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Abstract. User authentication is a key technology in human machine
interaction. The need to establish the legitimacy of transactions and
possibly the actors behind them is crucial for trustworthy operation of
services over the internet. A good authentication method offers security,
usability and privacy protections for the users and the service providers.
However, achieving all three properties with a single method is a dif-
ficult task and such methods are not in wide use today. We combine
methods from biometrics, secure key exchange algorithms and privacy-
protecting authentication to build an authentication system that achieves
these three properties. Our system uses keystroke dynamics to authen-
ticate the user and cryptographic methods to protect the privacy of the
templates and samples and to extend the authentication to key exchange.
The results show that the system can be used for user authentication, but
more work is needed to protect against impersonation in some cases. Our
work is extensible to many other biometrics that can be measured and
compared in a similar manner as keystroke dynamics and with further
research to larger classes of authentication methods.

1 Introduction

User authentication is one of the key technologies in human machine interaction.
The services provided in many contexts both locally and over the internet require
the user to provide assurance that she is authorised to access the service. To this
effect, a good authentication method provides security, usability and privacy
protection both for users and the service providers alike.

Generally, user authentication is done via three different types of factors. The
most common in web authentication is something you know, which is manifested
in the ubiquitous passwords that users need to type in order to gain access.
The second category of factors is something you have such as a key to a lock, a
list of one time passwords, a USB token or a mobile phone. These can be used
to authenticate the user towards services, usually through a challenge-response
system. The third factor is something you are such as a biometric, e.g., fingerprint
or a facial image. These factors are more common also in the identification of
individuals and in authentication between humans.

Different factors and methods of authentication offer different levels of secu-
rity, usability and privacy protection. A great study of various methods used
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in web authentication can be found in [6]. However, no single method can offer
the best from all of these categories. Thus, new methods and combinations are
needed.

To provide a good level of security, privacy and usability there need to be
systems that offer protection in all of these categories. For example, a randomly
chosen 16 character password is quite secure and offers good privacy, but it is
very hard to use. Thus the usability of such a scheme is rather low, although
some progress has been made to help people remember random secrets [7]. On the
other hand, many biometrics such as fingerprints and facial recognition systems
offer good usability and even security. The privacy protection of such systems
is often very poor and the templates can be easily used for surveillance and
identification in addition to the original authentication use case.

In this work we present a novel combination of known methods that can
achieve good performance in all three categories. By measuring the keystroke
dynamics of the user (i.e. timings related to keystrokes), when typing her user-
name, we can use this biometric to authenticate the user. We will then combine
this with privacy protection mechanisms from [27] to protect the biometric tem-
plates and samples and the protocol from [13] to combine all these into a secure
key exchange protocol.

The paper is organised in the following way. In the next section, we present
previous work on keystroke dynamics and privacy protecting authentication. In
Sect. 3 we describe the methods that we have used to build our authentication
system in more detail. In the fourth section we present the results of a user study
that we conducted with our system and we end the paper with discussion and
conclusions on our work.

2 Previous Work

Keystroke dynamics as a biometric have been researched extensively for many
years with earliest results already from the 1980s, e.g., [14]. They can be captured
both from regular keyboards, e.g., [19–21] or from mobile devices, e.g., [10,26].
The measurements are usually related to timings between keypresses and these
can be used for fairly accurate authentication results. On the other hand, these
can also be used for profiling and identifying users, e.g., [9], which causes privacy
considerations. For a more thorough survey on different methods of keystroke
dynamics see for example [3].

Privacy-friendly authentication, especially with biometrics, has been a topic
of research for some time. Some biometric features can be protected either by
specific schemes (many of which have been evaluated in [25]) or more generic
constructions such as fuzzy vaults [18] or fuzzy extractors [12]. In these ways, the
biometric information is either protected at the template level or only used to
generate cryptographic keys, which are then used for authentication. However,
the generic methods need to be tailored to suit each specific biometric and mea-
surement type and also contain some limitations of their own. This means that
applying these methods is not necessarily straightforward to any given biometric
and type of measurement.
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Another way to protect the privacy of biometrics is to build a privacy pro-
tection system specifically for some biometric, e.g., symmetric hash functions
for fingerprints [28]. Keystroke dynamics have not been extensively studied from
the privacy preserving authentication point of view. In [22], the authors present
a method for using keystroke dynamics on mobile phones and trusted comput-
ing technologies to provide some guarantees against privacy invasive attacks.
Their attack considers the situation, where the user is profiled by her keystroke
patterns by some (web) applications, without the user’s consent. Our method
protects against this type of attack, because the samples are encrypted before
sending them to the application or service provider. Furthermore, our methods
also protect the templates that are stored at the server both against breaches to
the server by malicious parties and from insider in the server end. This is not
covered in the threat model of [22].

From the usability perspective, authentication has also received a lot of
scrutiny. Security and usability have been seen as contradictory goals and in
many cases this can be validated, although it is not an absolute truth [6,8]. In
general, the pinnacle of usability would be that the authentication would not
impose any extra interaction between the user and the system. This is captured
fairly well in the concept of implicit authentication in [17]. This type of authenti-
cation is possible with many biometrics such as face, speaker or gait recognition.
There are also systems that provide privacy-friendly implicit authentication, such
as [27], which we will utilise in our constructions. The work in [27] is concen-
trated on profiling mobile phone users and protecting templates gathered from
these and our work adapts their system to the case of keystroke dynamics.

3 Methods

This section describes our methods for measuring the keystrokes, protecting the
templates and securing the authentication. We begin by briefly stating our threat
models.

3.1 Threat Model

Because our system is designed for both privacy and security, we have two dif-
ferent goals and threat models. For privacy, we consider an honest-but-curious
adversary at the server end. This is similar to the adversary of [27]. The adver-
sary is bound to respect the protocol, but may try to learn additional information
from the content of the messages and the internal computations that it carries
out during authentication.

For security, we have a more powerful adversary as described in [13]. To
break the security of the authenticated key exchange, the adversary can read,
send and modify messages in transit and, if multiple authentication methods
and/or factors are used, learn the secrets from these for any given client. The
adversary can also learn the secret key of any given server, i.e., corrupt a server, if
mutual authentication between the server and the client is provided. The results
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of [13] show, that the authenticated key exchange protocol is still secure, if at
least one factor or method remains unbroken or not corrupted.

3.2 Measuring Keystrokes

As can be seen from Sect. 2, there are many ways to measure the keystroke
dynamics of the user. Our approach started with the work from [1], where
four different features were measured from the keystrokes: the entered string
of characters and down-down, up-down and down-up times of each keystroke.
To simplify our approach, we decided to test whether we could achieve good
performance with only some of the timing measurements.

We chose to use the down-up times, up-down times and the entered string of
characters in our solution. The entered string of characters is an obvious choice
as it prevents the adversary from typing in just any combination of characters
with correct timings. However, we do not assume that this string of characters is
kept secret and thus it is not just another password. The down-up time measures
how long each individual character was held down and up-down time measures
how long was the difference from letting go of previous key to pressing down the
next one. We did not use down-down times since they aren’t independent from
the down-up and up-down times.

Furthermore, because the methods from [27] measure the distance of the
sampled vector to each of the template vectors, we could not use the averaging
of the times in our templates, which was done in [1]. In our templates, each
measurement was retained, in order to measure the sample against all these
values. This then resulted in slightly larger templates than in the original paper,
where averages could be used.

3.3 Protecting Privacy

The privacy protection of the templates was done according to the implicit
authentication scheme of [27]. Each of the templates was protected with two
methods, each component separately with partially homomorphic encryption
and with order-preserving symmetric encryption (OPSE). The partially homo-
morphic part of the template enabled computing the distance from the average
absolute deviation (AAD) of the sample from the template values and the OPSE
encrypted part enabled comparisons between the sample and some threshold val-
ues, which resulted in the final score that was used for deciding the successfulness
of the authentication attempt.

Like in [27], we used Paillier encryption [23] for the homomorphic encryption
and the results of Boldyreva et al. from [4,5] for the order-preserving encryption.
These are needed to protect the privacy of the templates and samples both in
transit between the client and server and also at the server end from the honest-
but-curious server itself. The details of the application of these are postponed
to Sect. 3.5, where our system is described in more detail.
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3.4 Providing Security

The security of our authentication is based on the multi-factor authenticated key
exchange (MFAKE) protocol from [13]. The protocol specifies three subprotocols,
one for each type of factor (passwords, biometrics and tokens). Each of these can
be run in parallel as many times as there are different authentication methods.
In our work, we used the keystroke dynamic as the first line of authentication.
If the biometric measurement was successful, the authentication proceeded with
the key exchange. If it was unsuccessful, the user could enter a password and
if it was correct the key exchange proceeded with all the information linked to
the key. This is the approach that is suggested also in [27] to be utilised with
the implicit authentication scheme. In a real world implementation the system
could enhance its performance by learning also from the false negatives (i.e. cases
where the implicit authentication fails, but password authentication succeeds).
If also the password authentication failed, the authentication was considered
completely failed.

The security of the MFAKE protocol is based on tag-based authentication
from [16] and this required some changes to the privacy-preserving authentica-
tion of [27]. These changes were minor and are discussed in more detail later in
this paper. The changes did not affect the security of the MFAKE or the level
of privacy protection.

3.5 Our Implementation

We implemented the above system using Python 2.7 with the help of some open
source libraries for cryptography: pycrypto1, paillier2 and pyope3. We used
the getch4 and clock5 Python functions for the keystroke timing measurements
and those gave us 0.44µs precision on the timing.

The first part of the program prompted for the user to provide a username.
If this was a new username, the system asked the user to type the username in
again for 9 times. This resulted in a total of ten vectors of timings that were
combined into a template of the user and the username.

All the measured times were then encrypted with both the homomorphic and
order-preserving encryptions and then sent for the server to store as the template
for this given username just as in [27]. Naturally, only the measurements from
the successful replication of the same username were stored.

The testing part was implemented in a way that the user was requested to type
their chosen username and the typing pattern was matched against the template.
Two thresholds were chosen from the empirical data to provide approximately
90 % acceptance rate. This test was repeated 10 times for each participant. The
scores were computed following the methods presented in [27] as follows.
1 https://www.dlitz.net/software/pycrypto/.
2 https://github.com/mikeivanov/paillier.
3 https://github.com/psviderski/pyope.
4 https://pypi.python.org/pypi/getch.
5 https://docs.python.org/2/library/time.html.

https://www.dlitz.net/software/pycrypto/
https://github.com/mikeivanov/paillier
https://github.com/psviderski/pyope
https://pypi.python.org/pypi/getch
https://docs.python.org/2/library/time.html
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Let HE = (KeyGenHE , EHE ,DHE) be a homomorphic encryption scheme,
such as Paillier, and OPSE = (KeyGenOPSE , EOPSE ,DOPSE) be an order
preserving symmetric encryption scheme. During system setup KeyGenHE and
KeyGenOPSE are used to generate the HE key pair (pk, sk) and the OPSE
key k.

The user profile is a pair U = (DU,UD), where DU = (V1, . . . , Vn) and
Vi = (vi(1), . . . , vi(10)), where n is the length of the username and vi(j) is the
time for down-up keystroke for the jth measurement of the ith character in the
template. Similarly, UD = (W1, . . . ,Wn) and Wi = (wi(1), . . . , wi(10)) is defined
as above, but for up-down timings. The accumulated user profiles contain tuples

(
EHE

pk (vi(j)), EOPSE
k (vi(j)), EHE

pk (wi(j)), EOPSE
k (wi(j)

)

for j = 1, . . . , 10 and i = 1, . . . , n.
The server can precompute the AAD, which will be used in the comparisons

between the template and the sample. The AAD from the encrypted values can
be computed as follows:

EHE
pk (AAD(Vi) × n) =

n∑

i=1

∣
∣EHE

pk (vi(j)) − EHE
pk (Med(Vi))

∣
∣

From the above it is straightforward to use the homomorphic properties of HE
and remove the scalar factor n by multiplying with n−1. The Med(Vi) denotes
the median of the values in Vi and this can be found by comparing the OPSE
encrypted values in the templates. This is done similarly to the values in Wi.

The actual scoring algorithm for authentication proceeds in two stages. First,
the samples taken by the client are encrypted into tuples

ei(t) =
(
EHE

pk (ctag × vi(t)), EOPSE
k (vi(t)), EHE

pk (ctag × wi(t)), EOPSE
k (wi(t))

)

for each variable vi. We extended the system from [27] by multiplying each of
the vector components of the measurement with the tag ctag computed by the
client. This was included in the computation of the template to provide tag-based
authentication, which is the basis for MFAKE and all its subprotocols. The tags
are required in order to guarantee the security of the system in MFAKE by bind-
ing all the utilised authentication factors and methods to a single session of the
MFAKE protocol. To initialise the MFAKE protocol the client and server per-
form an unauthenticated Diffie-Hellman key exchange [11]. The tag is the hash
value of the original Diffie-Hellman key, the identities of the two communicating
parties and all the messages exchanged by that time. We computed the tag using
the SHA-256 hash function.

In the server end, the server computes its own tag stag from its view on the
key and the transcript of messages. Then it can compute the inverse of stag
and multiply the vector components with that value to get to the “untagged”
values that are used for comparison. This could be done in a similar fashion as
with the AAD computation described earlier due to homomorphism (EHE

pk (s−1
tag×
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ctag × vi(t)), which equals EHE
pk (vi(t)) if the tags agree). After that, the server

computes the end points of the allowable interval for up-down times by

EHE
pk (bil(t)) = EHE

pk (vi(t)) − EHE
pk (AAD(Vi))

EHE
pk (bih(t)) = EHE

pk (vi(t)) + EHE
pk (AAD(Vi))

and similarly EHE
pk (cil(t)) and EHE

pk (cih(t)) for down-up times from the values
in Wi.

However, the server does not know how these can be compared with the
template values it holds. Thus in the second phase the server delivers the values
EHE

pk (bil(t)), E
HE
pk (bih(t)), EHE

pk (cil(t)) and EHE
pk (cih(t)) to the client. The client

decrypts these getting bil(t), b
i
h(t), cil(t) and cih(t). These are encrypted with

EOPSE
k and returned to the server. Now the server can count the number of

occurrences in the OPSE encrypted template that fall within the interval defined
by these two values. This number is then compared to the given threshold values.

If the matching was within the thresholds, the system would immediately
compute the authenticated key with the MFAKE [13] protocol. To this end the
client and server combined the transcripts of the message contents that had
been sent between them and hashed them with SHA-256 to generate the key.
If the username typing pattern was not recognised, the system would prompt
for a password. This password was tested through the MFAKE protocol and
again the authenticated key exchange would be completed, if a correct password
was entered. Otherwise, the authentication failed and a common key was not
established between the client and the server.

4 Empirical Results

In the user tests, we tested only the keystroke biometric and left the password
authentication part out. Thus, the user taught the system for keystroke dynam-
ics without using the secondary password authentication. This was reasonable,
because there is a lot of research on the benefits and weaknesses of password
authentication and how users perform with them. Our work would not bring
new insights on that front and we decided to focus on the effect of privacy
protection on the accuracy of the keystroke dynamics.

We tested our implementation with two groups of volunteers in two different
locations. Users were volunteers from academic institutions. The first group had
11 participants and the second 9 participants, making the total number of test
subjects 20. We ran the tests on both Windows and Linux operating systems on
two different laptops (one for each location).

Each of the subjects chose a username of 8–12 characters. Although in [1] it is
stated that less than ten characters is not sufficient for good accuracy, we decided
to let the subjects use also shorter usernames that might be more familiar to
them. The choice was not restricted in any way and the subjects were free to
choose completely new usernames or ones that they used in other systems.
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The tests were performed on hardware that was not the same in both loca-
tions, but that was available for the authors at the time. Some participants asked
to use their own keyboards to better reflect their real typing patterns. We allowed
this as our method could be used with any keyboard and a real implementation
would be used with wide variety of keyboards. Most of the participants used the
keyboard on the laptop.

The testing was divided into two parts with first the learning part and then
testing users after a short period of time. This interval varied from 2–7 days due
to the schedules of some participants not permitting them to participate at a
specific time. The results are further analysed and discussed in Sect. 5.

One third of the subjects chose an 8 character username, probably due to
legacy reasons from Unix machines. Others chose longer usernames with 10 and
12 characters being in the second place for popularity. The length of the user-
name did not have any significant impact on the accuracy of the measurements,
although the sample sizes are very small for reliable statistical analysis.

4.1 Authentication

In Fig. 1 we can see the scores from the first phase, the learning phase. These
scores were used to decide what would be feasible thresholds for authentication.
We set our target to 90% accuracy for the authentication. From the data we
computed for down-up time 3.5 as the threshold. For up-down time the threshold

Fig. 1. Scores from the learning phase. Scores from the two different locations are
differentiated with crosses and circles.
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Fig. 2. Scores from the testing phase. Scores from the two different locations are dif-
ferentiated with crosses and circles. The lines denote the values of the thresholds.

was 3.4 and in order to successfully authenticate the user had to pass both
thresholds while typing the correct username.

In Fig. 2 we can see the results from the second phase of tests. The horizontal
and vertical lines denote the thresholds chosen from the data of the first phase
for the up-down and down-up times respectively. During the second test phase
the users tried to authenticate themselves against the chosen thresholds. The
participants in the first location managed to authenticate themselves correctly
with 91% success rate with a standard deviation σ = 7%. In the second location
success rate was over 92% and the a standard deviation was σ = 10%. In total
the authentication success rate was slightly over 91.5% with a standard deviation
of σ = 9%.

4.2 Impersonation

We also carried out a small impersonation test together with the actual authen-
tication test. The test was conducted on three different usernames from the
usernames of the other test group. This simulated the situation of an attacker
trying to impersonate someone that she does not know. This is arguably the
hardest case of impersonation and attackers that are more familiar with the vic-
tim or that can try to learn the typing pattern by some form of observation could
have better chances of success. In any case, we saw this as a good indicator of
the security of our system despite the small sample sizes.

After the participant had completed the test with her own username, we
displayed a username from the other group of participants and asked the current
participant to type that username 5 times. After each attempt the scores from
that attempt were displayed to the participant attempting the impersonation.
We did this for 3 different randomly selected usernames for each participant.
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The impersonation challenge succeeded 42 times out of 195 tries so the success
rate was little below 22%. The success probability between different kind of
usernames varied greatly. The variance between the results of impersonation
attempts usernames is σ2 = 8.1% and thus the standard deviation is σ ≈ 28.5%.
In the best case the impersonation succeeded 9/10 of the time and in the worst
case it succeeded with 0/15 attempts.

Because the challenges were selected at random without any effort to bal-
ance the occurrences of different usernames, the results are only indicative of
the security and not easily comparable. With seven out of 18 usernames there
were no successful impersonation attempts (two usernames were not assigned for
impersonation at all). On the other hand, none of the three usernames, that were
impersonated by four different participants (total of 20 attempts) withstood all
attempts. The length of the usernames did not have a significant impact on the
security against impersonation.

5 Discussion

Our results show that this type of authentication can be used and it provides
usability, security and privacy protection to the user. However, more care needs
to be taken to make the impersonation harder for all usernames as the results of
Sect. 4.2 clearly show. The weakest usernames were too prone to impersonation
to provide any meaningful protection against adversaries. On the other hand,
more than half of the usernames were impersonated less than 10 % of the time,
when the acceptance threshold was tuned for 90 %.

In any case, our sample of some 20 people is too small to draw definitive
conclusions. Especially, if the length of the username would be considered as a
factor in both accuracy and security, then a much larger pool of users would be
needed. If the increased length would improve security and accuracy, it could
act as a positive sign for continuous authentication, where the typing would
be measured continuously and authentication would be based on the totality of
all things typed. Of course in this type of authentication the content would no
longer matter for the authentication unlike in our case with usernames.

One improvement could be to use some more recent methods of measuring
keystroke dynamics. This would most likely require readjusting the thresholds
to get the same level of accuracy. It might also generate larger templates and
decrease the overall performance of the system if more different values need to
be stored in the template. Thus, there is a trade-off that needs to be considered,
if future work is built upon this system.

Our inclusion of the tag in the keystroke dynamics vectors was necessary to
fit the methods of [27] to those of [13]. The tags provide security in the original
MFAKE protocol and are based on results of [16]. However, in our case, due
to homomorphism, these tags do not protect against a man-in-the-middle tag
change. That is, an active attacker could change the original tag t to another tag
t′ for the keystroke dynamics. The full MFAKE protocol mitigates against this by
including in the final computation not only the tag, but also all communications
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between the server and the client and thus, this change of tag can only lead
into a denial of service (i.e. failing authentication), which an active attacker can
always do against MFAKE.

Furthermore, the method of [27] also only provides security against honest-
but-curious adversaries and as such may constitute even more serious threat.
There is a version of the protection method of [27] that is targeted against
malicious attackers, but it does not provide much more security for the overhead
that it generates and thus we decided not to use it for our work. In a more
optimised implementation, the overhead might not become an issue.

The system could be improved also in several other ways. First of all,
one could apply more recent partially homomorphic or even fully homomor-
phic encryption (FHE) schemes, e.g., [15] to provide more versatility to the
comparison methods. This would mean that also other biometrics than key-
stroke dynamics based on simple timing would probably be applicable. Also the
order-preserving encryption could be generalised with other property preserv-
ing encryption schemes such as [24]. Such a system could offer better privacy
protection. Especially with FHE the adversary could not learn even the relative
order of the different values in the tempalates and samples. This would make
the OPSE encrypted parts of the vector unnecessary and make the comparison
much simpler. In this way it would increase the efficiency of the system provided
that the FHE is efficient.

Keystroke dynamics provide also an interesting opportunity for continuous
authentication while typing. This type of authentication has been discussed for
example in [2]. The methods described in this paper are not yet efficient enough
for continuous use. This provides an excellent venue for further research, because
the system described in [2] does not offer privacy protection at the same level as
our work. Also protecting other types of continuous authentication systems such
as facial images with privacy safeguards is an important topic. Generalising the
results of [27] to this direction would be an interesting topic of research.

Our solution to this privacy-friendly, usable and secure authentication is
also generalisable to many other biometrics. Our specific implementation only
assumes that the measurements are given in numeric form as a vector and an
identification threshold that can be adjusted through experiments or taken from
the literature, if such can be found for the biometric method at hand. This makes
it suitable to many other biometric authentication applications. The main con-
straint is that it can only measure the distance of the sample measurement
from the template with the AAD metric. This provides a good venue for further
research on the topic, e.g., finding ways to use other metrics in a similar manner.

6 Conclusion

In this paper we have shown that it is possible to realise a secure, usable and
privacy-friendly authentication from keystroke dynamics. Our method results in
fairly good performance even with a simple biometric measurement. The secu-
rity and privacy features are also provided, although for some usernames the
impersonation was very easy.
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Further development could make this type of authentication even applicable
in a continuous manner, measuring the user constantly while she is typing and
still assuring privacy and security. It is fairly straightforward to generalise the
system to work with other biometrics that use simple distance metrics for com-
parison and even more complicated systems can be realised with further research.
On the other hand, the overall efficiency of the system should be improved
through optimised implementation.
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