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Preface

The NordSec conferences were started in 1996 with the aim of bringing together
researchers and practitioners in the field of computer security in the Nordic countries,
thereby establishing a forum for discussions and cooperation between universities,
industry, and computer societies. Over the years, NordSec has developed into an inter-
national conference that takes place in the Nordic countries on a round-robin basis. It has
also become a key meeting venue for Nordic university teachers and students with an
interest in security research.

These proceedings contain the papers presented at NordSec 2016: the 21st Nordic
Conference on Secure IT Systems held during November 2–4, 2016, in Oulu, Finland.
The venue was the University of Oulu, co-located with the 10th International Crisis
Management Workshop and Oulu Winter School.

Of the 49 total submissions received by the July 8 extended deadline, 43 met the
requirements for peer review. After a brief manuscript bidding process, the review
period spanned July 12 through August 10, during which the 29-member Program
Committee along with 20 external reviewers produced a total of 151 reviews. With an
average of 3.5 reviews per manuscript, this strong effort brought us quite close to our
goal of four reviews per manuscript.

Based on the reviews and following a brief yet active discussion phase, we notified
authors on August 15 that 16 manuscripts were accepted for presentation at NordSec
2016. Amongst these papers, five clear themes emerged: system security, network
security, software security, cryptography, and authentication. Furthermore, the accepted
papers suggest cyber-physical system security is currently an active academic research
area.

We were honored to have three brilliant invited speakers: (1) Shay Gueron,
University of Haifa, Israel, and Intel Corporation (Intel Development Center, Haifa,
Israel); (2) Jan-Erik Ekberg (Trustonic); (3) Daniel Komaromy (Comsecuris).

As NordSec 2016 chairs, we extend our sincerest gratitude to everyone involved in
making this year’s instance a success, including but not limited to: the authors who
submitted their hard work, the Program Committee and external reviewers, the invited
speakers, Christian Wieser (Conference Ops), and our generous sponsors Ericsson and
Intopalo.

September 2016 Billy Bob Brumley
Juha Röning
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Event-Triggered Watermarking Control
to Handle Cyber-Physical Integrity Attacks

Jose Rubio-Hernan1(B), Luca De Cicco2, and Joaquin Garcia-Alfaro1

1 SAMOVAR, Telecom SudParis, CNRS, Université Paris-Saclay, Evry, France
{jose.rubio hernan,joaquin.garcia alfaro}@telecom-sudparis.com

2 Politecnico di Bari, Dipartimento di Ingegneria Elettrica e dell’Informazione,
Bari, Italy

luca.decicco@poliba.it

Abstract. The use of control-theoretic solutions to detect attacks
against cyber-physical systems is a growing area of research. Traditional
literature proposes the use of control strategies to retain, f.i., satisfactory
closed-loop performance, as well as safety properties, when a communica-
tion network connects the distributed components of a physical system
(e.g., sensors, actuators, and controllers). However, the adaptation of
these strategies to handle security incidents, is an ongoing challenge. In
this paper, we analyze the use of a watermark-based detector that han-
dles integrity attacks. We show that (1) the detector is able to work prop-
erly under the presence of adversaries using non-parametric methods to
escape detection; but (2) it fails at detecting adversaries using parametric
identification methods to escape detection. We propose a new strategy
that complements the watermark-based detector in order to detect both
adversaries. We validate the detection efficiency of the new strategy via
numeric simulations.

Keywords: Cyber-physical security · Critical infrastructures · Attack
detection · Adversary model · Networked Control System

1 Introduction

As an evolution of traditional industrial control systems [9], cyber-physical sys-
tems [11] combine feedback control technologies with novel computing and com-
munication capabilities. The recently coined cyber-physical security term refers
to mechanisms that address security issues associated to these environments.
The use of inadequate cyber-physical security mechanisms can have an adverse
effect in critical infrastructures, either national or private ones [6]. These issues
place the study of cyber-physical security mechanisms as a hot research topic.

Given the control-theoretic nature of cyber-physical systems, the control com-
munity is actively working to adapt traditional control strategies to detect faults
and errors, towards detectors of malicious attacks [7,8,17]. Motivated by the
same objectives, we present in this paper a solution that combines two different
control strategies to handle integrity attacks against cyber-physical systems.
c© Springer International Publishing AG 2016
B.B. Brumley and J. Röning (Eds.): NordSec 2016, LNCS 10014, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-47560-8 1
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The contributions of this paper can be summarized as follows. First, we ana-
lyze the effectiveness of a challenge-response detector based on control-theoretic
watermarks, under the assumption of integrity cyber-physical attacks. We reex-
amine the security of an existing contribution by Mo et al. in [13], and revisit its
security effectiveness under a new adversarial scenario. We show that under the
new assumptions, the original contribution presents some weaknesses. We then
propose a new detection strategy that combines event-triggered control strategies
with the previous watermark-based detector, in order to cover the new adver-
saries. Finally, we validate our proposed approach via numerical simulations.
Our results show the effectiveness of our novel proposal.

The paper is organized as follows. Section 2 provides the necessary back-
ground. Section 3 reviews the watermark-based detector scheme by Mo et al.
[13], provides a new adversary model and reexamines the security of the detec-
tor under the new adversary model. Section 4 presents the new detection strategy
to handle the uncovered limitations, and validates the approach via numerical
simulations. Section 5 reviews related work. Section 6 concludes the paper.

2 Background

2.1 Cyber-Physical Attacks

The use of communication networks and IT components in traditional con-
trol systems paves the way to new vulnerability issues. Attacks against these
setups are named cyber-physical attacks. These attacks target physical processes
through the network. In [19], authors propose a taxonomy of cyber-physical
attacks based on the resources of the adversaries. Such resources are mainly
measured in terms of adversary knowledge (e.g., a priori knowledge of the adver-
sary about the system and its security measures). For instance, the knowledge of
the adversary about the system is the main resource used to build up complex
attacks, and to make them undetectable. Based on the degree of the adversary
knowledge, the attacks may succeed at violating system properties, e.g., avail-
ability and integrity, as well as at obtaining operational information about the
system to make the attacks undetectable.

Based on the adversary knowledge, cyber-physical attacks related to integrity
can be classified as: (i) the replay attack where the adversary does not need
knowledge about the system model [13]; (ii) injection attack, where the adversary
injects false data or deviation of the legitimate data. These attacks are not
detected if the data are compatible with the dynamics of the system [19], i.e.,
the adversary must to know the physical processes; and, (iii) covert attack, where
the adversary knows perfectly the cyber-physical system behaviour. This attack
is defined in [18] where the authors conclude that it is not possible to be detected.

Several techniques exist in the literature to counter these attacks. For
instance, (a) signal-based detector methods [1]; (b) statistical detection mecha-
nisms [5]; and (c) stationary watermark-based detectors, adapting failure detec-
tor mechanisms [13]. In the following sections, we re-examine the watermark-
based technique, and some control strategies, in order to propose an improved
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security technique against integrity attacks. The new detection strategy handles
cyber-physical adversaries which are not detected with the aforementioned tech-
niques. Such cyber-physical adversaries use a parametric technique to obtain the
knowledge about the system model.

2.2 Control Strategies

Control theory is a well-known topic, where the evolution of the technology has
been the main motivation to create new control policies to manage these systems,
keeping the control features. Among these new technologies, we can mention the
networked control systems (NCSs), where the loop between the different compo-
nents of the system is closed through the network. A wide range of research has
been reported in the literature focusing on managing these new technologies in
order to preserve the control properties of the systems. They have generated new
challenges in control/estimation, signal processing, and communication in order
to solve the new performance problems as limited power transmission, band-
width constrains, packet drop, delay or security. The networked control systems
have motivated to consider control/estimation and communication in a unified
way [10], in order to solve problems as performance or security. Among all con-
trol strategies in NCSs, we have focused on the strategies depending on the
transmission policy; sampled-data control, or event-triggered control. Into the
sampled-data policy, we find mono-frequency sampling, i.e., the same sampling
frequency for all the channels, or multi-frequency sampling, i.e., different sam-
pling frequencies depending on the channel (sensor/controller or controller/ac-
tuator) [17]. Event-triggered control (ETC) has been also studied depending on
the policy to send the events, Periodic event-triggered control (PECT) [8] or sto-
chastic events-triggered schedule [7]. This topic is inline with our research since
the security in NCSs includes the management of the control properties through
the network to avoid that an external entity, an adversary, has the capacity to
control these properties and harm the system.

2.3 Watermark-Based Attack Detection

The watermark-based detector is proposed in [13], with the goal of detecting
replay attacks against cyber-physical systems. To analyze the watermark-based
detector, the authors use an industrial control system modeled mathematically
as a discrete linear time-invariant (LTI) system. This mathematical model is used
to describe the dynamic behaviour of the system. The system can be represented
as follows:

xt+1 = Axt + But + wt (2.1)

yt = Cxt + vt (2.2)

where xt ∈ R
n is the state’s vector, ut ∈ R

p is the control signal, yt ∈ R
m is the

system output, and wt ∈ R
n and vt are the process noise and the measurement

noise respectively. The noises are assumed to be a zero mean Gaussian white
noise with covariance Q, i.e. wt ∼ N(0, Q) and R, i.e. vt ∼ N(0, R) respectively.
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Moreover, A ∈ R
n×n, B ∈ R

n×p and C ∈ R
m×n are respectively the state

matrix, the input matrix end the output matrix.
Let us now define the well-known Linear Quadratic Gaussian (LQG) app-

roach used as a control technique in [13]. This technique has two independent
components:

1. a Kalman filter producing an optimal state estimation x̂t of the state x:

x̂t|t−1 = Ax̂t−1 + But−1

x̂t = x̂t|t−1 + Kt(yt − Cx̂t|t−1) (2.3)

where Kt denotes the Kalman gain, and x̂t|t−1 is the a priori system state
estimation.

2. a Linear Quadratic Regulator (LQR) providing the control law ut.

ut = Lx̂t (2.4)

where L denotes the feedback gain of a linear-quadratic regulator.

After describing the model of the plant, hereinafter we present the detection
scheme proposed in [13] against replay attacks. The idea is to superpose a water-
mark signal Δut ∈ R

p to the optimal control law u�
t . The new control input ut

is given by:
ut = u�

t + Δut (2.5)

Note that the watermark signal is independent from the process noise wt and
the output noise vt. To detect the adversaries, the watermark-based detector
employs a well-known χ2 detector [3]. The alarm signal gt generates by the
detector is defined as:

gt =
t∑

i=t−w+1

(ri)TP−1(ri) (2.6)

where w is the size of the detection window, P is the co-variance of input sig-
nals from the sensors and rt = yt − Cx̂t|t−1 is the residues generated from the
estimator at each t-th time step.

To verify if the system is under attack, gt is compared with a threshold γ.
If gt is equal or greater than the threshold, gt ≥ γ, the detector generates an
alarm.

3 Watermark-Based Attack Detection Against a New
Adversary Model

Let us assume the system employs the detector described in Sect. 2.3, so that
the controller superposes its output with an authentication watermark Δut. At
steady-state, i.e. after the transient has been exhausted, the output of the system
can be considered as the sum of its steady-state value and a component that is
due to watermark signal that shall be only known by the controller.
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Hereinafter we denote the adversary proposed in [13] as a cyber adversary
[16]. This attacker has the ability to eavesdrop all the messages sent by the
sensors yt and to inject messages with a signal y′

t to conduct malicious actions
without any knowledge about the system model. Let us also define a cyber-
physical adversary as the attacker who is able to eavesdrop the messages with
the intention of improving its knowledge about the system behaviour, in order
to conduct malicious actions [16].

Based on the way to model the system’s behaviour, two different cyber-
physical adversaries can be defined.

Definition 3.1. An attacker that, only uses the previous input and output of
the system to obtain a system behaviour is defined as a non-parametric cyber-
physical adversary.

Remark 1. This adversary can use a Finite Impulse Response (FIR) identifica-
tion model [20].

Cyber and non-parametric cyber-physical adversaries can be handled using
a non-stationary watermark detector scheme [16]. However, if the cyber-physical
adversary is able to acquire the parameters of the system, a non-stationary
watermark detector scheme is not able to detect the attack.

Definition 3.2. An attacker able to estimate the parameters of the system using
input and output data to mislead the controller detector is defined as a parametric
cyber-physical adversary.

The signal injected by the parametric cyber-physical adversary cannot be
detected by the χ2 detector (cf. Eq. (2.6)), using a non-stationary watermark-
based scheme.

Remark 2. This adversary can use an ARX (autoregressive with exogenous
input) or an ARMAX (autoregressive-moving average with exogenous input)
approach in order to estimate the model of the system [14].

We assume that the main constraint of this adversary is the energy spent
to eavesdrop and analyze the communication data, i.e., the number of samples
eavesdropped to obtain the system model parameters.

Proof. If the system uses a watermark-based detector, the system control inputs
are represented by Eq. (2.5), and the outputs are represented by:

yt = C(Axt + B(u�
t + Δut) + wt) + vt (3.1)

note that the watermark can be defined as an independent and identically dis-
tributed Gaussian distribution or a stationary Gaussian distribution. Using the
ARX approach we can define the system defined in Eqs. (2.1) and (2.2) as follows:

Y (z) = H(z)U(z) + V (z) (3.2)
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where U(z) and Y (z) represent the inputs and the outputs of the plant respec-
tively. V(z) represents the external noise which affects the outputs of the plant.
And H(z) is another way to describe the model of the system presented in
Sect. 2.3, using frequency domain.

H(z) =
Y (z) − V (z)

U(z)
=

N (z)
D(z)

=
(

n0z
m + n1z

m−1 + ... + nm

d0zn + d1zn−1 + ... + dn

)
(3.3)

where N (z) and D(z) are the polynomial functions which build the model of the
system. We prove that under the attacker model of Definition 3.2, the adversary
is able to know exactly the watermark signal and thus Δut = Δu′

t.

Proposition 1. A parametric cyber-physical adversary is able to obtain the sys-
tem model, H(z), and mislead the controller, eavesdropping the control inputs
and the measurements of the sensors. The probability to be detected, is equal to
the probability to obtain an erroneous model. This probability, is directly propor-
tional to the order of the system, i.e., the order of D(z), and inversely propor-
tional to the window size to eavesdrop the data channel.

Proof. If the adversary knows all the control inputs, and the measurements of the
sensors, then the model obtained by the adversary can be defined as; Hat(z) =
(Y (z)−V (z))/U(z). Comparing the adversary model of the system and the real
model system, it is straightforward to prove that both system models are equal,
Hat(z) = H(z). Nevertheless, the adversary has an error that depends on the
order selected to create the model and the number of samples eavesdropped
to compute the parameters of the model, the window size. Following the Mean
Square Error (MSE):

MSE =
H(ζ)

T̂
(3.4)

where H(ζ)/T̂ is the error variance, since the system model used in this paper
(cf. Sect. 2.3) contains no bias error [2]. This error is directly proportional to sys-
tem complexity (flexibility), ζ, and inversely proportional to the samples eaves-
dropped by the adversary. It is worth to note that the complexity is directly
proportional to the system order. Indeed, for a system with a small order is
easier to obtain a good approximation model by the adversary.

To summarize, these adversaries look at the real system like a black box. They
can increase the order (complexity) of their model to improve the possibility to
go into the order’s range where the real system could be identified. Nevertheless,
they need to use a larger window size to minimize the MSE value. For this reason,
the computation cost of the attack increases for a high order of the system, since
the adversary needs to increase their order model, as well as, the window size in
order to minimize the MSE. It is worth mentioning that the number of samples
eavesdropped before the attack, as well as the order system of the adversary, are
the main parameters to avoid detection.
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3.1 Numerical Validation

In the previous sections we have seen that the watermark detector proposed in
[13] and the improvement proposed in [16] are not able to detect parametric
cyber-physical adversaries. We have validated both watermark detector against
the parametric cyber-physical adversary presented in Definition 3.2. Hereinafter
we present only the detection ratio with respect to this adversary using the
detector improvement proposed in [16] due to space constraint. Nevertheless, we
have obtained the same detection ratio using the detector proposed in [13]. This
adversary is able to identify the system model parameters from the input and
output plant signals. To validate the watermark detector against the parametric
cyber-physical adversary, we define three different use cases:

1. First use-case: the adversary knows only a subset of control inputs and mea-
surements of the sensors. This adversary will be detected by the watermark-
based detector proposed in [13].

Proof. Assuming, on the one hand, a system defined as H(z) = (Y (z) −
V (z))/U(z), where U(z) = U1(z) + U2(z); and, on the other hand, an adver-
sary whose model can be defined as Hat1 = (Y (z) − V (z))/U1(z), since this
attacker only knows a subset of inputs U1(z) [21]. Then, if all the inputs and
outputs are correlated, the adversary will be detected by the system, since:

Hat1 =
Y (z) − V (z)

U1(z)
�= Y (z) − V (z)

U(z)
= H(z) (3.5)

proves that the model used by the adversary, Hat1 , is different to the real system
model.

2. Second use-case: the adversary has access to all the control inputs and mea-
surements of the sensors. In this case, the parametric cyber-physical adversary
could be able to obtain the model of the system with great accuracy. To do
so, the adversary has to use the order of the unknown system, p, and to use a
large window size, T̂ , to eavesdrop the data in order to get the correct system
model.

Figures 1(a) and (b) show the detection ratio of the watermark detector
against a parametric cyber-physical adversary. Figure 1(a) shows the results of
200 Monte Carlo simulations using systems of order ten, against this adversary.
The results present the ratio of detection if the adversary uses a window size
equal to 200 and different system orders for the model. If the attacker chooses the
correct system order for the model, the ratio of detection is around 7%. Never-
theless, if the adversary order varies in the range [8, 12], the detection ratio is not
higher than 10%. Out of this range, the ratio of detection increases drastically.
Figure 1(b) shows the ratio of detection for 200 Monte Carlo simulations using
systems of order 25, against seven different parametric cyber-physical adver-
saries. The assumed window size is settled to T̂ = 300. If an adversary uses a
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Fig. 1. Detection ratio function with respect to the adversary order. (a) For systems
of order 10 against a parametric cyber-physical adversary with a window size equal
to 200. And (b) for systems of order 25 against a parametric cyber-physical adversary
with a window size equal to 300
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Fig. 2. Detection ratio function with respect to the adversary windows size. The order
used by the parametric cyber-physical adversary is the correct systems order, p = 25

model of the system with the correct order, the ratio of detection is around 8%.
The range of orders where the ratio of detection does not increase drastically is
[18, 28]. If an adversary uses an order in this range, the ratio of detection is not
higher than 10%. Otherwise, the likelihood to detect the adversary is high.

Figure 2 shows the ratio of detection of the same system, against a para-
metric cyber-physical adversary with different window sizes (125, 150, 200, 250,
and 300), and the correct system order. The results confirm that the adversary
needs a bigger window size in order to attack a system using a higher order,
with a ratio of detection less than 10%. From these results we can conclude
that a parametric cyber-physical adversary, who is capable to eavesdrop and
analyze a large number of samples from the communication channel, and using
an equivalent order system, is capable of evading detection.
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3. Third use-case: This is a particular case of the second use-case, where the
adversary knows a subset of inputs (control inputs) and outputs (measure-
ments of the sensors). These inputs and outputs are independent of any other
inputs and outputs. For this reason, the adversary is able to attack this subset
of the system. In this use-case, the adversary has all the knowledge about a
subset of the system since it is independent of the other subsets of the same
system.

4 PIETC Watermark-Based Detection Strategy

In the previous section we have seen that the watermark-based schemes are able
to handle attacks carried out by adversaries with limited knowledge about the
system dynamics, f.i., the ones defined in our work as either cyber adversaries
or non-parametric cyber-physical adversaries (cf. Definition 3.1). Nevertheless,
it fails at detecting those adversaries with enough knowledge about the sys-
tem dynamics, defined in our work as parametric cyber-physical adversaries (cf.
Definition 3.2). In this section we present a new detector scheme, hereinafter
denoted as periodic and intermittent event-triggered control watermark detector
(PIETC-WD). This new detector aims at detecting the three adversary models
defined in our work.

Our scheme consists of a local controller located in the sensors and a remote
controller creating a distributed controller. The cooperation between the local
and the remote controller allows us to create an intrusion detection policy to cap-
ture integrity attacks. The local controllers manage the dynamics of the plant,
and the remote controller manages the system closed-loop in order to ensure the
system against integrity attacks. Notice that our new scheme requires an addi-
tional controller together with the sensors, that must have enough computation
power to process data estimations, e.g., to predict errors between environmen-
tal and estimated data. The actuators do not require additional computational
power. Nevertheless, during the time between two consecutive events, they must
keep the last data received from the remote controller.

To carry out with our scheme it is necessary to define communication policies
among the sensors, the actuators and the remote controller. We define two com-
munication policies for ensuring the system: (i) periodic communication policy,
which the communication from the sensors to the remote controller is periodical,
with a Tsc period, and also from the remote controller to the actuators, with a
Tca period; and, (ii) intermittent communication policy, which allows for sending
data from the sensors to the remote controller if the local controller produces
an alarm. Notice that Tsc cannot be equal to Tca to avoid that an intermittent
communication takes place while the periodic communication is being sent.

Definition 4.1. Periodic and intermittent event-triggered control watermark
detector (PIETC-WD) is a detector strategy with distributed control tasks. On
the one hand, the sensors control the system periodically, using their local con-
trollers and a local watermark-based detector [13]. On the other hand, the remote
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controller uses the estimation error received from each sensor to periodically
generate the control inputs. The remote controller also controls the closed-loop
communication with an intermittent watermark.

We provide more information about the controllers and the communication
policies in the following subsections.

4.1 Local Controller Design

The local controller is located in the sensors and uses a watermark in order
to verify that the dynamics of the system is correct. Each sensor has a local
controller with a LQG approach (cf. Sect. 2.3). We denote the local controller
in each sensor by i ∈ {0, 1, ..., N − 1}, where N is the number of sensors in
the system. This controller adds a watermark to the sensor measurement before
sending the residue to the remote controller:

y
(i)
t = y

�(i)
t + Δy

(i)
t (4.1)

r
(i)
t = y

(i)
t − Cix̂

(i)
t|t−1 (4.2)

where y
�(i)
t is the sensor measurement, Δy

(i)
t is the watermark added by the

local controllers, and r
(i)
t is the residue sent to the remote controller to compute

the control input u
(i)
t . Notice that the new sensor measurement y

(i)
t is computed

after verifying that y
�(i)
t is the correct sensor measurement.

4.2 Remote Controller Design

The remote controller receives periodically the residue of each sensor, r
(i)
t , and

computes these residues using the LQG approach (cf. Sect. 2.3) to obtain the
state estimation:

x̂t = x̂t|t−1 + Kt(rt) (4.3)

where rt is a vector generated by all the residues of the sensors. We can define
the control inputs vector, ut, as follows:

ut = L(x̂t|t−1 + Ktrt) = L(x̂t|t−1 + Kt(r∗
t + Δyt)) (4.4)

where r∗
t is the residues’ vector before adding the watermark, and Δyt is the

vector generated by all the sensors’ watermarks.
The watermark used intermittently by the remote controller is added to the

control inputs. The controller adds a watermark with probability β. Denoting
λt = 1 or 0 as indication function whether the watermark is added or not, we
assume that λ′s are iid. Bernoulli random variables with E[λt] = β.

The intermittence of the watermark communication allows us to define the
watermark behaviour as a non-stationary distribution. This watermark, Δut (cf.
Eq. (2.5)), permits us to detect if the closed-loop is being manipulated. It is worth
noting that Δut is a stochastic signal with the same variance as Δyt.
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4.3 Periodic Communication Policy

The periodic communication policy is managed by the sensors. The sensors add
the watermark in the measurements received by the plant and send the residue rt
to the remote controller. The remote controller uses these residues to generate the
control inputs sent to the actuators. The actions of these actuators produce change
in the state of the plant that are captured by the sensors. If the real state differ
from the state estimated by the sensors, then the sensors will switch from periodic
communication policy to intermittent communication policy (cf. Sect. 4.4).

In order to validate the proposal, let us assume that an attack is started at
time T0 and we compute the residue r

(i)
t for t ∈ [T0, T0 + T − 1]:

r
(i)
t = y

′(i)
t − Cix̂

(i)
t|t−T (4.5)

where y
′(i)
t is the sensor measurement sent to the controller by the adversary.

Moreover, it is easy to show that the following holds:

x̂
(i)
t|t−T = x̂

′(i)
t|t−T + At−T0

i (x̂(i)
T0|T0−1 − x̂

′(i)
T0|T0−1)

+
t−T0−1∑

j=0

(Aj(Ai + BiLi)Ki(Δy
(i)
t−1−j − Δy

′(i)
t−1−j)) (4.6)

where x̂′(i) is the local estimated state for each sensor when the system is under
attack and Ai = (Ai + BiLi)(Ii − KiCi) is a stable matrix [13]. Substitution of
(4.6) in (4.5) yields:

r
(i)
t = y

′(i)
t − Cix̂

′(i)
t|t−T︸ ︷︷ ︸

First term

−CiAt−T0
i (x̂(i)

T0|T0−1 − x̂
′(i)
T0|T0−1)︸ ︷︷ ︸

Second term

−Ci

t−T0−1∑

j=0

(Aj
i (Ai + BiLi)Ki(Δy

(i)
t−1−j − Δy

′(i)
t−1−j))

︸ ︷︷ ︸
Third term

Let us consider separately the three terms in the equation written above: the first
term follows the same distribution of (yt − Cix̂

(i)
t|t−1); since Ai is asymptotically

stable – i.e. all its eigenvalues are inside the open unit disk of the complex
plane – the second term converges exponentially to zero. In fact, the entries of
At−T0

i converge exponentially fast to zero. The third term, under attack, is not
equal to zero, since Δy

(i)
t �= Δy

′(i)
t , and the adversary is detected; from a cyber

adversary viewpoint, the measurements of the sensors change all the time and
replay measurements are not accepted; likewise, a cyber-physical adversary is
not able to obtain the system model using the methodology proposed in Sect. 3.
For instance, the parametric cyber-physical adversary model, using the ARX
approach [14], is computed as follows:

Hat2 =
f(R(z), Y (z)) − V (z)

U(z)
(4.7)

where f is a linear function of the residue R(z), and the output Y (z).
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Assuming that the real model is H = (Y (z) − V (z))/U(z), we can see that
Hat2 �= H, and the adversary is not able to obtain the model of the system.

4.4 Intermittent Communication Policy

The aforementioned periodic communication policy is managed by the sensors.
The sensors produce an alarm if gt ≥ γ. When a sensor produces an alarm, this
information is sent immediately to the remote controller. The affected sensor
sends the real sensor measurement to the remote controller in order to carry out a
second verification. An alarm happens if the control input has been manipulated
by an external entity, a problem occurs in the system or the remote controller
adds the watermark in the control input.

When the remote controller receives a measurement from a sensor, if a water-
mark Δu has not been sent, then the remote controller creates an intrusion alarm.
Otherwise, if a watermark has been added to the control input, the controller
verifies if this alarm is produced by the watermark. If the residue generated
between the real measurements of the sensors and the estimation is under the
threshold, the remote controller sends the control input generated before adding
the watermark. However, if the residue is over the threshold, it means that an
external entity is into the closed-loop, and an alarm is activated.

In order to validate our claims, let us assume the following attack in the
communication channel between the sensor and the controller after the controller
sends a control input with a watermark. It is started at time T0 and we compute
the residues rt for t ∈ [T0, T0 + T − 1]:

rt = y′
t − Cx̂t|t−T (4.8)

Moreover, it is easy to show that the following holds:

x̂t|t−T = x̂′
t|t−T + At−T0(x̂T0|T0−1 − x̂′

T0|T0−1)

+
t−T0−1∑

j=0

(AjB(Δut−1−j − Δu′
t−1−j)) (4.9)

Substitution of (4.9) in (4.8) yields:

rt = y′
t − Cx̂′

t|t−T︸ ︷︷ ︸
First term

−CAt−T0(x̂T0|T0−1 − x̂′
T0|T0−1)︸ ︷︷ ︸

Second term

−C

t−T0−1∑

j=0

(AjB(Δut−1−j − Δu′
t−1−j))

︸ ︷︷ ︸
Third term

The first term follows the same distribution of (yt − Cx̂t|t−1); the second term
converges exponentially to zero. Since the third term is not equal to zero,
Δut �= Δu′

t, the adversary is detected; from a cyber adversary viewpoint, the
measurements of the sensors change all the time and replay measurements are
not accepted; likewise, a cyber-physical adversary is not able to obtain the sys-
tem model using the methodology proposed in Sect. 3.
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4.5 New Parametric Cyber-Physical Adversary

In this section we present a new parametric cyber-physical adversary with the
knowledge about the new detector strategy, in order to evaluate the new detec-
tion strategy. This attacker has knowledge about the new communication policies
and the existence of the local and the remote watermarks. Nevertheless, the new
adversary does not know the watermark co-variances, the controller’s parameters
used to obtain the correct error between data, and neither the moment when
the remote controller forces an intermittent communication.

The new adversary could be able to detect the correlation model between
the inputs and the outputs of the plant. This adversary can force the sensors’
intermittent communication with malfunction control inputs, and mislead the
controller with replay error data to obtain the model. Nevertheless, this adver-
sary is not able to know when the communication is periodic or intermittent,
since the attacker does not know when the remote control sends the watermark
added to the control inputs which generates the intermittent communication.
The intermittent communication does not change the communication between
the remote controller and the actuators, but produces an intermittent commu-
nication between the sensors and the remote controller, necessary to verify the
closed-loop.

Briefly, the new adversary is able to attack the integrity of the system. Nev-
ertheless using the PIETC-WD strategy, the adversary is detected by the con-
trollers of the sensors. The remote controller detects the attack when the remote
controller verifies the behaviour of the closed-loop. The adversary cannot avoid
the alarm in the sensors (local controller). Nevertheless, the attacker can cut off
the communication between the sensors and the remote control misleading the
remote controller with correct residues (e.g. replay residues). Moreover, in order
to avoid the alarm in the remote controller, the adversary can switch between
sending the measurements of the sensors or the residues, but the adversary has
a great probability to be detected. We validate the PIETC-WD strategy against
the new parametric cyber-physical adversary in the next section.

4.6 Numerical Validation

This section validates through numerical simulation the PIETC-WD strategy
proposed in previous sections. We validate this strategy using a use case of a
chemical plant. This plant has multiple sensors with local controllers, actuators
and a remote controller, which manage all the measurements of the sensors and
actuators. The sensors used in this use case send information about pressure,
temperature, and density. This information is produced when there is an alarm,
and also periodically to indicate the behaviour of the system to the controller.
This plant has to be controlled periodically since, if during ten consecutive peri-
odical samples, the system receives wrong or malicious control inputs able to
disrupt the system, a critical state might be reached.

To avoid that an adversary gets the system into a critical state, we use
our detector strategy (PIETC-WD), with a policy for the remote controller’s
watermark defined as follows:
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– The controller’s watermark uses a policy based on a probability to add the
watermark in a specific window of samples. In this use case, the windows
of samples is assumed equal to five. For each sequence of five control input
samples, the probability to add the watermark at each sample is β = 50%. The
system is able to produce 25 = 32 different sequences with the same probability
to be generated, θ = 1/25. Nevertheless, if among these five samples, the
system does not send any watermark, three more samples are used to add a
watermark to the control input until a new control sequence starts. These three
samples added to the original control sequence add 23 = 8 more sequences
where the five first samples have not watermark, and the three last samples
have the following probability to add the watermark:

• The probability to add the watermark in the sixth sample is 60%.
• The probability to add the watermark in the seventh sample is 50% if

the watermark is added in the sixth sample. Otherwise, if the watermark
is not added, the probability is 60%.

• The probability to add the watermark in the eighth sample is 50%, if
the watermark is added in the sixth or seventh sample. Otherwise, the
probability is 60%.

Figure 3 shows the results of 200 Monte Carlo simulations using the above
use case and controller’s watermark policy, against the cyber and the cyber-
physical adversary. These results present that the ratio of detection is around
97% against the new parametric cyber-physical adversary and more than 99%
against the other cyber and cyber-physical adversaries using the PIETC-WD
strategy with a correct policy for the remote controller’s watermark.
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Fig. 3. Detection ratio function with respect to the PIETC-WD strategy with a defined
controller’s watermark policy; (a) against the new parametric cyber-physical adversary;
and (b) against cyber or other cyber-physical adversaries

5 Related Work

Security of cyber-physical systems (CPS) is drawing a great deal of attention
recently [4]. Solutions focusing on control approaches for the detection of cyber-
physical attacks is the research axis more closely related to this paper. This axis
is the one that explicitly considers the interconnection between cyber and phys-
ical control domains in networked control systems. Recently, the control system
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community started to study security of cyber-physical systems both under the
methodological point of view and from a more technological standpoint by look-
ing at particular problems arising in, e.g., smart grids. Concerning the method-
ological aspects, several studies have proposed to adapt classical frameworks to
handle security issues in networked control systems.

Among cyber-physical attacks handled in the literature, replay attack is the
only attack that the adversary is able to carry out without knowledge about
system model. To carry out the rest of the attacks, it is necessary some sys-
tem knowledge. For example, to execute a dynamic false-data injection attack,
handled by Mo et al. [12], the adversary has to have a perfect knowledge of the
plant’s behaviour, or to execute a covert attack, handled by Smith et al. [18], is
necessary to have the knowledge about the plant’s and controller’s behaviour.
Otherwise, the adversaries defined in this paper are able to obtain the knowledge
of the plant’s behaviour in order to attack the system. Concerning the detection
mechanism, one line of research has considered the adaptation of fault detection
systems to detect a class of attacks [13,15,19]. In particular, Mo et al. show in
[13] that it is possible to detect replay attacks by properly watermarking control
inputs. Teixeira et al. propose in [19] a mathematical framework to model several
attack strategies. An alternative modeling approach is taken by Pasqualetti et
al. in [15], where the authors propose to employ the theory of geometric control
to model cyber-physical systems attacks. In this paper we focus on the inter-
connection between control strategies and watermarking detectors to handle the
integrity attacks.

6 Conclusion

In this paper, we have addressed security issues in cyber-physical systems. We
have focused on designing a robust distributed control strategy, in order to detect
parametric cyber-physical adversaries. These adversaries are able to acquire the
knowledge of the system needed to compromise the control inputs and the mea-
surements of the sensors to attack the system.

We have reviewed the watermark-based detector proposed in [13]. We have
shown that the detector fails at properly handling attacks carried out by para-
metric cyber-physical adversaries. In particular, we have shown that an adversary
that learns about the system model is able to model the watermark from the
control signal and succeeds at attacking the system without being detected. We
have also shown that the watermark-based detector works against a parametric
cyber-physical adversary who knows only a set of control inputs, [21]. Never-
theless, if the adversary knows all the control inputs and sensor measurements
of the system, and uses the correct orders range with a window size sufficiently
long, the watermark-based detector fails.

Finally, we have presented and validated our strategy. This strategy is capable
to detect cyber and cyber-physical adversaries with a great detection ratio, even
if the adversary finds the correct model of the system.
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Abstract. Industrial control systems (ICS) can be subject to highly
sophisticated attacks which may lead the process towards critical states.
Due to the particular context of ICS, protection mechanisms are not
always practical, nor sufficient. On the other hand, developing a process-
aware intrusion detection solution with satisfactory alert characterization
remains an open problem. This paper focuses on process-aware attacks
detection in sequential control systems. We build on results from runtime
verification and specification mining to automatically infer and monitor
process specifications. Such specifications are represented by sets of tem-
poral safety properties over states and events corresponding to sensors
and actuators. The properties are then synthesized as monitors which
report violations on execution traces. We develop an efficient specifica-
tion mining algorithm and use filtering rules to handle the large number
of mined properties. Furthermore, we introduce the notion of activity and
discuss its relevance to both specification mining and attack detection
in the context of sequential control systems. The proposed approach is
evaluated in a hardware-in-the-loop setting subject to targeted process-
aware attacks. Overall, due to the explicit handling of process variables,
the solution provides a better characterization of the alerts and a more
meaningful understanding of false positives.

1 Introduction

Cyber attacks represent a growing concern for industrial control systems (ICS)
[1]. On one hand, ICS are increasingly connected to traditional information sys-
tems. This trend has been spurred, among other reasons, by the adoption of com-
modity hardware and software components, as well as the convergence towards
TCP/IP solutions [11]. On the other hand, a majority of industrial systems
lack security mechanisms, having historically relied on isolation from traditional
information systems. In the singular context of ICS, protection mechanisms are
not sufficient, nor always practical. For instance, hardware constraints hinder the
c© Springer International Publishing AG 2016
B.B. Brumley and J. Röning (Eds.): NordSec 2016, LNCS 10014, pp. 20–36, 2016.
DOI: 10.1007/978-3-319-47560-8 2
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use of measures such as encryption to ensure confidentiality or integrity [5]. Any
latency within the low layers of industrial systems can affect the real-time con-
straints and perturb the functioning of the control loops. Despite recent efforts
geared towards developing suitable protection mechanisms [15], ICS remain par-
ticularly vulnerable, highlighting the need for appropriate detection measures.
In this paper, we are concerned with developing such a detection solution.

As opposed to traditional information systems, ICS are cyber-physical sys-
tems interacting with a physical process. Taking into account this aspect is
paramount to the detection of targeted attacks relying on advanced knowledge of
the process [17]. Noteworthy examples include the highly sophisticated Stuxnet
attack [12]. ICS are characterized by a duality between continuous behavior as
traditionally represented by differential equations, and sequential behavior where
control follows sequences of discrete steps. Our focus is on the latter aspect. This
paper presents an anomaly-based intrusion detection approach to detect process-
aware sequence attacks targeting a particular class of systems, namely sequential
control systems. Sequence attacks aim to put the process in a critical state by
a malicious temporal ordering of commands or messages [6]. Examples of such
attacks include exclusion attacks where two states should not happen simultane-
ously (an open valve and a running motor at the same time for instance), or wear
attacks where components’ lifetime is reduced through malicious manipulations
(by, for example, repeatedly opening and closing a valve) [17]. We restrict our-
selves to qualitative sequence attacks where only the temporal ordering matters.

General overview. We build on results from runtime verification and speci-
fication mining to automatically infer and monitor process specifications. The
specifications are represented by sets of temporal safety properties [2] over states
and events corresponding to sensors and actuators. The properties are synthe-
sized as monitors which report violations on execution traces. Filtering rules
allow handling the large number of mined specifications. Mining and monitoring
can also be done per activity, a notion which captures the different subprocesses
and functioning modes of a sequential system. A subprocess refers to a phase in
the operation of the system. For instance, a sequential system might go through a
start phase, a shutdown phase, and several intermediate phases. An activity can
also distinguish between manual or automatic modes of functioning. Compared
to prior work on process-aware intrusion detection [4,22], this work focuses on the
sequential aspect of control systems, covers more expressive properties through
a suitable formalism, and discusses a solution to alleviate the effort of manually
writing process specifications. In contrast with sequence-aware solutions target-
ing communication patterns within ICS [6,29], the proposed approach explicitly
handles process variables. This leads to improved alerts characterization, and a
better understanding of false positives.

Contributions. All in all, we make the following contributions:

– We propose an approach to detect process-aware sequence attacks targeting
sequential control systems by leveraging results from runtime verification and
specification mining
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– We suggest a number of filtering rules to handle the large size of inferred spec-
ifications, and introduce the concept of activity while discussing its relevance
within sequential control systems

– We evaluate our solution in a hardware-in-the loop setting and analyze its
performance and limitations

The paper is organized as follows. Section 2 provides an overview of prior work
on intrusion detection within ICS. Section 3 discusses background concepts per-
taining to ICS, runtime verification and specification mining. Section 4 presents
our approach including our specification mining algorithm Sect. 4.2 and filtering
rules Sect. 4.3. Section 5 evaluates the approach and discusses its limitations.

2 Related Work

Intrusion detection work in ICS can be classified into two broad categories: (i)
approaches which seek intrusion manifestations solely in the cyber part [7,21,30],
and (ii) approaches which take into account the physical process [4,14,22]. We
are interested in attackers whose objective is the disruption of the underlying
physical process. These attacks represent a challenge to traditional intrusion
detection approaches. Thus, we argue that a knowledge of the physical process
is essential to the detection of sophisticated process-aware attacks, and to the
understanding of false positives. In this paper, we present a process-oriented
intrusion detection solution.

A majority of the approaches found in the literature are anomaly-based, i.e.
they try to detect any significant deviation from a reference behavior. These
solutions often rely on assumptions about the simplicity of ICS protocols, the
stability of the network’s structure, or the regularity of the communications.
Compared to signature-based intrusion detection, anomaly-based approaches
have the crucial advantage of potentially detecting novel attacks. However, while
ICS exhibit certain regularities relative to traditional systems, investigations on
real-world data show that these assumptions are not always justified [6]. More-
over, anomaly-based approach, especially when relying on machine learning tech-
niques, exhibit some drawbacks [26] such as the number of false positives, and
the poor characterization of the alerts. This can lead to wrong reactions by the
operators, or to a loss of confidence in the IDS alerts. As a result, some effort is
needed to better characterize the alerts and handle false positives. Our approach
attempts to address some of these issues.

Within the literature, the work closest to ours include the sequence-aware
approaches developed in [6,29], and the process-aware approaches developed in
[4,22]. Caselli et al. [6] adopt a Markov chain-based solution relying on com-
munication patterns to detect sequence attacks. Sequence attacks are defined as
malicious/erroneous ordering or timing of commands or messages. We argue that
such attacks, in the scope of sequential control systems, are better detected by
focusing on process variables instead of network communications. In the same
vein, Yoon et al. [29] propose a probabilistic suffix tree-based approach to model
communication patterns under a high predictability assumption. Mitchell et al.



Detecting Process-Aware Attacks in Sequential Control Systems 23

[22] rely on manually written behavior rules to detect process-aware attacks.
Carcano et al. [4] develop ISML, a language for describing critical states. While
similar to our solution in terms of process awareness, both approaches require
manual expression of the behavior rules and are not suitable for detecting all
malicious ordering of events. This is because both approaches rely exclusively on
propositional logic formulae to express behavioral rules or critical states. Such
formalism cannot represent general ordering constraints. Schumann et al. [25]
propose R2U2, a framework for the runtime monitoring of security properties in
unmanned aerial systems. Our approach focuses on sequential control systems
and discusses the automatic generation of properties.

3 Background

This section discusses the necessary background concerning ICS, runtime verifi-
cation and specification mining.

3.1 Industrial Control Systems

ICS are hierarchical systems consisting of multiple components which interaction
achieves an industrial objective [27]. Among these components, Programmable
Logic Controllers (PLC) are of particular interest to our approach. Operating at
the cyber-physical frontier, PLC execute control logics to regulate the physical
process. This is realized through a scan cycle that includes: (i) reading inputs
from sensors, (ii) executing the control logics, (iii) transitioning to new stable
states, and (iv) writing outputs to actuators. Due to their critical role, PLC
constitute an ideal target for process-aware attacks.

The IEC61131-3 standard [16] defines five programming languages for pro-
grammable controllers: (i) Ladder diagram, (ii) Function Block Diagram, (iii)
Sequential Function Chart (SFC), (iv) Instruction List, and (v) Structured Text.
In this paper, we focus on SFC which is a graphical language representing the
control logic as a series of steps and transitions. SFC is especially suitable for
processes exhibiting a step by step behavior [16]. This is the case of sequential
control systems which are the focus of our approach.

3.2 Runtime Verification

Runtime verification [19] is a verification technique which aims at checking
whether a run of a system satisfies or violates a given correctness property.
In our case, a run of a system consists of a possibly infinite sequence of sets of
logical propositions. Each position in the sequence represents the current state of
sensors and actuators. In practice, during runtime, we only have access to finite
prefixes of runs. Monitors are devices which take as input such a finite prefix,
and yield a verdict belonging to a truth domain, indicating the status of the
property on the trace. Using a monitor, we would like to check whether an exe-
cution satisfies a given correctness property. Thus, our aim is to detect sequence
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attacks using monitors synthesized from high-level correctness properties, and
expressed in a formalism suitable for representing ordering constraints.

States. Let AP be a finite set of atomic propositions about sensors and actuators
in the process. A state s is an element of 2AP .

Linear temporal logic. Our main goal is the detection of sequence attacks
involving the ordering of messages or commands. To formally represent the
normal ordering relationships between states, a suitable formalism is required.
Linear temporal logic [23] augments propositional logic with operators able to
express ordering relationships. The syntax of LTL over the alphabet Σ = 2AP ,
which we write LTL(Σ), is defined as follows:

ϕ :: p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ, p ∈ AP

We define Σω (resp. Σ∗) as the set of infinite (resp. finite) sequences over Σ.
Let ϕ,ϕ1, ϕ2 ∈ LTL(Σ) be LTL formulae, i ∈ N a position, and w(i) the ith

element of the infinite sequence w ∈ Σω. LTL formulae can be inductively inter-
preted over elements in Σω as follows:

w, i |= p ∈ AP ⇐⇒ p ∈ w(i)
w, i |= ¬ϕ ⇐⇒ w, i �|= ϕ

w, i |= ϕ1 ∨ ϕ2 ⇐⇒ w, i � ϕ1 ∨ w, i � ϕ2

w, i |= ϕ1Uϕ2 ⇐⇒ ∃k ∈ N, k ≥ i. w, k |= ϕ2 ∧ ∀i ≤ j < k. w, j |= ϕ1

w, i |= Xϕ ⇐⇒ w, i + 1 |= ϕ

We also define ♦ϕ ≡ trueUϕ and �ϕ ≡ ¬♦¬ϕ. Here, ¬ and ∨ are, respec-
tively, the negation and logical OR operators. The remaining logical operators
(∧,⇒,⇔) can be derived as usual.

Events. In sequential control systems, we are often interested in expressing
properties involving events such as rising (↑) or falling (↓) edges. Such events
can be expressed in LTL [24]:

a↑ ≡ ¬a ∧ Xa a↓ ≡ a ∧ X¬a

Monitoring and finite semantics. As discussed above, monitors only have
access to finite but expanding prefixes. However, LTL formulae are interpreted
over infinite sequences. This mismatch restricts the class of monitorable LTL
formulae [2]. Monitorability refers to the capacity of a monitor, after any finite
number of observations, to still detect the violation/satisfaction of a property
after, at most, a finite number of additional observations. Formally, an LTL
formula ϕ is monitorable if for every finite word u ∈ Σ∗, there exists a finite word
v ∈ Σ∗ such that for any infinite word w ∈ Σω, uvw either satisfies or violates ϕ
[2]. In this work, we are interested in a particular class of monitorable formulae
called safety properties. Informally, a safety property states that “something bad
should never happen”. The formula �¬(valve1 ∧ valve2) is a safety property
stating that valve1 and valve2 should never be simultaneously open.
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In practice, monitors can be synthesized as finite state automata from LTL
formulae. Such an automaton recognizes minimal bad prefixes of a safety prop-
erty. Minimal bad prefixes are finite sequences which cannot be extended to
satisfy the safety property, and which do not contain any other bad prefix [8].
If a safety property is violated on an infinite sequence, then it has already been
violated on some finite prefix. In our case, a monitor is a finite state automaton
which recognizes, as early as possible, such a prefix and reports a violation. Con-
structing a monitor usually requires translating the LTL formula into a Büchi
automaton which accepts all infinite sequences satisfying the formula (see [28]
for a formal definition). A nested depth-first-search allows the identification and
removal, from the Büchi automaton, of all states which cannot initiate an accept-
ing run. The resulting automaton can then be treated as a finite state automaton
with all states accepting, and used as a monitor [8].

3.3 Process Specification Mining

Specification patterns. While LTL provides a suitable formalism to char-
acterize safety properties pertaining to states and events ordering, expressing
specifications directly in terms of formulae remains tedious. As properties grow
in complexity, writing accurate and correct formulae becomes a difficult task.
Thus, several works [10,24] have looked at specification patterns that express
commonly occurring properties. By relying on such specifications patterns, we
can give meaning to properties and, in our particular case, to violations of safety
properties. Another advantage of using specification patterns is controlling the
nature of properties to be monitored to the class of safety properties.

We base our work on a subset of Dwyer’s patterns augmented with events
[10,24]. Dwyer’s patterns and classification are the result of an extensive review
of the literature for recurring specifications. We restrict ourselves in this paper
to absence, universality, precedence and response monitorable patterns. Absence
patterns state that a certain event or state never occurs during the execution
of the system. Universality patterns state that a certain event or state always
holds during the execution of the system. Precedence and response patterns
express relationships between two events or states where the occurrence of one
is a necessary condition for the occurrence of the other.

Moreover, we can specify scopes which restrict the portion of the execution
where the pattern should hold. Five scopes are defined: (i) a global scope, (ii) a
scope starting after an event/state, (iii) a scope ending before an event/state, (iv)
a scope between two events/states, (v) a scope starting after a first event/state
and lasting until the eventual occurrence of a second event/state. All scopes
are left-closed and right-open. Readers are referred to [10] for more details. In
the rest of this paper, we will express specification patterns as predicates over
events/states. The predicate name captures the nature and scope of the pattern.
For instance, the predicate absence between(X,Y,Z) refers to the absence pat-
tern concerning event/state Z between events/states X and Y . An instantiation
of a pattern is a mapping of placeholders to propositions.
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Mining specifications. The problem of specification mining can be expressed
as follows: given a finite set of specification patterns and a finite set of execution
traces of a system, find all instantiations that are valid on the traces. Several
works have explored this issue based on a variety of patterns [18,20]. Usually one
is required to explore the space of all possible instantiations (permutations) and
test the validity of each instantiation on the traces. While the size of the search
space can be significant, recent work [18] has shown that using memoization
and selective treatment of the traces can significantly reduce the complexity of
the task even when dealing with general LTL formulae. However, the number
of valid mined specifications can still remain significant, especially due to the
introduction of events. Section 4 presents our mining algorithm and filtering rules
to handle this issue.

4 Attack Detection Approach

4.1 General Overview

Our approach proceeds in two stages: a mining and filtering stage, and a detec-
tion stage. In the first stage (Fig. 1), specifications expressed as a set of temporal
properties ({Spec1LTL, . . . , Specm

LTL}) are mined from execution traces of the sys-
tem by relying on specification patterns. When using activities, execution traces
are divided depending on the current activity using the activity recognizer, and
mining is done per activity. In all cases, the resulting raw specifications undergo
a set of filtering rules to reduce their number.

Control
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Traces
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A i
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Sp ecifications
mining

Traces

Patterns

Raw
specs

Filtering
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Filtered
specs

S pec 1
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Spec m
LTL

Fig. 1. First stage: mining and filtering the specifications

The traces are assumed to be free of malicious activity and representative
of the normal behavior of the system. However, the representativeness is not
guaranteed as the mining operates on a finite window. This can be an important
source of false positives. While this limit is common to all approaches based on a
learning phase, we would like to better characterize false positives (and alerts in
general) by giving them meaning with respect to the process behavior, i.e. higher
semantics in terms of the process. For instance, for a given alert, we would like
to report on the concerned actuators/sensors, the process stage during which
the alert was raised, and the reason why a violation represents an illegitimate
action with respect to the process’s normal behavior.
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A first level of characterization is achieved by relying on specification pat-
terns which reflect common safety properties expressed directly in terms of sen-
sor/actuator states and events. A second level of characterization is attained
by the means of activities. An activity corresponds to a subprocess or to differ-
ent modes of functioning within the sequential system. Activites can distinguish
between different normal behaviors within the process, while reducing the com-
plexity of the mining phase. To define and distinguish the activities in the traces,
we require a high level expression of the control logic. In our work, we derive the
activity recognizer from control logic expressed as SFC. In practice, steps in the
SFC are assigned to activities, and the activity recognizer interprets the SFC
using its formal semantics [3]. The task of assigning activities to steps is left to
an expert or a developer. As future work, we intend to explore heuristics which
can guide the expert and automatically suggest activities assignments.

The monitors, synthesized from the mined and filtered properties, report
violations during the detection phase (Fig. 2). When using activities, the activ-
ity recognizer dynamically identifies the current activity, and only the relevant
property monitors (i.e. those pertaining to the current activity) read the trace
to detect the violations and output their verdicts.
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Current
activity

Traces
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Activity n
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Activity 1
specs

Activity n
specs

Monitors
syn thesis

Verdicts

Fig. 2. Second stage: detecting specification violations

Threat model. We assume that the attacker’s objective is the disruption of
the physical process using qualitative sequence attacks. We also assume that
the measurements sent by the sensors are correct. This means that we do not
handle false data injection attacks i.e. injection of bad measurements. As we rely
directly on process variables, no assumptions are made on the trustworthiness of
the PLC if a proper logging mechanism is available at the field level. However,
we still require the presence of a secure channel for sending alert notifications.

4.2 Mining Process Specifications

In this section, we present our mining algorithm which carefully walks through
the search space to find valid properties which could have been violated on
the mining traces. This constraint is captured by the notion of falsifiability.
A falsifiable property with respect to a trace is a property which can be vio-
lated on the trace. Falsifiability is especially relevant with regards to pattern
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scopes. Execution traces arising from sequential control systems are highly
structured due to the execution of specific control logics. As such, they con-
tain a relatively limited number of scopes. All properties which refer to non-
existent scopes are not falsifiable. Since they specify constraints on non-existent
scopes, one cannot check their violation. Consider for instance the property
universality after(valve1,motor1). It corresponds to the following LTL for-
mula: �(valve1 ⇒ �motor1). The antecedent of the implication refers to the
scope. If valve1 is not true at any position on the trace, the implication becomes
vacuously true and the formula is not falsifiable. In addition, properties such as
absence before(valve1,motor1) and absence between(valve1, valve2,motor1)
will also be vacuously true on the trace since all these formulae involve implica-
tions with false antecedents (♦valve1 for the first formula and valve1 ∧ ♦valve2
for the second formula). By checking the falsifiability of the initial property, we
can ignore other scope-related formulae.

Thus, the main idea is to partition the space of possible instantiations in
terms of scopes, then check their falsifiability with respect to their scopes in order
to potentially bypass other scope-related properties. In practice, for each type of
scope, we instantiate a monitor called an auxiliary monitor which checks whether
the property is falsifiable on the traces. An auxiliary monitor essentially makes
sure that the scope pertaining to a property instantiation actually occurs on the
traces. As an example, for the property universality after(valve1,motor1), we
synthesize an auxiliary monitor from the formula ♦end → ¬(¬valve1 U end).
Here, end represents a special symbol which is appended to the traces and is used
to adapt LTL’s infinite semantics to the finite mining traces [9]. The property is
violated if valve1 does not occur on the trace. When mining, we start with single
scopes (after or before) as they affect both single and double scopes (after until
and between). For instance, if an after property involving valve1↑ as a scope
is not falsifiable on the execution traces, then all after, before, after until and
between properties involving the valve1↑ scope will not be falsifiable.

Typically, we have many traces at our disposal. When running the auxiliary
monitors, we can enforce several policies depending on the number of violations
recorded. In all of our scopes, except for the after until case, we require that the
auxiliary monitors report no violations on all the traces, i.e. that the properties
are falsifiable on all the traces. This has the advantage, with regards to our
notion of activity, to naturally restrict the scopes to the variables pertaining to
the activity for which the mining occurs. For the after until case, we require the
property to be falsifiable in at least one of the traces. The goal is to limit the
cases where an after property is valid, and which lead to several corresponding
scope-irrelevant after until properties to become valid.

Algorithm 1 outlines our mining procedure. For each instantiation, we retrieve
the verdicts of the main and auxiliary monitors (line 7). If the main monitor
reports a violation, then the property is false (and falsifiable), so we move to
the next instantiation in the same scope. Else if the auxiliary monitor raises a
violation, we blacklist the current scope and all related scopes before moving to
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Algorithm 1. Specification mining

Data: Tr : Finite set of execution traces, I : Finite set of property instances
Result: Set of valid properties

1 Π = partition by scopes(I);
2 blacklisted scopes = {};
3 valid properties = {};
4 foreach type ∈ {after, after until, before, between, global} do
5 foreach scope ∈ Π(type) \ blacklisted scopes do
6 foreach instance ∈ scope do
7 (verdict inst, verdict aux) = check instance(instance, Tr, type);
8 if verdict inst = ⊥ then instance ← invalid;
9 else if verdict aux = ⊥ then

10 blacklisted scopes ∪ = {scope} ∪ affected scopes(type, scope);
11 break;

12 foreach type ∈ {after, after until, before, between, global} do
13 foreach scope ∈ Π(type) \ blacklisted scopes do
14 foreach instance ∈ scope do
15 if instance is valid then valid properties ∪ = instance;

16 return valid properties;

the next scope. The function check instances returns a verdict depending on
the falsifiability policy on the set of traces and the type of the instantiation.

4.3 Specifications Filtering Rules

In order to deal with the important number of specifications generated after the
specification mining phase, we use a set of filtering rules. These rules are based
on the semantics of Dwyer’s patterns as discussed in Sect. 3.3. The idea is to
find logical dependencies between mined properties based on their scopes and
events/states relationships. The general form of these logical dependencies is:

ψ1, ψ2, ∀σ ∈ Σω, σ |= ψ2 ⇒ ψ1

filter(ψ2)

In this rule, ψ1 and ψ2 are valid properties on the traces. The premise ∀σ ∈
Σω, σ |= ψ2 ⇒ ψ1 represents the fact that, for all infinite sequences σ, whenever
property ψ2 is satisfied, then property ψ1 is also satisfied. In other words, by
keeping track of violations of ψ1, one can indirectly detect violations of ψ2.

Logical dependencies arise in the case of Dwyer’s patterns due to the inter-
play between scopes and states/events. Suppose we have mined the prop-
erties universality after(valve1,motor1) and absence after(valve1,motor↑

1).
The first property states that “motor1 stays on after a state where valve1 is
open” while the second property states that “motor1 is never started after a
state where valve1 is open”. On all infinite sequences when the first property is
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satisfied, the second property will be satisfied. This is due to the fact that for
motor1 to be started after valve1 is on, it needs to be off at some point. How-
ever, this is impossible due to the first property. Note that the converse is not
true. There exists an infinite sequence where the second property is satisfied but
not the first: a sequence where, after a state in which valve1 is on, motor1 goes
off but never on. Note also that the second property is informative. The viola-
tion of the second property, in conjunction with the violation of the property
absence after(valve1,motor↓

1), can be symptomatic of a wear attack on motor1.
The case sketched above generalizes to the following rule:

absence after(X,Y ↑), universality after(X,Y )
filter(universality after(X,Y ))

We can formally prove that ∀σ ∈ Σω, σ |= ψ2 ⇒ ψ1 for given LTL properties
ψ1 and ψ2 by referring back to their semantics defined in Sect. 3.2. In our case,
to systematically verify such logical relationship, we build the Büchi automaton
corresponding to the formula ψ1 ∨ ¬ψ2, and check that it accepts all possible
infinite words i.e. the formula is valid [28]. We have identified and verified a
non-exhaustive set of 20 rules which represent logical dependencies between pat-
terns. Their identification relies on observations about: (i) inclusion relationships
between scopes, and (ii) the interplay between events and states within the same
scope such as in the example above.

5 Evaluation

In order to evaluate our solution, we have implemented the process shown in
Fig. 3 in a hardware-in-the loop setting including a real PLC and a simulation
of the process. We acknowledge that a thorough evaluation would require real
data from an operational plant. However, getting such data is difficult due to
the particularly sensitive context of ICS. Publicly available datasets1 are often
too simple, including few sensors/actuators. Studies which use real datasets are
often limited to network trace files, while we require the availability of control
logic for a comprehensive analysis. Yet, we believe that this evaluation can shed
some light on the advantages and limitations of the proposed solution.

5.1 Process Description

The process [13] in Fig. 3 represents a typical sequential system. The goal is to
produce a mixture of products following a certain recipe. The process involves
two stages. In the first stage, two weighted products are introduced successively
in the tank T1 via the valves vp1 and vp2. The required weights are indicated
by sensors p1 and p2. A mixer actuated by motor m1 performs the primary
mixing. After 50 s, and if TP is empty as indicated by the sensor tpvid, the
mixture can be cleared out from T1 through the valve vt1. In a second stage, a
1 https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets.

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
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Fig. 3. Example of a sequential process and its control logic expressed using SFC [13]

product carried by the wagon W is added to the primary mixture. Sensors sb
and sh indicate the position of the wagon. Actuators m and d (not shown in the
figure) are responsible for the wagon’s movement. A mixer actuated by motor m2
performs the secondary mixing, which lasts for 60 s. Finally, the end product is
drained to the silo through valve vt2. The valve vs allows emptying the silo. We
would like to keep the final product level in the silo between the levels indicated
by nb and nh. When the level reaches nb, a new production cycle is started until
the level reaches nh. Figure 3 shows part of the SFC implementing the control
logic for this process. In total, the process contains 20 actuators and sensors.

Activity decomposition. Following the process description, we can identify
two main activities as shown in Fig. 3. We also use a default activity to mark all
the coordinating steps which are outside these activities.

5.2 Experimental Setup

We evaluate our approach in a hardware-in-the-loop setting. The process is sim-
ulated in OpenModelica2 while the control logic is implemented in a Schneider
M580 PLC. A Human-Machine Interface (HMI) allows monitoring the process
status and send commands. The HMI-PLC communication relies on the Mod-
bus protocol. The monitors, the specification miner, and the activity recognizer
are implemented in C++. To synthesize the monitors from LTL formulae corre-
sponding to patterns, we use the Spot library3. Filtering rules are implemented
in Prolog and take as input the predicates resulting from the mining phase.

Attacks. We perform a total of 15 process-aware sequence attacks during the
simulation to test our solution. The attacks are carried by sending malicious

2 https://www.openmodelica.org.
3 https://spot.lrde.epita.fr.

https://www.openmodelica.org
https://spot.lrde.epita.fr
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commands to the PLC. We also define a number of manipulations which the
operators are allowed to perform. For instance, operators can manipulate the
valve vp1 only before the weight p1 is reached. Moreover, some actions are
allowed without any restrictions such as the manipulation of vs. More impor-
tantly, not all of these behaviors appear in the attack-free traces used in the
inference stage. This allows us to evaluate our solution with respect to false pos-
itives. The attacks involve malicious ordering of commands such as simultaneous
opening of vp1 and vp2, or opening vt1 before the end of the first mixing phase.
Table 1 summarizes some allowed behavior and attacks performed.

Data collection. Data is collected at two levels: (i) at the level of the HMI-PLC
channel as Modbus network traces (pcap files), and (ii) at the level of the process
simulation which produces a timestamped log of the values taken by the sensors
and actuators throughout the simulation. We collect two separate datasets: (i)
a legitimate dataset in which the process runs for 20 min without any attacks
but with manual intervention of a human operator who performs actions within
the allowed behavior, and (ii) a dataset spanning 40 min with interventions of a
human operator and containing process-aware sequence attacks. The parameters
of the simulation, such as the flow rates, are chosen so that the process completes
several times the various stages during the recording window. All our tests are
run offline using the recorded datasets.

Table 1. Examples of allowed behavior and sequence attacks performed on the process

Allowed behavior Performed attacks

• Manipulating vp1 before p1 is reached • Manipulating vp1 after p1 is reached

• Manipulating vp2 after p1 is reached
and before p2 is reached

• Manipulating vp2 before p1 is reached
or after m1 is started

• Manipulating vt1 after m1 is stopped • Opening vt1 before m1 is stopped

5.3 Results

Process specification mining. We apply our proposed specification mining
algorithm on traces per activity. Inference is performed on an Intel Dual Core
i5 2.4 GHz machine with 4 GB of RAM running Linux kernel 4.4.5. We evaluate
the mining algorithm in terms of 3 measures: (i) the monitors overhead, (ii) the
runtime efficiency, and (iii) the number of mined properties.

Monitors overhead. As mentioned in Sect. 3.2, the monitors are derived from
Büchi automata which can lead to a double exponential space blow-up with
respect to the formula’s size [2]. The monitors we generate do not represent
pathological cases. All the monitors we synthesized have a size less or equal
than 25 states. This is in fact another motivation for using patterns: we can
control the patterns in terms of monitorability and size of the associated monitor.
Moreover, only the mapping differs between instantiations of the same pattern.
This reduces the memory-overhead required for the mining task.
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Runtime efficiency. We measured the runtime efficiency of our specification
miner for both activities. Our proposed algorithm spends on average 45 s for
the first activity, and 55 s for the second activity. This is reasonable as mining
is performed once on the training traces. We notice however that our solution
performs worse on the second activity compared to the first one. This is mainly
due to the presence, in the second activity, of more sensor and actuator variables.
Another remark is that the algorithm’s performance deteriorates when faced with
unstructured execution traces such as randomly generated traces. However, this
does not apply to sequential control system as they follow specific control logics.

Number of properties. Out of 407820 possible instantiations, the mining algo-
rithm returns 7206 properties for the first activity, and 16269 properties for the
second activity. We also apply our filtering rules to the mined properties. The fil-
tering rules take into account: (i) the logical relationships identified in Sect. 4.3,
(ii) the actual sensors and actuators involved in each activity. With regards to
the second set of rules, an interesting feature of the mined properties is that
their scopes involve sensors/actuators which are specific to the activity in ques-
tion. This is due to the falsifiability policy we impose which naturally restricts
the scopes. The filtering results in 719 properties for the first activity, and 1908
properties for the second activity.

Comparison with Texada. We also experimented with Texada [18], an efficient
general LTL specification miner. We mine the patterns using its map mapper. It
is worth noting that although Texada can omit vacuous properties, the runtime
overhead becomes significant (over 10 min for both activities using the linear
mapper). Texada’s map miner spends little over 1 min for both activities. In
contrast, the number of properties returned by Texada is an order of magnitude
bigger. When comparing the mined properties, in the cases where our notion of
falsifiability matches that of Texada, the mined properties are similar.

Attack detection. We evaluate the detection capabilities of our solution by
running the inferred monitors on the malicious execution traces. Table 2 reports
some violations recorded and their interpretation. All 15 performed attacks were
detected by the monitors. Their interpretation relies on two key elements: (i) the
activity during which the violation is reported, and (ii) the pattern correspond-
ing to the property violated. However, as expected and discussed in Sect. 4.1, we
obtain some false positives. The main recorded case of false positives was rela-
tive to the manipulation of vt1. As the operator does not manually interfere with
vt1 during the learning phase, we infer properties such as absence global(vt1↓).
This property holds in the absence of manipulations, since vt1 is the last action
performed in activity 1, and t1vid signals the end of the activity. Knowing
that an operator is allowed to manipulate vt1 at some point during the activ-
ity, this property is too restrictive. Note that we also mine properties such as
absence before(p2, vt1) which violations would correspond to an attack.

In addition to delivering high semantics in terms of alerts’ understanding, we
can also deactivate monitors which do not correspond to properties we want to
ensure. For instance, the property absence global(vt1↓) which causes a false pos-
itive can be deactivated, as it clearly concerns a legitimate action. The easiness



34 O. Koucham et al.

Table 2. Examples of raised alerts and their corresponding interpretation

Alert Type Properties violated Interpretation

Alert 1 TP absence between(m1↑, p1↓, vp2↑) vp2 opened after starting

(act. 1) absence between(m1↑, p2↓, vp2↑) m1 (attack)

Alert 3 FP absence global(vt1↓) vt1 closed after m1 is

(act. 1) absence after until(m1↓, p1↓, vt1↓) stopped (legitimate action)

Alert 5 TP absence before(m2↓, vt2↑) vt2 opened before the end

(act. 2) of the mixing task (attack)
∗ TP: True Positive, FP: False Positive

with which one can alter the learned behavior is due to the inference of multiple
properties which individually concern a limited set of sensors/actuators. Note
also that one can analyze a priori the inferred properties by performing queries
over variables which might cause false positives. For instance, since the valve vs
can be opened any time during the execution of the system, one can query the
inferred properties to ensure that no property restricts the usage of vs.

One issue we encounter when running our monitors is the possibly consequent
number of violations raised for each attack. In our experiments, some attacks can
produce as much as 30 violations. While these violations do not represent false
positives, their number can render their analysis arduous. Moreover, some prop-
erties are more pertinent. Further work is needed to handle this issue through a
correlation stage which can summarize and prioritize pertinent violations.

6 Conclusion

In this paper, we presented an approach for the detection of process-aware
sequence attacks in sequential control systems. We used runtime monitors to
report violations of process specifications expressed as sets of safety temporal
properties. We also developed a mining algorithm to alleviate the cost of writing
specifications. The notion of activity within sequential systems was introduced
to improve mining and attack detection. Finally, we evaluated our approach in
a hardware-in-the-loop setting subject to process-aware attacks. The evaluation
results show that we are able to detect such attacks while achieving a good
understanding of false positives. Our main goal for future work is the addition
of a correlation stage to deal with the important number of raised violations.
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Abstract. Achieving a fully automated and dynamic system in critical
infrastructure scenarios is an open issue in ongoing research. Generally,
decisions in SCADA systems require a manual intervention, that in most
of the cases is performed by highly experienced operators. In this paper
we propose a framework consisting of a proactive management software
that aims at anticipating the occurrence of potential attacks. It conducts
an initial evaluation of reported proactive evidences based on a quantita-
tive metric of monetary return on response investment. The framework
evaluates and selects mitigation actions from a pool of candidates, by
ranking them in terms of financial and operational impacts. The pur-
pose of this process is to select an optimal set of mitigation actions
from financial and operational perspectives and propose them to reduce
the risk of threats against the monitored system, without sacrificing an
organization’s missions in favor of security. A real world case study of
a SCADA environment shows the applicability of the model, from the
analysis of the input data to the selection of the response plan.

Keywords: Dynamic response system · RORI · Operational impact ·
Automatic response · Critical infrastructures

1 Introduction

Critical infrastructures are systems and assets, whether physical or virtual (e.g.,
a company, an institution, an organization), which if disrupted, damaged, or
destroyed, would have a serious impact on the health, safety, security, or eco-
nomic well-being of citizens or the effective functioning of governments and
other infrastructures depending on it [1]. Critical Infrastructures include sec-
tors that account for substantial portions of national income and employment,
c© Springer International Publishing AG 2016
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such as energy (including nuclear), ICT, finance, healthcare, food, water, trans-
port, safety, government. Most of these sectors use industrial control systems
(ICS) in order to provide control of remote equipment [2].

Achieving a fully automated system in critical infrastructure scenarios is an
ongoing research area. Generally, decisions in SCADA systems require a manual
intervention, that in most cases is performed by highly experienced operators.
However, it is possible to automate incident handling. For some threats, a system
should be able to automatically select mitigation actions that provide the most
suitable response possibilities to reduce identified risks below an admissible level
while minimizing potential negative side effects of deliberately taken actions.

In this paper, we propose a dynamic risk management response system
(DRMRS) that evaluates, ranks and selects optimal mitigation actions based
on financial, operational and threat impact assessment functions. The selected
actions are transformed into response plans that are automatically enforced by
the system’s policy enforcement points (PEPs). These latter are defined as secu-
rity components that work as gateways or front doors to digital resources. PEPs
are capable of applying security rules (e.g., permission, prohibition, obligation)
over the triplet {subject, action, object}. Examples of PEP are web servers,
portals, firewalls, LDAP directories, SOAP engines, and similar resources [3].

The contributions on this article are summarized as follows: (1) A model that
automatically computes the input parameters of the financial impact metric and
provides an indication of the feasibility of each evaluated action. (2) A process
that dynamically generate and validate response plans. (3) The implementation
and validation of the model. (4) The deployment of the model over a real scenario
to perform automated responses in a critical infrastructure system.

The remainder of the paper is structured as follows: Sect. 2 introduces the
return on response investment metric. Section 3 describes our proposed dynamic
risk management response system. Section 4 details the tool implementation and
validation. Section 5 depicts a case study to automate the response in a critical
infrastructure system. Related work are presented in Sect. 6. Finally, conclusions
and perspective for future work are presented in Sect. 7.

2 Dynamic Return on Response Investment (RORI)

The Return On Response Investment (RORI) is a cost sensitive metric used to
assess, rank and select security countermeasures from a pool of candidates. The
process undertaken by the DRMRS extends initial work reported in [4]. The
approach proposes the combination of authorization models and quantitative
metrics, for the selection of mitigation actions. The actions, modeled in terms
of contextual rules, are prioritized based on a cost-sensitive metric that extends
the return on investment (ROI) concept and all its variants [5–7]. The goal is
finding an appropriate balance between the financial damages associated to a
given threat, and the benefits of applying some mitigation actions to handle the
threat, with respect to the loss reduction. The RORI metric is calculated for
each mitigation action, according to Eq. 1.
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RORI =
(ALE · RM) − ARC

ARC + AIV
· 100 (1)

In theory, all parameters composing the RORI metric should be given by
expert knowledge, historical data, and/or a risk assessment methodology that
evaluates all possible system’s threats and gives directions about the most suit-
able mitigation actions to reduce risk levels down to acceptable values. In prac-
tice, however, the estimation of such parameters represents a big challenge and
a time consuming task to security administrators. Depending upon the type of
organizations, the RORI parameters can be more or less complex to estimate.
For small and medium size organizations, the quantification of such parameters,
is a process that could be performed within hours of discussions with use case
providers and simple simulation runs [4]. For large and critical organizations,
the process can take several weeks (and even months).

Based on the previous shortcomings, a first improvement has been made in
the RORI expression to enhance the Risk Mitigation (RM) function. [8] extends
the concept of attack surface used in previous versions of the RORI metric. It
identifies authorization and contextual dimensions that may directly contribute
to the exposition of system vulnerabilities. New properties associated to the
vulnerabilities, such as temporal conditions (e.g., granted privileges only dur-
ing working hours), spatial conditions (e.g., granted privileges when connected
within the company premises), and historical conditions (e.g., granted privileges
only if previous instances of the same equivalent events were already conducted)
can now be included and combined with the RORI cost-sensitive metric.

An adaptation of the selection process, based on financial and operational
assessment functions, has been presented in [9], which reports the combination
of both assessment approaches, over a representative set of mitigation actions.
The combination, based on a multi-dimensional minimization approach, proposes
the choice of semi-optimal responses that, on the one hand, bear the highest
financial attractiveness on return on investment; and, on the other hand, bear
the lowest probability of conflicting with the organization’s missions. This is seen
as beneficial for its application in scenarios where highly critical missions and
resources must be protected, without sacrificing missions in favor of security.

The remaining of this section details the parameters of the RORI metric and
describes the process to automatically compute them in a dynamic system.

2.1 Description of the Dynamic RORI Model

Annual Loss Expectancy, ALE expresses the amount of money, e.g.,
e/year, that an organization may lose if a threat is realized on the system.
It includes loss of assets, loss of data, loss of reputation, etc. ALE depends
directly on the threat and it is independent on the mitigation actions and the
policy enforcement points.

Annual Infrastructure Value, AIV depends directly on the policy enforce-
ment point, and expresses the monetary value of the infrastructure, e.g.,
e/year, regardless of the threat and the implemented mitigation actions.
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AIV is greater than zero, i.e., AIV > 0, and includes costs of equipment,
personal, service, etc.

Annual Response Cost, ARC provides the information about the amount
of money (e.g., e) associated to the implementation of a mitigation action
against a threat. ARC is always greater than or equal to zero, i.e., ARC ≥ 0,
and includes direct costs, such as cost of implementation, cost of maintenance,
other direct and indirect cost, such as potential collateral damages. ARC
depends on the mitigation action and the policy enforcement point, but it is
independent on the threat.

Risk Mitigation, RM represents the level of reduction that is obtained after
the implementation of a mitigation action. RM takes values between zero and
one hundred, i.e., 0 ≤ RM ≤ 100. RM depends on the threat, the mitigation
action, and the policy enforcement point.

Each parameter depends on at least one of the following entities: (i) the threat
affecting the system, (ii) the type of mitigation action to be implemented, and
(iii) the type of policy enforcement point. Table 1 summarizes this information
and details the level of complexity on the estimation of each parameter.

Table 1. Complexity level on the estimation of the RORI parameters

Parameter Threat MA Type PEP Type Complexity

AIV Low

ALE Low

ARC Medium

RM High

2.2 Computation of the Dynamic RORI Parameters

In a dynamic environment, nodes can be active or inactive. Each snapshot of
the system may provide a list of different nodes involved in the attack scenario.
The evaluation process is therefore unique for each system’s snapshot, and is
discussed in the following definitions.

Definition 1 (ALE Computation). Since the ALE parameter is associated
to the threat, its value remains unchanged for each snapshot of the system. ALE
is assessed first qualitatively, and then transformed into quantitative values. We
follow the approach proposed in [10] that defines six qualitative levels of severity,
and seven qualitative levels of likelihood with their corresponding quantitative
values. ALE is calculated as the product of the severity transformed into proba-
bilistic costs and the likelihood transformed into probabilistic frequency.
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Definition 2 (AIV Computation). The AIV is computed as the sum of the
Annual Equipment Cost (AEC) of all policy enforcement points that appears in
the system’s snapshot, as shown in Eq. 2.

AIV =
n∑

i=0

AECi (2)

Each PEP has an associated AEC that is estimated based on historical informa-
tion and expert knowledge. Contrary to the ALE, the value of the AIV changes
at each snapshot of the system. More details on its estimation can be found in [4].

Definition 3 (ARC Computation). The ARC is associated to the implemen-
tation of a given mitigation action. The value depends directly on the type of
mitigation action (e.g., reboot, shutdown, patching), and the PEP responsible of
its implementation. More details on its estimation can be found in [4].

Definition 4 (RM Computation). The RM of an action is computed as the
product of the effectiveness EF and the threat coverage COV , using Eq. 3.

RM = EF · COV (3)

Effectiveness (EF) of a mitigation action represents the level at which a given
action reduces the risk and/or consequences of an attack on the system. EF is
intrinsic to the mitigation action type regardless of the threat it mitigates. For
instance, a reboot action by itself provides a very low mitigation of a given threat,
whereas a patching action provides a very high protection against it. Table 2
summarizes default values associated to mitigation action types. Each value has
been assigned based on statistical data and expert knowledge. Coverage (COV) of
a given mitigation action represents the number of nodes to which a mitigation
action is being executed over the total number of vulnerable nodes, i.e.,

COV =
Qi · WFi∑n

j=0 QTj · WFj
, (4)

where Qi is the number of nodes from a PEP type that are affected by a given mit-
igation action, WFi is the weighting factor associated to the affected PEP type,
QTj is the total number of active node types in the system, and WFj is the
weighting factor associated to each node type.

Table 2. Default effectiveness values associated to mitigation action types.

Mitigation action type Protection EF

Reboot Very Low 1.00 %

Shutdown Low 10.00 %

Backup Medium 50.00 %

Change configuration High 80.00 %

Patching Very High 100.00 %

Install software/hardware Very High 100.00 %
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3 Dynamic Risk Management Response System

The Dynamic Risk Management Response System (DRMRS) handles identified
threats, authorized mitigation actions and strategic policies (i.e., default and
contextual policy rules, as well as contextual definitions). It extracts concrete
entities from reported threats, and infers concrete policy instances to eventu-
ally guide the system into new updates and reconfigurations. These are pro-
vided as concrete response plans on a long-term proactive perspective. Response
plans are validated by human operators, prior final enforcement. The goal of
the DRMRS is the automated administration of policy-related activities, includ-
ing addition of new rules, removal of unnecessary conditions, and activation of
strategic responses (i.e., activation of new mitigation and response plans).

The DRMRS is a dynamic process that involves information coming from
different sources of an environment, which are notated and defined as follows.

Abstract Security Policies contain the security policies of the target organi-
zation. They include details of the threat (e.g., threatID, attack vector, sever-
ity, frequency); details of the Policy Enforcement Point (e.g., name, annual
equipment value, PEPType, quantity); and details of the mitigation actions
(e.g., ID, ARC, coverage, nodeID, restrictions, effectiveness).

Proactive Risk Profile includes information about assets, supporting assets,
attack scenarios and detrimental events. These latter are defined as the fact
of harming the accomplishment of an organization’s objective or mission.

Network Inventory contains information of all active devices of the emulation
environment providing various attributes, e.g., the PEP Type.

Mission Dependency Model contains information about business processes
and devices, consequences and requirements. It contains information about
entry points, critical resources, and their dependencies and impact to the
mission of the organization.

Network Dependency Model contains information about direct dependen-
cies between individual resources of an organization or mission. The model
is used to identify indirect dependencies and cover transitive impacts to the
mission of the organization from widespread events.

Attack Graph contains information about all possible attack scenarios. The
information includes details of the target and source nodes, as well as the
attack paths and its associated likelihood.

Authorized Mitigation Actions contain a list of mitigation actions that are
authorized to be executed as a reaction to a given threat.

Based on these input data, response plans are generated and evaluated as
elaborated in the following sections.

3.1 Response Plan Generation Process

The process, as depicted in Fig. 1, starts by obtaining information of the threat
scenarios coming from the Abstract Security Policies (ASP) and the information
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Fig. 1. Workflow for generating potential response plans.

of Detrimental Events (DE) coming from the Proactive Risk Profile (PRP).
We compare predefined conditions in both input files. We compare, e.g., if the
likelihood of the threat scenario is greater than or equal to the likelihood of the
detrimental event (Step 1). In such a case, we collect all attack path IDs that
will be used in the attack graph parsing process (Step 2a). If the condition is
not met, the process generates an empty response plan (Step 2b).

Given the most updated information of the network inventory and the attack
vector from the ASP, we generate a concrete attack vector (Step 3). A determi-
nation is made on whether there is a partial concrete attack vector (i.e., for each
path of the attack vector, we search all active nodes from the network inven-
tory). If at least one concrete attack vector is found, the process searches for a
match of entry points and business devices from the obtained attack vector and
the mission dependency model (Step 4a). Otherwise, an empty response plan is
generated (Step 4b).
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Following, we search paths matching the attack graph file and the attack
vector (Step 5). A determination is made on whether there is a final concrete
attack vector (i.e., for each path of the attack vector, there is a node that matches
with the attack graph). If at least one matching node is found, the process collects
the set of nodes from the attack vector involved in the attack graph (Step 6a),
otherwise, an empty response plan is generated (Step 6b).

Given the list of authorized mitigation actions, a determination is made on
whether or not there are involved nodes in the process. If it is the case, the
process extracts all mitigation actions associated to the PEP type of the nodes
obtained from the Attack Graph (Step 7a), otherwise, an empty response plan
is generated (Step 7b). The RORI evaluation is performed on the extracted
mitigation actions and response plans are generated accordingly (Step 8).

The output of this module is a set of response plans, which are vectors of mit-
igation actions, representing individual actions to be performed as a response to
an adversary or threat opposed to an organization. A response plan contains an
ID, mitigation action IDs and types, a policy enforcement point and the RORI
index. Response plans are of two types: individual, when only one mitigation
action is proposed; and combined, when two or more mitigation actions are pro-
posed to be implemented. In such a case, a new parameter called “probability of
conflict” is included in order to manage restrictions among the proposed actions.

3.2 Response Selection and Visualization

This module obtains the generated response plans and performs an operational
evaluation in order to select the best response plan in financial and operational
terms. We consider that response plans, while highly effective, could lead to
operational negative side-effects inside the network and therefore onto a mission.
Response plans are therefore evaluated based on local impact and assessments
of dependencies inside an organization’s business. We perform such an opera-
tional impact assessment based on a locally validatable probabilistic approach
as proposed by Motzek et al. in [11]. The operational impact assessment is based
on a probabilistic graphical model obtained from a mission- and network depen-
dency model through probabilistic inference and is detailedly discussed in [11]
and [9]. As a result, response plans are enriched with operational information
that indicates the impact over the organizational mission(s) in three dimensions:
a short-term impact (OI0), mid-term (OI1) and long-term impact (OI2). Based
on [9], the number of response plans is reduced to a single response plan that
is optimal in each dimension: the financial and the operational impact. Their
method searches for a semi-optimal response plan with the lowest operational
impact assessment and the highest RORI index.

A response plan is said to be semi-optimal since it might not be the best
solution neither in financial nor in operational terms, but it proposes a set of
mitigation actions that on the one hand, bear the highest financial attractiveness
on return on investment, and, on the other hand, bear the lowest probability of
conflicting with a company’s mission. This is beneficial for applications, where
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highly critical missions and resources must be protected, without sacrificing mis-
sions in favor of security.

The approach searches for a boundary of acceptable elements (acceptable as
a compromise). This boundary is a numerical value representing a normalized
deviation (ε) of the optimum. For instance, with ε = 0.1, we accept 10 % deviation
of the optimum in each dimension based on the dimensions absolute scale. The
acceptance criteria for the financial and operational impact are different. For
the financial impact, we keep response plans whose RORI index are greater or
equal to 90 % of the highest (best) RORI value. For the operational impact, we
keep response plans whose OIi are up to 10 % of the lowest (best) OIi value.
Then, we check if there is a match in all evaluated response plans. If there is a
match, we stop the process; otherwise, we increase the ε value until we find a
tuple that matches. In particular, we search the ε where we obtain the smallest
set of values. Once a semi-optimal response plan is found, the information is sent
to the visualization module, which depicts such results to the security operator.

4 System Testing and Experimentation

Testing and experimentation consists of demonstrating accomplishment of dif-
ferent functional and non-functional requirements defined for the DRMRS. More
specifically, we focus on defining a set of tests that are conducted to verify that
each requirement is covered by the component implementation. In summary,
functional requirements are used to test the syntactical and semantical correct
behavior to input data, i.e., correct computation of ALE, ARV, AIV and RM
values. All tests have been conducted by manual code inspection, as well as auto-
matically performed tests on artificial data testing syntactical errors, as well as,
real data (see Sect. 5) testing correct semantic behavior. In summary all tests
were executed without errors or exceptions.

Additionally, several test cases are executed in order to evaluate the com-
putation time in the combined evaluation of mitigation actions. The number
of combination for a set of non-restrictive candidates is given by the expression
X = (2N )−(N +1). Since the total number of combinations grows exponentially,
we measure the time at which the system is able to perform the evaluation of
multiple candidates. An existing non-functional requirement demands the eval-
uation of multiple response plans in the range of minutes. Results plotted in
Fig. 2 show that a combination of 12 restrictive mitigation actions results into
796 combinations that are obtained in less than one second. For 12 non-restrictive
mitigation actions, a total of 4 082 combinations exists, which are performed in
less than 10 s. Given 24 restrictive mitigation actions, 590 464 combinations are
evaluated in almost three hours. Therefore, to keep the evaluation process within
a reasonable time (less than one minute), the system processes up to 14 non-
restrictive mitigation actions (16 369 combinations). Beyond this threshold more
than one minute is required, but the approach scales linearly with the number
of processed combinations as evident from Fig. 2.
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Fig. 2. Computation time (abscissa) to evaluate all combinations of mitigation actions
is linear in the number of combinations (ordinate) (double logarithmic plot).

In addition, several integration tests have been performed to verify and vali-
date the appropriate communication of all the components of the DRMRS frame-
work. Such tests rely on the generation of response plans. The communication
between the financial and the operational impact assessor modules is an example
of integration among the system’s components. The set of response plans gen-
erated by the financial impact module is sent for evaluation to the operational
impact module, making it possible to generate a single response plan that best
satisfies the financial and operational impact assessments.

5 Case Study: Automated Response in a Critical
Infrastructure System

We study the infrastructure environment of an Energy Distribution organization.
The environment consists of a distributed network of Remote Terminal Units
(RTU) in energy stations of medium voltage (MV) and high voltage (HV), that
acquire data from electrical devices (e.g., PLC, sensors, etc.), and send them
to the Supervisor Terminal Unit (STU) of the headquarters. The system uses
Supervisory Control and Data Acquisition (SCADA) protocols.

5.1 Threat Scenario

The threat to analyze is a denial of service against a high voltage node of the
C&C infrastructure with the objective of taking the C&C offline. More pre-
cisely, the threat will cause an out of service condition on Front End Servers
(e.g., FE-X1) which breaks communication path from SCADA Servers to RTUs.
There exists an attack vector via ICT Network (via VR-08) targeting first the
file server (i.e., File-SRV), second, the archive server (i.e., Archive-SRV), and
third, the high voltage Front End devices (i.e., FE-X1, FE-X2). This threat
has a severity defined as “grave,” which corresponds to a single loss expectancy
SLE = 10 000 000 e, and a likelihood defined as “medium,” equivalent to an
annual rate of occurrence ARO = 2. The Annual Loss Expectancy is therefore
equivalent to ALE = 20 000 000 e/year.
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5.2 Input Information

After receiving input information, the system checks for active PEPs in the
simulation environment in order to obtain the AIV. For this threat scenario, the
current snapshot shows that there are 17 active PEPs with an AIV equivalent to
6 925 555e, as shown in Table 3. Note that AIV corresponds to the value obtained
out of the sum of all PEP’s cost, i.e., AEC, that are active at the time of the
snapshot. The AIV parameter is a variable value that depends on the time of
the evaluation and the PEP that are detected by the system.

Table 3. Input values of the AIV parameter

PEP PEP Type Description AEC

PEP16 FWCEDET Logical Firewall and IPS working in CEDET 105 000

PEP2 SRVMSCADA Medium Voltage Server 355 000

PEP1 SRVXSCADA High Voltage Server 355 000

PEP3 FEXSCADA High Voltage Front End 1 320 000

PEP13 FTPSRV FTP Server 3 000

PEP11 HMISCADA Human-Machine Interface 80 000

PEP15 NTPSRV NTP Server 2 000

PEP20 VRTX Edge Router on Remote Sites 206 796

PEP14 USERPC User PC 1 000

PEP5 GWMSCADA Medium Voltage Gateway 410 532

PEP6 GWXSCADA High Voltage Gateway 615 800

PEP17 FWDR Firewall IPS/DR 105 000

PEP10 WEBCADA Web Server 45 000

PEP18 MGMSRV Management Server 3 000

PEP9 RTUSCADA Remote Terminal Unit 2 621 927

PEP4 FEMSCADA Medium Voltage Front End 660 000

PEP7 VGROUTER Virtual Router 36 500

Annual Infrastructure Value (AIV) 6 925 555

Following, the system compares the likelihood values of detrimental events
in the proactive risk profile against the threat scenario threshold values. For
this threat scenario, three detrimental events have greater likelihood values
than those associated to the threat scenario, the system therefore retrieves a
concrete attack vector for Threat AS01HV : ‘EntryPoint = VGROUTER; Tar-
get1 = WEBSCADA; Target2 = FTPSRV; BusinessDevice = FEXSCADA’

Based on the information from the mission dependency model, we have
retrieved the nodes in paths pointing to Business Devices for threat AS01HV .
Each node has a unique identifier, a host name that corresponds to an instan-
tiated device, a PEP Type which corresponds to the abstraction class of the
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Table 4. Retrieved node information.

Node identifier Host name PEP Type Node Type

b992e600-0de2-496c-kkk0-. . . mferp1 FEXSCADA Business Device

718bc323-9d78-4ada-9629-. . . dorete FTPSRV Target2

e06496d2-6120-4c9d-a310-. . . LANGUARD MGMSRV Intermediate Node

94d37c8d-bc68-47bf-ad60-. . . ARCHIVESRV FTPSRV Target2

19b2bb1e-9f23-4fe8-902e-. . . KALI MGMSRV Intermediate Node

e470baab-5d88-4b20-ac28-. . . FTPSRV01 FTPSRV Target2

876hhezq-77tg-4897-665g-. . . xferp2 FEXSCADA Business Device

d3480ddc-fe4a-4b94-9dc5-. . . mferp2 FEXSCADA Business Device

b54b235d-116a-49b4-9052-. . . xferp1 FEXSCADA Business Device

c9fa4086-d979-4794-9b6e-. . . STWEB WEBSCADA Target1

c6dd8687-c791-4f91-bf58-. . . TPT2000-T2 RTUSCADA Intermediate Node

PEP, and a Node Type, which indicates whether the node is an entry point, an
intermediate node, a target node or a business device. Please note that business
devices are the most critical node types from the emulation environment. They
are required to accomplish a business process within the organization. Table 4
summarizes this information.

As shown in Table 4, the PEP types of nodes involved in paths leading to
critical devices are: WEBSCADA, FEXSCADA, MGMSRV, RTUSCADA, and
FTPSRV. Note that none of the nodes are defined as entry points, and those
associated to the PEP Type MGMSRV do not have pre-defined authorized mit-
igation actions. In such a case, they are discarded from our analysis.

5.3 Dynamic RORI Evaluation

For the RORI evaluation, we obtain the list of authorized mitigation actions
associated to threat AS01HV. Table 5 summarizes this information.

As shown in Table 5, each PEP type has an associated weighting factor (WF)
that indicates the level of priority or criticality inherent to the type of PEP in the
execution of a mission. For instance, management servers (e.g., MGMSRV) are
assigned a WF = 1, FTP servers (e.g., FTPSRV) are assigned a WF= 2, Web
servers (e.g., WEBSCADA) are assigned a WF = 3, Front End devices (e.g.,
FEXSCADA) are assigned a WF= 4, and Remote Terminal Units (i.e., RTU)
are assigned a WF = 5. The COV value is computed using Eq. 4.

To each PEP type none, one or more of the following mitigation actions can
be applied: (1) Patching, refers to a piece of software designated to update a
computer program or its supporting data, to fix or improve it. This includes fixing
or removing security vulnerabilities and other bugs and improving the usability
or performance. (2) Reboot, refers to the process of restarting a device or a
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Table 5. Authorized mitigation action information.

PEP Type WF Affected node Q COV MA Type EF ARC (e)

WEBSCADA 3 STWEB 1 0.09 Shutdown 0.15 15.00

Reboot 0.01 15.00

Patching 1.00 25.00

FEXSCADA 4 mferp1, mferp2, xfep1, xferp2 4 0.50 Shutdown 0.15 200.00

Reboot 0.01 200.00

MGMSRV 1 LANGUARD, KALI 2 0.00 No action 0.00 0.00

RTUSCADA 5 TP2000-T2 1 0.16 Shutdown 0.15 15.00

Reboot 0.01 15.00

FTPSRV 2 ARCHIVESRV, FTPSRV01, dorete 3 0.19 Shutdown 0.15 15.00

Reboot 0.01 15.00

Patching 1.00 25.00

computer program. (3) Shutdown, refers to completely remove any possibility
to access a device by powering off a device.

Each type of mitigation action has an associated effectiveness (EF) and cost
(ARC). The EF value is assigned automatically using the information from
Table 2, whereas the ARC value is assigned by expert knowledge and statistical
data. Using Eq. 1, we compute the RORI value for individual and combined mit-
igation actions in Table 6. Each response considers the ARC and EF to calculate
the risk mitigation value (RM), using Eq. 3, and take into account restrictions
among the candidates (e.g., shutdown a given device is totally restrictive to all
other actions that could be executed to such device).

The mitigation action with the highest RORI index is MA10, which requires
to install a patch for the PEP Type “FTPSRV”. More specifically, the node
“dorete” requires a patching against two vulnerabilities (i.e., CVE-2008-4250,

Table 6. RORI evaluation results for individual mitigation actions.

MA MA Type PEP Type RM Restrictions RORI

MA1 Shutdown WEBSCADA 0.0141 MA2, MA3 4.07

MA2 Reboot WEBSCADA 0.0009 MA1 0.26

MA3 Patching WEBSCADA 0.0937 MA1 27.09

MA4 Shutdown FEXSCADA 0.0750 MA5 21.66

MA5 Reboot FEXSCADA 0.0050 MA4 1.44

MA6 Shutdown RTUSCADA 0.0234 MA7 6.76

MA7 Reboot RTUCADA 0.0016 MA6 0.46

MA8 Shutdown FTPSRV 0.0281 MA9, MA10 8.11

MA9 Reboot FTPSRV 0.0019 MA8 0.55

MA10 Patching FTPSRV 0.1875 MA8 54.15
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Table 7. RORI evaluation results for combined mitigation actions.

MA ARC RM RORI

MA2,3,4,6,9,10 295.0 0.3085 89.07

MA3,4,6,9,10 280.0 0.308 88.94

MA2,3,4,6,10 280.0 0.3075 88.80

MA3,4,6,10 265.0 0.3071 88.67

MA2,3,4,7,9,10 295.0 0.2975 85.91

and CVE-2006-3439). Considering the previous information about mitigation
actions, a total of 214 combinations have been performed to evaluate the RORI
metric. Table 7 presents the top 5 combination results.

As shown in Table 7, the highest RORI index corresponds to the combination
of mitigation actions MA2, MA3, MA4, MA6, MA9, and MA10 which proposes
the following six concrete actions: (1) Reboot node STWEB. (2) Install patches
to the node STWEB against CVE-2008-4250, and CVE-2006-3439. (3) Shut-
down the node mferp2. (4) Shutdown the node TPT2000-T2. (5) Reboot nodes
ARCHIVESRV and FTPSRV01 (6) Install patches to the node dorete against
CVE-2008-4250, and CVE-2006-3439.

5.4 Response Plan Generation

For each evaluated mitigation action (including all possible combinations), a
response plan has been generated. Each response plan contains the identifi-
cation of the mitigation action(s), the PEP responsible for its enforcement,
and the associated RORI index. The Response Plans contain mitigation actions
applied only to the nodes obtained in the Attack Graph parsing (e.g., STWEB,
ARCHIVESRV, FTPSRV01, dorete, etc.). For the previous scenario, a total of
224 response plan were generated.

5.5 Response Plan Selection and Visualization

To select a semi-optimal response plan, all proposed response plans based on
RORI values are evaluated based on their short-, mid-, and long-term impacts
onto the company from an operational perspective, i.e., operational impacts
OI0, OI1, OI2. These values are derived as described in [11], where a mission
dependency model was created by business experts to the company, and a net-
work dependency model was automatically learned from network traffic analyzes.
Table 8 shows a comparison of a selected subset of all 224 evaluated response
plans.

The semi-optimal response plan that matches the criteria is RP46, with a
deviation of ε = 0.2, a RORI index equivalent to 71.34 %, and the following oper-
ational impacts: OI0 = 0.2724, OI1 = 0.2161, and OI2 = 0.1781. As a result,
the selected response plan is displayed in the visualization module, proposing
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Table 8. Financial and operational impact comparison.

MA RORI OI0 OI1 OI2

RP1 4.07 0.1407 0.1407 0.1407

RP2 0.26 0.137 0.0799 0.0

RP3 27.09 0.0247 0.0 0.0

RP4 21.66 0.0989 0.0989 0.0989

RP5 1.44 0.9995 0.8247 0.0

RP6 6.76 0.1855 0.1855 0.1855

RP7 0.46 0.1745 0.1051 0.0

RP8 8.11 0.0756 0.0756 0.0756

RP9 0.55 0.0731 0.0478 0.0

RP10 54.15 0.038 0.0 0.0

the enforcement of mitigation actions MA3, MA6, MA9, and MA10 which cor-
respond to the following four concrete actions: (1) Install patches to the node
STWEB against CVE-2008-4250, and CVE-2006-3439. (2) Shutdown the node
TPT2000-T2. (3) Reboot nodes ARCHIVESRV and FTPSRV01. (4) Install
patches to the node dorete against CVE-2008-4250, and CVE-2006-3439.

6 Related Work

Dynamic systems that automatically evaluate and select the actions to mitigate
complex attack scenarios is an open research that represents a big challenge to
critical infrastructures. Some research works has been conducted in the assess-
ment of security measures. Kotenko et al. [12,13], e.g., propose a framework for
cyber attack modeling and impact assessment based on attack graph generation,
real-time event analysis techniques, prognosis of future malefactor steps, attack
impact assessment, and anytime approach for attack graph building and analysis.
We differ from these research as we do not propose new algorithms or methods of
attack graph construction, instead, we propose a novel framework that processes
input data to generate response plans for pre-defined threat scenarios.

Agosta et al. [14] propose a software countermeasure framework based on
the combination of a cryptographic algorithm implementation with a polymor-
phic engine which dynamically and automatically transforms the binary code to
be protected. The approach enables the generation of multiple versions of the
code, to prevent an attacker from recognizing the exact point in time where the
observed operation is executed and how such operation is performed. We differ
from the previous work since it can only be applied to an algorithm or to a
subset of vulnerable instructions, ours is a modular framework that is applied
in a whole network to automatically analyze the impact of possible attacks and
provide an appropriate response based on multiple criteria.
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Ossenbuhl et al. [15], introduce a response selection model that allows mit-
igating network-based attacks based on an intuitive response selection process
that evaluates negative and positive impacts associated with each countermea-
sure. The model overcomes several challenges in automated response selection,
however, several other challenges are left uncovered (e.g., scalability and perfor-
mance issues, i.e., no alert correlation mechanism has been developed to handle
large amount of alerts, security issues, i.e., lack of secured communication chan-
nel among the system’s components, and applicability issues, i.e., lack of applying
responses in more advanced attack scenarios).

7 Conclusions and Future Work

We introduce a Dynamic Risk Management Response System that evaluates,
ranks and selects optimal mitigation actions based on financial, operational and
threat impact assessments. The system generates response plans containing mit-
igation actions and corresponding financial and operational evaluations. There
are two main improvements of this approach: (i) the dynamic evaluation per-
formed by the system, and (ii) the automation of the response plan generation.

In terms of dynamicity, the system operates on snapshots of a target system
with a regular frequency within minutes. At each snapshot, the current condition
are assessed. Upon reception of a risk profile, indicating a possible exploitation of
a given threat, the system requests input information and performs correspond-
ing analyses. Input data may vary at each snapshot, indicating, e.g., that one or
more PEPs are detected on the system, or that one or more mitigation actions
are not authorized for the current snapshot. As a result, every time a system
snapshot is performed, values of parameters, such as AIV and RM, dynamically
change, which in turn changes RORI indexes for the set of evaluated responses.

In terms of automation, the system performs the process in an automatic
chain, from the detection of the threat, to the visualization of the selected
response plan. The process is automated to assist security administrators in
the decision making process. It does not enforce the mitigation action auto-
matically, but provides an assessment of the current system conditions in order
to highlight the appropriate response strategies to administrators. For critical
infrastructures, selection of mitigation actions generally requires manual inter-
vention by an operator, an approval by supervisors, or more advanced system
operator.

Future work will concentrate on managing conflicts among restrictive actions.
It is possible that the best response plan suggests an enforcement of mutually
exclusive mitigation actions. In such a case, the system should assign priorities
to each action being able to discard those with low priority rate.

Acknowledgements. This work received funding from the Panoptesec project,
as part of the 7th Framework Programme (FP7) of the European Commission
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Abstract. Attacks on organisations today explore many different lay-
ers, including buildings infrastructure, IT infrastructure, and human fac-
tor – the physical, virtual, and social layer. Identifying possible attacks,
understanding their impact, and attributing their origin and contribut-
ing factors is difficult. Recently, system models have been used for auto-
matically identifying possible attacks on the modelled organisation. The
generated attacks consider all three layers, making the contribution of
building infrastructure, computer infrastructure, and humans (insiders
and outsiders) explicit. However, this contribution is only visible in the
attack trees as part of the performed steps; it cannot be mapped back
to the model directly since the actions usually involve several elements
(attacker and targeted actor or asset). Especially for large attack trees,
understanding the relations between several model components quickly
results in a large quantity of interrelations, which are hard to grasp.
In this work we present several approaches for visualising attributes of
attacks such as likelihood of success, impact, and required time or skill
level. The resulting visualisations provide a link between attacks on an
organisations and the contribution of parts of an organisation to the
attack and its impact.

1 Introduction

Modern organisations are complex entities. Understanding the interactions
between the organisation’s infrastructure, IT system, and human actors is dif-
ficult; understanding possible attacks on the organisation even more so. Tradi-
tional risk assessment methods describe processes that can be used to identify
attacks, and to explain the attacks’ potential impact on the organisation. How-
ever, the focus of these techniques is often rather technical and ignores the
internal structure and functioning of the organisation.

To improve the scope of risk assessment and the level of scrutiny, security
researchers have suggested socio-technical security models, which include the
physical, virtual, and social layer of organisations. Socio-technical security mod-
els acknowledge the need of considering all these levels in assessing the risk faced
by an organisation since an increasing number of attacks today do involve attack
steps on all three levels. The recent attack on a German steel mill [1], for exam-
ple, started with a spear phishing campaign, installing malware that gave the
attackers access to the office network, and from there to the industrial control
c© Springer International Publishing AG 2016
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system. Eventually, the attack is said to have caused physical damage to the
mill’s production system.

To communicate the attacks identified in an organisation, attack trees [2,3]
are often used; due to their relatively loose definition, attack trees can be adapted
to the requirements in many different settings. Attack trees provide structure to
the represented attacks by relating a node representing the goal of an attack with
different alternative or required sub-goals, which an attacker may or must per-
form. This structure makes attack trees also an appropriate target for automated
identification of attacks [4–6].

The TRESPASS project [7] applies attack trees as an intermediate represen-
tation of attacks. Attacks are generated from a socio-technical system model [8,9]
and are the basis of computing the risk faced by an organisation if one or more of
the identified attacks are realised. Properties of interest of these attacks include
required resources, such as time or money, likelihood of success, or impact of the
attack. The analyses also identify the Pareto frontier of incomparable properties,
for example, the likelihood of success of an attack, and the required budget.

When communicating the result of risk assessment, two components are of
interest: the actual attacks and the contribution of components of the organisa-
tion under scrutiny to these attacks. While properties of attack trees or other
attack models can be visualised in enlightening ways [10], the same does not
hold for the connection between components of the organisation and the attack.
Another limiting factor is the sheer size of attack trees, which easily can contain
several thousands of nodes. Manual assessment of the individual attacks in huge
attack trees is often impossible.

The generated attacks make the contribution of building infrastructure, com-
puter infrastructure, and humans (insiders and outsiders) to the attack explicit.
However, this contribution is only visible in the attack trees as part of the per-
formed steps, for example, as leaf labels. Mapping this back to the system model
is in principle not complicated. However, the actions usually involve several ele-
ments (attacker and targeted actor or asset) that may be located far apart in
the model. Especially for large attack trees, visualising these relations quickly
results in a large quantity of interrelations, which are hard to grasp.

In this work we present several approaches for visualising attributes of attacks
such as likelihood of success, impact, and required time or skill level. The result-
ing visualisations provide a link between graphical attack models and graphical
system models. After a discussion of visualising properties of attack trees, we
present our approach of using metrics to identify the importance or contribution
of parts of the attack tree, and mapping it to the system model. Our approach
currently only considers contribution of model elements – it not, for example,
include information on how assets and actors are used in an attack.

Our approach is independent of the attack model or socio-technical system
model used. The only requirement is that all model elements have unique iden-
tifiers that establish the link between their occurrences in the attack tree and
the model, respectively. While we present them in the setting of the TRESPASS
model, which is similar to ExASyM [11] and Portunes [12], the general approach
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can be applied to any graphical system model and any attack model. For exam-
ple, the metrics used for visualising model components can also be output as a
text file for sorting and further analysis.

The rest of this article is structured as follows. The next section gives an
overview of graphical models for systems and attacks, followed by a description
of the visualisation of properties of attack trees in Sect. 3. Based on these proper-
ties, we specify in Sect. 4 metrics for identifying the contribution of components of
organisations to the attacks, and show their application in visualising the contri-
bution to attacks. Finally, Sect. 5 concludes the paper and discusses future work.

2 System and Attack Models

Before discussing the contribution of components of organisations to attacks,
we briefly summarise the system and attack models we consider in our work.
As stated above, our approach is not limited to specific models for systems and
attacks. We only require system models to provide unique identifiers for model
elements, and attack models to use these identifiers in describing attack steps.

2.1 System Models

System models include representations of both the physical and the digital
infrastructure of an organisation. Approaches such as ExASyM [11] and Por-
tunes [12] represent relevant elements as nodes in a graph. Nodes represent loca-
tions, actors, processes, and items, and can be annotated with policies. Actors,
processes, and data are located at locations, items and data can also be con-
tained in another item. In our abstraction of the model, these nodes represent
the organisational components that enable and contribute to attacks. All ele-
ments in the model provide a unique identifier that can be used to refer to the
element and to obtain, for example, information on its concrete type, model,
or other relevant properties. This information is used in the attack generation,
but it can also provide input to the visualisation of system models, for example,
whether two elements should be connected by an edge (e.g., two locations) or
one within the other (e.g., two items).

While models such as ExASyM [11] and Portunes [12] also define actions
that can be performed by actors and processes, these are not required for our
approach. We only expect to be able to extract actors and arguments of actions
from leaf nodes in attack trees.

2.2 Attack Models

Similarly, attack models represent possible attacks on the modelled organisation.
For the approach in this paper, we only require that attack goals can be divided
into sub-goals that can be combined either conjunctively (must all be completed)
or disjunctively (only one sub-goal need to be completed). This is very similar



Understanding How Components of Organisations Contribute to Attacks 57

to attack trees [2,3], and just as for these it would be interesting to allow more
complex combinations at a later point.

As mentioned before we require the attack model to support extraction of
actor and assets from the actions in an attack tree. In our current work, actions
are contained in the attack-tree leafs. The leaf labels contain words from a regular
language that provides, for example, information about type of action, perform-
ing actor, which asset is obtained, and where the asset is obtained from. The
arguments to the action or exactly the identifiers that connect the attack tree
with the system model. We do not need to impose other assumptions that are
often found, e.g., about the ordering of sub goals from left to right; this is due
to the flow-insensitive nature of our visualisation.

2.3 Running Example

We use the same running example in this paper as in [5], which is based on a
case study in the TRESPASS project [7] centred around an actor Alice, who
receives some kind of service, e.g., care-taking, provided by an actor Charlie.
Charlie’s employer has a company policy that forbids him to accept money from
Alice or to steal money. Figure 1 shows a graphical representation of the example
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Fig. 1. Graphical representation of the example system. The white rectangles represent
locations or items, the gray rectangles represent processes and actors; actors contain
the items or data owned by the actor. The round nodes represent data. Solid lines
represent the physical connections between locations, and dotted lines represent the
present location of actors and processes. The dashed rectangles in the upper right part
of some nodes represent the policies assigned to these nodes.
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scenario, consisting of Alice’s home, a bank with an ATM, and a bank computer.
Alice owns a card and a concomitant pin code to obtain money from an ATM,
and a password to initiate transfers from her workstation via the bank computer.
Some of the nodes are labelled with policies in dashed boxes; for example the
money at the ATM requires a card with a pin code, as well as that very pin code
in order to obtain money (modelled as input).

Figure 1 shows a graphical representation of the model of our running exam-
ple. The locations, represented by small rectangles, are connected through
directed edges. Actors are represented as rectangles with a location, e.g., Alice
is at home and Charlie is in the city. Both actor nodes and location nodes can
contain data and items represented as circles. In our example, Alice has a card
that contains a pin code and Alice also has (knows) the pin code for her card.
Actor nodes can also represent processes running on the corresponding locations.
The processes at the workstation and the bank computer represent the required
functionality for transferring money; they initiate transfers from Alice’s home
(PWS ), and check credentials for transfers (PC ).

Note that all elements have either a unique name or a unique value, which
serve as their identifiers. If an element occurs more than once, for example,
the password (pwd , 313) or the Alice’s pin (pin, 42), these occurrences represent
copies of the same artefact.

3 Visualising Attacks

The analytic risk assessment based on socio-technical security models operates
on attack trees and judgments about quantitative properties of the actions per-
formed and the actors performing them. After briefly discussing how to evaluate
attack models, we present a simple approach for visualising several, potentially
incomparable properties of such models. The approaches discussed in this section
provide the input for the attribution of contribution of organisational compo-
nents to attacks in the next section: the colouring will be used for identifying
important parts of the organisation, and the analyses results provide input to
the assessment of the contributions.

3.1 Evaluating Attack Models

The attack models generated from system models form the basis of analytic risk
assessment. Properties of interest [13] of these attacks include required resources,
such as time or money, likelihood of success, or impact of the attack based on
annotations of the leaf nodes in attack trees. Analyses [14] also identify the
Pareto frontier of incomparable properties, for example, the likelihood of success
of an attack, and the required budget.

The mapping of actions to metrics can again be achieved by mapping the
action and its arguments to a specific value. These metrics can represent any
quantitative knowledge about components, for example, likelihood, time, price,
impact, or probability distributions. The latter could describe behaviour of actors
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Fig. 2. Attack tree visualisation plot. Nodes with border represent conjunctive nodes,
nodes without border disjunctive nodes. The two red paths represent the two attacks
with the biggest likelihood of success. The left hand path, however, has a higher chance
of success, which is represented by a higher saturation of the colours. The illegible labels
for even so small an attack tree document the inapplicability of this concept to showing
risk for organisations; attack trees tend to grow so large that they become unhandy
and require different visualisation approaches. (Color figure online)

or timing distributions. For the visualisation described in this article the mapping
of leaf nodes to metrics and the analyses performed are irrelevant; we assume an
attack tree and a mapping from its nodes to an analysis result. For the purpose
of this work we have implemented simplified versions of [13,14].

3.2 Attack Tree Visualisations

While not at the core of our work, we briefly discuss the mapping from attack
tree analysis results to visualisations, since these map directly to the visualisa-
tion of the contribution of components of organisations to the risk faced by the
organisation.

We have applied three visual styles to illustrate the influence of paths in the
attack tree on the overall result for the tree:

– The line width of edges implies the resource usage of a specific path, that
is, how resource demanding an attack path is. We assumed attackers always
choose the path with lowest cost, lowest time consumption, and lowest diffi-
culty to apply attacking. Thus the line width is inversely proportional to these
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three parameters – the lower the resource usage of a path, the more likely the
attacker to take it (modulo other factors that come next).

– The transparency reflects the likelihood of success of a path in an attack. This
attribute is directly defined in the weight measurement: the more transparent
a path is, the lower its likelihood of success.

– The last and foremost property is color, which represents the overall impact of
a path, normalised to percentage of the highest impact for the whole attack.
The impact value is determined by the required resources, likelihood of success
as well as the profit of the attack. In general the color scale chosen is between
two colours, where one color represents 0%, the other 100%, and other values
are combination of the two. In our example the color scale goes from green to
red, which means the impact is increasing from low to high.

Figure 2 illustrates these visualisations using the analysis results from
Sect. 3.1. Clearly, more advanced visualisations provide even deeper insights into
the scenarions represented by an attack tree. In the TRESPASS project we have
explored many such methods [10].

3.3 Pareto-Efficient Solutions

In case of multiple parameters most analytical methods optimise one parameter
at a time, e.g., minimise cost or maximise probability of an attack. Such methods
may lead to sub-optimal solutions when optimising conflicting parameters, e.g.,
minimising cost while maximising probability; in this scenario it may not be
possible to identify the attack that will result in the biggest gain for the attacker.

Pareto-efficient solutions [14] result in combinations of these conflicting para-
meters, and can be used to approximate the results for comparable values. Figure 3
shows an example of a Pareto-efficient solutions for an attack tree that results in
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probability of a successful attacks ranging from0 to 0.97 and the corresponding cost
ranging from 0 to 695. Assuming that the attacker has a fixed budget or a rational
attacker who will not launch an attack if the cost is higher than the expected gain,
we can identify the optimal Pareto-efficient solution from this set.

We are currently experimenting with approaches for visualising this directly
on the attack tree to indicate how close a path in the attack tree is to the most
Pareto-efficient solution. The approach of scaling between two colours, which we
applied for unary predicates as discussed above, does not carry over to binary
predicates, where we, e.g., have worse attacks (for the attacker) with higher
probability. We are currently considering three colours, e.g., green – red – blue,
or stretching of lines, where the colours have the same meaning as discussed
above, but the path lengths are scaled depending on how close they are to
the Pareto-efficient solution. The scaling would make identification of the most
Pareto-efficient attack (and the ordering on attacks) straightforward, since the
longer paths are more efficient.

4 Contribution of Components of Organisations
to Attacks

Now we put the different elements described above together to visualise the
relation between attack trees and system models. Remember that we require
all elements in the model to have unique identifiers; we use this identifier to
associate model components and attack tree actions.

As for attack trees we need a measure for how much a model element con-
tributes to a given attack. We apply techniques similar to our earlier work on
insiderness [15].

4.1 Measuring Impact

Computing the actual impact of a model component on an attack is as difficult as
computing the impact of an attack; the results can be used for ordering attacks
or influence, but they should not be taken as absolute answers. With this in mind
we have applied several techniques for measuring the impact of components on
attacks.

As mentioned before we require the attack model to support extraction of
actor and assets from the actions in an attack tree, and actions are contained
in the attack-tree leafs. Leaf labels provide information about type of action,
performing actor, which asset is obtained, and where the asset is obtained from.
All this information is provided through the identifiers that connect the attack
tree with the system model.

4.2 Counting Occurrences

The simplest concept of measuring impact is that of counting occurrences of
identifiers. It computes for a given entity in how many places it contributes to
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the whole attack tree or a path. The occurrence-based ranking ignores analysis
results such as impact or likelihood. It is either measured as absolute number or
as percentage of occurrences of identifiers in the path or tree being analysed. It
is computed per identifier id for a set of nodes in a subtree of the attack tree that
represents an attack, assuming that id ∈ S returns 1 if true, and 0 otherwise,
and that node n has successors c ∈ succ(n):

I(id ,n) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[x, x] x = (id ∈ actor(n)) + (id ∈ assets(n)), if n is a
leaf node

[l, u] l = min(I(id , c)), u = max (I(id , c)), if n is a
disjunctive node

[l, u] l = Σc{l′|[l′, ] = I(id , c)}, u = Σc{u′|[ , u′] =
I(id , c)}, if n is a conjunctive node

(1)

As a first crude measure, this impact provides a defender with a quick overview
of which components of the organisation actually occur in the attack tree.

The occurrence-based impact provides for every identifier a lower and an
upper bound of occurrences; for conjunctive nodes these will be the same, for
disjunctive nodes the lower bound is the minimum of the lower bounds, and
the upper bound is the maximum of the upper bounds of the child nodes. The
combination of lower and upper bounds provides a measure for how reliable the
numbers are. It also allows to identify, whether certain elements occur in all
attacks: if I(id , r) = [x, ] for some identifier id , the root of the attack tree, and
x > 0, then the element with id contains in every attack in the tree.

4.3 Weighted Sum

The impact factor based on occurrences in the generated attacks is a rather
crude approximation, since every occurrence of an identifiers is assigned the
same impact independent on the actual contribution to the attack. Given that
the analyses of attack trees described in Sect. 3.1 provide us with quantitative
information about attacks, we can improve over the occurrence-based ranking
by weighting occurrences of identifiers with the impact of the attack they occur
in. The factors we can choose from are limited by available analyses only, but
include, for example, the likelihood of success, required time, difficulty, and cost.

In contrast to the occurrence-based impact we now include one of the analysis
results, by weighting the count for an identifier with the weight of the path, and
potentially normalising it. As before, it is either measured as absolute number or
as percentage of occurrences of identifiers in a subtree of the tree being analysed.

For defining the impact, we assume for identifier id for a node n on a path
in the attack tree:

– the set-membership test id ∈ S returns 1 if id is in S, and 0 otherwise,
– succ(n) returns the successors of node n in the attack tree, and
– val(n, p) returns the result of the attack tree analysis for a node n in the

(sub-)tree p.
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Fig. 4. Visualisation of the weighted impact of an attack tree on the physical infrastruc-
ture part of the example model from Fig. 1. Charlie is identified as the major culprit
as he occurs in every single attack step. Alice is less involved, since Charlie in some
attacks might steal money from the ATM directly (or the ATM altogether). It is also
clear from the visualisation that the user tag on Alice’s card is not used in the attack,
and neither is, e.g., the bank computer C.

Using these functions, we compute the contribution of an asset or actor with
identifier id, at node n with subtree p rooted at n based on the following cases.
If n is a leaf node, we obtain the result of the attack tree analysis for n and p.
If n is a disjunctive node, we compute the minimal impact for successors of n.
If n is a conjunctive node, the computation depends on the analysis result val
we are using. If we measure difficulty, time, or cost, we value the impact to be
the sum of the impact of all successors. If we measure likelihood of success, we
assume the impact to be the minimal impact:

I(id ,n, p) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vl = val(n, p) · (id ∈ actor(n) + id ∈ assets(n))
if n is a leaf node

vd = minc∈succ(n)(I(id , c, p))
if n is a disjunctive node

vca = Σc∈succ(n)I(id , c, p)
if n is a conjunctive node and we
measure difficulty, time, or cost

vcm = minc∈succ(n)(I(id , c, p))
if n is a conjunctive node and we
measure likelihood of success

(2)
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Figure 4 shows the visualisation based on the weighted impact. For example,
the impact of Alice and her card on the attacks is different from the impact of
Charlie; for occurrence-based visualisations we would have expected a similar
result since they do not occur in all attacks. The reason is another, though:
the difference in impact is due to the fact that Charlie might decide to steal
the ATM, which has lower cost and higher chance of success than, e.g., social
engineering Alice.

4.4 Visualising Paths

Depending on the kind of attack trees, they contain information about moves
of the attacker in the organisation or not. If the move information is contained
in the attack tree, then the methods above extend to visualising in the system
model, which locations of the modelled organisation are most important for the
attack. This information is especially interesting for deciding, e.g., about the
need for (better) surveillance.

4.5 Visualising Pareto-Efficient Solutions

As mentioned in Sect. 3.3, visualising Pareto-efficient solutions requires special
approaches due to the fact that the best solution may be in the middle of the
spectrum of possible attacks. Therefore, it may be important to visualise not
only the best solution, but also identifying solutions that are worse or better, but
are not chosen due to the efficiency criterion. The three-colour option discussed
above is also applicable in the model setting; other approaches such as the scaling
of edges do not carry over since different attacks with differing quantitative
valuations must be visualised on the same model.

4.6 Visualising Different Components

There exist many different analyses on attack trees, and it may be interesting
to investigate and visualise several values combined on a system model. For
many interesting counting approaches, e.g., the ones discussed here, one can
combine different values into a vector, and apply for each value the targeted
counting operation. Since the values generally may not be comparable directly,
one then can either apply Pareto-based techniques, visualise the different values
simultaneously, or apply a summation function that combines the individual
values.

5 Conclusion

Modern organisations are complex socio-technical systems. Understanding the
interactions between the organisation’s infrastructure, IT system, and human
actors is difficult; understanding possible attacks on the organisation even more
so. While attack trees are a natural approach to communicate risks and possible
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attacks, it is often hard to estimate, which parts of an organisation contribute
to these attacks. Even worse, attack trees tend to be so huge that they are hard
to understand. Visualising the attack trees directly eases the treatment, but still
leaves defenders with large trees; what is needed is an approach that relates the
model to attacks.

In this article we have presented a systematic approach for such a mapping of
the results of attack generation back to system models. The visualisation can be
based on arbitrary counting of occurrences of model elements in the generated
attacks. We have presented two such approaches based on simple occurrence and
weighted occurrence. More complex ones could, e.g., also take the role of actors
into account, such as attacker, victim, or social engineered.

In the TRESPASS project [7], visualisations such as our approach contribute
to the attack navigator [16,17]. Beyond this, the techniques presented here are
widely applicable. Our approach is agnostic to the underlying system and attack
models. The only requirement is the ability to associate actions and the involved
artefacts in the attack model with elements in the system model, and to obtain
quantitative judgments about the attacks. While the techniques discussed in this
work especially target IT security attacks, the techniques are applicable to any
kind of attacks and risks.

We are currently working on further refinement of the visualisations, e.g., for
Pareto-efficient solutions, and on more advanced counting functions. As men-
tioned above, it would be interesting to take the role of an actor into account.
We are also investigating how to extend our approach to attack-defence trees [18],
which combine actions by attackers with mitigating actions by defenders.
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NordSec 2014. LNCS, vol. 8788, pp. 199–212. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-11599-3 12

14. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46666-7 6

15. Probst, C.W., Hansen, R.R.: Reachability-based impact as a measure for insider-
ness. In: 5th International Workshop on Managing Insider Security Threats (MIST
2013) (2013)

16. Probst, C.W., Willemson, J., Pieters, W.: The attack navigator. In: Mauw, S.,
Kordy, B., Jajodia, S. (eds.) GraMSec 2015. LNCS, vol. 9390, pp. 1–17. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-29968-6 1

17. Pieters, W., Barendse, J., Ford, M., Heath, C.P.R., Probst, C.W., Verbij, R.: The
navigation metaphor in security economics. IEEE Secur. Priv. 14(3), 14–21 (2016)
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Abstract. The infection of ICT systems with malware has become an
increasing threat in the past years. In most cases, large-scale cyber-
attacks are initiated by the establishment of a botnet, by infecting a
large number of computers with malware to launch the actual attacks
subsequently with help of the infected victim machines (e.g., a distrib-
uted denial-of-service or similar). To prevent such an infection, several
methodologies and technical solutions like firewalls, malware scanners or
intrusion detection systems are usually applied. Nevertheless, malware
becomes more sophisticated and is often able to surpass these preven-
tive actions. Hence, it is more relevant for ICT risk managers to assess
the spreading of a malware infection within an organization’s network.
In this paper, we present a novel framework based on stochastic models
from the field of disease spreading to describe the propagation of mal-
ware within a network, with an explicit account for different infection
routes (phishing emails, network shares, etc.). This approach allows the
user not only to estimate the number of infected nodes in the network
but also provides a simple criterion to check whether an infection may
grow into a epidemic. Unlike many other techniques, our framework is
not limited to a particular communication technology, but can unify dif-
ferent types of infection channels (e.g., physical, logical and social links)
within the same model. We will use three simple examples to illustrate
the functionalities of the framework.

1 Introduction

In the last years, information and communication technology (ICT) systems have
faced an increasing amount of infections and attacks stemming from malware.
This ranges from simple adware like DeskAd, bringing annoying content onto
the system, over bots, making the infected system part of a bot network, later on
used, e.g., for spaming or distributed denial of service (DDoS) attacks, up to ran-
somware like CryptoLocker, which is used to blackmail an organization. In fewer
c© Springer International Publishing AG 2016
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cases, more sophisticated malware, e.g., rootkits, is used to gain foothold in the
system and start an advanced persistent threat (APT) attack. Whereas simple
forms of malware might have minimal effects on an organization’s infrastructure,
more sophisticated ones, especially ransomware, can cause a significant damage
within an organization, with APTs potentially having the biggest effects, as past
and current examples like Stuxnet [1] or the hack of the Ukranian power grid [2]
show. In both cases, Stuxnet and the Ukranian power grid, the attack has been
established for a long time, with the malware carefully and stealthy probing and
learning the infrastructure characteristics to manifest itself in vital parts of the
system. It was reported that the malware remained unnoticed for a long time in
the system, and went over quite a variety of different technical and logical links.
While Stuxnet and the Ukranian power grid are just two rather public incidents
based on APT attacks, claims of successful attacks or related attempts (that did
not cause damage so far) are continuously reported (see, e.g., [3–5]).

Currently, several technologies and numerous applications exist which are
used to prevent the infection of an ICT system by malware. Among these are
classical applications like firewalls, virus or malware scanners, but also more
advanced methodologies like intrusion detection systems (IDS), security incident
and event management (SIEM) as well as anomaly detection systems. Although
these preventing technologies become more and more advanced, in many cases an
infection is triggered by “soft” and non-technological factors, e.g., by following
links in phishing emails or drive-by infections. As described in [6], almost 50 % of
examined malware requires user interaction for propagation. Hence, the infection
of an organization’s ICT system cannot be ruled out just due to technological
reasons, but the user awareness becomes a core aspect.

From a security managers’ point of view, it is important not only to perform
preventive actions but also to estimate and assess the potential damage of a
malware infection within an organization’s ICT infrastructure. In particular,
when it comes to critical infrastructures or utility providers (such as power, water
or gas providers), a failure of a small number of systems or even a single system
might have significant effects on the organization as well as the population and
the entire society. Thus, it is crucial to estimate the number of infected systems or
whether the infection will turn into an epidemic (i.e., a significant fraction of all
nodes in the network will be infected). Currently, there are only a few approaches
in the literature modeling the propagation of malware in ICT networks.

In this article, we present a novel framework for modeling and assessing the
propagation of malware within a network after one node has been infected (the
case where an infection simultaneously originates from multiple nodes, say by a
spamming email infection, is covered by our model under suitable changes, e.g.,
by introduction of an artificial node which infects all neighbors with probability
one). In our approach, we treat the spreading of malware in an ICT network
as a similar process to spreading of an epidemic in a human network. Existing
epidemic models are often based on percolation theory [7] to describe how single
events trigger other events in a network [8,9]. Accordingly, we also use percola-
tion theory to describe how malware can spread in an ICT network. Therefore,
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we model the ICT infrastructure as a graph representing a network of inter-
connected components. Further, we use characteristics of a malware to estimate
the probability that an infected node also infects the neighbor nodes. As we
will show later on, our approach is not restricted to the physical network but
can integrate also additional information, e.g., logical links between the nodes
or the social network of the employees using the ICT systems. In addition to
the network infrastructure, we use the properties of a malware to estimate the
probability that a node becomes infected given that one of the neighbor nodes
is already infected. Hence, the two main questions that can be answered using
our framework are:

(a) How many nodes will be affected by a specific malware on average?
(b) How likely is it that a significant part of the network is affected by the mal-

ware? In this context “significant” means an expectedly unbounded number
of nodes.

The remainder of this paper is structured as follows: After a quick overview
on the related work in Sects. 2, 3 presents a general propagation model for hetero-
geneous networks, both for the situation of bounded and unbounded spreading
and illustrates it with an example. Section 4 shows how the general model can be
helpful in describing a malware infection. Section 5 illustrates the implementa-
tion of the model for the case of phishing emails and, finally, Sect. 6 summarizes
our approach.

2 Related Work

In the past, there have been only a limited number of approaches describing
malware propagation. Some early models are based on random scanning schemes
[10,11], which assume that malware randomly selects new target systems and
infects them. More sophisticated malware takes the specific network topology
into account, i.e., topological scanning functionalities are determining the prop-
agation of the malware [12,13].

During the last years, several epidemic models have been used to describe
the spreading of a malware [14–19]. While these and similar models are quite
complex due to being formulated with differential equations, they assume the
networks to be homogeneous and thus they are not very flexible. One approach
taking into account some heterogeneities in the transmission is [20].

Looking at malware spreading in a more abstract way, we want to understand
how certain events trigger other events in a network. Percolation theory [7,21]
has evolved into an indispensable tool for answering this question, especially in
physics. Further, models describing disease spreading using percolation theory
[8,9,22–24] have become popular over the last decades. Most of these models
are built for a specific class of networks, such as scale-free networks [25,26] or
lattices [22].

Although percolation models are rather prevalent in the field of disease
spreading, they are only rarely used in the fields of security and risk manage-
ment so far. A potential reason for this might be the common assumption that
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all contacts are equally likely to transmit the disease, i.e., that the network is
homogeneous in this regard [21,27–30]. Whereas this might represent a reason-
able simplification for some problems in disease spreading, such assumptions
are inappropriate when modeling ICT security. In this context, it is preferable
to distinguish different components (e.g., stemming from different subnetworks)
as this might significantly influence how an infection in one component can (or
cannot) affect other components. Such heterogeneity has for example been recog-
nized in Industrial Control Systems (ICS) [31], allowing a more detailed analysis
of such systems. Therefore, we will relax this assumption by allowing connections
between two nodes to be of diverse nature (e.g., email contact, wireless layer 2
connection, etc.), each of which may have its own and distinct characteristics
defining how a malware can spread over the network. A model that accounts for
both directed and undirected edges has been presented in [32] and has further
been generalized in [33] to the situation of several different types of connections.
For example, if a network is divided into several subnets, one edge class may
be defined to model the cross-connections between the subnets. Consequently,
bridges, firewalls or similar may all constitute their own edge class, whereas con-
nections among the nodes of the subnet may belong to different edge classes.
Examples may include (but are not limited to) shared network drives, email
communication and similar.

3 A Model for Spreading in Heterogeneous Networks

As our focus in this work is on presenting an application-oriented model, we put
our upcoming efforts on the modeling. Details of the underlying theory (including
formal proofs) can be found in [33], where the interested reader can look up the
background of our upcoming considerations.

Let an ICT network be modeled as a graph G(V,E), where V is a finite set
of nodes and E is the set of directed edges between them. Since we consider
the spreading process being influenced by the different nature of connections
between nodes, we partition the full edge set E into n classes of edges, i.e.,
we say that an edge is “of type i”, to characterize it. While edges of the same
type are indistinguishable, edges of different types have distinctive properties
related to the spreading process. Thus, each class i has a specific probability pi
of transmitting the considered malware. (Note that these probabilities do not
have to sum to one as they do not represent a distribution but rather represent
different characteristics.)

3.1 Formal Description of the Network

Throughout the paper, we will denote sets, matrices and random variables by
uppercase letters while vectors are printed in bold. Functions are denoted by
calligraphic letters. The topology of a network will be described by its degree
distribution P (j, k), giving the probability of a node having exactly j ingoing
and k outgoing edges.
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Over the evolution of the outbreak, we will distinguish the “infected net-
work”, consisting of nodes infected by the malware together with the edges
connecting them, from the “original network”, in which no incident has yet
occurred. Since edges within the infected network have been vehicles for mal-
ware, we will call them “infected edges”. Throughout the remainder of this work,
we add the superscript “o” (for “original”) to quantities corresponding to this
original network while variables describing the network after the infection have
no superscript.

Generally, a random network is conveniently described through its degree
distribution, i.e., the relative frequencies of occurring degrees of nodes. For a
network with n different edge classes, each having probability of transmission
pi, the degree distribution of the infected network is [33]

P (j,k) =
∑

jo≥j

∑

ko≥k

P o(jo,ko)
n∏

i=1

(
joi
ji

)
pjii (1 − pi)

joi −ji ·
n∏

i=1

(
ko
i

ki

)
pki
i (1 − pi)

ko
i −ki (1)

where jo ≥ j is a shorthand for the component-wise inequalities joi ≥ ji for all i.
This distribution is conveniently represented by its generating function, see [34,35]
for details. The above distribution is described by

G(x1, . . . , xn; y1, . . . , yn) =
∑

j,k≥0

P (j,k)
n∏

i=1

xji
i yki

i , (2)

where ji and ki represent the number of incoming and outgoing edges of type i,
respectively. This representation simplifies the upcoming analysis.

A difficile part of this model is the determination of the probabilities pi
characterizing each type of edges. These values need to be estimated by experts
or are based on some kind of vulnerability assessment (preferably, an expert may
base an opinion on past reported incidents, combined with own experience; in any
case, probabilities may nonetheless remain subjective estimates, and a careful
fine-tuning by combining input from multiple domain experts may be advisable
to get a robust parameterization). Potential uncertainty in such assignments can
be captured by allowing these probabilities to be random themselves [36].

Essentially, our network model is a weighted directed graph G = (V,E),
where the (finitely many) weights w : E → {p1, . . . , pn} represent the different
edge classes. The topology of G is random, and described by degree distribu-
tions (or generating functions thereof), but not further restricted to obey any
particular shape of the distribution (e.g., power-law or similar).

3.2 Predictions for a Bounded Outbreak

Based on the model presented in the previous section, we can predict the degree
of damage for a network due to an infection originating from a single node.
To measure this damage, we compute the expected number S of components
affected by the infection.
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Whether an infection is conveyed to another node heavily depends on the
types of the incoming edges. If those are not likely to transmit the infection, there
is a smaller chance it becomes infected than compared to the situation where
the incoming links are more susceptible. Differentiating between the possible
types of the edge, over which we arrive at a node yields the expected number of
infected nodes

E[S] = 1 +
n∑

j=1

∂

∂yj
G(1, . . . , 1; 1, . . . , 1) · H ′

j(1), (3)

where H ′
i(1) is a solution

H ′
i(1) = 1 +

n∑

j=1

∂

∂yj
Hi(1, . . . , 1;H1(1), . . . , Hn(1)) · H ′

j(1). (4)

The linear equation system (4) to be solved can be written in the form
Ax = b with x = (H ′

1(1), . . . , H ′
n(1)), b = (1, . . . , 1)T and the coefficient matrix

A with entries

aij = − ∂

∂yj
Hi(1, . . . , 1; 1, . . . , 1) = − ∂

∂yj
Ho

i (1, . . . , 1; 1, . . . , 1) · pj

for i �= j and

aii = 1 − ∂

∂yi
Hi(1, . . . , 1; 1, . . . , 1) = 1 − ∂

∂yi
Ho

i (1, . . . , 1; 1, . . . , 1) · pi

on the diagonal. It can be solved numerically and the solution is then be plugged
into Eq. (3) to receive the desired expected value.

Example 1. If we assume the network to be modeled by the well known Erdős-
Rényi model [37] in which an edge of type i exists with probability qi, the system
(4) is described by the matrix

aij =

{
−npjqj if i �= j

1 − npjqj if i = j

where pi again denotes the probability of transmission for an edge of type i.
Rearranging terms and using some algebra, we find

H ′
i(1) =

1
1 − np1q1 − . . . − npnqn

and thus the expected number of infected nodes is

E[S] =
1

1 − np1q1 − . . . − npnqn
.
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From the above computations the following criterion can be deduced (see [33]
for a detailed proof):

Theorem 2. Let a network with n different types of edges be described by the
Erdős-Rényi model in which an edge of type i exists with probability qi and
assume it transmits a malware with probability pi. Then, an epidemic will not
occur if

1 − np1q1 − . . . − npnqn > 0

is fullfilled.

In other words, the expected value of the amount of infected nodes remains finite
in this situation.

3.3 Predictions for an Unlimited Outbreak

If an epidemic is possible, e.g., if the criterion given by Theorem2 is violated,
we are interested in the probability Pep of an epidemic, i.e., the probability
that an extensive number of nodes is infected. In case an epidemic occurs, we
further want to compute the fraction f of affected nodes. These quantities can
be computed based on percolation theory [32] with the help of the so called
dual network consisting of the same nodes as the original one but with all edges
pointing in opposite direction [33]. Adapting our notation described in Sect. 3.1,
we use a superscript “d” for all objects that relate to the dual network.

Similar to (2) above, we denote the generating function for the degree distri-
bution by G and we write

zi =
∂

∂xi
G(1, . . . , 1; 1, . . . , 1)

for the average degree of edges of type i. Similar computations as in Sect. 3.2
show that the fraction of affected nodes in case of an epidemic is

f = 1 − G(Hd
1 (1), . . . , Hd

n(1); 1, . . . , 1),

where Hd
i (1) is the solution of the (nonlinear) equation system

Hd
i (1) =

∂

∂yi
G(Hd

1 (1), . . . , Hd
n(1); 1, . . . , 1)/zi (5)

for all i. If the system does not admit an analytical solution, numerical approx-
imations can do sufficiently well.

Additionally, the probability of an epidemic is found to be [33]

Pep = 1 − G(1, . . . , 1;H1(1), . . . , Hn(1)),

where Hi(1) is determined by

Hi(1) =
∂

∂xi
G(1, . . . , 1;H1(1), . . . , Hn(1))/zi

for all i. Again, this system can be solved numerically.
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Example 3. Assume an Erdős-Rényi model for all kind of edges so that an edge
of type i exists with probability qi in the original network before infection. Fur-
ther, assume that each of the n classes has a specific probability pi of transmitting
a malware. Working out the corresponding generating functions shows that the
infected network can again be described by an Erdős-Rényi model with reduced
(joint) probability qipi for existence of an infected edge of type i. In order to find
the fraction f of affected nodes, one needs to solve the system

Hd
i (1) = exp

⎧
⎨

⎩n

n∑

j=1

qjpj(Hd
j (1) − 1)

⎫
⎬

⎭

for Hd
i (1) for all i, which is identical to the system that determined the probability

Pep for an epidemic. As the right hand side does not depend on i, all Hd
i are

equal and be denoted by H. If the condition from Theorem 2 is not fulfilled, i.e.
if s := n

∑n
i=1 qipi > 1, there exists a unique solution H(s) in the open interval

(0, 1), namely [33]

H(s) = −W (−se−s)
s

where W (z) denotes the principal branch of the Lambert W-function [38]. Thus,

Pep = f = 1 − exp {s(H − 1)} = 1 − H = 1 +
W (−se−s)

s
.

However, the equality of f and Pep is generally not valid.

4 Modeling Malware Spreading in Networks

At present, there are numerous ways known, how a malware spreads within
an ICT network. Nevertheless, only a few means of propagation account for
most malware infections, as described in [6]. The biggest part, around 44.8 %,
is represented by malware which requires user interaction for propagation, e.g.,
downloading and installing some software or simply clicking on a link. A sim-
ilarly large part, around 43.2 %, uses the “Autorun” functionality provided by
Windows, i.e., malware is automatically installed on a system as soon as a USB
stick is plugged in or a network storage is mounted (here, we combined the val-
ues for “Autorun: USB” and “Autorun: Network” given in [6]). A comparably
small amount, around 5.6 %, exploits vulnerabilities in software and operating
systems to propagate from one system to another (here, we combined the values
for the categories “Exploit: Update Long Available”, “Exploit: Update Avail-
able” and “Exploit: Zero-Day” given in [6]), while the reamining 6.4 % comprise
File Infector, Password Brute Force and Office Macros.

To illustrate the flexibility of our model, we focus on these three most com-
mon means of propagation and describe, how our framework can be applied on
the following scenarios
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(1) Propagation using phishing emails sent to all contacts of a user
(2) Propagation over an infected network drive shared by several users
(3) Propagation based on (known) vulnerabilities of physically connected com-

puters

Each of the described scenarios uses a different part of the ICT network to attack,
but all of them share the following feature: malware that starts spreading in one
node does not affect all neighbors with the same likelihood but the probability of
transmission is influenced by other factors. In the following subsections, we will
demonstrate which factors influence the transmission probability and in Sect. 5
we will visualize the spreading process for one specific scenario.

4.1 Propagation Using Phishing Emails

Among the means of propagation requiring user interaction, the most prominent
example is based on phishing emails [6]. In short, an employee finds a message
in his mailbox from a seemingly reliable organization (especially names of well
known banks or insurance companies are frequently used). In this message, the
user is requested to click on a link or open a document to get further infor-
mation. Clicking on such a link will typically guide the user to a website and
start a drive-by download, hence installing a malware without the user being
aware of it. In the context of our scenario, we will assume that this malware
then forwards the forged link or document to all email contacts of the infected
employee. Accordingly, the process starts all over again.

Such a process is conveniently modeled as a spreading over the network of
email contacts, which can be interpreted rather as a social than a technical
network. However, assuming that every employee is equal likely to click on such
a link is far from realistic, in particular when people have different background
and knowledge. This heterogeneity of the email contact network can be captured
by grouping employees into different classes depending on how likely the are to
follow the instructions of a forged message. A nominal categorization (e.g., into
classes of “low”, “medium” and “high” likelihood) can be performed based on,
e.g., a survey among the employees or the experience from awareness trainings.

For this kind of infection, such a categorization directly yields a decomposi-
tion of the links in the contact network (corresponding to the classes described
described in Sect. 3.1): if an employee is highly likely to install the malware
on his computer, all his contacts are highly likely to receive the corresponding
email (similarly for the classes “medium” and “low”). Thus, all connections are
characterized by their starting point. Additionally, the likelihood of a successful
propagation, i.e., an employee following a link received by email from a co-worker,
depends to a certain amount on how much the receiver trusts the sender of the
email. In other words, if two employees exchange an extensive amount of emails,
one of them is more likely to click on a link or open a document, if the email is
coming from the other colleague. On the contrary, receiving an email with the
request to follow a link from a co-worker with whom little or no previous email
contact exists looks suspicious. Thus, the receiver is less likely to click on the
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link and the malware is less likely to successfully propagate. Such information
can also be included in the classification of the links by modeling the respective
transmission probability as a random variable.

After classifying all edges, it is further necessary to assign a specific proba-
bility to each type to fully apply the percolation model. As mentioned above,
such assessments are typically based on either experts’ opinions or questionnaires
filled out by the employees (e.g., by asking how often they have clicked on such
links in the past). We want to point out that such empirical data has a tendency
to be biased as employees tend to underestimate the number of incidents. How-
ever, using a median can mitigate this effect [39]. A complete simulation of such
a scenario to illustrate the application of our stochastic model is described in
Sect. 5 below.

4.2 Propagation Over Shared Network Drives

As already mentioned above, the second very common way of propagation for
a malware is to use the Windows’ autorun functionality [6], which is activated
when a USB stick is plugged in or a shared network drive is mounted. In this case,
the relevant system files implementing the autorun functionality are changed by
the malware such that malicious code is executed whenever the device (USB
stick or shared network drive) is mounted. The initial infection of a system can
be realized in several ways: either by a drive-by download or by an infected USB
stick, e.g., given as a present to an employee or placed at some public area within
the organization.

Whereas the spreading process via phishing emails relates more to the orga-
nization’s social network (cf. Sect. 4.1), the propagation over shared network
drives is based on the technical network. In particular, we can model the mal-
ware propagation over the logical links in the organization’s network, i.e., taking
into account the shared network drives and the systems (user) having access to
them. Usually, numerous users have access to these shared network drives. Thus,
once the shared network drive is infected, a larger number of systems becomes
infected in a shorter time, compared to the phishing email scenario described in
Sect. 4.1.

Similarly to the propagation via phishing emails, we can distinguish in this
scenario between different classes of links in the logical network. In more detail, if
an employee frequently connects to an infected shared network drive, the proba-
bility that the employee’s system becomes infected can be categorized as “high”.
Accordingly, the less frequent a user mounts a network drive, the lower the prob-
ability for the malware to propagate to this system (the links are then corre-
sponding to classes “medium’ and “low”). After assigning a specific probability
to each of these classes (using empirical data as already discussed in Sect. 4.1),
we can apply our percolation model and simulate the malware propagation for
this scenario similarly as described in Sect. 5.
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4.3 Propagation by Exploiting System Vulnerabilities

In the third scenario, we look at malware spreading based on the exploitation
of software vulnerabilities representing the third major category for propagation
techniques according to [6]. Compared to the usage of phishing emails or autorun
functionalities, this scenario requires less user interaction and is based more on
the technical networks structure, i.e., the physical links between the systems.
Accordingly, a malware using this propagation technique has to be more sophis-
ticated than in the previous scenarios, since it has to identify and adapt to the
individual vulnerabilities present in an organization’s network.

Modeling the spreading process of the malware has a strong focus on an orga-
nization’s physical network structure as well as the individual systems operating
in that network. In short, the malware scans for vulnerabilities in adjacent sys-
tems and exploits them to firstly gain access to these systems and then obtain
administrator’s rights to propagate further. Hence, not all systems within the
network are equally likely to be infected by the malware. Thus, based on the
existence of vulnerabilities in the different systems within the network, the links
between these systems can be divided in the three classes “low”, “medium” and
“high”, like in the previous scenarios. In this case, not only the number of vul-
nerabilities of a system is relevant but also the severity of those vulnerabilities
has to be taken into account. In more detail, a system with a large number of
vulnerabilities has a “high” chance of being infected with malware, but also a
system with fewer but more severe vulnerabilities might fall into the same class
(similar considerations can be done for classes “medium” and “low”).

Furthermore, the assignment of probabilities to each of the three classes is
more complex compared to the other scenarios. As pointed out in Sects. 4.1 and
4.2, the probabilities can be chosen based on experts’ opinions but this empirical
data can be extended and enhanced due to the availability of detailed information
on existing vulnerabilities, e.g., coming from external repositories like NIST’s
National Vulnerability Database. Although accessing this information is quite
easy, integrating it to estimate a probability might be difficult. Nevertheless,
when a representative value is defined for each class, our framework can be
applied to simulate the propagation within the network using percolation theory.

5 Implementation

A feature of the presented model is that it can be implemented quite easily. The
effect of an infection on a network G(V,E) after T time units can be determined
with the following algorithm (pseudo-code taken from [39]).

1: t ← 0
2: while t < T
3: for each infected node v in V , set N(v) ← {u ∈ V : (v, u) ∈ E}
4: for each neighboring node u ∈ N(v)
5: let k be the class in which the edge v → u falls into,
6: with likelihood pk, infect u,
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7: t ← t + 1.
8: endfor
9: endfor
10: endwhile

This algorithm assumes a synchronous hopping of the infection from one
node to the next and a time-discrete infection. Although this may appear as an
over-simplification, we stress that real infections being able to jump at any time
from one node to the other, discretizing the continuous process into sufficiently
small time-steps provides a useful approximation of the true percolation. The
theoretical model, however, is making assertions about the expected outbreak
after in an unlimited time-horizon, and is as such not making assumptions on
discrete or continuous time, and discrete only to the extent as the network graph
is discrete.

Figure 1 shows a simulation of malware spreading based on phishing emails in
a heterogeneous (left side) and a homogeneous (right side) network. As defined
in the model (cf. Sect. 3.1), in the heterogeneous network users are divided into
three classes, labeled “low”, “medium” and “high” depending on how likely
they are to click on a link. The class of the node influences the probability of
forwarding the malware (as described in Sect. 4.1) and therefore also determines
the class of the links originating from this node. In our scenario, infected nodes
are colored red to facilitate visualization of the malware spreading. Regarding
the propagation, we assume the following probabilities: a person of the class
“high” has a chance of 0.6 forwarding the malware (plotted as solid links), for
the class “medium” the chance is 0.3 (dashed links) and for the class “low” the
chance is 0.1 (dotted links).

For our scenario, these values are chosen arbitrarily, since we just want to
illustrate the mechanism, whereas in practice, such values can be obtained from
empirical data (cf. Sect. 4.1). We compare our scenario to the standard situation
of a homogeneous network where all users are assumed to behave similarly and
thus a propagation over all edges is equally probable. In order to make this com-
parison as decent as possible, we choose the uniform probability of transmission
to be the (weighted) average of the probabilities used for the heterogeneous case,
which yielded pav = 0.3 exactly.

Figure 1 illustrates a core feature of our approach: taking into account the
structure in the network influences the prediction of the number of affected
nodes. In this simulation, we select a node of the class “low” to be infected
first (i.e., the user received a malicious email). Thus, the malware had a smaller
chance to propagate further than in the homogeneous case such that less nodes
are infected after 50 time units. Analogously, if we choose a node within the
class “high” as starting point, more nodes will be infected.

However, there the simulation reveals even more information than can be
displayed in a single plot. It further shows that the speed of infection changes
with the model. As the infection started in a node of class “low”, the number of
infected nodes grows slower than in the homogeneous case. For this realization,
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Fig. 1. Situation after 50 time units in a heterogeneous (left) and in a homogeneous
(right) network

we observed the following values: in the heterogeneous case it took 38 time
units to have 17 infected nodes, while in the homogeneous case this amount was
reached after only 14 steps due to the higher likelihood of transmission of edges
starting from the first infected node. Thus, a more precise view on the structure
of the network yields a more accurate description of the spreading process.

6 Conclusion

Percolation appears as a quite powerful technique to describe spreading of an
infection through a network with an arbitrary topology and is heavily applied in
the field of disease spreading. In this article, we showed how percolation theory
can be used to model the propagation of malware within an ICT network. Our
stochastic model allows an analysis of non-uniform spreading by different prob-
abilities of transmission representing different types of connections. Further, we
provided linear equation systems for the expected size of an outbreak and dis-
cussed the probability of an epidemic. Additionally, we showed that simulations
are extremely simple, and can quickly be used to verify the results and described
explicit solutions for the Erdős-Rényi model.

To underline the relevance to realistic propagation mechanisms, we discussed
three scenarios dealing with the major techniques of malware spreading: phish-
ing emails, autorun functionalities and exploitation of vulnerabilities. All three
scenarios are working on different types of networks within an organization, i.e.,
the social, logical and physical network, respectively, and we showed that our
model is applicable on all three of those networks. Furthermore, we discussed
the results for one scenario (propagation using phishing emails) in detail and to
demonstrate the implementation of the algorithm.

While our stochastic framework captures the diversity of real life ICT net-
works, other aspects such as the impact of potential countermeasures are still
open. This issue can be captured using novel methodologies like game theory
to preserve the well-formulated mathematical basis of the approach [40,41].
Additional future work will also deal with an analysis of dynamic networks.
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Abstract. The Internet Protocol Version 6 (IPv6) transition opens a
wide scope for potential attack vectors. IPv6 transition mechanisms
could allow the set-up of covert egress communication channels over an
IPv4-only or dual-stack network, resulting in full compromise of a target
network. Therefore effective tools are required for the execution of secu-
rity operations for assessment of possible attack vectors related to IPv6
security.

In this paper, we review relevant transition technologies, describe and
analyze two newly-developed IPv6 transition mechanism-based proof-
of-concept tools for the establishment of covert information exfiltration
channels. The analysis of the generated test cases confirms that IPv6
and various evasion techniques pose a difficult task for network security
monitoring. While detection of various transition mechanisms is rela-
tively straightforward, other evasion methods prove more challenging.

Keywords: IPv6 security · IPv6 transition · Covert channels · Com-
puter network operations · Red teaming · Monitoring and detection

1 Introduction

In this work we explore possible uses of IPv6 transition technologies for creation
of covert channels over dual-stack and native IPv4 connectivity to exfiltrate
information for red teaming [6] purposes. An analysis in Sect. 2 shows that this
approach is novel and no implementations of such newly-developed tools have
been identified previously.

The main contributions of this paper are:

1. two novel approaches for covert channel creation with IPv6 transition mech-
anisms;

2. fully self-developed proof-of-concept tools that implement the proposed meth-
ods (nc64 and tun64);

c© Springer International Publishing AG 2016
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3. commonly-used protocol tunneling and developed proof-of-concept tool detec-
tion comparison table (AppendixA); and

4. a reproducible virtual lab environment providing detection results using open-
source network security monitoring tools.

The Internet is in a period of tremendous growth, currently evolving toward
the Internet of Anything (IoA). The more widely-deployed IPv4 standard and
IPv6 are incompatible, and they can communicate only via transition mecha-
nisms and technologies [38,44]. This introduces an additional layer of complex-
ity and inherent security concerns for the transition and co-existence period [1].
The adoption of IPv6, and availability per the core backbone of the Internet
infrastructure and edge networks, varies [10,12]. IPv6 launch campaigns rapidly
increased the number of autonomous systems (AS) announcing IPv6 prefix1,2.
Nevertheless, connecting to the IPv6 Internet while maintaining scalability and
minimal overall complexity often means that edge networks deploy various tran-
sition mechanisms [36,44], possibly meaning that local area networks (LANs)
will continue to use primary IPv4 for an undefined period.

IPv6 protocol implementations and security solutions are relatively new,
already supported by default by modern operating systems, and have not yet
reached the level of acceptable quality and maturity [15,44]. The lack of exper-
tise and technological maturity result in IPv6 being considered in most cases as
a “back-door” protocol, allowing evasion of security mechanisms [21,23]. This
is important particularly when an attack originates from inside the network, as
network security devices are commonly configured and placed on the perimeter
under the assumption that intruders will always come from outside [39].

In the age of advanced high-profile targeted attacks executed by sophisticated
and resourceful adversaries, IPv6 is seen as an additional vector for persistent and
covert attacks [29,41]. The length of the transition period cannot be estimated,
and it can be assumed that even once the entire Internet is native IPv6, there will
still be systems running deprecated IPv6 functionality specifications, or heritage
transition mechanisms.

Our research shows that current Network Intrusion Detection System (NIDS)
solutions have serious drawbacks for handling IPv6 traffic. Addressing these
shortcomings would require redevelopment of the principles how NIDSs reassem-
ble packet streams, and correlation of distinct sessions. The described IPv6
transition-based methods (i.e. nc64 and tun64) use both IP version imple-
mentations in the same protocol stack. Attribution of these connections to a
covert channel is therefore difficult. By comparison, common protocol tunneling
approaches (e.g. SSH, DNS) would be easier to detect by an automated solution
or human analyst since their behavior pattern is well known and understood.

In this paper, Sect. 2 reviews background and related work, evasion mech-
anisms, and covert channels; Sect. 3 describes common protocol tunneling
approaches and newly-developed attack tool implementation and design; Sect. 4
1 IPv6 Enabled Networks, RIPE NCC. http://v6asns.ripe.net/v/6 (Accessed

15/04/2016).
2 IPv6 CIDR Report. http://www.cidr-report.org/v6/as2.0/ (Accessed 15/04/2016).

http://v6asns.ripe.net/v/6
http://www.cidr-report.org/v6/as2.0/
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describes the attack scenario, simulation environment, and generated test cases;
Sect. 5 discusses experiment execution results (presented in Table 1), and addi-
tionally gives recommendations for such attack detection and mitigation possi-
bilities; and Sect. 6 offers conclusions and future research directions.

2 Background and Related Previous Work

The aim for IPv6 was to evolve and eliminate the technical drawbacks and limita-
tions of the IPv4 standard. However, IPv6 reintroduced almost the same security
issues and, moreover, added new security concerns and vulnerabilities [11,19].
Current IPv6 attack tools, such as the THC-IPv6 [21], SI6-IPv6 3, Topera4, and
Chiron5 toolkits, include the majority of techniques for abuse of IPv6 vulnera-
bilities, and can be utilized for network security assessment and IPv6 implemen-
tation verification.

Already in 1998, Ptacek and Newsham in their research paper [33] showed
that NIDS evasions are possible and pose a serious threat. A proof-of-concept
tool, v00d00N3t, for establishment of covert channels over ICMPv6 [28] has
demonstrated the potential for such approach, though it has not been released
publicly. Techniques for evading NIDS based on mobile IPv6 implementations
reveal that it is possible to trick NIDS using dynamically-changing communi-
cation channels [9]. Also, it could be viable to create a covert channel by hid-
ing information within IPv6 and its extension headers [26]. Network intrusion
detection system (NIDS) and firewall evasions based on IPv6 packet fragmen-
tation and extension header chaining attacks, have been acknowledged [1,2,21].
Although current Requests for Comments (RFCs) have updated the processing
of IPv6 atomic fragments [17], discarding overlapping fragments [24] and enforc-
ing security requirements for extension headers [20,25], these attacks will remain
possible in the years ahead as vendors and developers sometimes fail to follow
the RFC requirements or implement their own interpretation of them. General
approaches for NIDS evasions have been described and analyzed [3,7,32,43],
with the basic principles behind evasions based on the entire TCP/IP proto-
col stack. Advanced evasion techniques (AETs) involve creating combinations of
multiple atomic evasion techniques, potentially allowing evasion of detection by
the majority of NIDS solutions [30]. Evasions are possible due to NIDS design,
implementation and configuration specifics, and low network latency require-
ments [15].

Existing approaches and technologies consider native IPv6 network imple-
mentation and connectivity, and do not take into account possible methods for
network security device evasions and covert channel establishment over IPv6
transition mechanisms, in order to reach the command and control (CnC) servers

3 SI6 Networks’ IPv6 Toolkit. http://www.si6networks.com/tools/ipv6toolkit/
(Accessed 10/11/2015).

4 Topera IPv6 analysis tool: the other side. http://toperaproject.github.io/topera/
(Accessed 10/11/2015).

5 Chiron. http://www.secfu.net/tools-scripts/ (Accessed 10/11/2015).

http://www.si6networks.com/tools/ipv6toolkit/
http://toperaproject.github.io/topera/
http://www.secfu.net/tools-scripts/
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over IPv4 only or dual-stack Internet connectivity. To the best of our knowledge
no publicly available tool implements transition technology-based attacks.

3 Covert Channel Implementations

3.1 Protocol Tunneling

Protocol tunneling and IPv6 tunneling-based transition mechanisms pose a
major security risk, as they allow bypassing of improperly-configured or IPv4-
only network security devices [11,18,22,23,35]. IPv6 tunnel-based transition
mechanisms, as well as general tunneling approaches (e.g. HTTP, SSH, DNS,
ICMP, IPsec), can bypass network protection mechanisms. However, IPv6 tun-
nels add to the heap of possible tunneling mechanisms, leading to unmanaged
and insecure IPv6 connections [35]. Moreover, dual-stack hosts and Internet
browsers favor IPv6 over IPv4 [10]. Various protocol tunneling approaches can
be used to set up a covert channel by encapsulating exfiltrated information in
networking protocols. Covert channels based on DNS, HTTP(S), ICMP [5], and
SSH [13] protocol tunneling implementations are acknowledged here as the most
common approaches for eluding network detection mechanisms, due to both their
frequent use and standard network policy, which allows outbound protocols and
ports for user requirements and remote network administration needs. For the
purposes of the test cases we consider mature and publicly available tools for
protocol tunneling establishment.

3.2 Proof-of-Concept Nc64 Tool

We have developed a proof-of-concept tool, nc646, for the creation of information
exfiltration channel over dual-stack networks using sequential IPv4 and IPv6
sessions. The tool’s source code is publicly available under MIT license.

Signature-based IDSs reassemble packets and data flows, in order to conduct
inspection against a known signature database. This is done on per-session basis
(e.g. a TCP session). If the data is fragmented across multiple sessions, then
the IDS cannot retrieve the full information to evaluate whether the traffic is
malicious. In such scenario NIDS has to be context aware in order to be able
to correlate and reconstruct the original stream from multiple sequential ones.
This is very challenging due to performance considerations. While any set of
networking protocols could be used for a sequential session creation, the security,
transition, and immaturity of IPv6 makes it a preferred choice. When considering
NIDS separate session correlation possibilities, IP protocol switching would make
it harder since destination IPv4 and IPv6 addresses are different. In a dual-stack
operating system, IPv4 and IPv6 protocols are implemented side by side, thus
adding a layer of separation between the two standards and making it more
difficult for IDSs to reassemble data. Additionally, a single host can have multiple
global IPv6 addresses, making the correlation to a single host even harder.
6 nc64 https://github.com/lockout/nc64 (Accessed 12/03/2016).

https://github.com/lockout/nc64
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To exfiltrate data from the source host to a destination CnC server over
sequential IPv4 and IPv6 sessions, the data must be split into smaller chunks
(i.e. up to IPv6 MTU of 1500B). Alternation between IPv4 and IPv6 per session
has to be controlled to minimize the amount of information that is sent over a
single IP protocol version in successive sessions (e.g. not allowing three or more
sequential IPv4 sessions). This control would avoid partial reassembly and deny
successful payload inspection by NIDS.

A CnC server has both IPv4 and IPv6 addresses on which it listens for
incoming connections. Once the connection is established, the listener service
receives sessions and reassembles data in sequence of reception. This can be
hard to accomplish if a stateless transport layer protocol is being used (i.e.
UDP) or data chunk size exceeds the maximum path MTU (e.g. causing packet
fragmentation).

Our proof-of-concept tool, nc64, is written in Python 3 using standard
libraries. It implements the aforementioned principles, and additionally:

1. provides both the listener server and client part in one Python module;
2. accepts user-specified data from a standard input, which provides flexibility

and freedom of usage;
3. requires both IPv4 and IPv6 addresses for the destination CnC listener, and

can have a list of IPv6 addresses in case the CnC server has multiple IPv6
addresses configured;

4. supports UDP and TCP transport layer protocols, as these are the main ones
used in computer networks;

5. enables the destination port to be freely selected to comply with firewall egress
rules and match the most common outbound protocol ports (e.g. HTTP(S),
DNS), and also allows for setting and randomizing of the source port for
UDP-based communications;

6. provides an optional payload Base64 encoding for binary data transmission,
and to some degree can be treated as obfuscation if the IDS does not support
encoding detection and decoding. It has to be noted that Base64-encoded
traffic might reveal the exfiltrated data in the overall traffic since it would
stand out, which would also apply when using payload encryption;

7. allows for the setting and randomizing of timing intervals between sequential
sessions for an additional layer of covertness and to mitigate possible timing
pattern prediction and detection by NIDS;

8. implements control over how many sequential sessions of the same protocol
can be tolerated before forcing a switch to the other protocol, ensuring that
small files are sent over both IP protocols; and

9. supports additional debugging features, exfiltrated data hash calculation, and
transmission statistics.

3.3 Proof-of-Concept Tun64 Tool

We have developed a second proof-of-concept tool, tun647, which exfiltrates
information by abusing tunneling-based IPv6 transition mechanism capabilities
7 tun64 https://github.com/lockout/tun64 (Accessed 12/03/2016).

https://github.com/lockout/tun64
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over the IPv4-only computer network. The tool’s source code is publicly available
under MIT license.

Most tunneling-based IPv6 transition mechanisms rely on IPv4 as a link layer
by using 6in4 encapsulation [31], whereby an IPv6 packet is encapsulated in IPv4
and the protocol number is set to decimal value 41 (the IANA-assigned payload
type number for IPv6). Besides 6in4 encapsulation, we also acknowledge GRE
(protocol-47) [14] as an applicable encapsulation mechanism for 6in4-in-GRE
double encapsulation. When 6in4 (protocol-41) encapsulation is used, duplex
connectivity might not be possible if the network relies on strict NAT. However,
for the attack scenario considered in this paper (see Sect. 4.1), a one-way com-
munication channel for information exfiltration to the CnC server is sufficient,
making UDP the preferred transport layer protocol [34].

Most of the transition techniques cannot solve transition problems and hence
are not appropriate for real-world implementation and widespread deployment
[44]. Although tunnel-based transition approaches are considered deprecated by
the IETF, some of these technologies continue to be supported by modern oper-
ating systems and ISPs. The 6over4 [8], ISATAP [37,40], and 6to4 [27,42] tran-
sition mechanisms were selected for implementation in our proof-of-concept tool
for tunneling-based information exfiltration. Selection of these mechanisms was
based upon the tunnel establishment from the target host or network, their
support by either operating systems or local network infrastructure devices [37].

Our proof-of-concept tool, tun64, is written in Python 2.7 using the Scapy
library8. It implements the aforementioned principles and additionally:

1. provides only the client part, thus relying on standard packet capture tools
for reception and reassembly (e.g. tcpdump, Wireshark, tshark);

2. supports TCP, UDP, and SCTP as transport layer protocols;
3. emulates 6over4, 6to4, and ISATAP tunneling by assigning source and desti-

nation IPv6 addresses according to the transition protocol specification;
4. enables usage of 6to4 anycast relay routers if the tool is being tested in real

Internet conditions, although in our simulated network, 6to4 relay routers or
agents are not implemented;

5. allows additional GRE encapsulation to create a 6in4-in-GRE double encap-
sulated packet, which may allow obfuscation if the NIDS is not performing a
full packet decapsulation and analysis;

6. gives an option to freely specify source and destination ports, in order to
comply with firewall egress rules; and

7. supports sending a single message instead of files or standard input, a func-
tionality designed with proof-of-concept approach in mind.

4 Testing Environment and Test Description

4.1 Attack Scenario

Our testing environment and experiments are designed according to the follow-
ing scenario. The attack target is a small- to medium-sized research organization
8 Scapy project. http://www.secdev.org/projects/scapy/ (Accessed 10/11/2015).

http://www.secdev.org/projects/scapy/
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(up to 100 network nodes). Research organization assumes it is running an IPv4-
only network, even though all the network hosts are dual-stack and their ISP
just recently started to provide also IPv6 connectivity. Network administrators
have implemented IPv4 security policies and only the following most common
egress ports and services are allowed through the firewall: DNS (udp/53, tcp/53),
HTTP (tcp/80), HTTPS (tcp/443), SSH (tcp/22), and ICMP (echo). All net-
work hosts can establish a direct connection to the Internet without proxies or
any other connection handlers. This organization was recently contracted by gov-
ernment to conduct advanced technological research and therefore has sensitive
information processed and stored on the network hosts and servers. A red team,
assuming the role of reasonably sophisticated attacker with persistent foothold
in the research organization’s network, is tasked to exfiltrate sensitive informa-
tion from the target network. The red team has a selection of tools available at
its disposal for the establishment of a covert information exfiltration channel, as
described in Sect. 3.

4.2 Testing Environment

To ensure reproducibility of the testbed, we created several bash scripts that
leverage the Vagrant9 environment automation tool. The scripts are publicly
available in a GitHub repository10. A network map of the virtual testing envi-
ronment is presented in Fig. 1.

The host and CnC devices were built on 32-bit Kali Linux 2.0, which comes
bundled with several tunneling tools. Router1 served as the gateway for the tar-
get organization, and Router2 as an ISP node in the simulated Internet (SINET).
Both routers were also built as authoritative DNS servers to facilitate usage of
the Iodine tool, which was explicitly configured to query them during the tests.
Two monitoring machines were built to provide detection capability. The first
node was connected with a tap to the network link between the routers and
all packets were copied to its monitoring interface. Second node was created to
avoid conflicts between monitoring tools, and was therefore not used for capture.

In order to create identical testing conditions, we decided to store a packet
capture (PCAP) file for each combination of the exfiltration tool, destination
port number, transport layer protocol, and IP version. Additionally, several dis-
tinct operation modes were tested for the nc64 (e.g. both plain-text and base64
encoded payload) and tun64 (e.g. ISATAP, 6to4, and 6over4 tunneling mecha-
nism emulation) tools, as these significantly impact the nature of the network
traffic. Overall, 126 packet capture files were generated to be used as test cases.
In the next phase we used the same monitoring nodes to run a selection of pop-
ular detection tools which would analyze these PCAP files, produce connection
logs, and possibly generate alerts for suspicious activity.

9 Vagrant. https://www.vagrantup.com/ (Accessed 07/12/2015).
10 Automated virtual testing environment. https://github.com/markuskont/exfil-test

bench (Accessed 07/12/2015).

https://www.vagrantup.com/
https://github.com/markuskont/exfil-testbench
https://github.com/markuskont/exfil-testbench
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We considered a number of open-source monitoring tools that are often used
for network security analysis. These include the signature-based NIDSs Snort11

and Suricata12, as well as the network traffic analyzers Bro13 and Moloch14. For
Suricata, we used the Emerging Threats (ET) ruleset, while for Snort we exper-
imented with rulesets from both SourceFire (SF) and ET signature providers.
Furthermore, we consulted with security vendors. In some cases their solutions
were based on the same open-source tools, albeit lacking IPv6 support due to
small customer demand. Thus, we decided to focus only on evaluating open-
source network detection tools. In our tests, the data exfiltrated from the host
system comprise the highly sensitive /etc/shadow file and the root user’s private
SSH cryptographic keys. Both of which could be used for gaining unauthorized
access to potentially many other systems in the organization.

Fig. 1. Testing environment network map

5 Experiment Execution and Discussion of Results

The results of the experiments are presented in an extensive table (see Table 1 in
AppendixA). Each row in the table describes a single attack, while the columns
represent a detection tool that was used to attempt its detection. In our results,
we distinguished four potential outcomes for a test:

1. a positive match (denoted by letter Y and a green cell in the table) was
clearly identified as malicious activity with appropriate alerts;

2. a partial or abnormal footprint (P and yellow cell) which raised an alert, but
the alert did not describe the activity appropriately;

11 Snort v2.9.8.0. http://manual.snort.org/ (Accessed 07/12/2015).
12 Suricata v2.1beta4. http://suricata-ids.org/docs/ (Accessed 07/12/2015).
13 Bro v2.4.1 https://www.bro.org/documentation/index.html (Accessed 07/12/2015).
14 Moloch v0.12.1. https://github.com/aol/moloch (Accessed 07/12/2015).

http://manual.snort.org/
http://suricata-ids.org/docs/
https://www.bro.org/documentation/index.html
https://github.com/aol/moloch
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3. a potential visible match (V and orange cell) from connection logs which
requires human analysis or sophisticated anomaly detection for a positive
match; and

4. in the worst case, no visible alerts nor connection logs were generated (N and
red cell).

Firstly, we observed that any exfiltration tool utilizing a specific application
layer protocol should adhere to its standard port numbers if the malicious user
aims to evade detection. For example, a HTTP tunnel on port 22 triggered an
outbound SSH Scan alert with the ET ruleset, whereas when port 80 was used,
only HTTP connection logs were generated such that we classified the attack as
being only visible. Note that we marked the outbound SSH Scan alert for the
HTTP tunnel on port 22 only as a partial match because it was incorrectly iden-
tified as an outbound SSH connection. Additionally, the same rule was respon-
sible for a partial match against the nc64 technique on port 22. Furthermore,
an alert was raised if a SSH header was detected on port 443, or if that port
was used to send unencrypted HTTP traffic. Similarly, if abnormal (non-DNS)
traffic was identified on UDP port 53, the ET ruleset triggered alerts for either
non-compliant traffic to DNS protocol, or for being overly aggressive (i.e., hav-
ing too many connections). These signatures were easily bypassed if TCP port
53 was used. However, it has to be noted that most server applications can be
bound to any applicable port number (e.g. SSH on tcp/2022, HTTPS console
over tcp/8443), and thus can potentially be used to avoid or obscure detection.

The difference between SF and ET rulesets, in their default configurations,
is significant. The former seems to focus solely on perimeter intrusions, and
hence could not detect any malicious outbound traffic in our tests. Furthermore,
the ET ruleset produced slightly different results in Snort and Suricata. Most
importantly, the former could clearly identify ICMP Ptunnel as the tool used for
traffic exfiltration. Bro does not employ any traditional signatures like Snort or
Suricata, but does create logs for all identified connections. As such, it was able
to produce log records of all test cases. However, although Bro does not gener-
ate alerts, it does have an interesting log file named weird.log wherein a record
of detected anomalous connections is kept. In fact, during our attacks, several
weird.log records were generated for non-compliant traffic on port 53. Addition-
ally, Bro’s SSH connection parser malfunctioned while processing non-standard
traffic, and abnormal logs could be observed in the detection system. Moloch
provides no alerts, but is designed as a packet capture, indexing and visualiza-
tion tool. In the most recent release, at the time of conducting the experiment,
Moloch does not support IPv6 due to various limitations when indexing 128-
bit IP addresses15. Therefore, IPv6-only iterations were unnoticed while IPv4
sessions generated by nc64 in dual-stack configuration were visible. The t6to4
mode in tun64 encapsulates the IPv6 packet as payload making it visible in IPv4

15 Moloch 0.14.0 2016/05/08 CHANGELOG specifies a notice that “[IPv6] support is
experimental, and will change with ES 5.0.” https://github.com/aol/moloch/blob/
master/CHANGELOG (Accessed 16/08/2016).

https://github.com/aol/moloch/blob/master/CHANGELOG
https://github.com/aol/moloch/blob/master/CHANGELOG
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indexing system. This was observed only in cases of TCP connections without
additional GRE encapsulation.

From the executed test results, detection of malicious activity by NIDS
rules was based predominantly on the direction of network traffic, protocol,
and destination port. This detection approach is generally favored because it
uses resources (e.g. CPU, RAM) efficiently, with an expensive payload analysis
attempted only after the preceding match conditions are achieved. In most cases,
the nc64 tool avoided being detected, and Table 1 shows which protocol/port
combinations can be used to minimize detection by selected NIDS solutions. In
comparison with other exfiltration tools, nc64 performed very well on avoiding
rule-based detection, and moreover could potentially elude payload inspection. In
contrast, the tun64 tool was detected in the majority of cases, since protocol-41
and protocol-47 triggered the rules and generated warning messages by NIDSs.
6to4 tunneling emulation was detected when TCP or 6in4-in-GRE encapsulation
was used, suggesting that double encapsulation is considered more suspicious.
However, if an organization relies on IPv6 tunneling-based transition mecha-
nisms utilizing 6in4 or GRE encapsulation, such warnings might be silenced or
ignored by network-monitoring personnel. In contrast to other tunneling tools
the approach taken by tun64 is feasible only if the network conditions comply
with the specific operational requirements.

6 Conclusions

In this paper, the authors addressed a fundamental problem which could allow
to bypass NIDSs by using the IPv6 tunneling-based and dual-stack transition
mechanisms in a certain way. The proof-of-concept tools were prototyped to
further verify under which circumstances the evasion of major open-source and
commercial NIDS and monitoring solutions would be possible. Developed tools,
tested alongside with other well known protocol tunneling tools, proved to be
able to evade detection and addressed certain shortcomings in the core principles
of how modern NIDSs work.

It has to be noted, that any reasonably sophisticated method for exfiltrating
data will be hard to detect in real-time by existing NIDSs, especially in situ-
ations where the data is split into smaller chunks and the resulting pieces use
different connections or protocols (e.g. IPv4 and IPv6). Detecting such activity
would require the capability to correlate the detection information in near real-
time across different connections/flows. And current NIDS solutions typically
lack such capabilities. This is theoretically possible, but would most likely incur
a significant performance penalty and an increased number of false positives.
There are several possibilities to attempt correlating flows using both IPv4 and
IPv6 protocols. If the destination host (i.e. CnC) used in multi-protocol exfil-
tration has a DNS entry for both A and AAAA records, it would be possible to
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perform a reverse lookup to identify that the connections are going to the same
domain name using IPv4 and IPv6 protocols simultaneously. This should not
happen under normal circumstances, since IPv6 is usually the preferred proto-
col on dual-stack hosts. Another option would be to rely on source NIC MAC
address for aggregating and correlating flows from both IPv4 and IPv6 which are
originating from the same network interface. Note, that this requires capturing
the traffic from the network segment where the actual source node resides, oth-
erwise source MAC address might get overwritten by network devices in transit.
One caveat still remains — distinguishing the flows which are belonging together,
especially on busy hosts with many connections. Finally, behavior based detec-
tion (e.g. unexpected traffic, malformed packets, specification non-compliance)
would provide a way to detect such evasions, at the same time introducing a
significant amount of false positives.

It has to be noted that any commercial product which uses an open-source
tool for data acquisition is subjected to same limitations of the respective tool.
Also, the lack of knowledge regarding IPv6 exploitation methods translate into
low customer demand which leads to insufficient IPv6 support in final prod-
ucts. Finally, commercial tools are often too expensive for small and medium
sized organizations. Therefore, we did not consider these products in our final
evaluation.

Authors believe, that the tendency of use of IPv6 in attack campaigns con-
ducted by sophisticated malicious actors is going to increase; this is also recog-
nized as an increasing trend by the security reports and articles [4,15,16]. Since
IPv6 security aspects are being addressed by protocol RFC updates and depre-
cation of obsolete transition mechanisms, it would be required to focus on these
issues at the security solution developer (i.e. vendor) and implementer (i.e. con-
sumer) levels. Adding IPv6 support to the security devices would not solve this
problem, since fundamental changes would be required in the way how network
traffic is interpreted and parsed, while being able to trace the context of various
data streams and perform their correlation. Also, end-users should know how to
properly configure, deploy and monitor security solutions in order to gain max-
imum awareness of the computer network flows under their direct supervision.

Potential future research directions would include advanced insider threat
detection, IPv6 protocol stack implementation analysis in the modern operating
system kernels and in embedded device micro-kernels.
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A Appendix

(See Table 1)

Table 1. Protocol tunneling and data exfiltration tool assessment

Iteration IP Version Protocol Port Snort SF Snort ET Suricata Bro Moloch
http-22 4 TCP 22 N P P P V
http-443 4 TCP 443 N Y Y V V
http-53 4 TCP 53 N Y Y P V
http-80 4 TCP 80 N N V V V
Iodine 4 UDP 53 N N Y P V
nc64-t-22-4-b64 4 TCP 22 N P P V V
nc64-t-22-4 4 TCP 22 N P P V V
nc64-t-22-64-b64 4+6 TCP 22 N P P V V
nc64-t-22-64 4+6 TCP 22 N P P V V
nc64-t-22-6-b64 6 TCP 22 N P P V N
nc64-t-22-6 6 TCP 22 N P P V N
nc64-t-443-4-b64 4 TCP 443 N N N V V
nc64-t-443-4 4 TCP 443 N N N V V
nc64-t-443-64-b64 4+6 TCP 443 N N N V V
nc64-t-443-64 4+6 TCP 443 N N N V V
nc64-t-443-6-b64 6 TCP 443 N N N V N
nc64-t-443-6 6 TCP 443 N N N V N
nc64-t-53-4-b64 4 TCP 53 N N N P V
nc64-t-53-4 4 TCP 53 N N N P V
nc64-t-53-64-b64 4+6 TCP 53 N N N P V
nc64-t-53-64 4+6 TCP 53 N N N P V
nc64-t-53-6-b64 6 TCP 53 N N N P N
nc64-t-53-6 6 TCP 53 N N N P N
nc64-t-80-4-b64 4 TCP 80 N N N P V
nc64-t-80-4 4 TCP 80 N N N P V
nc64-t-80-64-b64 4+6 TCP 80 N N N P V
nc64-t-80-64 4+6 TCP 80 N N N P V
nc64-t-80-6-b64 6 TCP 80 N N N P N
nc64-t-80-6 6 TCP 80 N N N P N
nc64-u-22-4-b64 4 UDP 22 N N N V V
nc64-u-22-4 4 UDP 22 N N N V V
nc64-u-22-64-b64 4+6 UDP 22 N N N V V
nc64-u-22-64 4+6 UDP 22 N N N V V
nc64-u-22-6-b64 6 UDP 22 N N N V N
nc64-u-22-6 6 UDP 22 N N N V N
nc64-u-443-4-b64 4 UDP 443 N N N V V
nc64-u-443-4 4 UDP 443 N N N V V
nc64-u-443-64-b64 4+6 UDP 443 N N N V V
nc64-u-443-64 4+6 UDP 443 N N N V V
nc64-u-443-6-b64 6 UDP 443 N N N V N

(continued)
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Table 1. (continued)

Iteration IP Version Protocol Port Snort SF Snort ET Suricata Bro Moloch
nc64-u-443-6 6 UDP 443 N N N V N
nc64-u-53-4-b64 4 UDP 53 N Y Y P V
nc64-u-53-4 4 UDP 53 N Y Y P V
nc64-u-53-64-b64 4+6 UDP 53 N Y Y P V
nc64-u-53-64 4+6 UDP 53 N Y Y P V
nc64-u-53-6-b64 6 UDP 53 N Y Y P N
nc64-u-53-6 6 UDP 53 N Y Y P N
nc64-u-80-4-b64 4 UDP 80 N N N V V
nc64-u-80-4 4 UDP 80 N N N V V
nc64-u-80-64-b64 4+6 UDP 80 N N N V V
nc64-u-80-64 4+6 UDP 80 N N N V V
nc64-u-80-6-b64 6 UDP 80 N N N V N
nc64-u-80-6 6 UDP 80 N N N V N
netcat-t-22-4 4 TCP 22 N N N V V
netcat-t-22-6 6 TCP 22 N N N V N
netcat-t-443-4 4 TCP 443 N N N V V
netcat-t-443-6 6 TCP 443 N N N V N
netcat-t-53-4 4 TCP 53 N N N P V
netcat-t-53-6 6 TCP 53 N N N P N
netcat-t-80-4 4 TCP 80 N N N V V
netcat-t-80-6 6 TCP 80 N N N V N
netcat-u-22-4 4 UDP 22 N N N V V
netcat-u-22-6 6 UDP 22 N N N V N
netcat-u-443-4 4 UDP 443 N N N V V
netcat-u-443-6 6 UDP 443 N N N V N
netcat-u-53-4 4 UDP 53 N Y Y P V
netcat-u-53-6 6 UDP 53 N Y Y P N
netcat-u-80-4 4 UDP 80 N N N V V
netcat-u-80-6 6 UDP 80 N N N V N
ptunnel 4 ICMP N Y N V V
ssh-4-22 4 TCP 22 N N V V V
ssh-4-443 4 TCP 443 N Y Y V V
ssh-4-53 4 TCP 53 N N V V V
ssh-4-80 4 TCP 80 N N V P V
ssh-6-22 6 TCP 22 N N V P N
ssh-6-443 6 TCP 443 N Y Y P N
ssh-6-53 6 TCP 53 N N V P N
ssh-6-80 6 TCP 80 N N V P N
tun64-t-22-isatap 4 TCP 22 N Y Y P N
tun64-t-22-t6over4 4 TCP 22 N Y Y P N
tun64-t-22-t6to4 4 TCP 22 N Y Y P V

(continued)
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Table 1. (continued)

Iteration IP Version Protocol Port Snort SF Snort ET Suricata Bro Moloch
tun64-t-443-isatap 4 TCP 443 N Y Y P N
tun64-t-443-t6over4 4 TCP 443 N Y Y P N
tun64-t-443-t6to4 4 TCP 443 N Y Y P V
tun64-t-53-isatap 4 TCP 53 N Y Y P N
tun64-t-53-t6over4 4 TCP 53 N Y Y P N
tun64-t-53-t6to4 4 TCP 53 N Y Y P V
tun64-t-80-isatap 4 TCP 80 N Y Y P N
tun64-t-80-t6over4 4 TCP 80 N Y Y P N
tun64-t-80-t6to4 4 TCP 80 N Y Y P V
tun64-u-22-isatap 4 UDP 22 N Y Y P N
tun64-u-22-t6over4 4 UDP 22 N Y Y P N
tun64-u-22-t6to4 4 UDP 22 N Y Y P N
tun64-u-443-isatap 4 UDP 443 N Y Y P N
tun64-u-443-t6over4 4 UDP 443 N Y Y P N
tun64-u-443-t6to4 4 UDP 443 N Y Y P N
tun64-u-53-isatap 4 UDP 53 N Y Y P N
tun64-u-53-t6over4 4 UDP 53 N Y Y P N
tun64-u-53-t6to4 4 UDP 53 N Y Y P N
tun64-u-80-isatap 4 UDP 80 N Y Y P N
tun64-u-80-t6over4 4 UDP 80 N Y Y P N
tun64-u-80-t6to4 4 UDP 80 N Y Y P N
tun64-t-22-isatap-gre 4 TCP 22 N Y Y P N
tun64-t-22-t6over4-gre 4 TCP 22 N Y Y P N
tun64-t-22-t6to4-gre 4 TCP 22 N Y Y P V
tun64-t-443-isatap-gre 4 TCP 443 N Y Y P N
tun64-t-443-t6over4-gre 4 TCP 443 N Y Y P N
tun64-t-443-t6to4-gre 4 TCP 443 N Y Y P V
tun64-t-53-isatap-gre 4 TCP 53 N Y Y P N
tun64-t-53-t6over4-gre 4 TCP 53 N Y Y P N
tun64-t-53-t6to4-gre 4 TCP 53 N Y Y P V
tun64-t-80-isatap-gre 4 TCP 80 N Y Y P N
tun64-t-80-t6over4-gre 4 TCP 80 N Y Y P N
tun64-t-80-t6to4-gre 4 TCP 80 N Y Y P V
tun64-u-22-isatap-gre 4 UDP 22 N Y Y P N
tun64-u-22-t6over4-gre 4 UDP 22 N Y Y P N
tun64-u-22-t6to4-gre 4 UDP 22 N Y Y P V
tun64-u-443-isatap-gre 4 UDP 443 N Y Y P N
tun64-u-443-t6over4-gre 4 UDP 443 N Y Y P N
tun64-u-443-t6to4-gre 4 UDP 443 N Y Y P V
tun64-u-53-isatap-gre 4 UDP 53 N Y Y P N
tun64-u-53-t6over4-gre 4 UDP 53 N Y Y P N
tun64-u-53-t6to4-gre 4 UDP 53 N Y Y P V
tun64-u-80-isatap-gre 4 UDP 80 N Y Y P N
tun64-u-80-t6over4-gre 4 UDP 80 N Y Y P N
tun64-u-80-t6to4-gre 4 UDP 80 N Y Y P V
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Abstract. We present a DDoS mitigation mechanism dispatching suspi-
cious and legitimate traffic into separate MultiProtocol Label Switching
(MPLS) tunnels, well upstream from the target. The objective is to limit
the impact a voluminous attack could otherwise have on the legitimate
traffic through saturation of network resources. The separation of traffic
is based on a signature identifying suspicious flows, carried in an MPLS
label, and then used by a load-balancing mechanism in a router. The
legitimite traffic is preserved at the expense of suspcious flows, whose
resource allocations are throttled as needed to avoid congestion.

Keywords: Multiprotocol Label Switching · Quality of Service · Volu-
metric DDoS · Amplification DDoS · Network resilience · Bloom filter

1 Introduction

The past few years have seen the rise in the amount of volumetric Distributed
Denial of Service (DDoS ) attacks [1–3]. These attacks aim at exhausting avail-
able bandwidth and/or other networking resources required to reach the victim.
Attack traffic causes congestion when flows from distributed sources converge
towards the target.

Dedicated mitigation solutions, also known as middleboxes [4,5], are usu-
ally positioned close to the target, and are unable to mitigate the attack if the
upstream links or the middleboxes themselves are saturated by the attack vol-
ume. This drawback has been studied and different methods for the distribution
of middleboxes in the network have been proposed [6–8]. The financial costs,
however, increase with number of deployed middleboxes. We seek to develop a
mitigation mechanism using existing network infrastructure in order to limit the
number of required middleboxes.

Even if a majority of volumetric attacks such as amplification DDoS attacks
take advantage of traffic spoofing [9], the traffic from the amplifier to the victim
is unspoofed. Thus mitigation solutions based on spoofing detection mechanisms,
such as reverse path forwarding [10,11], cannot be applied close to the target.

c© Springer International Publishing AG 2016
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Destination-based filtering such as blackholing [12] will discard all legitimate
traffic towards the target as well, completing the DDoS condition for the target.

To overcome these limitations, researchers [13,14] have proposed new
approaches to mitigate volumetric attacks that (1) aim to preserve the legit-
imate traffic, (2) are activated only when network saturation occurs, and (3)
forward a part of the suspicious traffic towards the target, as long as the net-
work is not saturated. We share these goals, especially as we aim to couple this
in-network defense mechanism with a on-premise defense mechanism, a middle-
box, placed right in front of target and which we suppose capable of fine-grained
filtering at line rate.

In this paper, we propose the Mitigation Label (ML), a special-purpose MPLS
label that carries an attack signature encoding knowledge about suspicious flows.
For encoding, we use a Bloom filter-like structure called tBF we define in this
paper. The ML is generated by an out-of-band component, a Label Computation
Agent, upon the reception of a DDoS alert. The ML is propagated to a Load-
Balancing Router (LBR), upstream of a congestion point, at the edge of the
network. The LBR dispatches the suspicious and legitimate traffic into different
MPLS tunnels with a load-balancing mechanism using the ML.

Paper Organization: The remainder of this paper is organized as follows,
Sect. 2 provides the background of our solution, i.e. some definitions, and our
assumptions. Section 3 presents the existing works we took inspiration from.
Section 4 lays the foundations of our damage control solution. Section 5 describes
our experimentations and discusses their results. Section 6 concludes the paper.

2 Background

Our proposal is focused on the mitigation of bandwidth-depleting DDoS attacks
using amplifiers. This section first describes the characteristics of the attack our
contribution seeks to mitigate. We then define the terms required later in paper
and state our underlying assumptions.

2.1 Characteristics of a Distributed Reflective DDoS Attack

Distributed Reflective Denial of Service (DRDoS ) attacks exploit the fact that
the UDP protocol is connectionless, i.e. the protocol has no mechanism to verify
the origin of traffic. An attacker can issue a request to a service with the source
address of the UDP datagram spoofed to the target’s address, resulting in the
service sending its reply towards the target. If the reply is larger than the request,
the server can be used as an amplifier, and the attack is called an amplification
DDoS.

DNS is an example of such a service, and DNS resolvers can be used as
amplifiers. Many resolvers are, however, configured to respond only to legiti-
mate clients, limiting the usability of the resolver as an amplifier. For example,
ISPs typically allow requests only from source addresses corresponding to their
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customers. Resolvers without such limitations are called open resolvers, and they
can be and are exploited for amplification attacks.

Even if the attacker initially spoofs the source address of the request, the
traffic from the amplifier to the target is unspoofed. This means that the number
of sources seen in an attack is limited by the number of amplifiers (e.g. open
resolvers for DNS) the attacker can find and use. In this paper, we position
ourselves between the amplifier and the target, not between the attacker and
the amplifier.

2.2 Definitions

This section provides definitions of concepts used later in the paper.

Flow is a stream of packets sharing the tuple < source IP, target IP >.
Suspicious flow is a flow that, according a detection mechanism, contains mali-

cious traffic. Given the low granularity of our flow definition, a suspicious flow
may also contain legitimate packets.

Legitimate flow refers to flows that are not suspicious.
sFEC stands for a suspicious Forwarding Equivalence Class (FEC). FEC is a

MPLS concept of a traffic aggregate receiving similar treatment and sFEC
contains flows involved in volumetric attacks. In other words, it is intended
to group flows responsible for congestion. Depending on the method used to
assign flows within sFEC, it may also end up containing legitimate flows.

2.3 Assumptions

This section states the three assumptions, on which our approach builds, and
concerning attack volumetry, identification of suspicious flows, and availability
of flow metrics.

Attack Volumetry. The attack traffic volume is expected to be bigger than
the volume of legitimate traffic, as we focus on volumetric attacks. We do not
consider the congestion caused only by legitimate traffic.

Identification of Suspicious Flows. We expect to obtain alerts indicating
suspicious flows, i.e. < source IP, destination IP > tuples associated with the
attack. In fact, the configuration of the mitigation mechanism requires the
description of suspicious flows, where the source and destination IPs respec-
tively refer to the amplifier and target IP addresses. We consider this assump-
tion reasonable, as relevant information exchange formats for example for
intrusion detection (IDMEF [15]) and DDoS attack signaling (from IETF
DDoS Open Threat Signalling Working Group [16]), allow such information
to be carried by the alert messages.

Flow Metrics. Our mitigation mechanism also requires flow metrics, such as
volumetries, related to the sFEC. We expect that both suspicious and legiti-
mate volumetries are available. While metrics of suspicious flows may be car-
ried by the alert message, we consider that flow metrics can also be available
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through network monitoring systems collecting telemetries using, for exam-
ple, NetFlow [17], sFlow [18] or IPFIX [19]. In fact, if the system monitors
traffic at least at the flow granularity, we should be able to collect volumes
for both suspicious and legitimate flows.

3 State of the Art

Research on mitigation of bandwidth-depletion attacks broadly falls into two cat-
egories: filtering mechanisms and congestion control. Filtering focuses on match-
ing a packet, transaction or queries against either a pattern or a behavior. An
action, such as forward or drop, is then assigned to each result. Conversely con-
gestion control mechanisms operate on a macroscopic scale, i.e. categories of
packets over a period of time. Below we look at both of these categories in more
details.

3.1 Traffic Filtering

Middleboxes, as proposed for example by Casado et al. [4], Baker et al. [20], and
Roesch [21] aim at providing traffic filtering functions that routers do not imple-
ment. Generally these functions allow a finer-grained filtering and/or are dedi-
cated to mitigate a particular threat. However, the use of middleboxes against
volumetric amplification DDoS attacks often shifts the bottleneck from the tar-
get to the middlebox. Indeed the saturation would no more occur on the link
between the network and the target, but on the link upstream from the mid-
dlebox. Qazi et al. [8] studied the distribution of such middleboxes to address
this particular drawback and to dynamically manage the mitigation resources.
However, multiplying middleboxes within the network turns out to be costly.

Current routers allow filtering by means of Access Control Lists (ACLs) or
via blackholing setups such as described by Cisco [12]. A blackhole is a simple
and resource-efficient method [22] to drop a collection of packets based on their
destination or source prefix. Compared to the coarse granularity of blackholing,
ACLs enable finer-grained traffic filtering. On routers, ACLs may match on IP
header fields, for example source and destination IPs, or the protocol number.
Formerly, the major drawback of ACLs was performance, as the ACLs tables used
to be large. Vendors have fixed the performance issue by implementing filtering
in hardware instead of in the router software [23]. Researchers have also worked
on the large flow table lookup problem. Dharmapurikar et al. [24] proposed to
use together a Bloom filter (BF ) and a Counting Bloom Filter (CBF ) to match
the longest prefix in a prefix table.

Chan et al. [25] proposed a counting Bloom filter-based high-packet rate aggre-
gate detection. Packets are added to multiple CBFs and if all counters corre-
sponding to packet’s hash exceed a preconfigured and static threshold, packet
is classified as suspicious. BFs are reset regularly. According to such definition,
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the mechanism detects high-rate attacks such as SYN-floods but does not pro-
vide a resource-oriented mitigation. Nevertheless the detection does not distin-
guish between DDoS and flash crowds (a rush in traffic that only involve legitimate
users).

Cohen et al. [26] introduced Spectral Bloom Filter that supports online query
on how many time an element has been added into. Although it may seem similar
to our proposed tBF by design, we propose an offline resource-oriented Bloom
Filter generation by selecting a subset of flows to filter, which is not based on
the same logic nor heuristic.

3.2 Congestion Control

Wang et al. [27] presented a router architecture that classifies packets based on the
transport layer header, and then applies different Quality of Service (QoS ) treat-
ments to each class of traffic, in order to prevent flooding attacks from consuming
bandwidth. The router aggregates flows according to the transport header fields
(limited to UDP, TCP and ICMP protocols) and the IP Differentiated Services
field. A bandwidth allocation is assigned to each aggregate. A flooding attack is
then constrained by the resources allocated to its QoS aggregate.

Multipath routing/forwarding is the ability to configure on a router multiple
next-hops for a certain destination (e.g. IP prefix, MPLS label, etc.). Several
works use this feature to enhance the network resilience. Menth et al. [28] pro-
posed the Self-Protecting Multipath (SPM ) that consists of several disjoint paths
that forward traffic before and after a failure of one of the paths. Traffic is re-
distributed to remaining paths in case of outages. Kazmi et al. [29] developed a
model to select path to provide resilience against link failure, with the aim to
reduce link utilization. Murphy and Garcia-Lunes-Aceves [30] used destination-
based traffic split together with traffic shaping to avoid congestion and ensure
acceptable delays. Using weighted Equal Cost MultiPath (ECMP) that load-
balances traffic between available paths according to related weights, Zhang
et al. [31] proposed a model to compute split ratios in order to minimize end-to-
end delays by optimizing the bandwidth allocation.

To preserve legitimate traffic from collateral damage caused by attack traffic,
Hachem et al. [14] proposed HADEGA that uses MPLS support for Differenti-
ated Services and Traffic Engineering. It maps network flows to several Behavior
Aggregates (BA) based on their level of suspicion, i.e. their likelihood of being
malicious and their impact. Different QoS levels are assigned to BAs to priori-
tize less suspicious flows. The QoS assignment to a BA is implemented through
MPLS Differentiated Services and per-hop behaviors applied to BAs. Our work
makes use of these techniques and provides a new way to classify traffic into two
predefined BAs.

While filtering mechanisms allow fine grained classification according to the
packet’s probability of being suspicious, they lack the ability to shape traffic
according to the available network resources. Congestion control is intended to
meet this requirement. It also allows to make a distinction in the packet process-
ing with regard to certain classifications and to available network resources,
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such as bandwidth. The assignation of a packet to a class, however, is not the
concern of congestion control mechanisms. As filtering and congestion control
mechanisms may be complementary, this paper proposes the combination of
both mechanisms to mitigate the bandwidth depletion effect of amplification
attacks. We provide details on a new signature-based filter that together with a
bandwidth enforcement system is able to achieve this goal.

4 Concepts and Architecture

Our contribution is a damage control system based on a novel load-balancing
mechanism, that distributes flows among quality of service-aware LSPs in order
to mitigate volumetric DDoS attacks. The overall architecture is depicted in
Fig. 1. A monitoring system continuously collects metrics from network equip-
ment. It is also aware of DDoS events in the network, either by detecting itself the
attack or by collecting alerts from dedicated sensors. The mitigation is triggered
by the monitoring system by sending or transferring a DDoS alert to a Label
Computation Agent (LCA). The agent processes the alert and, in order to final-
ize the mitigation configuration, may ask additional flow metrics (Sect. 2.3) from
the monitoring system. Then, the LCA generates a Mitigation Label that con-
tains load-balancing parameters (Sect. 4.3) for each network ingress LSR (iLSR)
involved in the mitigation (only one shown in the figure). The LCA then adver-
tises the ML to each iLSR. The ML is forwarded together with the packet (see
Fig. 2) up to the load-balancing router. The LBR distributes the traffic based
on information carried in the ML to two LSPs. The two LSPs are called priority
and mitigation paths. The priority path carries the traffic that should be pre-
served from congestion as much as possible. The mitigation path carries traffic
that may be dropped by the network if congestion occurs. For the remainder
of paper, we consider that iLSR and LBR functions are provided by the same
equipment, located at the network ingress, and we call LBR.

Fig. 1. Load-balancing-based volumetric DDoS
mitigation

Layer 2

Extension Label

MPLS header

ML
Additional

fields

MPLS inner
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Fig. 2. MPLS header
with ML



ML: DDoS Damage Control with MPLS 107

4.1 Design Overview

The proposed mitigation solution builds on MultiProtocol Label Switching
(MPLS ) [32]. MPLS allows to define a path (Label Switched Path, LSP) from
ingress towards egress network for a set of flows belonging to the same FEC.
The ingress router maps the packet to a FEC and pushes a label in the MPLS
header. Hence, core routers forward packets only by looking at the label. We use
MPLS to leverage its existing extensions: (1) Traffic Engineering [33] that allows
managing and optimizing network resources, and (2) Differentiated Services [34]
that allows classifying traffic. In fact it enables us to forward the flows while
prioritizing legitimate traffic and to prevent congestion or resource exhaustion
caused by an attack [14]. While these two MPLS extensions are commonly imple-
mented in routers, the proposed load-balancing mechanism requires additional
router developments, as described later. Considering the mitigation application,
we restrict the load-balancing to the sFEC, which is defined by a minimal length
destination prefix that includes the victim IP addresses. As such the sFEC can
be mapped to destination based route in the routing table.

We define the mitigation label (ML, see Fig. 2) as an extended special purpose
MPLS label [32] pushed by the ingress LSR on the MPLS label stack of traffic.
It carries information about suspicious flows taking part to an ongoing attack.
As noticed in Sect. 3, a few works have made use of Bloom filters to represent set
of elements. A Bloom filter [35] is a data structure that represents the elements
(flows in our case) of a set S. It supports membership queries on S over a domain
D, where responses can be: (1) the queried element is not a member of S, or
(2) it may be member of the set S. The probability the element (e.g. a flow) is
not a member of is named the false positive probability. However, plain BFs are
unusable in our context, i.e. with thousands of flows (amplifiers towards targets)
to insert into a small BF constrained by the ML length. In fact for such case,
the false positive probability is 1. To address this issue, we propose in Sect. 4.3
the threshold-based Bloom filter (tBF), a BF inferred from a subset of S, which
has been chosen by assessing the impact of flows.

4.2 Workflow

This part details the mitigation steps that have been mentioned in the introduc-
tion of Sect. 4.

Multipath Reservation. Mitigation and priority LSPs can be established
either before the attack detection or during the mitigation set up with the help
of the Traffic Engineering MPLS extension. It allows us to define bandwidth allo-
cation for each path at the reservation time, in order to prevent attack traffic
from impacting other traffic. These bandwidth constraints should be carefully
selected so that the total volume of the traffic going to the priority and mitiga-
tion links does not exceed the capacity of the egress router or the on-premise
mechanism. One way tho achieve this is to setup bandwidth throttling using
MPLS extensions for both priority and mitigation LSPs.
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From a business point of view, a network operator can approach the band-
width allocation in different ways. He can reserve a certain amount of band-
width for mitigation paths of all customers and dynamically assign a portion
for a threatened customer. In another situation, the mitigation path could be
permanently allocated to a customer who may have subscribed to the service.
In both use cases, the network service provider carefully chooses the mitigation
allocation as a tradeoff between the cost of bandwidth and mitigation efficiency.
Our experiments address this question.

Traffic Updates. During an attack, both malicious and legitimate traffic vary
over time. New flows may appear and existing flows may terminate. The overall
flow volumetry is changing. Hence, the mitigation label that depends on inbound
traffic, has to be regularly recomputed to take into account the updated traf-
fic data. The recomputation process is similar to the initial computation with
updated flow statistics. The minimum possible duration of the computation iter-
ation is constrained by either the mitigation configuration, i.e. the label gener-
ation and advertisement, or the sampling period of the monitoring system. We
found that the mitigation label computation lasts less than a second in our set-
ting. If the mitigation and priority paths have already been established, the ML
may be advertised in the range of seconds. The monitoring system refresh period
is likely larger and thus defines the shortest ML update interval.

ML-Based Load-Balancing. Once a packet belonging to the sFEC hits a
LBR, it reads the ML as well as flow details needed to compute the flow hash.
Then the LBR compares the flow hash with the attack signature obtained from
the packet ML. The signature consists of a 20-bit field, into which suspicious
flows reported by the monitoring system have been inserted (by the LCA). If
the packet matches the signature, the LBR forwards it through the mitigation
LSP, otherwise, it uses the priority LSP.

4.3 Threshold-Based Bloom Filter

As mentioned earlier, the size limitation of 20-bits imposed by the MPLS label
renders plain BF useless for us. We introduce tBF to address this issue.

Threshold. Assume that hash functions map elements of D to an index of the
Bloom filter bit array. A BF is constructed by hashing each element of the set S
with k hash functions. The array position, which has been initialized to 0, given
by the hash result is set to 1. The membership test of an element e is realized
with the BF by comparing the result of the k hash functions applied to e. If any
of the k array positions obtained among the k hash result is 0, the element e is
not a member of S. Conversely, if all the k positions given by the hash results
are 1, e may be a member of S.

Counting Bloom filters (CBF ) [36] use a counter array instead of the Bloom
filter bit array. The filter is generated by incrementing array positions given by
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the hash results of the element to add as member instead of only setting it to 1.
The membership query is the same bitwise operation as for Bloom filters.

We use a CBF of size m with a single hash function (k = 1) whose values
are integers in the range [0;m − 1]. Under these circumstances, an element, i.e.
a flow, is described with only one counter. When we insert a flow into the CBF,
the flow volume (in terms of bytes over the monitoring system refresh period)
is added to the counter at position i, given by the flow hash result. The flow
volumes have been previously retrieved from the monitoring system (Sect. 2.3).
The total volume of flows whose hash gives the same result i, is then equal to
the CBF counter value at position i, i.e. ith counter of the CBF. Considering
furthermore the domain S of all flows inserted into the CBF, we define a subset
Si of S as flows f of S that have the same hash result i.

We define the threshold t as a positive integer describing the volume, starting
from which a subset is considered as a major subset, i.e. the sum of subset’s flow
volumes has importance compared to the total volume of flows of S. Each counter
is compared to the threshold. If the counter is greater or equal to the threshold,
the bit of the same position in the tBF is set to 1. Hence the tBF is a Bloom
filter inferred from the CBF by applying threshold to each counter (Fig. 3). On
the other hand, a counter at a given position, whose value is below the threshold
leads to set the tBF bit at this position to 0. As we use tBF in the same manner
as a BF, setting the ith tBF bit to 0, implies that all flows whose hash result is i
to be considered as not members of S, which in turn induces false negatives for
the membership queries made with tBF.

Position 1 st 252 154 361 . . . 75 mth CBF

Threshold (t = 200)

1 0 1 . . . 0 tBF

≥ t < t . . .

Fig. 3. Threshold-based Bloom filter generation given a threshold of t = 200

Constraint-Based tBF Generation. Given that we need to insert a large
number of elements in a 20-bit field, we introduced the tBF. This section details
the computation of the tBF which aims at preventing the priority link saturation.
We use the following definitions:

S The set of elements to be inserted in the tBF (suspicious flows in our case).
D The set of elements that can be tested against the tBF (all possible flows in

our case).
L The set of most frequently tested elements that are not in the set S (the most

active legitimate flows in our case).

The suspicious flow set (S), retrieved from DDoS alerts received by the Mon-
itoring System, is used to generate the tBF and select a threshold. If elements of
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L, i.e. frequent legitimate flows, are known, they are also used to compute the
threshold. Otherwise L is an empty set (L = ∅). To rank subsets as major or
not, we sort them by taking into account both legitimate and suspicious traffic.
First we insert legitimate and suspicious flows into their own CBF with a size
of m = 20, respectively CBFL and CBFS . Second we introduce another 20-bit
CBF (CBFmixed) to carry the impact of the volume of subsets:

CBFmixed[i] =
CBFS [i]

1 + CBFL[i]
,∀i ∈ [0;m − 1] .

This initialization: (1) increases the weight of the mixed counter i along with
CBFS [i] counter (representing the volume of Si), (2) decreases the weight of the
mixed counter i along with CBFL[i] counter, and (3) allows the case where the
set L is empty is assessed. Considering a given tBF, we define the volume of
false positive (VFP ) as the sum of volumes of flows in subsets Li given by the
position i such that the ith bit of the tBF is set to 1. Conversely the volume of
false negative (VFN ) is equal to the sum of CBFS counters given by the position
ī such that the īth bit of the tBF is null, i.e.:

VFP =
∑

i

CBFL[i], such that tBF [i] = 1 ,

VFN =
∑

ī

CBFS [̄i], such that tBF [̄i] = 0 .

The generation of the tBF is a constraint-based process. We intend to prevent
the priority link, which has allocation Apri, from being saturated. We estimate
the volume of the traffic going through the priority link as the sum of volumes
for false and true negatives. Given that the volume of true negative is equal to
the difference between the incoming legitimate traffic volume (expressed by the
Vinleg variable) and VFP , we describe the following constraint:

Vinleg − VFP + VFN < Apri. (1)

The generic idea is to select the threshold by decrementing it from its max-
imum value (i.e. the sum of all mixed counters) to 0 and testing the constraint
(Eq. 1). However to avoid decrementing the threshold, we sort subsets Si of S by
their impact, i.e. we sort CBFmixed counters in the decreasing order. We then
initialize the tBF with 0s and one by one set the bit at position i to 1, where
positions are sorted according to their impact. We stop setting bits to 1 when
the constraint on the priority link allocation is satisfied (Eq. 1). If all tBF bits
have been set to 1 before the constraint has been satisfied, we choose to reset to
0 the tBF bit at position i, such that Si has the smallest impact. In this way,
we prevent all inbound traffic to be load-balanced through the mitigation path.

5 Experimentations

Our mitigation mechanism has been implemented as a software platform. The
platform takes as input traffic captures representing the network ingress traffic
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and outputs two captures representing both priority and mitigation links. The
platform load-balances input traffic through a priority and a mitigation buffers.
Subsequently, buffers are throttled using a token bucket algorithm [37] to enforce
the bandwidth constraints of priority and mitigation output captures (represent-
ing links). This section details the simulation platform and the inbound traffic
used for experiments. We then describe assessment method and associated vari-
ables, as well as a description of the results we obtained. Finally we discuss the
results.

5.1 Experimental Approach

Experiments are conducted using a 5 s sliding window: (1) both legitimate and
suspicious traffic telemetries are gathered from traffic capture during 5 s, (2) the
mitigation label is then computed and applied to the next 10 s, (3) at the 5th s
of the second step, we loop to the first step. For evaluation purposes, metrics
(Sect. 5.2) are extracted from the mean of measures obtained from each iteration.

We generate input traffic captures by mixing legitimate traffic captures
extracted from the MAWI data set [38] and several generated attack captures.
We select/24 destination-based aggregates (cf. the sFEC) from MAWI captures
as legitimate traffic. The average legitimate traffic bandwidth of each capture is
between 14 and 16 Mbits/s. Attack traffic is generated by replaying DNS ANY
replies from 40000 randomly chosen source IPs (amplifiers) towards 4 targets
selected in the sFEC destination IPs. In fact, although Rossow [3] found up to
billions of potential amplifiers, the attack with the highest number of amplifiers
reported only involved around 17000 different IP sources.

Figure 4 shows measures used to conduct the evaluation, and their place of
collection. We first measure inbound legitimate (green hashed) and malicious
(red filled) traffic volumes, respectively named Vinleg and Vinmal. The traffic
is load-balanced between priority and mitigation LSPs, which have allocation
Apri (Sect. 4.2) and Amit bandwidths, respectively. Vprileg denotes the volume
of legitimate traffic forwarded through the priority link. Finally Voutleg refers to
the outgoing legitimate traffic volume that has been forwarded either through
both paths, and that has not been dropped by the QoS mechanisms.

Vinleg
Vinmal

Vpri
leg

Vpri
mal

Apri

Vmit leg

Vmitmal
A
mit

Voutleg
VoutmalLBR

Fig. 4. Load-balancing measures (Color figure online)
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5.2 Variables and Metrics

Our solution aims to maintain an acceptable level of Quality of Service for legiti-
mate traffic. In the experiments we simply assess the QoS through its availability
aspect by measuring traffic losses. The evaluation does not cover more complex
aspects such as delay and jitter. This section provides the metric that is used to
assess the Quality of Service. We then describe variables required to carry out
the evaluation. They are inferred from traffic measures.

The efficiency is evaluated with a metric we call Reception which is the ratio
between the outbound and inbound legitimate volumes (Voutleg

Vinleg
). It evaluates

how much legitimate volume our solution is able to preserve.
The volume of attack traffic is controlled by the variable AttackFactor which

is the ratio of volumes of inbound suspicious and legitimate traffic, Vinmal
Vinleg

. As we
expect the attack volume to be at least equal to the legitimate volume (Sect. 2.3),
we generate malicious traffic with attack factor ranging from 1 to 50. Large attack
factors allow us to assess the limitations of our solution.

As discussed in Sect. 4.2, we have to find a tradeoff between the allocation
for mitigation path and the mitigation efficiency, i.e. the value of Reception of
legitimate traffic. From a network provider’s perspective, we express the need
for mitigation allocation per client as a percentage of the overall bandwidth
allocated to the customer, i.e.:

BAmitigation =
Amit × 100
Apri + Amit

.

We have considered two cases: (1) the overall bandwidth allocation (Apri+Amit)
is fixed, e.g. the ISP has already provided an allocation for the mitigation path,
(2) only the bandwidth allocation of the priority path is fixed, e.g. the mitigation
path is provisioned during the mitigation. The cost of mitigation grows with the
bandwidth allocated to the mitigation path. We then should find the optimum
percentage of mitigation allocation that minimizes the mitigation allocation and
maximizes the value of Reception of legitimate traffic.

5.3 Results

We conducted multiple experiments to assess the performance of our mitigation
mechanism. We compared, for example, the reception of legitimate traffic for a
simple load-balancing scheme and our ML-based load-balancing solution. How-
ever, due to space constraints, we only report results that correlate performance
with bandwidth allocated to the mitigation path. Figures 5a and b show the
impact of the bandwidth allocated to the mitigation path on the reception of
legitimate traffic.

Figure 5a depicts variations of the bandwidth allocated to mitigation path
considering a fixed overall bandwidth allocation (Apri + Amit). Regardless of
the amount of the mitigation path bandwidth being allocated, the mitigation
mechanism prevents legitimate traffic from suffering from congestion when the
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Fig. 5. Impact of the mitigation allocation (BAmitigation) on the Legitimate Traffic
Reception

attack and legitimate traffic volumes are equal (AttackFactor = 1) and guaran-
tee at least 90 % of the legitimate traffic to be forwarded when the attack volume
reach 5 times the legitimate volume with a BAmitigation strictly lower than 40 %.
Then the Reception drastically drops when the attach traffic reaches 5 times
the legitimate volume considering a percentage of mitigation path allocation of
40 %. The fall is shifted for BAmitigation of 10 % to an AttackFactor of 10 and to
an AttackFactor of 15 when no bandwidth is allocated to the mitigation path.
Indeed, considering larger allocation of mitigation link, more tBF bits are set
to 1 to satisfy the priority bandwidth constraint leading more legitimate flows
to be load-balanced to the mitigation path. Additionally, the mitigation band-
width throttling is active from an attack volume that is higher as one time the
legitimate traffic volume. From an attack factor of 20 to 50, the reception of
legitimate traffic linearly declines from around 55 % to 35 % and 22 % for a ratio
of mitigation path allocation of respectively 0 and 40 %.

In conclusion, allocation bandwidth to the mitigation path does not enhance
the reception of legitimate traffic at the network egress. This is due to the fact
that allocating bandwidth to the mitigation path while the overall allocation
remains constant implies the reduction of priority path bandwidth allocation.
Hence, in order to satisfying priority bandwidth constraints the number of tBF
bits set to 1 is increasing. That implies that more legitimate flows are load-
balanced to the mitigation link which is more aggressively throttled than the
priority path.

Considering a fixed bandwidth allocation of the priority path, i.e. a constant
BAmitigation (Fig. 5b), we notice that the value of Reception of legitimate traffic
rises with the bandwidth allocated to the mitigation path, e.g. a BAmitigation of
10 % only add a few percents to the Reception, such that curves representing a
BAmitigation of 0 % and 10 % are superposed. In fact, as the constraint defined
by BAmitigation in Eq. 1 is fixed, we generate the same tBF for all experiments.
Hence the traffic forwarded through the priority path is the same regardless



114 P.-E. Fabre et al.

the BAmitigation value. In that case increasing the bandwidth allocated to the
mitigation path improve the reception of the legitimate traffic.

5.4 Discussion on Experimentation

Experiments on the mitigation path allocation show it impacts on the reception
of legitimate traffic at the egress link. However, concerning a fixed allocation of
the overall bandwidth, value of Reception decreases as the allocation of mitiga-
tion path increases. Conversely, regarding a fixed allocation of the priority link
bandwidth, the gain increases with the BAmitigation value. From a network ser-
vice provider point of view, this means that in order to improve the legitimate
traffic reception, it should reserve a certain amount of bandwidth to allocate
mitigation path for a customer. It then cannot be taken as a part of the nominal
customer bandwidth. Moreover the choice of the BAmitigation may be condi-
tioned by both the additional cost of allocating bandwidth for suspicious traffic
and the cost of legitimate traffic loss. The cost of both allocating bandwidth for
suspicious traffic by increasing the customer bandwidth and dropping legitimate
traffic should be studied in order to chose the BAmitigation.

We should point out that for a stateful protocol such as TCP, the impact of a
packet loss may be more costly. It will trigger mechanisms such as retransmission
and can impact transmission window size, etc. It may then induce delays or even
session resets. Such aspects were not taken into account in our experiments. In
addition, in our simulated environment, due to the static behavior of capture
replays, sources seem to continue to send consecutive TCP packets in the stream
despite any packet losses. In a real network, following a number of successive
packet drop inducing the destination not to acknowledge, the session may end
withing a timeout period.

We compared our solution to a weighted load-balancing scheme, i.e. a packet
hash is used to map the packet to either mitigation or priority LSPs according to
weights associated to LSP bandwidths. For the sake of brevity, we have omitted
the resulting figure. However we provide outlines for a fixed allocation of the
overall bandwidth (Amit+Apri) below. Considering a given value of BAmitigation,
our solution has better results regardless the attack factor. For example, with
a BAmitigation of 0 %, 10 % and 20 %, we found that our solution increases the
reception of legitimate traffic up to 50 % for an attack factor of 20. In fact, as
the simple load-balancing scheme does not prioritize legitimate traffic, the value
of Reception quickly drops with the attack factor.

6 Conclusion

We presented a resource-oriented in-MPLS label filter that tends to mitigate
the impact of massive DDoS attacks on the network, while preserving legitimate
flows and forwarding suspicious traffic to a middlebox for finer grained filtering.
It can be used on Traffic Engineering enabled MPLS networks where routers
implement the mitigation label forwarding scheme. We run experiments with
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real legitimate and generated attack traffic to validate our mechanism. Results
highlight the need to allocate additional bandwidth to forward suspicious traffic
towards an on-premise mechanism. Future work aims at catering the need for
overprovisioning the bandwidth allocation to forward suspicious flows. We then
plan to evaluate and reduce our mitigation mechanism impact on connection-
oriented protocols such as TCP. Finally we will study finer flow classification to
decrease the number of legitimate flows forwarded through the mitigation path.
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Abstract. Dynamic code update techniques, such as reflection and
dynamic class loading (DCL), enable an application (app) to change its
behavior at runtime. These techniques are heavily used in Android apps
for extensibility. However, malware developers misuse these techniques
to conceal malicious functionality, bypass static analysis tools and expose
the malicious functionality only when the app is installed and run on a
user’s device. Although, the use of these techniques alone may not be suf-
ficient to bypass analysis tools, it is the use of reflection/DCL APIs with
obfuscated parameters that makes the state-of-art static analysis tools for
Android unable to infer the correct behavior of the app. To understand
the current trends in real apps, it is important to perform a study on the
sources of the parameters used in reflection/DCL APIs. In this paper, we
describe how malicious apps bypass analysis tools using reflection/DCL
with parameters provided by sources, such as network, files, encrypted
strings, etc., which are hard to analyze statically. We further develop a
tool to analyze a dataset of 3,645 real world malware samples and 16,528
benign apps in order to investigate the sources of the parameters used in
reflection/DCL APIs. The results of our analysis indicate the presence of
such programming practices in both legitimate and malicious apps. How-
ever, malicious apps tend to obfuscate the parameters of reflection/DCL
APIs more often. The use of Crypto related APIs as sources of the para-
meters of reflection/DCL APIs is significantly higher in malicious apps,
which endorses the fact that malicious apps try to thwart static analysis
tools.

Keywords: Android malware · Reflection · Dynamic class loading

1 Introduction

Android reached 82.8 % of smartphone market share in 2015, 1.4 billion active
devices worldwide and surpassed 1.6 million apps in July 2015 in Google Play
Store alone [8,10,13]. The pervasiveness of mobile devices and their capability
to collect and store users’ private information makes them very attractive for
c© Springer International Publishing AG 2016
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malware developers, hence, the number of mobile malware samples increases as
the days goes by. In 2014, 97 % of all the mobile malware targeted Android based
devices [1].

Malware developers use an array of techniques to evade analysis tools
deployed by app markets and execute malicious code on users’ devices. Code
obfuscation, anti-debugging, emulator detection, time bombs, reflection and DCL
are some of the techniques found in modern mobile malware. In this paper, we
are particularly interested in the latter two techniques. Reflection and DCL
enable development of flexible apps which can change their behavior at runtime
after being installed on a user’s device. The same feature serves well for malware
developers as they develop seemingly benign apps at installation time that can
load additional malicious code at runtime using DCL and access it using reflec-
tion APIs. Doing so, they evade static analysis tools that rely on the availability
of all the information before the analysis starts. Reflection/DCL APIs operate
on string parameters representing code files, classes, methods, etc. When these
parameters are not readily available in the code at analysis time (i.e., encrypted
and only decrypted at runtime, read from a file provided via network), state-of-
the-art static analysis tools find it impossible to infer the exact behavior of the
app. Therefore, the sources of these parameters become much more important
from security point of view as they play a vital role in malicious usage of reflec-
tion/DCL APIs. While previous works use various techniques to analyze apps in
the presence of dynamic code updates, this dimension of reflection/DCL is most
often overlooked [22,26,27].

In this work, we analyze the sources of the parameters of reflection/DCL APIs
that allow apps to conceal malicious behavior and evade static analysis tools.
We develop a tool, based on SAAF [20], to track information flow to reflection
and DCL APIs. It uses backward program slicing to determine the sources of
the parameters used in reflection/DCL APIs. The tool takes an Android .apk
file (or a directory containing .apk files), performs analysis on it and generates
statistics about the usage of reflection/DCL APIs and the corresponding sources
of their parameters. The results of our analysis on real world apps show that it
is more common in malicious apps to take parameters of reflection/DCL APIs
from sources, such as Crypto related APIs, which help thwart static analysis.

To summarize, the contributions of this work are:

– We develop an automated static analysis tool which can perform analysis on
Android apps, detect information flow between given source and sink APIs,
and produce statistics about the presence of such information flow paths
between source/sink APIs in individual apps as well as the whole market
(Sect. 3).

– We collect and analyze a dataset of real world apps containing 16,528 benign
and 3,645 malicious apps in order to investigate the sources of the parameters
used in reflection/DCL APIs (Sect. 4). To the best of our knowledge, this is
first study focusing on the sources of the parameters of reflection/DCL APIs.
The analysis results would help in understanding the behavior of apps that
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use dynamic code updates and designing more effective analysis procedures
and policies to detect malicious apps in the market.

2 Motivating Examples

Evidence of obfuscated parameters of reflection/DCL APIs used in real world
malware motivate this work. To explain it further, we consider three concrete
samples of mobile malware: BrainTest, Fakenotify and AnserverBot [16,24,28].
In BrainTest, the strings representing the code files to be downloaded, classes
to be instantiated and methods to be invoked using reflection/DCL APIs are
provided through a file downloaded from the Internet at runtime; in Fakenotify,
the strings representing the classes to be instantiated and methods to be invoked
are provided as encrypted strings and only decrypted at runtime; and Anserver-
Bot is a malware family where strings representing code files to be loaded are
provided as encrypted strings.

BrainTest: Check Point Mobile Threat Prevention detected an Android mal-
ware in August 2015, which is packaged inside a game app known as BrainTest
and has 100,000-500,000 downloads at Google Play Store. As reported, the mal-
ware infected up to 1 million users.

The malware uses a number of techniques to bypass Google Bouncer. It
conceals its malicious activity if the IP or domain in which the app is being
executed is mapped to Google Bouncer. It uses a combination of time bombs,
dynamic code loading, reflection, encrypted code files, and malicious code (root
exploits) downloaded from the Internet, to harden reverse engineering and evade
analysis tools.

Once the app is installed on a user’s device, it decrypts an encrypted file
start.ogg from the app’s assets directory and loads it using DexClassLoader.
The dynamically loaded file starts communicating with a Command&Control
(C&C) server. The server responds with a .json file that contains a link to a
.jar file which the app downloads and dynamically loads using DexClassLoader.
In addition, the .json file also contains names of the classes and methods which
are to be invoked by the app using reflection APIs. The malware then drops root
exploits and installs/uninstalls other APKs as the C&C server directs.

Listing 1.1. FakenotifyA - SMS Trojan

1 SmsManager localSmsManager = SmsManager.getDefault ();
2 String str2 = paramString1;
3 String str3 = paramString2;
4 localSmsManager.sendTextMessage(str2 , null , str3 , null , null);

Fakenotify: It is noticed that Android malware evolves to harden analysis and
reverse engineering. Listing 1.1 shows an excerpt from an SMS trojan named
FakenotifyA [16]. The Listing shows how FakenotifyA uses a standard SMS send-
ing procedure to send messages to premium numbers. Although, the message,
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paramString2, and the number, paramString1, to which the message is sent
are provided at runtime, the SMS sending mechanism is pretty obvious and easy
to detect for the analysis tools.

Listing 1.2. FakenotifyB - Version 2 of FakenotifyA

1 Class class1 = Class.forName( StringDecoder.decode("&nd}D%d.(!x!ejDn5.SmsM&n&g!}"));

2 Object obj = class1.getMethod(StringDecoder.decode("g!(?!f&wx("), new Class [0]).invoke(null , new Object

[0]);

3 class1.getMethod(StringDecoder.decode("s!ndz!4(M!ss&g!"), new Class[] {java/lang/String , java/lang/String ,

java/lang/String , android/app/PendingIntent , android/app/PendingIntent }).invoke(obj , new Object []

{s, null , s1, null , null});

After some time, a new version of the same malware, FakenotifyB, surfaced.
FakenotifyB is exactly similar to FakenotifyA when it comes to its malicious
functionality, however, FakenotifyB makes use of reflection to dynamically create
an instance of the SMSManager class, retrieves objects of its getDefault and
sendTextMessage methods and invokes them. In addition to using reflection,
the parameters representing the names of SMSManager class and its methods are
provided in encrypted form and only decrypted at runtime. The SMS sending
routine is shown in Listing 1.2 and it is much harder for analysis tools to infer
its behavior unlike FakenotifyA [16].

AnserverBot: The presence of such evasive usage of reflection/DCL APIs is not
an isolated incident in the Android malware. There are many examples where
whole malware families rely on loading code dynamically and using encrypted
strings in reflection/DCL APIs to evade detection by analysis tools. Listing 1.3
shows a piece of code taken from a sample of the AnserverBot family. It uses an
encrypted string (9CkOrC32uI327WBD7n ) to hold the file name which is then
decrypted (str2) at runtime and concatenated with another string (str1) to get
the file name (str3). The absolute path is then retrieved in str4 and provided
to DexClassLoader to load the file dynamically.

Listing 1.3. Excerpt from AnserverBot

1 //9CkOrC32uI327WBD7n__ -> /anserverb.db
2 String str2 = Xmlns.d("9CkOrC32uI327WBD7n ");
3 str3 = str1.concat(str2);
4 for (File localFile = new File(str3); ; localFile = paramFile){
5 String str4 = localFile.getAbsolutePath ();
6 String str5 = a.getFilesDir ().getAbsolutePath ();
7 ClassLoader localClassLoader = a.getClassLoader ().getParent ();
8 //get the class specified by "paramString1" from anserverb.db
9 Class localClass = new DexClassLoader(str4 , str5 , null , localClassLoader)

.loadClass(paramString1);

The point worth noticing in these three examples is the use of parameters in
reflection/DCL APIs that are not readily available for the analysis tools. Con-
sequently, static analysis tools find it impossible to construct the exact behavior
of these apps. Therefore, the focus of this work is not only reflection/DCL APIs,
but also the manner in which the parameters are provided to these APIs.
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3 Analysis Tool: Design and Implementation

The architecture and workflow of the analysis tool is shown in Fig. 1. It is com-
posed of two main modules represented by the dotted rectangles, i.e., a slice
extraction module and a slice analysis module.

Fig. 1. Analysis tool design

Slice Extraction: Most android app analysis tools transform Android’s Dalvik
bytecode to Java bytecode or source code in order to use the already available
tools for Java program analysis. However, the translation from Dalvik bytecode
to Java source code cannot always be accurate, specifically in apps that use some
obfuscation techniques. We perform analysis on disassembled Dalvik bytecode,
i.e., smali code, which does not suffer from this limitation.

The slice extraction module takes an .apk file or a directory, where .apk
files are located, and a list of target APIs as input. A target API along with
its specific parameter is the starting point of the analysis. The Backward Slicer
searches for all the occurrences of the target API in the app’s smali code after
disassembling the .apk file and backtracks them. The backtracking process starts
with the register that stores the value of the parameter used in the target API
and tracks backward in the code to find all other registers that have a direct or
indirect effect on the value of this register. Consequently, the analysis tool cap-
tures the information flow to the target API. The set of code statements involved
in the information flow to a target API is called a Backward Slice. The Backward
Slicer is based on SAAF which can perform backward program slicing on smali
code [20]. However, original SAAF does not consider the information flow per-
formed through Android Intents and may miss some information flows. Intents
are messaging objects used for inter-component and inter-app communication.
Typically, they are used to start activities, services or invoke broadcast receivers.
In order to extend this functionality, we modified SAAF to track information
flow performed through explicit Android Intents. The Slice Extractor extracts
all the code instructions that form a particular slice, marked by the Backward
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Listing 1.4. Backward Code Slice. TargetLine: 63, TargetClass: Ljava/lang/

Class;, TargetMethod: forName

1 34: invoke -virtual {p0}, Ldisi/test/app/MainActivity;->getResources ()
Landroid/content/res/Resources;

2 36: move -result -object v12
3 38: const/high16 v13 , 0x7f05
4 40: invoke -virtual {v12 , v13}, Landroid/content/res/Resources;->

openRawResource(I)Ljava/io/InputStream;
5 42: move -result -object v10
6 46: new -instance v9, Ljava/util/Properties;
7 48: invoke -direct {v9}, Ljava/util/Properties;-><init >()V
8 52: invoke -virtual {v9, v10}, Ljava/util/Properties;->load(Ljava/io/

InputStream ;)V
9 55: const -string v12 , "class"

10 57: invoke -virtual {v9, v12}, Ljava/util/Properties;->getProperty(Ljava/
lang/String;)Ljava/lang/String;

11 59: move -result -object v1
12 63: invoke -static {v1}, Ljava/lang/Class;->forName(Ljava/lang/String;)Ljava

/lang/Class;

Slicer, in the form of a .csv file. Listing 1.4 shows an example of a code slice
for the method forName of the class Ljava/lang/Class;. Once the slices are
extracted, the analysis process moves to the next module, i.e., slice analysis.

Slice Analysis: The next step in the analysis is to detect information flow from
a source API to the target API. This module takes the slice files generated in
the previous step and a list of source APIs as input. It consists of a set of Python
scripts, which we call Slice Analyzer, collectively. The Slice Analyzer traverses
through each code instruction in the slices corresponding to the target APIs and
locates the presence of source APIs. The purpose of such traversal is to infer a
source/sink relationship between the source and the target APIs. The Slice Ana-
lyzer not only reveals such source/sink relationships, but also provides statistics
regarding the number of apps containing the target/source APIs, occurrences of
the target/source APIs and their relationship in each individual app and in all
the analyzed apps in a market. A report containing these statistics is generated
in the form of a .json file.

4 Application Analysis

We analyze a dataset of apps for potential dangerous usage of reflection/DCL
APIs. Potential dangerous usage refers to the usage of reflection/DCL APIs in
conjunction with certain sources of their parameters that complicate the overall
analysis and might be used by malware developers to evade static analysis tools.
There are two distinct entities in this analysis, i.e., (1) reflection/DCL APIs, (2)
source APIs. The purpose of the analysis is to infer the presence of information
flow from the source APIs to certain parameters of reflection/DCL APIs. In this
section, we describe the target reflection/DCL APIs, the corresponding source
APIs of their parameters and the apps dataset.
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4.1 API Selection

Reflection and DCL APIs: Table 1 contains a representative list of DCL and
reflection APIs that are tracked for analysis and considered as the target APIs.
The first two columns represent the class and method names, whereas the last
column represents the specific parameters of interest in these API calls. The APIs
are divided into three categories. The first category, Dynamic Code Loading,
contains APIs that are used to load code in the form of .jar/.apk/.dex files at
runtime. APIs in the second category, Class Retrieval, are used to load classes
and create their objects. The last category, Method Retrieval and Invocation,
contains APIs that are used to retrieve method objects and invoke them.

We have included only those APIs which can potentially help conceal mali-
cious behavior and they require essential parameters when using either DCL or
reflection. For instance, loadDex method of the class Ldalvik/system/DexFile
is tracked for its first parameter, sourcePathName, which is of type String and
represents the path to the .jar/.apk/.dex file to be loaded. A malware devel-
oper can obfuscate the parameter provided to the loadDex method and make it
hard for analysis tools to determine the location of the code which is loaded
dynamically. Similar is the case with the constructors of PathClassLoader
and DexClassLoader. Obfuscation of the parameters of these class constructors
makes it hard for analysis tools to infer the location of the dynamically loaded
code. Here, libraryPath, represents the path to the directory containing native
libraries.

Moreover, static analysis can be led to unsound results through the use of
obfuscated parameters passed to the loadClass method of the Ljava/lang/
ClassLoader class or the forName method of the Ljava/lang/Class class. In
both cases, static analysis tools will be unable to know the exact class which
is to be loaded at runtime. Using obfuscated parameters in methods, such as
getDeclaredMethod, getMethod and invoke, can leave the analysis tool clueless

Table 1. The list of tracked APIs and their parameters

Class Method ParamNo Params

Dynamic Code Loading

Ldalvik/system/PathClassLoader; <init> 1,2 dexPath, libraryPath

Ldalvik/system/DexClassLoader <init> 1,3 dexPath, libraryPath

Ldalvik/system/DexFile; loadDex 1 sourcePathName

Class Retrieval

Ljava/lang/ClassLoader; loadClass 1 className

Ljava/lang/Class; forName 1 className

Method Retrieval and Invocation

Ljava/lang/Class; getDeclaredMethod 1 methodName

Ljava/lang/Class; getMethod 1 methodName

Ljava/lang/reflect/Method; invoke 1 methodObject
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about the methods being retrieved or called. So, even if the location of the code
and class to be loaded is known, the behavior of the app can not be completely
determined as static analysis can not correctly identify the method or the order in
which the methods are being called, which is pivotal to an app’s behavior.

Table 2. Sources of parameters

Class Methods

Map, Hashtable

Ljava/util/Map; X*

Crypto

Ljavax/crypto/Cipher; doFinal

Ljavax/crypto/Cipher; update

Ljavax/crypto/CipherInputStream; read

Ljavax/crypto/Mac; doFinal

Ljavax/crypto/Mac; update

Ljavax/crypto/SealedObject; getObject

Telephony

Landroid/telephony/TelephonyManager; X

Landroid/telephony/SmsManager; X

Internet

Ljava/net/URLConnection; X

Ljava/net/HttpURLConnection; X

Ljava/net/ssl/HttpsURLConnection; X

Ljava/net/JarURLConnection; X

Input Streams

Ljava/io/InputStream; X*

Readers

Ljava/io/Reader; X*

Content Resolver

Landroid/content/ContentResolver; X

Source APIs: Hard coded
strings inside the code are easy
to analyze for static analysis
tools even if they are used as
parameters to reflection/DCL
APIs. However, when these
strings are not readily available
inside the code, static analysis
tools are completely ineffective
in inferring an app’s behavior.
To evade static analysis tools,
the string parameters to reflec-
tion/DCL APIs can be retrieved
from various sources at runtime.
Table 2 provides a list of APIs
that are used to access such
sources. The sources are chosen
based on their potential capa-
bility to evade static analysis
tools specifically when they pro-
vide parameters which are to
be used in reflection/DCL calls.
The first column in the table
represents the classes and the
second column represents the
corresponding methods which are considered as potential sources. Classes are
grouped in categories, e.g., Crypto, Telephony, etc. X in the second column indi-
cates that there are several methods in the corresponding class which are consid-
ered to be potential sources, thus, we simply did not enumerate all of them in the
table. Similarly, X* represents that all the subclasses are also considered, e.g.,
subclasses of InputStream such as FileInputStream, BufferedInputStream,
etc.

Some of the categories, such as Telephony and Internet, are purely dynamic
and cannot be analyzed by static analysis tools. A malware developer can use
these sources to communicate important parameters to the target APIs from a
C&C server and thus a static analysis tool has no way to determine the behavior
of the app. Other categories, such as InputStreams, Readers and Crypto, etc.,
include APIs that access resources which might be available at the time of analy-
sis. However, their use hardens analysis. For instance, an app can retrieve the
required parameters, using APIs from InputStreams/Readers categories, from a
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file which can be in any format while the analysis needs to know in advance
which format to expect.

In order to test the ability of existing tools to analyze such apps, we devel-
oped a set of apps that leak sensitive information. These apps use reflection
APIs to call various sensitive APIs where the names of these APIs and their
classes are provided as strings by some of the sources listed in Table 2, such as
Hashtable, Crypto, and InputStream. We analyzed these apps using Flowdroid
[11], IccTa [21], SAAF [20], Androguard [2], SCandroid [18] and Amandroid [25].
We observed that none of these tools were able to successfully detect the con-
cealed malicious functionality. It is worth mentioning here that some of the tools,
such as Flowdroid, SAAF, etc., can determine the targets of reflection calls to a
certain extent when the parameters used in reflection APIs are string constants
provided in the code.

4.2 Dataset Description

For the analysis process, we created a dataset of real world apps containing both
benign and malicious samples.

Google Play Store: The dataset consists of 13,223 apps downloaded from the
Android official Google Play Store [7]. Although, there are instances of malicious
apps been published to the official app store, Google Play Store uses Google
Bouncer as a vetting mechanism for the apps submitted to the store. Hence, one
can safely assume that the probability of a malicious app at the Google Play
Store is considerably lower as compared to other markets.

F-droid: We added 3,305 apps downloaded from an online third party market,
i.e., F-droid [6]. F-droid also provides the source code of the apps. Third-party
app markets usually contain a higher number of malicious apps as these markets,
most of the times, do not analyze the apps before publishing them. However,
these samples are assumed to be benign in our work as they are flagged benign
by most of the antivirus tools on VirusTotal [9].

To complement the downloaded benign apps, the dataset also consists of
3,645 malware samples, in the form of .apk files.

Genome Project: 1,260 malware samples, divided into 49 families, are taken
from the Malware Genome Project [29].

AndroidSandbox: 1,875 of the malware samples in our dataset are downloaded
from AndroidSandbox [3]. AndroidSandbox is an online malware analysis service,
unfortunately, out of service temporarily.

Contagio Mobile Malware Dump: The rest of the malware samples are
downloaded from Contagio Blog [4]. Contagio Blog is a repository for collecting
malware samples. These samples are also downloadable for research purposes.
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5 Analysis Results and Discussion

Experiment Design: We performed the experiment separately for the various
app sources as discussed in the previous section. Doing so, we had more control
over when to stop/start the analysis in case there is some problem. Moreover, this
design of the experiment later on helped in two ways, i.e., (1) comparing results
from different app sources, and (2) aggregating the results into two categories
(malicious and benign).

We used two machines for the experiment. The first one is a desktop, Dell
Precision T1700, with a Quad-Core Intel(R) Xeon(R) 3.10 GHz CPU and 8 GB
memory. The second machine is an HP laptop having an Intel Core i7-2630QM
2.00 GHz CPU and 4 GB of memory. Analyzing all these apps with our tool on
the two machines running in parallel took roughly a month.

The analysis provides an idea about the prevalence of reflection/DCL usage,
in real world apps, in a manner which can be used to conceal malicious behavior
and bypass app vetting process deployed at app markets.

The goal of the analysis is to answer the following research questions:

– Q1: What is the distribution of different categories of reflection/DCL APIs
(as mentioned in Sect. 4) in both legitimate and malicious apps?

– Q2: How often do reflection/DCL APIs receive their parameters from one or
more source APIs (as mentioned in Sect. 4)?

– Q3: What is the share of individual source APIs among all the mentioned
source APIs in providing parameters to the target APIs?

– Q4: What is the highlight of the analysis results which is distinguishable in
benign and malicious apps?

Q1. Presence of Reflection/DCL APIs: It is important to mention that
we are only concerned with the developer’s code and do not consider the occur-
rences of the target APIs in the Android framework itself. Figure 2(a) shows a
graphical representation of the prevalence of the three categories of the target
APIs, i.e., Code, Class, Method, in the analyzed apps. It shows that class loading
and method invocation using reflection is widely used in both legitimate as well
as malicious apps. At the same time, usage of additional code loading in the
form of .jar/.dex/.apk is comparatively lower. The Black bars in the graph
show that the use of code loading in the form of .jar/.dex/.apk is negligible
in legitimate apps, whereas malicious apps tend to use this feature which helps
them evade static analysis tools.

Q2. Parameters from Source APIs: A small fraction of the total occur-
rences of the target APIs in the analyzed apps receive their parameters from the
source APIs, mentioned in Sect. 4, which could potentially hinder static analysis
tools. This fraction is less even in malicious apps as shown in Fig. 2(b), except
for the Genome malware dataset. The obvious reasoning behind these low num-
bers (or almost equal numbers in legitimate and malicious apps) can be the
fact that most of the malware samples are repackaged versions of benign apps
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and, therefore, would use reflection/DCL in the same manner in general. This
necessarily implies that apps usually provide class names and method names to
reflection/DCL APIs as string constants, which is a good news for static analy-
sis tools. However, in order to evade static analysis tools, it is not necessary
to obfuscate the parameters of all the reflection/DCL calls, rather obfuscating
those calls which perform malicious behavior is enough. Moreover, the trend in
malicious apps is to provide a significant amount of benign functionality to lure
the user into installing the app and, also, surreptitiously perform some malicious
functionality.
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Fig. 2. Prevalence of Target APIs in the analyzed apps and Source APIs providing the
parameter passed to Target APIs

Q3. Contribution of Individual Source APIs: Apart from the bar repre-
senting the percentage of Dynamic Code Loading APIs taking its parameters
from the source APIs for the Genome malware dataset in Fig. 2(b), the rest of
the bars for all the apps datasets hardly reach 10 %. This behavior is more or
less identical at this coarse level in both legitimate as well as malicious apps.
However, Fig. 3, which provides a finer view of the contributions of individual
sources, reveals more about the behavior of legitimate and malicious samples.
Figure 3 shows the graph for the top 5 contributing source API categories in
each dataset. It reveals that most of the apps in both datasets, benign and mali-
cious, retrieve class and method names from Map/Hashtable and, therefore, it
is the prime contributor in providing parameters to reflection/DCL calls. One
reason for the high usage of Map/Hashtable can be the usage of DexGuard (a
commercial Android app obfuscator) [5]. Its string encryption mechanism uses
byte-arrays and Maps for obfuscating strings.
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Fig. 3. Contribution of source APIs in providing
arguments to Target APIs. X-axis represent the
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The othermajor contribut-
ing sources are Input Streams
and Readers, which are used
to retrieve class and method
names from configuration files
either provided along with the
.apk package or provided at
runtime. Both of these cat-
egories can be used to con-
ceal behavior and, therefore,
their usage in malicious apps
is slightly on the higher side.
The use of Telephony, how-
ever, is mostly found in mali-
cious apps only. Apparently,
there are not many benign rea-
sons for receiving class and
method names via an SMS message. However, for malicious apps, this mechanism
could be used as a communication channel to a C&C server.

Q4. Crypto APIs: In the initial experiment, we found very few instances of
the standard Crypto APIs being used as the sources of parameters for reflec-
tion/DCL in our analyzed dataset. However, as shown in Sect. 2, malicious apps
do use encrypted strings, which are only decrypted at runtime, as parameters
of reflection/DCL calls. Therefore, we further manually analyzed the Anserver-
Bot family of the Genome dataset by disassembling the .apk files and looking
into the Smali code. We found out that AnserverBot stores the code file names
as encrypted strings and decrypts them at runtime when passing them on to
DexClassLoader. However, it does not use the standard Crypto APIs to decrypt
these strings, but rather uses its own logic for decryption. We could not look into
all the apps for such encryption/decryption techniques, which could be another
interesting study, but understandably, using non-standard encryption/decryp-
tion techniques might be more attractive to malware developers.

These results show that a wide range of real world apps, specifically malicious
apps, use reflection/DCL in a manner that enables them to bypass state-of-
the-art automated analysis tools. The increasing number of apps and the rapid
evolution of anti-analysis techniques found in modern day malware demand for
more effective and sophisticated automated analysis tools.

6 Considerations on Analysis Tools for Android

The combination of code update techniques along with anti-debugging, emulator
detection techniques and the ability to reveal malicious behavior only when
particular conditions (i.e., temporal) are met enables malware developers to
bypass analysis tools. We propose some recommendations that could be useful
in detecting malware even in the presence of evasive techniques.
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Modern analysis tools need to have an efficient and effective dynamic analy-
sis part due to some inherent limitations of static analysis. We recommend to
push for targeted dynamic analysis where target APIs, such as those of reflec-
tion/DCL, are identified and the application is triggered with inputs which make
it follow the target paths. A targeted triggering solution coupled with other solu-
tions, such as Stadyna [27], will help in revealing malicious behavior otherwise
concealed by a malicious app.

Considering the problem of stimulating apps’ behavior during an analysis/de-
bug environment, loadtime analysis of the code other than that contained in the
standard .dex file of an app can help detecting malicious code loading. Android
framework can have an analysis module which performs some lightweight on-
device analysis of the code loaded from arbitrary locations before loading it. [17]
provides a library for secure class loading, but they only check for the integrity
of the code. Adding other forms of security analysis to their solution would be
more helpful.

According to Google’s policy, all the apps must use the Google Play Store
for their updates. However, this policy is not always enforced, as the BrainTest
example shows. An effective enforcement of this policy would result in catering
the problem of malicious code updates to an extent. Therefore, any app which
downloads code from any location other than the Google Play Store should be
deemed malicious and not allowed to do so.

7 Limitations

A non trivial number of apps were analyzed in this work and should provide a fair
view of reflection/DCL usage. However, we understand that the same experiment
on a much larger scale, possibly performed by app markets such as Google play
store, would result in providing a much better picture of the situation regarding
how benign and malicious apps use reflection/DCL.

The malware datasets, in particular, the one from the Genome Project, is a
bit old now keeping in view the rapid increase in the number of mobile malware
samples. The trend towards more obfuscation and sophistication in malware
implies that the evasive behavior would be more prevalent in newer malware
samples.

We do not analyze native code, therefore, the sources of parameters coming
from native code are not considered in the analysis presented in this paper.
Moreover, the analysis tool does not capture information flow to reflection/DCL
calls obfuscated through other reflective calls.

8 Related Work

Literature shows that there have been efforts to analyze apps in the presence
of reflection and DCL in Java as well as in Android. Livshits et al.’s work uses
points-to analysis and cast analysis to statically resolve the targets of reflection
[22]. Similarly, Christensen et al. use Java string analyzer to statically track the
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arguments passed to reflection APIs to resolve their targets [15]. A static analysis
tool for Android apps, Flowdroid, performs data flow analysis and resolves the
targets of reflection only when the parameters are string constants [11]. However,
none of them provides an analysis on the sources of the parameters passed to
these APIs and their possible contribution in concealing malicious behavior.

Hirzel et al. extend pointer analysis to resolve reflection, DCL and native code
using online (dynamic) analysis [19]. They instrument the virtual machine ser-
vice that handles reflection and DCL with handlers, which dynamically updates
a constraint database during the program execution. Similarly, Bodden et al.
propose TamiFlex which complements static analysis of Java apps by resolving
DCL and reflection [12]. TamiFlex executes a Java app, which is modified using
java.lang.instrument API, and logs the information about DCL and reflec-
tion. However, similar to dynamic analysis, both these techniques suffer from
the triggering problem.

Zhauniarovich et al. present Stadyna which is a tool for analyzing Android
apps in the presence of reflection and DCL [27]. They combine static and dynamic
analysis similar to [12]. They also present an extensive analysis of the presence of
reflection and DCL in legitimate and malicious apps. Our work is different as we
focus on the sources of the parameters of reflection/DCL APIs that can be used
to evade static analysis tools. We also present an extensive analysis of real world
apps for possible presence of such dangerous/suspicious usage of reflection/DCL.

Poeplau et al. [23] have tried to solve the problem of dynamic code loading,
potentially malicious, using a whitelisting approach. Their whitelists are based
on hashes of codes to be loaded. They propose that only those pieces of code
could be loaded dynamically, which have their hashes available in the mentioned
whitelist. They also developed a sample malicious app and practically evaded
Google Bouncer using DCL. Similarly, Canfora et al. present composition mal-
ware where they present a model for evading analysis tools. However, their focus
is more on downloading the code from different places and combining them at
runtime to create malicious app logic [14]. However, in our work we present a
more generic evasion process used by malicious apps focusing on the underlying
reflection and DCL APIs and the sources of their parameters.

9 Conclusion

Dynamic code update features, such as reflection and DCL, are widely used in
Android apps to make them extensible. These features, however, attract mal-
ware developers due to their potential capability of evading analysis tools when
their parameters are obfuscated or provided only at runtime. In this work, we
developed a tool that analyzes Android apps and finds source/sink relationships
between certain potentially dangerous source APIs and reflection/DCL APIs.
Moreover, to emphasize the importance of the parameters used in reflection/DCL
APIs, we analyzed a dataset of real world apps. The results of our analysis show
that malicious apps do try to hide the parameters of reflection/DCL APIs, by
encrypting them or receiving them at runtime from the outside world, in order to
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bypass static analysis tools. The results of our analysis combined with the study
of the static analysis tools available today for Android apps highlight the need
for further research and development of analysis tools that efficiently combine
static and dynamic analysis.
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Abstract. Android app repackaging threatens the health of application
markets, as repackaged apps, besides stealing revenue for honest devel-
opers, are also a source of malware distribution. Techniques that rely on
visual similarity of Android apps recently emerged as a way to tackle the
repackaging detection problem, as code-based detection techniques often
fail in terms of efficiency, and effectiveness when obfuscation is applied
[19,21]. Among such techniques, the resource-based repackaging detec-
tion approach that compares sets of files included in apks has arguably
the best performance [10,17,20]. Yet, this approach has not been previ-
ously validated on a dataset of repackaged apps.

In this paper we report on our evaluation of the approach, and present
substantial improvements to it. Our experiments show that the state-
of-art tools applying this technique rely on too restrictive thresholds.
Indeed, we demonstrate that a very low proportion of identical resource
files in two apps is a reliable evidence for repackaging. Furthermore,
we have shown that the Overlap similarity score performs better than
the Jaccard similarity coefficient used in previous works. By applying
machine learning techniques, we give evidence that considering sepa-
rately the included resource file types significantly improves the detec-
tion accuracy of the method. Experimenting with a balanced dataset of
more than 2700 app pairs, we show that with our enhancements it is
possible to achieve the F-measure of 0.9919.

Keywords: Android security · Repackaging · Resource files

1 Introduction

With more than 1.4 billion active devices and more than 1.6 million of apps
only on the official Google Play market, Android is the dominating mobile OS
today1. Android is an open eco-system, i.e., users can install apps not only from
Google Play [6]. This openness led to flourishing third-party markets, e.g., with
localized content, or even with stolen apps. Indeed, application repackaging, when
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a legitimate app is re-published by adversaries, is polluting Android markets
worldwide. It is a known vector of Android malware distribution [26], and not
even Google Play is immune to this threat [23]. While the recently spotted
Trojans hardly included any useful functionality, users still fell victims to their
lure because familiar icons and names were used by the badware2.

App repackaging detection approaches recently turned to the intuition of
visual similarity between original apps and their plagiarized copies [10,15–17,
19,20]. Indeed, the users have certain expectations for the “look and feel” of
the original apps, and it might be more challenging for malicious repackagers to
change the GUI design than to insert, modify or remove some code parts [19].
Among these techniques, arguably the best performance could be achieved by the
resource-based repackaging detection approach that directly compares the “look
and feel” of applications represented by the included images, multimedia, layout
and other files. This approach was adopted by, e.g., the FSquaDRA tool [20], the
PlayDrone system [17], and the APPraiser framework [10]. These tools compute
similarity of two applications based on the number of identical files (resources)
included in both packages proportional to the total number of included files (the
Jaccard similarity score that ranges in [0,1]).

Although a strong correlation of the resource-based similarity score with the
code-based similarity score produced by Androguard [5] was previously reported
[20], and manual validation exercises were positive [10,17,20], a thorough assess-
ment of the resource-based repackaging detection approach effectiveness has
never been done before. Whether it could show reliable results in a practical
setting was an open question.

In this paper we close this gap by empirically evaluating resource-based
repackaging detection in experiments on a dataset including repackaged and
non-repackaged pairs. In particular, we explore the following research questions:

RQ1: Does the resource-based repackaging detection approach work in practice?
Can we identify a definitive threshold for the resource-based similarity score that
separates classes of repackaged and not-repackaged app pairs with tolerable false
positive and false negative rates?

RQ2: Does the effectiveness of the resource-based repackaging detection tool
depend on the similarity metric used (i.e., Jaccard similarity used in [10,17,20])?
If yes, which similarity metric suits better to the problem of the resource-based
repackaging detection?

RQ3: Can we improve the repackaging detection rates with the help of machine
learning algorithms?

RQ4: Can the predictive power be improved if different types of resources will
be considered separately?

RQ5: What types of resources are more or less susceptible to modifications
during the repackaging process?
2 http://www.welivesecurity.com/2016/02/24/porn-clicker-trojans-google-play-

analysis/.

http://www.welivesecurity.com/2016/02/24/porn-clicker-trojans-google-play-analysis/
http://www.welivesecurity.com/2016/02/24/porn-clicker-trojans-google-play-analysis/
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Answering these questions, this work makes the following contributions:

– We practically verified that resource-based approaches [10,17,20] can be
indeed used for detection of repackaged applications. We have found the
threshold value 0.0629, which can be further used directly in tools [10,17,20]
to minimize both false positive and false negative errors.

– Our experiments with several similarity scores showed that the Overlap sim-
ilarity score achieves the best performance (F-measure 0.9847), while prior
works [10,17,20] relied on the slightly less efficient Jaccard similarity.

– We experimented with repackaging detection based on individual scores for
distinct resource file types. We used 18 file types as a feature vector, eval-
uated several classifiers with these features and found that effectiveness of
the approach is improved by considering separately different types of files. In
the best case, with the non-optimized Random Forest classifier, we achieved
F-measure of 0.9919 improving the single score-based approach considerably.

– We investigated the susceptibility to modification in repackaging of the indi-
vidual resource file types. Our results show that multimedia files, libraries, raw
resources and images are least frequently changed in repackaging, while the
main dex code file, the manifest file and the compiled resources (e.g., strings)
are the most frequently changed resource file types.

Our findings underline that resource-based repackaging detection is a practi-
cal enhancement to an on-market triage. To stimulate further investigations and
adoption of the method, we release our system open-source3.

2 Resource-Based Repackaging Detection

Resource Files. Resource files are an integral part of any Android application
package (apk). They include graphics, texts, layouts, and multimedia content
that will be presented to the user to provide a unique user experience. Other
types of files in the apk are code files (classes.dex and library files) and the
manifest file. In this paper, we in fact refer to all files composing an apk as
resource files. Resource files are typically numerous (an average apk includes
more than 300 files [20]), thus they can be considered representative for the apk.

Upon package signing by the developer, SHA1 digests of all included resource
files (and other files) are created and stored in the apk within the MANIFEST.MF
file. Later, on the device, the hashes are used to verify the integrity of the files
constituting the package. The Android application signing mechanism, however,
does not protect against integrity violation of the package (repackaging). In mali-
cious repackaging, the adversary strips off the signature of the original developer,
decompiles the app, introduces the required changes (e.g., changes the ad library
identifier to redirect the revenue streams or injects malicious code), rebuilds the
app and signs it again with a new certificate [23].

3 The code is available at https://github.com/zyrikby/FSquaDRA2.

https://github.com/zyrikby/FSquaDRA2
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Resource-Based Similarity Score. The basic intuition behind the resource-
based similarity score, which is ultimately leveraged for repackaging detection in
[10,17,20], is that, in order to maintain the visual similarity of the repackaged
app with the original one, the repackager does not change the resource files at all,
or only modifies a fraction of them. Thus, resource files can be used to pinpoint
visually similar app pairs.

The resource-based similarity score (ressim for short) for a pair of apks is
computed in [10,17,20] by applying the Jaccard similarity coefficient to sets of
resource file hashes. For two apks A and B with file hash sets HA and HB , corre-
spondingly, Jressim(A,B) = |HA ∩ HB |/|HA ∪ HB |, where Jressim stands for
Jaccard resource similarity score. With this formula, two apps with completely
different sets of files hashes have the Jressim score equal to 0, whereas two apps
with completely identical resources have the Jressim score equal to 1.

The tools utilizing resource-based repackaging detection are FSquaDRA [20],
PlayDrone [17], and APPraiser [10]. FSquaDRA computes the resource-based
similarity score (Jressim) and leverages the fact that hashes of all files are
already included in the apk [20]. For identifying similar apps, APPraiser utilizes
the same Jressim score applied to included files (it computes MD5 hashes of the
files and eliminates common libraries), but it is implemented at the market scale
and more efficiently than FSquaDRA by leveraging the sparseness of data [10].
PlayDrone also applies the Jressim score for detection of similar apps, and
it includes resource file names as features alongside MD5 digests of the files
themselves, and excludes common libraries from consideration [17]. PlayDroid
operates at the Google Play market scale. Evaluation of the approach conducted
with these tools was limited.

Indeed, the reported validation of the resource-based similarity approach is
based on manual experiments with a limited number of apps [10,17,20], and
the strong correlation discovered between the Jressim score and the similarity
score computed by the static analyzer Androguard, which measures the apk
similarity score based on the included method signatures (i.e., the code) [5].
Thus, the strong correlation of resource-based scores with the code-based ones
shown in [17,20] gives justification that the resource-based similarity detection
approach is valid. Despite strong suggestions from the literature [10,15–17] and
our personal communication with mobile security companies that the approach
is applied in practice, the resource-based similarity detection method so far has
not been validated on a sufficiently large dataset.

Moreover, without evaluation on the ground truth (a dataset with known
repackaged and non-repackaged pairs), it is not possible to estimate a threshold
(a value such that all pairs with a higher Jressim score are reliably repackaged,
and with a lower score are probably not repackaged) for the Jressim score that
can then be used by app markets in their triage. For the FSquaDRA tool the
threshold value 0.7 was suggested, but [20] acknowledged that there was no
way to confirm the threshold or adjust it without a repackaged dataset. The
PlayDroid system applies the threshold value 0.8 and reports experiments with
thresholds in range [0.6, 1.0]. (however, it includes resource file names as features
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in addition to the MD5 hashes of resource files, and excludes common libraries,
so we cannot directly compare these threshold values) [17]. The APPraiser tool
relies on the threshold value 0.8, and [10] reported that changing it to 0.7 or
0.9 did not affect the experiments significantly. At the same time, the Jressim
value of 0.7 implies that 70 % of files are the same for two apks. Intuitively, much
smaller fraction of identical resource files could already be a sign of repackaging.

Other Repackaging Detection Methods. State-of-art approaches in repack-
aging detection on Android have a strong focus on code similarity (e.g., [1,3–
5,8,9,11,18,25]). To achieve scalability, tools leverage a combination of light-
weight app fingerprints (e.g., certificates, package names, method signatures,
n-grams of code) for identifying similar apps (e.g., [7,12]).

Recently, techniques that look at visual application similarity emerged. Dif-
ferently from the resource-based repackaging detection approach evaluated in
this paper, these techniques investigate layout files (e.g., [16]) and activity transi-
tion graphs (e.g., [15,19]) as means to represent the UI behaviour that is difficult
to modify without a good understanding of the code. Among these techniques,
DroidEagle [16] follows the same intuition as resource-based repackaging detec-
tion, and applies perceptual hashing to image files in order to detect similar
pictures. It focuses on representing layout files as tree layout hashes and search-
ing for similar layout structures.

ResDroid [15] utilizes resource files as features for detecting repackaged
applications (e.g., it computes the average number of png files per folder in
res/drawable). The MassVet system [2] follows a hybrid approach, as it relies
on both similarity of UI structures and code similarity.

3 Dataset

We use a dataset of repackaged app pairs received from a fellow research
group [11]4. The dataset contains 2754 apps originally mapped into 1497 repack-
aged pairs. This dataset is representative of the piggybacking case: all app pairs
in it include the original benign app and a repackaged version piggybacking mal-
ware (confirmed by VirusTotal5) [11]. Notice that for each repackaged app pair,
its member apps are signed with different certificates.

As a first step to explore the obtained dataset, we applied the FSquaDRA
tool [20] to perform pair-wise comparison of all files. In this experiment, we
found that for 38 apps information about file hashes cannot be extracted
by the tool. Among these 38 apps, 26 apps could not be installed, because
they were not correctly signed: the whole META-INF folder was absent, or
this folder was located in a wrong place (e.g., in theassets folder), or
the signature file was missing). We received the error message Failure
[INSTALL PARSE FAILED NO CERTIFICATES] during installation of these apps.

4 https://github.com/serval-snt-uni-lu/Piggybacking.
5 https://www.virustotal.com/.

https://github.com/serval-snt-uni-lu/Piggybacking
https://www.virustotal.com/


140 O. Gadyatskaya et al.

As a security-aware app market would have discarded these apps anyway, we
excluded these apks from consideration.

We were able to install the remaining 12 apps on a device and emulator. 10 of
those were functional only on the device; and 2 failed to run on both device and
emulator. The 12 apps are all malicious applications that install other apps in the
background and show the same ads at startup. The FSquaDRA tool was unable
to process them because they were misconfigured, so we excluded these apps from
consideration. Overall, 126 repackaged app pairs were excluded from our dataset
(for all 126 pairs at least one app was among the 38 non-processable ones). The
remaining 1371 app pairs constitute for us the truly repackaged pairs dataset.
To evaluate the false negative error rate of the approach, we have computed the
Jressim scores for app pairs in this dataset.

Moreover, in order to evaluate the false positive error rate of the approach,
we created a set of truly non-repackaged pairs by randomly selecting 1371 app
pairs from the dataset, excluding the broken 38 apps. We matched two apps
together only if 3 conditions were satisfied: (1) their pair was not already con-
sidered as truly repackaged, (2) they did not belong to a connected component
of repackaged apps (if apps a and b are a repackaged pair, and apps b and c are a
repackaged pair, then apps a, b and c belong to the same connected component of
repackaged apps), (3) they were signed with different certificates. We computed
the Jressim scores for the selected non-repackaged pairs. Thus, we obtained a
balanced labelled dataset for further experiments consisting of 2742 app pairs of
two kinds: repackaged and non-repackaged. Notice that similarly to the designers
of the original dataset [11], in our experiments we focus on detecting plagiarism
(malicious repackaging), not rebranding (repackaging by the same developer).

Table 1. Summary statistics for evaluation of resource-based repackaging results (the
Jressim scores) on the ground truth

Dataset Statistics Value

Truly repackaged app pairs (1371 pairs) Min 0.0000

1st Quartile 0.5050

Median 0.7442

3rd Quartile 0.9167

Max 1.0000

Mean 0.6893

Truly non-repackaged app (1371 pairs) Min 0.0000

1st Quartile 0.0000

Median 0.0000

3rd Quartile 0.0000

Max 0.4218

Mean 0.0022
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4 Resource Similarity Evaluation

In this section we address the RQ1 and empirically evaluate the baseline resource-
based similarity detection approach (the Jressim score) on the ground truth.

Baseline Results. To answer RQ1 we started by applying the resource-
based repackaging detection method implemented by the open-source tool
FSquaDRA [20] to our dataset. Table 1 reports the summary statistics for both
repackaged and non-repackaged pairs and it reveals the shape of data. We can
see that for the truly repackaged pairs the Jressim scores are quite high (with
mean value 0.6893 and median 0.7442). At the same time, there are still repack-
aged app pairs that have 0.0 similarity score. For the truly non-repackaged app
pairs the summary statistics are different. We see that more than 75 % of the
Jressim scores in this case are equal to 0. At the same time, some app pairs in
this dataset expose non-zero Jressim scores while being non-repackaged.

We can now compute the value (threshold) that minimizes the false positive
error rate (the number of non-repackaged pairs that will be above the threshold)
and false negative error rate (the number of repackaged pairs that will fall below
the threshold) using the standard 10-fold cross-validation scheme. For Jaccard
similarity, the average threshold in 10-fold cross validation on the dataset at hand
is 0.0629. This threshold might be further used with tools like FSquaDRA and
APPraiser [10,20]. We report the accuracy, precision, recall and the F-measure
for this threshold in Table 2(a).

At the same time, figures reported in Table 1 show that the baseline resource-
based repackaging detection approach produces a number of outliers: some
repackaged app pairs have low Jressim scores, while some non-repackaged app
pairs have relatively high Jressim scores (significantly higher than the threshold
0.0629). We have looked at these outliers in order to understand the practical
reasons for errors in the approach.

Table 2. Accuracy statistics

(a) Jressim accuracy

metrics overview with the

threshold 0.0629

Metrics Value

Accuracy 0.9847
Precision 0.9912
Recall 0.9781

F-measure 0.9845

(b) Androguard metrics

overview with the threshold

0.4330

Metrics Value

Accuracy 0.9581
Precision 0.9764
Recall 0.9441

F-measure 0.9600

(a) (b)

Fig. 1. Icons of apps in a repackaged pair with the Jressim score 0.0
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False Negatives. Repackaged app pairs with the Jressim score less than 0.0629
are false negatives. There are 29 such pairs (out of 1371); all of them were present
in the original list of repackaged pairs that came with the dataset [11].

Among the 29 false negatives, 7 pairs have the Jressim score equal to 0.0.
We have manually reviewed these apps. 4 pairs are visually similar, while 3
pairs are visually different (for 2 pairs even different functionality). 4 visually
similar pairs have different hashes of the resource files, and the resource files have
been substantially changed in the repackaged apps (new folders were introduced;
images were substituted). Figure 1 gives an example of icons of a repackaged pair
with Jressim = 0.0. As seen from the figure, the repackagers have produced a
completely new icon that is still recognizable to a user.

For the other 22 pairs of repackaged apps with Jressim greater than 0 but
less than 0.0629, the apps in these pairs are visually similar. The large proportion
of these are plagiarized apps translated into a different language. Repackagers
of these apps changed substantially resource files, thus, the approach failed to
classify them correctly.

False Positives. 11 non-repackaged pairs are false positives as they have the
Jressim score greater than the threshold 0.0629. We manually inspected these
apps and checked which resources were shared between the apps in these pairs.
We found that the false positives appeared in our results due to usage of the
same libraries for app development. E.g., 3 app pairs were developed using the
Facebook SDK6. These findings show that a prior filtering of resources is useful,
as it will allow to considerably reduce the amount of false positives. Such pruning
can be done automatically, e.g., by removal of the most popular file hashes in
the whole dataset [10,17].

Comparison with Androguard. We applied Androguard [5]7 to our dataset
to measure code-based similarity for both repackaged and non-repackaged pairs.
The threshold that yields the lowest cumulative error for Androguard on our
dataset is 0.4330. Table 2(b) summarizes the accuracy metrics for Androguard
achieved with this threshold. Notice that the threshold value 0.4330 minimizes
the cumulative error on the whole dataset. In the 10-fold cross-validation scheme
the accuracy metrics will be lower.

Tables 2(a) and (b) indicate that the resource-based repackaging detec-
tion approach has better effectiveness than the code-based approach. More-
over, resource-based repackaging detection has a much better efficiency. Using
FSquaDRA [20], we ran full pairwise comparison (comparing all app pairs for
apps in the original dataset [11]) in 165 s (on a laptop with 2.8 GHz processor
and 16 GB of RAM). Androguard required more than 10 h only for the truly
repackaged and non-repackaged pairs. Androguard is inherently slow on non-
repackaged pairs [5], which in practice constitute the vast majority [10].

6 Facebook SDK for Android https://developers.facebook.com/docs/android.
7 https://github.com/androguard/androguard.

https://developers.facebook.com/docs/android
https://github.com/androguard/androguard
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5 Fine-Tuning the Basic Approach

We now analyze how to improve the predictive power of the basic resource-
based repackaging detection approach. In particular, we explore the questions
RQ2 and RQ3 regarding the most suitable similarity metrics and classifier with
the best discriminative power.

To answer these questions we used our dataset and machine learning
approaches. For machine learning tasks we used the scikit-learn library, ver-
sion 0.17.1 [13]. Additionally to the provided algorithms, we also developed a
basic classifier separating two classes using a threshold obtained by minimizing
the cumulative error (as reported in Sect. 4); to avoid over-fitting this classifier
was further applied only in the 10-fold cross-validation setting.

Exploring Similarity Metrics. In [10,20] the Jaccard similarity metric was
used for the full sets of hashes of resource files in a given pair of apps. In general,
any similarity score applied to sets (multisets) of resource file hashes shows to
which extent one application is similar to another. In this section we explore if
usage of another metrics can improve the discriminative power of the method.
To achieve this goal, we extended the open-source FSquaDRA tool [20] with
the possibility to calculate similarity scores using different metrics. In particu-
lar, we took as a reference the SimMetrics Java library8 and implemented in
Python the metrics that compare lists of objects (sets/multisets). In particular,
we implemented the following metrics:

Block (Manhattan) Similarity: similarity(a, b) = 1 − distance(a, b)/(|a| +
|b|), where distance(a, b) = ||a− b||1 (distance from point a to point b is the sum
of of absolute differences of their Cartesian coordinates).

Cosine Similarity: similarity(a, b) = a · b / (||a||× ||b||), i.e., it measures cos φ
of the angle φ between vectors a and b. Cosine similarity considers cardinality
of elements (number of occurrences).

Sørensen-Dice Similarity: similarity(a, b) = 2 × |a ∩ b|/(|a| + |b|).
Euclidean Similarity: similarity(a, b) = 1 − distance(a, b)/

√|a|2 + |b|2),
where distance(a, b) = ||a − b|| (distance from point a to point b is Euclidean
norm of the vector a − b).

Jaccard Similarity: similarity(a, b) = |a∩b|/|a∪b|. This is the Jressim score
used in [10,20].

Generalized Jaccard Similarity: follows the same formula as Jaccard simi-
larity, but works over multisets.

Overlap Similarity: similarity(a, b) = |a ∩ b|/min(|a|, |b|).
Generalized Overlap Similarity: same as the overlap similarity, but works
over multisets.

8 https://github.com/Simmetrics.

https://github.com/Simmetrics
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Table 3. Predictive power comparison of similarity metrics

Metric Accuracy Precision Recall F-measure

Block 0.9832 0.9891 0.9774 0.9831

Cosine 0.9832 0.9883 0.9781 0.9831

Dice 0.9836 0.9898 0.9774 0.9835

Euclidian 0.7400 0.9020 0.5383 0.6733

Jaccard 0.9847 0.9912 0.9781 0.9845

Generalized Jaccard 0.9836 0.9898 0.9774 0.9835

Generalized overlap 0.9840 0.9855 0.9825 0.9840

Overlap 0.9847 0.9856 0.9840 0.9847

SimonWhite 0.9836 0.9898 0.9774 0.9835

Tanimoto 0.9829 0.9891 0.9767 0.9827

Simon White Similarity: the generalized (quantitative) Sørensen-Dice sim-
ilarity, else called Simon-White coefficient, works over multisets and considers
cardinality of elements.

Tanimoto Similarity: is expressed using the cosine similarity formula, but
multiple occurrences of elements are not considered (as it works over sets).

We calculated these metrics for all app pairs in our dataset. For each metric,
the average results in 10-fold cross-validation for the basic classifier that discrim-
inates based on the similarity score is reported in Table 3 (same folds partition
was applied for all metrics). The result demonstrate that the Overlap similarity
metric has better accuracy, recall and the F-measure, while the Jaccard similar-
ity metric shows better precision. The F-measure, which harmonically combines
both precision and recall, indicates that generally Overlap similarity is preferable
for the repackaging classification task with our dataset. Both previous studies on
resource-based similarity detection [10,20] relied on the Jaccard similarity score,
however, experiments show that the Overlap metric can achieve better results.
Therefore, in the rest of this paper we rely on this similarity metric.

For the Overlap similarity score (Oressim for short) the average threshold
in 10-fold cross-validation is 0.1188. This threshold should be further used in
resource-based repackaging detection approach with the Overlap similarity score.

Applying Classifiers. In order to answer RQ3 and assess which classifiers
have the best discriminative power in our task, we experimented with 5 general-
purpose classifiers: Logistic Regression, Support Vector Machines with a linear
kernel, Decision Tree, Random Forest and Gradient Boosting. In this work we
used the default values of the algorithm parameters, i.e., we skipped the para-
meter tuning step. Moreover, these classifiers were instantiated with the same
initial state to ensure experiment replicability.

We applied the selected classifiers, including our own, to the dataset using
only one feature – the Overlap similarity score Oressim calculated on all file
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Table 4. Predictive power comparison of classifiers

Classifier Accuracy Precision Recall F-measure

OurClassifier 0.9847 0.9855 0.9840 0.9847

Logistic Regression 0.9799 0.9941 0.9657 0.9796

Linear SVM 0.9814 0.9904 0.9723 0.9812

Decision Tree 0.9756 0.9776 0.9737 0.9755

Random Forest 0.9763 0.9784 0.9745 0.9762

Gradient Boosting 0.9799 0.9840 0.9759 0.9798

hashes. Every classifier was validated in 10-fold cross-validation. Table 4 reports
the average results for all classifiers. We can see that the cumulative error min-
imization classifier (OurClassifier) performs well and shows the best scores for
accuracy, recall and the F-measure. In terms of precision, the Logistic Regression
classifier has shown better results. Thus, in the task of resource-based repackag-
ing detection with a single feature (the Overlap similarity score for all files), the
algorithm classifying app pairs based on the score threshold separating classes
of repackaged and non-repackaged app pairs can be used. At the same time, this
algorithm cannot be generalized when several features are used for classification.

6 Resource Files Analysis and Improved Classification

We now address the research questions RQ4 and RQ5 concerning the explo-
ration of resource file types for fine-tuning repackaging detection.

Exploring Resource File Types. An app package includes different types of
files. It is still an open question whether repackagers generally modify all types
of files, or only some specific types. Therefore, while previously a cumulative
similarity score on all files was used, it might be beneficial to explore different
types of resources separately. We now start to explore RQ4 by dissecting the
files constituting Android packages into different types.

Android documentation specifies resource types that can be included in a
package9. However, during compilation some of them are compiled and placed
into the compiled resource file resources.arsc. As the MANIFEST.MF file only
stores paths to files and the hashes of their contents, it is impossible to com-
pute separate similarity scores for these compiled resources. Operating with the
MANIFEST.MF information, we can only divide files into types based on the com-
mon path prefixes and suffixes. In particular, we divide files based on their
purpose (e.g., audio-video files) and their location (for instance, under the res/
folder). The following resource types (features) are identified:

9 http://developer.android.com/guide/topics/resources/available-resources.html.

http://developer.android.com/guide/topics/resources/available-resources.html
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Location-based file division:

1. manifest: the manifest file (AndroidManifest.xml)
2. main code: main files with the compiled Android code (classesN.dex,

where N is either empty or integer number)
3. resources arsc: compiled resources file

(resources.arsc)
4. libs: files located under lib/ and libs folders
5. assets: files under assets/ directory
6. res all: all files located under res/ folder
7. res raw: files under res/raw/ directory
8. res xml: files located under res/xml/ directory
9. res drawable: files under res/drawables/ folder

10. res menu: files located under res/menu/ directory
11. res layout: layout files under res/layout/ directory
12. res anim: files under res/anim/ folder
13. res color: files in res/color/ directory

Purpose-based file division:

14. native libs: all files with .so extension
15. code general: all files with .so, .bin, .dex and .jar extensions
16. audio video: supported audio and video files10

17. image: all supported image files
18. all xml: all XML files

We extracted the hashes corresponding to the considered types from both
packages in an app pair under consideration, and calculated the Overlap sim-
ilarity score Oressim separately for every file type. Thus, for each pair we
obtained a feature vector with 18 values. The features are not independent: e.g.,
code general includes native libs and main code. However, since the classi-
fiers we chose do not assume feature independence, in contrast to e.g., Näıve
Bayes, we did not put any restrictions on them. After extracting features, we
applied the selected classifiers, excluding our own as it could not be generalized
for multiple features, to the dataset using 10-fold cross-validation.

To discover the optimal set of features that drives better results, we applied
the sequential forward selection (SFS) algorithm [14]. This algorithm starts with
a single feature and sequentially adds the variables with which the classifier
shows the highest score, until the size of the feature space specified by the user
is reached. Once a feature is added, it cannot be removed from the search space.
In our case, we selected the total number of features (18) as the limit. This
approach reports not only if the classification can be improved by considering
separately different types of files, but also if we can reduce the set of features to
be extracted from files, thus, saving time for the feature extraction.

Some apps may lack files of a particular type. The conventional approach
in this case is to assign the similarity score equal to 0 (e.g., this is how the
10 http://developer.android.com/guide/appendix/media-formats.html.

http://developer.android.com/guide/appendix/media-formats.html
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SimMetrics library works). However, we also experimented with assigning to
such cases a value that is out of the range (−1) to distinguish them.

Table 5 reports the F-measure for all classifiers (the accuracy score shows
similar behavior, thus, we do not provide it here). Several important conclusions
can be drawn from the results. First, it is now evident that if file types are con-
sidered as features, the effectiveness of repackaging detection can be improved.
The Random Forest classifier with a combination of 12 features achieves the
F-measure score of 0.9919, which is considerably better than our classifier oper-
ating on the cumulative similarity score (the F-measure 0.9847). Considering
only 2 types of resources (when N/A’s are substituted to −1), the Random For-
est classifier already outperforms our classifier that minimizes the cumulative
error.

Secondly, the classifiers behave differently depending on how the N/A values
are treated. When we substitute N/A values to 0, Linear SVM and Logistic
Regression classifiers show almost similar scores, outperforming the score of our
custom classifier. At the same time, when N/A are equal to −1, even using a
number of features, those classifiers cannot beat our classifier trained only on a
single feature. At the same time, the Decision Tree algorithm shows the opposite
behavior improving its score when N/A values are substituted to −1. This shows
that classifiers used in resource-based repackaging detection systems should be
selected considering, among all factors, how the N/A values are treated.

Last but not least, Table 5 demonstrates that generally the scores achieved
by the Random Forest and Gradient Boosting algorithms in case when N/A
values are substituted to −1, are better than using the conventional approach

Table 5. F-measure dependency on the number of features for the classifiers. Values
highlighted with bold shows best result within a column, with red – best result in a
row.

Features
number

Logistic regression Linear SVM Decision tree Random forest Gradient boosting

n/a=0 n/a=−1 n/a=0 n/a=−1 n/a=0 n/a=−1 n/a=0 n/a=−1 n/a=0 n/a=−1

1 0.9733 0.9733 0.9734 0.9734 0.9700 0.9700 0.9712 0.9712 0.9745 0.9745

2 0.9842 0.9834 0.9842 0.9820 0.9803 0.9879 0.9792 0.9872 0.9839 0.9868

3 0.9857 0.9838 0.9857 0.9824 0.9813 0.9883 0.9821 0.9886 0.9857 0.9883

4 0.9860 0.9842 0.9868 0.9831 0.9832 0.9883 0.9850 0.9897 0.9861 0.9901

5 0.9868 0.9842 0.9872 0.9835 0.9832 0.9883 0.9853 0.9908 0.9861 0.9901

6 0.9871 0.9842 0.9872 0.9838 0.9835 0.9883 0.9868 0.9904 0.9857 0.9901

7 0.9871 0.9842 0.9872 0.9842 0.9832 0.9879 0.9882 0.9919 0.9861 0.9901

8 0.9871 0.9842 0.9872 0.9846 0.9831 0.9875 0.9886 0.9908 0.9868 0.9901

9 0.9871 0.9842 0.9872 0.9846 0.9835 0.9872 0.9872 0.9901 0.9868 0.9897

10 0.9871 0.9842 0.9872 0.9846 0.9832 0.9875 0.9879 0.9905 0.9868 0.9897

11 0.9875 0.9842 0.9872 0.9846 0.9832 0.9872 0.9875 0.9908 0.9868 0.9897

12 0.9875 0.9842 0.9872 0.9846 0.9824 0.9872 0.9875 0.9919 0.9865 0.9894

13 0.9875 0.9842 0.9872 0.9842 0.9824 0.9875 0.9890 0.9919 0.9861 0.9897

14 0.9875 0.9842 0.9868 0.9846 0.9824 0.9861 0.9875 0.9919 0.9868 0.9894

15 0.9875 0.9842 0.9868 0.9846 0.9824 0.9857 0.9879 0.9912 0.9858 0.9894

16 0.9875 0.9834 0.9868 0.9842 0.9828 0.9850 0.9872 0.9908 0.9850 0.9890

17 0.9864 0.9831 0.9864 0.9839 0.9820 0.9846 0.9872 0.9908 0.9857 0.9886

18 0.9868 0.9827 0.9864 0.9835 0.9817 0.9858 0.9868 0.9901 0.9846 0.9883
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(substitution to 0). Obviously, the absence of files of a particular type is also
a feature and thus, it can improve the predictive power of a classifier, as we
observed in our experiments.

Susceptibility of File Types to Modification in Repackaging. One of
the main questions we would like to answer in this paper is RQ5. Obviously,
to further improve the method for app plagiarism detection based on resource
files, it is important to know which resources are more frequently modified dur-
ing the repackaging process. To answer this question we performed the following
experiment. For every type of files (present in both packages from an app pair)
we calculated the average similarity score using only repackaged pairs from our
dataset. File types with higher such scores are less frequently modified in repack-
aging. Obviously, if in a repackaged app pair the similarity score for some file type
is high, then such files were mostly not modified. The results of this experiment
are presented in Table 6(a).

Table 6(a) suggests that multimedia, raw, images, libraries in general, and
native libraries are less frequently changed in the repackaging process. Several
important conclusions can be drawn from this fact. First, despite the fact that
in the recent years several methods were proposed to detect repackaged apps
using resource similarity, it seems that adversaries still do not consider them
as a threat to their business. Thus, the resource files that are not required to
be changed in repackaging are mostly left untouched. Secondly, the mentioned
file types are more difficult to change. Clearly, without special tools it is quite
difficult to edit multimedia files or native libraries. That can also explain why
these file types are mostly left in the original state. These considerations can
improve the resiliency of approaches based on resources similarity comparison.

Table 6. Results for different file types in repackaging (on average)

(a) Files modified in repackaging (1 –

files never modified; 0 – always modified)

Average Score Feature

0.9788 audio video
0.9574 res raw
0.9269 images
0.9229 libs
0.9199 native libs
0.9177 assets
0.8202 res drawable
0.7648 res all
0.4840 code general
0.3679 res xml
0.3503 res anim
0.3273 res menu
0.3077 all xml
0.2802 res color
0.2557 res layout
0.1524 resources arsc
0.0934 manifest
0.0773 main code

(b) Same files in non-repackaged pairs (1

– always the same; 0 – never the same)

Average Score Feature

0.0159 res drawable
0.0130 images
0.0118 res all
0.0094 libs
0.0087 native libs
0.0057 res color
0.0045 code general
0.0036 res raw
0.0032 assets
0.0030 all xml
0.0018 res layout

0.0 audio video
0.0 manifest
0.0 res anim
0.0 resources arsc
0.0 res xml
0.0 main code
0.0 res menu
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According to our analysis, dex files, the Android manifest and the compiled
resource files are changed quite often. This observation perfectly agrees with the
repackaging process logic for the piggybacking scenario, which is the case for our
original dataset [11]. If adversaries want to add some malicious functionality,
they change the dex and Android manifest files to add necessary permissions
[22]. There are many tools that can do this automatically for malicious and
benign purposes (e.g., for instrumentation in testing [24]). The file containing
compiled resources is also often modified in repackaging. This file incorporates
information about string resources included in an apk. Evidently, if adversaries
repackage an apk with the purpose of publishing it in other national markets,
they translate the application. Therefore, an additional locale should be added
to string resources, resulting in the compiled resources file change. Secondly, the
adversaries often change ads IDs, which are usually defined within the string
resources.

Table 6(b) reports similarity scores for the different resource files types for
the non-repackaged dataset. This information is also instructive, as it allows
to analyze better the false positives discussed in Sect. 4. Indeed, we see that
developers reuse images (e.g., “like” buttons) and libraries across different apps.

We should mention that besides modification of the files, the score changes if
files of that type are added or removed. Currently, we do not isolate these cases.

7 Discussion

Threats to Validity. We evaluated the resource-based repackaging detection
approach on one dataset [11], which was originally collected under assumption of
a lazy adversary who does not change a lot during repackaging. On more diverse
datasets effectiveness of resource-based similarity detection approaches can be
different, and it needs to be further investigated.

The resource-based similarity detection approach is currently not robust
against an attacker who takes care to slightly change all files included in the
original apk. This is not a challenging task, and minor edits can be automated.
However, as we have mentioned in Sect. 4, most of repackaged pairs we failed
to detect were either not visually similar, or visually similar to a user, but not
to a machine. As Fig. 1 shows, repackagers can be very creative in modifying
apps so that the main theme is recognizable, while the included images are very
different. Advance AI techniques can be applied to detect such apps, but these
techniques are currently not scalable to the on-market setting.

Yet, though the approach is very accurate on our dataset, which is quite
recent, its robustness against a casual attacker (who just changes the files a
little to modify the hashes) still can be improved, by, e.g., working with percep-
tual hashes or fuzzy hashes of the files (not the hashes included in the original
package). Better understanding which file types are generally not modified in
repackaging (e.g., multimedia, libraries and images) suggests that we can apply
fuzzy hashing techniques only to those types of files.
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Efficiency. We have operated in our experiments in a setting with a full pairwise
comparison. This is not actually a scenario applicable to day-to-day app markets
operations. Instead, in a practical set-up, a market expects to compare a rela-
tively small set of recently submitted apps to a very large set of already known
apps [10]. For a set-up like this, an app market can maintain a database with
sorted hashes of already known files (e.g., in a tree-structure) that is efficiently
searchable for hashes from the new apps.

8 Conclusions

In this paper we have practically evaluated the resource-based repackaging detec-
tion approach. Our experiments show that this technique is very effective with
outstanding results for accuracy, precision, recall and the F-measure. Further-
more, we improve the existing tools [10,17,20] by suggesting the Overlap sim-
ilarity metric to be used with the Random Forest classifier on 12 features. We
have also reported which resource file types are less prone to modification in
repackaging, and which resource files can coincide in non-repackaged pairs. Our
results may be instructive for researchers and practitioners looking into adding
the resource-based repackaging detection approach to their app triage schemes.
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Abstract. The idea of interface diversification is that internal interfaces
in the system are transformed into unique secret instances. On one hand,
the trusted programs in the system are accordingly modified so that they
can use the diversified interfaces. On the other hand, the malicious code
injected into a system does not know the diversification secret, that is the
language of the diversified system, and thus it is rendered useless. Based
on our study of 500 exploits, this paper surveys the different interfaces
that are targeted in malware attacks and can potentially be diversified
in order to prevent the malware from reaching its goals. In this study, we
also explore which of the identified interfaces have already been covered
in existing diversification research and which interfaces should be consid-
ered in future research. Moreover, we discuss the benefits and drawbacks
of diversifying these interfaces. We conclude that diversification of var-
ious internal interfaces could prevent or mitigate roughly 80 % of the
analyzed exploits. Most interfaces we found have already been diversi-
fied as proof-of-concept implementations but diversification is not widely
used in practical systems.

1 Introduction

When defending computer systems against attacks, we have to protect a complex
environment with several unknown vulnerabilities. Malicious adversaries, on the
contrary, simply need one or a few exploitable security holes in order to compro-
mise a system. Most malware attacks depend on predictable and known internal
interfaces on the target platform. Interface diversification is one promising app-
roach to counter this threat. Today, there are rather few different execution
platforms. Because of this so called ‘software monoculture’, there are myriads
of copies of the same execution platform with identical internal structure. As a
consequence, one malicious program works on millions of computers. Malware
enters in a system using a security hole in the system’s external interface, but the
actual malicious payload uses knowledge about the internal interface. However,
if the internal interfaces would be different on each computer, malware relying
on the knowledge about the identical interfaces would be rendered useless [9,11].
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Following this reasoning, diversification — unique randomization applied to
the target system’s internal interfaces — can be used to make the software more
resistant against malicious attacks. In a diversified system, malware does not
know the secret “language” used in the system anymore and cannot access any
critical resources.

The contributions of this paper are as follows. By surveying hundreds of exist-
ing vulnerabilities, we study what interfaces are being targeted by the attackers
and what are the attack vectors and payloads. This allows us to see which inter-
faces should be diversified in order to prevent the attacks. The focus on interfaces
and the practical analysis of exploits sets our survey apart from other diversi-
fication surveys like [23]. Therefore, we contribute to the on-going discussion
by an empirical study that analyses the real-world attacks and how they could
have been prevented with diversification. Furthermore, we also study where the
changes caused by diversification are propagated and how difficult it is to diver-
sify a specific interface. Moreover, based on the set of interfaces usually targeted
by attackers, our study also surveys which of these interfaces have already been
diversified in the literature and proposes interfaces that are good candidates for
diversification in the future. Finally, not every attack can be prevented by using
diversification methods, but this study shows that the clear majority of analyzed
exploits could be thwarted.

2 Interface Diversification

2.1 The General Idea

By diversifying internal interfaces, we can limit the number of assumptions an
attacker can make about the execution environment, without affecting the inter-
faces exposed to the end-user. That is, diversification modifies applications’ or
systems’ internals in order to make them unpredictable for attackers. Diversifica-
tion can be implemented through different obfuscation techniques [9]. In interface
diversification, even simple obfuscation methods like renaming and changing the
order of parameters in function signatures can be employed.

It should be noted that the term interface is interpreted quite broadly here.
By interface, we do not only mean normal interfaces provided by software
modules but also e.g. commands of a language or memory addresses (of ser-
vices/resources) are seen as interfaces that can be diversified. In this sense, an
interface is anything that can be used to gain access to critical resources of a
computer.

A practical example illustrating interface diversification is changing the sys-
tem call numbers of an operating system. System calls are a way for programs
to request a service from an operating system’s kernel and get access to com-
puter’s essential resources. This is why it makes sense to diversify them in order
to prevent the adversary from using system calls.

For example, in Linux, this diversification can be performed by replacing the
original system call numbers (over 300 system calls) with new ones. Diversifica-
tion now has to be propagated to the code using the system calls. The system call
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numbers have to be changed in all libraries and programs that directly invoke
system calls. The names of library functions which directly or indirectly use the
system calls also have to be replaced so that the malware can not make use of
them. In other words, the transitive closure of the system calls has to diversi-
fied so that malicious programs cannot exploit them to access the computer’s
resources. Furthermore, when the diversification of system call numbers is done
uniquely for each Linux installation, the attacker cannot utilize the information
gained by breaking one system in a wide-spread attack.

2.2 Internal and External Interfaces

Applications expose and consume interfaces. Typically, an application has an
external interface that it exposes to its users in order to provide the required
functionality. For example, for a web server this external interface could be the
set of valid HTTP requests and responses.

However, aside from their external interface, applications often expose other
details to the outside world, often as a result of their implementation. By defi-
nition, these internal interfaces are not expected to be consumed by outsiders.
They are considered to be implementation details.

What differentiates malware from legitimate users is that malware often
depends on these internal interfaces. This is because if malware only use the
external interface — that is, it only utilized the functionality an application was
designed to provide — its capabilities would be limited to those of an ordinary
user.

Applications can also accidentally expose their internal interfaces, or the
interfaces of other components that they consume, through their external inter-
face. SQL injections caused by lack of input sanitation are a good example of
this category of vulnerabilities. SQL injections work by exploiting the fact that
some applications accidentally expose their database back-end’s internal inter-
face through the application’s external interface. For example, if an SQL injection
happened through a web service, the external HTTP interface would in effect
act as a gateway to the database.

In what follows, we present a study where vulnerabilities and internal inter-
faces utilized by them are analyzed. Based on this, we discuss diversifying several
types of internal interfaces in order to mitigate and prevent malicious attacks.

3 Study Setup

3.1 The Setting of the Study

In order to study the internal interfaces exploited by attackers — that is, the
interfaces that could be diversified in order to prevent the attacks — we studied
500 exploits from Exploit Database1. The 500 samples we used were randomly
selected from the exploits that were added to the database between the years
1 www.exploit-db.com.

http://www.exploit-db.com
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2010 and 2015. This random sample can be argued to be sufficient; it amounts to
about four percent of the total number of exploits in the longitudinal sampling
interval.

In this study, we follow the guidelines given by Kitchenham [21] for undertak-
ing systematic reviews. Each vulnerability was studied by at least two reviewers
independently and all the cases were discussed by the authors in the meetings.
The rare disagreement cases were also addressed in these meetings and disputed
until an agreement was found. For each exploit, the following questions were
answered:

1. What is the type of the payload?
2. What is the execution environment for the exploit?
3. What is the interface (or what are the interfaces) that should be diversified

in order to prevent the attack?
4. Where do we need to propagate the changes to as a result of diversification?
5. What is the attack vector? (e.g. an uploaded file)
6. What is the attack type? (e.g. SQL injection)?

Obviously, because we want to study the interfaces, the third question is the
most important one. The answer to the fourth question follows directly from it.
The other questions are there to help us define the interface that should be diver-
sified, and also to learn the relations between different variables, like the attack
type and the interface to be diversified. Exploit Database was chosen because
it is a quite well-known vulnerability database that contains detailed proof-of-
concept implementations for the attacks. Several other sources listing vulnera-
bilities, like Common Vulnerabilities and Exposures (CVE), were not describing
the vulnerabilities accurately enough for our purposes and were therefore ruled
out.

3.2 Variables

For each of 500 exploits, the following variables were determined. These variables
correspond to the questions outlined above.

Payload. Payload describes the content that the attacker injects to the system
through an attack vector. Depending on the type of an attack the payload can be
content executed by an interpreter or static content not meant to be executed.
For example, a fragment of JavaScript code used in an injection attack is meant
to be executed, a file name provided in order to disclose the contents of a file is
not. Here, we will mainly concentrate on executable payloads.

Execution Environment. We are also interested what kind of interpreter
executes the payload, in case it is meant to be interpreted as executable. For
example, if the payload is a malicious piece of JavaScript, the execution envi-
ronment is the JavaScript interpreter.
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Possible execution environments include:

– Application’s address space and operating context. This is the case where
machine code is injected into the process.

– SQL database engine. In the case of SQL injection attacks, the injected query
will obviously be executed by the receiving databases engine.

– Web scripts. The case where JavaScript or VBScript is injected into a page,
such as in XSS attacks. The attacker has access to all the usual facilities
provided by the browser and the page in question.

– Shell interpreter. Command shells can also be used to execute arbitrary code.
– Interpreters for other scripting languages. Other scripting environments like

PHP and Python are quite similar to the previous case.

Interface to be Diversified. The most important variable for this study is the
interface that should be diversified. Once we have identified the executor of the
payload and the characteristics of the environment it offers, we can determine the
interface that should be diversified in order to prevent the attack. For instance,
if the payload contains SQL commands, diversification should be applied to the
SQL language. Sometimes there can be several alternative interfaces that can
be diversified to prevent the attack. For example, if there is native code in the
payload, both instruction set randomization and diversifying the system call
numbers of the operating system can usually thwart the attack.

Interface diversification requires changes to be propagated. When we have
successfully applied diversification techniques to the interface in question so that
an attacker cannot target it, we have to also propagate those changes to the
components that rely on the now diversified interfaces. In order to gauge the
feasibility of diversification of a specific interface, it is therefore also necessary to
identify the software layers where the changes will be propagated to. For example,
if we were to diversify a relational database’s public facing SQL interface, we
would then have to also propagate those changes to the applications and the
components using that interface.

Attack Vector. Attack vector describes the channel which the malware uses
to get its payload into the system. For example, many SQL injections happen
through HTTP requests’ GET and POST parameters. Later in the study, we
will see which kind of attack vectors are mitigated when diversifying a specific
interface.

Attack Type. Finally, we also listed the attack type for each vulnerability.
This provides us with the information on the attack types that are prevented
or mitigated by diversifying a specific interface. An example of attack type is
Arbitrary code execution. In this study, this attack type implies that arbitrary
native code gets executed in the address space of some process.
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4 Results

4.1 The Types of Payloads

Of the 500 exploits we studied, 356 had a clearly identifiable executable payload
and an interface that could be diversified to prevent the attack. Note that not
all the attacks have a clear payload. For example, a cross site request forgery
attack — in which unauthorized commands are given from a client that is
trusted by a website — does not really have an executable payload. However, this
interpretation can be questioned as in complex systems it is difficult to clearly
differentiate executable code and data guiding execution.

Every payload is executed in some execution environment. This environment
was identified for each payload category. Payload categories and their respective
execution environments are shown in Table 1.

Table 1. Payloads and execution environments.

Payload Occurrences Execution environment

Native code 112 CPU and OS

SQL 103 SQL engine

JavaScript 65 Browser’s script engine

Any 32 Any

Shell script 30 Command shell

PHP 9 PHP interpreter

VBScript 4 VBScript interpreter

Java bytecode 1 Java virtual machine

Python 1 Python interpreter

We can see that because of the popularity of SQL injection attacks, fractions
of SQL queries are the most popular payloads in our study. The vulnerabilities
including native code are almost equally numerous. This is followed by JavaScript
(also possibly including HTML code), a payload usually employed in cross site
scripting (XSS) attacks.

The category any is for the exploits in which an arbitrary file can be uploaded
to the system. In these cases, the executable payload in the file can be practically
anything and can not be specified. PHP and JavaScript are popular choices in
this case but native code and shell scripts are also viable options.

There are also quite many payloads written in shell script; the attacker often
eventually aims to execute shell commands in order the reach his or her goals.
Some smaller categories are PHP, VBScript, Perl and Python, all of which are
interpreted script languages. One vulnerability has a payload in Java bytecode.

These categories and their execution environments give us ideas of the inter-
faces that are good candidates for diversification. We will discuss the actual
interfaces next.
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4.2 The Found Interfaces

The found interfaces are shown in Table 2. It is worth noting that the identified
interfaces are more important than their proportions, because as discussed later,
the distribution of vulnerabilities in Exploit Database may be somewhat skewed.
Still, this analysis gives a good understanding on the popular interfaces that are
candidates for diversification.

Table 2. Diversifiable interfaces.

Interface Occurrences

OS and CPU interfaces 112

SQL 103

JavaScript 64

Command shell language 33

Path or file name 33

Any 31

Parameter names 21

PHP 9

VBScript 2

Java bytecode 1

Python 1

In total, there were 410 exploits that could have been mitigated or prevented
with diversification. This is 82.0 % of all vulnerabilities. Note that not all the
attacks can be prevented by diversifying interfaces. For example, if the authenti-
cation mechanism can be bypassed because of a logic bug in the software, there
is often no way to fix this with diversification. In case of 2 vulnerabilities, there
was no source code available and the provided descriptions were not accurate
enough to reliably deduce an internal interface that would need to be diversified
in order to prevent the attack.

It is also noteworthy that the number of exploits that can be prevented or
mitigated with diversification is higher than the number of exploits that have an
executable payload. This is because there are some attacks that can be defeated
with diversification even though they do not possess an executable payload.
An example of this kind of exploit is the cross site request forgery attack we
mentioned earlier. There attack does not need to contain any executable payload
but it can be prevented by using a unique and random secret token that is
generated for each HTTP request in a web application and verified on the server
side. This can definitely be seen as a diversification technique.

In the forthcoming, we will give a more detailed discussion on each found
interface.
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In SQL injection attacks, the attacker injects malicious SQL fragments into
an SQL query. An apparent way to avoid this is to diversify the commands in
the SQL language. Diversification would have to be propagated to all programs
and libraries using the diversified SQL language of the specific server.

Diversification of operating system interfaces or instruction sets can be used
against attacks that aim to execute native code payload in the system. Although
we have combined the interfaces here for simplicity, there are several interfaces
in operating system (and CPU) that could be diversified to render malicious
native code useless.

First, as we already discussed in the example in Sect. 2, the system call inter-
face of the system can be uniquely diversified. This will prevent malware that
invokes system calls directly from operating properly. The diversification has to
be propagated to all trusted binaries so that these executables will work nor-
mally. Also, the library functions that directly or indirectly invoke the system
calls have to be diversified (renamed) in binaries containing or calling these func-
tions. Diversification of function names is propagated to all binaries that invoke
the library functions leading to system calls.

Second, the whole instruction set used in a specific machine language can
be diversified. This is a very effective way of preventing malicious binaries (the
binaries using a wrong instruction set) from wreaking havoc in the system.

Third, to defeat the exploits that make use of knowledge about memory lay-
out, address space layout can be randomized. This technique randomly diversifies
the address positions in the important areas of the process.

When a web application has an XSS vulnerability, the attacker can inject
JavaScript code (or HTML) into the web page. If the JavaScript language were
to be diversified, this could be avoided. The changes would have to be propagated
to the browser’s JavaScript engine on each client machine.

An attacker’s goal is also often to open the command shell in order to perform
an attack using shell script. In this case, diversifying the command shell language
will prevent the attack. Diversification has to be propagated to all script files
in the system. Additionally, the source code of any program that create scripts
dynamically at runtime has to updated.

File paths and names can be made unique on different computers. This would
make file disclosure attacks harder. Especially for critical files like the password
file, this can be very useful in some cases. This case illustrates how diversifica-
tion can also prevent information leakage, not only execution of some malicious
payload.

When an arbitrary file is uploaded into a system, it can contain any exe-
cutable content (PHP, JavaScript, native code...). Therefore, in these cases the
interface to be diversified could be any of the other interfaces presented here.

Sometimes, randomizing GET or POST parameter names in web applica-
tions provides additional security. This way, it is not that straightforward for
an adversary to get the malicious payload into the system and the threat of
successful attack is diminished. This also applies to e.g. SQL table names and
fields.
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In some cases where the attacker gets to upload a file of his or her choosing or
has an opportunity for a code injection attack in web environment, the payload
is written in PHP. To defeat this threat, the most obvious choice would be to
diversify the PHP language. Diversification of PHP is a case that is very similar
to diversifying other interpreted languages like Bash or Python. The changes
would be propagated to all PHP scripts and libraries on a specific server.

There are also a few Other rare interfaces. These are VBScript, Python and
Java byte code. Diversifying VBScript is likely to be similar to diversification
of JavaScript and other interpreted scripting languages. The same also goes for
Python; in many ways, it bears a resemblance to shell scripts.

To fend off attacks aimed at the Java Virtual Machine, the instruction set
used in Java byte code can be diversified. In this case, the changes would affect
the Java compiler and the virtual machine executing the code.

4.3 Attack Types and Attack Vectors

The connections between attack vectors and diversified interfaces are shown in
Table 3. In other words, it illustrates which kinds of attack vectors each diversi-
fied interface mitigates. Because the number of different attack vectors was large,
we have divided them into five abstract categories. HTTP includes attack vec-
tors like GET and POST parameters and HTTP headers. Remote protocol (RP
in Table 3) means payloads delivered through other protocols like TCP, RPC
and FTP. Local configuration (LC) includes vectors such as application settings,
input files, programs arguments and windows registry. Local executables (LE)

Table 3. Groups of attack vectors related to diversified interfaces.

Interfaces Vectors

HTTP LC LE RP Others Total

OS and CPU 8 53 22 26 3 112

SQL 103 103

JavaScript 61 1 1 1 64

Shell 19 7 1 2 4 33

Path or file name 32 32

Any 30 1 31

Parameter names 21 21

PHP 8 1 9

VBScript 1 1

Python 1 1

Java bytecode 1 1

Total 253 61 55 29 10 408
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category is for different kinds of attack vectors in executables, like DLL injec-
tion, function call or simply an executable file uploaded to the system. There
were also couple of other cases that did not fit to the previous categories.

In Table 3, we can see for example that diversifying the language interface of
SQL mainly prevents the attacks using HTTP (GET and POST parameters) as
attack vectors, which is not very surprising. On the other hand, the native code
exploits, prevented by diversifying the operating system interfaces, infiltrate to
the system through many different attack vectors.

In a similar fashion, Table 4 shows the different attack types prevented or
mitigated by diversification of a specific interface. The largest categories are
SQL injection attacks and attacks including execution of arbitrary native code.

Table 4. The attack types and the corresponding diversified interfaces.

Attack type Interfaces Count Total

SQL injection SQL 103 103

Arbitrary code execution OS and CPU 95 97

Any 1

Java bytecode 1

XSS JavaScript 63 63

Command injection Shell 32 41

PHP 8

Python 1

Local file inclusion Path or file names 27 34

Parameter names 7

Arbitrary file upload Any 30 30

Cross-site request forgery JavaScript 1 11

Path or file names 1

Parameter names 9

Privilege escalation OS and CPU 7 10

Shell 1

Parameter names 2

Denial of service OS and CPU 7 10

Parameter names 2

PHP 1

Memory alteration OS and CPU 2 3

VBScript 1

Directory traversal Path or file name 3 3

Sandbox escape OS and CPU 2 2

Information disclosure Path or file name 1 1

Arbitrary file removal Parameter names 1 1
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Both these categories amount for about 20 % of all 500 exploits. As mentioned
before, about 20 % of attacks cannot be prevented by diversification and are left
out of this discussion.

When it comes to the native code, diversification has usually been advocated
as a method to prevent mainly buffer overflow attacks, but based on this study
we see it as an even more generic tool that can be used to prevent arbitrary
code execution in general. For example, diversification works well against attacks
where a malicious executable file has been uploaded into the system and tries to
execute arbitrary code based on its knowledge on the known interfaces.

4.4 Evaluation

Even though our sample is chosen randomly and the number of exploits can
be deemed sufficient, the sample is unbalanced towards the early 2010s and,
rather expectedly, web application exploits (see Fig. 1). As can be observed from
Fig. 2, the other three meta-data categories in the database — denial-of-service
(DoS), local, and remote exploits — have attained much fewer exploits compared
to web exploits. Moreover, it is worth remarking that EDB is a community-
based database and the archived exploits presumably reflect the preferences of
the security researchers who contribute to this open data archive. Nevertheless,
the observed sample does not differ notably from the total amount of exploits
archived during the observed time interval; therefore, the sample can be said to
generalize towards EDB, although straightforward generalizations towards the
whole exploit population are problematic, of course.
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Fig. 1. Annual frequencies (EDB meta-data)

However, while the reported proportions may not perfectly reflect the reality,
our data derived from the analysis of 500 exploits still gives a pretty good idea
about what kind of interfaces are good targets for diversification. We have also
seen many dependencies between interfaces and other variables that do not really
depend on their proportions.
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Fig. 2. Categories (EDB meta-data)

5 Existing Interface Diversification Research

In this section, we will briefly survey the diversification methods for different
interfaces proposed in the literature. This review is mostly based on the data we
have collected while undertaking a systematic literature review on diversification
and obfuscation in the field of software security [15]. However, the point of view
here (which interfaces have been diversified) is completely novel.

Operating system and CPU. Chew and Song were the first to present the
idea of changing system call mappings and diversifying library APIs in order to
render malware useless [7]. A conceptual scheme and an implementation for this
idea was later more accurately described by Jiang et al. [18] and Liang et al.
[25]. Rauti et al. have also presented a scheme for system call diversification [28]
and diversifying the library function names in binaries [24]. Rauti et al. change
the system call numbers and function names before execution, while Jiang et al.
perform diversification dynamically at runtime. Runtime diversification allows
more flexibility (e.g. some chosen applications can function without diversifica-
tion) but affects the performance. The techniques altering system call mapping
and library function names bear a resemblance to diversification techniques that
rename static identifiers in high-level program code [17] in order to get unique
instances of programs.

Another method against native code attacks is Instruction Set Randomization
(ISR). An instruction set can also be seen as an interface known and exploited
by malware. Therefore, the machine code instructions can be diversified to pre-
vent execution of any untrusted code [4,5]. The instructions that are used by
an application can be randomized using a specific function such as XOR [19].
A problem with instruction set randomization has been the fact that no com-
mercially available CPU supports it. However, with the increasing popularity
of cloud environments and virtual machines, we can except this approach to
become more usable [32].

Finally, attacks making use of memory’s structure can be thwarted by diver-
sifying program’s memory layout [8]. This method is usually called Address Space
Layout Randomization (ASLR). It is used to protect systems from buffer over-
flow attacks that lead to arbitrary code execution. This is the only diversification
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technique that is already widely being used in the existing operating systems [20].
ASLR randomly orders the address space locations of most important areas of a
process. This includes the base of the executable and the stack, heap and library
positions in the memory [1,16,30]. Adversary is prevented from jumping to a
particular position in memory.

It is also important to note that although not explicitly targeting the parts of
binaries that we call interfaces here, there are many diversification methods for
binary files that may result in mitigating many of malicious attacks. Binaries can
be rewritten [22] or a compiler can work as a diversification engine to generate
unique binaries [12]. The diversification methods used include e.g. disassembling
and randomizing function blocks [14], breaking application binary to blocks and
shuffling them [13], and obfuscating and relocating information [10]. All of these
methods result in diverse binaries, making the adversary’s job harder.

Shell. Uitto et al. have provided an implementation for a diversified Bash inter-
preter [31]. All tokens recognized by the Bash interpreter’s lexical analyzer are
diversified in order to prevent the adversary from writing malicious script frag-
ments. In a very similar way, Kc et al. have previously modified the Perl inter-
preter to support execution of diversified Perl scripts [19].

Diversifying command shell languages entails some challenges like shared
libraries (if many uniquely diversified scripts use a common library, how should
the library be diversified?) and programs that generate scripts dynamically at
runtime (the source code of these programs has to be changed). Otherwise, the
approach works well and only incurs a modest performance penalty [19].

SQL. Diversifying SQL has been proposed by Boyd and Keromytis in [6]. They
use a proxy-based solution that decodes the diversified SQL queries before they
reach the server. Rauti et al. have proposed a solution that is integrated to
the SQL server itself [29]. The latter solution can be argued to provide more
security but less flexibility. SQL diversification functionality can also be embed-
ded to database drivers. An example of such scheme is an implementation for
PostgreSQL JDBC driver by Locasto and Keromytis [26].

The biggest challenge for this interface diversification scheme is probably the
fact that the changes have to be propagated to the applications generating SQL
queries. These queries are often created dynamically at runtime which poses
a challenge for automatic diversification. Most difficult cases can be handled
by providing software developers with a tool that helps them to diversify most
difficult queries [20,29].

JavaScript. Athanasopoulos et al. present a JavaScript diversification scheme to
prevent cross site scripting attacks and DOM-based attacks in [3]. The proof-of-
the-concept implementation was tested against over 1300 XSS and succeeded in
preventing them with negligible performance overhead. The apparent challenge
with this kind of JavaScript diversification is that JavaScript is generated on the
server side but executed on the client machine. Both client (the browser) and
server (the component creating JavaScript code) therefore have to be modified
in order for this scheme to work. One solution is to implement browser extension



A Survey on Internal Interfaces Used by Exploits and Implications 165

on the client side and a proxy on the server side [2]. These components take care
of diversification and decoding.

A significant challenge in diversifying JavaScript is sharing the diversification
secret between the client and the server. In [2], the key for decoding the diver-
sification is sent in the header of a HTTP message. Therefore, diversification
can be unique for each request. The diversification has to be propagated to all
external JavaScript files as well, which further complicates matters.

Interfaces not yet diversified. There are some interfaces still to be diversified,
though these are not the most interesting ones. Most notably, to the best of our
knowledge, there is no diversified implementation of PHP language. However,
this problem would most likely be very similar to other interpreted languages
that have already been diversified (e.g. Bash and Perl). VBScript is also lacking
an implementation of a diversified interpreter. As a web script, it would have
the same problem setting as JavaScript.

Based on some exploits we analyzed, some application-specific interfaces and
protocols might also be candidates for diversification. As this application-specific
security measure is not generic enough, we have not focused on it here. Some
application developers might want to beef up their applications’ security using
this method.

Finally, we have not considered diversifying any network protocols here. This
might prevent some attacks and is an interesting topic but does not fall within
the scope of this study.

6 Conclusions

This study has shown that the vast majority (80 %) of analyzed exploits can
be rendered useless by diversifying some of the most common interfaces the
adversaries utilize. We also pointed out that diversification seems to be a useful
countermeasure for a larger number of attack categories than usually suggested
in the literature.

Our literature review showed that diversification of almost all of the interfaces
identified in this study has already been discussed in the literature. However,
the practical use of diversification as a security measure is still not widespread
and practical diversification tools are missing. Therefore, the challenges and
limitations associated with interface diversification approaches still need to be
studied more closely and practical solutions to further increase their feasibility
and usability are needed. Even though deploying interface diversification schemes
is rarely straightforward, it is still a very promising method to defeat many
kinds of attacks. With address space layout randomization as a part of several
operating systems, applying diversification in larger scale has already begun. In
our view, diversification can be seen as a comprehensive protection mechanism
that spans all the critical interfaces and software layers in a specific system (see
also [27]).
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In the future, we hope to see more interface diversification schemes rolled
out in practical software systems. Restricted systems with modest code mass
and infrequent updates — for instance some small embedded systems with light-
weight operating systems — are a good place to begin.
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Abstract. State machine inference is a powerful black-box analysis
technique that can be used to learn a state machine implemented in
a system, i.e. by only exchanging valid messages with the implementa-
tion a state machine can be extracted. In this paper we perform a large
scale analysis of the state machines as implemented over the last 14 years
in OpenSSL, one of the most widely used implementations of TLS, and
in LibreSSL, a fork of OpenSSL. By automating the learning process, the
state machines were learned for 145 different versions of both the server-
side and the client-side. For the server-side this resulted in 15 unique
state machines for OpenSSL and 2 for LibreSSL. For the client-side, 9
unique state machines were learned for OpenSSL and one for LibreSSL.
Analysing these state machines provides an interesting insight in the
evolution of the state machine of OpenSSL. Security vulnerabilities and
other bugs related to their implementation can be observed, together
with the point at which these are fixed. We argue that these problems
could have been detected and fixed earlier if the developers would have
had the tools available to analyse the implemented state machines.

1 Introduction

TLS (Transport Layer Security) is one of the most widely used security proto-
cols and is used to secure network communications, for example, when browsing
the Internet using HTTPS or using email with SMTPS or IMAPS. TLS is the
successor of SSL (Secure Socket Layer), originally developed at Netscape. As
the name SSL is so widespread, it is often used interchangeably with TLS. The
first version of SSL was never released and the second version contained numer-
ous security issues [23]. The third version of SSL was also not without security
issues, and these were fixed in the first TLS version [7]. Two more TLS versions
were released after this and the fourth one, TLS version 1.3, is currently under
development [8,9]. Despite the fact that TLS 1.0 was released in 1999, many
servers on the internet today still support SSLv3 and even SSLv2 [2].

Due to its widespread use, the TLS protocol has been the subject of many
research projects. For example, it has been analysed using various different for-
mal methods [6,10–14,16,18,19]. These formal analyses focus on the protocol
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specifications, while many mistakes are also made in the actual implementa-
tion [15]. To counter this, a formally verified TLS implementation has been
proposed by combining a formal analysis with an actual implementation [4].

A large proportion of the applications that use TLS to secure their connec-
tions use the implementation provided by OpenSSL.1 The first official release
of the OpenSSL project was version 0.9.1c in December 1998, and builds on
the code of SSLeay by Young and Hudson. Various forks of OpenSSL exist,
such as BoringSSL2 and LibreSSL3, which were mainly started with the goal
of cleaning up the code and improving its security. Over the years OpenSSL
has been plagued with numerous implementation bugs, with sometimes a high
security impact. The most well-known example of this is probably the infamous
Heartbleed bug.4

In this paper we focus on the implementation of state machines of TLS.
Every implementation of a protocol needs to implement the corresponding state
machine that determines how all the possible messages are handled in different
states of the protocol. In [3,22] the state machines of TLS implementations
have been analysed, where for various implementations only recent versions were
analysed. In [22] a technique called state machine inference was used to extract
the state machine from TLS implementations by only interacting with it using
valid protocol messages. In this paper we will show how we automated the process
of using state machine inference in order to analyse a large number of TLS
implementations. We will use this to show how the state machine as implemented
in OpenSSL changed over the years and what issues could have been prevented
should this technique have been available to the developers. In order to do this
we learned the state machine for both the client- and server-side of 145 versions
of OpenSSL and LibreSSL. We checked BoringSSL as well, but as it does not
seem to use version numbering and it is not really intended for use outside of
Google we did not perform a large scale analysis of it. We reported our findings
regarding several smaller issues related to the state machine implementation in
BoringSSL.

2 TLS

In this section we will provide a short introduction to TLS, necessary to under-
stand the results later on. The goal of TLS is to set up an authenticated confi-
dential channel between two parties. The authentication can be mutual, but in
most cases it is only the server that is authenticated to the client.

The protocol starts with a handshake that is used to establish the used para-
meters, including the cipher suite (a combination of a key exchange, encryption
and MAC algorithm), perform the desired authentication and establish shared

1 https://www.openssl.org/.
2 https://boringssl.googlesource.com/boringssl/.
3 http://www.libressl.org/.
4 http://heartbleed.com/.

https://www.openssl.org/
https://boringssl.googlesource.com/boringssl/
http://www.libressl.org/
http://heartbleed.com/
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Client Server

ClientHello

ServerHello;
[Certificate;]

[ServerKeyExchange;]
[CertificateRequest;]
ServerHelloDone

ClientKeyExchange;
[Certificate;]

[CertificateVerify;]
ChangeCipherSpec;

{Finished}

ChangeCipherSpec;
{Finished}

{ApplicationData}

{ApplicationData}

Fig. 1. A regular TLS session. An encrypted message m is denoted as {m}. If message
m is optional, this is indicated by [m].

session keys. Different session keys are used for both directions of the commu-
nication and for encryption and the computation of the MACs. Once the keys
are established, application data can be exchanged, which will be encrypted and
authenticated using MACs. In Fig. 1 we provide an overview of a regular TLS
session.

To start the handshake, usually the client will send a ClientHello message,
containing a list of supported ciphersuites and optional extensions. The server
will select a ciphersuite and return a ServerHello message, as well as other
optional messages such as its Certificate (used to authenticate the server), the
ServerKeyExchange message (used in some key exchange algorithms), and a Cer-
tificateRequest (used to request authentication from the client). The server then
indicates it is done by sending a ServerHelloDone message. Upon receiving this
last message, the client performs the local computations for the key establishment
and sends the necessary information to the server in a ClientKeyExchange mes-
sage. If requested by the server, the client also sends the optional Certificate and
CertificateVerify messages to authenticate itself. After this, the client is ready to
start encrypting its messages, and it indicates that it will encrypt all following
messages by sending the ChangeCipherSpec message to the server. This is fol-
lowed by the Finished message, the first encrypted message which is used to pro-
vide integrity to the handshake. The Finished message contains a keyed hash over
all the previous messages that the client sent and received. If this hash does not
match the value as expected by the server or the server cannot decrypt the Fin-
ished message, this can be an indication of a man-in-the-middle attack and the
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connection should be closed. If the hash does match, the server will respond by
sending the ChangeCipherSpec message to indicate it will also encrypt all subse-
quent messages. This is again followed by an encrypted Finished message contain-
ing a keyed hash over all previous messages. Once the client accepts the Finished
message, the client and server are ready to start exchanging data securely using
ApplicationData messages.

To indicate possible errors during the connection the TLS specification
includes Alert messages. These alerts can have either a warning or fatal level,
where the first kind is only to inform the other party, while the second indicates
the protocol should be aborted and the connection closed. The Alert messages
always include a pre-defined reason, which can be, for example, Unexpected mes-
sage, Bad record MAC or Close notify. These Alert messages can be useful in our
analysis as they can indicate interesting conditions. For example, if we receive a
Bad record MAC alert this can be an indication that the keys on the client and
server differ, which is worth looking into in more detail.

3 State Machine Inference

To extract the model of a state machines for a protocol from an implementation,
a technique known as state machine inference can be used. This technique tries
to learn the state machine by only sending protocol messages and observing the
responses. This makes it a very useful technique for black-box analysis.

As representation of state machines we use Mealy machines. This gives us
a non-ambiguous formal way to describe the learned state machines. A Mealy
machine consists of a set of states, of which one is the initial state. Additionally,
an input alphabet is specified that describes which messages the system accepts
as input. Similarly an output alphabet contains the messages that the system
can send as responses. For every state, two functions are defined that map every
input message to a corresponding output and to a next state respectively.

In state machine inference, two types of algorithms are used. First, a learn-
ing algorithm is used to come up with a hypothesis for the implemented state
machine. To do this it can send protocol messages to the system under test
(SUT) and receive the corresponding responses. Which messages can be sent is
specified in the input alphabet. The algorithm also has the ability to reset the
SUT to its initial state. Once the learning algorithm comes up with a hypoth-
esis for the state machine by exchanging messages and resetting the SUT, this
hypothesis is passed on to the equivalence algorithm. This algorithm determines
whether the hypothesis matches the actual state machine. If this is not the case,
the equivalence algorithm returns a counter-example. The counter-example is
then fed into the learning algorithm, which uses this to update its hypothesis
and continues learning until it comes up with another hypothesis. This process
is repeated until the equivalence algorithm accepts a hypothesis. As in practice
the equivalence algorithm will not know the actual state machine, the equiva-
lence check will need to be approximated. In the next section we will discuss the
concrete algorithms we used for the learning and equivalence algorithm.
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4 Setup

For the learning of the TLS state machines we use the tool introduced in [22],
which makes use of LearnLib [20]. For the learning algorithm we use of Niese’s
modification of Angluin’s well-known L* algorithm [1,17]. The equivalence check-
ing is done using Chow’s W-method [5]. Given an upper bound on the number of
states, this algorithm is guaranteed to determine correctly whether the correct
state machine is found. As this algorithm can be computationally expensive due
to the many messages that are sent, we make use of the improvement to the
algorithm previously introduced in our tool. This modification makes use of the
fact that if a socket is closed, we know that no more messages will be received.
Therefore, queries that have a prefix for which we already know the connec-
tion will be closed are not performed, thus significantly reducing the number of
queries that are send to the implementation. A nice side-effect of this modifica-
tion is that if there are no loops in the state machine except for one or more sink
states where all messages go to the same state with a ConnectionClosed output,
we even have the guarantee that we found the correct state machine without
having to know an upper bound on the number of states.

In order to get useful results, the abstract input messages, as used by the
learning and equivalence algorithms, need to be converted to correctly format-
ted TLS messages and reversely, the received responses need to be converted to
the abstract output messages before they can be used by the algorithms. This
translation is done by the test harness, which is basically an (almost) stateless
implementation of the TLS protocol. In order to successfully finish a TLS hand-
shake, the test harness keeps track of some minimal notion of state by storing
essential data such as, for example, the data used in the key exchange.

As input alphabet for our analysis, we made use of a minimal set of TLS
messages, that are necessary to establish a successful connection. To test the
server-side these are: ClientHello, ClientKeyExchange, an empty client Certifi-
cate, ChangeCipherSpec, Finished and two ApplicationData messages, one with
a HTTP GET request and one without any data. When sending a ClientHello
message, we reset the buffer used to collect all the exchanged messages that
need to be hashed for the Finished messages. For the client-side testing we use
the following messages: ServerHello, Certificate, an empty Certificate, ServerHel-
loDone, ChangeCipherSpec, Finished and again the same two ApplicationData
messages as before.

To be able to learn the state machine for as many implementations as pos-
sible we completely automated the learning process. First, a crawler is used to
download all versions available on the website or FTP server of a specific imple-
mentation. After this the downloaded sources are automatically extracted and
compiled. This process is implementation specific and might require some tweaks
to be able to build older versions. However, once the required steps are known
the building of all downloaded versions is automated. Once we have a binary
executable, we perform a sanity check in order to see whether the implemen-
tation is able to set up a valid TLS connection with our TLS test framework.
Some older implementations are not able to do this, for example, as they do
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not support TLS yet but only SSLv3 or older. We ignored these older versions
in our analysis and focus on only implementations that support at least TLS
1.0. For the versions that do pass the sanity check, the configuration files that
are necessary for the actual state machine inference are generated. This is done
such that every version uses a unique port so there is no interference between
different versions that try to listen on the same port. Once we have the necessary
configuration files, the learning is started using our tool from [22]. It is possible
to perform the learning in parallel due to the usage of a unique port for each
version. Using this process we are able to automatically infer the state machine
for many versions of different TLS implementations. All software and models are
available online.5

5 Analysing the OpenSSL State Machines

Using our automated process we learned the state machine for both the server-
side and client-side for 111 different version of OpenSSL and 34 versions of
LibreSSL. The latest versions of OpenSSL that we analysed were 1.0.1t, 1.0.2h
and 1.1.0-pre4. For LibreSSL the latest version was 2.4.0. For the learning a
machine with an Intel Xeon E5-2420 CPU was used. The time required for the
learning varied from 3 min for more recent implementations of the server-side
to about 2 h for older server-side implementations. These 2 h were exceptional
though, and in general the running time per implementation was well below
20 min for both server- and client-side. Below we will discuss our analysis of the
state machines we learned for the server- and client-side in Sects. 5.1 and 5.2
respectively.

5.1 Server-Side

For the server-side, the learning process resulted in 15 unique state machines
for OpenSSL. The learning of the LibreSSL server-side state machine resulted in
only two different state machines. One of these state machines was equal to one
of the OpenSSL state machines. In Fig. 2 an overview is given of the different
state machines for the server-side and their overlap between different branches of
OpenSSL. In this figure we excluded the various beta versions that we learned,
leaving 12 different state machines.

The oldest version of OpenSSL for which we learned a state machine is version
0.9.7, released in December 2002. For the server-side this state machines contains
17 states (see Fig. 3), the highest number for all state machines we learned.
When analysing the state machine we observe several explanations why the state
machine contains so many states. First, it is possible to start a renegotiation
after completing a handshake successfully by starting a new handshake. In our
case this does not lead to a successful data exchange, and therefore the number
of states used for a handshake is already doubled (states 12, 13, 16 and 14).

5 http://www.cs.ru.nl/∼joeri/.

http://www.cs.ru.nl/~joeri/
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0.9.7
(17)

0.9.7c
(14)

0.9.7e
(14)

0.9.8f 0.9.8l
(11)

0.9.8m
(10)

0.9.8s
(10)

0.9.8u
(12)

0.9.8za
(9)

1.0.0 1.0.0f 1.0.0h 1.0.0m

1.0.1
(14)

1.0.1h 1.0.1k
(8)
1.0.2
(7)

1.1.0-pre1
(6)

Fig. 2. Overview of the 12 state machines of the server-side for different versions of
OpenSSL. The version number indicates the first version in a particular branch that a
state machine was used. Per unique state machine the number of states is included.

Secondly, the server accepts empty Certificates from the client after a ClientHello
message, which adds an additional state for every handshake attempt (i.e. states
5, 8 and 13).

Though these functionalities can still be seen as genuine, we also observe
some clearly erroneous behaviour. For example, when after the initial Clien-
tHello immediately a ChangeCipherSpec message is sent, the connection is not
closed and the handshake can still be finished by sending a ClientKeyExchange
and Finished message (the path through states 1, 6, optionally via 8, to 9 and
finishing in 2). The Finished message is not accepted from state 9 however and
instead a Decrypt error alert is returned. This additional behaviour is the result
of a serious security issue that we will discuss in more detail later.

Other observations include the fact that empty ApplicationData messages
are always ignored, except if it is the first message that is sent, in which case
the connection is closed. Also, it is possible to send the ClientHello message
numerous times at the beginning of a handshake as there is a self-loop with this
message after the initial ClientHello message in state 1. A possible explanation
for this is support for a feature called Server-Gated Cryptography. This is a
legacy feature that resulted from the export restrictions on cryptography. Under
these restriction strong cryptography was still allowed for financial transactions,
so if a client asked for a weak export cipher the server could indicate that it was
allowed to use the stronger ciphers and the client could send a new ClientHello
message containing the stronger ciphersuites.

If after a successfully completed handshake a ChangeCipherSpec message is
sent (from states 10, 12 and 13), all subsequent messages are replied to with a
Bad record MAC alert.
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In version 0.9.7c the state machine is changed and the number of states is
reduced to 14. This is due to the fact that the server no longer accepts certifi-
cates from the client during the handshake, which results in states 5, 8 and 13
being dropped from the previous state machine. According to the changelog the
server now only accepts a certificate if it requested one using a CertificateRequest
message in order to comply with the official specifications.

The state machine then already changes again in version 0.9.7e. The number
of states stays the same though and the only change is that Alert messages are
now always sent before the connection is closed after a handshake is initialised.
This wasn’t the case before for the ChangeCipherSpec and ApplicationData
messages (see, for example, state 7 of version 0.9.7). The state machine then
stays stable until the end of the branch (version 0.9.7m) and is also the same for
the first versions of the 0.9.8 branch that we learned.

Then in November 2009 version 0.9.8l was released, which contains only 11
states. Looking at the learned model, we can see that it is no longer possible to
perform a renegotiation after a successfully completed handshake as we previ-
ously observed. Around the same time as this release, details are published on a
serious vulnerability that is present in many TLS implementations (CVE-2009-
3555). This issue made it possible for a man-in-the-middle to inject plaintext
data at the beginning of a TLS session. The attacker starts a TLS connection
with a server that the victim’s client want to speak to. The attacker can then
send any data to the server. After this it will start a renegotiation with the
server, whereby it forwards the original TLS messages from the victim. The
victim does not realise it is performing a renegotiation as it looks the same as
the initialisation of a connection. The server will consider it a renegotiation and
append the data from the client to the data it initially received from the attacker.
The attacker won’t be able to eavesdrop on the data that is exchanged between
the victim and the server, but by only prepending data it has been shown that,
for example, credentials could be stolen.6 When this issue was reported, devel-
opers of different implementations and the IETF came together in “Project
Mogul” to find a solution. As the issue is caused by the way renegotiation is
performed, OpenSSL initially responded by disabling renegotiation completely,
as we observed in the learned state machine.

We also observed some new strange behaviour after the handshake is suc-
cessfully completed (state 8). Every message, other than ApplicationData or
ChangeCipherSpec, is initially ignored, but every following message results in a
decryption failure on our side. When analysing the network traffic we noticed
that this was due to the fact that the server sent plaintext Alert messages, even
though all messages should have been encrypted at this point. We also observe
that it is still possible to send a ChangeCipherSpec both directly after the first
ClientHello (from state 1) and after a successful handshake (from state 8). As
before these paths eventually lead to a Decrypt error alert and Bad record MAC
alert respectively.

6 http://www.securegoose.org/2009/11/tls-renegotiation-vulnerability-cve.html.

http://www.securegoose.org/2009/11/tls-renegotiation-vulnerability-cve.html
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In February 2010, RFC 5746 was released [21]. This RFC specifies a secure
way to perform renegotiation. This RFC is implemented in the same month in
version 0.9.8m. In the state machine multiple ClientHello messages are accepted
again, and the strange behaviour that resulted in a decryption error in our
framework is no longer present.

At the beginning of 2012, version 0.9.8s was released. The state machine con-
tains 10 states, but we see that a ClientHello is only accepted once now. A second
ClientHello is still responded to in the usual way with a ServerHello, Certifi-
cate and ServerHelloDone message, though the connection is closed immediately
after this. At the end of 2011 it was reported that allowing arbitrary ClientHello
messages at the start constitutes a denial-of-service attack as the server has to
perform significantly more computations upon receiving a ClientHello than the
client (CVE-2011-4619). This issue explains why only one ClientHello is accepted
now. However, for Server Gated Cryptography we would still expect to see two
ClientHello messages and if a message is rejected it should be responded to with
an Alert message and not a valid ServerHello, Certificate and ServerHelloDone
message. These issues are fixed in version 0.9.8u, where at most two ClientHello
messages are accepted, which increases the number of states again to 12.

Before, we observed the early ChangeCipherSpec, directly after the first
ClientHello message, and subsequent messages. This part of the state machine
was due to a serious security flaw which was eventually discovered by Kikuchi
(CVE-2014-0224).7 By sending a ChangeCipherSpec message too early, i.e.
before the keys have been established, the keys are calculated using an empty
master secret and therefore only depend on information known to a possible
attacker. Due to the way the Finished message is computed in version 1.0.1, it
was vulnerable to decryption of the TLS connection by an attacker who is able
to eavesdrop on the connection and even complete hijacking of the connection
by a man-in-the-middle. A detailed analysis of this bug is given by Langley on
his blog.8 In version 0.9.8za we see that the ChangeCipherSpec message is no
longer accepted directly after the ClientHello message (see Fig. 4). The Change-
CipherSpec is however still accepted directly after a successful handshake.

Branch 1.0.0 completely follows the state machine from branch 0.9.8. Branch
1.0.1 starts with a different state machine though, after which it start using the
same state machine as 0.9.8za from version 1.0.1h, to finally end with a different
state machine again after 1.0.1k. In version 1.0.1 the early ChangeCipherSpec
is accepted as with the earlier versions of 0.9.7 and 0.9.8. However, instead
of finishing with a Decrypt error from the server-side, our framework cannot
decrypt any messages it receives from the server.

Version 1.0.1k (see Fig. 5) was released after we reported the issue regarding
the ChangeCipherSpec message following a successfully completed handshake.
This behaviour was the result of a bug that resulted in the keys being reset to
their initial values and the same key being used for both directions (i.e. from
client to server and from server to client). This breaks the protection measures in

7 http://ccsinjection.lepidum.co.jp/.
8 https://www.imperialviolet.org/2014/06/05/earlyccs.html.

http://ccsinjection.lepidum.co.jp/
https://www.imperialviolet.org/2014/06/05/earlyccs.html
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place against replay attacks. In version 1.0.1k we can see the superfluous Change-
CipherSpec message is no longer accepted. At the same time we also checked a
development version in which the second ClientHello was replied to with correct
messages (ServerHello, Certificate, ServerHelloDone) but immediately after this
the connection was closed. This was similar to the behaviour that we observed
in version 0.9.8s and was fixed before the code was ever released. From version
1.0.1k the state machine stays stable until the end of the branch.

The state machine for the 1.0.2 branch is stable, except for the beta versions,
and contains 7 states. This is one state less than version 1.0.1k, which is due to
the fact that Server Gated Cryptography is no longer supported and only one
ClientHello is accepted at the beginning of the handshake. In the pre-releases for
1.1.0 the number even drops to 6 states which is caused by the implementation
accepting empty ApplicationData messages in every state, even the initial one.
In branch 1.1.0, a new implementation is introduced for the state machine.

LibreSSL starts in version 2.0.0 with the same state machine as OpenSSL
0.9.8za. In version 2.2.1 the state machine changes, but the issue we found in
OpenSSL with the ChangeCipherSpec message after a successful handshake is
still present.

5.2 Client-Side

For the client-side, 9 unique state machines were learned for OpenSSL and one
for LibreSSL, which was equal to the latest one from OpenSSL. An overview of
the client-side state machines for OpenSSL is given in Fig. 6. Two state machines
are again excluded here as they are unique for beta versions.

The first two state machines that we learned did not result in usable state
machines. This was due to the fact that these versions did not have extensions
enabled by default and therefore rejected our ServerHello messages. In version
0.9.8j, extensions were enabled by default and we get the first model suitable

0.9.7 0.9.7e

0.9.8f 0.9.8j (12) 0.9.8l (12) 0.9.8m (12) 0.9.8za (7)

1.0.0 1.0.0m

1.0.1f1.0.1 (12) 1.0.1h

1.0.2

1.1.0-pre1

Fig. 6. Overview of the 7 state machines of the client-side for different OpenSSL ver-
sions. The version number indicates the first version in a particular branch that a state
machine was used. Per unique state machine the number of states is included, except
for the first two for which no usable state machine was learned.
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for analysis. This state machine contains 12 states and displays some unexpected
behaviour. After a successful handshake, most unexpected messages are replied
to with a ClientHello message before the connection is closed. It is however
possible to send a ChangeCipherSpec message followed by a ServerHello. The
ServerHello is responded to with a ClientHello, after which a complete new
handshake can be performed. After the ChangeCipherSpec the messages cannot
be decrypted any more, indicating that a key is used which is different than
expected. The same is the case if a ChangeCipherSpec is sent too early, namely
after the ServerHello or the ServerCertificate. This last behaviour matches that
of the server-side, which is caused by the vulnerability reported by Kikuchi.

In version 0.9.8l, the number of states stay the same, but the client no longer
sends ClientHello messages and renegotiation seems completely disabled. This
matches what we observed for the server-side, where renegotiation was disabled
to prevent a serious security issue. Renegotiation seems to be re-enabled in ver-
sion 0.9.8m, as the client sends ClientHello messages again just before closing the
connection when receiving an unexpected message after a successful handshake.
We are no longer able to perform renegotiations though as our framework does
not implement the secure renegotiation as specified in RFC 5746 [21]. From ver-
sion 0.9.8za, when the bug reported by Kikuchi is fixed, the ChangeCipherSpec
message is no longer accepted directly after a successful handshake.

As can be seen in Fig. 6, the next branches implement the same state
machines as branch 0.9.8, except for version 1.0.1. This state machine is almost
identical to the one from 0.9.8 m though. The only difference is that, upon receiv-
ing a Finished message in the initial state, the connection is immediately closed
in version 1.0.1, while an alert is sent first in version 0.9.8m. For LibreSSL all
versions resulted in the same state machine as OpenSSL version 0.9.8za.

6 Conclusion

By just looking at the state machines, inferred in our automated process, we
are able to analyse the evolution of OpenSSL, without requiring an analysis of
the source code. Due to our automated process we were able to learn the state
machine for 145 different versions for both the server- and client-side. Various
bugs can be spotted by only analysing the learned models, and indeed we even
reported several new bugs to different developers. Observable bugs can be serious
security flaws, such as the one reported by Kikuchi, that have been present for
many years, and might have been fixed earlier if only the developers had the tools
to analyse their state machine implementation. We can see how the state machine
improves over time and how the current versions seems quite clean. Would the
developers have had the tools, it might not have taken almost 14 years to get to
this state.

Having access to the source code, the developers could possibly leverage this
fact in their analysis of the implemented state machine. However, language spe-
cific tools would be needed for this and the code might need to be instrumented
to be able to use these tools. By using a black-box analysis, as used in this
paper, developers can use generic tools that work independent of implementa-
tion details.
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In future work we intend to extend this analysis to other implementations.
Next to this, we plan to add automated analysis to our testing framework in
order to make it easy for developers to spot unexpected or strange behaviour
and observe changes between versions. We expect this can be a helpful tool
as currently developers have many tools to perform, for example, analysis of
memory usage or even static analysis of their code, but a tool to check exactly
what state machine is implemented is currently lacking.

To conclude, state machine inference is a useful technique when analysing
implementations and a large-scale analysis of state machines can tell an inter-
esting tale about the evolution of a protocol implementation.
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Abstract. Post-quantum cryptography has attracted increased atten-
tion in the last couple of years, due to the threat of quantum com-
puters breaking current cryptosystems. In particular, the key size and
performance of post-quantum algorithms became a significant target
for optimization. In this spirit, Alkim et al. have recently proposed a
significant optimization for a key exchange scheme that is based on
the R-LWE problem. In this paper, we build on the implementation of
Alkim et al., and focus on improving the algorithm for generating a uni-
formly random polynomial. We optimize three independent directions:
efficient pseudorandom bytes generation, decreasing the rejection rate
during sampling, and vectorizing the sampling step. When measured on
the latest Intel processor Architecture Codename Skylake, our new opti-
mizations improve over Alkim et al. by up to 1.59× on the server side,
and by up to 1.54× on the client side.

Keywords: Post-quantum key exchange · Ring-LWE · Software
optimization · AVX2 · AVX512 · AES-NI

1 Introduction

Cryptographic algorithms that are based on number theoretical problems like
factorization and discrete logarithm can be broken if and when quantum comput-
ers are available. Sufficiently large quantum computers do not exist today, but
can be expected to be built in the foreseeable future (e. g., in 10–15 years [1]).
Fortunately, lattice theory offers mathematical problems that seem to not be
vulnerable to such attacks. Therefore, lattice-based cryptosystems emerge as a
viable secure post-quantum alternative.

Lattice-based algorithms have already been proposed for important cryp-
tographic primitives such as digital signatures, encryption, and key exchange.
Specifically, Ding et al. introduced a lattice-based key exchange scheme, which
was improved by Peikert [4,13]. A concrete instantiation of this algorithm has
been recently proposed by Bos et al. [3]. The work of [3] is quite substantial,
and includes a software implementation that can be directly integrated into the

c© Springer International Publishing AG 2016
B.B. Brumley and J. Röning (Eds.): NordSec 2016, LNCS 10014, pp. 187–198, 2016.
DOI: 10.1007/978-3-319-47560-8 12
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OpenSSL library. The implementation is optimized at the algorithmic level (e. g.,
uses NTT for polynomial multiplication), but since it relies on generic arithmetic
libraries and sampling from the Gaussian distribution, its performance can be
improved.

Alkim, Ducas, Pöppelmann and Schwabe [2] addressed the performance issue
of the implementation in [3] by using a more optimal parameter choice, and by
optimizing the key exchange scheme with hand crafted low level assembly code.
In addition, they showed that for key exchange (in contrast to digital signature
schemes), it suffices to sample secret random values from a centered binomial
distribution rather than from discrete Gaussian distributions. This reduces the
associated computational costs significantly. As a result, their implementation
(called NewHope) is an order of magnitude faster than [3]. The source code
for a C reference implementation and an optimized SIMD version was published
online. In this paper, we build on the AVX2 implementation and further improve
its performance.

Our Contribution. The work of Alkim et al. focused on optimizing the poly-
nomial arithmetic and error reconciliation parts of the algorithm. As a result,
its relative weight in the overall computation time was reduced, compared to
the reference code. With that, the pseudorandom polynomial generation (called
“parse” in the paper), which only is a small building block in the protocol,
becomes ˜45% of the computation time (for both the server and the client sides).
We therefore focus our efforts on the parse function, and present optimizations
at three independent levels:

– Reduce the rejection rate of pseudorandom candidates during the sampling
step from 25 % to 6 %.

– Parallelize the rejection sampling step using AVX2 (and furthermore AVX512)
instructions.

– Replace the SHAKE-128 extendable-output function (XOF) [14], for gener-
ating pseudorandom bytes, by a faster, parallel implementation of SHA-256.
Alternatively, replace the hash based generation with one based on AES256.

We remark that the source code for our optimizations is made available online
at https://github.com/fschlieker/newhope.

Organization of This Paper. The paper is organized as follows. In Sect. 2 we
give some background on how NewHope works. In particular, we explain the
parse function in detail. Section 4 details our proposed optimizations, and the
resulting performance is presented in Sect. 5. We conclude and compare to the
performance of the standardized ECDH key exchange in Sect. 6.

2 Preliminaries

We follow the notation of [2], so computations are carried out in Rq =
Zq[X]/(Xn+1), the ring of integer polynomials modulo the polynomial (Xn+1)

https://github.com/fschlieker/newhope
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and with coefficients reduced modulo q. The implementation of NewHope is
instantiated with n = 1024 and q = 12289 (a 14-bit prime). We denote polyno-
mials in this ring by boldface characters.

We briefly outline the protocol1 (consider [2] for details).

Server: The server side creates a random seed (e. g., from /dev/urandom). A
hash function, seeded with this seed, defines a stream of pseudorandom bytes.
Uniformly distributed coefficients for a public polynomial a are then sampled
from this stream, using a function called parse. Subsequently, a secret poly-
nomial s and an error polynomial e (with small coefficients) are sampled from
a centered binomial distribution. The server computes b = as + e and sends
to the client b and the seed.

Client: The client re-generates the same a (from the seed) calling the parse
function. Polynomials s’, e’ and e” are sampled from the binomial distrib-
ution. Then, it computes u = as’ + e’ and r = HelpRec(v), and sends
these values to the server. Additionally, the client calculates v + bs’ + e”
= ass’ + es’ + e”.

Server: The server computes v’ = us = ass’ + e’s. Now v and v’ on both
sides are “close” though not identical, due to the different error polynomials.
The small errors can be corrected by a reconciliation mechanism (for which
r is needed). Finally, server and client can compute the shared key as the
SHA-3 hash over the reconciled data that is identical on both sides.

3 Considerations in Generating the Public Polynomial

The proposal in [3] uses a fixed polynomial a as a system parameter. In contrast,
[2] recommends to generate a fresh a for every key exchange, giving two reasons:

Fend Off Possible Concerns About a Backdoored Choice of a . The polynomial a
could be carefully chosen in a way that all the intermediate calculations during
the protocol run would have values that are smaller than q. In such case, no
reduction takes place, and the secret polynomial s can be recovered easily using
calculations in Z. This subtle backdoor could potentially allow key escrow to
e. g., a standardization body that specified a weak a.

Avoid Relying Only on a Single Instance of a Lattice Problem. A fixed a gives
a powerful attacker the possibility to focus on finding a short basis for that
particular lattice (using a lot of computation power). All traffic exchanged under
a key that is generated from a could then be possibly decrypted. Generating a
fresh a for every key exchange mitigates this “all-for-the-price-of-one” attack.

The straightforward approach is to let one party generate a and send it to
the other during the protocol run. This consumes a lot of network bandwidth
because a polynomial is stored in 2 KB of data. A better way is to let both
1 A comprehensible overview can also be found in a blog post by A. Langley; https://

www.imperialviolet.org/2015/12/24/rlwe.html.

https://www.imperialviolet.org/2015/12/24/rlwe.html
https://www.imperialviolet.org/2015/12/24/rlwe.html
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parties generate the polynomial independently from pseudorandom bytes that
are produced under a shared random seed. With this method, as proposed by
Galbraith [5], only the 256-bit seed needs to be transmitted.

When a fresh a per session is required, fast pseudorandom generation is
obviously needed in order to assure that the generation does not become a per-
formance bottleneck.

Pseudorandom Generation Methods. The authors of [2] argue that a secu-
rity reduction is (only) possible under the Random Oracle Model (ROM), and
therefore instantiate their scheme with SHAKE-128 XOF ([14]) that provides
128 bits of post-quantum security. When this XOF is seeded with a 256-bit
random seed, it deterministically defines a stream of pseudorandom bytes. The
assumption is that the probability to find a “malicious backdoored” polynomial
a by sampling from this stream, is negligible. In other words, it is infeasible to
try many different seeds until a malicious a is found.

We propose two alternatives to using SHAKE-128, both of them offer 128 bits
of post-quantum security, and achieve better performance.

1. Parallelized SHA-256. Concatenate the seed with a running counter value, to
produce as many hash digests as needed for collecting a sufficient amount of
pseudorandom bytes. This procedure can be parallelized, because the digests
are computed from independent blocks.

2. Using a block cipher (AES256). First, hash the seed (using SHA-3) and gen-
erate a 256-bit value to be used as a key for AES256. Then, produce as many
blocks as are needed, by encrypting and incrementing a counter value.

Remark 1. By first hashing the seed before using it directly as a key for a block
cipher (AES256), we make sure that crafting a malicious a would not be possible
by only finding certain AES keys that result in a desired ciphertext (a task, which
is, by itself, computationally infeasible). In this scenario, one also needs to find
a SHA-3 input that produces the desired key. Therefore, the construction can
also be seen as a ROM instantiation.

Remark 2. We show below that the block cipher alternative performs better
than hashing. However, if one wishes to operate directly under the same ROM
assumption as in [2], it is possible to choose SHA-256 and still enjoy performance
improvements.

4 Our Optimizations

This section describes our optimizations and their software implementation.
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4.1 Decreasing the Rejection Rate

The function parse, that generates a, receives a seed and generates (using
SHAKE-128 XOF) pseudorandom bytes as “candidates”. These pseudorandom
bytes are post-processed to sample the n = 1024 coefficients for a. Every pair
of bytes of the pseudorandom stream is viewed as a 16-bit candidate. In [2],
the two most significant bits are zeroed to create a 14-bit value. If this value is
smaller than q, it is accepted as a coefficient, and otherwise it is discarded. This
is the most simple and straightforward way. On average, this process accepts
only q

214 = 12289
16384 ≈ 3

4 = 75% of the candidates (see Fig. 1(a)). To accumu-
late n = 1024 uniformly distributed (over Zq) coefficients from two-byte words,
parse needs to check 1024 · 2 · 4

3 ≈ 2730 bytes on average.
Ignoring two bits of every sample with a rejection rate of 25 % is not optimal

and we propose to use the full 16-bit sample. While we still need to reject some
values from the pseudorandom stream (those that are ≥ 5q since

⌊
216

q

⌋
= 5),

the overall acceptance probability is now 5·q
216 = 61445

65536 ≈ 94%. However, we need
to subtract q up to four times from the accepted candidates to retrieve values in
Zq (which then remain uniformly random). See Fig. 1(b) for an illustration and
Listing 1 for the corresponding pieces of source code.

Note that this small change benefits twice: with less values rejected, we need
to generate fewer pseudorandom bytes to begin with. Consequently, less values
need to be conditionally checked. On average, the proposed routine needs only
1024 · 2 · 65536

61445 ≈ 2184 pseudorandom bytes in order to populate the coefficients
of a.

0 q 214

0 q 2q 3q 4q 5q 216

Fig. 1. Sampling uniformly random values in Zq from different input ranges. Candi-
dates that are accepted are indicated by the crossed area and candidates in the dotted
area are rejected. The acceptance rate is significantly higher when sampling from the
16-bit range. In this case, q might have to be subtracted up to four times from an
accepted candidate in order to obtain a coefficient in Zq, but it remains uniformly
random.

Remark 3. Note that since the seed and the generated polynomial a are meant
to be public, the implementation does not need to execute the generation in
constant time.
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1 a) Rejection-sampling from 14 bits:

2

3 candidate = (buf[pos] | ((uint16_t) buf[pos+1] << 8)) & 0x3fff; // take only lower 14 bits

4 if(candidate < PARAM_Q) // accept as coefficient if < q

5 a->v[ctr++] = candidate;

6

7 b) Rejection-sampling from 16 bits (our proposal):

8

9 candidate = (buf[pos] | ((uint16_t) buf[pos+1] << 8)); // take full 16 bits

10 r = candidate / PARAM_Q;

11 if (r < 5) // accept as coefficient if < 5q, since floor(2^16/q) = 5

12 a->v[ctr++] = candidate - r * PARAM_Q; // subtract q up~to 4 times to end up in Zq

Listing 1. Code snippets for (a) Rejection sampling from two a bytes input, when the
two most significant bits are discarded [2]; (b) From the full 16-bit range (our proposal).
buf contains the pseudorandom bytes and pos the position in that buffer. a->v points
to the coefficients of a and ctr is incremented until we have 1024 accepted coefficients.

4.2 Vectorized Rejection Sampling

The process of filtering pseudorandom 16-bit candidates can be accelerated by
using SIMD instructions, just like many other parts of the protocol were acceler-
ated using AVX2. Specifically, it is possible to handle 16 candidates with AVX2
instructions (using 256-bit registers) and 32 candidates with AVX512 (using
512-bit registers) [11,12].

Our AVX2 implementation uses a mixture of vector comparisons and per-
mutations in order to compress and align the accepted candidates (< q). An
illustrative excerpt of the code is given in AppendixA.

Processors with AVX512 support are not available yet, but we verified cor-
rectness of our AVX512-vectorized sampling using the Intel Software Develop-
ment Emulator (SDE) tool.2 We expect additional performance improvements
due to: (a) mask operands and VPCOMPRESSD (see AppendixA); (b) faster
parallelized SHA-256 (see Sects. 3 and 4.3) to be visible when processors that
support this architecture become available in the near future.

4.3 Fast Generation of Pseudorandom Bytes

After acquiring a 256-bit random seed (from /dev/urandom), the implementation
of [2] uses SHAKE-128 XOF to generate the pseudorandom bytes stream. We
investigate two alternatives for such generation.

Using SHA-256 with Modern SIMD Architectures. The AVX2 (AVX512) instruc-
tions can be used for computing 8 (16) hashes in parallel [8]. To this end, we
built a highly optimized implementation that produces bytes at the rate of 2.75
cycles per byte (C/B) with AVX2 (and much faster on the coming AVX512
architectures).

2 Intel Software Development Emulator (SDE) https://software.intel.com/en-us/
articles/intel-software-development-emulator.

https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator


Speeding up R-LWE Post-quantum Key Exchange 193

Using AES (with AES-NI). We used the pipelined AES implementation of [6,7],
which performs at 0.92 C/B on our test platform (“Skylake”). We run it in
counter mode (CTR), so incrementing counter values are used as plaintexts and
encrypted under a fixed key. This has the advantage that the key schedule only
needs to be computed once and ciphertext generation can be efficiently pipelined.

5 Results

This section presents the results of our different optimizations. The performance
numbers were obtained by using the test bench included in the implementation
of NewHope. The measurements were obtained on a platform with the latest
Intel R© CoreTM Generation processor (Architecture Codename Skylake), with
the Intel R© Turbo Boost Technology, Intel R© Hyper-Threading Technology, and
Enhanced Intel Speedstep R© Technology disabled. The code was compiled with
gcc version 5.2.0 and full optimizations enabled (“-O3”). For consistent com-
parison, we compiled and measured the baseline implementation [2] on the same
system.

Remark 4. During our work, we discovered a bug in this test bench, that leads
to somewhat overoptimistic results, presumably due to caching of fixed values
across multiple tests. We reported the bug to the authors, together with the
appropriate fix. It was corrected in the final version of [2]. The results we report
here were measured with the fixed version.

The results are presented in Table 1, showing the contribution of the differ-
ent optimizations. We indicate the distinct optimization methods by abbrevi-
ations: reduction of the rejection rate (I), vectorization of rejection sampling
(II), pseudorandom bytes generation using SHA-256 (III) and AES256 (IV).
Note that the last two optimizations (III and IV) are mutually exclusive. The
other optimizations (I, II) are independent, and are therefore combinable. The
difference between the cycles count of the server and the client can be explained

Table 1. The performance of the different optimizations, compared to NewHope [2] as
the baseline. The numbers represent the cycles counts, measured using the test bench
(lower is better) and the speedup factor compared to the baseline that is set to 1 (i. e.,
higher is better).
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0

0.5

1

1.5

1 1

1.36 1.32

1.59 1.54

Fig. 2. The highest relative speedup factors on the server and the client sides, achieved
by the proposed optimizations (the baseline implementation [2] is set to 1).

as follows. The server needs to obtain a seed from a (typically slow) randomness
source, but on the other hand, the client needs to compute one more NTT and
polynomial addition during the computations of its part of the exchange.

Figure 2 illustrates our results with all our optimizations enabled, and com-
pares them relatively to the baseline [2] that is set to 1. With the reduced
rejection rate method, vectorized rejection sampling and SHA-256 for pseudo-
random generation, the speedup factor is 1.36× for the server and 1.32× for
the client. The best speedup is achieved when AES-NI are used for generating
pseudorandomness. This increases performance by a factor of 1.59× and 1.54×,
on the server and the client side, respectively.

6 Conclusion

This paper demonstrated several optimizations that can be used for speeding
up R-LWE-based key exchange. Our results show that the server and the client
sides can profit from a speedup factor of up to 1.59× and 1.54×, respectively.

For comparison, we also measured the performance of the best available
implementation of the standardized ECDH over P-256 key exchange ([9] and its
improved version [10]), and found that the key exchange computations consume
roughly 223,000 cycles on both sides. With all our optimizations, the R-LWE
key exchange takes 80,087 cycles (server) and 84,119 cycles (client) (see Table 1).
We point out that the amount of transferred data during the key exchange with
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R-LWE (4096 bytes) is higher than with ECDH (64 bytes). Note that the para-
meters in [2] were chosen quite conservatively. An appropriate level of security
would be probably achieved with e. g., n = 512, which would halve the amount
of transferred data, and speed up computations. The authors justify the choice
of n = 1024 by being able to thwart possible future advances in cryptanaly-
sis. In any case we can see that, even with the discussed choice of parameters,
post-quantum key exchange is already practical on current platforms.

Acknowledgments. This research was supported by the PQCRYPTO project, which
was partially funded by the European Commission Horizon 2020 research Programme,
grant #645622, and by the ISRAEL SCIENCE FOUNDATION (grant No. 1018/16).

A Vectorized Rejection Sampling - Code Snippets

The relevant part of our AVX2 optimizations in the source code is shown in
Listing 2 . Listing 3 shows the relevant part of our AVX512 optimizations. Note
that the AVX512 sampling gets much easier thanks to the new masks feature
that gives more targeted data-control in almost all instructions. In particular,
the VPCOMPRESSD instruction allows us to write back only specific values
instead of a whole vector.

In both these approaches, we incorporate our proposal to reduce the rejection
rate as explained in Sect. 4.1. Since we are working on vectors of integers, we do
not have a division function in the AVX integer instructions (like in Listing 1)
and implement this by repeatedly comparing and subtracting.

1 const __m256i zero = _mm256_setzero_si256();
2 const __m256i modulus8 = _mm256_set1_epi32(PARAM_Q);
3 const __m256i modulus16 = _mm256_set1_epi16(PARAM_Q);
4

5 uint32_t good = 0;
6 uint32_t offset = 0;
7 while(ctr < PARAM_N-16)
8 {
9 __m256i tmp0, tmp1, tmp2;

10

11 tmp0 = _mm256_loadu_si256((__m256i *)&buf[pos]);
12

13 // normalize the values in range
14 tmp1 = _mm256_min_epu16(tmp0,modulus16);
15 tmp1 = _mm256_cmpeq_epi16(tmp1,modulus16);
16 tmp2 = _mm256_and_si256(tmp1, modulus16);
17 tmp0 = _mm256_sub_epi16(tmp0, tmp2);
18 tmp1 = _mm256_min_epu16(tmp0,modulus16);
19 tmp1 = _mm256_cmpeq_epi16(tmp1,modulus16);
20 tmp2 = _mm256_and_si256(tmp1, modulus16);
21 tmp0 = _mm256_sub_epi16(tmp0, tmp2);
22 tmp1 = _mm256_min_epu16(tmp0,modulus16);
23 tmp1 = _mm256_cmpeq_epi16(tmp1,modulus16);
24 tmp2 = _mm256_and_si256(tmp1, modulus16);
25 tmp0 = _mm256_sub_epi16(tmp0, tmp2);
26 tmp1 = _mm256_min_epu16(tmp0,modulus16);
27 tmp1 = _mm256_cmpeq_epi16(tmp1,modulus16);
28 tmp2 = _mm256_and_si256(tmp1, modulus16);
29 tmp0 = _mm256_sub_epi16(tmp0, tmp2);
30
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31 tmp1 = _mm256_unpacklo_epi16(tmp0, zero); // transition to epi32
32 tmp2 = _mm256_cmpgt_epi32(modulus8, tmp1); // compare to modulus
33 good = _mm256_movemask_ps((__m256)tmp2);
34 tmp2 = _mm256_permutevar8x32_epi32(tmp1, perm_lut[good]);
35 // ctr includes offset, possible bad values are overwritten
36 _mm256_storeu_si256((__m256i *)&a->v[ctr], tmp2);
37

38 offset = __builtin_popcount(good); // we get this many good (< modulus) values
39 ctr += offset;
40

41 // the very same thing as above, only with unpackhi
42 tmp1 = _mm256_unpackhi_epi16(tmp0, zero); // transition to epi32
43 tmp2 = _mm256_cmpgt_epi32(modulus8, tmp1); // compare to modulus
44 good = _mm256_movemask_ps((__m256)tmp2);
45 tmp2 = _mm256_permutevar8x32_epi32(tmp1, perm_lut[good]);
46 // ctr includes offset, possible bad values are overwritten
47 _mm256_storeu_si256((__m256i *)&a->v[ctr], tmp2);
48

49 offset = __builtin_popcount(good); // we get this many good (< modulus) values
50 ctr += offset;
51

52 pos += 32; // proceed in the pseudorandom buffer
53

54 [...]

Listing 2. Vectorized rejection-sampling using AVX2 instructions. First, the candidate
values are repeatedly compared to q and q is subtracted up to four times (ll. 14–29).
This is the vectorized reduced rejection rate. It is followed by the rejection step, in
which the vector is permuted such that the values to be rejected are aggregated in one
side of the vector (ll. 31–34, 42–45). A precomputed 8KB lookup table is needed, in
order to hold the 256 possible masks for this permutation. The pointer to the memory
destination is increased such that the rejected values are overwritten (ll. 36–39, 47–50).

1 const __m512i zero = _mm512_setzero_si512();
2 const __m512i modulus16 = _mm512_set1_epi32(PARAM_Q);
3 const __m512i modulus32 = _mm512_set1_epi16(PARAM_Q);
4

5 uint32_t offset = 0;
6 __mmask16 good = 0;
7

8 while(ctr < PARAM_N-32)
9 {

10 __m512i tmp0, tmp1;
11 __mmask32 mask;
12

13 tmp0 = _mm512_loadu_si512((__m512i *)&buf[pos]);
14

15 // normalize the values in range
16 mask = _mm512_cmple_epu16_mask(modulus32, tmp0);
17 tmp0 = _mm512_mask_sub_epi16(tmp0, mask, tmp0, modulus32);
18 mask = _mm512_cmple_epu16_mask(modulus32, tmp0);
19 tmp0 = _mm512_mask_sub_epi16(tmp0, mask, tmp0, modulus32);
20 mask = _mm512_cmple_epu16_mask(modulus32, tmp0);
21 tmp0 = _mm512_mask_sub_epi16(tmp0, mask, tmp0, modulus32);
22 mask = _mm512_cmple_epu16_mask(modulus32, tmp0);
23 tmp0 = _mm512_mask_sub_epi16(tmp0, mask, tmp0, modulus32);
24

25 tmp1 = _mm512_unpacklo_epi16(tmp0, zero);
26 good = _mm512_cmplt_epi32_mask(tmp1, modulus16);
27 _mm512_mask_compressstoreu_epi32((__m512i *)&a->v[ctr], good, tmp1);
28 offset = __builtin_popcount(good); // we get this many good (< modulus) values
29 ctr += offset;
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30

31 tmp1 = _mm512_unpackhi_epi16(tmp0, zero);
32 good = _mm512_cmplt_epi32_mask(tmp1, modulus16);
33 _mm512_mask_compressstoreu_epi32((__m512i *)&a->v[ctr], good, tmp1);
34 offset = __builtin_popcount(good); // we get this many good (< modulus) values
35 ctr += offset;
36

37 pos += 64; // proceed in the pseudorandom buffer
38

39 [...]

Listing 3. Vectorized rejection-sampling using AVX512 instructions. The preparation
step is much shorter, due to mask operands providing more control over the data in
vector registers (ll. 16–23). With the VPCOMPRESSD, we can selectively write only
specific values to memory and save the expensive permutation from our AVX2 approach
(ll. 25–35).
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Abstract. A sparse Merkle tree is an authenticated data structure based
on a perfect Merkle tree of intractable size. It contains a distinct leaf for
every possible output from a cryptographic hash function, and can be sim-
ulated efficiently because the tree is sparse (i.e., most leaves are empty).
We are the first to provide complete, succinct, and recursive definitions of
a sparse Merkle tree and related operations. We show that our definitions
enable efficient space-time trade-offs for different caching strategies, and
that verifiable audit paths can be generated to prove (non-)membership
in practically constant time (<4 ms) when using SHA-512/256. This is
despite a limited amount of space for the cache—smaller than the size of
the underlying data structure being authenticated—and full (concrete)
security in the multi-instance setting.

1 Introduction

Secure HTTPS connections rely on the users’ browsers to obtain authentic
domain-to-key bindings during set-up. With this in mind, trusted third parties
called certificate authorities are used to vouch for the integrity of public keys by
issuing X.509 certificates. Though the initial problem of establishing trust might
appear to be solved, several new complications arise. Considering that there are
hundreds of certificate authorities, all of which are capable of issuing certificates
for any domain, it is challenging to concisely observe what has been issued for
whom [11]. As such, a misissued or maliciously issued certificate could remain
unnoticed forever, or more likely until an attack against a domain has taken
place. Naturally this raises an important question: who watches the watchmen?

Google’s Certificate Transparency (CT) project proposes public logs based on
append-only Merkle trees [18]. The basic idea is that an SSL/TLS certificate must
be included in some log to be trusted by a browser, and because the infrastruc-
ture is public anyone can audit or monitor these logs to ensure correct behavior
[6,16]. Thus, CT allows clients to determine whether a certificate was valid at some
point in time, but inclusion in the log cannot guarantee that it is current. For
instance, what if a certificate has to be revoked due to a compromised private key
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or an entire certificate authority [15,29]? Since the log is both chronological and
append-only, effected certificates can neither be removed nor can the absence of
a revocation certificate be proven efficiently [12].

Certificate Revocation (RT) is a proposed extension to CT by Laurie and
Kasper [17]. The aim is to provide a separate mechanism that proves certificates
unrevoked, and requires an authenticated data structure supporting efficient non-
membership proofs [34]. As is, there are at least two approaches towards such
proofs. One is based on sorted Merkle trees, and the other on tuple-based signed
statements on the form “Key ki has the value vi; there are no keys in the interval
(ki, ki+1)” [9,17]. We consider the former approach in terms of a sparse Merkle
tree (SMT), whose scope goes far beyond RT. For example, an SMT can be used
as a key building block in a wide area of applications, ranging from persistent
authenticated dictionaries to secure messaging applications [10,20,30,32].

After introducing some necessary preliminaries (Sect. 2) and the approach
taken here (Sect. 3), our contributions are as follows. First, building on an inter-
esting proposal started by Laurie and Kasper [17], we define efficient caching
strategies and complete recursive definitions of an SMT (Sect. 4). Second, we
evaluate the security of our definitions in the multi-instance setting, compar-
ing our design decisions with those made in CONIKS [20] (Sect. 5). Third, we
examine three caching strategies experimentally for an SMT, showing different
space-time trade-offs (Sect. 6). Finally, we discuss related work (Sect. 7) and end
with conclusions (Sect. 8).

2 Preliminaries

We start by describing background regarding Merkle trees and audit paths, then
cryptographic assumptions that our security evaluation relies on are presented.

2.1 Merkle Trees

A Merkle tree [21] is a binary tree that incorporates the use of cryptographic hash
functions. One or many attributes are inserted into the leaves, and every node
derives a digest which is recursively dependent on all attributes in its subtree.
That is, leaves compute the hash of their own attributes, and parents derive the
hash of their children’s digests concatenated left-to-right. As further described
in Sect. 5, certain digests must also be encoded with additional constants. This
is to prevent indistinguishability between different types of nodes [8,20].

Figure1 illustrates a Merkle tree without a proper encoding. It contains eight
attributes ρ–ω, and the root digest r ← d30 serves as a reference to prove member-
ship by presenting an audit path [18]. For instance, dashed nodes are necessary
to authenticate the third left-most leaf containing attribute τ . More generally, an
audit path comprises all siblings along the path down to the leaf being authen-
ticated. Combined with a retrieved attribute, this forms a proof of membership
which is valid if it reconstructs the root digest r′ such that r′ = r. Note that a
proof is only as convincing as r, but trust can be established using, e.g., digital
signatures or by periodically publishing roots in a newspaper.



Efficient Sparse Merkle Trees 201

d3
0 ← H(d2

0‖d2
1)

d2
1 ← H(d1

2‖d1
3)

d1
3 ← H(d0

6‖d0
7)

d0
7 ← H(ω)d0

6 ← H(ψ)

d1
2 ← H(d0

4‖d0
5)

d0
5 ← H(χ)d0

4 ← H(φ)

d2
0 ← H(d1

0‖d1
1)

d1
1 ← H(d0

2‖d0
3)

d0
3 ← H(υ)d0

2 ← H(τ)

d1
0 ← H(d0

0‖d0
1)

d0
1 ← H(σ)d0

0 ← H(ρ)

Fig. 1. A Merkle tree containing attributes ρ–ω. The digest rooted at height h and
index i is denoted by dh

i .

2.2 Setting and Cryptographic Assumptions

Inspired by Katz [13] and Melara et al. [20], we consider a computationally
bounded adversary in the multi-instance setting. This means that there are many
distinct SMTs, and the adversary should not gain any advantage in terms of
necessary computation if she attempts to attack all SMTs at once. In other
words, despite the adversary’s multi-instance advantage, the goal is to provide
full λ-bit security for each SMT. For security we rely on a collision and pre-image
resistant hash function H with digests of size N := 2λ bits, and on Lemma 1.

Lemma 1. The security of an audit path reduces to the collision resistance of
the underlying hash function H.

Proof. This follows directly from the work of Merkle [21] and Blum et al. [5].

3 Sparse Merkle Trees

First we introduce non-membership proofs that are based on sorted Merkle trees,
then the notion of an SMT and our approach is incrementally described.

3.1 Non-Membership Proofs and High-Level Properties

In RT and like applications, it is crucial to prove certain values absent [17,31,32].
Efficient construction of such non-membership proofs can be enabled by viewing
balanced binary search trees, e.g., treaps and red-black trees, as Merkle trees. A
lexicographically sorted tree structure serves the purpose of preventing all nodes
from being enumerated, involving rules that rotate nodes upon insertion and
removal, and the structure of that tree can be fixed by a trustworthy root due
to being a Merkle tree. We prove non-membership by generating an audit path
through binary search, and a verifying party accepts the proof to be valid if there
is no evidence that the tree structure is unsorted or that the root is improperly
reconstructed. In other words, the absence of a value is efficiently proven due to
a balanced search tree, and the proofs are convincing because the structure of
the tree is fixed by a cryptographically derived root.
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While an SMT also relies on the structure of the tree together with being a
Merkle tree, it is different in that it requires neither balancing techniques nor
certain constants when encoding digests. This is due to an intractably large
Merkle tree that reserves a unique leaf � for every conceivable key digest. The
hash of a key k determines �, and k is a (non-)member if the attribute a ∈ � is set
to a0 and a1, respectively. Hence, the resulting tree structure contains 2N leaves
at all times, and (non-)membership can be proven by presenting an audit path
for leaf H(k). This set-up also implies history independence [25]: a unique set of
keys produce a deterministic root digest, regardless of the order in which keys
have been inserted or removed. Notably history independence is not necessarily
provided by a sorted Merkle tree (e.g., not the case for a red-black tree).

3.2 Tractable Representations

Considering the intractable size of an SMT, it is not without challenges to define
an efficient representation. To begin with, the only reason why this is feasible
traces back to the key observation that an SMT is sparse. This means that
the vast majority of all leaves represent non-members, as indicated by a shared
attribute a0, resulting in a construction where the empty subtrees rooted at
height h derive identical default digests. The basic principle is as follows. An
empty leaf computes d0∗ ← H(a0), a node rooted at an empty subtree with
height one derives d1∗ ← H(d0∗‖d0∗), and so forth. Since these default digests can
be precomputed, they need neither be associated with explicit nodes nor be
derived recursively by visiting all leaves. Instead, referring to Fig. 2, it suffices
to process the filled nodes whose digests depend on existing keys.

a0a0a0a0a1a0a0a1 a1a1

Fig. 2. An illustration of how subtrees with default digest can be discarded to attain
a tractable representation of an SMT.

3.3 Earlier Proposals

Different approaches can be used to provide efficient representations of an SMT.
Bauer [3] has proposed an explicit pruned tree structure where all the non-empty
attributes are elevated upwards through their ancestors. The elevation stops
when the root of a subtree containing a single non-empty leaf is reached, and all
descendants to such roots are discarded. The original SMT can be reconstructed
by recording indices for the non-empty leaves in each subtree, but will require



Efficient Sparse Merkle Trees 203

excessive amounts of memory unless they are evenly spread out. Hence, while the
proposal is neat, we find the approach started by Laurie and Kasper [17] more
generally applicable. It is based on maintaining a collection of keys K, and the
collection is authenticated by simulating an SMT. As is, however, their proposal
is incomplete and cannot, e.g., derive (non-)membership proofs efficiently. This
is due to deriving subtrees’ digests over and over again—an issue we solve in the
following sections by introducing relative information.

3.4 Our Approach

We approach the SMT in terms of a simulation (Definition 1). Let us start by
considering the simplest case of no relative information, then why it is necessary.

Definition 1. A simulated SMT is the composition of (i) a data structure D con-
taining unique keys k, and (ii) a collection of cached digests, referred to as the rel-
ative information δ. Both structures define operations for insertion, removal, and
look-up; D also supports splitting, i.e., dividing it in two based on a key.

Our SMT is simulated in the sense that there is no explicit tree structure,
which is possible because every k ∈ D can be mapped to its associated subtrees
recursively. For example, as shown in Fig. 3, a root digest can be obtained by
simulating a traversal from the root down to all the non-empty leaves. The base
is initially set to all zeros and refers to the left-most leaf in a subtree. It remains
the same on left-traversals, must be updated by setting the appropriate bit to
one on right traversals, and is used to determine the split index. The split index
is the key upon which D is divided on and refers to the left-most leaf in the
right subtree. Thus, as formalized in Sect. 4.3, it is an upper exclusive and lower
inclusive bound for the keys in the left and right subtrees, respectively.

Clearly, it is inefficient to obtain a subtree’s digest by repeatedly visiting all
the non-empty leaves. Therefore relative information is necessary: a collection of
cached digests with the sole purpose of preventing such inefficiency. For instance,
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Fig. 3. An illustration of a recursive traversal to obtain the root digest; k1 = 000,
k2 = 010, and k3 = 111.
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a näıve caching strategy could record every digest that is non-default. Although
that requires excessive amounts of memory, it would ensure that all siblings’
digests are available upon generating audit paths. Consequently, the number of
splits will be constant, and (non-)membership can be proven with the same time
complexity as the underlying split operation. Our aim when defining caching
strategies is to preserve this property while reducing memory requirements.

4 Efficient Representations

First we define caching strategies that are based on capturing branches, then our
proposal is formalized by presenting complete recurrences for an efficient SMT.

Definition 2. A branch is an interior node in a Merkle tree, for which both of
the two children derive non-default digests [27].

4.1 Caching Strategies

During the design of a caching strategy it is important to consider expected
and worst case scenarios. The former is somewhat straight forward since the
output of H is uniformly distributed, whereas the latter is both strategy and
use-case dependent. That is, the non-empty leaves will be evenly spread out in
the average case, and a cluster of non-default digests will therefore be formed
at the higher �log n� + 1 layers. If these digests are captured by the relative
information, the traversals down to the leaves can be prevented. The digests
rooted at layers below the dense threshold are of lesser importance due to the
sparse property, but can be vital if a worst-case ever occurs. For example, an
intuitive caching strategy that we omit is to record the higher �log n� + 1 layers
of the SMT. Although the dense part would be captured in the average case,
forcing leaves to clump at some subtree is trivial for an adversary that selects the
keys. Hence, a large majority of the non-default digests cannot be captured, and
the resulting cache will be useless if (non-)membership proofs are issued for the
clumped subtree. This is the reason why our caching strategies evolve around
capturing branches (Definition 2), aiming to bound the number of recursive
traversals down to the leaves by a constant. As desired, it then follows that the
time necessary to generate an audit path, or equivalently the time necessary to
update the status of a single key, will reduce to the underlying split operation.

B Cache. Figure 4a depicts the B cache which captures every digest rooted at
a branch. It contains n−1 digests at all times, and requires at most N traversals
down to either a branch or leaf upon generating audit paths. The former follows
from the observation that all but the first insertion yield a single branch, and
the latter (i.e., the worst case) is discussed in Sect. 5.3.

B−Cache. By discarding f(n) branches from the B cache, memory requirements
can be reduced at the cost of additional computation. This forms the notion
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Fig. 4. Captured digests as the circled subtrees contain a single non-empty leaf.

of B−, which provides trade-offs depending on how f(n) is implemented. We
examine a probabilistic approach where a branch is captured with probability
p, meaning f(n) is roughly n(1 − p). Other variations of f(n) include ignoring
every other layer, as well as defining an upper bound for how many branches to
ignore.

B+Cache. The drawback of using a B cache is that, in the average case, only
the higher �log n� layers will be captured. In other words, since the dense part
also spans layer �log n�+1, we are missing out on some performance. B+ aims to
solve this issue by capturing branches together with their children. The resulting
cache covers the entire dense part of the SMT, but for the sake of efficiency we
also limit the worst case memory requirements by 2n due to discarding branches
(Fig. 4b). The difference is negligible with regard to time, considering that a
branch can derive its digest in constant time from the cached children.

4.2 The Cache Routine

Implementation-wise our caching strategies are convenient. To process an interior
digest, a cache function that accepts the left and right child digests can be used.
Upon invocation it computes the interior digest d, examines if both children are
non-default, deletes the previous branch if applicable, caches in case of a new
branch, and outputs d. While this algorithm merely concerns the B cache, it
extends perfectly to B− and B+. Therefore these caching strategies are practical
to mix: start off with B+, switch to B as memory requirements grow larger, and
finally migrate to B− with shrinking probability p. For instance, this could be
interesting in real-world scenarios where memory is a limited resource.

4.3 Recurrences

Let h be the height of a subtree, b the base of a node, and D a data structure
containing unique keys’ digests H(k). Further denote by αi the ith ≥ 0 left-most
bit in α, αi=β the assignment of that bit to β ∈ {0, 1}, and by colon (:) list
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concatenation. Finally, define the bit in the base that is set on right traversals1

as j := N − h, the split index as s := bj=1, and D divided on s for relation R as
DR

s := {k|k ∈ D ∧ kRs}. Our recurrences are shown in Fig. 5:

– Given a height h, (1) derives the default digest dh
∗ . The leaf hash (LH) and

interior hash (IH) functions serve the purpose of encoding digests securely, as
further described in Sect. 5.

– Given a height h, a base b, and a collection of keys D, (2) derives the digest
dh

b . The base case occurs if there is relative information available, if a default
digest is applicable, or if a non-empty leaf is reached. Otherwise, (2) performs
two recursive calls with D divided on s, b updated in the event of a right
traversal, and h reduced by one.

– Given a height h, a base b, a collection of keys D, and a key k for leaf � , (3)
generates an audit path for �. Note that the siblings’ digests are gathered by
list concatenation, repeatedly invoking (2) after reaching �.

– Given a height h, a base b, an audit path P for key k, and an attribute
a ∈ {a0, a1} , (4) reconstructs the root digest by traversing the tree down to
the leaf being authenticated. Every sibling’s digest is obtained from P [j].

– Given a height h, a base b, a collection of keys D, a subset of keys K ⊂ D
where K 
= ∅, and an attribute a ∈ {a0, a1} , (5) outputs the new root digest
and updates the relative information. This is achieved by visiting all leaves
� ∈ K, also invoking the cache function (C) to compute the interior digest dh

b

and ensure that the relative information is up-to-date.

The size of an audit path is O(1), but can be further reduced by discarding
default digests. This yields a sparse audit path, and necessitates encoding of an
N -bitmap to determine whether a digest is (non-)default. We omit the details
of such a recurrence since it is trivially added when (3)–(4) is provided.

5 Security

Consider a single SMT and assume that the hash function is fixed. Then it follows
that the size of an audit path is fixed by N due to the structure of the tree, and
consequently we can distinguish between leaves and interior nodes. This means
that, for the case of a single SMT with a fixed hash function, no special encoding
is necessary to distinguish between nodes, and that the security of an audit path
reduces to the collision resistance of the underlying hash function (Lemma 1).

Next, to prevent an adversary from gaining any advantage when attacking
several SMTs in parallel, we consider the full (concrete) security of an audit
path in the multi-instance setting. Thereafter we relate our encoding of nodes
to CONIKS [20], and examine the impact of caching strategies for security.

1 This bit refers to the depth of a subtree.
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Fig. 5. Recurrences that derive default digests (ξ), root digests (R), audit paths (A),
reconstructed root digests (B), and relative information (U).

5.1 The Merkle Prefix Tree in CONIKS

As described more broadly in Sect. 7, CONIKS is a key verification service that
uses a Merkle prefix tree (MPT) to authenticate the users’ key bindings [20]. An
MPT can be seen as a dynamically sized and explicit SMT where empty subtrees
are replaced with empty nodes. Key-bindings are mapped by a hash function H
to unique indices i, and every (non-)empty leaf in the tree is associated with a
depth � as well as an �-bit unique prefix j of i. The encoding of an empty node
is defined in (6).

d ← H(Cempty‖Ctw‖j‖�) (6)

Cempty is a constant for empty leaves and Ctw a tree-wide constant. The encoding
of a non-empty node is defined in (7).

d ← H(C leaf‖Ctw‖i‖�‖p) (7)

Cleaf is a constant for non-empty leaves and p a payload. Finally, the encoding
of an interior node is defined in (8).

d ← H(dleft‖dright) (8)



208 R. Dahlberg et al.

The constants Cempty and Cleaf serve the purpose of preventing indistin-
guishability between (non-)empty leaves, and the tree-wide constant Ctw pro-
vides protection against an adversary in the multi-instance setting. In other
words, if all MPTs use distinct tree-wide constants, no nodes’ pre-images can be
valid across different trees. Similarly, no nodes’ pre-images can be valid across
multiple locations because the leaves’ digests are uniquely encoded by j‖� and
i‖� (the location of an interior node is implicit due to the children it commits
to). Thus, as opposed to searching collisions across different trees and locations
in parallel, an adversary must target a particular tree and location.

We also need to consider different versions of the trees that are generated
by updates. To accomplish full λ-bit security for an instance of an MPT, a new
tree-wide constant must be selected after each update to prevent parallel attacks
through past versions of the same tree structure. This means that for all updates,
the entire MPT has to be recomputed from scratch.

5.2 A Secure Encoding for Sparse Merkle Trees

Figure 6 defines a secure encoding for an SMT in the multi-instance setting. We
prevent attacks across distinct trees by introducing a tree-wide constant Ctw, but
we do not protect against attacks on different versions of the same tree structure
because Ctw is reused between updates. For attacks within a particular tree, we
include unique identifiers in every non-empty subtree. This differs with respect
to MPTs, but is necessary to preserve the sparse property of an SMT: if unique
prefixes were included in the empty subtrees, then there would no longer be
any default digests. As shown in (10), we solve this issue and retain security by
moving the encoding of an empty node into the non-empty parent. An interior
node that is non-default will still commit properly to a certain location encoded
by base and height2, and since the digest of an empty node is publicly known
even for an MPT no security is lost. Furthermore, note that we do not encode the
attributes a0 and a1 explicitly in (9). Inclusion of the base suffices to distinguish
between (non-)empty leaves, considering that the height of an SMT is implicit.

LH
∗
b(a) :=

{
H(Ctw) , if a = a0

H(Ctw‖b) , else .
(9)

IH
h
b dleft, dright

)
:=

{
H(dleft‖dright) , if dleft = dright = ξh−1

∗
H(dleft‖dright‖b‖h) , else .

(10)

Fig. 6. Secure node encodings for an SMT.

2 The height is necessary because the base is ambiguous on left traversal, i.e., it has
fixed size and is only updated by setting the appropriate bit on right traversals.
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5.3 Security Aspects of Caching Strategies

Generally speaking, we often distinguish between best, worst, and average case
complexities. For instance, a hash table has amortized constant look-up time,
but can degrade to a linear construction if all entries hash to the same bucket.
Likewise, a binary search tree that is probabilistically balanced is in danger of
breaking down into a linked list. Though critics might claim that attacks based on
such degradations are of theoretical interest alone, Crosby and Wallach [7] have
already presented denial of service attacks that exploit algorithmic complexities.
Thus, within security, it is of great importance to evaluate worst case behavior.

Let us consider the B cache. In the worst case, if there are merely N keys, an
adversary could force an almost perfect spine of branches as depicted in Fig. 7.
Whenever membership proofs are issued for the leaves on that spine, the large
majority of all the non-default digests must be computed because the siblings’
digests are not captured by the cache. While this is not an issue for a small SMT,
the worst case efficiency actually increases as the tree grows: new insertions yield
additional branches, and it is more efficient to stop traversals at a branch than
at a leaf. In other words, there are two scenarios each time a sibling’s digest
is requested. First, the digest is default and can be requested in constant time.
Second, the digest is non-default and can be derived by traversing the tree down
to a branch or leaf. In either case, regardless of how an adversary selects the keys,
at most N traversals are necessary (one per layer). A similar analysis applies to
B+, considering that the children of all branches are captured by the relative
information. For B−, one can show that the number of traversals will be bounded
by f(n). As such, to prevent an adversary from causing inefficiency, f(n) must be
either constant or unpredictable to the adversary.

B

B

B

B

Fig. 7. A branch spine, potentially caused by an adversary.

An almost identical analysis applies for worst case behavior during updates.
This follows from the observation that (3) and (5) traverse the tree down to the
leaves, invoking (2) on each layer.



210 R. Dahlberg et al.

6 Performance

We examined performance and space-time trade-offs experimentally using a
proof-of-concept implementation in Go3, selecting SHA-512/256 as the hash
function4, a data structure D that supports splitting in logarithmic time, and
relative information δ that is maintained in constant time (a hash table). Our
experiments were executed on an Intel(R) Core(TM) i7-4790 CPU at 3.60 GHz
with 2× 8 GB DDR4 RAM, and they utilized Go’s built-in benchmarking tool.
Furthermore, the B− cache was implemented probabilistically such that a branch
is captured with probability p. We tested B− for p ∈ {0.5 . . . 0.9}, denoted by
B−

p , and included B, B+, and a hash treap in our experiments. For the relevant
operations, i.e., insertion, removal, and look-up, the expected logarithmic time
complexity of a hash treap makes it a good representation of other authenticated
data structures that are explicitly stored in memory.

Figure 8a shows the size of the authenticated data structure as a function
of the data structure being authenticated. There is essentially no distinction
between the two for a hash treap5, and in the case of an SMT this is the relation
between δ and D. For 220 keys, the hash treap needs 960 MiB, the B+ cache 512
MiB, the B cache 256 MiB, and the B−

0.5 cache 128 MiB. It is evident that the
different caches double in size, and that the size of a hash treap is roughly eight
times larger than that of a B−

0.5 cache. Furthermore, it should be noted that the
B−

p caches with p ∈ {0.6 . . . 0.9} have sizes evenly distributed in [B−
0.5,B].

Figure 8b shows the time required to generate an audit path. Since the full
structure is in memory for the hash treap, it is just a matter of copying the
nodes along the path in negligible time (0.003 ms). Similarly, for B+ and B, we
see consistent results that are less than 1 ms regardless of how large D is. This
is because both caching strategies ensure that the vital non-default digests are
cached, whereas additional recursive traversals down to either branches or leaves
are necessary for B−

p . Finally, we observe the impact of selecting p. While p > 0.6
gives an expected time that is less than 4 ms, p = 0.5 behaves erratically. This
follows from the high probability that a sibling’s digests must be derived instead
of being found in the cache, as is also evident to a smaller extent for p = 0.6.

Figure 8c shows the time it takes to update m keys in a data structure con-
taining n = 215 keys. All approaches scale as O(m log n), with the hash treap
being the fastest. Similarly, Fig. 8d shows the time it takes to update m = 256
keys as a function of the size n. The B+ cache consistently needs less than 20 ms,
as opposed to the hash treap which needs 9.5 ms for n = 220. Considering that a
hash treap consumes twice as much memory, this is indeed an interesting trade-
off. For the remaining caching strategies, p together with the relation between
n and m determines the probability of having cache misses. Simplified, larger p
yields less variance and greater efficiency in terms of time.

3 Source code available at https://github.com/pylls/gosmt (Apache 2.0).
4 SHA-512 truncated to 256-bit output, resulting in an SMT with 2256 leaves [26].
5 The size refers to the nodes of the tree together with the children’s pointers.

https://github.com/pylls/gosmt
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(a) Size of the authenticated data structure. (b) Time to generate an audit path.

(c) Time to update in a 215 data structure. (d) Time to update 256 keys.

Fig. 8. Space-time trade-offs for caching strategies and a hash treap (HT).

7 Related Work

Google considers three categories of authenticated data structures when adding
transparency to a trust model: verifiable logs, maps, and log-backed maps [12].
While CT relies on verifiable logs to support efficient consistency and mem-
bership proofs, verifiable maps based on SMTs are proposed in RT to prove
non-membership. This is not without issues, however. All operations must be
enumerated to determine whether a map’s state is correct. The former two cate-
gories are therefore combined into a verifiable log-backed map where consistency
issues can be detected by the verifiable log, (non-)membership can be proven by
the verifiable map, and full audits can ensure complete correct behavior. As
such, using an efficient verifiable map based on our extension of an SMT, the
combination of CT and RT can prove whether a certificate’s status is current.
Other CT-like proposals that an SMT could be applicable to include Distributed
Transparent Key Infrastructure [35] and Enhanced Certificate Transparency [32].

Verifiable maps are closely related to persistent authenticated dictionaries
(PADs) [10]. While both are dynamic, the difference is that a PAD supports
(non-)membership queries to current and past versions of the data structure. By
extending our representation of an SMT to a secure key-value store, adding some
form of persistency yields a PAD. Crosby and Wallach [9] investigated caching
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strategies for tree-based PADs in conjunction with Sarnak and Tarjan versioned
nodes [33]. Before that, Anagnostopoulos et al. [1] considered another technique
known as path copying. We could use similar approaches for the cache in our SMT,
relying entirely on existing persistent data structures to yield a PAD.

CONIKS is a privacy-preserving key-management service that allows clients
to monitor their own key-bindings efficiently [20]. An MPT (see Sect. 5.1) is used
for the purpose of verifiability, but prior to deriving a unique index i the key-
bindings are first transformed by a verifiable unpredictable function [22]. While
that prevents audit paths from leaking user information, it cannot conceal the
total number of users. CONIKS solves this issue and others e.g., ensuring fork
consistency [19], by defining a protocol on top of an MPT. It appears that an
SMT could be a viable and attractive replacement if viewed as a dictionary.

The issue of proving non-membership is not only evident in CT and RT. For
instance, in the context of privacy-preserving transparency logging [31], Balloon
plays an integral part as a provably secure append-only data structure [30].
This is accomplished using an approach towards authenticated data structures
defined by Papamanthou et al. [28], as well as combining a history tree [8] and
a hash treap [10,30]. The former is essentially a verifiable log, and the latter a
treap [2,4] viewed as a Merkle tree. While hash treaps and SMTs share many
properties, including efficient (non-)membership proofs and history independent
representations, there are some striking differences. To begin with, hash treaps
store attributes in each node. Unlike in an SMT, information regarding these
attributes must be provided in an audit path due to encoding digests differently
(possibly leaking valuable information). There will also be exactly n nodes at
all times, and efficiency relies on a probabilistic balance. In these regards an
SMT is flexible: the variable parameters D and δ determine if/when efficiency is
provided, and memory requirements can be reduced to less than n if need be.

More generally we could compare an SMT to any lexicographically sorted
data structure viewed as a Merkle tree, e.g., including certificate revocation trees
[14] and subsequent approaches based on 2–3 trees [24]. An SMT is superior to
a certificate revocation tree because the update process cannot cause the entire
tree structure to be recomputed. When compared to 2–3 trees and other balanced
binary search trees, the analysis is similar to that of a hash treap. Note, however,
that an SMT should not be confused with authenticated data structures that
are unable to prove non-membership efficiently. This means that an SMT is
not intended for applications such as Bitcoin [23]: the transactions of separate
blocks are grouped together in Merkle trees for the purpose of efficient integrity
guarantees, not the ability to prove certain transactions absent.

Finally, this work is an extension of the Bachelor’s thesis by Dahlberg [27].
Apart from improving terminology, we defined recursions for batch updates and
reconstruction of root digests, as well as caching strategies based on branches. We
also added a security evaluation for full (concrete) security in the multi-instance
setting, provided a publicly available implementation that uses a memory safe
language, and compared our results with a related authenticated data structure.
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8 Conclusion

Our definition of an SMT builds upon and extends the principles provided by
Laurie and Kasper [17]. The proposal is generic in the sense that an arbitrary
data structure supporting insertion, removal, look-up, and splitting can be used,
and different caching strategies (B, B−, and B+) provide fine-grained control
over consumed space contra run time. In other words, rather than having an
explicit tree structure, the resulting SMT is simulated. While this comes at
the cost of additional computation when compared to other explicit tree-based
data structures, our performance benchmark and worst case analysis show that
our definitions are efficient regardless of how an adversary selects the keys. In
addition, we prove that these definitions are secure in the multi-instance setting.

There is nothing that prevents further space-time trade-offs as an SMT
evolves. In principle, the relation B− ⊂ B ⊂ B+ holds. Therefore, it is simple to
go from one strategy to another, e.g., depending on how much memory is avail-
able at the time being. This is a major difference with respect to explicit tree
structures, which have no previous constructions that are alike. Furthermore,
the succinct recursions used to simulate an SMT yield limited implementation
complexity, and history independence is a prevalent property if parallelized and
distributed solutions are considered for large-scale applications.
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Abstract. We introduce the notion of covert privacy for secret-sharing-
based secure multiparty computation (SMC) protocols. We show how
covertly or actively private SMC protocols, together with recently intro-
duced verifiable protocols allow the construction of SMC protocols secure
against active adversaries. For certain computational problems, the rela-
tive overhead of our protocols, when compared to protocols secure against
passive adversaries only, approaches zero as the problem size increases.

We analyse the existing adaptations of sorting algorithms to SMC
protocols and find that unless they are already using actively secure
primitive protocols, none of them are covertly private or verifiable. We
propose a covertly private sorting protocol based on radix sort, the rel-
ative overhead of which again approaches zero, when compared to the
passively secure protocol. Our results reduce the computational effort
needed to counteract active adversaries for a significant range of SMC
applications, where sorting is used as a subroutine.

1 Introduction

Secure multiparty computation (SMC) [16] allows a set of mutually distrustful
parties to jointly perform computations on the data they have, without anyone of
them learning anything beyond the result of the computation. While starting out
as a mere theoretical curiosity [10,17,30], both the protocols and the computing
infrastructure have improved over the last two decades, such that significant
real-world problems may be solved with them [2,3,8]. In these applications, the
inputs may come from, and outputs may be learned by many different parties,
but the protocols for actual computations are executed by just a small set of
computing parties (typically two or three), upon which the other parties have
to place their trust. The trust has a threshold nature: the parties believe that
at most a certain fraction of computing parties have been corrupted. E.g. the
Sharemind SMC platform [6], which is the basis of the work reported here, has
three computing parties, one of which may be passively corrupted.

A passive adversary learns the internal states, the inputs and outputs of
corrupted parties, but these parties still follow the prescribed protocol. More
desirable is security against an active adversary, which may additionally instruct
the parties to change the messages they send out. Security against active adver-
saries requires significantly more computational effort and/or communication to
c© Springer International Publishing AG 2016
B.B. Brumley and J. Röning (Eds.): NordSec 2016, LNCS 10014, pp. 216–231, 2016.
DOI: 10.1007/978-3-319-47560-8 14
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be used, either during the protocol execution or at some other time (pre- or
post-computation) [13].

For certain computations, the verification of the correctness of the result
is simpler than actually performing the computation. For privately performing
such computations, we could use a passively secure SMC protocol for computing
the result and the proof of its correctness and an actively secure protocol for the
verification. An existing implementation of this idea for linear programming [14]
ensures that the result of the computation is correct and the verification phase
does not leak anything to an active adversary. In order to not leak anything at all
to an active adversary, the computation protocol has to be actively private [4].
This property is stronger than passive security, but weaker than active secu-
rity which also implies correctness of results. Sharemind’s protocols for simple
operations are actively private [28] and this property composes [4].

In this paper we study protocols for oblivious sorting, i.e. protocols that
transform a vector of private values into another vector of private values that
is sorted and is equal to the input vector as multisets. It is easier to verify the
sortedness of a vector than it is to sort it. The proof of correctness of sorting is a
private permutation [27] that transforms the input vector to the output vector;
the verification of such proof means applying the permutation and checking the
equality of two vectors. Sorting is an important primitive in SMC protocols, used
extensively in data analysis and as a “substitute” for operations that cannot be
naturally converted into SMC protocols [3,23].

Existing passively secure oblivious sorting protocols either do not naturally
produce proofs of correctness, or are not actively private, nor do they seem
to be amenable to simple changes which would give active privacy without
unduly hampering the performance. To obtain more efficient protocols, but still
retain protection against adversaries that deviate from the protocol, intermedi-
ate adversarial models have been considered. A covert adversary is willing to
deviate, but only if it is not caught in the process [1]. One can argue that for
many, if not most practical applications of SMC, the protection against a covert
adversary is as good as the protection against an active adversary, if detected
deviations from the protocol can be brought in front of a court and appropriate
punishments levied. Techniques of verifiable computation [15] may be used to
turn passively secure SMC protocols into covertly secure protocols [25,26]. These
techniques introduce a post-execution verification phase to the protocols, where
the parties check each other on whether they followed the protocol correctly.

In this paper we define covert privacy. A protocol is covertly private if an
active adversary may affect its correctness, but if it learns something about
the inputs of others, the honest parties will likely be notified of a potential
information leak. A covertly private sorting protocol (also producing the proof
permutation) together with a verification mechanism is sufficient for dealing with
active adversaries only during verification. But it turns out that sorting protocols
based on shuffling and data-dependent sorting algorithms are not even covertly
private. As the main result of this paper, we propose a sorting protocol based on
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radix sort, which is covertly private and has complexity similar to the passively
secure protocol.

2 Related Work

Let us give an overview of SMC protocols for sorting. Sorting networks were the
first tool to be adapted to SMC [20,29]. Shuffling protocols for secret sharing
based SMC protocol sets were first proposed in [27] and applied for sorting in [31].
There exist well-engineered SMC sorting protocols based on quicksort [19] and
on radix sort [18]. The performance of different sorting protocols in a uniform
setting has been evaluated in [5].

This paper also proposes an improved method for certain privacy-preserving
computations in a manner that provides security against active adversaries. The
current best-performing SMC protocol sets with such security are based on secret
sharing over finite fields, making use of message authentication codes to detect
misbehaviour [12,22]. Such protocols make use of precomputed shared tuples
of values that assist in performing non-linear operations (in particular, multi-
plication of shared values). This precomputation used to be several orders of
magnitude more expensive than the actual execution of the protocol, but recent
advances have brought down the cost [21]. An alternative, which we are following
in this paper, is to verify the computation parties after the execution [25,26] to
make sure that they did not deviate from the protocol.

Our verifiable sorting protocol has similarities to the verifiable SMC protocols
for linear programming [14]. Similarly to them, we use passively secure proto-
cols to perform the actual computation and to find the proof of correctness, and
higher-security protocols to verify the proof, thereby detecting incorrect results.
Differently from them, we also require covert privacy from the actual computa-
tion, hence detecting any privacy leaks there may be.

3 Preliminaries

3.1 Universal Composability and Secure Multiparty Computation

We use SMC protocols to build large privacy-preserving applications, for which
the security claims can reasonably only be made in compositional manner. Hence
we present all our constructions in the universal composability (UC) frame-
work [9], which allows us to state that a certain protocol is at least as secure as
(or simulates) a certain ideal functionality.

Let F be an ideal functionality for n parties, i.e. it is a probabilistic inter-
active Turing machine with interfaces to communicate with n users, and with
an adversary. Let π be an n-party protocol, i.e. it consists of n probabilistic
interactive Turing machines M1, . . . ,Mn, each communicating with a user (also
called the environment), with an adversary and possibly also with some ideal
functionalities (which are also part of π).
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Definition 1. An n-party protocol π black-box simulates the ideal functionality
F , if there exists a machine Sim, such that for all users H = (P1, . . . , Pn) and
adversaries A, viewH‖π‖A(H) ≈ viewH‖F‖(Sim‖A)(H).

Here the view of H encompasses all messages it exchanges with either π or
F , and with A. The probability distribution over such sequences of messages
is denoted by viewC(H), where C is the system that contains H. We use “≈”
to denote the similarity of views; this similarity may mean either equality, or
statistical or computational indistinguishability.

An adversary may corrupt some machine Mi by sending it a corrupt-message;
the machine forwards it to the i-th user (the party Pi). Afterwards, Mi will
send to the adversary everything it has seen or will see. Also, the adversary
determines which subsequent messages Mi sends to other machines and the user.
An adversary is passive if it instructs Mi to always send the same messages it
would have sent without being corrupted.

Denote [n] = {1, . . . , n}. Let f be a one-shot n-party functionality, i.e. it is
used to compute (y1, . . . , yn) = f(x1, . . . , xn), possibly in randomized manner.
The ideal functionality for f is an interactive randomized Turing machine Ff

sec

that communicates with n parties and the adversary. It performs by first receiv-
ing the set of corrupted parties C ⊆ [n] from the adversary and sending corrupt
to each party Pi, where i ∈ C. The machine then receives xi from each Pi. If
i ∈ C, then Ff

sec forwards xi to the adversary. For each i ∈ C, the adversary
sends x′

i to Ff
sec. For each i ∈ [n]\C, define x′

i = xi. The machine Ff
sec computes

(y′
1, . . . , y

′
n) = f(x′

1, . . . , x
′
n) and sends y′

i to the adversary for i ∈ C. The adver-
sary responds either with (stop, j) for some j ∈ C, or with the values yi for all
i ∈ C. In the first case, Ff

sec sends (stop, j) to all parties and stops. In the latter
case, define yi = y′

i for all i ∈ [n]\C. The machine Ff
sec sends yi to Pi for all

i ∈ [n] and stops. An adversary for the functionality Ff
sec is passive if it always

defines x′
i = xi and yi = y′

i for i ∈ C.
There are a couple of different ways to specify the ideal functionality for

SMC. One example of such idealization is the arithmetic black box [24], which
is convenient to use when constructing higher-level SMC protocols from more
basic ones (like addition or multiplication), obtaining the security proof (in sense
of Definition 1) of the higher-level protocol almost for free. In this paper, our
focus is different, we are discussing different security properties of certain kinds
of SMC protocols.

We are interested in SMC protocols based on secret sharing. These protocols
are built up from basic protocols for certain operations that turn the sharings
of the inputs of that operation into sharing of outputs. If x is a value then we
let [[x]] = ([[x]]1, . . . , [[x]]n) denote an arbitrary sharing of x, where [[x]]i is the
i-th share held by the i-th party. A one-shot functionality f⊗ for an operation
⊗ receives as inputs the sharings of the arguments of ⊗. It reconstructs the
arguments, applies ⊗ to obtain the result and returns an arbitrary sharing of it.

In our modeling, there is a particular functionality that we want to securely
compute, we consider it as a composition f1; f2; · · · ; fk of one-shot functional-
ities (each fi may also have an arbitrary number of arguments that it simply
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passes through). The ideal functionality Ff1;··· ;fk
sec is the sequential composition

of Ff1
sec; · · · ;Ffk

sec. Here only Ff1
sec receives its inputs from H and only Ffk

sec sends
its outputs back to it. Otherwise, the inputs are received from previous function-
ality and passed on to the next one. If Ffi

sec is securely implemented by the pro-
tocol πi, then the sequential composition of these protocols securely implements
Ff1

sec; · · · ;Ffk
sec, as implied by the universal composability theorem [9] (which is

actually more general than that).

3.2 Privacy vs. Security

Privacy is a security property that for many protocols, including SMC proto-
cols based on secret sharing may be easier to achieve than “full security”. For a
given one-shot functionality f , privacy is defined as simulating a different ideal
functionality Ff

priv. The machine Ff
priv works identically to Ff

sec until comput-
ing resulting values (y1, . . . , yn) = f(x′

1, . . . , x
′
n). Afterwards the machine Ff

priv

stops, i.e. no other machine actually receives the computed values. A protocol π
is a private realization of f if it black-box simulates Ff

priv (Definition 1).
The values computed by Ff

priv are still used when sequentially composing
such functionalities. In the composition Ff1

priv; · · · ;Ffk

priv, each Ffi

priv passes the

result values to Ffi+1
priv to be used as inputs. The outputs from Ffk

priv still go
nowhere. In addition to that, the inputs received by Ff2

priv, . . . ,Ffk

priv are not sent
to the adversary, nor can the adversary adjust them. Hence privacy means only
that the adversary’s view during the protocol, but not necessary after it, can be
simulated from just the inputs to the adversarially controlled parties.

Sequential composition of private protocols is again private [4]. In [4], this
result is technically shown only for passive adversaries, but nowhere does the
proof make use of the passiveness.

3.3 Protocols for Oblivious Sorting

Suppose we are given a vector of secret-shared values [[x]] = ([[x1]], . . . , [[xk]]).
SMC frameworks, e.g. Sharemind, contain protocols for comparing, adding and
multiplying shared values (the results are again shared). These can be com-
bined to an oblivious compare-exchange node that computes [[min{y, z}]] and
[[max{y, z}]] from [[y]] and [[z]]. Such nodes can be used to construct sorting net-
works for secret-shared data.

Common sorting algorithms are harder to adapt for SMC, because there is no
simple means to access an element of a vector by a secret-shared index. Declas-
sifying the accessed indices would leak information about the initial ordering of
the vector elements. This can be overcome by first performing a random shuffle
of the elements of the vector. The shuffling protocol [27], adapted for Sharemind,
works as follows. Let the elements of the vector [[x]] of length k be additively
shared (over ZN for some integer N) among three parties, two of which are hon-
est and third may be passively corrupted. A permutation σ ∈ Sk is shared as
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Data: shared vector [[x]], private permutation [[[[σ]]]] = (σ1, σ2, σ3)
Result: vector [[x]] permuted according to σ

1 for i = 1 to 3 do

2 Pi randomly generates r ∈ Z
k
N

3 Pi sends r to Pi−1 and y := [[x]]i − r to Pi+1

4 Pi−1, Pi, Pi+1 update
([[x]]i−1, [[x]]i, [[x]]i+1) := ([[x]]i−1 + r, (0, 0, . . . , 0), [[x]]i+1 + y)

5 Pi−1 and Pi+1 reorder [[x]]i−1 and [[x]]i+1 by σi

6 ∀i : Pi randomly generates ri ∈ Z
k
N and sends it to Pi+1

7 ∀i : Pi updates [[x]]i := [[x]]i + ri − ri−1

Algorithm 1. Shuffling protocol of [27]

three random permutations [[[[σ]]]] = (σ1, σ2, σ3) ∈ S3
k, satisfying σ3 ◦ σ2 ◦ σ1 = σ,

such that party Pi knows the permutations σi−1 and σi+1 (the indices are mod-
ulo 3). The shuffling protocol is given in Algorithm 1. Its main component is for
each pair of parties, to turn the additive sharing among three parties into addi-
tive sharing among this pair and apply one of the permutations σi. The protocol
ends with a resharing step, after which all shares are random again. A variation
of this protocol works for values shared with Shamir’s 2-out-of-3 sharing.

After shuffling the vector, the results of comparing its elements may be made
public, as long as all elements are different. They can be made different by adding
an extra field to the comparison keys, which has the least significance in compar-
isons and is different for all elements. All pairs of elements may be compared in
parallel [31], which has excellent round complexity, but requires O(k2) of work.
Alternatively, comparisons may be made according to some sorting algorithm,
e.g. the quicksort [19], moving around the elements of [[x]] as indicated by the
comparison results. The private shuffle [[[[σ]]]] together with the public permuta-
tion (that latter can be composed with the last component of [[[[σ]]]], giving a
single private shuffle [[[[σ′]]]]) applied during the sorting of shuffled [[x]] provides
the proof that the vectors before and after sorting had the same elements. In
the rest of the paper, we will assume that all elements of x are different.

Counting sort can also be adapted to SMC, as shown in Algorithm 2. Here
private data in y is reordered according to the keys in x. The sorting algorithm
computes where each element of x and y would go if the key were equal to 0
(stored in c) or 1 (stored in c; offset by the number of 0-s in x, which is equal to
ck +1). The actual position is computed in line 4, performing an oblivious choice
over [[xi]], selecting either [[ci]] or ([[ci]] + [[ck]] + 1). Note that while xi ∈ {0, 1},
the elements of [[x]] have to be shared over a larger ring (at least Zk) to make
sure that the computations do not overflow; this may require the use of the
share conversion protocol [7, Algorithm 5]. The positions are randomly shuffled
together with [[x]] and [[y]]. The declassification returns a random permutation of
{1, . . . , k}, leaking nothing about [[x]]. The composition of [[[[σ]]]] and o is the proof
of sameness of vectors. Counting sort can be extended to radix sort for multi-bit
keys as in [5] and the sameness proofs can be composed as in Algorithm 3.
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Data: keys [[x]], data [[y]], where x ∈ Z
k
2 , y ∈ Z

k
N

Result: [[x]], [[y]] stably sorted according to x
1 foreach i ∈ {1, . . . , k} do [[xi]] := 1 − [[xi]]
2 [[c]] := prefixsum([[x]])
3 [[c]] := prefixsum([[x]])
4 foreach i ∈ {1, . . . , k} do [[oi]] := 1 + [[ci]] + [[xi]] · ([[ci]] − [[ci]] + [[ck]] + 1)
5 Generate a random private permutation [[[[σ]]]] ∈ Sk

6 Shuffle [[x]], [[y]] and [[o]] according to [[[[σ]]]]
7 o := declassify([[o]])
8 foreach i ∈ {1, . . . , k} do [[xi]] := [[xoi ]]; [[yi]] := [[yoi ]]

Algorithm 2. Counting sort as a SMC protocol

Data: Private permutations [[[[σ(1)]]]], . . . , [[[[σ(m)]]]] ∈ Sk

Result: Private permutation [[[[σ]]]] satisfying σ = σ(m) ◦ · · · ◦ σ(1)

1 [[o]] := (1, 2, . . . , k)
2 for i = 0 to m − 1 do

3 Shuffle [[o]] according to [[[[σ(m−i)]]]]−1 (reverse the loop in Algorithm 1)
4 Generate a random private permutation [[[[σ′]]]] ∈ Sk

5 Shuffle [[o]] according to [[[[σ′]]]]
6 o := declassify([[o]])
7 return the composition of [[[[σ′]]]] and o

Algorithm 3. Composing oblivious shuffles

3.4 Covert Security

Covertly secure protocols are secure against adversaries that may deviate from
the protocol, but do not want to get caught [1].

Consider an ideal functionality F for n parties and a real protocol imple-
menting it. A machine Mi may give a special output accuseJ to the party Pi,
indicating that it suspects the parties in J ⊆ [n] of deviating. We require the pro-
tocol π to be detection accurate, meaning that if for any honest Pi, the machine
Mi outputs accuseJ , then J ⊆ C, i.e. only corrupt parties can be caught cheating.
We say that a run of π catches a cheater (denoted π⇓) if all honest Mi output
accuseJi

to Pi, and the intersection of all the sets Ji is not empty.

Definition 2. Let ε ∈ [0, 1]. A detection accurate protocol π black-box simulates
the ideal functionality F in the presence of covert adversaries with ε-deterrent [1]
if there exists a machine Sim, such that for all users H and adversaries A,

ε · Δ(viewH‖π‖A(H), viewH‖F‖(Sim‖A)(H)) ≤ Pr[π⇓] .

Here [0, 1] is the set of real numbers between 0 and 1, and Δ is the statistical
distance between probability distributions: Δ(μ, μ′) = 1

2

∑
x∈X |μ(x) − μ′(x)|,

where μ, μ′ : X → [0, 1] are two probability distributions over the set X. This
form of simulatability with covert adversaries is preserved by sequential compo-
sition (taking the minimum of ε-s), as shown by a simple hybrid argument [1].
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4 Covertly Private SMC

Covert privacy. The definitions of privacy and covert security can easily be com-
bined. In covert privacy, we let the machines Mi output accuse to the party Pi.
Note that we do not specify the set of accused parties here. We define π⇓ if
all honest parties output accuse. We also relax the notion of detection accuracy,
only requiring that an honest party does not output accuse if C = ∅.

Definition 3. Let ε ∈ [0, 1]. A detection-accurate protocol π is a covertly pri-
vate SMC protocol with ε-deterrent for a functionality f , if there exists a
machine Sim, such that for all users H, adversaries A,

ε · Δ(viewH‖π‖A(H), viewH‖Ff
priv‖(Sim‖A)(H)) ≤ Pr[π⇓].

We see that the covert privacy of a SMC protocol means the following. An
active adversary may change the outcome of the protocol without the honest
parties noticing it. An active adversary may also learn something about the
inputs of honest parties, but if it does so, the honest parties will be notified with
significant probability.

Covert privacy composes in the same manner as active or passive privacy.
The proof in [4] carries over without modifications.

From Covert Privacy to Covert Security. Consider a covertly private SMC pro-
tocol π for a functionality f . Also let π compute for each party Pi a verification
value vi; we think of this verification value as not an output to the party Pi, but
as input to subsequent protocols. There exist transformations [25,26] that turn
passively secure SMC protocols into covertly secure protocols (with 1-deterrent).
The transformations perform the following steps:

– binding the parties to the messages they’ve sent using signatures;
– adding a verification protocol that uses the signed incoming and outgoing

messages as verification values.

Given a protocol π, we let s[π] denote the protocol where all outgoing messages
are signed. This protocol also outputs the signed messages as verification values.
We let v[π] denote the verification protocol for s[π] constructed as in [25] or [26].
The protocol v[π] outputs a set Ji ⊆ [n] of parties to be accused to each honest
party Pi. If Ji = ∅ then no deviations were detected and the result output by
π may be used. Note that the execution of v[π] is much more expensive (by
two or more orders of magnitude) than the execution of π.

Covertly Secure Sorting. Let π0 be the protocol for checking the correctness of
sorting, it is given in Algorithm 4. It performs some simple checks, verifying
that the original and the sorted vector are the same, and that the sorted vector
actually is sorted. Let π1 be a covertly private sorting protocol that also outputs
the proof of sameness of vectors. The following is one of the main results of this
paper.
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Data: shared vectors [[x]], [[y]] of length k; private permutation [[[[σ]]]] ∈ Sk

Result: yes/no, stating whether [[[[σ]]]] proves that [[y]] is the sorted version of [[x]]
1 Shuffle [[x]] according to [[[[σ]]]]
2 foreach i ∈ {1, . . . , k} do [[bi]] := ([[xi]] = [[yi]])?
3 foreach i ∈ {1, . . . , k − 1} do [[b′

i]] := ([[yi]] ≤ [[yi+1]])?

4 return declassify(
∧k

i=1[[bi]] ∧∧k−1
i=1 [[b′

i]])
Algorithm 4. Protocol π0: checking the correctness of sorting

Data: shared vector [[x]]
Data: Covertly private SMC sorting protocol π1 (with sameness proof)
Result: sorted [[x]]; or accusations against misbehaving parties

1 ([[x′]], [[[[σ]]]], accuse, v) ← s[π1]([[x]])
2 if accuse = true then go to 8
3 (b, v′) ← s[π0]([[x]], [[x′]], [[[[σ]]]])
4 (J1, . . . , Jn) ← v[π0](x,x′, [[[[σ]]]], b, v′)
5 each party Pi does the following
6 if Ji �= ∅ then return accuseJi

7 if b = true then return [[x′]]
8 (J1, . . . , Jn) ← v[π1](x,x′, [[[[σ]]]], accuse, v) // ∀i ∈ [n]\C : Ji �= ∅
9 each party Pi returns accuseJi

Algorithm 5. Covertly secure SMC protocol for sorting

Theorem 1. The protocol in Algorithm 5 is a covertly secure sorting protocol.

Proof. Let Sim0, Sim1 be simulators for (s[π0], v[π0]) and (s[π1], v[π1]), respec-
tively. The simulator Sim for the protocol in Algorithm 5 will receive the shares
of [[x]] for corrupted parties and invoke Sim1 with them. At some point, Sim1

computes the corrupted parties’ shares of [[x′]] and [[[[σ]]]], as well as the accusation
bit. At this point Sim invokes Sim0 with the shares it has computed. It does not
return to continue with Sim1.

The simulatorSim shows thatAlgorithm5black-box simulates the ideal sorting
functionality (which receives the shares of the elements of x and returns the shares
of the elements of the sorted vector) in the presence of covert adversaries. Indeed,
Sim can compute the corrupted parties’ shares of [[x′]] and [[[[σ]]]] indistinguishably
from the real protocol due to Sim1 being a simulator for (s[π1], v[π1]) and these
shares belonging to the view of the adversary. If the accusation bit is true in the
real protocol then some corrupt party will be accused by all honest parties in line 8
by the security properties of v[π1]. Such accusations do not have to be simulated by
Sim according to Definition 2. If the accusation bit is false then Sim will produce a
good simulation of the real protocol due to Sim0 being a simulator for (s[π0], v[π0]).
If the bit b is false in line 7 and the real protocol continues with the invocation of
v[π1], then again some corrupted party will definitely be accused in line 8 and this
part of the protocol does not need simulating. ��

A conceptually simpler covertly secure sorting protocol would uncondition-
ally jump from line 2 to line 8. But the full protocol in Algorithm 5 is more
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efficient in executions where no party tries to deviate from the protocol; it is
natural to expect most executions to be like that. While the conceptually sim-
pler protocol would always execute v[π1], the protocol in Algorithm 5 executes
s[π0] and v[π0] instead. We expect the protocol π0 which only checks for sorted-
ness to be O(log k) times cheaper than the sorting protocol π1. The verification
is similarly cheaper.

5 Analysis of Oblivious Sorting Methods

We have discussed SMC protocols based on securely implementing sorting net-
works and argued that they are actively private. Unfortunately, the sequence of
swaps that they produce is not easily converted into a single private shuffle. One
can convert the comparison results of each layer of compare-exchange nodes into
an oblivious shuffle; these O(log2 k) oblivious shuffles (for input vectors of length
k) can be composed into a single oblivious shuffle with O(k log2 k) work using
Algorithm 3. As we show below, at least parts of this algorithm are not covertly
private for the same reason as Algorithm 2.

5.1 Methods Based on Shuffling and Comparison

We now show that sorting protocols that first shuffle the vector [[x]] and then
declassify the results of comparisons cannot be covertly private, at least for
additive secret sharing. For this purpose we present a pair (H,A), such that no
simulator Sim can make the sorting protocol π indistinguishable from F‖Sim,
where F is the ideal sorting functionality.

H and A first agree on a bit b, followed by A corrupting one of the parties,
and H submitting a vector [[x]] of length 2 to be sorted. The elements of x are
x1 = 0 and x2 = 1+2b; H additively shares them before submission. In the real
protocol, vector [[x]] is shuffled (i.e. perhaps the elements are swapped) and at
some moment, [[x1]] and [[x2]] are compared to each other. Before the comparison,
A tells the corrupted party to add 2 to its share of [[x2]]. Due to additive sharing,
this means that x2 is increased by 2. The comparison result is declassified. In real
execution, the comparison result depends on the bit b. If b = 0, then x1 < x2,
because |x2 − x1| = 1 before the adversary’s interference and the increasing
of x2 was sufficient to make it larger than x1. If b = 1 then |x2 − x1| = 3
before the adversary’s interference. In this case the increase of x2 did not affect
the comparison result and either result is possible with 50% probability. The
simulator does not know b and hence does not know, from which probability
distribution the simulated result of the comparison should be sampled. Nor can
the honest parties in the real execution notice that something is wrong.

5.2 Counting Sort

Most steps of the counting sort protocol (Algorithm 2) are covertly, and even
actively private [28], except for the declassification step in line 7. The protocol
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Data: Private permutation [[[[σ]]]] ∈ Sk+1, index x1 ∈ {1, . . . , k + 1}
Result: Private permutation [[[[σ′]]]] ∈ Sk, such that σ′ = σ↓x0

1 for i = 1 to 3 do
2 Pi−1 and Pi+1 send xi+1 = σi(xi) to Pi

3 if Pi receives different xi+1-s then Pi outputs accuse
4 foreach i ∈ {1, 2, 3} do Pi−1 and Pi+1 define σ′

i := σi↓xi

Algorithm 6. Puncturing a private permutation (in Sharemind)

can be seen as consisting of two parts, the first of them computing the positions
for reordering the elements of [[x]] and [[y]], and the second one (lines 5–8) actually
performing the reordering. We show that the second part is not covertly secure, if
[[o]] is shared over Zk (in this case, 0 ≡ k). We analyse the lines 5–7, because the
last line only performs public operations. Note that exactly the same operations
are performed in Algorithm 3, lines 4–6. The honest parties may try to detect
adversarial interference by noticing that the declassified o is not a permutation
of 1, . . . , k.

We again present (H,A) for which no simulator Sim exists. H and A first
agree on a bit, after which A corrupts a party and H shares an arbitrary x and y
of length k among the computing parties. It also shares the vector o = (b, b, . . . , b)
(of length k). Even though o should be a permutation in a “normal” execution
of the lines 5–7, this does not have to be the case if the previous steps of a larger
protocol have also been affected by the adversary. In the execution, A selects
a random permutation o′ ∈ Z

k
k. It lets the shuffling protocol (for [[o]]) execute

normally, except that during the resharing step (lines 6–7 in Algorithm 1), it
tells the corrupted party to add o′ to its share. Hence the declassification in
line 7 of Algorithm 2 produces a permutation and adversarial interference will
not be detected. The declassified permutation is equal to o′ + (b, b, . . . , b). The
simulator Sim does not know b, thus cannot simulate this.

6 Covertly Private Reordering

A covertly private reordering protocol (replacing steps 5–7 in Algorithm 2 and
steps 4–6 in Algorithm 3) is all that is needed for a covertly private sorting
algorithm that can be used in Algorithm 5. We start its presentation by an
auxiliary algorithm for puncturing a private permutation.

For i ∈ N, define the mappings insi, deli : N → N by insi(j) = deli(j) = j
if j < i and insi(j) = j + 1, deli(j) = j − 1 for j ≥ i. Let τ ∈ Sk+1 and
i ∈ {1, . . . , k + 1}. Puncturing τ at i gives us the permutation τ↓i = delτ(i) ◦ τ ◦
insi ∈ Sk. A private permutation [[[[σ]]]] ∈ Sk+1 can also be easily punctured while
leaking the value σ(i) in the process, as shown in Algorithm 6. Clearly, nothing
else is leaked, because no other points of σi-s are made public. The protocol is
covertly private because everything a party receives, it receives from two other
parties, one of which has to be honest. Without the last line in Algorithm 6, this
protocol covertly securely computes and makes public x4 = σ(x1).
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Data: Shared vectors [[x]], [[o]] of length k, where o is a permutation of {1, . . . , k}
Result: [[x]] reordered according to [[o]]

1 Generate random [[[[y1]]]], . . . , [[[[ym]]]]
2 foreach i ∈ {1, . . . , m} do [[ok+i]] := [[yi]]
3 Generate a random private permutation [[[[σ]]]] ∈ Sk+m

4 Shuffle [[o]] according to [[[[σ]]]]
5 o := declassify([[o]])
6 foreach i ∈ {1, . . . , m} do
7 zi := σ(k + i) // Algorithm 6 without last line

8 if ozi �= declassify([[[[yi]]]]) then output accuse
9 Delete positions z1, . . . , zm from o

10 if o is not a permutation of {1, . . . , k} then output accuse
11 Shuffle [[x]] according to [[[[σ↓k+m↓k+m−1 · · ·↓k+1]]]]
12 foreach i ∈ {1, . . . , k} do [[xi]] := [[xoi ]]

Algorithm 7. Protocol for covertly private reordering

The covertly private reordering protocol is given in Algorithm 7. It introduces
the replicated secret sharing [11] [[[[y]]]] of a value y ∈ ZN . In our case of additive
secret sharing with Sharemind security model, [[[[y]]]] consists of three random
elements of ZN summing up to y, with each party knowing two of them. Random
replicated shared values are generated in the same manner as random private
permutations. Conversion from [[[[y]]]] to [[y]] means just dropping one of the shares.
In declassifying [[[[y]]]], each party sends to both other parties the share they do not
yet know. In this manner, each party will learn the missing share from both other
parties and the adversary cannot send a wrong share without being detected.

We see that in Algorithm 7 we add extra elements to the index vector [[o]]
in order to catch the adversary manipulating many elements of it, the number
of added elements m functions as security parameter. After shuffling, we deter-
mine where the added elements had to end up, and check that they were not
changed by the adversary. Finally, we drop the points k + 1, . . . , k + m from the
private permutation σ (this can be done locally after running Algorithm 6 to
find z1, . . . , zm) and use the result to shuffle [[x]] as before.

Theorem 2. Let c = m/k. Algorithm 7 is covertly private with ε-deterrent,
where ε = 1 − (c + 1)−c.

Proof. We need to construct Sim simulating the view of the corrupted party from
this party’s input shares. The simulator does not know the honest parties’ shares
of [[x]] and [[o]], hence it does not know x and o. During the run, it receives all
messages the corrupted party sends to honest parties, and must generate honest
parties’ messages to the corrupt party, thereby learning all these messages. Hence
it can still follow Algorithm 7 as follows.

In line 1, Sim will either generate or receive all three shares of [[[[y1]]]], . . . , [[[[ym]]]],
hence it knows y1, . . . , ym. Similarly, in line 3 it learns all three shares of [[[[σ]]]]
and therefore σ itself. In line 4, it simulates the invocation of a shuffle (Algo-
rithm 1), which is actively private. In line 5, Sim must simulate the result of
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declassifying shuffled o. In declassified o, the simulator puts y1, . . . , ym to posi-
tions σ(k + 1), . . . , σ(k + m) and a uniformly random permutation of {1, . . . , k}
to the remaining k positions.

The simulator has all information (shares of [[[[σ]]]] and [[[[y]]]]) to simulate the
lines 6–8. The shuffle in line 11 is actively private and the operations in lines
9,10,12 do not involve communication between parties. We must now justify that
the simulation of the declassification in line 5 is sufficiently similar to the real
protocol to achieve the claimed deterrent. We make the following claims.

Claim 1. Consider a protocol where first a vector z ∈ Z
k
N is generated and

shared by an active adversary A (having corrupted a party), then a private per-
mutation [[[[σ]]]] is generated and applied to [[z]] using the protocol in Algorithm 1,
and finally z is declassified. Any such A can be emulated by an adversary that
selects z,z′ ∈ Z

k
N and learns σ′(z) + z′ for an unknown, uniform σ′ ∈ Sk.

The claim follows from the construction of Algorithm 1. At each resharing
and updating of shares in lines 3–4 and 6–7 of Algorithm 1, the adversary can
add a known vector to z. The adversary also knows all but one permutations
used in line 5. The addition of vectors before the application of the unknown
permutation corresponds to selecting a different z in the beginning. The addition
after this application corresponds to z′. During declassification, the adversary
can add yet another vector to the current z.

Claim 1 explains how much an adversary can affect o in line 5 of Algorithm 7.
It can choose some o (not necessarily a permutation of {1, . . . , k}) in the begin-
ning and, after it has been permuted, add a known d to it. Assuming that the
addition did not affect any elements of y (which would result in an immediate
accusation), the adversary hopes to obtain a non-uniformly chosen permutation
of {1, . . . , k}.

Claim 2. Let |v| = k, with v having s different elements. If σ ∈ Sk is uniformly
chosen then Pr[σ(v) = v] ≤ (k − s + 1)!/k!.

Indeed, if w1, . . . , ws are the elements occuring in v with ci being the count
of wi, then the number of permutations in Sk leaving v in place is c1! · · · cs! =∏s

i=1

∏ci−1
j=1 (1+j). This product has k−s factors, bounded by 2, 3, . . . , (k−s+1).

Hence it is at most (k − s + 1)!. The set Sk has k! elements.

Claim 3. Let v,d,u ∈ Z
k
N with u being a permutation of {1, . . . , k}. Let t =

‖d‖0, denoting the number of non-zero elements (the Hamming weight) of d. If
σ ∈ Sk is uniformly chosen then Pr[σ(v) + d = u] ≤ (t + 1)!/k!.

Indeed, if there is no σ0, such that σ0(v) + d = u, then the claim holds.
Otherwise, the probability is equal to Pr[(σ ◦ σ−1

0 )(σ0(v)) = σ0(v)]. By claim 2,
this probability as at most (k − s + 1)!/k!, where s is the number of different
elements in σ0(v) = u − d. Vector u has k different elements, hence u − d has
at least k − t different elements.

In the following, let d ∈ Z
k+m
N be the difference in o that the adversary has

caused in line 5 of Algorithm 7. Let E be the event that accuse does not occur
in the loop in lines 6–8 of the real execution of Algorithm 7. Let t = ‖d‖0.
Claim 4. (trivial) Pr[E] ≤ (

k
t

)
/
(
k+m

t

)
.
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Claim 5. If t ≤ c (i.e. m ≥ tk) then Pr[E] ≤ 1/(t + 1)!.
Indeed, we have

(
k
t

)
/
(
k+m

t

)
=

∏t−1
i=0

k−i
k+m−i ≤ ( k

k+m )t. Applying the inequal-
ity m ≥ tk gives

Pr[E] ≤
(

k

k + m

)t

≤
(

k

k + tk

)t

=
(

1
t + 1

)t

=
1

(t + 1)t
≤ 1

(t + 1)!
.

Claim 6. If t ≥ c then Pr[E] ≤ (c + 1)−c.
Similarly to previous claim, we get

Pr[E] ≤
(

k

k + m

)t

=
(

k

k + ck

)t

=
(

1
c + 1

)t

≤
(

1
c + 1

)c

=
1

(c + 1)c
.

Claim 7. Let u ∈ Z
k
N be a permutation of {1, . . . , k}. If m ≥ tk then the

probability of o being equal to u in line 10 of the real execution of Algorithm 7
is at most 1/k!.

Indeed, to get to line 10, the event E must occur. If E occurred then all t
changes the adversary made to o must have happened to the positions not taken
by the elements of y. Hence, if E occurred then by Claim 3, the probability of
o = u in line 10 is at most (t + 1)!/k!. This probability must be multiplied with
Pr[E] and the resulting product is at most 1/k!.

Claim 7 shows that if m is sufficiently large then no declassification result in
the real execution may occur with larger probability than in the simulated execu-
tion. This justifies Sim outputing a uniformly random permutation of {1, . . . , k}.

Claim 8. If t ≥ c then accuse is output in the real execution with probability
at least ε = 1 − (c + 1)−c.

Indeed, the probability of accuse being output is at least 1 − Pr[E] ≥ ε.
The value of t is a random variable determined by the adversary. We have now

analysed both the cases t ≤ c and t ≥ c and shown that in both cases, the adversary
cannot get a large difference of views in real and ideal execution. Indeed, if t ≤ c,
then no particular value of o in line 10 can be obtained with greater probability in
the real execution than in the simulated execution. Any difference in probabilities
is due to accuse being output in the real execution. Thus, if t ≤ c, we have 1-
deterrent against adversaries trying to breach the privacy.

If t ≥ c then accuse is output with probability at least ε. As the distance
between the views in the real and ideal execution cannot be larger than 1, we
have at least ε-deterrent here. ��

7 Conclusions

We have presented a covertly private SMC reordering protocol that may be
used to build a covertly private SMC sorting protocol based on the radix sort
algorithm. The overhead of the sorting protocol, compared to a passively secure
protocol, is only about three times (i.e. m = 2k), already giving the probability
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of ca. 90 % for catching a misbehaving adversary. The resulting covertly secure
sorting protocol has only o(k) overhead (over the passively secure protocol) on
an input of size k.

It remains to be seen whether the presented reordering protocol is sufficient
to construct a covertly private sorting protocol based on the quicksort algorithm.
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2. Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: How the estonian tax and customs
board evaluated a tax fraud detection system based on secure multi-party compu-
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(eds.) NordSec 2014. LNCS, vol. 8788, pp. 59–74. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-11599-3 4

6. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast
privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88313-5 13

7. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418
(2012)

8. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03549-4 20

9. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145

10. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC 2002, pp. 494–503

11. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol.
3378, pp. 342–362. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30576-7 19

12. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – Or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40203-6 1

13. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 38

http://dx.doi.org/10.1007/978-3-662-47854-7_14
http://dx.doi.org/10.1007/978-3-319-11599-3_4
http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/978-3-642-03549-4_20
http://dx.doi.org/10.1007/978-3-540-30576-7_19
http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38


Secure Multiparty Sorting Protocols with Covert Privacy 231

14. Hoogh, S., Schoenmakers, B., Veeningen, M.: Certificate validation in secure com-
putation and its use in verifiable linear programming. In: Pointcheval, D., Nitaj, A.,
Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 265–284. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-31517-1 14

15. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 25

16. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press, New York (2004)

17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229

18. Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort: an effi-
cient sorting algorithm for practical secure multi-party computation. Cryptology
ePrint Archive, Report 2014/121 (2014)

19. Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically effi-
cient multi-party sorting protocols from comparison sort algorithms. In: Kwon, T.,
Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-37682-5 15

20. Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and applications.
Cryptology ePrint Archive, Report 2011/122 (2011)

21. Keller, M., Orsini, E., Scholl, P., Mascot: faster malicious arithmetic secure compu-
tation with oblivious transfer. Cryptology ePrint Archive, Report 2016/505 (2016)

22. Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure
MPC with dishonest majority. In: CCS 2013, pp. 549–560

23. Laud, P.: Parallel oblivious array access for secure multiparty computation and
privacy-preserving minimum spanning trees. Proc. Priv. Enhancing Technol.
2015(2), 188–205 (2015)

24. Laud, P.: Stateful abstractions of secure multiparty computation. In: Laud, P.,
Kamm, L. (eds.) Applications of Secure Multiparty Computation. Cryptology and
Information Security, vol. 13, pp. 26–42. IOS Press, Amsterdam (2015)

25. Laud, P., Pankova, A.: Verifiable computation in multiparty protocols with hon-
est majority. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec
2014. LNCS, vol. 8782, pp. 146–161. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-12475-9 11

26. Laud, P., Pankova, A.: Preprocessing-based verification of multiparty protocols
with honest majority. Cryptology ePrint Archive, Report 2015/674 (2015)

27. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipula-
tion. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-24861-0 18

28. Pettai, M., Laud, P.: Automatic proofs of privacy of secure multi-party computa-
tion protocols against active adversaries. In: CSF 2015, pp. 75–89

29. Wang, G., Luo, T., Goodrich, M.T., Du, W., Zhu, Z.: Bureaucratic protocols for
secure two-party sorting, selection, and permuting. In: ASIACCS 2010, pp. 226–237

30. Yao, A.C.: Protocols for secure computations. In: FOCS 1982, pp. 160–164
31. Zhang, B.: Generic constant-round oblivious sorting algorithm for MPC. In: Boyen,

X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 240–256. Springer, Heidel-
berg (2011). doi:10.1007/978-3-642-24316-5 17

http://dx.doi.org/10.1007/978-3-319-31517-1_14
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-37682-5_15
http://dx.doi.org/10.1007/978-3-319-12475-9_11
http://dx.doi.org/10.1007/978-3-319-12475-9_11
http://dx.doi.org/10.1007/978-3-642-24861-0_18
http://dx.doi.org/10.1007/978-3-642-24316-5_17


Authentication



PASSPHONE: Outsourcing Phone-Based Web
Authentication While Protecting User Privacy

Martin Potthast1, Christian Forler2, Eik List1(B), and Stefan Lucks1

1 Bauhaus-Universität Weimar, Weimar, Germany
{martin.potthast,eik.list,stefan.lucks}@uni-weimar.de

2 Beuth Hochschule für Technik Berlin, Berlin, Germany
cforler@posteo.de

Abstract. This work introduces Passphone, a new smartphone-based
authentication scheme that outsources user verification to a trusted third
party without sacrificing privacy: neither can the trusted third party
learn the relation between users and service providers, nor can service
providers learn those of their users to others. When employed as a sec-
ond factor in conjunction with, for instance, passwords as a first factor,
our scheme maximizes the deployability of two-factor authentication for
service providers while maintaining user privacy. We conduct a twofold
formal analysis of our scheme, the first regarding its general security, and
the second regarding anonymity and unlinkability of its users. Moreover,
we provide an automatic analysis using AVISPA, a comparative eval-
uation to existing schemes under Bonneau et al.’s framework, and an
evaluation of a prototypical implementation.

1 Introduction

Two-factor authentication is an effective means to strengthen user authentica-
tion on the Internet. In particular, the use of software-based second-factor tokens
is attractive for service providers since it relieves them from considerable costs
that come along with developing and delivering custom hardware tokens. For
their users, phone-based two-factor solutions have the advantage of employing
the nowadays omnipresent smartphone, avoiding the inconvenience of carrying
around yet another device for the sole purpose of authentication. However, offer-
ing two-factor authentication is not at all the default, yet.

Meanwhile, small and medium enterprises, and especially startups, outsource
user verification. This is due to the fact that the proper implementation of a
secure authentication solution is a non-trivial task, and that many struggle to get
even basic password authentication right [12]. Hence, delegating user verification
to a competent trusted third party appears reasonable. In the context password
authentication, corresponding infrastructures have been successfully established
via OpenID [37] and OAuth [24] (e.g., Google, Yahoo, and Wordpress for OpenID
and Twitter, Facebook, and PayPal for OAuth). On the upside, outsourcing user
verification is convenient for users and reduces development costs for service
providers, mitigating the risks of developing a custom solution from scratch.
c© Springer International Publishing AG 2016
B.B. Brumley and J. Röning (Eds.): NordSec 2016, LNCS 10014, pp. 235–255, 2016.
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On the downside, however, outsourcing authentication has been justly criti-
cized for its impact on privacy: the authentication provider serving as trusted
third party gains precise information about a user’s preferred services, her usage
behavior, as well as the success of a given service. While undesirable for both
service providers and their users, the former often choose user convenience and
development speed over privacy, whereas most of the latter apparently do not
care. Clearly, there is a lot of room for improving the outsourcing of authentica-
tion in terms of user privacy. The privacy of phone-based three-party authenti-
cation, however, has not been considered until now.

This paper proposes Passphone, a smartphone-based two-factor authen-
tication scheme which outsources user verification to a trusted third party
while protecting user privacy. To the best of our knowledge, our scheme is the
first smartphone-based one to incorporate anonymity and unlinkability despite
employing a trusted third party. We conduct a systematic analysis of our scheme
in terms of its security, privacy, feasibility, and competitiveness. In particular,
we analyze its security and privacy properties formally, report on a practical
implementation, and evaluate its competitiveness under the framework of Bon-
neau et al. [11]. We also conduct an automatic security analysis using the well-
known computer-aided proof system AVISPA [4]. In what follows, after a brief
review of related work, Sect. 3 introduces our authentication scheme. Section 4
formally analyzes its authentication security and privacy properties and Sect. 5
reports results from an automatic security analysis. Section 6 discusses insights
gained from implementing our scheme, Sect. 7 compares it to a selection of exist-
ing phone-based solutions, and Sect. 8 discusses its practical application.

2 Related Work

Privacy in Federated Authentication. Dey and Weis [17] propose PseudoID,
which can be considered the complement of our scheme for traditional password
authentication. Their scheme also employs blinding to render users unlinkable
across service providers. Dey and Weis show the unlinkability of their authen-
tication scheme, but give neither an actual protocol nor an analysis. A proof
of concept had been published, but the associated web page has disappeared.
Otherwise, the privacy issues of federated authentication services have been high-
lighted in many contexts: for example, Urueña et al. [44] consider a privacy prob-
lem that concerns OpenID and Facebook Connect. They find that the unique
identifier assigned to users by both services may leak to third parties, allowing
to track users across web services since they encode user identifiers in the GET
parameters of URLs. Riesch and Du [38] and Nuñez et al. [33] propose ways to
solve the privacy issues of OpenID; Nuñez and Agudo [32] finally proposed a
blinded version of OpenID called BlindIdM.

Phone-Based Two-Factor Authentication. Banks have been among the first
to roll out two-factor authentication schemes for transactions, whereas online
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games and Google first deployed this technology at scale for web user authen-
tication [22]. In light of recent security breaches [21,27,28], a shift toward two-
factor authentication can be observed since several major companies such as
Microsoft, Apple, and Facebook, some of which suffered attacks, rolled out their
own implementations [3,31,40].

In the literature, Dodson et al. propose Snap2Pass [19,20] and van Rijswijk
and van Dijk propose Tiqr [45]: both are phone-based schemes that use
QR codes to transmit a challenge from a service provider via a user’s browser to
her phone, which responds to the challenge. Dodson et al. also consider outsourc-
ing authentication to a trusted third party (an OpenID provider); though, they
do not tackle the privacy issues associated with this approach. The authentica-
tion schemes by Aloul et al. [1] and Hallsteinsen et al. [23] are also phone-based
challenge-response protocols based on one-time passwords (OTPs) that are gen-
erated using a previously shared secret between a user and a key server. This
OTP is then transmitted to the device and used as a second means of authen-
tication. In both two-factor authentication schemes, the key server can learn
precisely which user tries to authenticate at which service. Karapanos et al.’s
SoundProof [26] aims at increasing the adoption of two-factor authentica-
tion by avoiding the need for user interaction with their device. Instead, their
authentication detects the physical proximity of the smartphone via matching
the ambient sound of their environment. While the approach puts forth usability,
it can protect neither against physical nor against man-in-the-middle or phishing
attacks, and it is not easily deployable for service providers. Shirvanian et al.
[39] categorize smartphone-based two-factor authentication schemes concerning
the amount of data transmitted between client and phone. They concern four
challenge/response formats: (1) a low-bandwidth variant which uses a PIN as
second factor, (2) a mid-bandwidth variant with a QR-code challenge, a full-
bandwidth variant which transmits challenge and response via Bluetooth, and
another full-bandwidth variant which transmits challenge and response via WiFi.
Their protocols are simpler and applicable on a wide range of devices; however,
their low-bandwidth variants provide only 20 bits of additional security from a
PIN or a low-resolution QR code, and the mid-bandwidth and the full-bandwidth
versions require a complex setup with either a webcam, Bluetooth, or WiFi chan-
nel controlled by the client.

While the above schemes are those closely related to ours, a number of other
schemes concern transaction authentication via untrusted devices, such as the
ones of Clarke et al. [14], Wu et al. [46], Parno et al.’s PhoolProof [35],
Starnberger et al.’s QR-TAN [41], Mannan and van Oorschot’s MP-Auth [29,
30], and Czeskis et al.’s PhoneAuth [16]. Altogether, however, we are unaware
of any phone-based authentication scheme that improves deployability for service
providers via outsourcing while incorporating user privacy.

3 The PASSPHONE: Authentication Scheme

This section introduces our authentication scheme. We overview the three parties
involved, the devices at their disposal, and how they interact within protocols for
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bootstrapping and authentication. For completeness, we also introduce protocols
for key management.

Parties and their Devices. Our scheme involves the following parties:

– P A prover who wants to use a service provided by S .
– S A service provider, who wants to authenticate P .
– T A trusted third party of prover P and service provider S .

The prover is a human, while the service provider and the trusted third party
host server-side services. The prover uses the following means to interact with
these services:

– PS The prover’s browser to access a service of S .
– PT The prover’s phone to authenticate with T .
– PM The prover’s mail box.

We assume that servers and the prover’s devices have computational power at
least comparable to that of current commercial off-the-shelf computer hardware
and that they can communicate with each other via the Internet. The prover
has all her devices under her full control (i.e., they are not compromised).

3.1 Bootstrapping

To get started, a prover P completes two bootstrapping steps: registration with
the trusted third party T , and activation of our authentication scheme at her
service provider S.

Registration Protocol. For registration, P installs an authentication App PT
on her phone (authenticator, for short). The App may be shipped by T and is
ideally available open source. When P launches PT for the first time, PT gen-
erates a new key pair (Kp

PT ,Ks
PT ), asks for P ’s mail address IDPM , and then

initiates the registration protocol. Table 1 lists the protocol’s communication
steps; each step is denoted as:

(<step>) <sender> → <receiver> : <message>,

where a message is optionally encrypted and consists of a header, a payload, and
an optional signature:

<message> ::=EK((<header>,<payload>)<signature>),

where EK denotes an encryption scheme with key K. The <header> contains a
domain identifier, step number, protocol version, and sender identifier:

<header> ::= [<domain>,<step>,<version>,<sender>].

In Step (1) of the registration protocol, the authenticator chooses uniformly at
random a nonce NPT and derives the hash value hPT = H(NPT ). Prior, it
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Table 1. Protocol to register with the trusted third party.

generates a key pair with a secret part Ks
PT and a public part Kp

PT ; the public
part, together with IDPM and hPT , is signed by PT and sent to the trusted third
party T . Since the identifier IDPT has not been verified by T , yet, we reserve
the zero byte value as sender identifier. To verify the prover’s mail box PM , the
trusted third party sends a signed challenge containing a nonce NT in Step (2).
The prover forwards this message X to her authenticator in Step (3), which
responds to the challenge by signing X and sending it back to T in Step (4).
After successful verification, the trusted third party generates a new unique
nonce N ′

T , generates IDPT = H(N ′
T , hPT ), and sends N ′

T to PT in Step (5),
which henceforth uses IDPT to identify itself. PT completes the bootstrapping
protocol by sending an encrypted key-management ticket for rekeying to its mail
account in Step (6). The prover keeps the ticket secret for later recovery of her
account. Since T is not aware of NPT , it cannot regenerate the tickets nor be
compelled to do so, e.g., by law enforcement.

Activation Protocol. To activate our scheme, the prover P creates an account
at S using PS . S initiates the activation protocol shown in Table 2, the purpose
of which is to verify that P is capable of authenticating via T , and to learn the
blinded identifier hPT of PT .

In Step (1) of the activation protocol, S sends a nonce NS . Next, PS computes
the hash hS = H(IDS‖NS ) to hide the identity of S from T . In Step (2),
PS sends hS to T . Note that for messages from PS , we use a constant 1 that is
identical for all users. In Step (3), T responds with a signed challenge, consisting
of the nonce NT along with the blinded identifier hS . In Step (4), PS forwards
the entire previous message X to PT along with IDS and NS . PT checks the
message, and in particular if hS found in X fulfills hS = H(IDS‖NS ). Meanwhile,
the prover has to confirm manually that she wants to sign up for the service
provider S . In that case, PT responds to T ’s challenge by sending a copy of the
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Table 2. Protocol to activate two-factor authentication.

message X in Step (5). After verification, in Step (6), the trusted third party
computes hPT = H(IDPT‖NT ) to blind the prover’s identity, IDPT , and sends
a signed authentication ticket to PS which consists of the blinded identifiers hPT

and hS . Henceforth, the trusted third party maps hPT to IDPT . In Step (7),
PS forwards the ticket to S . Finally, if the ticket is valid, S assigns hPT to the
prover’s user account and activates our authentication scheme.

This protocol ensures the privacy properties of our authentication scheme by
two means: first, the identifier IDS of the service provider is blinded to obtain hS ,
so that the trusted third party cannot figure out which service provider the prover
uses. Second, the trusted third party blinds IDPT to obtain a provider-specific
identifier hPT . This way, colluding service providers cannot identify shared users
by comparing authenticator identifiers.

3.2 Authentication

A prover P authenticates herself at her service provider S , e.g., when signing
in for a new session. Here, the second factor is checked using the authentication
protocol shown in Table 3. While all other protocols of our scheme are invoked
only occasionally, this protocol is run on a regular basis.

S initiates the authentication protocol. This protocol is designed similar to
the aforementioned activation protocol, with the difference that the prover’s
provider-specific identifier hPT is carried through all steps. In Step (1), the
service provider sends a session nonce NS to ensure freshness along with hPT

to PS . In Step (2), PS blinds the service provider’s identifier by comput-
ing hS = H(IDS‖NS ), and sends it together with hPT to T . In Step (3),
T responds with a signed challenge containing NT , hPT , and hS . PS forwards
the entire previous message X along with IDS and NS to PT in Step (4), which
verifies the incoming message. The prover then is asked to confirm that she wants
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Table 3. Protocol to authenticate the second factor.

to authenticate herself at the service provider S . In the affirmative, PT responds
to T ’s challenge by sending a signed copy of the message X in Step (5). After
successful verification, in Step (6), T sends a signed authentication ticket con-
sisting of hPT and hS to PS , which forwards it to the service provider S in
Step (7). Finally, if the ticket is valid, S grants P access to her service.

Again, the trusted third party never obtains information about the service
provider’s identity. Each time the prover logs into her service provider, the
provider’s identifier is blinded using a fresh nonce. Thus, from the perspective
of the trusted third party, every run of the authentication protocol is unique.

3.3 Key Management

The prover’s private key is stored on her phone. Losing it locks her out of ser-
vice providers where she activated our authentication scheme, whereas the lost
authenticator may still be used by an adversary to gain access to the prover’s
accounts. To react in case of such an emergency, corresponding protocols for key
revocation and rekeying are provided, which are concerned in the following.

Key-revocation Protocol. As an immediate reaction upon the loss of her
authenticator, the prover turns to her service provider and logs in with her first
factor. When the service provider initiates the authentication protocol, its first
three steps are executed automatically. In Step (4), however, instead of pro-
ceeding, the prover initiates the key-revocation protocol shown in Table 4(top).
In this case, PS sends a revocation request to T , including the previous mes-
sage X, and then cancels the login attempt at S . Meanwhile, T revokes the
prover’s public key if the signature of the revocation request could be verified
with the prover’s old key. Finally, a confirmation mail is sent to the prover’s mail
box PM .

Rekeying Protocol. To regain control of her accounts after key revocation, the
prover uses a rekeying ticket that was generated during registration (see Table 1,
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Table 4. Protocols for key revocation and rekeying.

Step (6)). Using this ticket, the prover initiates the rekeying protocol shown
in Table 4(bottom) to exchange her revoked public key with a new one at the
trusted third party. To do so, the prover orders a new, blank authenticator PT
from T and forwards the rekeying ticket to PT in Step (1). PT checks the ticket’s
validity by verifying that IDPT = H(NT ‖ H(NPT )) and then generates a new
key pair (K ′s

PT ,K ′p
PT ). PT samples a new nonce N ′

PT at random and computes
h′
PT = H(N ′

PT ). In Step (2), the new public key K ′p
PT is sent along with the

ticket and h′
PT to T . The message is signed using the new secret key K ′s

PT . From
the ticket, T extracts IDPT , and verifies if IDPT = H(NT‖H(NPT )) holds and
if IDPT corresponds to Kp

PT in T’s database. If successful, T registers K ′p
PT as

P ’s new public key and generates a new unique identifier ID ′
PT = H(N ′

T‖h′
PT ),

using a fresh nonce N ′
T . In Step (3), N ′

T is sent to PT , which also computes
ID ′

PT and uses it as its new identifier. Rekeying is completed by sending a new
rekeying ticket to the prover’s mail box PM in Step (4).

Altogether, from a prover’s perspective, the infrequently invoked key-
management protocols provide for a consistent experience since manual actions
(i.e., passing challenges to the authenticator) are unified with those of registra-
tion and authentication.

4 Formal Security Analysis

This section summarizes the results of an in-depth analysis of the security and
privacy of the Passphone scheme when employed as second factor in a two-



Passphone: Outsourcing Phone-Based Web Authentication 243

factor-authentication setup. Due to space limitations, we omit the proofs to our
theorems in this section and provide them in the full version of this paper [36].

4.1 Authentication-Attack Resistance

Notation. The quality of an adversary A against a security notion sec is mea-
sured by its success probability Pr[Succsec] in winning a game Gsec that models
sec. Let x � X denote the sampling of x uniformly at random from a distri-
bution X and let {0, 1}n denote the set of all n-bit strings. We consider a set
of provers P and a set of service providers S, where we define that each prover
P i ∈ P has a browser instance PS i and her authenticator PT i under her control.
The set U denotes the union of P ∪ S ∪ {T}.

Assumptions. We follow the standard assumption that legitimate parties
(provers and service providers in our case) behave honestly : they do not under-
stand the semantics of a message before a protocol run completed successfully.
We assume that provers, service providers, and the trusted third party commu-
nicate over the open Internet, relying on the existing Public-Key Infrastructure
(PKI) of TLS for establishing a secure channel with one-sided authentication of
S and T towards the prover (PS , PT ). This means, we assume that all service
providers S and the trusted third party T possess a public key encoded in a
valid TLS certificate. The PKI trust assumption is a current best practice for
securing the communication between web services and their users. Further, our
cryptographic model assumes that the client PS does not manage any perma-
nent state, which is reasonable for a web browser, and that PS executes a correct
version of the protocols (e.g., code that was signed by T ).

We recommend that all honest parties employ certificate or public-key pin-
ning for the trusted third party and for service providers (i.e., mapping the hosts
to their expected X.509 certificate or public key by explicit whitelisting). More-
over, we propose to bind TLS connections to specific channels by employing a
fixed version of either the tls-unique approach from RFC5929 [2] or Google’s
Channel ID [6] (see [8,9,25] for attacks and fixes).

Adversarial Model. The goal of the probabilistic polynomial-time (PPT)
adversary A is to authenticate as some honest prover P i at some honest ser-
vice provider S j . A is aware of the behavioral limitations of honest parties and
tries to exploit them. The adversary can eavesdrop, intercept, insert, modify,
or delete all communication that is transmitted over the network, but cannot
modify the communication transmitted from the prover’s browser to her authen-
ticator, which is a fair assumption when using, e.g., scanned QR codes. A can
impersonate a prover, a service provider, or both. The use of TLS prevents it
from acting as T or as an honest S in the view of the prover. Moreover, we
assume that the cryptographic primitives used are secure. So, A cannot recover
a secret key, predict a random value, find a hash-value’s preimage, a collision,
or forge a signature with significant advantage. Prior to registration and activa-
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tion, all parties agree on a security parameter τ ,1 so that all signatures are of
length at least τ bits, all nonces and hash values created by H have 2τ bits, and
all symmetric and asymmetric secret keys for encryption (again, for TLS) and
signing have an effective key length of at least τ bits.

We define an authentication game denoted GAuth, which takes as input a tuple
(τ , qexe, qsend, qtest), and provides A with access to the following queries:

– Setup(1τ ): The registration and activation steps are executed once to generate
the secrets of all involved parties.

– Execute(P i,S j ,T ): Models a passive adversary A who eavesdrops a cor-
rect execution of the authentication protocol between a prover P i, a service
provider S j , and T . The output is given by the transcript of the protocol
between P i, S j , and T .

– Send(U,U ′,m): Models an active attack, wherein the adversary A intercepts,
modifies, replays, forwards, or creates a message m in the name of party U to
party U ′, where U,U ′ ∈ U . The output of such a query is the message that U ′

would generate after receiving m. A special message Start can be sent in the
name of a prover to a service provider to initiate a session between them with
the trusted third party.

– Corrupt(P i,S j): Models that the secret for the first factor pwdi,j of P i at S j

has been compromised. The output of this query is pwdi,j .
– Test(P i,S j): Models an authentication request of A in the name of P i at

service provider S j . The output is a bit b, which is 1 if and only if the authen-
tication succeeds and P i and S j are honest; otherwise b is 0.

For all inputs, the output bit b of Test(P i,S j) after a correct execution of the
authentication protocol between honest P i and S j will always be 1. We define
that any honest party immediately aborts a protocol run if it detects an invalid
message, i.e., an incorrect signature, unexpected service provider, incorrect ID,
non-matching hash, or invalid message format.

Theorem 1. Let the employed public-key signature scheme be EUF-CMA-secure
and H be a random oracle. Then, for any PPT adversary A whose run time is
bounded by t and whose number of execute, send, and test queries are bounded
by qexe, qsend and qtest, respectively, it holds for a random execution of GAuth on
our protocol P that Pr[SuccAuth] ≤ q · 4/2τ , where q = qexe + qsend + qtest.

4.2 Anonymity

In the context of an outsourced three-party protocol, user anonymity refers
to the goal that an honest but curious trusted third party is unable to learn
which service provider(s) an individual prover has registered with and wants
to authenticate to. We model this goal by a game GAnon and an adversary A
who plays the role of T , i.e., A has access to IDs, public keys, and blinded IDs
〈ID i

PT ,Kp
PT i , 〈hj

PT i〉〉 of all provers P i. We define that at least one honest prover

1 In practice, τ ≥ 128 is fixed a-priori by the protocol (version).
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P and two honest service providers S 0 and S 1 exist in the game. At setup, the
challenger tosses a fair coin to obtain a bit b. Depending on b, P registers with
S b, and generates a secret pwd for the first factor. We define a special service
provider Ŝ which wraps S 0 and S 1 and appears as a black box to A. So, every
time S 0 or S 1 are involved in an execution of our protocols, the game models it
as an execution with Ŝ in the view of A.

A is given access to the queries Setup(1τ ), Execute(π, P i, S j , T ), Send(π,
U , U ′, m), which work similarly to their equivalents in the authentication game
above. As a difference, A must provide a parameter π ∈ {REG, ACTIVATE,
AUTH, REKEY, REVOKE} to execute the different protocols. A is not given
access to Corrupt queries, assuming an honest but curious adversary. Wlog.,
we assume that A asks no Send queries to T since it can always answer them
without interaction from other parties with the help of T’s private key. Moreover,
we define that A is prohibited from using S 0 or S 1 in its send or execute queries,
and may only use Ŝ instead. At the end of the game, A makes a Test(b′) query,
to which it must provide a bit b′. A wins the game GAnon if and only if b′ = b,
i.e., if it successfully guesses which service provider P has registered with. We
denote this event by SuccAnon and define the anonymity advantage of A against
a protocol scheme P as

AdvAnon
P

(A) = 2 · |Pr [SuccAnon] − 0.5 | .

Theorem 2 (Anonymity). Let the employed public-key signature scheme be
EUF-CMA-secure and H be a random oracle. Then, for any PPT adversary A
whose run time is bounded by t and which asks at most qexe execute and qsend send
queries, respectively, it holds for a random execution of GAnon on our protocol P:

AdvAnon
P

(A) ≤ (qexe + qsend) · 1/22τ .

4.3 Unlinkability

For authenticated key-exchange schemes, Tsudik and Xu [42] define unlinkability
as the property that no adversary A can associate two handshakes involving the
same honest party even if A participated in both executions. In the context of
web authentication, unlinkability means that no set of colluding service providers
is able to link a prover registered with multiple of their services. Clearly, there
must be at least two uncorrupted users to prevent the adversary from deducing
trivially which two executions involve the same party.

We define a third game GUnlink wherein A plays the role of two disjoint service
providers S 0 and S 1. The challenger plays the role of two honest provers P0 and
P1 and T . At the beginning, the challenger tosses a fair coin to obtain a bit b;
if b = 1, the challenger registers P0 with both S 0 and S 1, and P1 with none
of them. If b = 0, the challenger registers P0 with S 0 but not with S 1, and
P1 with S 1 but not with S 0. Likewise to the anonymity game, we define a
special prover P̂ which wraps P0 and P1 and appears as a black box to A. So,
every time P0 or P1 is involved in an execution of a protocol, the game models
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this as an execution with P̂ instead of P0 or P1 in the view of A. As before,
this configuration can be augmented by many more honest provers and service
providers. Additionally, A can control a set of malicious provers EP as well as
malicious service providers ES .

A is given access to queries of the types Setup(1τ ), Execute(π,P i, S j , T ), and
Send(π,U, U ′,m), for parties U,U ′ ∈ U , which work similar to their equivalents in
the anonymity game above. This time, A is prohibited from using P0 or P1 in its
queries, and must use P̂ as a replacement. When A uses P̂ and either of S 0 and
S 1 in an execute or send query, the challenger uses the prover as a replacement
for P̂ that can process the execution of the protocol correctly. Moreover, if A
invokes the registration, activation, rekeying, or revocation protocol for P̂ , the
challenger executes it for both P0 and P1. At the end of the game, A makes
a Test(b′) query and has to provide the bit b′. A wins the game GUnlink if and
only if b′ = b. We denote this event by SuccUnlink and define the unlinkability
advantage of an adversary A against a protocol scheme P as

AdvUnlink
P

(A) = 2 · |Pr [SuccUnlink] − 0.5 | .
Theorem 3 (Unlinkability). Let the employed public-key signature scheme
be EUF-CMA-secure and H be a random oracle. Then, for any PPT adversary
A whose run time is bounded by t and which asks at most qexe execute and qsend
send queries, it holds for a random execution of GUnlink on our protocol P:

AdvUnlink
P

(A) ≤ (qexe + qsend) · 1/22τ .

5 Automatic Security Analysis

Besides the formal security analysis, we also conducted an automatic secu-
rity analysis of Passphone using the well-known computer-aided proof system
AVISPA. After a brief overview of AVISPA’s capabilities, we describe the HLPSL
implementations of our protocols and the results obtained from feeding them to
AVISPA. Moreover, we conduct experiments by deliberately removing security
features from our protocols and observing the results from the proof system.

Background. AVISPA provides four backends for protocol verification: a Con-
straint-Logic-based ATtack SEarcher (CL-ATSE) [43], an On-the-Fly Model
Checker (OFMC) [7], a SAT-based Model Checker (SAT-MC) [5], and a Tree-
Automata-based backend (TA4SP) [10]. We rely on the widespread CL-ATSE,
OFMC, and SAT-MC backends; TA4SP does not support our setup. As input
to AVISPA, protocols must be implemented in the High-Level Protocol Specifi-
cation Language (HLPSL) [13]. HLPSL is a role-centric language well-suited for
software engineers and protocol designers.

Implementation Details. All of Passphone’s protocols have been imple-
mented in HLPSL. The full version of this paper lists the protocol implemen-
tations, and the source code is also available via Passphone’s web page at
http://www.passphone.org. Special care was taken to align the implementation

http://www.passphone.org
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Table 5. Results from AVISPA when omitting TLS in individual protocols. A • indi-
cates that TLS is mandatory to uphold security, and a ◦ that TLS is optional.

Protocol Communication step

(1) (2) (3) (4) (5) (6) (7)

Registration • n/a n/a • • n/a

Activation • • • n/a ◦ • •
Authentication • • • n/a ◦ • •
Key revocation • • • • •
Rekeying n/a • • n/a

as closely as possible with the protocol specifications found in this paper so
as to ensure that the results obtained from AVISPA allow for drawing conclu-
sions about them. For consistency and where the syntax allowed it, variable
names have been chosen to correspond with those used in the formal specifica-
tion as well. The two communication channels send (SND) and receive (RCV)
are defined in terms of the Dolev-Yao model (dy).

Since our protocols make use of TLS, this has to be reflected in our HLPSL
implementation. However, at present, neither AVISPA nor HLPSL support mod-
ularization of protocol implementations, so that the implementation of the TLS
protocol in HLPSL cannot be invoked from ours. When mixing both protocol
implementations into one file, this severely affects legibility. Therefore, for sim-
plicity, we model TLS by means of public keys assigned to each party, which
ensure both encryption and sender authenticity. This approach is sound and has
been applied in several other high-level protocol implementations using TLS.

Experiments and Results. We fed each protocol’s HLPSL implementation
to AVISPA and found that all of the aforementioned backends report that they
cannot identify any attacks. However, since implementations can be erroneous
and since there is currently no standardized unit-testing framework for HLPSL
protocol implementations, we conduct experiments and sanity checks in order to
verify that our implementation meets our expectations from the manual secu-
rity analysis. First, we changed each protocol’s implementation in a deliberate
attempt to make it insecure. The flaws introduced include the removal of TLS for
data-origin authentication, signatures, and nonces which opened various attack
vectors. We then fed the flawed versions to AVISPA in order to check whether it
picks up the vulnerabilities. Without fail, AVISPA identified them. This exper-
iment serves to raise confidence both that the authentication scheme comprises
little redundancy and that our implementation reflects well our scheme’s formal
specification. Second, we were particularly interested whether and to what extent
TLS is required to secure our protocols. We employ TLS mainly as a means for
data-origin authentication, whereas message encryption is optional. Since TLS
is the de facto standard in secure web communications, using a different proto-
col would severely limit the applicability and acceptance of our authentication
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scheme in practice. We systematically disabled TLS in a given step of a protocol,
re-running AVISPA each time to identify potential attacks that result from doing
so. Table 5 summarizes the results for each protocol. As expected, turning TLS
off allows for man-in-the-middle attacks in most steps that result from missing
data-origin authentication.

6 Prototype Implementation

We implemented all of Passphone’s protocols as a proof-of-concept prototype,
which is freely available at https://www.passphone.org. This section discusses a
selection of implementation details.

Trusted Third Party T . The trusted third party is a web service that offers
an API used by authenticators and the prover’s browser PS . We implemented it
as a Java Servlet to share the implementations for message encoding and cryp-
tography between T and that from our current smartphone implementation. To
protect the signing key, we recommend the use of a cryptographic module—e.g.,
according to the FIPS-140 standard [34]—which protects the signing key of the
trusted third party from being copied and which would accelerate cryptographic
computations for scalability. This would render compromising the trusted third
party’s key much more difficult compared to keeping it on hard disk.

Service Provider S and Client PS . For our prototype, we implemented two
service provider stacks: one as a Ruby-based service running on an nginx server
with a MySQL database, and a similar second service provider as a Java Servlet.
The trusted third party provides plugins for the most widely-used web software
stacks (LEMP/ LAMP, Ruby on Rails, etc.), authentication libraries, and web
applications. However, given the large number of possible configurations, it is
difficult to provide a plugin for each one right away. To minimize the development
overhead, we divide plugins into a major, canonical part, and a lightweight, stack-
specific part. The major components may be deployed into a virtual machine or
on a dedicated server to be run next to an existing service. The lightweight
plugins offer the stack-specific API to handle our authentication scheme so that
the required changes to existing services are minimally invasive.

Authenticator PT . We implemented the prover’s mobile authenticator as a
smartphone App for Android devices with SDK 16 and above which currently
supports more than 96 % of Android smartphones on the market.2 The wide-
spread distribution of Android smartphones made this design decision straight-
forward in terms of usability since they are among the few things many people
carry with them at all times. We employed the BouncyCastle library3 for cryp-
tographic primitives, using SHA-256 as hash function and 256-bit EC-DSA as
signature scheme, and the ZXing library4 for handling QR codes.

2
https://developer.android.com/about/dashboards, State of Aug 1, 2016.

3
http://bouncycastle.org/.

4
https://github.com/zxing/zxing.

https://www.passphone.org
https://developer.android.com/about/dashboards
http://bouncycastle.org/
https://github.com/zxing/zxing
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Challenge Encoding and Transmission. We resort to QR codes for encod-
ing challenges to reduce the typing effort for the user [20,39,41,45]. QR codes
exploit the physical proximity of the prover’s devices by changing the commu-
nication medium in a way so that an adversary cannot intercept a transmitted
message unless looking over the prover’s shoulder. In general, the more coarse-
grained a QR code can be made, the more robust it is with regard to legibility in
various situations of screens, lighting, and camera quality. In our setup, we keep
the messages that are transmitted via QR codes small by the use of EC-DSA
instead of, for example, RSA-based signatures. Our tests show that scanning QR
codes is a robust channel when employing version-10 codes (which can encode
up to 213 bytes) and medium-level error correction (15 % of codewords can be
restored).

Performance and Usability. To estimate the performance of our imple-
mentation, we evaluate the run times needed for the authentication protocol.
We use two dual-core mobile phones with 1.2 GHz (Samsung-Intrinsity Exynos
S5PV310) and 1.7 GHz (Qualcomm Snapdragon 400) processors and cameras
with resolutions of eight megapixels. We conduct 20 authentication processes.
Besides logging in with the first factor, the majority of time was spent to align
the QR code, which took trained smartphone users about 3–5 seconds on aver-
age, whereas the ZXing library picks up a QR code as soon as it is in view.

In terms of usability, our implementation adopts the current best practices—
e. g., scanning of QR codes—employed in phone-based authentication. Since the
required user actions do not differ from those of other authentication schemes
employed in practice, we omit a detailed discussion of usability. Nevertheless,
we have tested and used our implementation on human test subjects. Our pro-
totype has been deployed as an exhibit at a recent open house presentation. On
that occasion, laymen from the general public as well as interested colleagues
from other universities for a total of 55 people have tried our prototype. We
observed that all visitors expressed concern for their own security, and under-
stood the concept and importance of privacy preservation in authentication. All
regular smartphone users among our testers had little to no difficulty in follow-
ing the instructions given by our App, as all of them said they occasionally scan
QR codes, and, with little explanation (i.e., within less than three minutes), all
interested visitors also managed to perform a test run of the rekeying protocol.
Altogether, in terms of usability, our prototype is on par with the state of the
art in that it adopts their best practices, but of course a lot has still to be done
to achieve maturity.

7 Comparative Evaluation

This section compares Passphone to others from the literature under the frame-
work of Bonneau et al. [11]. Table 6 summarizes the results of comparing our
scheme to 10 other smartphone-based two-factor authentication schemes with
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respect to 25 common features an authentication scheme can offer.5 The fea-
tures have been collected by Bonneau et al., and while their names may seem
self-explanatory, some of their definitions are intricate. For many features, Bon-
neau et al. also specify a quasi-variant, where an authentication scheme offers a
feature with some reservations. In what follows, we discuss Passphone’s rating
in comparison to that of the others.

Usability. As outlined above, Passphone is on par with previously published
schemes in terms of usability since it adopts their best practices (i.e., transmit-
ting QR codes via smartphones has been studied already). Therefore, we consider
our scheme Quasi-Scalable-for-Users since it reduces the risks of password reuse
similar to PhoneAuth, and Quasi-Nothing-To-Carry, based on the assumption
that smartphones will continue to spread. Likewise, our scheme is quite Easy-to-
Learn since scanning QR codes is a daily routine for regular smartphone users.
During authentication, the user has to enter only her password as a first factor,
which results in Quasi-Infrequent-Errors, and which makes it Quasi-Efficient-
to-Use. More generally, our scheme provides equivalent usability compared to
Google 2-step, but performs better than PhoolProof, Cronto, and Tiqr,
because it features Easy-Recovery-From-Loss based on our extensive key man-
agement protocols. Arguably, key management may be added to these schemes,
but corresponding research is still missing.

Deployability. Concerning deployability, Passphone outperforms most other
solutions. PhoneAuth and Tiqr have the highest ratings with respect to Bon-
neau et al.’s framework, whereas Tiqr is more mature. Our scheme is Quasi-
Accessible since it is compatible with screen readers on both desktop and mobile.
Moreover, it has Quasi-Negligible-Cost-per-User since no SMS need to be deliv-
ered. Our scheme requires only small changes at service site (i.e., the integra-
tion of a plugin), which renders it Quasi-Server-Compatible. In this regard, our
scheme is comparable to PhoolProof, which has been similarly assessed in [11].
Beyond JavaScript, our scheme has no requirements to the prover’s browser,
which sets it apart from PhoneAuth or PhoolProof.

We do not fully agree with the rating of PhoneAuth provided by its authors
regarding Maturity as well as Browser-Compatibility : currently, the research pro-
totype seems unavailable at any public outlet, and the scheme works only with an
experimental version of Google Chrome. Thus, we demoted PhoneAuth’s rat-
ings accordingly, compared to those reported in [16]. Obviously, being a research
prototype, our scheme is also not mature, yet.

Security. Concerning security, Passphone is almost on par with the two best-
performing schemes PhoolProof and Cronto, the only difference being that
our scheme involves a trusted third party. While resorting to trusted third par-
ties is often avoided in security protocols, we argue that including a trusted
third party becomes a lot less detrimental when incorporating user privacy. It
5

Regarding Google 2-step, we adopt the rating from [16] since one of that paper’s authors works at
Google Security and may have deeper insights into their scheme; regarding the proposals from [39],
we consider the mid-bandwidth and the full-bandwidth schemes with a similar security level as
ours.
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Table 6. Comparison of phone-based two-factor authentication schemes according
to the evaluation framework for authentication schemes by Bonneau et al. [11]. The
framework considers 25 features an authentication scheme can offer with respect to
usability, deployability, and security. Each column names one feature, and each scheme
is rated based on whether it offers the feature (•), it quasi offers the feature with
reservations (◦), or it does not offer the feature (–).

Authentication scheme Usability Deployability Security (Res. = Resilient) Summary
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Cronto [15] – – ◦ – • ◦ ◦ – – ◦ – • • – • • • • ◦ • • • • • • 13 5

FBD-BT-BT/WF-WF [39] – ◦ ◦ – • • • – ◦ ◦ – – – • • • • • • • – • • – • 13 4

FBD-QR-BT/WF [39] – ◦ ◦ – • • ◦ – ◦ ◦ – – – • • • • • • • – • • • • 13 5

Google 2-step [22] – – ◦ – • ◦ ◦ ◦ ◦ – – • • – – ◦ • – – • • • • • • 10 6

MBD-QR-QR [39] – ◦ ◦ – ◦ ◦ – – ◦ ◦ – ◦ – • – • • • – • – • • • • 9 7

MP-Auth [30] – – ◦ – • ◦ – ◦ ◦ ◦ – – – • – ◦ – – – – • • • • • 7 6

PhoneAuth (opportunistic) [16] – ◦ ◦ – • • ◦ • • • ◦ – ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ 9 13

PhoolProof [35] – – ◦ – • ◦ ◦ – ◦ ◦ ◦ – – • • • • • ◦ • • • • • • 12 7

SoundProof [26] – – ◦ – • • ◦ ◦ • • – • – • ◦ – • • – • • • • • – 13 4

Tiqr [45] – – ◦ – • ◦ ◦ – ◦ ◦ ◦ • • • – • – – ◦ • ◦ • • • • 10 8

Passphone (this paper) – ◦ ◦ – • ◦ ◦ • ◦ ◦ ◦ • – • • • • • – • • • – • • 13 7

is an open question if this consideration merits introducing the feature Quasi-
No-Trusted-Third-Party into Bonneau et al.’s framework, but we refrained from
doing so in our evaluation. In general, our scheme covers all security-related fea-
tures, but we cannot guarantee Resilience-to-Internal-Observation; if an adver-
sary has full control over the prover’s device, she might be able to recover the
secret key. Our threat model does not cover this case and we leave it for future
work. Finally, we would like to point out that our scheme features Unlinkability
despite the fact that it uses a trusted third party.

For ease of comparison, Column “Summary” in Table 6 gives the counts of
features and quasi-features. Altogether, our scheme offers as many full features as
the competition despite suffering losses for introducing a trusted third party and
for not being mature, yet. This is encouraging since this evaluation demonstrates
the potential of our authentication scheme for future research and development
as well as for transfer into practice.

8 Practical Application

Choosing the First Factor. Similar to other phone-based two-factor authen-
tication schemes from the literature, Passphone does not aim at replacing the
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still prevalent password authentication, but at strengthening it in a two-factor
setup. The option of outsourcing the verification of the second factor plus the
privacy properties of our scheme, however, renders it attractive for small service
providers since it enables them to add two-factor authentication with comparably
small development overhead to their existing authentication solution. The first
factor used in conjunction with our protocols is therefore not at all tied to the use
of login and password; for example, it can be based on physical tokens, biomet-
ric properties, or another challenge-response protocol. In practice, however, most
service providers still employ passwords as a first factor, exchanging passwords
over TLS, processing them with a password-hashing function, and storing them
at server side as salted password hashes. Nevertheless, Passphone’s security
does not rest with the first factor employed.

Limitations of Web-based Authentication. Regarding authentication for
web services, we concede that privacy-unaware users may still easily be tracked
by means not related to our protocol (e.g., by searching for reused mail addresses
or credentials). Moreover, users should be aware that their browser and OS con-
figuration is used by many tracking services. Anonymous communication tech-
niques, such as TOR [18], can be combined with Passphone to also provide
IP-level anonymity and unlinkability; however, securing the user from all pri-
vacy perils is clearly beyond the scope of what a web-based authentication pro-
tocol can address. We stress, however, that Passphone does not introduce yet
another angle of de-anonymizing users, which is a first in the domain of web
authentication.

9 Conclusion

This work introduces Passphone, a new phone-based two-factor authentication
scheme, consisting of all protocols necessary for bootstrapping, authentication,
and key management. Passphone is designed with a focus on deployability:
it allows for easy integration at service providers by outsourcing authentica-
tion to a trusted third party. Moreover, it is the first web-based three-party
authentication scheme that protects the privacy of its users by minimizing the
amount of information shared among the parties involved, hiding the relation
of users and service providers from the trusted third party, and rendering users
unlinkable among service providers. We analyze Passphone’s security, show its
privacy properties, and present insights from a proof-of-concept implementation.
Under the authentication scheme evaluation framework of Bonneau et al., our
scheme competes with the best-performing ones from the literature. In conclu-
sion, with the success of outsourcing first-factor authentication, also outsourc-
ing the second-factor authentication in a two-factor setup is reasonable, albeit,
ideally using different trusted third parties for each factor to spread risks. We
hope that Passphone’s privacy properties will inspire more privacy-awareness
in future protocol designs.
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Abstract. User authentication is a key technology in human machine
interaction. The need to establish the legitimacy of transactions and
possibly the actors behind them is crucial for trustworthy operation of
services over the internet. A good authentication method offers security,
usability and privacy protections for the users and the service providers.
However, achieving all three properties with a single method is a dif-
ficult task and such methods are not in wide use today. We combine
methods from biometrics, secure key exchange algorithms and privacy-
protecting authentication to build an authentication system that achieves
these three properties. Our system uses keystroke dynamics to authen-
ticate the user and cryptographic methods to protect the privacy of the
templates and samples and to extend the authentication to key exchange.
The results show that the system can be used for user authentication, but
more work is needed to protect against impersonation in some cases. Our
work is extensible to many other biometrics that can be measured and
compared in a similar manner as keystroke dynamics and with further
research to larger classes of authentication methods.

1 Introduction

User authentication is one of the key technologies in human machine interaction.
The services provided in many contexts both locally and over the internet require
the user to provide assurance that she is authorised to access the service. To this
effect, a good authentication method provides security, usability and privacy
protection both for users and the service providers alike.

Generally, user authentication is done via three different types of factors. The
most common in web authentication is something you know, which is manifested
in the ubiquitous passwords that users need to type in order to gain access.
The second category of factors is something you have such as a key to a lock, a
list of one time passwords, a USB token or a mobile phone. These can be used
to authenticate the user towards services, usually through a challenge-response
system. The third factor is something you are such as a biometric, e.g., fingerprint
or a facial image. These factors are more common also in the identification of
individuals and in authentication between humans.

Different factors and methods of authentication offer different levels of secu-
rity, usability and privacy protection. A great study of various methods used
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-47560-8 16



Secure, Usable and Privacy-Friendly User Authentication 257

in web authentication can be found in [6]. However, no single method can offer
the best from all of these categories. Thus, new methods and combinations are
needed.

To provide a good level of security, privacy and usability there need to be
systems that offer protection in all of these categories. For example, a randomly
chosen 16 character password is quite secure and offers good privacy, but it is
very hard to use. Thus the usability of such a scheme is rather low, although
some progress has been made to help people remember random secrets [7]. On the
other hand, many biometrics such as fingerprints and facial recognition systems
offer good usability and even security. The privacy protection of such systems
is often very poor and the templates can be easily used for surveillance and
identification in addition to the original authentication use case.

In this work we present a novel combination of known methods that can
achieve good performance in all three categories. By measuring the keystroke
dynamics of the user (i.e. timings related to keystrokes), when typing her user-
name, we can use this biometric to authenticate the user. We will then combine
this with privacy protection mechanisms from [27] to protect the biometric tem-
plates and samples and the protocol from [13] to combine all these into a secure
key exchange protocol.

The paper is organised in the following way. In the next section, we present
previous work on keystroke dynamics and privacy protecting authentication. In
Sect. 3 we describe the methods that we have used to build our authentication
system in more detail. In the fourth section we present the results of a user study
that we conducted with our system and we end the paper with discussion and
conclusions on our work.

2 Previous Work

Keystroke dynamics as a biometric have been researched extensively for many
years with earliest results already from the 1980s, e.g., [14]. They can be captured
both from regular keyboards, e.g., [19–21] or from mobile devices, e.g., [10,26].
The measurements are usually related to timings between keypresses and these
can be used for fairly accurate authentication results. On the other hand, these
can also be used for profiling and identifying users, e.g., [9], which causes privacy
considerations. For a more thorough survey on different methods of keystroke
dynamics see for example [3].

Privacy-friendly authentication, especially with biometrics, has been a topic
of research for some time. Some biometric features can be protected either by
specific schemes (many of which have been evaluated in [25]) or more generic
constructions such as fuzzy vaults [18] or fuzzy extractors [12]. In these ways, the
biometric information is either protected at the template level or only used to
generate cryptographic keys, which are then used for authentication. However,
the generic methods need to be tailored to suit each specific biometric and mea-
surement type and also contain some limitations of their own. This means that
applying these methods is not necessarily straightforward to any given biometric
and type of measurement.
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Another way to protect the privacy of biometrics is to build a privacy pro-
tection system specifically for some biometric, e.g., symmetric hash functions
for fingerprints [28]. Keystroke dynamics have not been extensively studied from
the privacy preserving authentication point of view. In [22], the authors present
a method for using keystroke dynamics on mobile phones and trusted comput-
ing technologies to provide some guarantees against privacy invasive attacks.
Their attack considers the situation, where the user is profiled by her keystroke
patterns by some (web) applications, without the user’s consent. Our method
protects against this type of attack, because the samples are encrypted before
sending them to the application or service provider. Furthermore, our methods
also protect the templates that are stored at the server both against breaches to
the server by malicious parties and from insider in the server end. This is not
covered in the threat model of [22].

From the usability perspective, authentication has also received a lot of
scrutiny. Security and usability have been seen as contradictory goals and in
many cases this can be validated, although it is not an absolute truth [6,8]. In
general, the pinnacle of usability would be that the authentication would not
impose any extra interaction between the user and the system. This is captured
fairly well in the concept of implicit authentication in [17]. This type of authenti-
cation is possible with many biometrics such as face, speaker or gait recognition.
There are also systems that provide privacy-friendly implicit authentication, such
as [27], which we will utilise in our constructions. The work in [27] is concen-
trated on profiling mobile phone users and protecting templates gathered from
these and our work adapts their system to the case of keystroke dynamics.

3 Methods

This section describes our methods for measuring the keystrokes, protecting the
templates and securing the authentication. We begin by briefly stating our threat
models.

3.1 Threat Model

Because our system is designed for both privacy and security, we have two dif-
ferent goals and threat models. For privacy, we consider an honest-but-curious
adversary at the server end. This is similar to the adversary of [27]. The adver-
sary is bound to respect the protocol, but may try to learn additional information
from the content of the messages and the internal computations that it carries
out during authentication.

For security, we have a more powerful adversary as described in [13]. To
break the security of the authenticated key exchange, the adversary can read,
send and modify messages in transit and, if multiple authentication methods
and/or factors are used, learn the secrets from these for any given client. The
adversary can also learn the secret key of any given server, i.e., corrupt a server, if
mutual authentication between the server and the client is provided. The results
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of [13] show, that the authenticated key exchange protocol is still secure, if at
least one factor or method remains unbroken or not corrupted.

3.2 Measuring Keystrokes

As can be seen from Sect. 2, there are many ways to measure the keystroke
dynamics of the user. Our approach started with the work from [1], where
four different features were measured from the keystrokes: the entered string
of characters and down-down, up-down and down-up times of each keystroke.
To simplify our approach, we decided to test whether we could achieve good
performance with only some of the timing measurements.

We chose to use the down-up times, up-down times and the entered string of
characters in our solution. The entered string of characters is an obvious choice
as it prevents the adversary from typing in just any combination of characters
with correct timings. However, we do not assume that this string of characters is
kept secret and thus it is not just another password. The down-up time measures
how long each individual character was held down and up-down time measures
how long was the difference from letting go of previous key to pressing down the
next one. We did not use down-down times since they aren’t independent from
the down-up and up-down times.

Furthermore, because the methods from [27] measure the distance of the
sampled vector to each of the template vectors, we could not use the averaging
of the times in our templates, which was done in [1]. In our templates, each
measurement was retained, in order to measure the sample against all these
values. This then resulted in slightly larger templates than in the original paper,
where averages could be used.

3.3 Protecting Privacy

The privacy protection of the templates was done according to the implicit
authentication scheme of [27]. Each of the templates was protected with two
methods, each component separately with partially homomorphic encryption
and with order-preserving symmetric encryption (OPSE). The partially homo-
morphic part of the template enabled computing the distance from the average
absolute deviation (AAD) of the sample from the template values and the OPSE
encrypted part enabled comparisons between the sample and some threshold val-
ues, which resulted in the final score that was used for deciding the successfulness
of the authentication attempt.

Like in [27], we used Paillier encryption [23] for the homomorphic encryption
and the results of Boldyreva et al. from [4,5] for the order-preserving encryption.
These are needed to protect the privacy of the templates and samples both in
transit between the client and server and also at the server end from the honest-
but-curious server itself. The details of the application of these are postponed
to Sect. 3.5, where our system is described in more detail.
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3.4 Providing Security

The security of our authentication is based on the multi-factor authenticated key
exchange (MFAKE) protocol from [13]. The protocol specifies three subprotocols,
one for each type of factor (passwords, biometrics and tokens). Each of these can
be run in parallel as many times as there are different authentication methods.
In our work, we used the keystroke dynamic as the first line of authentication.
If the biometric measurement was successful, the authentication proceeded with
the key exchange. If it was unsuccessful, the user could enter a password and
if it was correct the key exchange proceeded with all the information linked to
the key. This is the approach that is suggested also in [27] to be utilised with
the implicit authentication scheme. In a real world implementation the system
could enhance its performance by learning also from the false negatives (i.e. cases
where the implicit authentication fails, but password authentication succeeds).
If also the password authentication failed, the authentication was considered
completely failed.

The security of the MFAKE protocol is based on tag-based authentication
from [16] and this required some changes to the privacy-preserving authentica-
tion of [27]. These changes were minor and are discussed in more detail later in
this paper. The changes did not affect the security of the MFAKE or the level
of privacy protection.

3.5 Our Implementation

We implemented the above system using Python 2.7 with the help of some open
source libraries for cryptography: pycrypto1, paillier2 and pyope3. We used
the getch4 and clock5 Python functions for the keystroke timing measurements
and those gave us 0.44µs precision on the timing.

The first part of the program prompted for the user to provide a username.
If this was a new username, the system asked the user to type the username in
again for 9 times. This resulted in a total of ten vectors of timings that were
combined into a template of the user and the username.

All the measured times were then encrypted with both the homomorphic and
order-preserving encryptions and then sent for the server to store as the template
for this given username just as in [27]. Naturally, only the measurements from
the successful replication of the same username were stored.

The testing part was implemented in a way that the user was requested to type
their chosen username and the typing pattern was matched against the template.
Two thresholds were chosen from the empirical data to provide approximately
90 % acceptance rate. This test was repeated 10 times for each participant. The
scores were computed following the methods presented in [27] as follows.
1 https://www.dlitz.net/software/pycrypto/.
2 https://github.com/mikeivanov/paillier.
3 https://github.com/psviderski/pyope.
4 https://pypi.python.org/pypi/getch.
5 https://docs.python.org/2/library/time.html.

https://www.dlitz.net/software/pycrypto/
https://github.com/mikeivanov/paillier
https://github.com/psviderski/pyope
https://pypi.python.org/pypi/getch
https://docs.python.org/2/library/time.html
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Let HE = (KeyGenHE , EHE ,DHE) be a homomorphic encryption scheme,
such as Paillier, and OPSE = (KeyGenOPSE , EOPSE ,DOPSE) be an order
preserving symmetric encryption scheme. During system setup KeyGenHE and
KeyGenOPSE are used to generate the HE key pair (pk, sk) and the OPSE
key k.

The user profile is a pair U = (DU,UD), where DU = (V1, . . . , Vn) and
Vi = (vi(1), . . . , vi(10)), where n is the length of the username and vi(j) is the
time for down-up keystroke for the jth measurement of the ith character in the
template. Similarly, UD = (W1, . . . ,Wn) and Wi = (wi(1), . . . , wi(10)) is defined
as above, but for up-down timings. The accumulated user profiles contain tuples

(
EHE

pk (vi(j)), EOPSE
k (vi(j)), EHE

pk (wi(j)), EOPSE
k (wi(j)

)

for j = 1, . . . , 10 and i = 1, . . . , n.
The server can precompute the AAD, which will be used in the comparisons

between the template and the sample. The AAD from the encrypted values can
be computed as follows:

EHE
pk (AAD(Vi) × n) =

n∑

i=1

∣∣EHE
pk (vi(j)) − EHE

pk (Med(Vi))
∣∣

From the above it is straightforward to use the homomorphic properties of HE
and remove the scalar factor n by multiplying with n−1. The Med(Vi) denotes
the median of the values in Vi and this can be found by comparing the OPSE
encrypted values in the templates. This is done similarly to the values in Wi.

The actual scoring algorithm for authentication proceeds in two stages. First,
the samples taken by the client are encrypted into tuples

ei(t) =
(
EHE

pk (ctag × vi(t)), EOPSE
k (vi(t)), EHE

pk (ctag × wi(t)), EOPSE
k (wi(t))

)

for each variable vi. We extended the system from [27] by multiplying each of
the vector components of the measurement with the tag ctag computed by the
client. This was included in the computation of the template to provide tag-based
authentication, which is the basis for MFAKE and all its subprotocols. The tags
are required in order to guarantee the security of the system in MFAKE by bind-
ing all the utilised authentication factors and methods to a single session of the
MFAKE protocol. To initialise the MFAKE protocol the client and server per-
form an unauthenticated Diffie-Hellman key exchange [11]. The tag is the hash
value of the original Diffie-Hellman key, the identities of the two communicating
parties and all the messages exchanged by that time. We computed the tag using
the SHA-256 hash function.

In the server end, the server computes its own tag stag from its view on the
key and the transcript of messages. Then it can compute the inverse of stag
and multiply the vector components with that value to get to the “untagged”
values that are used for comparison. This could be done in a similar fashion as
with the AAD computation described earlier due to homomorphism (EHE

pk (s−1
tag×
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ctag × vi(t)), which equals EHE
pk (vi(t)) if the tags agree). After that, the server

computes the end points of the allowable interval for up-down times by

EHE
pk (bil(t)) = EHE

pk (vi(t)) − EHE
pk (AAD(Vi))

EHE
pk (bih(t)) = EHE

pk (vi(t)) + EHE
pk (AAD(Vi))

and similarly EHE
pk (cil(t)) and EHE

pk (cih(t)) for down-up times from the values
in Wi.

However, the server does not know how these can be compared with the
template values it holds. Thus in the second phase the server delivers the values
EHE

pk (bil(t)), E
HE
pk (bih(t)), EHE

pk (cil(t)) and EHE
pk (cih(t)) to the client. The client

decrypts these getting bil(t), b
i
h(t), cil(t) and cih(t). These are encrypted with

EOPSE
k and returned to the server. Now the server can count the number of

occurrences in the OPSE encrypted template that fall within the interval defined
by these two values. This number is then compared to the given threshold values.

If the matching was within the thresholds, the system would immediately
compute the authenticated key with the MFAKE [13] protocol. To this end the
client and server combined the transcripts of the message contents that had
been sent between them and hashed them with SHA-256 to generate the key.
If the username typing pattern was not recognised, the system would prompt
for a password. This password was tested through the MFAKE protocol and
again the authenticated key exchange would be completed, if a correct password
was entered. Otherwise, the authentication failed and a common key was not
established between the client and the server.

4 Empirical Results

In the user tests, we tested only the keystroke biometric and left the password
authentication part out. Thus, the user taught the system for keystroke dynam-
ics without using the secondary password authentication. This was reasonable,
because there is a lot of research on the benefits and weaknesses of password
authentication and how users perform with them. Our work would not bring
new insights on that front and we decided to focus on the effect of privacy
protection on the accuracy of the keystroke dynamics.

We tested our implementation with two groups of volunteers in two different
locations. Users were volunteers from academic institutions. The first group had
11 participants and the second 9 participants, making the total number of test
subjects 20. We ran the tests on both Windows and Linux operating systems on
two different laptops (one for each location).

Each of the subjects chose a username of 8–12 characters. Although in [1] it is
stated that less than ten characters is not sufficient for good accuracy, we decided
to let the subjects use also shorter usernames that might be more familiar to
them. The choice was not restricted in any way and the subjects were free to
choose completely new usernames or ones that they used in other systems.
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The tests were performed on hardware that was not the same in both loca-
tions, but that was available for the authors at the time. Some participants asked
to use their own keyboards to better reflect their real typing patterns. We allowed
this as our method could be used with any keyboard and a real implementation
would be used with wide variety of keyboards. Most of the participants used the
keyboard on the laptop.

The testing was divided into two parts with first the learning part and then
testing users after a short period of time. This interval varied from 2–7 days due
to the schedules of some participants not permitting them to participate at a
specific time. The results are further analysed and discussed in Sect. 5.

One third of the subjects chose an 8 character username, probably due to
legacy reasons from Unix machines. Others chose longer usernames with 10 and
12 characters being in the second place for popularity. The length of the user-
name did not have any significant impact on the accuracy of the measurements,
although the sample sizes are very small for reliable statistical analysis.

4.1 Authentication

In Fig. 1 we can see the scores from the first phase, the learning phase. These
scores were used to decide what would be feasible thresholds for authentication.
We set our target to 90% accuracy for the authentication. From the data we
computed for down-up time 3.5 as the threshold. For up-down time the threshold

Fig. 1. Scores from the learning phase. Scores from the two different locations are
differentiated with crosses and circles.
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Fig. 2. Scores from the testing phase. Scores from the two different locations are dif-
ferentiated with crosses and circles. The lines denote the values of the thresholds.

was 3.4 and in order to successfully authenticate the user had to pass both
thresholds while typing the correct username.

In Fig. 2 we can see the results from the second phase of tests. The horizontal
and vertical lines denote the thresholds chosen from the data of the first phase
for the up-down and down-up times respectively. During the second test phase
the users tried to authenticate themselves against the chosen thresholds. The
participants in the first location managed to authenticate themselves correctly
with 91% success rate with a standard deviation σ = 7%. In the second location
success rate was over 92% and the a standard deviation was σ = 10%. In total
the authentication success rate was slightly over 91.5% with a standard deviation
of σ = 9%.

4.2 Impersonation

We also carried out a small impersonation test together with the actual authen-
tication test. The test was conducted on three different usernames from the
usernames of the other test group. This simulated the situation of an attacker
trying to impersonate someone that she does not know. This is arguably the
hardest case of impersonation and attackers that are more familiar with the vic-
tim or that can try to learn the typing pattern by some form of observation could
have better chances of success. In any case, we saw this as a good indicator of
the security of our system despite the small sample sizes.

After the participant had completed the test with her own username, we
displayed a username from the other group of participants and asked the current
participant to type that username 5 times. After each attempt the scores from
that attempt were displayed to the participant attempting the impersonation.
We did this for 3 different randomly selected usernames for each participant.
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The impersonation challenge succeeded 42 times out of 195 tries so the success
rate was little below 22%. The success probability between different kind of
usernames varied greatly. The variance between the results of impersonation
attempts usernames is σ2 = 8.1% and thus the standard deviation is σ ≈ 28.5%.
In the best case the impersonation succeeded 9/10 of the time and in the worst
case it succeeded with 0/15 attempts.

Because the challenges were selected at random without any effort to bal-
ance the occurrences of different usernames, the results are only indicative of
the security and not easily comparable. With seven out of 18 usernames there
were no successful impersonation attempts (two usernames were not assigned for
impersonation at all). On the other hand, none of the three usernames, that were
impersonated by four different participants (total of 20 attempts) withstood all
attempts. The length of the usernames did not have a significant impact on the
security against impersonation.

5 Discussion

Our results show that this type of authentication can be used and it provides
usability, security and privacy protection to the user. However, more care needs
to be taken to make the impersonation harder for all usernames as the results of
Sect. 4.2 clearly show. The weakest usernames were too prone to impersonation
to provide any meaningful protection against adversaries. On the other hand,
more than half of the usernames were impersonated less than 10 % of the time,
when the acceptance threshold was tuned for 90 %.

In any case, our sample of some 20 people is too small to draw definitive
conclusions. Especially, if the length of the username would be considered as a
factor in both accuracy and security, then a much larger pool of users would be
needed. If the increased length would improve security and accuracy, it could
act as a positive sign for continuous authentication, where the typing would
be measured continuously and authentication would be based on the totality of
all things typed. Of course in this type of authentication the content would no
longer matter for the authentication unlike in our case with usernames.

One improvement could be to use some more recent methods of measuring
keystroke dynamics. This would most likely require readjusting the thresholds
to get the same level of accuracy. It might also generate larger templates and
decrease the overall performance of the system if more different values need to
be stored in the template. Thus, there is a trade-off that needs to be considered,
if future work is built upon this system.

Our inclusion of the tag in the keystroke dynamics vectors was necessary to
fit the methods of [27] to those of [13]. The tags provide security in the original
MFAKE protocol and are based on results of [16]. However, in our case, due
to homomorphism, these tags do not protect against a man-in-the-middle tag
change. That is, an active attacker could change the original tag t to another tag
t′ for the keystroke dynamics. The full MFAKE protocol mitigates against this by
including in the final computation not only the tag, but also all communications
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between the server and the client and thus, this change of tag can only lead
into a denial of service (i.e. failing authentication), which an active attacker can
always do against MFAKE.

Furthermore, the method of [27] also only provides security against honest-
but-curious adversaries and as such may constitute even more serious threat.
There is a version of the protection method of [27] that is targeted against
malicious attackers, but it does not provide much more security for the overhead
that it generates and thus we decided not to use it for our work. In a more
optimised implementation, the overhead might not become an issue.

The system could be improved also in several other ways. First of all,
one could apply more recent partially homomorphic or even fully homomor-
phic encryption (FHE) schemes, e.g., [15] to provide more versatility to the
comparison methods. This would mean that also other biometrics than key-
stroke dynamics based on simple timing would probably be applicable. Also the
order-preserving encryption could be generalised with other property preserv-
ing encryption schemes such as [24]. Such a system could offer better privacy
protection. Especially with FHE the adversary could not learn even the relative
order of the different values in the tempalates and samples. This would make
the OPSE encrypted parts of the vector unnecessary and make the comparison
much simpler. In this way it would increase the efficiency of the system provided
that the FHE is efficient.

Keystroke dynamics provide also an interesting opportunity for continuous
authentication while typing. This type of authentication has been discussed for
example in [2]. The methods described in this paper are not yet efficient enough
for continuous use. This provides an excellent venue for further research, because
the system described in [2] does not offer privacy protection at the same level as
our work. Also protecting other types of continuous authentication systems such
as facial images with privacy safeguards is an important topic. Generalising the
results of [27] to this direction would be an interesting topic of research.

Our solution to this privacy-friendly, usable and secure authentication is
also generalisable to many other biometrics. Our specific implementation only
assumes that the measurements are given in numeric form as a vector and an
identification threshold that can be adjusted through experiments or taken from
the literature, if such can be found for the biometric method at hand. This makes
it suitable to many other biometric authentication applications. The main con-
straint is that it can only measure the distance of the sample measurement
from the template with the AAD metric. This provides a good venue for further
research on the topic, e.g., finding ways to use other metrics in a similar manner.

6 Conclusion

In this paper we have shown that it is possible to realise a secure, usable and
privacy-friendly authentication from keystroke dynamics. Our method results in
fairly good performance even with a simple biometric measurement. The secu-
rity and privacy features are also provided, although for some usernames the
impersonation was very easy.
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Further development could make this type of authentication even applicable
in a continuous manner, measuring the user constantly while she is typing and
still assuring privacy and security. It is fairly straightforward to generalise the
system to work with other biometrics that use simple distance metrics for com-
parison and even more complicated systems can be realised with further research.
On the other hand, the overall efficiency of the system should be improved
through optimised implementation.
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16. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: Generic compilers for authenticated
key exchange. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 232–249.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8 14

17. Jakobsson, M., Shi, E., Golle, P., Chow, R.: Implicit authentication for mobile
devices. In: Proceedings of the 4th USENIX Conference on Hot Topics in Security,
p. 9. USENIX Association (2009)

18. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Crypt. 38(2), 237–257
(2006)

19. Mäntyjärvi, J., Lindholm, M., Vildjiounaite, E., Mäkelä, S.M., Ailisto, H.: Iden-
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