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Abstract. Industrial control systems (ICS) can be subject to highly
sophisticated attacks which may lead the process towards critical states.
Due to the particular context of ICS, protection mechanisms are not
always practical, nor sufficient. On the other hand, developing a process-
aware intrusion detection solution with satisfactory alert characterization
remains an open problem. This paper focuses on process-aware attacks
detection in sequential control systems. We build on results from runtime
verification and specification mining to automatically infer and monitor
process specifications. Such specifications are represented by sets of tem-
poral safety properties over states and events corresponding to sensors
and actuators. The properties are then synthesized as monitors which
report violations on execution traces. We develop an efficient specifica-
tion mining algorithm and use filtering rules to handle the large number
of mined properties. Furthermore, we introduce the notion of activity and
discuss its relevance to both specification mining and attack detection
in the context of sequential control systems. The proposed approach is
evaluated in a hardware-in-the-loop setting subject to targeted process-
aware attacks. Overall, due to the explicit handling of process variables,
the solution provides a better characterization of the alerts and a more
meaningful understanding of false positives.

1 Introduction

Cyber attacks represent a growing concern for industrial control systems (ICS)
[1]. On one hand, ICS are increasingly connected to traditional information sys-
tems. This trend has been spurred, among other reasons, by the adoption of com-
modity hardware and software components, as well as the convergence towards
TCP/IP solutions [11]. On the other hand, a majority of industrial systems
lack security mechanisms, having historically relied on isolation from traditional
information systems. In the singular context of ICS, protection mechanisms are
not sufficient, nor always practical. For instance, hardware constraints hinder the
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use of measures such as encryption to ensure confidentiality or integrity [5]. Any
latency within the low layers of industrial systems can affect the real-time con-
straints and perturb the functioning of the control loops. Despite recent efforts
geared towards developing suitable protection mechanisms [15], ICS remain par-
ticularly vulnerable, highlighting the need for appropriate detection measures.
In this paper, we are concerned with developing such a detection solution.

As opposed to traditional information systems, ICS are cyber-physical sys-
tems interacting with a physical process. Taking into account this aspect is
paramount to the detection of targeted attacks relying on advanced knowledge of
the process [17]. Noteworthy examples include the highly sophisticated Stuxnet
attack [12]. ICS are characterized by a duality between continuous behavior as
traditionally represented by differential equations, and sequential behavior where
control follows sequences of discrete steps. Our focus is on the latter aspect. This
paper presents an anomaly-based intrusion detection approach to detect process-
aware sequence attacks targeting a particular class of systems, namely sequential
control systems. Sequence attacks aim to put the process in a critical state by
a malicious temporal ordering of commands or messages [6]. Examples of such
attacks include exclusion attacks where two states should not happen simultane-
ously (an open valve and a running motor at the same time for instance), or wear
attacks where components’ lifetime is reduced through malicious manipulations
(by, for example, repeatedly opening and closing a valve) [17]. We restrict our-
selves to qualitative sequence attacks where only the temporal ordering matters.

General overview. We build on results from runtime verification and speci-
fication mining to automatically infer and monitor process specifications. The
specifications are represented by sets of temporal safety properties [2] over states
and events corresponding to sensors and actuators. The properties are synthe-
sized as monitors which report violations on execution traces. Filtering rules
allow handling the large number of mined specifications. Mining and monitoring
can also be done per activity, a notion which captures the different subprocesses
and functioning modes of a sequential system. A subprocess refers to a phase in
the operation of the system. For instance, a sequential system might go through a
start phase, a shutdown phase, and several intermediate phases. An activity can
also distinguish between manual or automatic modes of functioning. Compared
to prior work on process-aware intrusion detection [4,22], this work focuses on the
sequential aspect of control systems, covers more expressive properties through
a suitable formalism, and discusses a solution to alleviate the effort of manually
writing process specifications. In contrast with sequence-aware solutions target-
ing communication patterns within ICS [6,29], the proposed approach explicitly
handles process variables. This leads to improved alerts characterization, and a
better understanding of false positives.

Contributions. All in all, we make the following contributions:

– We propose an approach to detect process-aware sequence attacks targeting
sequential control systems by leveraging results from runtime verification and
specification mining
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– We suggest a number of filtering rules to handle the large size of inferred spec-
ifications, and introduce the concept of activity while discussing its relevance
within sequential control systems

– We evaluate our solution in a hardware-in-the loop setting and analyze its
performance and limitations

The paper is organized as follows. Section 2 provides an overview of prior work
on intrusion detection within ICS. Section 3 discusses background concepts per-
taining to ICS, runtime verification and specification mining. Section 4 presents
our approach including our specification mining algorithm Sect. 4.2 and filtering
rules Sect. 4.3. Section 5 evaluates the approach and discusses its limitations.

2 Related Work

Intrusion detection work in ICS can be classified into two broad categories: (i)
approaches which seek intrusion manifestations solely in the cyber part [7,21,30],
and (ii) approaches which take into account the physical process [4,14,22]. We
are interested in attackers whose objective is the disruption of the underlying
physical process. These attacks represent a challenge to traditional intrusion
detection approaches. Thus, we argue that a knowledge of the physical process
is essential to the detection of sophisticated process-aware attacks, and to the
understanding of false positives. In this paper, we present a process-oriented
intrusion detection solution.

A majority of the approaches found in the literature are anomaly-based, i.e.
they try to detect any significant deviation from a reference behavior. These
solutions often rely on assumptions about the simplicity of ICS protocols, the
stability of the network’s structure, or the regularity of the communications.
Compared to signature-based intrusion detection, anomaly-based approaches
have the crucial advantage of potentially detecting novel attacks. However, while
ICS exhibit certain regularities relative to traditional systems, investigations on
real-world data show that these assumptions are not always justified [6]. More-
over, anomaly-based approach, especially when relying on machine learning tech-
niques, exhibit some drawbacks [26] such as the number of false positives, and
the poor characterization of the alerts. This can lead to wrong reactions by the
operators, or to a loss of confidence in the IDS alerts. As a result, some effort is
needed to better characterize the alerts and handle false positives. Our approach
attempts to address some of these issues.

Within the literature, the work closest to ours include the sequence-aware
approaches developed in [6,29], and the process-aware approaches developed in
[4,22]. Caselli et al. [6] adopt a Markov chain-based solution relying on com-
munication patterns to detect sequence attacks. Sequence attacks are defined as
malicious/erroneous ordering or timing of commands or messages. We argue that
such attacks, in the scope of sequential control systems, are better detected by
focusing on process variables instead of network communications. In the same
vein, Yoon et al. [29] propose a probabilistic suffix tree-based approach to model
communication patterns under a high predictability assumption. Mitchell et al.
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[22] rely on manually written behavior rules to detect process-aware attacks.
Carcano et al. [4] develop ISML, a language for describing critical states. While
similar to our solution in terms of process awareness, both approaches require
manual expression of the behavior rules and are not suitable for detecting all
malicious ordering of events. This is because both approaches rely exclusively on
propositional logic formulae to express behavioral rules or critical states. Such
formalism cannot represent general ordering constraints. Schumann et al. [25]
propose R2U2, a framework for the runtime monitoring of security properties in
unmanned aerial systems. Our approach focuses on sequential control systems
and discusses the automatic generation of properties.

3 Background

This section discusses the necessary background concerning ICS, runtime verifi-
cation and specification mining.

3.1 Industrial Control Systems

ICS are hierarchical systems consisting of multiple components which interaction
achieves an industrial objective [27]. Among these components, Programmable
Logic Controllers (PLC) are of particular interest to our approach. Operating at
the cyber-physical frontier, PLC execute control logics to regulate the physical
process. This is realized through a scan cycle that includes: (i) reading inputs
from sensors, (ii) executing the control logics, (iii) transitioning to new stable
states, and (iv) writing outputs to actuators. Due to their critical role, PLC
constitute an ideal target for process-aware attacks.

The IEC61131-3 standard [16] defines five programming languages for pro-
grammable controllers: (i) Ladder diagram, (ii) Function Block Diagram, (iii)
Sequential Function Chart (SFC), (iv) Instruction List, and (v) Structured Text.
In this paper, we focus on SFC which is a graphical language representing the
control logic as a series of steps and transitions. SFC is especially suitable for
processes exhibiting a step by step behavior [16]. This is the case of sequential
control systems which are the focus of our approach.

3.2 Runtime Verification

Runtime verification [19] is a verification technique which aims at checking
whether a run of a system satisfies or violates a given correctness property.
In our case, a run of a system consists of a possibly infinite sequence of sets of
logical propositions. Each position in the sequence represents the current state of
sensors and actuators. In practice, during runtime, we only have access to finite
prefixes of runs. Monitors are devices which take as input such a finite prefix,
and yield a verdict belonging to a truth domain, indicating the status of the
property on the trace. Using a monitor, we would like to check whether an exe-
cution satisfies a given correctness property. Thus, our aim is to detect sequence
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attacks using monitors synthesized from high-level correctness properties, and
expressed in a formalism suitable for representing ordering constraints.

States. Let AP be a finite set of atomic propositions about sensors and actuators
in the process. A state s is an element of 2AP .

Linear temporal logic. Our main goal is the detection of sequence attacks
involving the ordering of messages or commands. To formally represent the
normal ordering relationships between states, a suitable formalism is required.
Linear temporal logic [23] augments propositional logic with operators able to
express ordering relationships. The syntax of LTL over the alphabet Σ = 2AP ,
which we write LTL(Σ), is defined as follows:

ϕ :: p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ, p ∈ AP

We define Σω (resp. Σ∗) as the set of infinite (resp. finite) sequences over Σ.
Let ϕ,ϕ1, ϕ2 ∈ LTL(Σ) be LTL formulae, i ∈ N a position, and w(i) the ith

element of the infinite sequence w ∈ Σω. LTL formulae can be inductively inter-
preted over elements in Σω as follows:

w, i |= p ∈ AP ⇐⇒ p ∈ w(i)
w, i |= ¬ϕ ⇐⇒ w, i �|= ϕ

w, i |= ϕ1 ∨ ϕ2 ⇐⇒ w, i � ϕ1 ∨ w, i � ϕ2

w, i |= ϕ1Uϕ2 ⇐⇒ ∃k ∈ N, k ≥ i. w, k |= ϕ2 ∧ ∀i ≤ j < k. w, j |= ϕ1

w, i |= Xϕ ⇐⇒ w, i + 1 |= ϕ

We also define ♦ϕ ≡ trueUϕ and �ϕ ≡ ¬♦¬ϕ. Here, ¬ and ∨ are, respec-
tively, the negation and logical OR operators. The remaining logical operators
(∧,⇒,⇔) can be derived as usual.

Events. In sequential control systems, we are often interested in expressing
properties involving events such as rising (↑) or falling (↓) edges. Such events
can be expressed in LTL [24]:

a↑ ≡ ¬a ∧ Xa a↓ ≡ a ∧ X¬a

Monitoring and finite semantics. As discussed above, monitors only have
access to finite but expanding prefixes. However, LTL formulae are interpreted
over infinite sequences. This mismatch restricts the class of monitorable LTL
formulae [2]. Monitorability refers to the capacity of a monitor, after any finite
number of observations, to still detect the violation/satisfaction of a property
after, at most, a finite number of additional observations. Formally, an LTL
formula ϕ is monitorable if for every finite word u ∈ Σ∗, there exists a finite word
v ∈ Σ∗ such that for any infinite word w ∈ Σω, uvw either satisfies or violates ϕ
[2]. In this work, we are interested in a particular class of monitorable formulae
called safety properties. Informally, a safety property states that “something bad
should never happen”. The formula �¬(valve1 ∧ valve2) is a safety property
stating that valve1 and valve2 should never be simultaneously open.
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In practice, monitors can be synthesized as finite state automata from LTL
formulae. Such an automaton recognizes minimal bad prefixes of a safety prop-
erty. Minimal bad prefixes are finite sequences which cannot be extended to
satisfy the safety property, and which do not contain any other bad prefix [8].
If a safety property is violated on an infinite sequence, then it has already been
violated on some finite prefix. In our case, a monitor is a finite state automaton
which recognizes, as early as possible, such a prefix and reports a violation. Con-
structing a monitor usually requires translating the LTL formula into a Büchi
automaton which accepts all infinite sequences satisfying the formula (see [28]
for a formal definition). A nested depth-first-search allows the identification and
removal, from the Büchi automaton, of all states which cannot initiate an accept-
ing run. The resulting automaton can then be treated as a finite state automaton
with all states accepting, and used as a monitor [8].

3.3 Process Specification Mining

Specification patterns. While LTL provides a suitable formalism to char-
acterize safety properties pertaining to states and events ordering, expressing
specifications directly in terms of formulae remains tedious. As properties grow
in complexity, writing accurate and correct formulae becomes a difficult task.
Thus, several works [10,24] have looked at specification patterns that express
commonly occurring properties. By relying on such specifications patterns, we
can give meaning to properties and, in our particular case, to violations of safety
properties. Another advantage of using specification patterns is controlling the
nature of properties to be monitored to the class of safety properties.

We base our work on a subset of Dwyer’s patterns augmented with events
[10,24]. Dwyer’s patterns and classification are the result of an extensive review
of the literature for recurring specifications. We restrict ourselves in this paper
to absence, universality, precedence and response monitorable patterns. Absence
patterns state that a certain event or state never occurs during the execution
of the system. Universality patterns state that a certain event or state always
holds during the execution of the system. Precedence and response patterns
express relationships between two events or states where the occurrence of one
is a necessary condition for the occurrence of the other.

Moreover, we can specify scopes which restrict the portion of the execution
where the pattern should hold. Five scopes are defined: (i) a global scope, (ii) a
scope starting after an event/state, (iii) a scope ending before an event/state, (iv)
a scope between two events/states, (v) a scope starting after a first event/state
and lasting until the eventual occurrence of a second event/state. All scopes
are left-closed and right-open. Readers are referred to [10] for more details. In
the rest of this paper, we will express specification patterns as predicates over
events/states. The predicate name captures the nature and scope of the pattern.
For instance, the predicate absence between(X,Y,Z) refers to the absence pat-
tern concerning event/state Z between events/states X and Y . An instantiation
of a pattern is a mapping of placeholders to propositions.
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Mining specifications. The problem of specification mining can be expressed
as follows: given a finite set of specification patterns and a finite set of execution
traces of a system, find all instantiations that are valid on the traces. Several
works have explored this issue based on a variety of patterns [18,20]. Usually one
is required to explore the space of all possible instantiations (permutations) and
test the validity of each instantiation on the traces. While the size of the search
space can be significant, recent work [18] has shown that using memoization
and selective treatment of the traces can significantly reduce the complexity of
the task even when dealing with general LTL formulae. However, the number
of valid mined specifications can still remain significant, especially due to the
introduction of events. Section 4 presents our mining algorithm and filtering rules
to handle this issue.

4 Attack Detection Approach

4.1 General Overview

Our approach proceeds in two stages: a mining and filtering stage, and a detec-
tion stage. In the first stage (Fig. 1), specifications expressed as a set of temporal
properties ({Spec1LTL, . . . , Specm

LTL}) are mined from execution traces of the sys-
tem by relying on specification patterns. When using activities, execution traces
are divided depending on the current activity using the activity recognizer, and
mining is done per activity. In all cases, the resulting raw specifications undergo
a set of filtering rules to reduce their number.

Control
logic

Pro cess

Activity
recognizer

Traces

A1

A i

An

Sp ecifications
mining

Traces

Patterns

Raw
specs

Filtering
rules

Filtered
specs

S pec 1
LTL

Spec m
LTL

Fig. 1. First stage: mining and filtering the specifications

The traces are assumed to be free of malicious activity and representative
of the normal behavior of the system. However, the representativeness is not
guaranteed as the mining operates on a finite window. This can be an important
source of false positives. While this limit is common to all approaches based on a
learning phase, we would like to better characterize false positives (and alerts in
general) by giving them meaning with respect to the process behavior, i.e. higher
semantics in terms of the process. For instance, for a given alert, we would like
to report on the concerned actuators/sensors, the process stage during which
the alert was raised, and the reason why a violation represents an illegitimate
action with respect to the process’s normal behavior.
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A first level of characterization is achieved by relying on specification pat-
terns which reflect common safety properties expressed directly in terms of sen-
sor/actuator states and events. A second level of characterization is attained
by the means of activities. An activity corresponds to a subprocess or to differ-
ent modes of functioning within the sequential system. Activites can distinguish
between different normal behaviors within the process, while reducing the com-
plexity of the mining phase. To define and distinguish the activities in the traces,
we require a high level expression of the control logic. In our work, we derive the
activity recognizer from control logic expressed as SFC. In practice, steps in the
SFC are assigned to activities, and the activity recognizer interprets the SFC
using its formal semantics [3]. The task of assigning activities to steps is left to
an expert or a developer. As future work, we intend to explore heuristics which
can guide the expert and automatically suggest activities assignments.

The monitors, synthesized from the mined and filtered properties, report
violations during the detection phase (Fig. 2). When using activities, the activ-
ity recognizer dynamically identifies the current activity, and only the relevant
property monitors (i.e. those pertaining to the current activity) read the trace
to detect the violations and output their verdicts.

Control
logic

Process

Activity
recognizer

Current
activity

Traces

Activity 1
monitors

Activity n
monitors

Activity 1
specs

Activity n
specs

Monitors
syn thesis

Verdicts

Fig. 2. Second stage: detecting specification violations

Threat model. We assume that the attacker’s objective is the disruption of
the physical process using qualitative sequence attacks. We also assume that
the measurements sent by the sensors are correct. This means that we do not
handle false data injection attacks i.e. injection of bad measurements. As we rely
directly on process variables, no assumptions are made on the trustworthiness of
the PLC if a proper logging mechanism is available at the field level. However,
we still require the presence of a secure channel for sending alert notifications.

4.2 Mining Process Specifications

In this section, we present our mining algorithm which carefully walks through
the search space to find valid properties which could have been violated on
the mining traces. This constraint is captured by the notion of falsifiability.
A falsifiable property with respect to a trace is a property which can be vio-
lated on the trace. Falsifiability is especially relevant with regards to pattern
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scopes. Execution traces arising from sequential control systems are highly
structured due to the execution of specific control logics. As such, they con-
tain a relatively limited number of scopes. All properties which refer to non-
existent scopes are not falsifiable. Since they specify constraints on non-existent
scopes, one cannot check their violation. Consider for instance the property
universality after(valve1,motor1). It corresponds to the following LTL for-
mula: �(valve1 ⇒ �motor1). The antecedent of the implication refers to the
scope. If valve1 is not true at any position on the trace, the implication becomes
vacuously true and the formula is not falsifiable. In addition, properties such as
absence before(valve1,motor1) and absence between(valve1, valve2,motor1)
will also be vacuously true on the trace since all these formulae involve implica-
tions with false antecedents (♦valve1 for the first formula and valve1 ∧ ♦valve2
for the second formula). By checking the falsifiability of the initial property, we
can ignore other scope-related formulae.

Thus, the main idea is to partition the space of possible instantiations in
terms of scopes, then check their falsifiability with respect to their scopes in order
to potentially bypass other scope-related properties. In practice, for each type of
scope, we instantiate a monitor called an auxiliary monitor which checks whether
the property is falsifiable on the traces. An auxiliary monitor essentially makes
sure that the scope pertaining to a property instantiation actually occurs on the
traces. As an example, for the property universality after(valve1,motor1), we
synthesize an auxiliary monitor from the formula ♦end → ¬(¬valve1 U end).
Here, end represents a special symbol which is appended to the traces and is used
to adapt LTL’s infinite semantics to the finite mining traces [9]. The property is
violated if valve1 does not occur on the trace. When mining, we start with single
scopes (after or before) as they affect both single and double scopes (after until
and between). For instance, if an after property involving valve1↑ as a scope
is not falsifiable on the execution traces, then all after, before, after until and
between properties involving the valve1↑ scope will not be falsifiable.

Typically, we have many traces at our disposal. When running the auxiliary
monitors, we can enforce several policies depending on the number of violations
recorded. In all of our scopes, except for the after until case, we require that the
auxiliary monitors report no violations on all the traces, i.e. that the properties
are falsifiable on all the traces. This has the advantage, with regards to our
notion of activity, to naturally restrict the scopes to the variables pertaining to
the activity for which the mining occurs. For the after until case, we require the
property to be falsifiable in at least one of the traces. The goal is to limit the
cases where an after property is valid, and which lead to several corresponding
scope-irrelevant after until properties to become valid.

Algorithm 1 outlines our mining procedure. For each instantiation, we retrieve
the verdicts of the main and auxiliary monitors (line 7). If the main monitor
reports a violation, then the property is false (and falsifiable), so we move to
the next instantiation in the same scope. Else if the auxiliary monitor raises a
violation, we blacklist the current scope and all related scopes before moving to
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Algorithm 1. Specification mining

Data: Tr : Finite set of execution traces, I : Finite set of property instances
Result: Set of valid properties

1 Π = partition by scopes(I);
2 blacklisted scopes = {};
3 valid properties = {};
4 foreach type ∈ {after, after until, before, between, global} do
5 foreach scope ∈ Π(type) \ blacklisted scopes do
6 foreach instance ∈ scope do
7 (verdict inst, verdict aux) = check instance(instance, Tr, type);
8 if verdict inst = ⊥ then instance ← invalid;
9 else if verdict aux = ⊥ then

10 blacklisted scopes ∪ = {scope} ∪ affected scopes(type, scope);
11 break;

12 foreach type ∈ {after, after until, before, between, global} do
13 foreach scope ∈ Π(type) \ blacklisted scopes do
14 foreach instance ∈ scope do
15 if instance is valid then valid properties ∪ = instance;

16 return valid properties;

the next scope. The function check instances returns a verdict depending on
the falsifiability policy on the set of traces and the type of the instantiation.

4.3 Specifications Filtering Rules

In order to deal with the important number of specifications generated after the
specification mining phase, we use a set of filtering rules. These rules are based
on the semantics of Dwyer’s patterns as discussed in Sect. 3.3. The idea is to
find logical dependencies between mined properties based on their scopes and
events/states relationships. The general form of these logical dependencies is:

ψ1, ψ2, ∀σ ∈ Σω, σ |= ψ2 ⇒ ψ1

filter(ψ2)

In this rule, ψ1 and ψ2 are valid properties on the traces. The premise ∀σ ∈
Σω, σ |= ψ2 ⇒ ψ1 represents the fact that, for all infinite sequences σ, whenever
property ψ2 is satisfied, then property ψ1 is also satisfied. In other words, by
keeping track of violations of ψ1, one can indirectly detect violations of ψ2.

Logical dependencies arise in the case of Dwyer’s patterns due to the inter-
play between scopes and states/events. Suppose we have mined the prop-
erties universality after(valve1,motor1) and absence after(valve1,motor↑

1).
The first property states that “motor1 stays on after a state where valve1 is
open” while the second property states that “motor1 is never started after a
state where valve1 is open”. On all infinite sequences when the first property is
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satisfied, the second property will be satisfied. This is due to the fact that for
motor1 to be started after valve1 is on, it needs to be off at some point. How-
ever, this is impossible due to the first property. Note that the converse is not
true. There exists an infinite sequence where the second property is satisfied but
not the first: a sequence where, after a state in which valve1 is on, motor1 goes
off but never on. Note also that the second property is informative. The viola-
tion of the second property, in conjunction with the violation of the property
absence after(valve1,motor↓

1), can be symptomatic of a wear attack on motor1.
The case sketched above generalizes to the following rule:

absence after(X,Y ↑), universality after(X,Y )
filter(universality after(X,Y ))

We can formally prove that ∀σ ∈ Σω, σ |= ψ2 ⇒ ψ1 for given LTL properties
ψ1 and ψ2 by referring back to their semantics defined in Sect. 3.2. In our case,
to systematically verify such logical relationship, we build the Büchi automaton
corresponding to the formula ψ1 ∨ ¬ψ2, and check that it accepts all possible
infinite words i.e. the formula is valid [28]. We have identified and verified a
non-exhaustive set of 20 rules which represent logical dependencies between pat-
terns. Their identification relies on observations about: (i) inclusion relationships
between scopes, and (ii) the interplay between events and states within the same
scope such as in the example above.

5 Evaluation

In order to evaluate our solution, we have implemented the process shown in
Fig. 3 in a hardware-in-the loop setting including a real PLC and a simulation
of the process. We acknowledge that a thorough evaluation would require real
data from an operational plant. However, getting such data is difficult due to
the particularly sensitive context of ICS. Publicly available datasets1 are often
too simple, including few sensors/actuators. Studies which use real datasets are
often limited to network trace files, while we require the availability of control
logic for a comprehensive analysis. Yet, we believe that this evaluation can shed
some light on the advantages and limitations of the proposed solution.

5.1 Process Description

The process [13] in Fig. 3 represents a typical sequential system. The goal is to
produce a mixture of products following a certain recipe. The process involves
two stages. In the first stage, two weighted products are introduced successively
in the tank T1 via the valves vp1 and vp2. The required weights are indicated
by sensors p1 and p2. A mixer actuated by motor m1 performs the primary
mixing. After 50 s, and if TP is empty as indicated by the sensor tpvid, the
mixture can be cleared out from T1 through the valve vt1. In a second stage, a
1 https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets.

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
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Fig. 3. Example of a sequential process and its control logic expressed using SFC [13]

product carried by the wagon W is added to the primary mixture. Sensors sb
and sh indicate the position of the wagon. Actuators m and d (not shown in the
figure) are responsible for the wagon’s movement. A mixer actuated by motor m2
performs the secondary mixing, which lasts for 60 s. Finally, the end product is
drained to the silo through valve vt2. The valve vs allows emptying the silo. We
would like to keep the final product level in the silo between the levels indicated
by nb and nh. When the level reaches nb, a new production cycle is started until
the level reaches nh. Figure 3 shows part of the SFC implementing the control
logic for this process. In total, the process contains 20 actuators and sensors.

Activity decomposition. Following the process description, we can identify
two main activities as shown in Fig. 3. We also use a default activity to mark all
the coordinating steps which are outside these activities.

5.2 Experimental Setup

We evaluate our approach in a hardware-in-the-loop setting. The process is sim-
ulated in OpenModelica2 while the control logic is implemented in a Schneider
M580 PLC. A Human-Machine Interface (HMI) allows monitoring the process
status and send commands. The HMI-PLC communication relies on the Mod-
bus protocol. The monitors, the specification miner, and the activity recognizer
are implemented in C++. To synthesize the monitors from LTL formulae corre-
sponding to patterns, we use the Spot library3. Filtering rules are implemented
in Prolog and take as input the predicates resulting from the mining phase.

Attacks. We perform a total of 15 process-aware sequence attacks during the
simulation to test our solution. The attacks are carried by sending malicious

2 https://www.openmodelica.org.
3 https://spot.lrde.epita.fr.

https://www.openmodelica.org
https://spot.lrde.epita.fr
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commands to the PLC. We also define a number of manipulations which the
operators are allowed to perform. For instance, operators can manipulate the
valve vp1 only before the weight p1 is reached. Moreover, some actions are
allowed without any restrictions such as the manipulation of vs. More impor-
tantly, not all of these behaviors appear in the attack-free traces used in the
inference stage. This allows us to evaluate our solution with respect to false pos-
itives. The attacks involve malicious ordering of commands such as simultaneous
opening of vp1 and vp2, or opening vt1 before the end of the first mixing phase.
Table 1 summarizes some allowed behavior and attacks performed.

Data collection. Data is collected at two levels: (i) at the level of the HMI-PLC
channel as Modbus network traces (pcap files), and (ii) at the level of the process
simulation which produces a timestamped log of the values taken by the sensors
and actuators throughout the simulation. We collect two separate datasets: (i)
a legitimate dataset in which the process runs for 20 min without any attacks
but with manual intervention of a human operator who performs actions within
the allowed behavior, and (ii) a dataset spanning 40 min with interventions of a
human operator and containing process-aware sequence attacks. The parameters
of the simulation, such as the flow rates, are chosen so that the process completes
several times the various stages during the recording window. All our tests are
run offline using the recorded datasets.

Table 1. Examples of allowed behavior and sequence attacks performed on the process

Allowed behavior Performed attacks

• Manipulating vp1 before p1 is reached • Manipulating vp1 after p1 is reached

• Manipulating vp2 after p1 is reached
and before p2 is reached

• Manipulating vp2 before p1 is reached
or after m1 is started

• Manipulating vt1 after m1 is stopped • Opening vt1 before m1 is stopped

5.3 Results

Process specification mining. We apply our proposed specification mining
algorithm on traces per activity. Inference is performed on an Intel Dual Core
i5 2.4 GHz machine with 4 GB of RAM running Linux kernel 4.4.5. We evaluate
the mining algorithm in terms of 3 measures: (i) the monitors overhead, (ii) the
runtime efficiency, and (iii) the number of mined properties.

Monitors overhead. As mentioned in Sect. 3.2, the monitors are derived from
Büchi automata which can lead to a double exponential space blow-up with
respect to the formula’s size [2]. The monitors we generate do not represent
pathological cases. All the monitors we synthesized have a size less or equal
than 25 states. This is in fact another motivation for using patterns: we can
control the patterns in terms of monitorability and size of the associated monitor.
Moreover, only the mapping differs between instantiations of the same pattern.
This reduces the memory-overhead required for the mining task.
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Runtime efficiency. We measured the runtime efficiency of our specification
miner for both activities. Our proposed algorithm spends on average 45 s for
the first activity, and 55 s for the second activity. This is reasonable as mining
is performed once on the training traces. We notice however that our solution
performs worse on the second activity compared to the first one. This is mainly
due to the presence, in the second activity, of more sensor and actuator variables.
Another remark is that the algorithm’s performance deteriorates when faced with
unstructured execution traces such as randomly generated traces. However, this
does not apply to sequential control system as they follow specific control logics.

Number of properties. Out of 407820 possible instantiations, the mining algo-
rithm returns 7206 properties for the first activity, and 16269 properties for the
second activity. We also apply our filtering rules to the mined properties. The fil-
tering rules take into account: (i) the logical relationships identified in Sect. 4.3,
(ii) the actual sensors and actuators involved in each activity. With regards to
the second set of rules, an interesting feature of the mined properties is that
their scopes involve sensors/actuators which are specific to the activity in ques-
tion. This is due to the falsifiability policy we impose which naturally restricts
the scopes. The filtering results in 719 properties for the first activity, and 1908
properties for the second activity.

Comparison with Texada. We also experimented with Texada [18], an efficient
general LTL specification miner. We mine the patterns using its map mapper. It
is worth noting that although Texada can omit vacuous properties, the runtime
overhead becomes significant (over 10 min for both activities using the linear
mapper). Texada’s map miner spends little over 1 min for both activities. In
contrast, the number of properties returned by Texada is an order of magnitude
bigger. When comparing the mined properties, in the cases where our notion of
falsifiability matches that of Texada, the mined properties are similar.

Attack detection. We evaluate the detection capabilities of our solution by
running the inferred monitors on the malicious execution traces. Table 2 reports
some violations recorded and their interpretation. All 15 performed attacks were
detected by the monitors. Their interpretation relies on two key elements: (i) the
activity during which the violation is reported, and (ii) the pattern correspond-
ing to the property violated. However, as expected and discussed in Sect. 4.1, we
obtain some false positives. The main recorded case of false positives was rela-
tive to the manipulation of vt1. As the operator does not manually interfere with
vt1 during the learning phase, we infer properties such as absence global(vt1↓).
This property holds in the absence of manipulations, since vt1 is the last action
performed in activity 1, and t1vid signals the end of the activity. Knowing
that an operator is allowed to manipulate vt1 at some point during the activ-
ity, this property is too restrictive. Note that we also mine properties such as
absence before(p2, vt1) which violations would correspond to an attack.

In addition to delivering high semantics in terms of alerts’ understanding, we
can also deactivate monitors which do not correspond to properties we want to
ensure. For instance, the property absence global(vt1↓) which causes a false pos-
itive can be deactivated, as it clearly concerns a legitimate action. The easiness
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Table 2. Examples of raised alerts and their corresponding interpretation

Alert Type Properties violated Interpretation

Alert 1 TP absence between(m1↑, p1↓, vp2↑) vp2 opened after starting

(act. 1) absence between(m1↑, p2↓, vp2↑) m1 (attack)

Alert 3 FP absence global(vt1↓) vt1 closed after m1 is

(act. 1) absence after until(m1↓, p1↓, vt1↓) stopped (legitimate action)

Alert 5 TP absence before(m2↓, vt2↑) vt2 opened before the end

(act. 2) of the mixing task (attack)
∗ TP: True Positive, FP: False Positive

with which one can alter the learned behavior is due to the inference of multiple
properties which individually concern a limited set of sensors/actuators. Note
also that one can analyze a priori the inferred properties by performing queries
over variables which might cause false positives. For instance, since the valve vs
can be opened any time during the execution of the system, one can query the
inferred properties to ensure that no property restricts the usage of vs.

One issue we encounter when running our monitors is the possibly consequent
number of violations raised for each attack. In our experiments, some attacks can
produce as much as 30 violations. While these violations do not represent false
positives, their number can render their analysis arduous. Moreover, some prop-
erties are more pertinent. Further work is needed to handle this issue through a
correlation stage which can summarize and prioritize pertinent violations.

6 Conclusion

In this paper, we presented an approach for the detection of process-aware
sequence attacks in sequential control systems. We used runtime monitors to
report violations of process specifications expressed as sets of safety temporal
properties. We also developed a mining algorithm to alleviate the cost of writing
specifications. The notion of activity within sequential systems was introduced
to improve mining and attack detection. Finally, we evaluated our approach in
a hardware-in-the-loop setting subject to process-aware attacks. The evaluation
results show that we are able to detect such attacks while achieving a good
understanding of false positives. Our main goal for future work is the addition
of a correlation stage to deal with the important number of raised violations.
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