
son, CMIP6, is an important step in advancing both stand-alone and coupled tropical
cyclone-permitting climate models as well as quantifying the structural uncertainty
in future projected changes in tropical cyclone properties. The protocol defines
multiple century-scale numerical experiments from the mid-twentieth century to
the mid-twenty-first century under two different future external climate-forcing
scenarios. In order to permit research on storm statistics, a variety of output fields
at six hourly intervals are prescribed which will more than likely result in a multi-
petabyte data set.

The need for ensemble simulations is as critical for tropical cyclone-permitting
models as it is for more conventional resolution climate models (Deser et al. 2014).
Analysis of variance (ANOVA) techniques can be applied to such integrations to
explore forced and unforced climate variability. As was the case with conventional
resolution models, early ensemble simulations will be small (the HighResMIP
protocol is only three realizations), but will grow in size as computational resources
expand.

As the amount of data available to study tropical cyclones increases due to
both higher resolution and larger ensembles, further efforts in developing flexible,
highly parallelized tracking algorithms (such as those previously discussed in this
chapter) will be required. Techniques where TCs are tracked “online” during the
actual model run may become popular as a way of alleviating post-simulation data
analysis bottlenecks. This would allow users to continue to output high-resolution,
high-frequency TC data, but without the need for this data to be first generated at
the global scale for initial detection purposes, significantly reducing the data storage
required for investigating TCs. As the structure of simulated TCs grows closer to
those observed in nature, machine-learning algorithms may also be viable future
detection and tracking paths (e.g., Liu et al. 2016). An example would be using
observations of historical TCs (such as satellite images or wind fields) to be used as
training data sets, which can then be applied to find storms in climate model data.

As mentioned earlier, the subgrid-scale parameterizations in current tropical
cyclone-permitting models were not specifically developed for usage at such
high resolutions. Research in “scale aware” formulations, particularly of cumulus
convective processes, will likely improve the mean climatology of models down
to approximately 10 km resolution. As computational resources permit resolutions
finer than about 10 km, more dramatic changes in model formulation are dictated.
Below this resolution, non-hydrostatic effects in the fluid motion equations must
be accounted for, requiring new formulations of the dynamical cores of some
models. Furthermore, for resolutions below 10 km, deep cumulus convection cannot
be rigorously parameterized and some portion of convection is actually directly
simulated. The range of resolutions from about 1 km to about 10 km has been called
a “gray zone” where some combination of explicit and parameterized convection
is required. One option is to remove the convective parameterization altogether
(Satoh et al. 2014). Another approach to unify this combination (Arakawa and Wu

https://dev.knmi.nl/projects/highresmip
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2013; Wu and Arakawa 2014) defines a scaling factor between 0 and 1 to multiply a
parameterized convective contribution to temperature and moisture tendencies; this
is still an active area of research.

8 Conclusions

High-resolution multi-decadal simulation of tropical cyclones can now be per-
formed by a few groups using the largest available supercomputers. This new class
of models, with horizontal resolution in the range of 10–50 km, enables more real-
istic simulation of many classes of extreme storms in addition to tropical cyclones.
However, increased resolution alone will not decrease the large-scale model errors
that result from deficiencies in subgrid-scale physical parameterizations. Many
aspects of simulated tropical cyclones in these models are surprisingly realistic,
including their frequency, seasonality, and interannual variability. Wind speeds up
to category 5 on the Saffir–Simpson scale are simulated by some models with
correspondingly realistic central low-pressure values. Fixed SST models are the
most practical, in terms of computational burden, at the present time. Carefully
constructed climate change experiments with these models are beginning to confirm
some theoretical expectations of the behavior of tropical cyclones in future warmer
climates. Fully coupled global ocean atmosphere models are more challenging to
integrate due to the need to spin up or initialize the ocean state, and multi-decadal
simulations are just beginning to be made. Such models can offer insight into the
effect of tropical cyclones on the climate through the poleward transport of energy
and moisture as well as more realistically simulate the interaction of storms with the
upper ocean.

Nearly every tropical cyclone-permitting model produces stronger storms in the
tail of their simulated wind speeds under warmer ocean conditions. What the total
number of tropical cyclones in a warmer world will be is less clear as results vary
between models and are dependent on both the magnitude and pattern of ocean
temperature change. As more modeling groups are enabled to perform multi-decadal
tropical cyclone-permitting simulations, structural uncertainties in the behavior
of future storm statistics will be better quantified. This is a critical part of the
development of a climate change theory of tropical cyclones.
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Chapter 9
Analysis of Atlantic Tropical Cyclone Landfall
Forecasts in Coupled GCMs on Seasonal
and Decadal Timescales

Joanne Camp and Louis-Philippe Caron

Abstract In this chapter we present advances in forecasting Atlantic tropical
cyclone (TC) landfall statistics at both seasonal and multi-annual timescales using
coupled global climate models. First, we demonstrate potential for forecasting TC
landfall frequency on seasonal timescales using the Met Office seasonal forecast
system, GloSea5, in some regions: statistically significant skill is found in the
Caribbean and moderate skill is found for Florida. In contrast, low skill is found
along the US Coast as a whole. We show that the skill over the Caribbean is
likely due to a good model response to El Niño–Southern Oscillation (ENSO)
forcing. Lack of skill along the US Coast may be due to a weaker influence
from ENSO compounded by a low bias in model storm tracks crossing the US
coastline. Secondly, we demonstrate that it is possible to construct reliable 4-year
mean forecasts of landfalling hurricane numbers in the Atlantic using initialised
global climate models to predict an index that relies on subpolar gyre temperature
and subtropical sea level pressure, two quantities with links to hurricane activity.
Furthermore, we give evidence that the forecast system anticipates large changes in
at least one of the two components of this index, which suggests that the technique
could be used to forecast shifts between active and inactive regimes of hurricane
activity in the Atlantic.
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1 Introduction

Atlantic tropical cyclone (TC) activity fluctuates on various timescales, ranging
from intra-seasonal to decadal (and possibly longer). The El Niño–Southern
Oscillation (ENSO) is the dominant climate mode influencing this variability on
a year-to-year basis (Camargo et al. 2010), modulating both basin-wide activity
and hurricane landfalls in the USA (e.g. Klotzbach 2011a) and Caribbean (e.g.
Klotzbach 2011b; Tartaglione et al. 2003). Indeed, recognising the link between
ENSO and Atlantic hurricane frequency led to the first Atlantic hurricane seasonal
forecasts in the 1980s (Gray 1984a,b).

Since then, many other climate factors modulating Atlantic hurricane activity
have been identified (see Caron et al. 2015a for an overview), and to the extent
that these climate influences are predictable, they can be used (individually or
in combination) to estimate upcoming hurricane activity. This is done explicitly
in statistical forecasts, which are constructed using past observations of seasonal
hurricane activity and precursive climate indices. However, the short period of
reliable observational data (typically since the 1970s with the advent of satellite
data) can limit the sample size that can be used to develop such statistical models.
Furthermore these methods rely on past observed relationships between climate
predictors and TC activity, which may not remain stationary with changing climate
(e.g. Klotzbach 2007).

Over the last two decades, there has been increasing interest in seasonal
dynamical predictions of TC activity with initialised general circulation models
(GCMs). These have been used to explicitly forecast TC statistics (e.g. Camp
et al. 2015; Vitart et al. 1997), as well as predicted parameters (e.g. sea surface
temperatures (SSTs)) within statistical forecasting models (e.g. Vecchi et al. 2011).
It has long been recognised that even low-resolution climate models (grid spacing
of 100 km or coarser at midlatitudes) are capable of reproducing tropical cyclone-
like vortices (Bengtsson et al. 1982, 1996; Vitart et al. 1997; Walsh and Watterson
1997). These model representations of TCs tend to have lower wind speeds and
larger diameters than observed storms, but have realistic climatology in terms of
geographical distribution and season of occurrence (Camargo and Wing 2015). The
observed relationship between ENSO and Atlantic hurricane activity is also well
captured (e.g. Vitart et al. 1997), and, as a result, the predictive skill of Atlantic TC
frequency using such methods is competitive with statistical forecasts (e.g. Vecchi
et al. 2014; Vitart et al. 2007). Dynamical seasonal predictions of Atlantic TC
activity have been issued by various centres, including the UK Met Office (Camp
et al. 2015), European Centre for Medium-Range Weather Forecasts (ECMWF;
Vitart and Stockdale 2001), Florida State University (LaRow et al. 2010) and the
National Oceanic and Atmospheric Administration’s (NOAA) Geophysical Fluid
Dynamics Laboratory (GFDL; Vecchi et al. 2011, 2014). Such forecasts typically
provide predictions of basin-wide numbers of TCs, hurricanes and accumulated
cyclone energy (ACE) index (a measure of the combined strength and duration
of TCs) during the season; dynamical forecasts of TS landfall are not currently
available.
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As dynamical models become more advanced in terms of resolution, physics
and dynamical core, their ability to resolve characteristics of observed TCs—such
as their geographical distribution, track, frequency, interannual variability, structure
and intensity—also tends to improve (e.g. Caron et al. 2010; Murakami et al. 2012;
Reed et al. 2015; Roberts et al. 2015; Shaevitz et al. 2014; Strachan et al. 2013;
Zhao et al. 2009). However, such models are computationally expensive to run, and
therefore it has only been in recent years that increases in supercomputing power
have enabled high-resolution GCMs (grid spacing of 50 km or finer at midlatitudes)
to be used for seasonal TC predictions (e.g. Camp et al. 2015; Chen and Lin 2011,
2013; Vecchi et al. 2014; Zhao et al. 2010). The increase in resolution, combined
with more realistic TC tracks, now provides an opportunity for seasonal forecasts of
TC landfall risk to be explored.

In comparison, decadal or multi-annual hurricane forecasts are still in their
experimental stage. Multi-annual forecasts are already being produced by some
catastrophe modelling firms which typically construct them using a range of
statistical forecasting models. Recently, it has also been shown (Caron et al. 2014;
Smith et al. 2010; Vecchi et al. 2013) that it is possible to produce skilful predictions
of Atlantic hurricane activity over lead times of several years using initialised
coupled GCMs. For those vulnerable to losses from TC damage, forecasts covering
multiple seasons may be more readily incorporated into planning and management
strategies, because the lead time allows greater opportunity to integrate forecasts
with fixed planning schedules. For example, TC forecasts covering a 5-year horizon
can be used in the pricing of contracts by the insurance and reinsurance industry
(Jewson et al. 2009), for which hurricane damage can be the leading cause of losses
during a given year.

On longer (multi-decadal) timescales, many of the climate factors influencing
interannual Atlantic hurricane variability, such as ENSO, tend to average out, and
prolonged periods of high and low hurricane activity are usually attributed to
Atlantic multi-decadal variability (AMV) of SSTs, also referred to as the Atlantic
Multi-decadal Oscillation (AMO) (Dunstone et al. 2013; Goldenberg et al. 2001;
Knight et al. 2006; Zhang and Delworth 2006). The link between the AMO/AMV
and Atlantic hurricane activity is well documented (Kossin and Vimont 2007;
Vimont and Kossin 2007; Zhang and Delworth 2006) and has been shown to operate
through a modulation of various climate factors influencing cyclogenesis: SSTs,
vertical wind shear, low-level convergence and low-level vorticity over the tropical
Atlantic and a shift in the intertropical convergence zone. Periods of high (low)
Atlantic TC activity have been associated with the positive (negative) phase of the
AMO/AMV.

In this chapter, we present recent advances in seasonal and multi-annual forecast-
ing of Atlantic hurricane activity using general circulation models, with a particular
focus on the skill of these systems at predicting landfall statistics. A list of acronyms
used in this chapter is given in Table 9.1.
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Table 9.1 Frequently used
acronyms

ACC Anomaly correlation coefficient

AMO Atlantic multi-decadal oscillation

AMV Atlantic multi-decadal variability

BSS Brier skill score

CGCM Coupled global climate model

EN El Niño

ENSO El Niño Southern Oscillation

GCM Global climate model

LN La Niña

MDR Main Development Region

MME Multi-model ensemble

RMSSS Root mean square skill score

SLP(A) Sea level pressure (anomaly)

SPG Sub polar gyre

SST(A) Sea surface temperature (anomaly)

TC Tropical cyclone

2 Seasonal Forecasting of Landfall Risk

Seasonal forecasts of TC landfall risk are not currently issued operationally
from dynamical models. While such systems have been shown to have skill
forecasting Atlantic basin-wide numbers of TCs (e.g. Vitart et al. 2007), the basin-
wide frequency is not strongly correlated with US hurricane landfalls and therefore
has limited use as a proxy for forecasting TC landfall frequency. An alternative
is to forecast landfall using the model TC tracks directly; however, this also
presents problems: low-resolution GCMs—generally used for operational seasonal
forecasting—typically tend to simulate larger TC vortices than observed, which
can lead to biases in TC track (e.g. Camargo 2013). Furthermore, observed TC
tracks and landfall are also largely governed by weather conditions prior to landfall,
which are only predictable on shorter range (e.g. 1–5 days) rather than seasonal
timescales. Nevertheless, seasonal average preferences in TC track, such as those
associated with ENSO (e.g. Wang et al. 2014), may be predictable on seasonal
timescales. High-resolution GCMs, which can better represent observed TC track
and geographical distribution, now provide the opportunity for seasonal forecasts of
TC landfall risk to be explored further.

Two recent studies—Vecchi et al. (2014) and Camp et al. (2015)—examined
the ability of fully coupled ocean-atmosphere GCMs with �50 km midlatitude
resolution to predict changes in landfall risk in the North Atlantic basin. Both
studies, despite using different techniques and models, yielded similar results:
significant skill was shown for regional TC landfall predictions in the Caribbean,
whereas low skill was found for the US Coast.

Here we expand the work of Camp et al. (2015) to more closely examine landfalls
in the North Atlantic basin. The purpose of this assessment is twofold: to investigate
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potential causes of both the low predictive skill of TC landfalls along the US Coast
and the comparatively higher skill in the Caribbean. To do this, we look at various
landfall statistics in GloSea5 and observations, including frequency, interannual
variability, genesis locations and the relationship with ENSO. We also examine
landfalls over smaller regions of the USA (such as the US Gulf Coast) and the
Caribbean, to identify whether GloSea5 has any subregional skill.

2.1 Models, Data and Analysis

The Met Office Global Seasonal Forecast System 5 (GloSea5; MacLachlan et al.
2014) is used in this study. GloSea5 is a fully coupled ocean-atmosphere GCM:
the atmospheric component has a horizontal resolution of 0.83ı longitude x 0.55ı

latitude (N216; �53 km at 55 ıN and �93 km at the equator) and 85 levels in the
vertical; the ocean component has a horizontal resolution of 0.25ı and 75 vertical
levels.

The performance of GloSea5 is examined using retrospective forecasts (also
known as hindcasts) for the North Atlantic TC season (June–November) over the
22-year period 1992–2013. The hindcasts are initialised on three consecutive weeks
centred around 1 May (25 April, 1 May and 9 May) using reanalyses from the
ECMWF Interim Reanalysis project (ERA-Interim; Dee et al. 2011). For each of
the three weeks, ten ensemble members are run for each year, providing a total of
30 members per year.

TCs are detected and tracked in each ensemble member using a feature-based
algorithm (TRACK; Bengtsson et al. 2007; Hodges 1995, 1996, 1999), with the
same configuration as described in Camp et al. (2015). Observed data for the
North Atlantic basin are obtained from the National Hurricane Center’s best-track
Hurricane Database (HURDAT2; Landsea and Franklin 2013). In this analysis,
the term “tropical cyclone” is used to describe all observed storms which reach a
maximum intensity of tropical storm strength or higher; we have not included the
contribution from subtropical storms, which make up a very small portion of the
observed database (only three such storms were recorded during the study period,
and none of these made landfall).

A TC in observations and model data is considered to have made landfall when
its track—generated from 6-hourly positions of mean sea level pressure minima—
crosses a coastline. We consider landfalls across a total of seven coastal regions:
the US Coast (further subdivided into the Gulf, Florida and East Coast) and
the Caribbean (further subdivided into the Eastern and Western Caribbean). The
coastline boundaries for each of these seven regions are shown in Fig. 9.1. The US
Coast and Caribbean regions are the same as those used in Camp et al. (2015);
however, we reproduce the results again here for completeness and comparison.
The counting method is as follows: for each region we simply count the number
of TCs crossing the coastline. Each storm can only count towards the landfall total
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Fig. 9.1 Tropical cyclone landfall regions: US Gulf Coast, Florida, East Coast (including Nova
Scotia), Western Caribbean and Eastern Caribbean. The “US Coast” encompasses the US Gulf,
Florida and East Coast, and the “Caribbean” encompasses the Eastern and Western Caribbean.
Note that a TC is considered to have made landfall when its track crosses the coastline within a
region boundary. Both the US Coast and the Caribbean regions are the same as those defined in
Camp et al. (2015)

in each region once. Therefore, because a single storm can make landfall in more
than one region during its lifetime, the total number of landfalling storms in the
Caribbean, for example, may not equal the combined total for the Eastern and
Western Caribbean; likewise, the landfall frequency along the US Coast may not
equal the combined total for the Gulf, Florida and East coasts.

To assess the relationship between TC landfall frequency and ENSO, observed
SST anomalies (SSTAs) for the equatorial Pacific Niño3.4 region (120ı–170 ıW,
5ıS–5 ıN) are obtained from the NOAA Climate Prediction Center (CPC 2015).

2.2 Results

2.2.1 US and Caribbean Landfall Frequency

Over the 22-year period June–November 1992–2013, a total of 294 observed TCs
formed in the North Atlantic (average 13.4 per year), and of these 152 (52 %)
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made landfall in the USA and Caribbean (average 6.9 landfalls per year). Along
the US Coast, the Gulf and East Coast experienced the greatest average number of
landfalls per year (2.0 and 1.8, respectively) and Florida the fewest (1.3); and in the
Caribbean, the Eastern Caribbean experienced more landfalls (2.7) than the Western
Caribbean (2.3).

In GloSea5, an average of 6.1 TCs formed in the Atlantic basin per member
per year. Of these, an average of 1.8 TCs (29 %) made landfall in the USA and
Caribbean: just over half the percentage of landfalling storms per year compared to
observations. Along the US Coast, GloSea5 simulates the greatest average number
of landfalls per year over Florida (0.4) and the fewest along the Gulf (0.2) and East
(0.3) coasts, which is the opposite pattern to that seen in observations. However,
we note that the landfall rates for these regions are low and the sample of 22 years
is relatively small; thus the difference may not be statistically significant. In the
Caribbean, GloSea5 simulates a greater average number of landfalls per year in
the Eastern Caribbean (1.1) compared to the Western Caribbean (0.4), as seen in
observations, although the difference is more pronounced.

2.2.2 US and Caribbean Landfall Track Density

The track density of all TCs that made landfall in the USA and Caribbean during
June–November 1992–2013 is shown for GloSea5 and observations in Fig. 9.2.
A corresponding track density difference (GloSea5 minus observations) is also
provided.

In observations, the greatest frequency of landfalling TC tracks is concentrated in
the western half of the basin: in the western Atlantic hurricane Main Development
Region (MDR; 10–20 ıN, 20–60 ıW), Caribbean Sea, Gulf of Mexico and to the
east of Florida (Fig. 9.2a). This pattern is well simulated by GloSea5 (Fig. 9.2b);
however, the frequency of landfalling TC tracks is much lower than observed,
particularly in the western Caribbean Sea, Gulf of Mexico and along the US Gulf
Coast (Fig. 9.2c). This may in part be due to a deficit in the total basin-wide TC
track density in these regions, which was highlighted in Camp et al. (2015) and
also seen in other GCMs (e.g. Mei et al. 2014; Strazzo et al. 2013; Vecchi et al.
2014) and regional climate models (Caron and Jones 2011). Deficits in landfall
track density are also seen along the eastern US Coast, suggesting that model
storms may not reach higher latitudes as frequently as observed storms and/or that
too few storms recurve towards the eastern US Coast from the Atlantic MDR and
Caribbean.

The higher frequency of landfalls in Florida and the Eastern Caribbean in
GloSea5 is likely due to the mean location of model storm tracks, which take a
preferential path from the Atlantic MDR towards the Eastern Caribbean and Florida
(Fig. 9.2b). In contrast, too few storms move from the MDR into the Caribbean Sea
and Gulf of Mexico and into higher latitudes along the US East Coast, therefore
resulting in a lower landfall frequency in these regions.
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Fig. 9.2 Average seasonal track density (transits per 4ı�4ı box) of US and Caribbean landfalling
TCs in (a) observations, (b) GloSea5 and (c) GloSea5 minus observations over the period
June–November (JJASON) 1992–2013. GloSea5 results are averaged over all ensemble members
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2.2.3 Genesis Locations

In addition to the low frequency of landfalling TC tracks passing through
the Caribbean Sea, Gulf of Mexico and close to the US Coast, it is possible
that the number of landfalling storms forming in these regions is also too low.
To investigate this, we examine the genesis location of all landfalling TCs in the
USA and Caribbean from June–November 1992–2013. In order to aid comparison
between GloSea5 and observations, we divide the genesis density for each year by
the total number of landfalling storms. Results are presented in Fig. 9.3.

Fig. 9.3 Average seasonal genesis density (per 4ı�4ı box) of all US and Caribbean landfalling
TCs, measured as a proportion of the total number of landfalling US and Caribbean TCs, in (a)
observations and (b) GloSea5 (all ensemble members) over the period June–November (JJASON)
1992–2013
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In observations, the majority of US and Caribbean landfalling storms form in the
western tropical Atlantic MDR or close to the coastline in the western Caribbean
Sea and Gulf of Mexico. An additional minor peak in TC genesis is found in the
western subtropical Atlantic close to the US East Coast. This pattern of genesis is
generally well captured by GloSea5; however, the frequency of genesis, relative to
the total landfall frequency, is too high in the central MDR and too low in the Gulf
of Mexico and off the US East Coast.

In GloSea5, the high frequency of genesis in the MDR, combined with the
preference in tracks to move towards the Eastern Caribbean and Florida, is the
likely cause of the high frequency of landfalls in the latter regions. It may also
be the primary reason why the greatest number of landfalls along the US Coast
occurs in Florida in GloSea5, compared to the US Gulf and East Coast as seen in
observations. It could also account for the greater difference in landfall frequency
between the Eastern and Western Caribbean in GloSea5 compared to observations.
Conversely, the low genesis frequency in the Gulf of Mexico is the likely reason
why the Gulf Coast sees the fewest landfalls in GloSea5, since many observed TCs
that form in the Caribbean Sea and Gulf of Mexico later make landfall here (Lyons
2004). Finally, the low frequency of genesis off the US East Coast, combined with
the low frequency of TC tracks from the Atlantic MDR that reach higher latitudes,
is the likely cause of the low landfall frequency along the US East Coast in GloSea5,
compared to observations.

We can also speculate that the low proportion of landfalling TCs in GloSea5
compared to the total basin-wide count may also be due to preferred regions of TC
genesis and tracks. For example, many of the storms in GloSea5 form in the Atlantic
MDR: some of these make landfall in the Eastern Caribbean and Florida; however
many recurve without making landfall (not shown). In contrast, very few storms in
GloSea5 form in the Gulf of Mexico, many of which make landfall along the US
Gulf Coast in observations.

2.2.4 Interannual Variability

Time series of TC landfalls along the US Coast, Caribbean and each of the individual
subregions are shown for observations and GloSea5 over the period June–November
1992–2013 in Fig. 9.4. Corresponding linear correlations between observations and
the GloSea5 ensemble-mean landfall count are shown in Table 9.2.

Overall, we find moderate, but significant, skill (at the 5 % level) for predictions
of TC landfall frequency in the Caribbean (linear correlation of 0.69), Eastern
Caribbean (0.52), Florida (0.41) and Western Caribbean (0.39). Along the US Coast,
we find low skill (0.22, not significant), and along the US Gulf and East Coasts, we
find no skill (�0.01 and �0.06, respectively). However, it is worth noting that the
landfall regions assessed here are small and the frequency of landfalling storms is
low both in observations and GloSea5; thus small differences between observed and
model-predicted landfalls, particularly over this short time period, can have a large
impact on correlation scores.
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Fig. 9.4 Standardised TC landfall frequency in each of the regions defined in Fig. 9.1 over the
period June–November 1992–2013. Observations are in black; GloSea5 ensemble mean is in red.
The grey shading illustrates the model ensemble spread measured as ˙1 standard deviation about
the ensemble mean for each year. Results are standardised for each year by subtracting the mean
of the whole ensemble for all years and then dividing by the standard deviation of the ensemble
means

Table 9.2 Pearson’s linear correlations (top) and p-values (bottom) between observed and the
GloSea5 ensemble-mean TC landfall frequency along the US Coast, East Coast, Florida, Gulf
Coast, Caribbean (Carib), Western Caribbean (W Carib) and Eastern Caribbean (E Carib) over the
period June–November 1992–2013. Bold implies statistical significance at the 95 % confidence
level

U.S. Coast East Coast Florida Gulf Coast Carib W Carib E Carib

r 0:22 �0:06 0:41 �0:01 0:69 0:39 0:52
p-value 0:16 0:40 0:03 0:49 0:00 0:04 0:01

2.2.5 Relationship with ENSO

One of the most important factors influencing TC landfall variability on interannual
timescales is ENSO. In the tropical North Atlantic, hurricane landfalls in the USA
and Caribbean are reduced during El Niño (EN) events, whereas they are enhanced
during La Niña (LN) events (e.g. Bove et al. 1998; Klotzbach 2011a; Larson et al.
2005; Lyons 2004; Tartaglione et al. 2003).
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To investigate whether this relationship is represented in GloSea5, we examine
the difference in landfall track density in the USA and Caribbean between EN and
LN events and compare these to observations. EN and LN events are here defined as
years in which the 3-month (August–October) averaged Niño3.4 SSTA is �0.5 ıC
and �-0.5 ıC, respectively. Over the period 1992–2013, five years are classified as
EN (1997, 2002, 2004, 2006 and 2009) and seven years as LN (1995, 1998, 1999,
2000, 2007, 2010 and 2011). The track density of landfalling TCs during EN and
LN events, as well as the track density difference (EN minus LN), is shown for
observations and GloSea5 in Fig. 9.5.

In observations, we find a reduction in landfalling TC tracks throughout the
MDR, western Atlantic and far western Caribbean Sea and Gulf of Mexico during
EN events compared to LN events (Fig. 9.5e). However, in contrast to the literature
(e.g. Klotzbach 2011a; Smith et al. 2007; Xie et al. 2002), we do not find a reduction
in TC landfalls in the central Caribbean or along the US Coast. This could be due to
differences in the classification of EN events (e.g. Klotzbach (2011a) do not include
2004, which was a marginal EN year but had strongly favourable conditions for TC
development) as well as the small sample size of observed EN and LN years used.
Further investigation reveals that either removing 2004 from the analysis or by using
observations over a longer period (we used 1950–2014 as this is the longest period
for which CPC SST data are available; see Fig. 9.6) provides results that are in better
agreement with the literature. We note, however, that the two main regions of lower
track density in the western Atlantic and in the western Caribbean Sea and Gulf of
Mexico during EN years relative to LN years are evident in both Figs. 9.5e and 9.6.

In GloSea5 there is a clear reduction in TC landfall frequency throughout the
Caribbean and tropical Atlantic during EN events relative to LN events (Fig. 9.5f).
Indeed, in the western MDR, GloSea5 shows a statistically significant reduction
in track density, which matches the long-term observed response well (Fig. 9.6).
Similar observed regions of low track density are also evident over the shorter
period 1992–2013 (Fig. 9.5e), although these are not statistically significant. The
good response of TC landfall track frequency to ENSO forcing is the likely reason
for relatively high skill of interannual predictions of TC landfall in the Caribbean in
GloSea5.

Around the US Coast, GloSea5 shows reduced activity (not statistically signifi-
cant) along the Gulf and Florida coastline, as seen in Klotzbach (2011a). However,
GloSea5 shows a significant reduction in TC landfall frequency around the southern
tip of Florida, which is not present in observations (Figs. 9.5e and 9.6). Along
the US East Coast, we find no significant difference in TC landfall frequency
between EN and LN events in GloSea5. In observations, we find a small decrease
in TC landfalls during EN events relative to LN events over the period 1950–2014
(Fig. 9.6) and slightly enhanced activity during the period 1992–2013 (Fig. 9.5e),
although neither of these are statistically significant. The absence of a strong (i.e.
statistically significant) response of TC landfalls to ENSO in observations is likely
one of the main reasons why skilful seasonal predictions of TC landfall risk along
the US Coast are difficult to provide.



9 Analysis of Atlantic Tropical Cyclone Landfall Forecasts in Coupled GCMs. . . 225

Fig. 9.5 Observed (left) and GloSea5 ensemble-mean (right) storm track density (number of storm
tracks per 4ı�4ı box) for all landfalling TCs along the US and Caribbean coasts during (a, b) El
Niño and (c, d) La Niña events during June–November (JJASON). (e, f) show the track density
difference (El Niño minus La Niña events): red (blue) regions show where the track density is
enhanced (reduced) during El Niño relative to La Niña events. Black boxes show where changes
have a p-value < 0.1 using a two-tailed Student’s t-test. El Niño years: 1997, 2002, 2004, 2006 and
2009; La Niña years: 1995, 1998, 1999, 2000, 2007, 2010 and 2011
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Fig. 9.6 As Fig. 9.5e, but for the US and Caribbean landfall track density difference between EN
and LN events averaged over the longer period 1950–2014. There are 18 EN and 16 LN events in
total. Black boxes show where changes have a p-value < 0.1 using a two-tailed Student’s t-test. El
Niño years: 1951, 1953, 1957, 1963, 1965, 1969, 1972, 1976, 1977, 1982, 1986, 1987, 1991, 1997,
2002, 2004, 2006 and 2009; La Niña years: 1950, 1954, 1955, 1964, 1970, 1971, 1973, 1975, 1988,
1995, 1998, 1999, 2000, 2007, 2010 and 2011

2.2.6 Conclusion

TC landfalls in the North Atlantic basin are assessed using a fully coupled GCM
over the period June–November 1992–2013. Overall, we find significant skill for
predictions of TC landfall in the Caribbean and moderate skill (not statistically
significant) over Florida; however, low skill is found along the US Coast as a whole.
In the Caribbean, the GCM shows a realistic response to ENSO forcing, and the
interannual variability in landfall rates is well simulated for both the Eastern and
Western Caribbean. In contrast, along the US Coast, we find a deficit of landfalling
TCs, particularly along the Gulf and East coasts. This is due to a combination of
too few storms forming and tracking through the Caribbean and Gulf of Mexico as
well as too few storms reaching higher latitudes from the tropical Atlantic MDR. In
addition, we find no significant difference in TC landfall rates along the US Coast
between El Niño and La Niña events in either GloSea5 or observations. The absence
of a strong relationship between ENSO and US landfalls is one possible reason why
skilful seasonal predictions of landfall risk along the US Coast are not presently
available. However, the relationship between ENSO and US landfalls is stronger for
more intense storms (e.g. Bove et al. 1998); therefore investigating this relationship
in GloSea5 would be worthwhile.
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3 Decadal Forecasting of Landfall Risk

While tracking tropical cyclone-like disturbances directly (as in the previous
section) has the merit of being very intuitive, it is also very computationally
expensive and can be difficult to apply in the context of multi-model ensemble
decadal forecast studies. This is in large part due to the large volume of data required
wherein a set of retrospective decadal predictions typically requires running 5200
years of simulations (10 members, 52 start dates, 10 forecast years) combined with
the fact that tracking storms requires high frequency (�12 h or less) of surface and
multiple levels of atmospheric data. As such, it is of interest to devise alternative
techniques by which TC activity can easily be estimated using large-scale fields
that are readily available by way of international efforts such as the Coupled Model
Intercomparison Project (CMIP). Such a first attempt was made by Vecchi et al.
(2013), which investigated the use of a statistical relationship between tropical SSTs
and Atlantic hurricane activity; however they concluded that most of the skill they
had obtained originated from persisting the initial conditions. Of particular interest
was the failure to predict the upward shift in hurricane activity that occurred in the
mid-1990s. Skilful predictions of such consequential climate shifts are a prerequisite
for decadal forecasts to be considered useful.

Smith et al. (2010) and Dunstone et al. (2011) argue that much of the long-term
hurricane predictability that they identified in their GCM could be traced back to the
North Atlantic subpolar gyre (SPG), a region where initialised climate simulations
show a high level of skill at the multi-annual timescale. They showed that changes
in surface temperature over the SPG could be linked to changes in the atmospheric
circulation over the Atlantic MDR, more specifically the ascending branch of
the Hadley circulation, which in turn impacted TC formation in their climate
simulations. Caron et al. (2015b) suggested taking advantage of the relatively high
skill displayed by decadal forecast systems over the northern North Atlantic by
using a proxy index of the AMV (Klotzbach and Gray 2008) to produce multi-
annual forecasts of Atlantic TC activity. Constructed using SSTs over the SPG as
well as tropical and extratropical Atlantic sea level pressures (SLPs), this index has
been shown to vary with Atlantic hurricane activity over the course of the twentieth
century (ibid.) and is defined such that

AMVindex D SSTA � SLPA (9.1)

where SSTA is the standardised annual mean SST anomaly over the North Atlantic
subpolar gyre (50 ıN, 60 ıN, 50 ıW, 10 ıW) and SLPA is the standardised annual
mean sea level pressure anomaly over the tropical and extratropical North Atlantic
(0 ı, 50 ıN, 70 ıW, 10 ıW; see boxes in Fig. 9.8). Caron et al. (2015b) showed that
an ensemble of initialised forecasts showed skill at predicting this index over a 5-
year horizon, which led to useful information on multi-annual levels of ACE index.
Here, we expand on this work by investigating whether this technique can further be
used to make reliable forecasts of hurricane landfall statistics over multiple seasons.
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3.1 Methodology

3.1.1 Models and Observational Data

Our analysis relies on two different multi-model ensembles (MMEs) of 10-year
long simulations performed within the context of the CMIP5 project (GFDL-CM2.1
(Delworth et al. 2006); HadCM3 (Gordon et al. 2000); MIROC5 (Watanabe et al.
2010)) and SPECS project (MPI-ESM (Matei et al. 2012)), for a total of four
forecast systems, each with start dates available every year from 1961 to 2010. The
first ensemble is constructed using simulations initialised with contemporaneous
observations, thus aligning the simulated natural variability with the observed
variability. The multi-model ensemble-mean anomalies are computed by giving an
equal weight to each model mean, regardless of the number of ensemble members
available for a particular model. This ensemble is referred to as Ini. The second
ensemble is composed of 10-year long simulations constructed using the CMIP5
historical and RCP 4.5 scenario (Meinshausen et al. 2011) simulations. This second
ensemble is referred to as NoIni. The difference in skill between Ini and NoIni is
a measure of the added value of initialisation. The number of members for each
ensemble is shown in Table 9.3. We note that we have added one start date and
increased the ensemble size using new simulations that have become available since
Caron et al. (2015b).

In both ensembles, external forcings (greenhouse gases, solar activity, strato-
spheric aerosols associated with volcanic eruptions and anthropogenic aerosols)
are taken from observations for the period 1961–2005 and the RCP 4.5 scenario
afterwards. Because any significant unexpected changes in external forcing (e.g.
large volcanic eruption) cannot be taken into account in a true forecast, the skill
obtained by using observed forcings is somewhat overestimated. However, the
difference in skill between Ini and NoIni should not be affected. Unlike Caron et al.
(2015b) which showed the skill of 5-year mean forecasts, here we show results of
4-year mean forecasts, using only forecast years 2–5, which is a standard procedure
when evaluating decadal forecasts (Goddard et al. 2013).

Finally, reference data for SSTAs are taken from NOAA’s Extended Recon-
structed Sea Surface Temperatures (ERSST; version 3b) (Smith et al. 2008), the
SLPAs are taken from the JRA-55 reanalyses (Kobayashi et al. 2015) and the
hurricane data are taken from HURDAT2 (Landsea and Franklin 2013). The number
of landfall events is calculated as the number of times hurricane tracks (linearly
interpolated to 1 h) cross over onto a land mass. A storm is considered to have made

Table 9.3 Models (and their
respective number of
members) used to construct
the ensembles used in this
study

Model I.D. No. Ini members No. NoIni members

GFDL-CM2.1 10 10

HadCM3 20 10

MIROC5 6 3

MPI-ESM 10 3
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Fig. 9.7 Landfalling hurricane locations for the 1962–2014 period

multiple landfalls if it continued back over a large body of open water (e.g. Gulf of
Mexico, Atlantic Ocean) after a first landfall (e.g. a storm passing over Florida, the
Gulf of Mexico and Louisiana would be considered as two landfalls). Storms were
required to be of hurricane strength upon landfall to be considered, but could have
transitioned to extratropical status. Figure 9.7 shows all of the hurricane landfall
locations for the period 1962–2014.

3.1.2 Forecast Skill Assessment

Different measures are used to evaluate the skill of the forecasts: the anomaly
correlation coefficient (ACC), the root mean square skill score (RMSSS) and the
Brier skill score (BSS).

ACCs are computed by correlating the MME anomalies with the observed
anomalies across the start date dimension, using both standard Pearson’s correlation
and Kendall’s rank correlation. The RMSSS shows the improvement relative to a
climatological forecast and is defined as

RMSSS D 1 �
RMSEfor

RMSEclim
(9.2)

where RMSEfor and RMSEclim are, respectively, the root mean square error of our
forecast and of the reference forecast. RMSSS = 1 shows a perfect forecast and
RMSSS �0, a forecast with no improvement over the benchmark (in this case,
climatology). In both cases, a t-test, after a Fisher-z transformation, is performed to
assess the significance level. Autocorrelation in the various time series is accounted
for by following (Von Storch and Zwiers 2001).
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Finally, the BSS measures the improvement of a probabilistic forecast relative to
a benchmark, in this case either climatology or NoIni. It is defined as

BSS D 1 �
BSfor

BSref
(9.3)

where BSfor and BSref are the Brier scores of the actual and reference forecast,
respectively. The Brier score itself is defined as the average of the squared differ-
ences between each forecast probability and the corresponding binary observations
(1 if the event is observed, 0 if it is not). Our binary probabilities are constructed as
follows: for each 4-year period we calculate, using forecast years 2–5 of each model,
the probability that the index will be positive based on the number of members for
which the index is positive. We then average the model probabilities to obtain the
probability of the MMEs, giving an equal weight to each model, regardless of the
number of ensemble members available for that particular model. This result is then
compared to the observed 4-year mean number of hurricane landfalls.

3.2 Multi-annual Forecast Skill of AMV index

Figure 9.8 shows the ACCs between the Ini MME and observations for 4-year mean
SSTAs (Fig. 9.8a) and SLPAs (Fig. 9.8b). For SSTA, high and significant skill is
found over almost the entire domain, but a large portion of this skill originates from
the radiatively driven upward trend in SSTs captured by the MME. This can be seen
in Fig. 9.8c, which shows the difference in ACCs between the Ini and NoIni MMEs.
However, for a large part of the region considered in the construction of the AMV
index (black box), the skill of the Ini MME is significantly higher than the NoIni
MME. In comparison, skill for SLPA is more modest (Fig. 9.8b), but subtracting
the ACC from the NoIni MME (Fig. 9.8d) has a much lesser impact than for SSTA
since the NoIni MME shows very poor skill at predicting SLPA. In effect, Fig. 9.8
shows that initialised GCMs have skill at capturing multi-annual variations in the
large-scale fields that are used in the construction of the AMV index.

Figure 9.9 shows the time series for standardised 4-year mean SSTA (Fig. 9.9a)
and SLPA (Fig. 9.9b) for both the Ini (red) and the NoIni (blue) MME as well as the
observational reference (black). Both time series show significant ACCs for the Ini
ensemble, but only the SSTA forecasts show a RMSSS greater than 0. Figure 9.9c
shows the value of a 4-year mean forecasted index for both ensembles and for
observations. For the Ini ensemble, both the ACC and the RMSSS are statistically
significant, with values of 0.78 and 0.37, respectively. The timing of the downward
shift (1969–1970) towards negative values is fairly well captured, while the upward
shift of the mid-1990s occurs somewhat too early, the latter being driven by the early
drop in simulated SLPA in the Ini MME.

Figure 9.10 (top) compares the 4-year mean index forecasted by the Ini MME and
the 4-year mean number of hurricane landfalls (expressed as anomalies) observed
during the corresponding period. Both the linear (0.65) and the ranked (0.48)



9 Analysis of Atlantic Tropical Cyclone Landfall Forecasts in Coupled GCMs. . . 231

Fig. 9.8 First row: Anomaly correlation coefficients (ACCs) for 4-year mean (a) SSTA and (b)
SLPA in Ini MME forecasts. Second row: Difference in ACCs between the Ini MME and NoIni
MME for (c) SSTA and (d) SLPA. The black dots indicate the regions where the results are
significant at the 5 % level, and the black boxes indicate the area considered in the construction
of the index

correlation coefficients are statistically significant, confirming the skill of our MME
at forecasting multi-annual hurricane landfall numbers. In fact, the index explains
�40 % of the variability in total hurricane landfalls in the Atlantic basin. We also
evaluate the skill of our forecasts using a binary probability forecast verification
technique, wherein a high (>50 %) probability of a positive index is suggestive
of above-normal hurricane landfall numbers. The result is shown in the form of a
reliability diagram (Fig. 9.10, bottom), which compares the forecasted frequencies
with the actual observed frequencies. The reliability diagram is constructed by
grouping the probabilistic forecasts into three bins (0–33 %, 34 %–66 %, 67 %–
100 %) on the horizontal axis according to the probability derived from the MME
(as described in the methodology section). For perfect reliability, the forecast
probability and the frequency of occurrence should be equal, and the predictions
should align along the diagonal (solid line in the figure). However, due to the
finite number of predictions, a forecast system may still be deemed reliable even
if its predictions do not lie precisely along the diagonal. To address this issue, we
include consistency bars, showing the 5 % and 95 % quantiles. A histogram with
the distribution of the forecasts within the different bins is shown in the bottom
right of the diagram, and the BSSs (using both climatology and NoIni MME as a
benchmark) are shown in the upper-left corner.
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Fig. 9.9 4-year mean (a)
standardised SSTA, (b)
standardised SLPA and (c)
AMV index. Observations are
in black, the Ini MME in red
and the NoIni MME in blue.
The red shading represents
the 95 % confidence interval.
ACCs and RMSSSs are
shown in the bottom left and
right corners, respectively.
Significant values are in bold
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Fig. 9.10 Top: Time series
of 4-year mean hurricane
landfall numbers (bars) and
4-year mean Ini MME
forecasted index (forecast
year 2–5; red line). Hurricane
landfalls are expressed as
anomalies with respect to the
1962–2014 average.
Pearson’s linear correlation
and Kendall’s ranked
correlation indices are
indicated in the upper-left
corner. Both are statistically
significant at the 5 % level.
Bottom: Reliability diagrams
of 4-year mean Ini MME
forecasts for landfalling
hurricanes. Brier skill scores
using both climatology and
NoIni MME as benchmark
are shown in the upper-left
corner. Both are statistically
significant at the 5 % level.
The probabilistic forecasts
represent the probability that
the activity level will be
above the climatological
average

The forecasts are reliable, with all points of the Ini MME lying close to the
diagonal, within the consistency bars. Furthermore, the Ini ensemble is capable of
predicting relatively high or low probabilities of 4-year mean hurricane landfalls,
as evidenced by the fairly even number of predictions in each of the three forecast
categories. In effect, this graph shows that above-average periods of activity tend
to occur when the MME forecasts return high probabilities (>66 %) and that such
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high activity will occur. Similarly, low activity periods tend to occur when the MME
returns low probabilities (<33 %) of high activity. Finally, BSSs are both positive
and significant, thus further confirming the skill of our MME forecasts.

3.3 Persistence or Predictability?

As stated earlier, for decadal forecasts to be truly useful, their skill must not originate
solely from the persistence of anomalies introduced at the initialisation stage.
Particularly desirable (arguably, necessary) is the ability of the MME to predict
the shifts between active and inactive regimes. For the period covered here, such a
downward shift was observed in 1969–1970, while an upward shift was observed in
1994–1995. We note that these shifts in activity were matched by similar shifts in the
index itself (see Figs. 9.9c and 9.10). Both shifts in the AMV index were driven by
simultaneous changes in SLPA and SSTA (Fig. 9.9a,b): the first shift is driven by
a decrease in SSTA and an increase in SLPA (the opposite is true for the second
shift). Thus, for forecasts initialised in the years leading up to the 1969–1970 shift,
we would expect, on average, the SSTA (SLPA) of the later years to be smaller
(larger) than that of the earlier years. For the upward shift of the mid-1990s, we
would expect the opposite.

In Fig. 9.11, we show the distribution of the difference between the average
of forecast years 2–5 and that of forecast year 1 for both SSTA and SLPA using
(i) hindcasts from all start dates (grey), (ii) only hindcasts initialised in the years
leading up to the downward shift (1965–1968; blue) and (iii) only hindcasts
initialised in the years leading up to the upward shift (start dates: 1990–1993; red).
For SLPA (Fig. 9.11b), the distribution, when all the hindcasts are considered, is
centred around zero. When only the years leading up to the shifts are considered,
small differences in the distribution are observed, but these differences are not
statistically significant. This suggests that most of the skill in SLPA results from
persistence, since there is no tendency towards higher (lower) SLPAs in the years
leading up to a decrease (increase) in AMV index value. However, for SSTA, a clear
shift in the distribution towards lower (1969–1970 shift) and higher (1994–1995)
values can be seen. A Kolmogorov–Smirnov test confirms that these differences are
significant at the 1 % level. This suggests that the MME has some predictive power
at the multi-annual level for SSTs over this particular region. This skill in initialised
MME has been identified in previous studies (Robson et al. 2012, 2014) and has
been linked to the ability of the GCMs at capturing the ocean dynamics of the
Atlantic Meridional Overturning Circulation (AMOC). This latter result suggests
that this technique could indeed be used to predict shifts in prolonged periods of
high or low hurricane activity in the Atlantic.
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Fig. 9.11 Empirical probability density function (PDF) for changes in Ini MME forecasted (a)
SSTA and (b) SLPA. The three distributions are constructed using all the start dates (grey) and the
four start dates preceding the 1969–1970 (blue) and 1994–1995 (red) shifts. The PDF is based on
the differences between the mean values of forecast year 2–5 and forecast year 1 values

3.4 Discussion

The results presented here suggest that initialised GCMs offer an opportunity to
develop reliable forecasts of multi-annual (�5 years) hurricane landfall statistics
in the Atlantic basin and could predict shifts between prolonged periods of high
and low hurricane activity. There are caveats to this approach however. First, the
skill at predicting one of the components (SLPA) of the AMV index originates from
persistence and, as such, shows no true predictive skill. This might change with
improvements in initialisation procedures and climate models, but it might also be
the case that changes in SLPA over the tropical and extratropical Atlantic are not
predictable at the multi-annual timescale. Furthermore, the forecasted quantity is an
index as opposed to an estimated storm number. In a climate service context, the
latter is much easier to use (e.g. insurance loss models expect a storm number as
input, not an index). Both issues could potentially be addressed by using a multiple
regression technique (similar to that of Vecchi et al. 2011), where SLPA and SSTA
are used as predictors for hurricane landfall numbers and wherein the variable with
the best skill (SSTA) is given more weight than the one with more limited skill
(SLPA). This approach is likely to improve on the results shown here, and such
work is currently underway. Nonetheless, even in its current form, this technique
appears useful in estimating upcoming hurricane activity levels and could be used
to shed some light on whether we have indeed entered a new era of lower Atlantic
TC activity (Klotzbach et al. 2015).
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4 Concluding Remarks

In the last few years, significant progress has been made both in improving global
climate models and their representation of TCs and in understanding the TC climate
connection. This has led to the development of dynamical forecasts of TC activity at
various timescales, with two such examples given here. Skill of dynamical seasonal
forecasts over the entire Atlantic is already fairly high for basin-wide activity (Camp
et al. 2015; Chen and Lin 2011, 2013; Vecchi et al. 2014; Zhao et al. 2010); however,
operational seasonal forecasts of TC landfall are not presently available. In this
study we show that a high-resolution GCM shows promising skill for predictions
of TC landfall in the Caribbean region, likely due to a good model response of TC
landfall frequency to ENSO forcing. However, along the US Coast, the absence of
a strong observed response of TC landfalls to ENSO, combined with a deficit of
landfalling storms in the model, limits the skill of seasonal TC landfall forecasts
for the US Coast using the present forecasting system. Nevertheless, improvements
in GCM resolution and physics offer the opportunity for seasonal TC forecasts of
landfall risk along the US Coast to be investigated further.

Recently, multi-annual predictions of Atlantic TC activity using GCMs have been
developed and show promising skill (e.g. Caron et al. 2014, 2015b; Smith et al.
2010; Vecchi et al. 2013). In the present study, we also show that an initialised GCM
offers the opportunity to provide reliable forecasts of hurricane landfall statistics
on �5-year timescales. Such forecasts may be of use to those vulnerable to TC
damage and losses, but require decisions to be made at lead times longer than
presently available from seasonal forecasts (such as in the insurance and reinsurance
industry). Furthermore, with the continuous increase in computing power and the
improvement in coupled GCMs, multi-model ensembles of dynamical forecasts
should become possible, further improving the skill of such forecasts.
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Chapter 10
Tropical Cyclone Rainfall Changes in a Warmer
Climate

Enrico Scoccimarro, Gabriele Villarini, Silvio Gualdi, Antonio Navarra,
Gabriel Vecchi, Kevin Walsh, and Ming Zhao

Abstract Heavy precipitation and flooding associated with tropical cyclones (TCs)
are responsible for a large number of fatalities and economic damage worldwide.
Due to the societal and economic relevance of this hazard, studies have focused on
the potential changes in heavy rainfall associated with TCs in a warmer climate.
Despite the overall agreement about the tendency of TC rainfall to increase with
greenhouse warming, the uncertainty of the projected changes is large, ranging from
3 to 37 %. Models project an increase in rainfall over land, both in terms of average
and extremes, and a large spatial variability is associated with changes in projected
rainfall amount.

The goal of this study is to quantify the contribution of landfalling TCs to rainfall
at different latitudes, as well as its dependence on different idealized climate change
scenarios.

Possible changes in the intensity of rainfall events associated with TCs are
investigated under idealized forcing scenarios, with a special focus on landfalling
storms. A new set of experiments designed within the US CLIVAR Hurricane
Working Group allows disentangling the relative role of changes in atmospheric
carbon dioxide from that played by sea surface temperature (SST) in changing
the amount of rainfall associated with TCs in a warmer world. Compared to the
present-day simulation, we found an increase in TC rainfall under the scenarios
involving SST increases. On the other hand, in a CO2 doubling-only scenario, the
changes in TC rainfall are small and we found that, on average, TC rainfall tends
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to decrease compared to the present-day climate. The results of this study highlight
the contribution of landfalling TCs to the projected increase in the rainfall changes
affecting the tropical coastal regions. Scenarios involving SST increases project a
TC rainfall strengthening more evident over land than over ocean. This is linked to
the increased lifting effect on the landfalling TCs, induced by a more moist air at
low levels.

Keywords Atmospheric model • Carbon dioxide • Climate change scenarios
• Heavy rainfall • Landfalling • Sea surface temperature • Tropical cyclone
• Vertically integrated atmospheric water vapor content

1 Introduction

Heavy rainfall and flooding associated with tropical cyclones are responsible for a
large number of fatalities and economic damage worldwide (e.g., Rappaport 2000;
Pielke et al. 2008; Mendelsohn et al. 2012). Despite their large socioeconomic
impacts, research into heavy rainfall and flooding associated with tropical cyclones
(TCs) has received limited attention to date and still represents a major challenge.
Despite the overall agreement about the tendency of TC rainfall to increase with
greenhouse warming (Knutson et al. 2010; Villarini et al. 2014), the uncertainty
of the projected changes is large, ranging from C3 % to C37 % (Knutson et al.
2013). Our capability to adapt to future changes in heavy rainfall and flooding
associated with TCs is inextricably linked to and informed by our understanding
of the sensitivity of TC rainfall to likely future forcing mechanisms.

Here we use a set of idealized high-resolution (between 50 and 80 km as
horizontal grid spacing, Scoccimarro et al. 2014) atmospheric model experiments
produced as part of the US CLIVAR Hurricane Working Group (Walsh et al.
2015) activity to examine TC response to idealized global-scale perturbations: the
doubling of CO2, uniform 2K increases in global sea surface temperature (SST),
and their combined impact.

The goal of this study is to quantify changes in the rainfall amount associated
with landfalling TCs at different latitudes, as well as its dependence on different
idealized climate change scenarios. A possible explanation for the more pronounced
TC rainfall increase over land, when compared to the global effect, is also
provided.

2 Data and Method

The reference data used in this study are TC tracks and precipitation. For the former,
we use TC observational datasets available as six-hourly data from the National
Hurricane Center (NHC, Landsea and Franklin 2013) and the US Joint Typhoon
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Warning Center (JTWC report 2013). These datasets include the location of the
center of circulation, maximum wind, and minimum pressure for all the TCs during
the period 1997–2006. Over the same period, the Global Precipitation Climatology
Project (GPCP, Huffman et al. 2001; Bolvin et al. 2009) represents the reference data
to quantify the precipitation associated with TCs (TCP). GPCP dataset is obtained
by combining satellite and rain gage data to provide daily global rainfall estimates
with a one degree resolution.

To investigate the ability of GCMs to represent TCP and its possible changes
in a warmer climate, we employ a set of simulations performed within the US-
CLIVAR Hurricane Working Group. Here we focus on two models, one run by
the Geophysical Fluid Dynamics Laboratory (GFDL) and one by the Centro Euro-
Mediterrraneo sui Cambiamenti Climatici (CMCC).

Rather than running the same TC tracking algorithm on both the GFDL (Zhao et
al. 2009) and CMCC (Roeckner et al. 2003) models, we used the tracks provided by
each modeling group. Detailed information on the ability of the climate models to
represent TCs can be found in Walsh et al. (2013). Also, a specific discussion on the
tracking scheme dependence of simulated TC in the considered runs can be found
in Horn et al. (2014).

In this study we consider a subset of the simulations available from the US-
CLIVAR Hurricane Working Group dataset. More specifically, we use the following
four experiments:

• CLIM: this is a climatological run obtained by repeating the seasonally varying
SST climatology over the period 1982–2005 for 10 years. TC genesis locations
in the control run are shown in Fig. 10.1, compared to the observations over the
1997–2006 period. The control run is used to provide a baseline to contrast with
the perturbation studies.

• 2C: this is a doubling CO2 experiment. It is obtained by integrating the models
with climatological SST (as in CLIM) but with a doubled concentration of
atmospheric CO2 with respect to the CLIM experiment for 10 years.

• 2K: this experiment is obtained by integrating the models with climatological
SST (as in CLIM) and adding a 2K globally uniform SST anomaly for 10 years.

• 2C2K: this experiment is made by combining the 2K and 2C perturba-
tions.

A more detailed explanation of models and simulations can be found in
Scoccimarro et al. (2014), Shaewitz et al. (2014), and Walsh et al. (2015).

The amount of rainfall associated with a TC, both in models and observations, is
computed by considering the daily precipitation in a 10 � 10ı box around the center
of the storm (extending 5ı from the center of the TC to the north, south, east, and
west). According to previous studies (e.g., Lonfat et al. 2004; Larson et al. 2005;
Kunkel et al. 2010), a 10 � 10ı window is sufficient to include the majority of TC-
related precipitation in most of the cases.
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3 Results

The control simulation (CLIM) performed with the two models represent reasonably
well the TC count at the global scale for the present climate, with a 9 % underes-
timation for the CMCC model and a 16 % overestimation for the GFDL model,
compared to the reference value of 93.3 TCs/year obtained from the observation for
the period 1997–2006. The CMCC model also tends to significantly underestimate
the TC count in the Atlantic basin and Eastern Pacific (Fig. 10.1) as found by
similar analyses using the coupled version of the ECHAM5 atmospheric model
(Scoccimarro et al. 2011). A difficulty in representing TC activity in the Atlantic
Basin is common to many climate models, as discussed in Lim et al. (2014).

In this work, we aim to assess the models’ ability in simulating precipitation
associated with TCs and quantifying their relative changes for the three different
idealized global forcing scenarios. To examine the TCP contribution to total
precipitation, we accumulated TCP over the 10-year period, representing the

Fig. 10.1 Changes in TC-related precipitation amount (TCPn) in the 2C (blue), 2K (green), and
2C2K (red) experiments as a function of latitude. Results are shown with respect to the CLIM
experiment. Solid thin lines represent CMCC results. Dashed thin lines represent GFDL results.
The solid thick lines represent the average of the two models. Units are [%]. Left panel refers to
the entire TC track. Right panel refers to TC track over land only (the gray region represented in
the small map)



10 Tropical Cyclone Rainfall Changes in a Warmer Climate 247

Fig. 10.2 Composite mean observed (GPCP, left panel) and modeled (CMCC/GFDL central/right
panels) daily rainfall rate patterns associated to the 10 % most intense TCs. The units are mm/day
and the x and y axes correspond to degrees from the TC center

present climate, and we compared it to the total precipitation for the same period.
Figure 10.2 shows the composite of rainfall during the top 10 % rainiest TCs for the
observations (left panel) and models (middle and right panels). TC rainfall patterns
are reasonably well represented by models, as described by Villarini et al. (2014).

In the observations the TC rainfall represents a large contribution to the total
rainfall over the Northwest Pacific, the Northeast Pacific, and the northwestern
part of the Australian Basin (Fig. 10.3, upper panel). Over these regions, the
amount of precipitation contribution due to TCs is as large as 40 %, reaching a
maximum of 50 % in the Northwest Pacific. These features are captured by the
simulations, despite the tendency of the CMCC model to underestimate the TCP
fraction (Fig. 10.3 central panel). Both CMCC and GFDL models are able to
represent the basic aspects of the latitudinal distribution of TCP, with the GFDL
model showing a better agreement with the observations (Fig. 10.3 lower panel). In
terms of absolute values, the modeled TCP zonal average, normalized by TC days
(hereafter TCPn), shows maximum values at about 15ı in both hemispheres (not
shown).

Changes in TCPn are very similar for the two models and show a global increase
in the 2K and 2C2K experiments but not for the 2C one (Fig. 10.4). The meridional
distribution of TCPn changes (Fig. 10.4 left panel) in the 2C case shows the less
pronounced changes within the three synthetic scenarios, with negative values
over most of the latitudes, especially in the Northern Hemisphere. On the other
hand, the 2K and 2C2K experiments show positive changes up to 45 % when
considering the average of the two models (Fig. 10.4, red and green bold lines).
The positive increase is more pronounced in the 2K experiment if compared to
the 2C2K one. These results are consistent with Villarini et al. (2014) who found
a widespread decrease in rainfall for the most intense TCs for the 2C experiment
and a general increase in rainfall when SST was increased by 2K. This statement
holds regardless of the distance from the center of circulation and for all the ocean
basins.
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Fig. 10.3 Percentage of precipitation associated with TCs in the control simulation CLIM with
respect to the total annual precipitation. The accumulation is performed by taking a 10 � 10ı

window centered on the center of circulation. The upper panel refers to the observations, while
the central and lower panels to the CMCC and GFDL models, respectively. Units are [%]

Focusing on the coastal region (shaded gray area in small map shown in
Fig. 10.4), the TCPn increase in 2K and 2C2K is even more pronounced (Fig. 10.4,
right panels), up to 200 %. In these areas even the 2C experiment shows positive
changes in most latitudes. The resulting changes are spread out almost evenly over
the coastal domain prone to TC landfall (not shown).

4 Discussion and Conclusion

It is well known that atmospheric moisture content tends to increase at a rate roughly
governed by the Clausius–Clapeyron equation, while the energy available to drive
convection increases more slowly (e.g., Knutson and Manabe 1995; Allen and
Ingram 2002; Held and Soden 2006; Meehl et al. 2007). Therefore, in a warmer
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Fig. 10.4 TC genesis points in CMCC (central panel) and GFDL (lower panel) models, compared
to the observations (upper panel) over the period 1981–1990

climate, we expect an increase in the water amount associated with phenomena
leading to intense precipitation (such as TCs) larger than what it is expected in
moderate events (Scoccimarro et al. 2013).

Our results show that the TC-associated precipitation is increased in the experi-
ments with a 2K-SST increase. On the other hand, in the simulation with doubling
of atmospheric CO2, the changes in TC rainfall are small and we found that,
on average, the simulated TC rainfall tends to decrease compared to the present-
day climate (Fig. 10.4). Since environmental humidity was found to correlate
with a larger hurricane rain field (Matyas 2010), and because we should expect a
strong relationship between changes in available precipitable water and changes in
TC precipitation, we investigated changes in the vertically integrated atmospheric
water vapor content under the different idealized warming scenarios. All the
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considered experiments show an increase in the water content over the tropical
belt. The water content percentage increase (not shown here, see Scoccimarro
et al. (2014), their Fig. 8) is about 1 % in 2C, 18 % in 2K, and 19 % in 2C2K,
suggesting that the 1 % increment between 2K and 2C2K is mainly due to the
higher atmospheric capability to hold moisture induced by the doubling of CO2, as
shown in the 2C experiment. According to the Clausius–Clapeyron relationship, the
lower-tropospheric temperature change found in the different experiments (about
0.1 K in the 2C, 2.2 K in the 2K, and 2.4 K in the 2C2K) should lead to a water
content increase of about 1 %, 18 %, and 19 %, respectively, which is fully consistent
with that obtained from the models.

Despite the increase in water content in all of the three warming experiments,
the doubling of CO2 tends to reduce TCP, whereas the increase of 2K in SST
tends to increase TCP. The reason should be found in the water balance at the
surface: in 2K and 2C2K experiments (2Ks), we found a strong increase of
the evaporation rate over the tropics (Fig. 10.5, left panel, green and red lines,
respectively) due to the increase in saturated water vapor pressure at the surface.
The 2K increase in SST leads to a net increase of the evaporation rate (E). This can
be easily explained considering that E is proportional to the difference between
saturated water vapor at the surface (es) and water vapor pressure of the lower
tropospheric layers (ea) and that es depends on surface temperature following an
exponential law, whereas ea follows the same law, scaled by a factor (less than
1) represented by the relative humidity. Therefore, an increase in temperature has
different impacts on es and ea. The doubling of CO2, on the other hand, tends
to reduce E (Fig. 10.5, blue line) independently of the boundary conditions. The
doubling of CO2 in forced experiments (prescribed SST) induces a weakening effect
on E, since the increase in the lower tropospheric temperature leads to an increase
in ea, associated with no changes in es due to the fixed temperature forcing at the
surface. This effect results in an increase of the atmospheric static stability in the 2C
experiment.

The CO2 doubling tends to slow down the global hydrological cycle by about
2 % (see Table 2 in Scoccimarro et al. 2014). This is also evident in the meridional
distribution of evaporation and precipitation changes (blue lines in Fig. 10.5 left
and right panels, respectively) during the TC season. The 2K SST increase induces
an acceleration of the hydrological cycle of the order of 6–7 % that is reduced
to 4–5 % if associated with the CO2 doubling (Fig. 10.5). The changes found in
the hydrological cycle are strongly influenced by the TC precipitation: a 4 %/6 %
(2C2K/2K) increase in the average precipitation corresponds to an increase of about
20 %/30 % in TC-related precipitation.

In summary, bearing in mind the limitation of the considered models in repre-
senting tropical convection (Lim et al. 2014), and the difficulty to provide a measure
of reliability due to the low number of models involved (just two), the precipitation
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Fig. 10.5 Changes in evaporation (left panel) and precipitation (right panel) in 2C (blue), 2K
(green) and 2C2K (red) experiments as a function of latitude with respect to the CLIM experiment.
Solid thin lines represent CMCC results. Dashed thin lines represent GFDL results. Solid thick
lines represent averaged values. Northern Hemisphere values are computed over June–November
and Southern Hemisphere values are computed over December–May. Units are [%]

associated with TCs results in an increase in the experiments with a 2K-SST increase
and to a decrease when atmospheric CO2 is doubled. This is consistent with the
water balance at the surface, as a 2K increase in SST leads to a net increase of the
evaporation rate, while doubling the atmospheric CO2 has the opposite effect.

Unexpectedly, between 7 and 12ı in the Southern Hemisphere, the 2C2K
experiment shows a reduction of the TC-associated precipitation. This feature will
be the object of future work.

As already mentioned, the TCPn increase projected in all of the considered
2K-SST warming scenarios is more pronounced over land than what is expected
considering also the TC path over the ocean (Fig. 10.4). It is well known that in
some cases, during landfall, the TC precipitation tends to increase (Dong et al.
2010). This is mainly due to the lifting effect induced by orographic features (Huang
et al. 2013). In our 2K-SST warming experiment, the more pronounced increase of
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Fig. 10.6 Meridional distribution of the specific humidity in CLIM experiment during the TC
season (June–November for the Northern Hemisphere and December–May for the Southern
Hemisphere) considering coastal region only. Ensemble averages are shown. Units are [g/kg]

the precipitation over land might be related to an additional lifting effect on the
TC-associated air masses, when landfall occurs. Keeping in mind the possibility of
an induced lifting effect source, we examined how humidity of the air is projected
to change in the considered 2K-SST experiments. The specific humidity over the
coastal regions (Fig. 10.6) in the CLIM experiment is very similar to what is found
over the entire domain including its ocean portion, with differences of the order of
mg/Kg (not shown). In the 2C experiment, no significant differences are found in
the specific humidity over land (Fig. 10.7, upper panel). On the other hand, the two
experiments implying 2K-SST warming show substantial changes in the meridional
distribution of the specific humidity: in the first levels of the atmospheric column
(between the surface and 300 hPa), there are positive changes, over most of the
tropical latitudes (Fig. 10.7 central and lower panels): the specific humidity increase
is up to 20 % of the CLIM value. The more pronounced increase in TCPn over land
in 2K-SST experiments is consistent with such specific humidity increase in the
lower levels of the atmospheric column: TCs at landfall are projected to encounter
a less stable atmospheric column, since the air at the lower levels is wetter in this
experiment due to increased SSTs. A more unstable atmospheric column, induced
by the availability of more moist air at low levels, leads to increased updrafts, thus
to an increased condensation into droplets.



Fig. 10.7 Meridional distribution of the specific humidity changes during the TC season (June–
November for the Northern Hemisphere and December–May for the Southern Hemisphere).
Figure shows specific humidity changes in the three different scenarios (2C/2K/2C2K in upper-
right/central-right/lover-right panels), compared to the CLIM experiment. Only land regions are
considered. Ensemble averages are shown. Units are [g/kg]
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