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Abstract. State machine inference is a powerful black-box analysis
technique that can be used to learn a state machine implemented in
a system, i.e. by only exchanging valid messages with the implementa-
tion a state machine can be extracted. In this paper we perform a large
scale analysis of the state machines as implemented over the last 14 years
in OpenSSL, one of the most widely used implementations of TLS, and
in LibreSSL, a fork of OpenSSL. By automating the learning process, the
state machines were learned for 145 different versions of both the server-
side and the client-side. For the server-side this resulted in 15 unique
state machines for OpenSSL and 2 for LibreSSL. For the client-side, 9
unique state machines were learned for OpenSSL and one for LibreSSL.
Analysing these state machines provides an interesting insight in the
evolution of the state machine of OpenSSL. Security vulnerabilities and
other bugs related to their implementation can be observed, together
with the point at which these are fixed. We argue that these problems
could have been detected and fixed earlier if the developers would have
had the tools available to analyse the implemented state machines.

1 Introduction

TLS (Transport Layer Security) is one of the most widely used security proto-
cols and is used to secure network communications, for example, when browsing
the Internet using HTTPS or using email with SMTPS or IMAPS. TLS is the
successor of SSL (Secure Socket Layer), originally developed at Netscape. As
the name SSL is so widespread, it is often used interchangeably with TLS. The
first version of SSL was never released and the second version contained numer-
ous security issues [23]. The third version of SSL was also not without security
issues, and these were fixed in the first TLS version [7]. Two more TLS versions
were released after this and the fourth one, TLS version 1.3, is currently under
development [8,9]. Despite the fact that TLS 1.0 was released in 1999, many
servers on the internet today still support SSLv3 and even SSLv2 [2].

Due to its widespread use, the TLS protocol has been the subject of many
research projects. For example, it has been analysed using various different for-
mal methods [6,10-14,16,18,19]. These formal analyses focus on the protocol
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specifications, while many mistakes are also made in the actual implementa-
tion [15]. To counter this, a formally verified TLS implementation has been
proposed by combining a formal analysis with an actual implementation [4].

A large proportion of the applications that use TLS to secure their connec-
tions use the implementation provided by OpenSSL.! The first official release
of the OpenSSL project was version 0.9.1c in December 1998, and builds on
the code of SSLeay by Young and Hudson. Various forks of OpenSSL exist,
such as BoringSSL? and LibreSSL?, which were mainly started with the goal
of cleaning up the code and improving its security. Over the years OpenSSL
has been plagued with numerous implementation bugs, with sometimes a high
security impact. The most well-known example of this is probably the infamous
Heartbleed bug.*

In this paper we focus on the implementation of state machines of TLS.
Every implementation of a protocol needs to implement the corresponding state
machine that determines how all the possible messages are handled in different
states of the protocol. In [3,22] the state machines of TLS implementations
have been analysed, where for various implementations only recent versions were
analysed. In [22] a technique called state machine inference was used to extract
the state machine from TLS implementations by only interacting with it using
valid protocol messages. In this paper we will show how we automated the process
of using state machine inference in order to analyse a large number of TLS
implementations. We will use this to show how the state machine as implemented
in OpenSSL changed over the years and what issues could have been prevented
should this technique have been available to the developers. In order to do this
we learned the state machine for both the client- and server-side of 145 versions
of OpenSSL and LibreSSL. We checked BoringSSL as well, but as it does not
seem to use version numbering and it is not really intended for use outside of
Google we did not perform a large scale analysis of it. We reported our findings
regarding several smaller issues related to the state machine implementation in
BoringSSL.

2 TLS

In this section we will provide a short introduction to TLS, necessary to under-
stand the results later on. The goal of TLS is to set up an authenticated confi-
dential channel between two parties. The authentication can be mutual, but in
most cases it is only the server that is authenticated to the client.

The protocol starts with a handshake that is used to establish the used para-
meters, including the cipher suite (a combination of a key exchange, encryption
and MAC algorithm), perform the desired authentication and establish shared

! https://www.openssl.org/.

2 https://boringssl.googlesource.com/boringssl/.
3 http://www.libressl.org/.

4 http://heartbleed.com/.
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Fig. 1. A regular TLS session. An encrypted message m is denoted as {m}. If message
m is optional, this is indicated by [m].

session keys. Different session keys are used for both directions of the commu-
nication and for encryption and the computation of the MACs. Once the keys
are established, application data can be exchanged, which will be encrypted and
authenticated using MACs. In Fig. 1 we provide an overview of a regular TLS
session.

To start the handshake, usually the client will send a ClientHello message,
containing a list of supported ciphersuites and optional extensions. The server
will select a ciphersuite and return a ServerHello message, as well as other
optional messages such as its Certificate (used to authenticate the server), the
ServerKeyFErchange message (used in some key exchange algorithms), and a Cer-
tificate Request (used to request authentication from the client). The server then
indicates it is done by sending a ServerHelloDone message. Upon receiving this
last message, the client performs the local computations for the key establishment
and sends the necessary information to the server in a ClientKeyEzchange mes-
sage. If requested by the server, the client also sends the optional Certificate and
Certificate Verify messages to authenticate itself. After this, the client is ready to
start encrypting its messages, and it indicates that it will encrypt all following
messages by sending the ChangeCipherSpec message to the server. This is fol-
lowed by the Finished message, the first encrypted message which is used to pro-
vide integrity to the handshake. The Finished message contains a keyed hash over
all the previous messages that the client sent and received. If this hash does not
match the value as expected by the server or the server cannot decrypt the Fin-
ished message, this can be an indication of a man-in-the-middle attack and the



172 J. de Ruiter

connection should be closed. If the hash does match, the server will respond by
sending the ChangeCipherSpec message to indicate it will also encrypt all subse-
quent messages. This is again followed by an encrypted Finished message contain-
ing a keyed hash over all previous messages. Once the client accepts the Finished
message, the client and server are ready to start exchanging data securely using
ApplicationData messages.

To indicate possible errors during the connection the TLS specification
includes Alert messages. These alerts can have either a warning or fatal level,
where the first kind is only to inform the other party, while the second indicates
the protocol should be aborted and the connection closed. The Alert messages
always include a pre-defined reason, which can be, for example, Unexpected mes-
sage, Bad record MAC or Close notify. These Alert messages can be useful in our
analysis as they can indicate interesting conditions. For example, if we receive a
Bad record MAC alert this can be an indication that the keys on the client and
server differ, which is worth looking into in more detail.

3 State Machine Inference

To extract the model of a state machines for a protocol from an implementation,
a technique known as state machine inference can be used. This technique tries
to learn the state machine by only sending protocol messages and observing the
responses. This makes it a very useful technique for black-box analysis.

As representation of state machines we use Mealy machines. This gives us
a non-ambiguous formal way to describe the learned state machines. A Mealy
machine consists of a set of states, of which one is the initial state. Additionally,
an input alphabet is specified that describes which messages the system accepts
as input. Similarly an output alphabet contains the messages that the system
can send as responses. For every state, two functions are defined that map every
input message to a corresponding output and to a next state respectively.

In state machine inference, two types of algorithms are used. First, a learn-
ing algorithm is used to come up with a hypothesis for the implemented state
machine. To do this it can send protocol messages to the system under test
(SUT) and receive the corresponding responses. Which messages can be sent is
specified in the input alphabet. The algorithm also has the ability to reset the
SUT to its initial state. Once the learning algorithm comes up with a hypoth-
esis for the state machine by exchanging messages and resetting the SUT, this
hypothesis is passed on to the equivalence algorithm. This algorithm determines
whether the hypothesis matches the actual state machine. If this is not the case,
the equivalence algorithm returns a counter-example. The counter-example is
then fed into the learning algorithm, which uses this to update its hypothesis
and continues learning until it comes up with another hypothesis. This process
is repeated until the equivalence algorithm accepts a hypothesis. As in practice
the equivalence algorithm will not know the actual state machine, the equiva-
lence check will need to be approximated. In the next section we will discuss the
concrete algorithms we used for the learning and equivalence algorithm.
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4 Setup

For the learning of the TLS state machines we use the tool introduced in [22],
which makes use of LearnLib [20]. For the learning algorithm we use of Niese’s
modification of Angluin’s well-known L* algorithm [1,17]. The equivalence check-
ing is done using Chow’s W-method [5]. Given an upper bound on the number of
states, this algorithm is guaranteed to determine correctly whether the correct
state machine is found. As this algorithm can be computationally expensive due
to the many messages that are sent, we make use of the improvement to the
algorithm previously introduced in our tool. This modification makes use of the
fact that if a socket is closed, we know that no more messages will be received.
Therefore, queries that have a prefix for which we already know the connec-
tion will be closed are not performed, thus significantly reducing the number of
queries that are send to the implementation. A nice side-effect of this modifica-
tion is that if there are no loops in the state machine except for one or more sink
states where all messages go to the same state with a ConnectionClosed output,
we even have the guarantee that we found the correct state machine without
having to know an upper bound on the number of states.

In order to get useful results, the abstract input messages, as used by the
learning and equivalence algorithms, need to be converted to correctly format-
ted TLS messages and reversely, the received responses need to be converted to
the abstract output messages before they can be used by the algorithms. This
translation is done by the test harness, which is basically an (almost) stateless
implementation of the TLS protocol. In order to successfully finish a TLS hand-
shake, the test harness keeps track of some minimal notion of state by storing
essential data such as, for example, the data used in the key exchange.

As input alphabet for our analysis, we made use of a minimal set of TLS
messages, that are necessary to establish a successful connection. To test the
server-side these are: ClientHello, ClientKeyExchange, an empty client Certifi-
cate, ChangeCipherSpec, Finished and two ApplicationData messages, one with
a HTTP GET request and one without any data. When sending a ClientHello
message, we reset the buffer used to collect all the exchanged messages that
need to be hashed for the Finished messages. For the client-side testing we use
the following messages: ServerHello, Certificate, an empty Certificate, ServerHel-
loDone, ChangeCipherSpec, Finished and again the same two ApplicationData
messages as before.

To be able to learn the state machine for as many implementations as pos-
sible we completely automated the learning process. First, a crawler is used to
download all versions available on the website or FTP server of a specific imple-
mentation. After this the downloaded sources are automatically extracted and
compiled. This process is implementation specific and might require some tweaks
to be able to build older versions. However, once the required steps are known
the building of all downloaded versions is automated. Once we have a binary
executable, we perform a sanity check in order to see whether the implemen-
tation is able to set up a valid TLS connection with our TLS test framework.
Some older implementations are not able to do this, for example, as they do
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not support TLS yet but only SSLv3 or older. We ignored these older versions
in our analysis and focus on only implementations that support at least TLS
1.0. For the versions that do pass the sanity check, the configuration files that
are necessary for the actual state machine inference are generated. This is done
such that every version uses a unique port so there is no interference between
different versions that try to listen on the same port. Once we have the necessary
configuration files, the learning is started using our tool from [22]. It is possible
to perform the learning in parallel due to the usage of a unique port for each
version. Using this process we are able to automatically infer the state machine
for many versions of different TLS implementations. All software and models are
available online.?

5 Analysing the OpenSSL State Machines

Using our automated process we learned the state machine for both the server-
side and client-side for 111 different version of OpenSSL and 34 versions of
LibreSSL. The latest versions of OpenSSL that we analysed were 1.0.1t, 1.0.2h
and 1.1.0-pre4. For LibreSSL the latest version was 2.4.0. For the learning a
machine with an Intel Xeon E5-2420 CPU was used. The time required for the
learning varied from 3min for more recent implementations of the server-side
to about 2h for older server-side implementations. These 2h were exceptional
though, and in general the running time per implementation was well below
20 min for both server- and client-side. Below we will discuss our analysis of the
state machines we learned for the server- and client-side in Sects.5.1 and 5.2
respectively.

5.1 Server-Side

For the server-side, the learning process resulted in 15 unique state machines
for OpenSSL. The learning of the LibreSSL server-side state machine resulted in
only two different state machines. One of these state machines was equal to one
of the OpenSSL state machines. In Fig.2 an overview is given of the different
state machines for the server-side and their overlap between different branches of
OpenSSL. In this figure we excluded the various beta versions that we learned,
leaving 12 different state machines.

The oldest version of OpenSSL for which we learned a state machine is version
0.9.7, released in December 2002. For the server-side this state machines contains
17 states (see Fig.3), the highest number for all state machines we learned.
When analysing the state machine we observe several explanations why the state
machine contains so many states. First, it is possible to start a renegotiation
after completing a handshake successfully by starting a new handshake. In our
case this does not lead to a successful data exchange, and therefore the number
of states used for a handshake is already doubled (states 12, 13, 16 and 14).

5 http://www.cs.ru.nl/~joeri/.


http://www.cs.ru.nl/~joeri/

A Tale of the OpenSSL State Machine: A Large-Scale Black-Box Analysis 175
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Fig. 2. Overview of the 12 state machines of the server-side for different versions of
OpenSSL. The version number indicates the first version in a particular branch that a
state machine was used. Per unique state machine the number of states is included.

Secondly, the server accepts empty Certificates from the client after a ClientHello
message, which adds an additional state for every handshake attempt (i.e. states
5, 8 and 13).

Though these functionalities can still be seen as genuine, we also observe
some clearly erroneous behaviour. For example, when after the initial Clien-
tHello immediately a ChangeCipherSpec message is sent, the connection is not
closed and the handshake can still be finished by sending a ClientKeyExchange
and Finished message (the path through states 1, 6, optionally via 8, to 9 and
finishing in 2). The Finished message is not accepted from state 9 however and
instead a Decrypt error alert is returned. This additional behaviour is the result
of a serious security issue that we will discuss in more detail later.

Other observations include the fact that empty ApplicationData messages
are always ignored, except if it is the first message that is sent, in which case
the connection is closed. Also, it is possible to send the ClientHello message
numerous times at the beginning of a handshake as there is a self-loop with this
message after the initial ClientHello message in state 1. A possible explanation
for this is support for a feature called Server-Gated Cryptography. This is a
legacy feature that resulted from the export restrictions on cryptography. Under
these restriction strong cryptography was still allowed for financial transactions,
so if a client asked for a weak export cipher the server could indicate that it was
allowed to use the stronger ciphers and the client could send a new ClientHello
message containing the stronger ciphersuites.

If after a successfully completed handshake a ChangeCipherSpec message is
sent (from states 10, 12 and 13), all subsequent messages are replied to with a
Bad record MAC' alert.
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In version 0.9.7c the state machine is changed and the number of states is
reduced to 14. This is due to the fact that the server no longer accepts certifi-
cates from the client during the handshake, which results in states 5, 8 and 13
being dropped from the previous state machine. According to the changelog the
server now only accepts a certificate if it requested one using a Certificate Request
message in order to comply with the official specifications.

The state machine then already changes again in version 0.9.7e. The number
of states stays the same though and the only change is that Alert messages are
now always sent before the connection is closed after a handshake is initialised.
This wasn’t the case before for the ChangeCipherSpec and ApplicationData
messages (see, for example, state 7 of version 0.9.7). The state machine then
stays stable until the end of the branch (version 0.9.7m) and is also the same for
the first versions of the 0.9.8 branch that we learned.

Then in November 2009 version 0.9.8] was released, which contains only 11
states. Looking at the learned model, we can see that it is no longer possible to
perform a renegotiation after a successfully completed handshake as we previ-
ously observed. Around the same time as this release, details are published on a
serious vulnerability that is present in many TLS implementations (CVE-2009-
3555). This issue made it possible for a man-in-the-middle to inject plaintext
data at the beginning of a TLS session. The attacker starts a TLS connection
with a server that the victim’s client want to speak to. The attacker can then
send any data to the server. After this it will start a renegotiation with the
server, whereby it forwards the original TLS messages from the victim. The
victim does not realise it is performing a renegotiation as it looks the same as
the initialisation of a connection. The server will consider it a renegotiation and
append the data from the client to the data it initially received from the attacker.
The attacker won’t be able to eavesdrop on the data that is exchanged between
the victim and the server, but by only prepending data it has been shown that,
for example, credentials could be stolen.® When this issue was reported, devel-
opers of different implementations and the IETF came together in “Project
Mogul” to find a solution. As the issue is caused by the way renegotiation is
performed, OpenSSL initially responded by disabling renegotiation completely,
as we observed in the learned state machine.

We also observed some new strange behaviour after the handshake is suc-
cessfully completed (state 8). Every message, other than ApplicationData or
ChangeCipherSpec, is initially ignored, but every following message results in a
decryption failure on our side. When analysing the network traffic we noticed
that this was due to the fact that the server sent plaintext Alert messages, even
though all messages should have been encrypted at this point. We also observe
that it is still possible to send a ChangeCipherSpec both directly after the first
ClientHello (from state 1) and after a successful handshake (from state 8). As
before these paths eventually lead to a Decrypt error alert and Bad record MAC
alert respectively.

5 http://www.securegoose.org/2009 /11 /tls-renegotiation-vulnerability-cve.html.
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In February 2010, RFC 5746 was released [21]. This RFC specifies a secure
way to perform renegotiation. This RFC is implemented in the same month in
version 0.9.8m. In the state machine multiple ClientHello messages are accepted
again, and the strange behaviour that resulted in a decryption error in our
framework is no longer present.

At the beginning of 2012, version 0.9.8s was released. The state machine con-
tains 10 states, but we see that a ClientHello is only accepted once now. A second
ClientHello is still responded to in the usual way with a ServerHello, Certifi-
cate and ServerHelloDone message, though the connection is closed immediately
after this. At the end of 2011 it was reported that allowing arbitrary ClientHello
messages at the start constitutes a denial-of-service attack as the server has to
perform significantly more computations upon receiving a ClientHello than the
client (CVE-2011-4619). This issue explains why only one ClientHello is accepted
now. However, for Server Gated Cryptography we would still expect to see two
ClientHello messages and if a message is rejected it should be responded to with
an Alert message and not a valid ServerHello, Certificate and ServerHelloDone
message. These issues are fixed in version 0.9.8u, where at most two ClientHello
messages are accepted, which increases the number of states again to 12.

Before, we observed the early ChangeCipherSpec, directly after the first
ClientHello message, and subsequent messages. This part of the state machine
was due to a serious security flaw which was eventually discovered by Kikuchi
(CVE-2014-0224)." By sending a ChangeCipherSpec message too early, i.e.
before the keys have been established, the keys are calculated using an empty
master secret and therefore only depend on information known to a possible
attacker. Due to the way the Finished message is computed in version 1.0.1, it
was vulnerable to decryption of the TLS connection by an attacker who is able
to eavesdrop on the connection and even complete hijacking of the connection
by a man-in-the-middle. A detailed analysis of this bug is given by Langley on
his blog.® In version 0.9.8za we see that the ChangeCipherSpec message is no
longer accepted directly after the ClientHello message (see Fig. 4). The Change-
CipherSpec is however still accepted directly after a successful handshake.

Branch 1.0.0 completely follows the state machine from branch 0.9.8. Branch
1.0.1 starts with a different state machine though, after which it start using the
same state machine as 0.9.8za from version 1.0.1h, to finally end with a different
state machine again after 1.0.1k. In version 1.0.1 the early ChangeCipherSpec
is accepted as with the earlier versions of 0.9.7 and 0.9.8. However, instead
of finishing with a Decrypt error from the server-side, our framework cannot
decrypt any messages it receives from the server.

Version 1.0.1k (see Fig.5) was released after we reported the issue regarding
the ChangeCipherSpec message following a successfully completed handshake.
This behaviour was the result of a bug that resulted in the keys being reset to
their initial values and the same key being used for both directions (i.e. from
client to server and from server to client). This breaks the protection measures in

" http://ccsinjection.lepidum.co.jp/.
8 https://www.imperialviolet.org/2014/06/05 /earlyccs.html.
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place against replay attacks. In version 1.0.1k we can see the superfluous Change-
CipherSpec message is no longer accepted. At the same time we also checked a
development version in which the second ClientHello was replied to with correct
messages (ServerHello, Certificate, ServerHelloDone) but immediately after this
the connection was closed. This was similar to the behaviour that we observed
in version 0.9.8s and was fixed before the code was ever released. From version
1.0.1k the state machine stays stable until the end of the branch.

The state machine for the 1.0.2 branch is stable, except for the beta versions,
and contains 7 states. This is one state less than version 1.0.1k, which is due to
the fact that Server Gated Cryptography is no longer supported and only one
ClientHello is accepted at the beginning of the handshake. In the pre-releases for
1.1.0 the number even drops to 6 states which is caused by the implementation
accepting empty ApplicationData messages in every state, even the initial one.
In branch 1.1.0, a new implementation is introduced for the state machine.

LibreSSL starts in version 2.0.0 with the same state machine as OpenSSL
0.9.8za. In version 2.2.1 the state machine changes, but the issue we found in
OpenSSL with the ChangeCipherSpec message after a successful handshake is
still present.

5.2 Client-Side

For the client-side, 9 unique state machines were learned for OpenSSL and one
for LibreSSL, which was equal to the latest one from OpenSSL. An overview of
the client-side state machines for OpenSSL is given in Fig. 6. Two state machines
are again excluded here as they are unique for beta versions.

The first two state machines that we learned did not result in usable state
machines. This was due to the fact that these versions did not have extensions
enabled by default and therefore rejected our ServerHello messages. In version
0.9.8j, extensions were enabled by default and we get the first model suitable

0.9.7 | 09.7e
0.9.8f 0.9.8j (12) [ 0.9.81 (12) {0.9.8m (12)| 0.9.87a (7)
1.0.0 1.0.0m
1.0.1 (12) 1.0.1f 1.0.1h
1.0.2
1.1.0-prel

Fig. 6. Overview of the 7 state machines of the client-side for different OpenSSL ver-
sions. The version number indicates the first version in a particular branch that a state
machine was used. Per unique state machine the number of states is included, except
for the first two for which no usable state machine was learned.
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for analysis. This state machine contains 12 states and displays some unexpected
behaviour. After a successful handshake, most unexpected messages are replied
to with a ClientHello message before the connection is closed. It is however
possible to send a ChangeCipherSpec message followed by a ServerHello. The
ServerHello is responded to with a ClientHello, after which a complete new
handshake can be performed. After the ChangeCipherSpec the messages cannot
be decrypted any more, indicating that a key is used which is different than
expected. The same is the case if a ChangeCipherSpec is sent too early, namely
after the ServerHello or the ServerCertificate. This last behaviour matches that
of the server-side, which is caused by the vulnerability reported by Kikuchi.

In version 0.9.81, the number of states stay the same, but the client no longer
sends ClientHello messages and renegotiation seems completely disabled. This
matches what we observed for the server-side, where renegotiation was disabled
to prevent a serious security issue. Renegotiation seems to be re-enabled in ver-
sion 0.9.8m, as the client sends ClientHello messages again just before closing the
connection when receiving an unexpected message after a successful handshake.
We are no longer able to perform renegotiations though as our framework does
not implement the secure renegotiation as specified in RFC 5746 [21]. From ver-
sion 0.9.8za, when the bug reported by Kikuchi is fixed, the ChangeCipherSpec
message is no longer accepted directly after a successful handshake.

As can be seen in Fig.6, the next branches implement the same state
machines as branch 0.9.8, except for version 1.0.1. This state machine is almost
identical to the one from 0.9.8 m though. The only difference is that, upon receiv-
ing a Finished message in the initial state, the connection is immediately closed
in version 1.0.1, while an alert is sent first in version 0.9.8m. For LibreSSL all
versions resulted in the same state machine as OpenSSL version 0.9.8za.

6 Conclusion

By just looking at the state machines, inferred in our automated process, we
are able to analyse the evolution of OpenSSL, without requiring an analysis of
the source code. Due to our automated process we were able to learn the state
machine for 145 different versions for both the server- and client-side. Various
bugs can be spotted by only analysing the learned models, and indeed we even
reported several new bugs to different developers. Observable bugs can be serious
security flaws, such as the one reported by Kikuchi, that have been present for
many years, and might have been fixed earlier if only the developers had the tools
to analyse their state machine implementation. We can see how the state machine
improves over time and how the current versions seems quite clean. Would the
developers have had the tools, it might not have taken almost 14 years to get to
this state.

Having access to the source code, the developers could possibly leverage this
fact in their analysis of the implemented state machine. However, language spe-
cific tools would be needed for this and the code might need to be instrumented
to be able to use these tools. By using a black-box analysis, as used in this
paper, developers can use generic tools that work independent of implementa-
tion details.
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In future work we intend to extend this analysis to other implementations.
Next to this, we plan to add automated analysis to our testing framework in
order to make it easy for developers to spot unexpected or strange behaviour
and observe changes between versions. We expect this can be a helpful tool
as currently developers have many tools to perform, for example, analysis of
memory usage or even static analysis of their code, but a tool to check exactly
what state machine is implemented is currently lacking.

To conclude, state machine inference is a useful technique when analysing
implementations and a large-scale analysis of state machines can tell an inter-
esting tale about the evolution of a protocol implementation.
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