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To Prof. Sadaaki Miyamoto

This book is a token of appreciation to Prof.
Sadaaki Miyamoto for his scientific work that
has influenced us much in our own research,
for his unconditional support to MDAI
conference series, and last but not least for
his friendship.
Long and interesting scientific discussions as
well as long and interesting non-scientific
discussions have helped us to understand the
fuzzy world better.

Professor Sadaaki Miyamoto in MDAI 2010, in Perpinyà



Preface

In April 2016, Prof. Sadaaki Miyamoto retired from the University of Tsukuba. He
was born in Osaka in 1950. He obtained his Ph.D. from Kyoto University in March
1978. He joined the University of Tsukuba in 1978 (until 1990) and then again from
1994. During 1990–1994, he was Professor in the University of Tokushima. During
these years, he had a fruitful career producing some inspiring works.

We have prepared this book as a token of appreciation to him. The book collects
chapters written by colleagues and friends of Miyamoto. Authors of these chapters
have met Miyamoto in different occasions and all wanted to express their
appreciation.

The book includes a first chapter that presents an introduction on when we met
Miyamoto, a personal outline of some of his works, and a description of the con-
tents of the book. Then, the book contains its chapters divided into four parts that
roughly correspond to the terms in the title of the book.

Skövde, Sweden Vicenç Torra
Skövde, Sweden Anders Dahlbom
Tokyo, Japan Yasuo Narukawa
June 2016
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On This Book: Clustering, Multisets, Rough
Sets and Fuzzy Sets

Vicenç Torra, Yasuo Narukawa and Anders Dahlbom

Abstract This chapter gives an overview of the content of this book, and links them
with the work of Prof. Sadaaki Miyamoto, to whom this book is dedicated.

1 Introduction

In October 2000, the first editor of this volume visited Prof. Miyamoto’s lab in the
University of Tsukuba (Japan) for the first time, he stayed in the lab for two weeks.
This was the beginning of a fruitful collaboration that is at present 16 years old.

Later, in 2004, we started with the second editor in Barcelona the conference
series Modeling Decisions for Artificial Intelligence (MDAI 2004). Prof. Miyamoto
collaborated with the conference and gave one of the plenary talks. He has partici-
pated and supported the conference since then. He also organized MDAI 2005. The
second author visited Miyamoto’s lab with the first author in 2004. Prof. Miyamoto
gave him some of his papers on multisets, that later lead to some papers published
by IEEE.

Still later, the third editor enter the set of regular participants in the MDAI con-
ference. It was also in Japan, where he participated in MDAI 2009, held in Awaji
Island.

V. Torra (B) · A. Dahlbom
School of Informatics, University of Skövde, Skövde, Sweden
e-mail: vtorra@his.se

A. Dahlbom
e-mail: anders.dahlbom@his.se

Y. Narukawa
Toho Gakuen, 3-1-10, Naka, Kunitachi, Tokyo 186-0004, Japan
e-mail: narukawa@d4.dion.ne.jp

Y. Narukawa
Department of Computational Intelligence and Systems Science,
Tokyo Institute of Technology, 4259 Nagatuta, Midori-ku, Yokohama 226-8502, Japan
e-mail: narukawa@d4.dion.ne.jp

© Springer International Publishing AG 2017
V. Torra et al. (eds.), Fuzzy Sets, Rough Sets, Multisets and Clustering,
Studies in Computational Intelligence 671, DOI 10.1007/978-3-319-47557-8_1

1



2 V. Torra et al.

After the last MDAI 2015 (Fig. 1) conference in Skövde (Sweden) we decided
to prepare this volume and dedicate it to Prof. Miyamoto. We have invited collab-
orators and friends of Prof. Miyamoto. We also invited Miyamoto himself (without
explaining that it was a dedicated book) to contribute to the book with a chapter. The
plan and content of the book is detailed below.

Prof. Miyamoto has largely contributed in his scientific career on the topics of
clustering, fuzzy sets, multisets and rough sets. That is why the title of this book
includes all these keywords. Prof. Miyamoto is well known and recognized in all
these areas, and we have used and applied some of his results in our own research.

It is difficult and arbitrary to select works from the long list of Prof. Miyamoto’s
publications, but based on what we have read and used from his work we try to do
so here.

On clustering, he wrote the monographs [1, 2, 8] and edited the book where these
references [3, 11] are found. The first author bought a copy of [2], a nice, concise
and to-the-point book, in one of his first trips to Japan. This copy has travelled back
and forth (Europe–Japan) several times since then. We have also extensively used
papers on entropy-based fuzzy c-means [9] and variable-size fuzzy c-means [10] in
our own work.

On multisets, fuzzy sets, and fuzzy multisets, we underline [3, 5–7, 12]. We used
their definitions and results in our work. [7], a paper published in the journal Fuzzy
Sets and Systems on occasion of the 40th Anniversary of Fuzzy Sets, includes some
interesting remarks on fuzzy sets and fuzzy multisets.

Any of us have worked so much on rough sets. So on this area our arbitrary
selection is still more arbitrary. But in connection with multisets, we have used [4].

2 Book Content

At the end the book is divided in four parts, containing a total of 19 chapters. The
first part is on clustering and classification. The second part is on multisets or bags,
fuzzy bags and other fuzzy extensions. Then, follows a part with chapters on rough
sets (although we have included one on clustering for rough sets in the first part on
clustering). The last part is about fuzzy sets and decision making.

2.1 Clustering and Classification

This part starts with a chapter byMiyamoto. The chapter tries to answerwhich are the
main contributions of fuzzy clustering to the theory of clustering, from a theoretical
viewpoint.

The second chapter by Katsuhiro Honda reviews some fuzzy clustering models
induced by probabilistic mixture. The author discusses the effects of introducing
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Fig. 1 Prof. Sadaaki Miyamoto in MDAI 2007 in Osaka with Masahiro Inuiguchi and Vicenç
Torra (top left), in MDAI 2010 in Perpinyà with Yasunori Endo (top right), in MDAI 2012
with Yasuo Narukawa (bottom left), in MDAI 2015 with Yasuo Narukawa, Masahiro Inuiguchi,
Yuji Yoshida, Aoi Honda, Katsushige Fujimoto and Vicenç Torra (bottom right)

adjustable fuzziness penalties into the statistical models. Among the models studied,
the entropy regularization-based FCM introduced by Miyamoto is considered.

The third chapter byYuchiKanzawa proposes a new approach for semi-supervised
clustering with soft pairwise constraints. FCM is used for clustering in this approach.

The fourth chapter by Endo and Kinoshita focuses on rough clustering. It reviews
a few rough clustering algorithms that are defined through an objective function to
optimize.

The next chapter by Hamasuna and Endo is about clustering algorithms based
on tolerance. The underlying idea is that uncertainty in the data can be expressed in
terms of a certain tolerance around the data points. That is, data with tolerance as the
authors write. Clustering is then formalized for this type of data and algorithms are
defined.

Szilágy in the following chapter focuses on some robust clustering algorithms.
The chapter presents several clustering algorithms defined with the goal of being
robust and based on the fuzzy-possibilistic product partition.

This chapter is followed by another one by García-Lapresta and Pérez-Román
about an agglomerative hierarchical clustering method. The authors introduce a con-
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sensus measure that is later used to define a similarity function used in the clustering
process.

Owsiński, Kacprzyk, Opara, Stańczak and Zadrożny propose in their paper a
problem related to clustering. Given the clustering results, the goal is to find which
is the clustering algorithm and the parameters that led to those results. It is thus,
a kind of reversal engineering problem. The authors propose the use evolutionary
programming for this purpose.

The following chapter, by Aliahmadipour, Torra and Eslami, is a review and a
discussion on clustering algorithms dealing with hesitant fuzzy sets.

This part on clustering and classification finishes with a chapter on decision trees,
and about their use for knowledge discovery. It is a chapter written by Armengol,
García–Cerdaña, and Dellunde.

2.2 Bags, Fuzzy Bags, and Some Other Fuzzy Extensions

This part includes two chapters. The first one by Kouchakinejad, Mashinchi, and
Mesiar is about L-fuzzy bags. The authors study this type of bags when L is a
complete lattice.

The second chapter of this part is a discussion by Szmidt and Kacprzyk on two
extensions of fuzzy sets: Atanassov’s Intuitionistic Fuzzy Sets (A-IFS, for short) and
Interval-valued Fuzzy Sets (IVFSs, for short). The authors discuss the differences
between these two types of fuzzy sets.

2.3 Rough Sets

This part includes two chapters. Thefirst one by Inuiguchi is about attribute reduction.
The author propose several ways to do the attribute reduction. The author also study
attribute importance and interaction indices. Game theory and the Shapley value is
used for this purpose.

The last chapter of this part by Kudo and Murai is a review on rough set-based
interrelationship mining. The authors focus on theoretical aspects.

2.4 Fuzzy Sets and Decision Making

The last part of the book is about methods for decision making, mainly based on
fuzzy sets and other fuzzy-related approaches.

The first chapter by Yager is about aggregation functions, and more particularly,
on the use of the OWAoperator. It focus on the case of finite probability distributions,
and how to deal with their linear ordering.
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The second chapter by Yoshida is about a dynamic average in the context of fuzzy
random variables. The motivation of this work is in economics and in the context of
a value-at-risk portfolio model.

Cabrerizo, Pérez, Chiclana and Herrera–Viedma present in the next chapter con-
sensus approaches based on soft consensus measures. They are for group decision
making. The paper is an overview of this topic.

The fourth chapter by Sanz et al. is about construction of capacities, also known as
fuzzy measures and non-additive measures. The authors show how overlap functions
and overlap indices can be used to build this type of measures.

The fifth chapter by Franco, Hougaard and Nielsen is about the application of
multi-criteria modeling and its application to clustering and preference modeling.
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Clustering and Classification



Contributions of Fuzzy Concepts
to Data Clustering

Sadaaki Miyamoto

Abstract This chapter tries to answer the fundamental question of what main
contributions of fuzzy clustering to the theory of cluster analysis from theoreti-
cal viewpoints. While fuzzy clustering is thought to be clearly useful by users of
this technique, others think that the concept of fuzziness is not needed in clustering.
Thus the usefulness of fuzzy clustering is not trivial. The discussion here is divided
into two: one is on fuzzy c-means which is best-known fuzzy method of clustering.
However, there is another techniques, discussed by Zadeh, in hierarchical clustering
which is equivalent to the old technique of the single linkage. This chapter overviews
the both techniques, beginning from basic discussion of fuzzy c-means, and intro-
ducing the fundamental concept of fuzzy classifiers and its usefulness. A concept
of inductive clustering is introduced which means that a result of clustering can be
extended to a partition of the whole space. Moreover hierarchical fuzzy clustering
is briefly discussed where the transitive closure gives a simple algebraic form of
clusters.

Keywords Fuzzy clustering · Fuzzy c-means · Fuzzy classifier · Hierarchical
clustering · Inductive clustering

1 Introduction

Data clustering alias cluster analysis, which generates groups of objects from a set
of data using mutual similarity (or dissimilarity) between a pair of data, has been
known for a long time [8, 12, 19, 20]. According as the subjects of data mining
becomes more and more popular, many different techniques of clustering have been
developed.

Fuzzy c-means clustering [2–4, 9, 10, 16, 30] is now considered to be a standard
technique in cluster analysis bymany researchers. There is, however, another method

S. Miyamoto (B)
University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
e-mail: miyamoto@risk.tsukuba.ac.jp

© Springer International Publishing AG 2017
V. Torra et al. (eds.), Fuzzy Sets, Rough Sets, Multisets and Clustering,
Studies in Computational Intelligence 671, DOI 10.1007/978-3-319-47557-8_2
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10 S. Miyamoto

of fuzzy clustering in hierarchical cluster analysis which uses the transitive closure
of a symmetric fuzzy relation [42].

The usefulness of fuzzy c-means clustering is considered as a matter of fact
by many researchers, while other researchers still think that non-fuzzy methods
including statistical models [25, 34, 35] are enough for clustering data.

Anotable feature of fuzzy c-means is said to be its robustness, i.e., results are stable
clusters for different initial clusters. Such discussion is empirical and theoretical
background for robustness is unclear.

In this paper we try to consider how the robustness of fuzzy c-means is explained
from a theoretical viewpoint, for which a natural fuzzy classifier defined on thewhole
space is introduced. When such a partition of the whole space is naturally induced
from a result of clustering, the method is called here inductive clustering. Kernel-
based clustering is considered here, where both a non-inductive algorithm and an
inductive algorithm are studied.

Moreover anothermethod of hierarchical fuzzy clustering is discussed,which uses
the transitive closure of symmetric fuzzy relations [42]. Thismethods has been shown
to be equivalent to the well-known method of the single linkage of agglomerative
hierarchical clustering [26]. Here the significance of fuzzy relation is the algebraic
form of clusters instead of those generated by an algorithm.

We first consider fuzzy c-means and its variations, then hierarchical fuzzy clus-
tering is briefly discussed.

2 Fuzzy c-Means

We begin with notations and then introduce the method of fuzzy c-means by Dunn
[9, 10] and Bezdek [2, 3].

Let the set of objects for clustering be denoted by X = {x1, . . . , xN } where each
object is a point of p-dimensional Euclidean space R p. Thus xk = (x1k , . . . , x

p
k )� ∈

R p, k = 1, . . . , N . Clusters are denoted either by Gi or simply by i . A similarity or
dissimilaritymeasure between two objects is assumed. For fuzzy c-means, a standard
dissimilarity measure is the squared Euclidean distance:

D(x, y) = ‖x − y‖2 =
p∑

j=1

(x j − y j )2. (1)

In fuzzy c-means and related methods, the number of clusters denoted by c is
assumed to be given beforehand. Themembership of object xk to cluster i is assumed
to be given by uki . Moreover the collection of all memberships is denoted by matrix
U = (uki ). It is natural to assume that uki ∈ [0, 1] for all 1 ≤ i ≤ c and 1 ≤ k ≤ N ,

and moreover
c∑

j=1

ukj = 1, for all 1 ≤ k ≤ N .
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The method of fuzzy c-means as well as crisp c-means uses a center for a cluster,
which is denoted by vi = (v1

i , . . . , v
p
i )� ∈ R p for cluster i. For simplicity, all cluster

centers are summarized into matrix V = (v1, . . . , vc).

Crisp c-Means Algorithm

Many studies of clustering handle K-means [24], also called crisp c-means, of which
the basic algorithm is as follows [3]:
CCM: Crisp c-means algorithm.

CCM0: Generate randomly c cluster centers.
CCM1: Allocate each object xk(k = 1, . . . , N ) to the cluster of the nearest center.
CCM2: Calculate newcluster centers vi as the centroid (alias the center of gravity).

If all cluster centers are convergent, stop. Otherwise go to CCM1.

End CCM.
The center of a cluster Gi is given by

vi = 1

|Gi |
∑

xk∈Gi

xk, (2)

where |Gi | is the number of objects in Gi .

2.1 Fuzzy c-Means Algorithm

The fundamental idea of fuzzy c-means is an alternative optimization of an objective
function, which is proposed by Dunn [9, 10] and Bezdek [2, 3]:

J (U, V ) =
c∑

i=1

N∑

k=1

(uki )
mD(xk, vi ) (m ≥ 1), (3)

where D(xk, vi ) is the squared Euclidean distance (1).
Using this objective function, the following alternative optimization [3] is carried

out.
FCM (fuzzy c -means) algorithm.

FCM0: Generate randomly initial fuzzy clusters. Let the solutions be (Ū , V̄ )

FCM1: Minimize J (U, V̄ ) with respect to U . Let the optimal solution be a
new Ū .

FCM2: Minimize J (Ū , V ) with respect to V . Let the optimal solution be a
new V̄ .

FCM3: If the solution (Ū , V̄ ) is convergent, stop. Else go to FCM1.

End FCM.
A criterion for convergence is omitted here, see, e.g., [3]. Optimization with

respect to U is with the constraint:
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uki ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ N ,

c∑

j=1

ukj = 1, 1 ≤ k ≤ N , (4)

while optimization with respect to V is without any constraint.
It is well-known that, when m = 1, the solution U is reduced to the allocation to

the cluster of the nearest center:

uki = 1 ⇐⇒ i = arg min
1≤ j≤c

D(xk, vi ),

and the center is given by (2). Thus the algorithm is equivalent toCCMwhenm = 1.
Hence we assume m > 1 hereafter, in order to have fuzzy solutions, where the

optimal solutions are as follows:

ūki =
⎧
⎨

⎩

c∑

j=1

(
D(xk, v̄i )

D(xk, v̄ j )

) 1
m−1

⎫
⎬

⎭

−1

, (5)

v̄i =

N∑

k=1

(ūki )
mxk

N∑

k=1

(ūki )
m

. (6)

The derivations are omitted; the readers should refer to [3] or other textbooks.
Equation (5) does not seem to work when xk = vi , In such a case (5) should be

interpreted as

ūki =
⎧
⎨

⎩1 +
∑

j 	=i

(
D(xk, v̄i )

D(xk, v̄ j )

) 1
m−1

⎫
⎬

⎭

−1

(7)

by eliminating two terms which appear to have a singular point.
Sometimes we omit the bars like

uki =
⎧
⎨

⎩

c∑

j=1

(
D(xk, vi )

D(xk, v j )

) 1
m−1

⎫
⎬

⎭

−1

, (8)

vi =

N∑

k=1

(uki )
mxk

N∑

k=1

(uki )
m

, (9)

for simplicity and without confusions.
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2.2 A Natural Classifier

Let us consider the next function defined on R p with a given set of cluster
centers V :

Ui (x; V ) =
⎧
⎨

⎩

c∑

j=1

(
D(x, vi )

D(x, v j )

) 1
m−1

⎫
⎬

⎭

−1

, (10)

or

Ui (x; V ) =
⎧
⎨

⎩1 +
∑

j 	=i

(
D(x, vi )

D(x, v j )

) 1
m−1

⎫
⎬

⎭

−1

. (11)

It is clear thatUi (x; V ) has been derived from uki simply by replacing object symbol
xk by variable x .

This replacement appears trivial and it also appears that Ui (x; V ) has no further
information than uki . On the contrary, this function of fuzzy classifier is important
if we wish to observe theoretical properties of fuzzy c-means.

We have the following proposition that shows how the solutions of fuzzy c-means
classify the given space.

Proposition 1 The function Ui (xk; V ) with a given V has the following properties.

(i) Ui (xk; V ) = uki , i.e., the fuzzy classifier interpolates the membership value uki .
(ii) When |x | tends to infinity, Ui (x; V ), i = 1, . . . , c, approaches the same value

of 1/c:

lim‖x‖→∞Ui (x; V ) = 1

c
.

(iii) The maximum value of Ui (x; V ), i = 1, . . . , c, is at x = vi :

max
x∈R p

Ui (x; V ) = Ui (vi , V ) = 1.

Proof Property (i) is trivial. Property (ii) is easily obtained by observing

lim‖x‖→∞
D(x, vi )

1
m−1

D(x, v j )
1

m−1

= 1

and Ui (x; V ) is given by (11). Finally, the third property is almost trivial since the
denominator of (11) is reduced to 1 when x = vi . �

Note the significance of the functionUi (x; V ) in these propositions. An object xk
is a fixed point, while x is a variable that can be moved toward infinity or can be a
cluster center. Without such a classifier, we cannot observe theoretical properties of
fuzzy c-means.



14 S. Miyamoto

Classifier of K -Means

The crisp classifierU ccm
i (x; V ) of K -means (CCM) is obviously the nearest center

allocation:
U ccm

i (x; V ) = 1 ⇐⇒ i = arg min
1≤ j≤c

D(x; v j ). (12)

We define

Vi = {x ∈ R p : U ccm
i (x; V ) = 1 and U ccm

j (x; V ) = 0, ∀ j 	= i }, (13)

We note that Vi is a Voronoi region [21] with center vi and other cluster centers.
We moreover note the next proposition.

Proposition 2 If we define

V ′
i = {x ∈ R p : Ui (x; V ) > Uj (x; V ), ∀ j 	= i} (14)

for classifiers of fuzzy c-means, we have

V ′
i = Vi , 1 ≤ i ≤ c.

The proof is easy by direct calculation and omitted. This proposition means that
when the result of clustering by fuzzy c-means is made crisp using the maximum
membership reallocation by (14), it leads to Voronoi regions.
Note 1 The above Voronoi regions are open sets and the boundary of two or more
regions are left unclassified. The problem of a point on the boundary is not essential
here and it can belong to all neighboring regions or be left unclassified. Note also
the next relation:

c⋃

i=1

V i = R p, Vi ∩ V j = ∅ (i 	= j), (15)

where V i is the closure of Vi .

2.3 A Method of Entropy

Other objective functions of fuzzy c-means have also been proposed among which
we discuss the use of entropy [23, 27]:

Jent(U, V ) =
c∑

i=1

N∑

k=1

{uki D(xk, vi ) + λ−1uki log uki }, (λ > 0). (16)
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We easily have the solutions for alternative minimization of Jent(U, V ):

uki = exp(−λD(xk, vi ))
c∑

j=1

exp(−λD(xk, v j ))

, (17)

vi =

N∑

k=1

uki xk

N∑

k=1

uki

, (18)

from which the classifier is given as follows:

U ent
i (x; V ) = exp(−λD(x, vi ))

c∑

j=1

exp(−λD(x, v j ))

. (19)

These solutions are sometimes called the entropy method in contrast to the fuzzy
c-means using (3).

We consider properties of U ent
i (x; V ), which are more complicated than those of

Ui (x; V ).

Proposition 3 Define

V ′′
i = {x ∈ R p : U ent

i (x; V ) > U ent
j (x; V ), ∀ j 	= i } (20)

for classifiers of fuzzy c-means using entropy term. We then have

V ′′
i = Vi , 1 ≤ i ≤ c.

Proposition 4 Assume that matrix V = (v1, . . . , vc) has full rank (rankV =
min{c, p}). If V ′′

i is unbounded, then

lim
‖x‖→∞;x∈V ′′

i

U ent
i (x; V ) = 1,

whereas if V ′′
i is bounded, then

lim‖x‖→∞U ent
i (x; V ) = 0.

On the other hand, we have

0 < U ent
i (x; V ) < 1.
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The proof is given in [28, 30] and omitted here.

Robustness of Fuzzy c-Means

Let us compare the solutions of the three methods of fuzzy c-means with (3), the
K -means of CCM algorithm, and the entropy method using (16). For this purpose
we compare the functions Ui (x; V ), U ccm

i (x; V ), and U ent
i (x; V ).

Suppose that x is very far away from centers v1, . . . , vc, then the membership
of x by fuzzy c-means is Ui (x; V ) ≈ 1

c for all 1 ≤ i ≤ c, whereas U ccm
i (x; V ) = 1

and U ccm
j (x; V ) = 0 ( j 	= i) for x ∈ V ′

i by CCM. The result by the entropy method
is similar to CCM; U ent

i (x; V ) ≈ 1 and U ccm
j (x; V ) ≈ 0 ( j 	= i) for x ∈ V ′′

i . This
means that the results by the K -means (CCM) and the entropy method are strongly
influenced by outliers, i.e., objects far from cluster centers.

Moreover, the function Ui (x; V ) has the maximum value of unity when x = vi ,
while the entropy method does not have this property.

Thus the fuzzy c-means has the desirable properties than the K -means and the
entropy method.

3 Generalization of Fuzzy c-Means

Many variations of fuzzy c-means have been studied, e.g., fuzzy c-varieties [3],
fuzzy c-regressions [15], noise clustering [6], and possibilistic clustering [22]. We,
however, limit ourselves to the discussion of the method of Gustafson and Kessel
[14] and its extension [30] to take clusterwise covariance and another variable for
cluster size into account.

In this section we introduce

D(x, v; S) = (x − v)�S−1(x − v)

which is the squared Mahalanobis distance.

3.1 The Method of Gustafson and Kessel
and Its Generalization

The method of Gustafson and Kessel incorporate clusterwise covariance variables
denoted by S1, . . . , Sc. The objective function is

J (U, V, S) =
c∑

i=1

N∑

k=1

(uki )
mD(xk, vi ; Si ) (m > 1), (21)

where a simplified symbol S = (S1, . . . , Sc) and the clusterwise squared Maha-
lanobis distance D(xk, vi ; Si ) is used.
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Miyamoto et al. introduced an objective function

J (U, V, S, A) =
c∑

i=1

N∑

k=1

(αi )
1−m(uki )

mD(xk, vi ; Si ) (m > 1), (22)

with an additional variable A = (α1, . . . ,αc) with the constraint

c∑

i=1

αi = 1, α j ≥ 0, 1 ≤ j ≤ c. (23)

Note also that Si is with the constraint

|Si | = ρi (ρi > 0) (24)

where ρi is a fixed parameter and |Si | is the determinant of Si . We assume, for
simplicity, ρi = 1 [16].

The solutions are as follows:

uki =
⎧
⎨

⎩

c∑

j=1

(
D(xk, vi ; Si )
D(xk, v j ; Sj )

) 1
m−1

⎫
⎬

⎭

−1

(25)

vi =

N∑

k=1

(uki )
mxk

N∑

k=1

(uki )
m

(26)

Si = 1

|Ŝi | 1
p

N∑

k=1

(uki )
m(xk − vi )(xk − vi )

�. (27)

αi =
⎡

⎣
c∑

j=1

{∑N
k=1(ukj )

mD(xk, v j ; Sj )∑N
k=1(uki )

mD(xk, vi ; Si )

}m
⎤

⎦
−1

(28)

where

Ŝi =
N∑

k=1

(uki )
m(xk − vi )(xk − vi )

�.

Since four types of variables are used for the augmented method of Gustafson and
Kessel, the alternative optimization iteratively calculates (25), (26), (27), and (28)
until convergence.
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3.2 K–L Information Method

The K–L (Kullback–Leibler) information method by Ichihashi et al. [17, 18, 30] is
another generalized version of fuzzy c-means which uses the entropy method. The
objective function is as follows.

JKL(U, V, S, A) =
c∑

i=1

N∑

k=1

uki D(xk, vi ; Si ) +
c∑

i=1

N∑

k=1

{νuki log uki
αi

+ log |Si |}.
(29)

The solutions are given by the following:

uki =
αi

|Si | exp
(

−D(xk, vi ; Si )
ν

)

c∑

j=1

α j

|Sj | exp
(

−D(xk, v j ; Si )
ν

) , (30)

vi =

N∑

k=1

uki xk

N∑

k=1

uki

(31)

Si = 1
N∑

k=1

uki

N∑

k=1

uki (xk − vi )(xk − vi )
� (32)

αi = 1

N

N∑

k=1

uki (33)

The method of K–L information is very similar to the solution of EM algorithm of
the Gaussian mixture [25, 34] and moreover generalizes the latter statistical model.
TheG-Kmethod,when comparedwith theK–Lmethod, seems to have the robustness
property discussed in the previous section.

4 Kernel Based Fuzzy c-Means

The support vector machines [38, 39] with positive definite kernel functions are now
one of the most popular methods of supervised classification. Apart from support
vector machines, kernel functions themselves are considered to be useful by many
researchers (e.g., [13, 36]). Such positive definite kernels can be used for fuzzy
c-means, as we see in this section.
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The reason why we use kernels for clustering is that essentially the K -means and
fuzzy c-means have linear boundaries between clusters of Voronoi regions, as we
have seen above.

The introduction of the covariance variables in the last section enables the clus-
ter boundaries to be quadratic, but more flexible nonlinear boundaries cannot be
obtained.

In order to have clusters with nonlinear boundaries, we can use positive definite
kernels. Kernels are introduced by using a high-dimensional mappingΦ : R p → H ,
where H is generally a Hilbert space with the inner product 〈·, ·〉H and the norm
‖ · ‖H .

Given objects x1, . . . xN , we consider its images by the mapping Φ : Φ(x1), . . . ,
Φ(xN ). Note that the method of kernels does not assume that an explicit form of
Φ(x1), . . . , Φ(xN ) is known, but their inner product 〈Φ(xi ),Φ(x j )〉H is assumed to
be given using a known kernel function K (x, y):

K (x, y) = 〈Φ(xi ),Φ(x j )〉H .

A well-known example is the Gaussian kernel:

K (x, y) = exp(−C‖x − y‖2).

In this case,
〈Φ(x),Φ(y)〉H = exp(−C‖x − y‖2).

We consider kernel-based fuzzy c-means [29]. The objective function uses
Φ(x1), . . . , Φ(xN ) and cluster centers w1, . . . , wc of H :

J (U, V ) =
c∑

i=1

N∑

k=1

(uki )
m‖Φ(xk) − wi‖2H (m > 1), (34)

where W = (w1, . . . , wc). We have

uki =
⎧
⎨

⎩

c∑

j=1

( ‖Φ(xk) − wi‖2H
‖Φ(xk) − w j‖2H

) 1
m−1

⎫
⎬

⎭

−1

(35)

wi =

N∑

k=1

(uki )
mΦ(xk)

N∑

k=1

(uki )
m

(36)

Note, however, that the explicit form of Φ(xk) and hence wi is not available.
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We have two ways to handle this situation. First way is to make Φ(xk) explicit,
whereas the second way is to eliminate Φ(xk) and express them in terms of K (x, y).

Use of Gram Matrix

First way to handle Φ(xk) is the use of the Gram matrix. Let the Gram matrix be

K = (K (xk, xl)), 1 ≤ k, l ≤ N . (37)

Since K is positive semi-definite and expressed as

K = T�ΛT,

where Λ = diag(λ1, . . . ,λN ) is the diagonal matrix of nonnegative eigenvalues and
T is the orthogonal matrix, we can define

K 1
2 = T�Λ

1
2 T,

where Λ
1
2 = diag(

√
λ1, . . . ,

√
λN ). Let ek be kth elementary vector: e1 =

(1, 0, . . . , 0)�, e2 = (0, 1, 0, . . . , 0)�, and so on. Put

Φ(xk) = K 1
2 ek, k = 1, 2, . . . , N . (38)

In other words, Φ(xk) is kth column (or row) vector of K 1
2 . Then solutions (35) and

(36) are used.
Note that

〈Φ(xk),Φ(xl)〉 = (K 1
2 ek)

�(K 1
2 el) = e�

k K
1
2K 1

2 el

= e�
k Kel = K (xk, xl),

hence (38) is appropriate.
Note also that Φ is defined on the finite set X (Φ : X → R p).

Updating Dissimilarity

Second way is to eliminate wi from the iterative calculation: updating formula of wi

by Eq. (36) is replaced by the update of dissimilarity

DH (xk, wi ) = ‖Φ(xk) − wi‖2.

We have

DH (xk, wi ) = K (xk, xk) − 2
∑N

k=1(uki )
m

N∑

j=1

(u ji )
mK (x j , xk)

+ 1

(
∑N

k=1(uki )
m)2

N∑

j=1

N∑

�=1

(u ji u�i )
mK (x j , x�). (39)
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Using (39), we calculate

uki =
⎧
⎨

⎩

c∑

j=1

(
DH (xk, wi )

DH (xk, w j )

) 1
m−1

⎫
⎬

⎭

−1

(40)

Thus the alternative optimization of uki by (35) and wi by (36) is replaced by the
iteration of (39) and (40) until convergence.

Fuzzy classifiers of kernel-based fuzzy c-means can also be derived by substituting
variable x into xk [30]: we have

D(x, wi ) = K (x, x) − 2
∑N

k=1(uki )
m

N∑

j=1

(u ji )
mK (x, x j )

+ 1

(
∑N

k=1(uki )
m)2

N∑

j=1

N∑

�=1

(u ji u�i )
mK (xi , x�), (41)

Ui (x,W ) =
⎧
⎨

⎩

c∑

j=1

(
DH (x, wi )

DH (x, w j )

) 1
m−1

⎫
⎬

⎭

−1

(42)

Note that Φ(x) in the second method is defined for an arbitrary point x ∈ R p

(Φ : R p → H ) that is different from the function in the first method.

5 Inductive Clustering Versus Non-inductive Clustering

Supervised classification method such as the standard Bayesian classification and
the support vector machines provide classification rules defined on the whole space.
If the space is R p and suppose that the Bayesian rule is P(Gi |x) and the SVM rule is
SVM, then they are functions of P(Gi |·) : R p → [0, 1] and SVM : R p → {−1,+1}.
Thus the Bayesian rule is probabilistic, while SVM rule is crisp.

Recently semi-supervised learning has been studied and accordingly the concept
of transductive learning [5] has been proposed which means that classification of
a finite set of new objects is derived but a classification rule of the whole space is
not required. In contrast to transductive learning, a former conventional method of a
classification rule of the whole space is called inductive learning.

Turning to theoriginal topic of clustering, the author suppose thatmany researchers
think that clustering is ‘transductive’ in the above sense, i.e., classification of a given
set of objects is enough and nothing more is needed. The above discussed fuzzy
classifiers are defined on the whole space, contrary to this general understanding.
In short, we discussed inductive properties of fuzzy c-means clustering and related
methods.
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We now try to make the concept of inductive clustering clearer. If a method of
clustering has an intrinsic classification rule defined on the whole space, we call the
method inductive clustering, while themethod does not have such a classification rule
on the whole space and it gives a classification result on a given set of objects alone,
the we call the method non-inductive clustering (We avoid the name of transductive
clustering, as non-inductive property implies nothing in particular).

In this sense, the K-means, fuzzy c-means, and the statistical model of mixture
distributions [25] are all inductive clustering, and we can study theoretical properties
of them, as we have seen above. Note also that kernel-based fuzzy c-means has the
both versions of non-inductive clustering and inductive clustering, since the first
method gives Φ : X → R p which is non-inductive clustering, since we cannot use
Φ(x) for x /∈ X . In contrast, the second way is to use Φ : R p → H , which leads us
to an inductive version, since we have Φ(x) and hence Ui (x,W ) for any x ∈ R p.

We emphasize that an advantage of inductive clustering is that we can study its
theoretical properties more easily than non-inductive clustering. Indeed, methods
of inductive clustering seem to have better or simpler behaviors when generating
clusters, like the nearest prototype property of the K -means. On the other hand, if
we give up inductiveness in clustering, we havemore choice of clustering algorithms,
and this attitude has been taken by researchers of clustering, since a proposal of a
clustering algorithm does not lead to inductiveness in general.

In spite of this general understanding, we emphasize again the importance of
inductive clustering in order to have greater progress in studies of cluster analysis.

Next subject is hierarchical clustering, where we observe again inductiveness of
a method, although hierarchical clustering is generally non-inductive.

6 Hierarchical Fuzzy Clustering

Zadeh [42] discussed a fuzzy similarity relation which is reflexive, symmetric, and
transitive. In other words, an arbitraryα-cut of a fuzzy similarity relation is reflexive,
symmetric, and transitive as a crisp relation.

6.1 Transitive Closure of Fuzzy Relation

We assume that object set X = {x1, . . . , xN } are not necessarily in an Euclidean
space. Rather, a relation S(x, y) of X satisfying reflexivity and symmetry

S(x, x) = 1, ∀x ∈ X, (43)

S(x, y) = S(y, x), ∀x, y ∈ X (44)
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is assumed, where a larger value of S(x, y) means that x and y are more similar and
a smaller value of it implies they are less similar.

Fuzzy transitivity means that

S(x, z) ≥ min{S(x, y), S(y, z)}, ∀y ∈ X, (45)

but we do not assume this property of transitivity for a given S, since transitivity is
a too strong condition in real applications.

Moreover we do not use the term of ‘similarity relation’ as Zadeh used, but simi-
larity is a general term to show two objects are similar, in order to keep compatibility
of terms between the two fields of fuzzy systems and statistical data analysis. We
use the term of fuzzy equivalence relation instead of similarity relation when a fuzzy
relation is reflexive, symmetric, and transitive.

An α-cut [S]α of S is a crisp relation:

[S]α(x, y) =
{
1 (S(x, y) ≥ α),

0 (S(x, y) < α).

Note the next proposition.

Proposition 5 If a fuzzy relation S is reflexive, symmetric, and transitive, then every
α-cut of it is a crisp equivalence relation:

[S]α(x, x) = 1, ∀x ∈ X, (46)

[S]α(x, y) = [S]α(y, x), ∀x, y ∈ X, (47)

[S]α(x, y) = 1, [S]α(y, z) = 1 ⇒ [S]α(x, z) = 1. (48)

Proof The first two equations are trivial. The third relation is also easily proved by
observing that if S(x, y) ≥ α and S(y, z) ≥ α, then (48) follows from (45). �

Note that we do not assume the transitivity. In order to have a transitive relation
from a reflexive and symmetric fuzzy relation, we calculate the transitive closure.
For this purpose we introduce the max-min composition of fuzzy relations:

(S ◦ T )(x, z) = max
y∈X min{S(x, y), T (y, z)},

where S and T are fuzzy relations of X . Using the max-min composition, we can
define the transitive closure S∗ of S:

S∗(x, y) = max{S(x, y), S2(x, y), S3(x, y), . . .},

where S2 = S ◦ S and Sk = S ◦ Sk−1. It also is not difficult to see S∗ = SN−1 when
S is reflexive and symmetric.
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When S is reflexive and symmetric, the transitive closure S∗ is also reflexive and
symmetric, and moreover transitive. The proof that S∗ is transitive is omitted here.
Readers can refer to, e.g., [26].

Note that Proposition5 holds for S∗. Then eachα-cut of S∗ induces an equivalence
class of X, and moreover if α decreases, the equivalence class becomes coarser, and
when it increases, the equivalence class becomes finer. Thus S∗ defines hierarchical
clusters.

6.2 Single Linkage and Transitive Closure

We describe general algorithm of agglomerative hierarchical clustering as follows:
AHC (Algorithm of Agglomerative Hierarchical Clustering).

AHC1: Let initial clusters be individual objects: Gi = {xi }, i = 1, . . . , N .
S(Gi ,G j ) = S(xi , x j ), 1 ≤ i, j ≤ N , and put K = N .

AHC2: Find pair of clusters of maximum similarity:

(Gp,Gq) = argmax
i, j

S(Gi ,G j ). (49)

Merge Gr = Gp ∪ Gq . K = K − 1 and if K = 1, stop.
AHC3: Update S(Gr ,G ′) for all other clusters G ′. Go to AHC1.

End AHC.
The updating step of AHC3 admits different choices of similarity between clus-

ters, among which the single linkage, the complete linkage, and the average linkage
use the followings:

Single Linkage:

S(Gr ,G
′) = max

x∈Gr ,y∈G ′ S(x, y) (50)

= max{S(Gp,G
′), S(Gq ,G

′)} (51)

Complete Linkage:

S(Gr ,G
′) = min

x∈Gr ,y∈G ′ S(x, y) (52)

= min{S(Gp,G
′), S(Gq ,G

′)} (53)

Average Linkage:

S(Gr ,G
′) =

∑

x∈Gr ,y∈G ′
S(x, y)

|Gr ||G ′| (54)

= |Gp|
|Gr | S(Gp,G

′) + |Gq |
|Gr | S(Gq ,G

′) (55)
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Discussion in this section is mostly focused upon the single linkage.
We have the proposition of equivalence between the transitive closure and the

single linkage [26].

Proposition 6 Given a set of objects X = {x1, . . . , xN } and a similarity measure
S(x, y) for all x, y ∈ X, the following three methods give the same hierarchical
clusters:

1. clusters by the single linkage;
2. clusters by the transitive closure S∗;
3. clusters as vertices of connected components of fuzzy graph with vertices X and

edges X × X with membership values S(x, y).

The connected components of a fuzzy graph is the essential part in this proposition,
which means the family of those connected components of all α-cuts of the fuzzy
graph. Since connected components grow with decreasing α, those sets of vertices
form hierarchical clusters. The proof of this proposition is given in [26] and omitted
here, but the idea of the proof is to reduce both the transitive closure and the single
linkage clusters to the connected components. Thus fuzzy graph is fundamental in
this proposition.

The significance of fuzzy relation and its transitive closure is the algebraic expres-
sion of a method of agglomerative clustering in contrast to the general understanding
that a method of clustering is essentially a proposal of an algorithm.

Seemingly no new results are included in this theorem. However, Miyamoto [31]
showed that ideas in other methods of DBSCAN [11] and Wishart’s mode analysis
[41] are captured into the above results of equivalence. Concretely, the transitive
closure [S ∧ (aa�)]∗ is proposed in [31], where a is a fuzzy set of X ; a is the
abstraction of dense points in [41] and core points in [11].

Inductive Property of Hierarchical Clustering

Agglomerative hierarchical clustering in general is non-inductive, as in the assump-
tion that a given X is not in a metric space. When space R p is given and X ⊂ R p

is, e.g., with a Euclidean metric, the single linkage can be regarded as an inductive
method [33] where the nearest neighbor allocation is used. Roughly, a point x in the
Euclidean space can be allocated to the cluster i if a point nearest to x exists in that
cluster.

A question ariseswhether or not this result can be extended to the complete linkage
and the average linkage: the furthest neighbor allocation and the average distance
allocation can be used, respectively, in these methods. No good answer exists to this
question, since it is doubtful that such furthest and/or average allocation methods
are as useful as nearest neighbor allocation in the single linkage. Note also that an
algebraic expression like the transitive closure is unavailable for the complete linkage
or the average linkage.
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7 Conclusion

We studied fuzzy clustering and its significance. The method of fuzzy c-means is
known to have robustness, and robustness property has been discussed from a theo-
retical viewpoint using a natural fuzzy classifier, which is derived from substituting
an object symbol by a variable. Such function of classification is useful in considering
theoretical properties of a clustering method and leads to the concept of inductive
clustering, while the original idea of clustering is non-inductive. Kernel fuzzy c-
means have been considered in which both non-inductive and inductive algorithms
are derived.

Entropy methods including K–L information fuzzy c-means are also discussed
which are more closely related to the Gaussian mixture of distributions. They are less
robust when compared their theoretical properties with those of the fuzzy c-means
including the Gustafson-Kessel method and its extension.

Hierarchical fuzzy clustering was also considered where the transitive closure of
a symmetric fuzzy relation is proved to be equivalent to the single linkage method.
Thus the transitive closure is an algebraic expression of the well-known agglom-
erative hierarchical algorithm. Although the result appears purely theoretical, the
equivalence leads to a new method of hierarchical clustering [31]. An α-cut of the
transitive closure will produce a crisp classifier for the whole space if the problem is
given in an Euclidean space, but a fuzzy classifier is difficult to be obtained.

We omitted derivations of solutions of which readers should refer to [3, 16, 30].
An important issue which we omitted here is cluster validity whereby the number

of clusters can be decided, which is discussed in [3, 7]. Another topic of recent
interest is semi-supervised classification [5, 32, 43] including constrained clustering
[1, 37, 40]. Fuzzy classifiers will be useful also in semi-supervised classification,
which will be studied in near future.
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Fuzzy Clustering/Co-clustering
and Probabilistic Mixture Models-Induced
Algorithms

Katsuhiro Honda

Abstract While fuzzy c-means (FCM) and its variants have become popular tools in
many application fields, their fuzzy partition natures were often discussed only from
the empirical viewpointswithout theoretical insight. This chapter reviews some fuzzy
clusteringmodels induced by probabilisticmixture concepts and discusses the effects
of introduction of adjustable fuzziness penalties into statistical models. First, the
entropy regularization-based FCM proposed byMiyamoto et al. is revisited from the
Gaussian mixtures viewpoint and the fuzzification mechanism is compared with the
standard FCM. Second, the regularization concept is discussed in fuzzy co-clustering
context and a multinomial mixtures-induced clustering model is reviewed. Some
illustrative examples demonstrate the characteristics of fuzzy clustering algorithms
with adjustable fuzziness penalties, and the interpretability of object partition is
shown to be improved. Finally, a possible future direction of fuzzy clustering research
is discussed.

Keywords Fuzzy clustering · Co-clustering · Probabilistic mixture models ·
Regularization

1 Introduction

Cluster analysis or clustering [1] is a basic technique, which is often utilized in a
primary step of analyzing unlabeled data with the goal of summarizing structural
information. Besides simple processes of hierarchical algorithms, such as Single-
Link and Complete-Link, non-hierarchical algorithms became popular in real world
applications because of lower computational efforts. k-means [2] is the most famous
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non-hierarchical clustering algorithm and has been modified for improving its utili-
ties. Fuzzy c-means (FCM) [3] adopted fuzzy partition [4] supported by a fuzzy set-
induced membership concept, where fuzzy partition is realized by introducing non-
linear nature into k-means objective function with a weighting exponent. Miyamoto
and Mukaidono [5, 6] proposed another fuzzification model based on an entropy
regularization concept, where additional non-linear penalty term is combined with
k-means objective function. This regularization concept was also achieved with a
quadric penalty term [7].

k-means-type clustering also has another interpretation from the viewpoint of
probabilistic mixture concepts. Hathaway [8] discussed that the pseudo-log-
likelihood function of Gaussian mixture models (GMMs) [9, 10] can be decom-
posed into the hard k-means objective function and the K-L information-induced
penalty term for soft partition. This concept supports the validity of the entropy reg-
ularized FCMobjective function and implies a close connectionwith FCMclustering
and probabilistic mixture models. Then, fuzzy counterparts of several probabilistic
mixture models have been proposed based on K-L information regularization, where
the degree of fuzziness of probabilistic partitions is tuned with adjustable penalty
weights [11, 12].

FCM-type clustering was also extended to fuzzy co-clustering, where the goal is
to extract pair-wise clusters of objects and items from their cooccurrence information
such as document-keyword frequencies in document analysis and customer-product
purchase frequencies in market analysis. Besides the entropy-based and quadric-
based regularization models [13, 14], a fuzzy counterpart of multinomial mixture
models [15], which is also implemented with an adjustable penalty weight, was
proposed [16].

In this chapter, the above models are summarized and their characteristic features
are demonstrated through several numerical experiments.

2 Fuzzy c-Means and Gaussian Mixture Models

2.1 Fuzzification Schemes in FCM Clustering

Assume that we have p-dimensional observation on n objects such as xi = (xi1, . . . ,
xip)�, i = 1, . . . , n. The goal of k-means-type clustering is to partition the n objects
into C clusters with their representative centroids bc, where intra-cluster objects
are as mutually similar as possible but inter-cluster objects are dissimilar. Gener-
ally, k-means scheme starts with a random centroid assignment (or a random object
partition) and alternatively optimizes centroid assignment and object partition until
convergence. Object partition can be represented with several membership models
adopting different constraints. Let uci , i = 1, . . . , n, c = 1, . . . ,C be the member-
ship degree of object i to cluster c.
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Hard c-partition [2] brings crisp exclusive object assignment under the following
constraints:

uci ∈ {0, 1},∀i, c,
C∑

c=1

uci = 1,∀i,
n∑

i=1

uci > 0,∀c. (1)

Fuzzy c-partition [4] relaxes the crisp constraint but still holds the exclusive constraint
such that:

uci ∈ [0, 1],∀i, c,
C∑

c=1

uci = 1,∀i,
n∑

i=1

uci > 0,∀c. (2)

Possibilistic c-partition [17] gives much more flexible object assignment without
exclusive nature among clusters such that:

uci ∈ [0, 1],∀i, c,
n∑

i=1

uci > 0,∀c. (3)

Fuzzy c-means (FCM)achieves fuzzy c-partition bymodifying the k-means objec-
tive function. The standard model proposed by Bezdek [3], which is called as sFCM
in this chapter, introduced an additional weighting exponent m such that:

Ls f cm =
C∑

c=1

n∑

i=1

umci ||xi − bc||2, (4)

where uci follows Eq. (2).m (m > 1) tunes the degree of fuzziness. A largerm brings
very fuzzy partition and m → ∞ implies uci → 1/C , ∀i, c. On the other hand,
m → 1 reduces to hard c-partition caused by linear programming nature of Eq. (4)
with respect to uci . In this sense, fuzzy characteristics of c-partition is dependent to
the nonlinearity of the k-means objective function.

Miyamoto and Mukaidono [5] introduced nonlinear nature based on another con-
cept. Regularization is a basic approach in the formulation of ill-posed problems and
a typical regularization is realized by adding a regularizing function. Entropy-based
FCM,which is called eFCM in this chapter, combines the k-means objective function
with an entropy-like penalty as follows:

Lef cm =
C∑

c=1

n∑

i=1

uci ||xi − bc||2 + λ

C∑

c=1

n∑

i=1

uci log uci , (5)

where λ is the fuzzification penalty and tunes the degree of fuzziness. A larger λ
brings very fuzzy partition and λ → ∞ implies uci → 1/C , ∀i, c [6].
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2.2 Interpretation of FCM-type Clustering from Probabilistic
Mixtures Viewpoint

Caused by the exclusive partition constraint of Eq. (2), fuzzy c-partition has close
relation to probabilistic mixture models, where fuzzy membership uci is identified
with the generative probability of object i from the cth component distribution.
Assume that n objects are drawn from one of C independent Gaussian distributions,
each of which is a Gaussian component gc(xi |bc, �c) with mean bc and covariance
�c. Considering mixing weight αc, the probability of xi is represented as:

P(xi ) =
C∑

c=1

αcgc(xi |bc, �c). (6)

The maximum likelihood estimator for model parameters are given by maximizing
the following log-likelihood function:

Lgmm =
n∑

i=1

log(P(xi ))

=
n∑

i=1

log

(
C∑

c=1

αcgc(xi |bc, �c)

)

=
n∑

i=1

log

(
C∑

c=1

uci
αcgc(xi |bc, �c)

uci

)
. (7)

Supported by Jensen’s inequality [18], the optimal solution can be derived by maxi-
mizing the following pseudo-log-likelihood function:

Lgmm ′ =
n∑

i=1

C∑

c=1

uci log

(
αcgc(xi |bc, �c)

uci

)

=
n∑

i=1

C∑

c=1

uci log (gc(xi |bc, �c)) +
n∑

i=1

C∑

c=1

uci log
αc

uci
, (8)

where uci is the posterior probability of component c given object i , and uci and
component parameters (αc, bc, �c) are iteratively optimized through the EM algo-
rithm [19].

Hathaway [8] gave another interpretation on Eq. (8), where the first term is iden-
tified with the conventional k-means objective function while the second one is
regarded as a penalty for achieving soft partition.
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For example, in the case of αc = 1/C and �c = σc I , ∀c, Eq. (8) is reduced to:

Lgmm ′ = −1

2

n∑

i=1

C∑

c=1

uci
||xi − bc||2

σc
− 1

2

n∑

i=1

C∑

c=1

uci log |σc|

−
n∑

i=1

C∑

c=1

uci log uci − np

2
log 2π − n logC, (9)

and implies that the crisp k-means objective function is adopted with an additional
entropy penalty term.

This interpretation brings another viewpoint on eFCM because Eq. (9) is reduced
to the eFCM objective function of Eq. (5) by identifying σc/C with fuzzification
penalty weight λ, which is a pre-fixed model parameter. The fuzziness degree of the
eFCM model can be compared with its statistical counterpart, where λ = σc/C .

2.3 A Fuzzy Counterpart of Full-Parameter GMMs

Following the above consideration, a fuzzy counterpart of full-parameter GMMswas
proposed by adopting K-L information-based regularization. The FCM objective
function to be maximized was extended to fuzzy c-means with K-L information
regularization (KLFCM) [11] as:

Lkl f cm =
n∑

i=1

C∑

c=1

uci (xi − bc)��−1
c (xi − bc)

−λ

n∑

i=1

C∑

c=1

uci log
αc

uci
+

C∑

c=1

uci log |�c|, (10)

where λ is an adjustable weight for tuning the degree of partition fuzziness. When
λ = 1, the model is reduced to GMMs with full parameters of means bc, covariances
�c and mixing coefficients αc for all c. The larger the value of λ, the fuzzier the
object partition.

Considering the necessary conditions for the optimality of the objective function,
the updating rules for model parameters to be used in the alternative optimization
algorithm are given as follows:

αc = 1

n

n∑

i=1

uci , (11)

bc =
∑n

i=1 uci xi∑n
i=1 uci

, (12)
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�c = 1∑n
i=1 uci

n∑

i=1

(xi − bc)(xi − bc)�, (13)

uci = αc exp(−dci )∑C
�=1 α� exp(−d�i )

, (14)

where dci = (xi − bc)��c(xi − bc).

2.4 Numerical Experiment

In this subsection, an illustrative example is shown to demonstrate the characteris-
tics of FCM variant induced by probabilistic mixtures concepts. An artificial 2-D
data set is composed of 200 objects forming four spherical clusters with 50 objects
each. In order to demonstrate the effects of tuning the fuzziness degree in GMMs-
induced clustering model, the KLFCM algorithm (C = 4) was applied with different
fuzziness degrees of λ ∈{0.5, 1.0, 2.0}.

Figure1 compares the derived fuzzy partitions. Circles are data plots and gray dia-
monds are the estimated prototypes. Grayscale image depicts the fuzzy classification
function, which is the maximum membership value of four clusters in each location.
The result of GMMs (Fig. 1b), which is also achieved by KLFCM with λ = 1.0,
implies a part of the center cluster was exploited by other outer clusters because
fuzzy partition often distorts ambiguous boundaries caused by non-Gaussian com-
ponent densities. In this situation, crisper partition with λ = 0.5 (Fig. 1a) rather than
GMMs is suitable for clarifying cluster boundaries because the boundaries of visual
four clusters are clearly and fairly depicted by fine but distinct lines. Then, using a
slightly crisper model, we can enjoy the benefits of both crisp k-means partition and
fuzzy membership assignment with a linearly separable data set.

On the other hand, in fuzzier case with λ = 2.0 (Fig. 1c), the center visual cluster
was severely shared by multiple clusters and almost undetectable although its cluster
center was fairly located in its centroid. Then, using a fuzzier model, outer clusters
might be emphasized while inner clusters can be concealed by being shared by
multiple outer clusters.

The above result simply demonstrates that the adjustable penalty can contribute
to improving the interpretability of cluster partition and crisper or fuzzier partitions
rather than GMMs are sometimes more useful for intuitive data summarization. A
slightly crispermodel is suitable for linearly separable data sets while a fuzziermodel
may work well in handling severely overlapping clusters.
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(a) λ = 0.5 (b) λ = 1.0 (GMMs)

(c) λ = 2.0

Fig. 1 Comparison of cluster partitions by KLFCM with different fuzziness degrees: Grayscale
image depicts the fuzzy classification function, which is the maximum membership value of four
clusters in each location
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3 Fuzzy Co-clustering and Multinomial Mixture Models

3.1 Fuzzy Co-clustering Based on Cluster Aggregation
Criterion

Cooccurrence information analysis became more important especially in web-based
services. Assume that we have cooccurrence information among n objects and p
items such as an n × p matrix R = {ri j }, i = 1, . . . , n, j = 1, . . . , p. For example,
ri j can be the frequency of keyword (item) j in document (object) i in document-
keyword analysis. The goal of co-clustering is to extract pair-wise clusters of familiar
objects and items so that we can find object clusters in conjunction with their typical
items.

In fuzzy co-clustering, co-cluster structures are represented by using two types
of fuzzy memberships: object memberships and itemmemberships. Object member-
ships uci , i = 1, . . . , n, c = 1, . . . ,C have the same feature with the conventional
ones of FCM while item memberships wcj , j = 1, . . . , p, c = 1, . . . ,C gives addi-
tional information on the typicality of each item in each co-cluster. They are estimated
so that mutually familiar object-item pairs with large ri j should have large member-
ships in a same cluster, and the aggregation degree to be maximized in C clusters
is measured by

∑C
c=1

∑n
i=1

∑p
j=1 uciwcj ri j . Here, we should note that a different

type of constraint must be forced to wcj from
∑C

c=1 uci = 1 for object memberships
because the aggregation is trivially maximized by assigning all objects and items to
a solo cluster. Then, wcj are estimated under the constraint of

∑p
j=1 wcj = 1.

Since the aggregationmeasure is a linear functionwith respect to both uci andwcj ,
fuzzy co-clustering can be realized by introducing non-linear natures in the same
manner with the fuzzification schemes in FCM. Fuzzy clustering for categorical
multivariate data (FCCM) [13] adopted the entropy regularization scheme [5] for
membership fuzzification as follows:

L f ccm =
C∑

c=1

n∑

i=1

p∑

j=1

uciwcj ri j − λu

C∑

c=1

n∑

i=1

uci log uci

−λw

C∑

c=1

p∑

j=1

wcj logwcj , (15)

where λu and λw are independent fuzzification penalty weights. Fuzzy co-clustering
of documents and keywords (Fuzzy CoDoK) [14] introduced the quadric regulariza-
tion scheme [7] as follows:

Lcodok =
C∑

c=1

n∑

i=1

p∑

j=1

uciwcj ri j + λu

C∑

c=1

n∑

i=1

u2ci + λw

C∑

c=1

p∑

j=1

w2
cj . (16)
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Such techniques as standard fuzzification approachwith penaltyweighting exponents
is also possible in the aggregation measure [20, 21].

In contrast to some FCM variants with regularized concepts, however, these fuzzy
co-clustering models have no comparative models of probabilistic mixtures. So, we
have no guideline for evaluating the degree of fuzziness in tuning the penaltyweights,
and it is often difficult to select appropriate values for two penalty weights.

3.2 Fuzzy Co-clustering Induced by Multinomial Mixtures
Concept

A classical model for statistical cooccurrence information analysis is multinomial
mixture models (MMMs) [15], in which each probabilistic component is given by a
multinomial distribution. If objects are assume to be drawn from one of C distribu-
tions, in which the probability of item observation j in component c is wcj , the joint
distribution of cooccurrence feature vector r i = (ri1, . . . , rip)� on object i is given
as:

P(r i ) =
C∑

c=1

αc pc(r i ), (17)

where αc is the a priori probability (mixing coefficient) of component c. pc(r i ) is
the component density in component c as:

pc(r i ) = Ti !
ri1! . . . rip!

p∏

j=1

(wcj )
ri j , (18)

where Ti = ∑p
j=1 ri j .

In a same manner with GMMs, maximum likelihood estimators can be estimated
from the following pseudo-log-likelihood function:

Lmmms =
C∑

c=1

n∑

i=1

p∑

j=1

uciri j logwcj +
C∑

c=1

n∑

i=1

uci log
αc

uci
, (19)

where uci is the posterior probability of component c given object i .
Comparing Eq. (19) with the objective function of fuzzy co-clustering such as

FCCM [13], we have another interpretation from the fuzzy co-clustering viewpoint.
The first term is in a similar form with the aggregation measure but includes logwcj

instead of wcj . So, the first term has linear nature with respect to uci but is non-
linearized by log function with respect towcj . Then, the additional K-L information-
like penalty is responsible only for soft partition of uci while soft partition of wcj is
achieved by log function-induced non-linearity.
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Here, the above co-clustering interpretation ofMMMs brings an adjustable model
of fuzzy memberships in MMMs-induced fuzzy co-clustering, where degree of
partition fuzziness can be tuned by adjusting the non-linear degree of pseudo-log-
likelihood function. In [16], fuzziness degrees of both uci and wcj were discussed,
but adjustment of object partition is only considered here for simplicity.

Equation (19) implies that themaximization problem reduces hard object partition
without K-L information-like penalty and the degree of fuzziness can be tuned with
adjustable penalty weight. Then, Honda et al. proposed fuzzy co-clustering induced
by multinomial mixture concept (FCCMM) [16] with the following objective func-
tion:

L ′
mmms =

C∑

c=1

n∑

i=1

p∑

j=1

uciri j logwcj + λ

C∑

c=1

n∑

i=1

uci log
αc

uci
, (20)

where λ tunes the degree of fuzziness of object partition. When λ = 1, the model is
reduced to the conventional MMMs. The larger the value of λ, the fuzzier the object
partition.

Considering the necessary conditions for the optimality of the objective function,
the updating rules for model parameters to be used in the alternative optimization
algorithm are given as follows:

αc = 1

n

n∑

i=1

uci , (21)

uci = αc
∏p

j=1(wcj )
ri j /λ

∑C
�=1 α�

∏p
j=1(w�j )

ri j /λ
. (22)

wcj =

n∑

i=1

ri j uci

p∑

�=1

n∑

i=1

ri�uci

. (23)

3.3 Numerical Experiment

In this subsection, an illustrative example is shown to demonstrate the characteris-
tics of fuzzy co-clustering induced by a multinomial mixtures concept. The experi-
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ment was performed with two benchmark cooccurrence information data sets, which
are available from LINQS webpage of Statistical Relational Learning Group UMD
(http://linqs.cs.umd.edu/projects//index.shtml). The CiteSeer data set consists of a
3,312 × 3,703 cooccurrencematrix with the cooccurrence information among 3,312
objects (scientific publications: n = 3,312) and 3,703 items (words: p = 3,703),
where ri j ∈ {0, 1} indicate the absence/presence of words and each object is clas-
sified into one of six classes. The Cora data set consists of a 2,708 × 1,433 matrix
with similar elements, where each object is classified into one of seven classes.

In order to demonstrate the effects of tuning the fuzziness degrees, the FCCMM
algorithm was applied to the two data sets with different fuzziness degrees of λ ∈
{0.5, 1.0, 2.0}, where cluster numberswas set as the corresponding class numbers and
the initializationwas done in a supervisedmanner, i.e., the initial objectmemberships
are given following the actual class information. Tables1 and 2 compare the cross-
tabulation of maximum membership classification, in which the correct matching
of class-cluster are shown in bold. As in the same with the KLFCM algorithm, the
result of MMMs, which is also achieved by FCCMMwith λ = 1.0, implies a part of
objectswas exploited by other clusters. In this situation, crisper partitionwithλ = 0.5
rather than MMMs is suitable for clarifying cluster structures. On the other hand,
in fuzzier case with λ = 2.0, mis-assignment became more severe. It is because the
fuzzier object partition also caused fuzzier item membership assignment and severe
mis-assignment of boundary objects.

The above result simply demonstrates again that the adjustable penalty can con-
tribute to improving the interpretability of cluster partition and crisper or fuzzier
partitions rather than MMMs are sometimes more useful. This situation is quite sim-
ilar to the FCM result shown in the previous section. When each class is expected
to have distinct difference in item occurrences from other classes, a slightly crisper
partition can clarify the sharp boundaries among classes in co-clustering tasks as
well.

Table 1 Comparison of cross tabulation of class-cluster matching (Citeseer)

Cluster λ = 0.5 λ = 1.0 (MMMs) λ = 2.0

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Class 1 549 9 5 4 14 15 534 15 7 5 14 21 514 24 7 6 15 30

2 11 203 8 5 18 4 13 190 11 8 22 5 16 160 15 9 38 11

3 12 16 613 33 14 13 18 21 587 41 20 14 30 27 552 55 21 16

4 17 4 34 564 36 13 18 4 43 542 45 16 22 4 51 517 54 20

5 16 20 13 27 507 7 26 31 16 29 481 7 24 53 17 46 439 11

6 17 5 8 17 6 455 24 8 9 18 8 441 36 10 10 21 15 416

http://linqs.cs.umd.edu/projects//index.shtml
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4 Conclusions

In this chapter, several fuzzy clustering models induced from probabilistic mixtures
concepts were reviewed with experimental demonstrations of their characteristics.
Besides the original FCM clustering with fuzzification heuristics only, several FCM
variants can be analyzed under some supports of statistical theories.

KLFCMandFCCMMwere constructedby introducing adjustable penaltyweights
into pseudo-log-likelihood function of GMMs and MMMs, respectively, where the
linear measures were non-linearized by additional K-L information-like penalty
terms in conjunction with their adjustable contribution. Although the fuzziness
degrees of basic fuzzy clustering models were validated heuristically from only
the empirical viewpoints [22] except for stability analysis [23], probabilistic models-
induced algorithms can tune the fuzziness degrees under the guideline of probabilistic
counterparts.

In several illustrative examples, the interpretability of cluster structures given by
probabilistic mixture models were demonstrated to be improved by slightly crisper
settings. However, it should be also noted that hard or crisper models are often more
sensitive to initial partitions rather than fuzzier models and often suffer from the issue
of local optimality. Then, the robust feature of fuzzier models can also be utilized for
estimating proper crisper models under the support of deterministic annealing [24,
25], where fuzzification penalty weights are identified with the temperature parame-
ters in annealing process. Starting from very fuzzy situation, where we have few local
solutions, the partition fuzziness is gradually decreased until the intended fuzziness
degrees without dropped into local solutions.

Recently, various improvements of probabilisticmixturemodels [26–29] have also
been emerging in many societies such as statistics, neuro-sciences and information-
based induction sciences. Fuzzy clustering theories will become more and more
powerful tools in various data mining tasks and will investigate many research direc-
tions.

Acknowledgements Thisworkwas supported in part by theMinistry ofEducation,Culture, Sports,
Science and Technology, Japan, under Grant-in-Aid for Scientific Research (JSPSKAKENHIGrant
Number JP26330281).
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Semi-supervised Fuzzy c-Means Algorithms
by Revising Dissimilarity/Kernel Matrices

Yuchi Kanzawa

Abstract Semi-supervised clustering uses partially labeled data, as often occurs
in practical clustering, to obtain a better clustering result. One approach uses hard
constraints which specify data that must and cannot be within the same cluster.
In this chapter, we propose another approach to semi-supervised clustering with
soft pairwise constraints. The clustering method used is fuzzy c-means (FCM), a
commonly used fuzzy clusteringmethod. Twopreviously proposed variants, entropy-
regularized relational/kernel fuzzy c-means clustering and indefinite kernel fuzzy
c-means clustering algorithm are modified to use the soft constraints. In addition, a
method is discussed that propagates pairwise constraints when the given constraints
are not sufficient for obtaining the desired clustering result. Using some numerical
examples, it is shown that the proposed algorithms obtain better clustering results.

Keywords Semi-supervised clustering · Kernel · Relational clustering · Fuzzy
c-means

1 Introduction

Fuzzy c-means (FCM) [1] is a well-known fuzzy clustering method, and many FCM
variants have been proposed so far. Here, we refer to the original FCM as the Bezdek-
type FCM (bFCM) in order to distinguish it from other variants. Of these variants,
the FCM algorithm based on the concept of regularization by entropy was pro-
posed byMiyamoto andUmayahara [2]. This algorithm is called entropy-regularized
FCM (eFCM) and is discussed not only for its usefulness but also for itsmathematical
relations with other techniques.

Another variant is Bezdek-type relational fuzzy c-means (bRFCM) [3], which is
used with relational data to quantify the relationship between each pair of objects.
In order to deal with non-Euclidean relational data, a modified version of bRFCM,
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non-Euclidean bRFCM (NEbRFCM) [4] with β-spreading, has been developed for
non-Euclidean relational data. Both bRFCMandNEbRFCMcan be naturally applied
to data in Euclidean space by calculating the dissimilarity between each datum. The
author proposed entropy-regularized relational fuzzy c-means (eRFCM) in [5] and
showed that eRFCM does not need the help of β-spreading for any non-Euclidean
relational data.

Another two FCM variants called Bezdek-type and entropy-regularized kernel
fuzzy c-means (K-bFCMandK-eFCM, respectively) [6, 7] are usedwith nonlinearly
bordered clusters, in which data are transformed into a higher-dimensional space
called feature space and clustered in that feature space using some kernel function
that calculates the inner product of two data. Correspondingly, for indefinite kernels,
the author also proposed indefinite kernel Bezdek-type fuzzy c-means (IK-bFCM)
in [8]. bRFCM, NEbRFCM, eRFCM, K-bFCM, K-eFCM, and IK-bFCM with a
dissimilarity-based kernel such as a Gaussian kernel all have a common feature in
that they use the dissimilarity between data.

Yet another FCMvariant is the framework of semi-supervised clustering, in which
we start with a supply of unlabeled and labeled data, as often occurs in practical
clustering, and some labeled data are used along with the unlabeled data to obtain a
better clustering with a higher convergence speed and accuracy. The semi-supervised
approach for FCMwas first proposed by Pedrycz [9], who assumed that some super-
visors for labels are provided, and many similar methods have been proposed since
then [10–12]. Another semi-supervised approach for K-means uses two types of pair-
wise constraints: must-link, where two data have to be together in the same cluster
and cannot-link, where two data must be in different clusters [13]. By relaxing the
above mentioned hard constraints into soft constraints such that two data should be
together in the same cluster and that two data should be in different clusters, respec-
tively, some variants of pairwise constraint FCM have been proposed [14, 15] by
adding a penalty term for soft constraints to the original FCM optimization problem.

In this chapter, we describe another approach to semi-supervised FCM with soft
pairwise constraints, which completes the author’s work in [16] with the help of the
author’s other works in [5, 8]; this approach is based on the concept that the data in
the same cluster may be close to each other and the data in different clusters may
be far apart. It is difficult to directly apply this concept to FCM because the FCM
optimization problem is described not by dissimilarities between data but by dissim-
ilarities between each datum and the cluster center. Furthermore, we apply NEbR-
FCM, eRFCM, IK-bFCM, and K-eFCM using a dissimilarity-based kernel because
thesemethods use dissimilarities between data. Therefore, we revise the dissimilarity
between data using information about the pairwise constraints and applyNEbRFCM,
eRFCM, IK-bFCM, or K-eFCM using the revised dissimilarities. Furthermore, we
consider propagating the given pairwise constraints to unconstrained data when the
given constraints are not sufficient to obtain the desired clustering result.

The remainder of this chapter is organized follows. In the second section,
we define some notation and introduce bRFCM, NEbRFCM, eRFCM, K-bFCM,
K-eFCM, and IK-bFCM, which are used for our proposed method. In the third
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section, we explain our concept and propose four semi-supervised fuzzy c-means
algorithmsby revising the dissimilarity betweendata. In the fourth section,wepresent
some numerical examples. In the last section, we conclude this chapter.

2 Preliminaries

For a given data set x = {xk | k ∈ {1, . . . , N }}, bRFCM, eRFCM and NEbRFCM
assume that the dissimilarity data matrix R ∈ R

N×N is given. In contrast, K-bFCM,
K-eFCM, and IK-bFCM assume that kernel matrix K ∈ R

N×N is given. The mem-
bership bywhich xk belongs to the i-th cluster is denoted by ui,k (k ∈ {1, . . . , N }, i ∈
{1, . . . ,C}) and the set ofui,k is denoted byu ∈ R

C×N , and called the partitionmatrix.
The constraints for u are

ui,k ∈ [0, 1] (1)

and

C∑

i=1

ui,k = 1. (2)

Methods bRFCM [3] and eRFCM [5] are given by Algorithm1.

Algorithm 1 (bRFCM [3] and eRFCM [5])

Step 1. Given dissimilarity data matrix R. Select m > 1 for bRFCM, and λ > 0
for eRFCM. Fix C , and initialize membership u.

Step 2. Calculate

vi = (
(ui,1)

m, . . . , (ui,N )m
)
/

N∑

k=1

(ui,k)
m (3)

for bRFCM, and

vi = (
ui,1, . . . , ui,N

)
/

N∑

k=1

ui,k (4)

for eRFCM.
Step 3. Calculate

di,k = (Rvi )k − vT
i Rvi . (5)
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Step 4. Calculate

ui,k = 1/
C∑

j=1

(
di,k
d j,k

)1/(m−1)

(6)

for bRFCM, and

ui,k = exp(−λdi,k)/
C∑

j=1

exp(−λd j,k) (7)

for eRFCM.
Step 5. If (u, d) converge, terminate. Otherwise, return to Step 2. �

Matrix R is called Euclidean if there exists a set of points {y1, . . . , yN } in R
N−1

such that Rk,k̃ = ‖yk − yk̃‖22. The method of bRFCM may fail for non-Euclidean
R caused by negative di,k in Step 3 of Algorithm1. For example, in the case with
C = 2,m = 2, and {di,1}2i=1 = {−1, 2}, we have {ui,1}2i=1 = {2,−1}, which violates
the condition given in Eq. (1). To overcome such the limitation, NEbRFCM is given
by the following Algorithm [4]:

Algorithm 2 (NEbRFCM [4])

Step 1. Do Step 1 of Algorithm1 and initialize β = 0.
Step 2. Do Step 2 of Algorithm1.
Step 3. Do Step 3 of Algorithm1. If di,k < 0,

Δβ =max{−2di,k/‖ek − vi‖2}, (8)

di,k ←di,k + Δβ‖ek − vi‖2, (9)

β ←β + Δβ. (10)

Step 4. Do Step 4 of Algorithm1.
Step 5. If (u, d) converge, terminate. Otherwise, return to Step 2. �

For a given data set X = {xk | k ∈ {1, . . . , N }}, kernel fuzzy clustering assumes
that the kernel matrix K ∈ R

N×N is given. Let H be a higher-dimensional feature
space, let � : X → H be a map from data set X to feature space H, and let W =
{Wi ∈ H | i ∈ {1, . . . ,C}} be a set of cluster centers in the feature space.

Methods K-bFCM and K-eFCM are obtained as follows [6, 7].

Algorithm 3 (K-bFCM and K-eFCM [6, 7])

Step 1. Specify the number of clusters C . Select the fuzzifier parameter m > 1
for K-bFCM, and λ > 0 for K-eFCM. Set the initial value of u.

Step 2. Update cluster centers as
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Wi =
(
(ui,1)m, . . . , (ui,N )m

)T

∑N
k=1(ui,k)

m
(11)

for K-bFCM, and

Wi =
(
ui,1, . . . , ui,N

)T

∑N
k=1 ui,k

(12)

for K-eFCM.
Step 3. Update the dissimilarity between each element in the data set and the

cluster center as

di,k = (ek − Wi )
TK (ek − Wi ). (13)

Step 4. Update the membership as

ui,k =
⎛

⎝
C∑

j=1

(
di,k
d j,k

) 1
m−1

⎞

⎠
−1

(14)

for K-bFCM, and

ui,k = exp(−λdi,k)/
C∑

j=1

exp(−λd j,k) (15)

for K-eFCM.
Step 5. If (u, d,W ) converges, terminate this algorithm. Otherwise, return to

Step 2.

K-bFCM is constructed based on the fact that K is positive semidefinite. Even
then, K is sometimes introduced without guaranteeing the existence of �; in this
case, K is not always positive semidefinite. K-bFCM works for an indefinite K
when the magnitude of negative eigenvalues is not very large. However K-bFCM
fails for indefinite K when the magnitude of negative eigenvalues is extremely large
because thememberships cannot be calculated after the dissimilarity between adatum
and cluster center has been updated to a negative value. In order to overcome this
limitation, the following β-spread transformation of K has been considered [8]:

Kβ = K + βE, (16)

by which Kβ is positive semidifinite for sufficiently large value of β > 0. K-bFCM
with β-spread transformation is given by the following IK-bFCM algorithm.
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Algorithm 4 (IK-bFCM [8])

Step 1. Specify the number of clusters C and the fuzzifier parameter m. Set the
initial value of u, set β = 0, and set K0 = K .

Step 2. Execute Step 2 of Algorithm3.
Step 3. Update di,k as

di,k = (ek − Wi )
TKβ(ek − Wi ). (17)

Step 4. If di,k < 0, update Δβ, di,k , and β as

Δβ =max{−di,k/‖ek − Wi‖22}, (18)

di,k ← di,k + Δβ‖ek − Wi‖2, (19)

β ← β + Δβ, (20)

Kβ ← Kβ + ΔβE . (21)

Step 5. Execute Step 4 of Algorithm3.
Step 6. If the stopping criterion is satisfied, terminate this algorithm. Otherwise,

return to Step 2.

bRFCM, eRFCM, NEbRFCM, K-bFCM, K-eFCM, and IK-bFCM, when used
with some kernel matrix such as a Gaussian kernel

Kk,k̃ = exp(−σ2‖xk − xk̃‖2), (22)

all have the common property that they use the dissimilarity between data.

3 Proposed Method

In this section, we propose four types of semi-supervised fuzzy c-means algo-
rithms by revising the dissimilarity between data following the given soft pairwise
constraints. The first two approaches apply NEbRFCM and eRFCM to revise the
dissimilarity and the others apply IK-bFCM and K-eFCM. First, we describe the
concept of the proposedmethods and their outlines. In Sects. 3.2 and 3.3, we describe
the respective proposed algorithms. Furthermore, we discuss the propagation of the
given pairwise constraints to unconstrained data in Sect. 3.4.

3.1 Our Concept and the Outline of the Proposed Algorithm

Clustering is a type of unsupervised learning; however, in some cases, we can have
supervision in the form of constraints that specify whether pairs of points should
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belong to the same cluster or to different clusters. In this setting, a clustering frame-
work was proposed with two types of pairwise constraints [13–15]:

must-link — two data must be or should be together in the same cluster
and
cannot-link — two data must be or should be in different clusters.

LetM be a set ofmust-link pairs such that (xk, xk̃) ∈ M implies that xk and xk̃ must
or should be assigned to the same cluster, and C be a set of cannot-link pairs such that
(xk, xk̃) ∈ C implies that xk and xk̃ must or should be assigned to different clusters.
Such pairwise constraints are used in two different manners: hard constraints and
soft constraints. While hard constraints must be satisfied in the obtained cluster-
ing result [13], soft constraints need not be satisfied and are used only as hints in
clustering [14, 15]. In this chapter, all pairwise constraints are considered to be soft.

The outline of the proposed algorithm is as follows. We can obtain a dissimilarity
matrix for the data as well as soft pairwise constraints M and C. We create a new
dissimilarity matrix on the basis of the pairwise constraints and their implications.
We then supply this new matrix to a dissimilarity-based clustering algorithm such
as eRFCM (Algorithm1), NEbRFCM (Algorithm2), K-eFCM (Algorithm3), or IK-
bFCM (Algorithm4) with a dissimilarity-based kernel function.

In our above-mentioned dissimilarity matrix, we would like (xk, xk̃) ∈ M to be
closer to each other than the given dissimilarity, and (xk, xk̃) ∈ C to be further from
each other than the given dissimilarity. In this manner, we revise the original dissim-
ilarity matrix, by decreasing the dissimilarity for (xk, xk̃) ∈ M and increasing the
dissimilarity for (xk, xk̃) ∈ C.

3.2 Applying Relational Clustering: NEbRFCM and eRFCM

In this section, we consider applying NEbRFCM and eRFCM to the revised dissim-
ilarity in Sect. 3.1.

Revising the dissimilarity matrix can be, in some cases, interpreted as transform-
ing the data into another space such that the dissimilarity between the transformed
data corresponds to the revised dissimilarities. In such cases, the revised dissimilarity
matrix is Euclidean and we can apply bRFCM (Algorithm1) to the revised dissimi-
larity matrix. If the revised dissimilarity matrix is non-Euclidean, bRFCM may fail
because of the negative di,k in Step 3 of Algorithm2. However, we can apply NEbR-
FCM instead. Note that eRFCM can also handle non-Euclidean relational data. The
above discussion is summarized by Algorithm5.

Algorithm 5 (NEbRFCM or eRFCM with a revised dissimilarity matrix)

Step 1. Calculate dissimilarity matrix R for given data set x , where Rk,k̃ is the
dissimilarity between xk and xk̃ .

Step 2. Revise the dissimilarity matrix R, by decreasing Rk,k̃ if (xk, xk̃) ∈ M and

increasing Rk,k̃ if (xk, xk̃) ∈ C, to the new dissimilarity matrix R̃.

Step 3. Apply eRFCM (Algorithm1) or NEbRFCM (Algorithm2) to R̃. �
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3.3 Applying Kernel Clustering: IK-bFCM or K-eFCM

In this section,we consider applying kernel clustering algorithmswith a dissimilarity-
based kernel function to the revised dissimilarity.

A kernel function K (x, y), e.g., the Gaussian in Eq. (22), can be described as

K (x, y) = ψK (‖x − y‖22) (23)

using a mapping ψK : R+ → R, where ψGaussian(z) = exp(z). Let another mapping
ψ̃ : R+ → R+ be the one from the given dissimilarity between data to the revised
dissimilarity. Using a selected kernel function and by revising the given dissimilarity,
we consider another kernel matrix K̃ such that

K̃k,k̃ = ψK (ψ̃(‖xk − xk̃‖22)). (24)

If this kernel matrix K̃ is positive semidefinite, we can apply K-bFCM (Algo-
rithm3) to K̃ . If this kernel matrix K̃ is not positive semidefinite, K-bFCM may
fail because of negative di,k in Step 3 of Algorithm3. However, we can apply IK-
bFCM (Algorithm4) instead. Note that K-eFCM can be applied not only to a positive
semidefinite matrix but also to an indefinite one. The above discussion is summarized
by Algorithm6.

Algorithm 6 (IK-bFCM or K-eFCM for revised dissimilarity matrix)

Step 1. Calculate dissimilarity matrix R for given data set x , where Rk,k̃ is the
dissimilarity between xk and xk̃ .

Step 2. Revise the dissimilarity matrix R, by decreasing Rk,k̃ if (xk, xk̃) ∈ M and

increasing Rk,k̃ if (xk, xk̃) ∈ C, to the new dissimilarity matrix R̃.
Step 3. Select a dissimilarity-based kernel function ψK and construct a kernel

matrix K̃ as

K̃k,k̃ = ψK (R̃k,k̃). (25)

Step 4. Apply K-eFCM (Algorithm3) or IK-bFCM Algorithm4 to K̃ . �

3.4 Propagating Pairwise Constraints

In this section, we propose propagating the given pairwise constraints to other pairs
of data for cases in which the given constraints are not sufficient for obtaining the
desired clustering result.

Following the intuition that if data xk and xk̃ are close to each other, data close to
xk are also close to xk̃ , the given pairwise constraint is expected to propagate to other
pairs such that if (xk, xk̃) ∈ M, we would like data close to xk to be closer to xk̃ than
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the given dissimilarity. For such a propagation, we adopt a graph-theoretic approach
as follows. Consider an undirected graph such that each vertex is xk and each edge
between xk and xk̃ has aweight ‖xk − xk̃‖2.Obviously, theminimal routewith respect
to the sum of its edge weights from xk to xk̃ is ‖xk − xk̃‖2, which corresponds to the
Euclidean distance between xk and xk̃ . If the weight between xk and xk̃ is revised
following the revised dissimilarity by the given pairwise constraints, the minimal
routes from xk to its neighbors xk̃ are expected to be respectively less than the given
weights for the directly connected edges. Suchminimal routes can be calculated using
the famous Floyd–Warshall algorithm, and the squared minimal routes are applied
to Algorithms5 or 6 as the further revised dissimilarity, reflected by propagating the
given pairwise constraints to other pairs of data. The above discussion is summarized
by the Algorithm7.

Algorithm 7 (Propagating pairwise constraints)

Step 1. Consider an undirected graph G each vertex of which is xk and each edge

of which between xk and xk̃ has a weight
√
R̃k,k̃ , where R̃ is obtained from Step 2

of Algorithms5 or 6.
Step 2. Apply the Floyd–Warshall algorithm to G and obtain the minimal route

r̂k,k̃ .

Step 3. Construct the new revised dissimilarity matrix R̂ as

R̂k,k̃ = r̂2
k,k̃

. (26)

This algorithm is applied between Step 2 and Step 3 of Algorithm5 or 6.
We also propose another approach to propagate the given pairwise constraints to

other pairs for Algorithm6. The kernel matrix obtained in Step 3 of Algorithm6 can
be interpreted as a revised kernel function value K̃ (xk, xk̃) of the original K (xk, xk̃),
where

K̃ (x, y) =K (x, y) +
∑

(xk ,xk̃ )∈M
αk,k̃

(
δ(x − xk, y − xk̃) + δ(x − xk̃, y − xk)

)+
∑

(xk ,xk̃ )∈C
βk,k̃

(
δ(x − xk, y − xk̃) + δ(x − xk̃, y − xk)

)
, (27)

δ(x, y) =
{
1 (x = y),
0 (otherwise),

(28)

αk,k̃ =ψK (R̃k,k̃) − K (xk, xk̃)

2
, (29)

βk,k̃ = − ψK (R̃k,k̃) − K (xk, xk̃)

2
. (30)
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This revised kernel function does not influence pairs (xk, xk̃) /∈ M ∪ C because func-
tion δ is singular in the sense that it is discontinuous at the origin. If δ is regularized
as

δ(x, y) =max{0, 1 − ω−1(‖x‖22 + ‖y‖22)} or (31)

δ(x, y) = exp(−ω(‖x‖22 + ‖y‖22)), (32)

where the parameter ω > 0 specifies the width for the influence of the given pairwise
constraints, such a kernel function should influence pairs (xk, xk̃) /∈ M ∪ C. This
chapter only deals with the case of Eq. (32), in which the coefficients αk,k̃ and βk,k̃
are determined as

K̃ (xk, xk̃) = ψK (R̃k,k̃) ((xk, xk̃) ∈ M ∪ C). (33)

Although such a revised kernel matrix K̃ with elements K̃k,k̃ = K̃ (xk, xk̃) is not
always positive-semidefinite, we can obtain a positive-semidefinite one in Step 4
of Algorithm6. The above discussion is summarized by Algorithm8.

Algorithm 8 (Kernel-based propagating constraints)

Step 1. For M, C, and revised dissimilarity matrix R in Step 2 of Algorithm6,
select a dissimilarity-based kernel function ψK and set the parameter ω for the
width of the influence of the given pairwise constraints.

Step 2. Construct a kernel matrix K̃ as Eqs. (27), (32), and (33). �

This algorithm is replaced by Step 3 of Algorithm6.

4 Numerical Example

In this section, we show some examples of clustering using our proposed algorithms.
In each example, 100 trials for the proposed algorithm with random initial values
were tested, and the solution with the minimal objective function value was selected
as the final result. The goal is to cluster the data shown in Fig. 1 into twomoon-shaped
clusters. This data set is constructed of 300 elements in two dimensional Euclidean
space.

4.1 Example for Algorithm5

In this example, we apply Algorithm5 to the data in Fig. 1.
First, we note that NEbRFCM (Algorithm2) with m = 2 (i.e., neither must-link

constraints or cannot-link constraints are given), fails to cluster correctly, as shown
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Fig. 1 Data used in the
examples
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Fig. 2 Clustering results of
Algorithms1 and 2 with
m = 2
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in Fig. 2, where the plus symbol indicates one cluster and the cross symbol indicates
the other. Here, the inside edges of the moons are mis-clustered with each other.

Next, we assume that must-link and cannot-link constraints are given, as shown
in Fig. 3, where the black solid lines connect the pairs withmust-link constraints and
the gray dashed lines connect the pairs with cannot-link constraints. In Algorithm5,
we revise the dissimilarity matrix at Step 2 to

R̃k,k̃ = exp(−αk,k̃ + βk,k̃)Rk,k̃, (34)

where

αk,k̃ =
{
10 ((xk, xk̃) ∈ M),

0 ((xk, xk̃) /∈ M),
(35)

βk,k̃ =
{
10 ((xk, xk̃) ∈ C),

0 ((xk, xk̃) /∈ C),
(36)

and we obtain the desired clustering results, as shown in Fig. 4. Thus, this exam-
ple shows that on the data on which the original algorithm (Algorithm2) fails, the
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Fig. 3 Must-links and
cannot-links for Algorithm5
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Fig. 4 Clustering results of
Algorithm5
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proposed algorithm (Algorithm5) can achieve a successful clustering result with the
help of given pairwise constraints of a data supervisor.

4.2 Example for Algorithm6

In this example, we apply Algorithm6 to the data in Fig. 1.
First, we see that K-FCM (Algorithm3) with m = 2 and

Kk,k̃ = exp(−0.0002‖xk − xk̃‖22), (37)

(i.e., neithermust-link constraints or cannot-link constraints are given), fails to cluster
correctly, as shown in Fig. 5. In this figure, the right edge of the upper moon is mis-
clustered as the other cluster. Although K-bFCM and K-eFCM (Algorithm3) may
cluster correctly with some tuned parameters, we fix the parameters to the ones for
which K-bFCM fails because we would like to demonstrate the situation in which
the adequate parameters have not been selected for K-bFCM.
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Fig. 5 Clustering results for
Algorithm3 with
σ = 0.0002, m = 2
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Fig. 6 Cannot-links for
Algorithm6
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Next, we assume that cannot-link constraints are given, as shown in Fig. 6, where
the gray dashed lines connect the pairs in cannot-link constraints. In Algorithm6,
we revise the dissimilarity matrix at Step 2 to

R̃k,k̃ = exp(βk,k̃)Rk,k̃, (38)

where

βk,k̃ =
{
100 ((xk, xk̃) ∈ C),

0 ((xk, xk̃) /∈ C),
(39)

and we set ψK at Step 3 as

ψK (z) = exp(−0.0002z) (40)

following Eq. (37). We then obtain the desired clustering results, as shown in Fig. 4
using Algorithm6. Thus, this example shows that on data that causes Algorithm3 to
fail, the proposed algorithm (Algorithm6) achieves a successful clustering result with
the help of pairwise constraints givenby a supervisor.Althoughwe testedAlgorithm6
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with some must-link constraints, we could not obtain the desired clustering result
because all the memberships ui,k converge to the same value 0.5.

4.3 Example for Algorithm7

In this example, we apply Algorithm7 to the data in Fig. 1 with fewer must-link and
cannot-link constraints than shown in Fig. 3.

First, we see that Algorithm5 fails with the given constraints as follows. We
assume thatmust-link and cannot-link constraints are given as shown in Fig. 7, where
the black solid and gray dashed lines indicate must-link and cannot-link constraints,
respectively. In Algorithm5, we revise the dissimilarity matrix at Step 2 as using
Eqs. (34)–(36), and find that we cannot obtain the desired clustering result. This
seems to be because the given constraints are not sufficient to obtain the desired
clustering result.

Next, we apply Algorithm7 between Step 2 and Step 3 of Algorithm5. After
we revise the dissimilarity matrix in Step 2 in Algorithm5, as per Eqs. (34)–(36),
we further revise the dissimilarity matrix using Algorithm7. We can then obtain
the desired clustering result, as shown in Fig. 4. Thus, this example shows that the
proposed algorithm (Algorithm7) is a valid way to achieve successful clustering
results when the given constraints are not sufficient for Algorithm5 to obtain the
desired clustering result.

4.4 Example for Algorithm8

In this example, we apply Algorithm8 to the data in Fig. 1 with fewer cannot-link
constraints than shown in Fig. 6.

Fig. 7 Must-links and
cannot-links for Algorithm5
via Algorithm7
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Fig. 8 Cannot-links for
Algorithm6 via Algorithm8
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First, we see that Algorithm6 fails with given constraints as follows. We assume
that cannot-link constraints are given as shown in Fig. 8, where the gray dashed lines
indicate cannot-link constraints. In Algorithm6, we revise the dissimilarity matrix
at Step 3 as per Eqs. (38) and (39) and set ψK at Step 2 as per Eq. (40), but cannot
obtain the desired clustering result usingAlgorithm6.Again, this seems to be because
the given constraints are not sufficient to obtain the desired clustering result.

We next use Algorithm8 to replace Step 3 of Algorithm6. After we set the
dissimilarity matrix at Step 2 in Algorithm5, as per Eqs. (38) and (39), we set
the kernel matrix using Algorithm8 with ω = 0.001. We can then obtain the desired
clustering result as shown in Fig. 4. Thus, this example shows that the proposed algo-
rithm (Algorithm8) achieves successful clustering results when the given constraints
are not sufficient for Algorithm6 to obtain the desired clustering result.

5 Conclusion

In this chapter, we proposed four approaches for semi-supervised FCM with soft
pairwise constraints. The first two are apply NEbRFCM and eRFCM to revised dis-
similarity matrix by pairwise constraints (Algorithm5), and the others use IK-bFCM
and K-eFCM with a dissimilarity-based kernel function (Algorithm6). The dissimi-
larity matrix is revised based on the concept that the data in the same cluster may be
close to each other and the data in the different clustersmay be far apart. Furthermore,
we discussed propagating the given pairwise constraints to unconstrained data when
the given constraints are not sufficient to obtain the desired clustering result (Algo-
rithms7 and 8). We showed some numerical examples for the proposed algorithms.
The first two numerical examples show that the proposed algorithms (Algorithms5
and 6) achieved successful clustering results with the help of pairwise constraints
given by a data supervisor on data where the original algorithms (Algorithms2 and
3) fail. The other two examples show that the proposed algorithms (Algorithms7
and 8) can achieve successful clustering results when the given constraints are not
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sufficient for Algorithms5 and 6. Although the data shown in Fig. 1 were perfectly
clustered by all the proposed algorithms, such perfect clustering for other data does
not always hold, especially in practical applications. The proposed methods will be
applied to several real datasets in our future work.

Our other future tasks are as follows. (1) Because we could not demonstrate a
deterministic method to revise the dissimilarity matrix by the given pairwise con-
straints, we will investigate a reasonable revision to the dissimilarity matrix based on
some theoretical background. Through such investigation, we will clarify the reason
why the must-link constraints obtained the result of ui,k = 0.5 for the example in
Sect. 4.2, and understand the sensitivity of the revised dissimilarity matrix to this
result. (2) Because we considered propagating only must-link constraints to other
pairs in the graph-theoretic approach, we will also consider propagating cannot-link
constraints. (3) Because we fixed the number of trials with random initial values
to 100 in the experiments, which is without any reasonable discussion, we will also
investigate which method achieves the maximal number of trials achieving the min-
imal objective functions values, along with how many trials are sufficient to obtain
the desireble result for each method.
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Various Types of Objective-Based
Rough Clustering

Yasunori Endo and Naohiko Kinoshita

Abstract Conventional clustering algorithms classify a set of objects into some
clusterswith clear boundaries, that is, one objectmust belong to one cluster. However,
many objects belong to more than one cluster in real world since the boundaries of
clusters generally overlap with each other. Fuzzy set representation of clusters makes
it possible for each object to belong to more than one cluster. On the other hand, it
is pointed out that the fuzzy degree is sometimes regarded as too descriptive for
interpreting clustering results. Instead of fuzzy representation, rough set one could
deal with such cases. Clustering based on rough set could provide a solution that is
less restrictive than conventional clustering and less descriptive than fuzzy cluster-
ing. Therefore, Lingras et al. (Lingras and Peters, Wiley Interdiscip Rev: Data Min
Knowl Discov 1(1):64–72, 1207–1216, 2011, [1] and Lingras and West, J Intell Inf
Syst 23(1):5–16, 2004, [2]) proposed a clustering method based on rough set, rough
K -means (RKM). RKM is almost only one algorithm inspired by KM and some
assumptions of RKM are very natural, however it is not useful from the viewpoint
that the algorithm is not based on any objective functions.Outputs of non-hierarchical
clustering algorithms strongly depend on initial values and the “better” output among
many outputs from different initial values should be chosen by comparing the value
of the objective function of the output with each other. Therefore the objective func-
tion plays very important role in clustering algorithms. From the standpoint, we
have proposed some rough clustering algorithms based on objective functions. This
paper shows such rough clustering algorithms which is based on optimization of an
objective function.
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1 Introduction

As the importance of data analysis increases, clustering techniques have been more
focused [3] and more clustering algorithms have been proposed.

Conventional clustering algorithms partition a set of objects into some clusters
with clear boundaries. In other words, one object must belong to one cluster. k-means
(KM) [4], also called hard c-means (HCM), is representative one.

However, the boundaries may not be clear in practice and quite a few objects
should belong to more than one cluster. Fuzzy set representation of clusters makes
it possible for each object to belong to more than one cluster and the degree of
belongingness of an object to each cluster is represented as a value in an unit interval
[0, 1]. Fuzzy c-means (FCM) [5, 6] achieves the representation by introducing a
fuzzification parameter into KM.

On the other hand, it is pointed out that the fuzzy degree sometimes may be too
descriptive for interpreting clustering results [1]. In such cases, rough set represen-
tation is considered as an useful and powerful tool [7, 8]. The basic concept of the
representation is based on two definitions of lower and upper approximations of a
set. The lower approximation means that “an object surely belongs to the set” and
the upper one means that “an object possibly belongs to the set”. Clustering based on
rough set could provide a solution that is less restrictive than conventional clustering
and less descriptive than fuzzy clustering [1, 9], and therefore, the rough set based
clustering has attracted increasing interest of researchers [1, 2, 10–14].

Rough k-means (RKM) proposed by Lingras et al. [1, 2] is one of initial rough
set based clustering. In RKM, the degree of belongingness and cluster centers are
calculated by iterative process like KM or FCM. However, RKM has a problem that
the algorithm is not constructed based on optimization of an objective function. Here,
we call clustering based on optimization of an objective function “objective-based
clustering”. In other words, calculation outputs of the objective-based clustering
make the objective function minimize.

Many non-hierarchical clustering algorithms such as KM and FCM are objective-
based clustering. Calculation outputs of such algorithms strongly depend on initial
values. Hence, we need some indicator when we choose the “better” outputs among
many outputs from different initial values. The objective functions play very impor-
tant role as the indicator, that is, we can choose the “better” outputs by comparing
the value of the objective function of the output with each other.

RKM is one of the most representative algorithms inspired by KM and some
assumptions of RKM are very natural, however it is not useful from the viewpoint
that the algorithm is not based on any objective functions because we do not have
any indicator to choose “better” outputs. Some rough set based clustering algorithms
based on an objective function are proposed [12], however these may be a bit com-
plicated and not easy to expand the theoretical discussion.
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We have proposed some objective-based rough clustering methods. This paper
shows objective functions and algorithms of the methods, type-I rough c-means,
type-II rough c-means, and rough non metric model. In each method, we show rough
hard clustering and rough fuzzy one.

2 Rough Sets

2.1 Concept of Rough Sets

Let U be the universe and R ⊆ U × U be an equivalence relation on U . R is also
called indiscernibility relation. The pair X = (U, R) is called an approximation
space. If x, y ∈ U and (x, y) ∈ R, we say that x and y are indistinguishable in
X .

Equivalence classes of the relation R is called elementary sets in X . The set of all
elementary sets is denoted by U/R. The empty set is also elementary in every X .

Every finite union of elementary sets in X is called a composed set in X .
Since it is impossible to distinguish the elements in the same equivalence class,

we may not be able to get a precise representation for an arbitrary subset A ⊂ U .
Instead, any A can be represented by its lower and upper bounds. The upper bound
A is the least composed set in X that contains A, called the best upper approximation
or, in short, the upper approximation. The lower bound A is the greatest composed
set in X that is included in A, called the best lower approximation or, briefly, the
lower approximation. The set Bnd(A) = A − A is called the boundary of A in X .

The pair (A, A) is the representation of an ordinary set A in the approximation
space X , or simply the rough set of A. The elements in the lower approximation of
A definitely belong to A, while elements in the upper bound of A may or may not
belong to A.

2.2 Conditions of Rough Clustering

Let a set of objects and a set of equivalence classes by an equivalence relation
R be U = {xk | xk = (xk1, . . . , xkp)

T ∈ �p, k = 1, . . . , n} and U/R = {Ai | i =
1, . . . , c}, respectively. vi = (vi1, . . . , vip)

T ∈ �p (i = 1, . . . , c) means a cluster
center of a cluster Ai . We notice that Ai �= ∅ for any i . That is, A = ∅ means that
Bnd(A) �= ∅. Similarly, Bnd(A) = ∅ means that A �= ∅.

Lingras et al., who proposed rough K -means (RKM) [1, 2], put the following
conditions. Their conditions are very natural from the viewpoint of the definition of
rough sets.

(C1) An object x can be part of at most one lower bound.
(C2) If x ∈ Ai , x ∈ Ai .
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(C3) An object x is not part of any lower bound if and only if x belongs to two or
more upper bounds.

Note that the above conditions are not necessarily independent or complete.

3 Type-I Rough c-Means

3.1 Type-I Rough Hard c-Means

In this section, we describe type-I rough c-means (RCM-I). In order to distinguish
the later mentioned rough fuzzy c-means, we also write type-I rough hard c-means
(RHCM-I).

3.1.1 Objective Function

For anyobjects xk = (xk1, . . . , xkp)
T ∈ �p (k = 1, . . . , n),νki anduki (i = 1, . . . , c)

mean belongingness of an object xk to a lower approximation of Ai and a boundary
of Ai , respectively. Partition matrices of νki and uki are denoted by N = {νki } and
U = {uki }, respectively. We define an objective function of RCM-I as follows:

JRCM-I(N , U, V ) =
n∑

k=1

n∑

l=1

c∑

i=1

(
νki uli (wdki + wdli ) + (νkiνli + uki uli )Dkl

)
, (1)

where

dki = ‖xk − vi‖2, Dkl = ‖xk − xl‖2.

For any k, constraints are as follows:

w + w = 1,

νki ∈ {0, 1}, uki ∈ {0, 1},
c∑

i=1

νki ∈ {0, 1},
c∑

i=1

uki �= 1,

c∑

i=1

νki = 1 ⇐⇒
c∑

i=1

uki = 0.

The last term of (1) is a regularized term. If the term does not exist, it results in
trivial solutions of νki = 0 and uki = 0. From the above constraints, we can derive
the following relation for any k:
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c∑

i=1

νki = 0 ⇐⇒
c∑

i=1

uki ≥ 2

It is obvious that these relations are equivalent to (C1)–(C3) in Sect. 2.2.

3.1.2 Derivation of Optimal Solutions and Algorithm

We’ll obtain an optimal solution to vi with fixing νki and uki . Here, we introduce the
following function:

J i
RCM-I(V ) =

n∑

k=1

n∑

l=1

(
νki uli (wdki + wdli )

)
. (2)

Since νki and uki are fixed, vi which minimizes J i
RCM-I is an optimal solution which

also minimizes JRCM-I. Now, we have to consider the following two cases:

1. Ai �= ∅ and Bnd(Ai ) �= ∅, that is, |Ai | · |Bnd(Ai )| �= 0.
2. Ai = ∅ or Bnd(Ai ) = ∅, that is, νki = 0 or uki = 0 for any k.

If Ai �= ∅ and Bnd(Ai ) �= ∅, from partially differentiating (2) by vi ,

∂ J i
RCM-I

∂vi
=

n∑

k=1

n∑

l=1

νki uli
(
w(xk − vi ) + w(xl − vi )

)
.

From ∂ J i
RCM-I
∂vi

= 0,

n∑

k=1

n∑

l=1

νki uli vi =
n∑

k=1

n∑

l=1

νki uli (wxk + wxl),

then, we get

n∑

k=1

νki

n∑

l=1

uli vi = w
n∑

l=1

uli

n∑

k=1

νki xk + w
n∑

k=1

νki

n∑

l=1

uli xl . (3)

We here notice the following relations:

|Ai | =
n∑

k=1

νki , |Bnd(Ai )| =
n∑

l=1

uli .

Then, (3) can be rewritten as follows:
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|Ai | · |Bnd(Ai )|vi = w|Bnd(Ai )|
∑

xk∈Ai

xk + w|Ai |
∑

xk∈Bnd(Ai )

xk .

Since |Ai | · |Bnd(Ai )| �= 0,

vi = w

∑
xk∈Ai

xk

|Ai |
+ w

∑
xk∈Bnd(Ai )

xk

|Bnd(Ai )| .

On the other hand, if Ai = ∅ or Bnd(Ai ) = ∅, νki = 0 or uki = 0 for any k. In the
both cases, J i

RCM-I becomes the minimum value 0 in spite of vi . Therefore, we can
determine vi as follows:

vi =
∑

x∈Ai
x

|Ai |
.

From the above discussion, the optimal solution to vi is (4).

vi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w

∑
x∈Ai

x

|Ai |
+ w

∑
x∈Bnd(Ai )

x

|Bnd(Ai )| , (Ai �= ∅ ∧ Bnd(Ai ) �= ∅)

∑
x∈Ai

x

|Ai |
. (otherwise)

(4)

Optimal solutions to νki and uki can be obtained by comparing the following two
cases:

1. xk belongs to the lower approximation Apk
of which the cluster center vi is nearest

to xk . Here,

pk = argmin
i

dki .

In this case, the value of the term for xk of the objective function can be calculated
as follows:

J ν
k =

n∑

l=1,t �=k

(
νkpk ulpk (wdkpk + wdlpk ) + (νkpk νlpk + ukpk ulpk )Dkl

)

=
n∑

l=1,l �=k

(
νkpk ulpk (wdkpk + wdlpk ) + νkpk νlpk Dkl

)
.

2. xk belongs to the upper approximation of two clusters Apk and Aqk of which the
cluster centers vpk and vqk are the first and second nearest to xk . Here,

qk = argmin
i �=pk

dki .
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In this case, the value of the terms for xk of the objective function can be calculated
as follows:

J u
k =

n∑

l=1,l �=k

c∑

i=pk ,qk

(
νli uki (wdli + wdki ) + (νkiνli + uki uli )Dkl

)

=
n∑

l=1,l �=k

c∑

i=pk ,qk

(
νli uki (wdki + wdki ) + uki uli Dkl

)
.

In comparison with J ν
k and J u

k , we determine νki and uki as follows:

νki =
{
1, (J ν

k < J u
k ∧ i = pk)

0. (otherwise)

uki =
{
1,

(
J ν

k ≥ J u
k ∧ (i = pk ∨ i = qk)

)

0. (otherwise)

Here, we construct RCM-I algorithm using optimal solutions to N , V , and U
which are derived in the above. In practice, the optimal solutions are calculated
through iterative optimization. We show RCM-I algorithm as Algorithm 1.

Algorithm 1 RCM-I
RCM-I.1 Set initial values and calculate initial cluster centers.
RCM-I.2 Update partition matrices N and U by fixing V .
RCM-I.3 Update cluster centers V by fixing N and U .
RCM-I.4 If a stopping criterion satisfies, finish the algorithm. Otherwise, back to RCM-I.2.

We can consider the Sequential RCM-I (SRCM-I) in which cluster centers are
re-calculated every time cluster partition changes as Algorithm 2.

Algorithm 2 SRCM-I
SRCM-I.1 Set initial values and calculate initial cluster centers.
SRCM-I.2 Iterate SRCM-I2, SRCM-I3, and SRCM-I4 for each xk (k = 1, . . . , n).
SRCM-I.3 Update partition matrices N and U by fixing V .
SRCM-I.4 Update cluster centers V by fixing N and U .
SRCM-I.5 If a stopping criterion satisfies for each xk (k = 1, . . . , n), finish the algorithm.

Otherwise, back to SRCM-I.2.
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3.2 Type-I Rough Fuzzy c-Means

We have two ways to fuzzify RCM-I by introducing fuzzy-set representation.
The first is to introduce the fuzzification parameter m, and the second is to intro-

duce the entropy term. These ways are known to be very useful. We call the method
using the first way type-I rough fuzzy c-means (RFCM-I). and that using the sec-
ond way entropy-regularized type-I rough fuzzy c-means (ERFCM-I), as mentioned
above. In this paper, we describe RFCM-I.

In RFCM-I, degrees of belongingness to Bnd(Ai ) are only fuzzified.

3.2.1 Objective Function

The objective function of RFCM-I is defined as follows:

JRFCM-I(N , U, V ) =
n∑

k=1

n∑

l=1

c∑

i=1

(
um

kiνli (ωdli + ωdki ) + (νkiνli + um
ki u

m
li )Dkl

)
.

(5)

Constraints are as follows:

ω + ω = 1,

νki ∈ {0, 1}, uli ∈ [0, 1],∀k, i
c∑

i=1

(νki + uki ) = 1, ∀k

3.2.2 Derivation of Optimal Solutions and Algorithm

To get an optimal solution to vi , we partially differentiate (5) with respect to vi ,
getting

vi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
xk∈Ai

xk

|Ai |
, (Bnd(Ai ) = ∅)

∑n
k=1 um

ki xk∑n
k=1 um

ki

, (Ai = ∅)

ω ×
∑

xk∈Ai
xk

|Ai |
+ ω ×

∑n
k=1 um

ki xk∑n
k=1 um

ki

. (otherwise)

We must consider the following two cases to derive optimal solutions to N and U :

1. xk belongs to Apk
.
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2. xk belongs to Bnd(Ai ). ∀i

If xk belongs to Apk
, optimal solutions and the objective function are represented as

follows:

νki = 1, uki = 0,

J k
RFCM-I =

n∑

l=1,l �=k

(um
lpk

(ωdkpk + ωdlpk ) + 2νlpk Dkl). (6)

If xk belongs to Bnd(Ai ), optimal solutions and the objective function are represented
as follows:

νki = 0, uki =
(

1
αi

) 1
m−1

∑c
j=1

(
1
α j

) 1
m−1

,

J
k
RFCM-I =

c∑

i=1

n∑

l=1,l �=k

(um
kiνli (ωdli + ωdki ) + 2um

ki u
m
li Dkl). (7)

Here,

αi =
n∑

l=1,l �=k

(νli (ωdli + ωdki ) + 2um
li Dkl)

We calculate the optimal solution to uki by using the Lagrange multiplier. From (5),
the Lagrange function of RFCM-I is defined as follows:

LRFCM-I =
n∑

k=1

n∑

l=1

c∑

i=1

(
um

kiνli (ωdli + ωdki )

+(νkiνli + um
ki u

m
li )Dkl

) −
n∑

k=1

λk

(
c∑

i=1

uki − 1

)
.

Comparing (6) and (7), the optimal solutions to N and U are as follows:

νki =
{
1, (J ν

k < J u
k ∧ i = pk)

0, (otherwise)

uki =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, (J ν
k < J u

k ∧ i = pk)

(
1
αi

) 1
m−1

∑c
j=1

(
1
α j

) 1
m−1

.

(otherwise)
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Last, we describe the algorithm of RFCM-I.

Algorithm 3 RFCM-I
RFCM-I.1 Set initial approximations and calculate initial cluster centers.
RFCM-I.2 Update lower approximations and boundaries.
RFCM-I.3 Update cluster centers.
RFCM-I.4 If the convergence criterion is satisfied, finish. Otherwise back to RFCM-I.2.

4 Type-II Rough c-Means

We propose another method: type-II rough c-means (RCM-II) or type-II rough hard
c-means (RHCM-II) to solve Lingras’s problems. The objective function of RCM-II
is simpler than RCM-II.

4.1 Type-II Rough Hard c-Means

4.1.1 Objective Function

Let N = (νki )1≤k≤n, 1≤i≤c and U = (uki )1≤k≤n, 1≤i≤c be degrees of belongingness of
xk to Ai and Bnd(Ai ). Let V be a set of cluster centers. The objective function of
RCM-II is defined as follows:

JRCM-II(N , U, V ) =
n∑

k=1

c∑

i=1

(νki w + uki w)‖xk − vi‖2. (8)

w + w = 1, w > 0, w > 0. (1 ≤ k ≤ n, 1 ≤ i ≤ c)

Constraints are as follows:

νki , uki ∈ {0, 1}, ∀k, i
c∑

i=1

νki ∈ {0, 1},
c∑

i=1

uki �= 1, ∀k

c∑

i=1

νki = 1 ⇐⇒
c∑

i=1

uki = 0. ∀k
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From these constraints, the following restriction holds true:

c∑

i=1

νki = 0 ⇐⇒
c∑

i=1

uki > 1. ∀k

These constraints are clearly equivalent to (C1)–(C3). JRCM-II is minimized under
these constraints.

4.1.2 Derivation of Optimal Solutions and Algorithm

We partially differentiate (8) with respect to vi . We get

vi =
∑n

k=1(wνki + wuki )xk∑n
k=1(wνki + wuki )

. (9)

We must consider the following two cases to derive optimal solutions to N
and U :

1. xk belongs to Apk
.

2. xk belongs to Bnd(Apk ) and Bnd(Aqk ).

Here,

pk = min
i

‖xk − vi‖2,
qk = min

i �=pk

‖xk − vi‖2.

If xk belongs to Apk
, we get the value of the objective function as follows:

J k
RCM-II = w‖xk − vpk ‖2. (10)

If xk belongs to Bnd(Apk ) and Bnd(Aqk ), we get the value of the objective function
as follows:

J
k
RCM-II =

∑

i=pk ,qk

w‖xk − vi‖2. (11)

Comparing (10) and (11), we derive the optimal solution to N and U as follows:

νki =
{
1, (J k

RCM-II < J
k
RCM-II ∧ i = pk)

0. (otherwise)

uki =
{
1, (J k

RCM-II ≥ J
k
RCM-II ∧ (i = pk ∨ i = qk))

0. (otherwise)
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We describe the RCM-II algorithm as follows:

Algorithm 4 RCM-II
RCM-II.1 Set initial cluster centers.
RCM-II.2 Update the belongingness of xk to Ai and Bnd(Ai ) by using the procedure in Sect. 4.1.2
RCM-II.3 Update vi by (9).
RCM-II.4 If the convergence criterion is satisfied, finish. Otherwise back to RCM-II.2.

4.2 Type-II Rough Fuzzy c-Means

4.2.1 Objective Function

Here, we propose another method: type-II rough fuzzy c-means (RFCM-II) to solve
Lingras’s problems. RFCM-II is an extended method using the concept of fuzzy
theory. In RFCM-II, degrees of belongingness to Bnd(Ai ) are only fuzzified. The
objective function of RFCM-II is defined as follows:

JRFCM-II(N , U, V ) =
n∑

k=1

c∑

i=1

(wνki + wum
ki )‖xk − vi‖2. (12)

w + w = 1, w > 0, w > 0. (1 ≤ k ≤ n, 1 ≤ i ≤ c)

Constraints are as follows:

νki , uki ≥ 0, ∀k, i
c∑

i=1

(νki + uki ) = 1, ∀k

JRFCM-II is minimized under these constraints.

4.2.2 Derivation of Optimal Solutions and Algorithm

First, we derive an optimal solution of the cluster center. Similar to Sect. 4.1.2, we
get

vi =
∑n

k=1(wνki + wum
ki )xk∑n

k=1(wνki + wum
ki )

. (13)
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Next, we derive optimal solutions of lower approximation and boundary. Similar
to Sect. 4.1.2, we must consider the following two cases to derive optimal solutions
to N and U :

1. xk belongs to Apk
.

2. xk belongs to Bnd(Ai ) ∀i .

If xk belongs to Apk
, we get the value of the objective function as follows:

J k
RFCM-II = wνki‖xk − vpk ‖2. (14)

If xk belongs to Bnd(Ai ), we get the value of the objective function as follows:

J
k
RFCM-II =

c∑

i=1

wum
ki‖xk − vi‖2. (15)

Comparing (14) and (15), we derive the optimal solution to N and U as follows:

νki =
{
1, (J k

RFCM-II < J
k
RFCM-II ∧ i = pk)

0. (otherwise)

uki =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
1

‖xk−vi ‖2
) 1

m−1

∑c
j=1

(
1

‖xk−v j ‖2
) 1

m−1

, (J k
RFCM-II ≥ J

k
RFCM-II)

0. (otherwise)

We calculate the optimal solution to uki by using the Lagrange multiplier method.
The Lagrange function of RFCM-II is defined as follows:

LRFCM-II =
n∑

k=1

c∑

i=1

(
wνki + wum

ki

) ‖xk − vi‖2 −
n∑

k=1

λk

(
c∑

i=1

uki − 1

)
.

From the above discussion, we describe the RFCM-II algorithm.

Algorithm 5 RFCM-II
RFCM-II.1 Set initial cluster centers.
RFCM-II.2Update the belongingness of xk to Ai andBnd(Ai ) by using the procedure in Sect. 4.2.2.
RFCM-II.3 Update vi by (13).
RFCM-II.4 If the convergence criterion is satisfied, finish. Otherwise back to RCM-II.2.
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5 Rough Non Metric Model

5.1 Rough Hard Non Metric Model

5.1.1 Objective Function

To construct a new relational clustering algorithm based on rough sets, rough non
metric model (RNM) or rough hard non metric model (RHNM), we define the fol-
lowing objective function based on Non Metric Model by Roubens [15]:

JRNM(N , U ) = w
c∑

i=1

n∑

k=1

n∑

t=1

νkiνti Dkt + w
c∑

i=1

n∑

k=1

n∑

t=1

uki uti Dkt . (16)

Here w + w = 1 and w ∈ (0, 1). If w is close to 0, almost all objects belong to the
lower approximation. If w is close to 1, however, almost all objects belong to the
upper approximation. w (or w) therefore controls belongingness and it plays a very
important role in our proposed methods. Dkt means a dissimilarity between xk and
xt . One of the examples is a Euclidean norm:

Dkt = ‖xk − xt‖2.

We consider the following conditions for νki and uki :

νki ∈ {0, 1}, uki ∈ {0, 1}.

From (C1)–(C3) in Sect. 2.2, we derive the following constraints:

c∑

i=1

νki ∈ {0, 1},
c∑

i=1

uki �= 1,

c∑

i=1

νki = 1 ⇐⇒
c∑

i=1

uki = 0.

From the above constraints, we derive the following relation for any k:

c∑

i=1

νki = 0 ⇐⇒
c∑

i=1

uki ≥ 2.

It is obvious that these relations are equivalent to (C1)–(C3) in Sect. 2.2
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5.1.2 Derivation of Optimal Solutions and Algorithm

Optimal solutions to νki and uki are obtained by comparing the following two cases
for each xk :

1. xk belongs to the lower approximation Apk
.

2. xk belongs to the boundaries of two clusters Aq1
k
and Aq2

k
.

We describe the details of each case as follows.
In the first case, let us assume that xk belongs to the lower approximation Apk

. pk

is derived as follows:
The objective function J is rewritten as follows:

JRNM(N , U ) = w
c∑

i=1

J i + w
c∑

i=1

n∑

l=1

n∑

t=1

uli uti Dlt .

Here

J i =
⎛

⎝2νki

n∑

t=1

νti Dkt +
n∑

l=1,l �=k

n∑

t=1,t �=k

νliνti Dlt

⎞

⎠ .

Note that Dkk = 0 and Dkt = Dtk , therefore

pk = argmin
i

n∑

t=1

νti Dkt . (17)

This means the following relations:

νki =
{
1, (i = pk)

0, (otherwise)

uki = 0. (∀i)

In this case, the value of the objective function is calculated as follows:

JRNM(N , U ) = w

⎛

⎝2
n∑

t=1

νtpk Dkt +
c∑

i=1

n∑

l=1,l �=k

n∑

t=1,t �=k

νli νti Dlt

⎞

⎠ + w
c∑

i=1

n∑

l=1

n∑

t=1

uli uti Dlt

= 2J ν
k + Jc.

Here
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J ν
k =

n∑

t=1

(
wνtpk +

c∑

i=1

wuki uti

)
Dkt = w

n∑

t=1

νtpk Dkt , (18)

Jc = w
c∑

i=1

n∑

l=1,l �=k

n∑

t=1,t �=k

νliνti Dlt + w
c∑

i=1

n∑

l=1,l �=k

n∑

t=1,t �=k

uli uti Dlt .

In the second case, let us assume that xk belongs to the boundaries of two clusters
Aq1

k
and Aq2

k
. q1

k and q2
k are derived as follows:

The objective function J is rewritten as follows:

JRNM(N , U ) = w
c∑

i=1

J i + w
c∑

i=1

n∑

l=1

n∑

t=1

νkiνti Dlt .

Here

J i =
⎛

⎝2uki

n∑

t=1

uti Dkt +
n∑

l=1,l �=k

n∑

t=1,t �=k

uli uti Dlt

⎞

⎠ .

Therefore

q1
k = argmin

i

n∑

t=1

uti Dkt , (19)

q2
k = arg min

i,i �=q1
k

n∑

t=1

uti Dkt . (20)

This means the following relations:

νki = 0, (∀i)

uki =
{
1, (i = q1

k ∨ i = q2
k )

0. (otherwise)

In this case, the value of the objective function is calculated as follows:

JRNM(N , U ) = w
c∑

i=1

n∑

l=1

n∑

t=1

νliνti Dlt + w

(
2

n∑

t=1

(utq1
k
+ utq2

k
)Dkt

+
c∑

i=1

n∑

l=1,l �=k

n∑

t=1,t �=k

uli uti Dlt

⎞

⎠

= 2J u
k + Jc.
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Here

J u
k =

n∑

t=1

(
c∑

i=1

wνkiνti + w(utq1
k
+ utq2

k
)

)
Dkt

= w
n∑

t=1

(utq1
k
+ utq2

k
)Dkt . (21)

In comparison with J ν
k and J u

k , we determine νki and uki as follows:

νki =
{
1, (J ν

k < J u
k ∧ i = pk)

0, (otherwise)

uki =
{
1,

(
J ν

k ≥ J u
k ∧ (i = q1

k ∨ i = q2
k )

)

0. (otherwise)

From the above discussion, we show the RNM algorithm as Algorithm 6. The
proposed algorithm is constructed based on iterative optimization.

Algorithm 6 RNM

RNM.1 The iteration number L = 0. Give Dkt and set initial values of ν
(0)
ki and u(0)

ki .

RNM.2 Update ν
(L+1)
ki and u(L+1)

ki as follows:

ν
(L+1)
ki =

{
1, (J ν

k < J u
k ∧ i = pk)

0, (otherwise)

u(L+1)
ki =

{
1,

(
J ν

k ≥ J u
k ∧ (i = q1

k ∨ i = q2
k )

)

0. (otherwise)

pk , q1
k , q2

k , J ν
k , and J u

k are calculated by (17), (19), (20), (18), and (21), respectively, with ν
(L)
ti

and u(L)
ti .

RNM.3 If the stop criterion is satisfied, finish. Otherwise L := L + 1 and back to RNM.2.

5.2 Rough Fuzzy Non Metric Model

In the previous section, we proposed the RNM algorithm. In the algorithm, an object
xk belongs to just two boundaries if xk does not belong to any lower approximation,
since uki ∈ {0, 1} and the objective function (16) is linear for uki . In this section, we
therefore propose the RFNMalgorithm tomake xk belong tomore than one boundary
if xk does not belong to any lower approximation.
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We have two ways to fuzzify RNM. The first is to introduce the fuzzification
parameter m, and the second is to introduce the entropy term. These ways are known
to be very useful. We call the method using the first way rough fuzzy non metric
model (RFNM) and that using the second way entropy-regularized rough fuzzy non
metric model (ERFNM), as mentioned above. In this paper, we describe RFNM.

5.2.1 Objective Function

We consider the following objective function of RFNM:

JRFNM(N , U ) = ω

c∑

i=1

n∑

k=1

n∑

t=1

νkiνti Dkt + ω

c∑

i=1

n∑

k=1

n∑

t=1

um
ki u

m
ti Dkt . (22)

Here w + w = 1. Dkt means a dissimilarity between xk and xt . The last entropy term
means fuzzification of uki and makes the objective function nonlinear for uki . Hence,
the value of the optimal solution on uki that minimizes the objective function (22) is
in [0, 1).

We assume the following conditions for νki and uki :

νki ∈ {0, 1}, uki ∈ [0, 1).

From (C1)–(C3) in Sect. 2.2, we derive the following constraints:

c∑

i=1

νki ∈ {0, 1}, (23)

c∑

i=1

uki ∈ {0, 1}, (24)

c∑

i=1

νki = 1 ⇐⇒
c∑

i=1

uki = 0. (25)

From the above constraints, we derive the following relation for any k:

c∑

i=1

νki = 0 ⇐⇒
c∑

i=1

uki = 1. (26)

It is obvious that these relations are equivalent to (C1)–(C3) in Sect. 2.2.
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5.2.2 Derivation of Optimal Solutions and Algorithm

Same as RNM, optimal solutions to νki and uki are obtained by comparing two cases
for each xk :

1. xk belongs to the lower approximation Apk
.

2. xk belongs to the boundaries of two clusters Aq1
k
and Aq2

k
.

In the first case, let us assume that xk belongs to the lower approximation Apk
. pk

is derived as follows:
The objective function J is rewritten as follows:

JRFNM(N , U ) = ω

c∑

i=1

J i + ω

c∑

i=1

n∑

l=1

n∑

t=1

um
li um

ti Dlt .

Here

J i = 2νki

n∑

t=1

νti Dkt +
n∑

l=1,l �=k

n∑

t=1,t �=k

νliνti Dlt .

Note that Dkk = 0 and Dkt = Dtk . Therefore

pk = argmin
i

n∑

t=1

νti Dkt . (27)

This means the following relations:

νki =
{
1 (i = pk)

0 (otherwise)

uki = 0

In this case, the value of the objective function is calculated as follows:

JRFNM(N , U ) = ω

⎛

⎝2
n∑

t=1

νtpk Dkt +
c∑

i=1

n∑

l=1,l �=k

n∑

t=1,t �=k

νli νti Dlt

⎞

⎠ + ω

c∑

i=1

n∑

l=1

n∑

t=1

um
li um

ti Dlt

= 2J ν
k + Jc.

Here
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J ν
k =

n∑

t=1

(
ωνtpk +

c∑

i=1

ωum
ki u

m
ti

)
Dkt = ω

n∑

t=1

νtpk Dkt , (28)

Jc = ω

c∑

i=1

n∑

l=1,l �=k

n∑

t=1,t �=k

νliνti Dlt + ω

c∑

i=1

n∑

l=1,l �=k

n∑

t=1,t �=k

um
li um

ti Dlt .

In the second case, let us assume that xk belongs to the boundaries of more than
one cluster. The objective function J is convex for uki , hence we derive an optimal
solution to uki using a Lagrange multiplier.

Here we introduce the following Lagrange function with the constraint (26):

L = J +
n∑

k=1

ηk

c∑

i=1

(uki − 1).

We partially differentiate L by uki and get the following equation:

∂L

∂uki
= 2mωum−1

ki

⎛

⎝
∑

t=1,t �=k

um
ti Dkt + um

ki Dkk

⎞

⎠ + ηk

= 2mωum−1
ki

∑

t=1,t �=k

um
ti Dkt + ηk

∂L
∂uki

= 0, we obtain the following relation:

uki = (−ηk)
1

m−1

D
1

m−1
ki

, (29)

where

Dki = 2mω

n∑

t=1,t �=k

um
ti Dkt = 2mω

n∑

t=1

um
ti Dkt . (30)

From the constraint (26) and the above Eq. (29), we get the following equation:

c∑

i=1

uki =
c∑

i=1

(−ηk)
1

m−1

D
1

m−1
ki

= 1,

(−ηk)
1

m−1 = 1/
c∑

j=1

1

D
1

m−1
k j

.

We then obtain the following optimal solution:



Various Types of Objective-Based Rough Clustering 83

uki =
(

1
Dki

) 1
m−1

∑c
j=1

(
1

Dk j

) 1
m−1

This means the following relations:

νki = 0, (∀i)

uki =
(

1
Dki

) 1
m−1

∑c
j=1

(
1

Dk j

) 1
m−1

.(∀i)

In this case, the value of the objective function is calculated as follows:

JRFNM(N , U ) = ω

c∑

i=1

n∑

l=1

n∑

t=1

νliνti Dlt + ω

c∑

i=1

(
2mum−1

ki

n∑

t=1

um
ti Dkt

+
n∑

l=1,l �=k

n∑

t=1,t �=k

um
li um

ti Dkt

⎞

⎠

= 2J u
k + Jc.

Here

J u
k =

n∑

t=1

(
c∑

i=1

ωνkiνti +
c∑

i=1

ωmum−1
ki um

ti

)
Dkt

=
c∑

i=1

mum−1
ki

n∑

t=1

ωum
ti Dkt . (31)

In comparison with J ν
k andJ u

k , we determine νki and uki as follows:

νki =
{
1 (J ν

k < J u
k ∧ i = pk)

0 (otherwise)

uki =

⎧
⎪⎪⎨

⎪⎪⎩

(
1

Dki

) 1
m−1

∑c
j=1

(
1

Dk j

) 1
m−1

(
J ν

k ≥ J u
k

)

0 (otherwise)

From the above discussion, we show the RFNM algorithm as Algorithm 7. The
proposed algorithm is also constructed based on iterative optimization.
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Algorithm 7 RFNM

RFNM.1 The iteration number L = 0. Give Dkt and set initial values ofν(0)
ki and u(0)

ki .

RFNM.2 Update ν
(L+1)
ki and u(L+1)

ki as follows:

ν
(L+1)
ki =

{
1, (J ν

k < J u
k ∧ i = pk)

0, (otherwise)

u(L+1)
ki =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
1

Dki

) 1
m−1

∑c
j=1

(
1

Dkj

) 1
m−1

(
J ν

k ≥ J u
k

)
,

0. (otherwise)

pk , Dki , J ν
k , and J u

k are calculated by (27), (30), (28), and (31).
RFNM.3 If the stop criterion is satisfied, finish. Otherwise L := L + 1 and go back to RFNM2.

6 Conclusion

This paper showed various types of objective functions of objective-based rough
clustering and their algorithm.

As mentioned above, many non-hierarchical clustering algorithms are based on
optimization of some objective function. The reason is that we could choose the
“better” output among many outputs from different initial values by comparing the
value of the objective function of the output with each other. Lingras’s algorithm is
almost only one algorithm with rough set representation inspired by KM, however
it is not useful from the viewpoint that the algorithm is not based on any objective
functions. Therefore, our proposed algorithms could be expected to be more useful
in the field of rough clustering.

In objective-based clustering methods, the concept of classification function is
very important. The classification function gives us belongingness of unknowndatum
to each cluster. It is impossible to derive the classification functions of our algorithms
in this paper analytically, hence we can not show the functions explicitly. However,
as we have seen, the value of the belongingness numerically. In future works, we
will develop these discussion.
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On Some Clustering Algorithms
Based on Tolerance

Yukihiro Hamasuna and Yasunori Endo

Abstract A large number of clustering algorithms have been proposed to handle
target data and deal with various real-world problems such as uncertain data mining,
semi-supervised learning and so on. We focus above two topics and introduce two
concepts to construct significant clustering algorithms. We propose tolerance and
penalty-vector concepts for handling uncertain data. We also propose clusterwise
tolerance concept for semi-supervised learning. These concepts are quite similar
approach in the viewpoint of handling objects to be flexible to each clustering topics.
We construct two clustering algorithms FCMT and FCMQ for handling uncertain
data. We also construct two clustering algorithms FCMCT and SSFCMCT for semi-
supervised learning. We consider that those concepts have a potential to resolve
conventional and brand new clustering topics in various ways.

1 Introduction

Clustering is one of the common data analysis methods that divides a set of objects
into groups called clusters. Objects classified in the same cluster are considered
similar, while those in different clusters are considered dissimilar. Hard c-means
(HCM) which is also known as k-means [13] and fuzzy c-means (FCM) [2, 15] are
the most well-known clustering methods. A large number of clustering algorithms
have been proposed to handle target data and deal with various real-world problems.
Uncertain data mining [1, 12] and semi-supervised learning [3] which are discussed
in this article are typical clustering topics. These two topics are seems to be quite
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different from the viewpoint of their purpose. However, they are constructed in a
similar way or framework, that is, representation of data and clustering algorithms
based on it. For uncertain data mining, significant representation of data to handle
inherent uncertainty such as incompleteness or errors and clustering algorithms are
required [1, 12]. Also, a significant framework to handle a prior knowledge of data
or experts’ knowledge is required in semi-supervised learning [3]. To discuss and
consider these two different topics in the same framework, we have proposed the
concept of tolerance [5] and several clustering algorithms based on it [6, 8, 11].

Objects handled in data analysis methods contain inherent uncertainty. In recent
years, the objectsmeasured by sensor network and socialmedias are stored inmassive
and complex databases. These objects also contain inherent uncertainty, because the
accuracy of these objects is depended on communication environment. Handling
uncertain data is still one of the important topics for many years. Several methods
for handling uncertain data have been proposed and applied to real-world problems
to extract useful value [1, 12]. We have proposed two new concepts of tolerance [5]
and penalty vector [8] to handle uncertain data in clustering. These concepts are quite
simple and enable us to handle uncertain data within the optimization framework.
We have proposed the hard c-means based methods [9], fuzzy c-means based ones
[5, 6, 8], and c-regression models based one [7]. We introduce fuzzy c-means based
methods as one of the clustering algorithms for uncertain data. The one is fuzzy
c-means for data with tolerance [5, 6, 17] and the other is fuzzy c-means using
quadratic penalty-vector regularization [8].

In addition to above, semi-supervised learning has also been studied in many
research fields and applied to various real-world problems [3]. In the field of clus-
tering, must-link and cannot-link which are referred to as pairwise constraints are
frequently used in order to improve clustering performances [18]. The pairwise con-
straints are also introduced into fuzzy clustering model [11, 16] and hierarchical
clustering [4, 14] by several form. The pairwise constraints are divided roughly into
two groups. One is hard constraints based methods, and the other is soft ones. In
the case of hard constraints, pairwise constraints are always satisfied, while they are
not always satisfied in the case of soft constraints. In the semi-supervised cluster-
ing, pairwise constraints are used as prior knowledge about which data should be in
the same or different cluster. It is difficult to introduce pairwise constraints in the
Euclidean-space because of the squared Euclidean-norm that is used as a dissimilar-
ity. We introduce the concept of clusterwise tolerance as a extension of the concept
of tolerance and clustering algorithms for data with clusterwise tolerance [10] After
that, we propose semi-supervised fuzzy c-means clustering for data with clusterwise
tolerance to handle pairwise constraints in the same optimization framework [11].

This paper is organized as follows: In Sect. 2, we introduce symbols and fuzzy c-
means. In Sect. 3, we propose the concept of tolerance, penalty vector regularization,
and clustering algorithms for uncertain data. In Sect. 4, we construct clusterwise
tolerance based clustering algorithms and semi-supervised clustering method based
on clusterwise tolerance. In Sect. 5, we conclude this paper.
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2 Fuzzy c-Means

A set of objects to be clustered is given and denoted by X = {x1, . . . , xn} in which
xk (k = 1, . . . , n) is an object. In most cases, each object xk is a vector in p-
dimensional Euclidean space �p, that is, an object xk ∈ �p. A cluster is denoted
by Gi and a collection of clusters is given by G = {G1, . . . ,Gc}. A cluster center
of Gi is denoted by vi ∈ �p and a set of vi is given by V = {v1, . . . , vc}. A mem-
bership degree of xk belonging to Gi and a partition matrix is denoted as uki and
U = (uki )1≤k≤n, 1≤i≤c.

Themethod of fuzzy c-means clustering (FCM) [2, 15] is an extension of k-means
[13] and one of the well known clustering algorithms. These clustering algorithms
divide a set of objects into clusters by optimizing an objective function under the
constraint on membership degree uki .

The following two objective functions Js and Je are typical examples of FCM.

Js(U, V ) =
n∑

k=1

c∑

i=1

(uki )
mdki ,

Je(U, V ) =
n∑

k=1

c∑

i=1

{ukidki + λuki log uki } .

m > 1 and λ > 0 are fuzzification parameters. dki is the dissimilarity between an
object xk and cluster center vi . The squared L2-norm dki = ‖xk − vi‖2 is a typical
dissimilarity in several clustering algorithms.

Js is an objective function for the standard fuzzy c-means [2] and Je is an objective
function for the entropy based fuzzy c-means clustering (eFCM) [15].

The constraint on membership degree uki for FCM is as follows:

U f =
{

(uki ) : uki ∈ [0, 1] ,
c∑

i=1

uki = 1, ∀k

}
. (1)

The optimal solutions for uki and vi are derived from objective function Js or Je by
considering the constraint (1). The algorithms of sFCM and eFCM are summarized
in Algorithms 1 and 2, respectively.

A number of repetitions, convergence of each variables, or convergence of objec-
tive function are used as convergence criterion in sFCM 4 and eFCM 4.
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Algorithm 1: sFCM

sFCM 1 Set initial cluster centers and parameter m.
sFCM 2 Calculate uki ∈ U by using following equation:

uki =
(

1
dki

) 1
m−1

∑c
l=1

(
1
dkl

) 1
m−1

sFCM 3 Calculate vi ∈ V by using following equation:

vi =
∑n

k=1 (uki )m xk∑n
k=1 (uki )m

sFCM 4 If convergence criterion is satisfied, stop. Otherwise go back to sFCM 2.

Algorithm 2: eFCM

eFCM 1 Set initial cluster centers and parameter λ.
eFCM 2 Calculate uki ∈ U by using following equation:

uki =
exp

(
− dki

λ

)

∑c
l=1 exp

(
− dkl

λ

)

eFCM 3 Calculate vi ∈ V by using following equation:

vi =
∑n

k=1 uki xk∑n
k=1 uki

eFCM 4 If convergence criterion is satisfied, stop. Otherwise go back to eFCM 2.

3 Clustering Algorithms for Uncertain Data

We introduce two clustering algorithms for uncertain data based on fuzzy c-means.
The one is fuzzy c-means for data with tolerance [5, 6, 17] and the other is fuzzy
c-means using quadratic penalty-vector regularization [8].



On Some Clustering Algorithms Based on Tolerance 91

3.1 Fuzzy c-Means for Data with Tolerance

In most clustering algorithms, each object is regarded as one point and classified into
clusters. The uncertain data should be often represented in other form such as interval
or probability density function instead of a point in �p. The concept of tolerance
has been proposed to handle the range of uncertainty as the tolerance and define the
tolerance vector inside the tolerance [5]. A tolerance κk = (κk1, . . . , κkp)

T ∈ �p is
the admissible range of each object. A set of tolerance vector is denoted as E =
{ε1, . . . , εn} in which εk ∈ �p is a tolerance vector. A tolerance vector is the vector
within the tolerance. In the conventional studies, a data is represented as xk . On the
other hand, data with tolerance is represented as xk + εk by using this concept.

A constraint on tolerance vector is as follows:

(
εk j

)2 ≤ (
κk j

)2
, (κk j ≥ 0), ∀k, j. (2)

From these formulation, uncertain data is handled as data with tolerance in clustering
procedures. Figure1 is an illustrative example of εk and κk in �2.

By describing uncertain data as data with tolerance, the dissimilarity squared
Euclidean distance between the data with tolerance xk + εk and the cluster center vi
is denoted as follows:

dki = ‖xk + εk − vi‖2 =
p∑

j=1

(
xk j + εk j − vi j

)2
.

Fig. 1 An illustrative example of εk and κk in �2
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First, we introduce standard fuzzy c-means for data with tolerance (sFCMT)
[5, 6]. The objective function of sFCMT Jst (U, E, V ) is as follows:

Jst (U, E, V ) =
n∑

k=1

c∑

i=1

(uki )
m ‖xk + εk − vi‖2.

The constraints on uki and εk j are the same as (1) and (2). The optimal solutions for
uki , vi , and εk are derived from the convexity of objective function Jst , the constraint
(1) and (2), and Karush–Kuhn–Tucker conditions. The algorithms of sFCMT is
summarized in Algorithm 3.

Algorithm 3: sFCMT

sFCMT 1 Set initial cluster centers and parameters m and κk .
sFCMT 2 Calculate uki ∈ U by using following equation:

uki =
(

1
dki

) 1
m−1

∑c
l=1

(
1
dkl

) 1
m−1

sFCMT 3 Calculate vi ∈ V by using following equation:

vi =
∑n

k=1 (uki )
m (xk + εk)∑n

k=1 (uki )
m

sFCMT 4 Calculate εk ∈ E by using following equation:

εk j = − αk j

c∑

i=1

(uki )
m (

xk j − vi j
)

αk j = min

{
κk j∣∣∑c

i=1 (uki )
m (

xk j − vi j
)∣∣ ,

1∑c
i=1 (uki )

m

}

sFCMT 5 If convergence criterion is satisfied, stop. Otherwise go back to sFCMT 2.

FCMT can handle uncertain data analytically in the optimization problem for
clustering by handling uncertain data as data with tolerance. Entropy based FCMT is
also constructed by the same procedures. It is, however, omitted here, see reference
[5, 6] for details.
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3.2 Fuzzy c-Means Using Quadratic Penalty-Vector
Regularization

Next, we introduce standard fuzzy c-means clustering using quadratic penalty-vector
regularization (sFCMQ) [8].

κk is the maximum tolerance range which means the range of data uncertainty in
sFCMT. sFCMT, however, can not handle the uncertain data in case with unknown
range. Moreover, the range of uncertainty is not obtained in many cases. Algo-
rithms fail to classify uncertain data in those cases. We introduce penalty vector
regularization to overcome such problems [8]. A set of penalty vector is denoted as
Δ = {δ1, . . . , δn} in which δk ∈ �p is a penalty vector. The uncertainty of data is
described as the constraint (2) in sFCMT, while the regularization term is considered
in sFCMQ.

The objective function of sFCMQ Jsq(U,Δ, V ) is as follows:

Jsq(U,Δ, V ) =
n∑

k=1

c∑

i=1

(uki )
m ‖xk + δk − vi‖2 +

n∑

k=1

δTk Wkδk .

The quadratic regularization term is described as follows:

n∑

k=1

δTk Wkδk =
p∑

l=1

p∑

j=1

wkl jδklδk j ,

where,

Wk =
⎛

⎜⎝
wk11 · · · wk1p

...
. . .

...

wkp1 · · · wkpp

⎞

⎟⎠

is called a penalty matrix and assumed to be a symmetrical and a positive definite
matrix. wkl j (wkl j ≥ 0) is a given penalty coefficient.

The constraints on uki is the same as (1). The optimal solutions for uki , vi , and
δk are derived from the convexity of objective function Jsq under the constraint (1).
The algorithm of sFCMQ is summarized in Algorithm 4.
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Algorithm 4: sFCMQ

sFCMQ 1 Set initial cluster centers and parameters m and Wk .
sFCMQ 2 Calculate uki ∈ U by using following equation:

uki =
(

1
dki

) 1
m−1

∑c
l=1

(
1
dkl

) 1
m−1

sFCMQ 3 Calculate vi ∈ V by using following equation:

vi =
∑n

k=1 (uki )
m (xk + δk)∑n

k=1 (uki )
m

sFCMQ 4 Calculate δk ∈ Δ by using following equation:

δk = −
⎛

⎝
c∑

i=1

umki I + Wk

⎞

⎠

⎛

⎝
c∑

i=1

umki (xk − vi )

⎞

⎠ (I is a unit matrix.)

sFCMQ 5 If convergence criterion is satisfied, stop. Otherwise go back to sFCMQ 2.

Entropy based FCMQ is also constructed by the same procedures. It is, however,
omitted here, see Ref. [8] for details.

4 Clustering Algorithms Using Clusterwise Tolerance

We introduce the concept of clusterwise tolerance and fuzzy c-means based on it
[10]. After that, we propose semi-supervised fuzzy c-means based on the clusterwise
tolerance and pairwise constraints.

4.1 Fuzzy c-Means Using Clusterwise Tolerance

A set of clusterwise tolerance vector is defined as Γ = {γ11, . . . , γnc} in which γki
is a clusterwise tolerance vector. A clusterwise tolerance vector γki ∈ �p is the p-
dimensional vector with real components. A clusterwise tolerance κki means the
admissible range of γki . In the conventional studies, an object is represented as xk .
On the other hand, data with clusterwise tolerance is represented as xk + γki by using
this concept.
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Fig. 2 An illustrative example of clusterwise tolerance in �2

A constraint on clusterwise tolerance vector is as follows:

‖γki‖2 ≤ (κki )
2 (κki ≥ 0) , ∀k, i. (3)

Figure2 shows a clusterwise tolerance in �2.
The dissimilarity between the data with clusterwise tolerance xk + γki and the

cluster center vi is denoted as follows:

dki = ‖xk + γki − vi‖2 =
p∑

j=1

(
xk j + γki j − vi j

)2
. (4)

First, we introduce standard fuzzy c-means for data with clusterwise tolerance
(sFCMCT) [10]. The objective function of sFCMCT Jsct (U, Γ, V ) is as follows:

Jsct (U, Γ, V ) =
n∑

k=1

c∑

i=1

(uki )
m ‖xk + γki − vi‖2.

The constraints on uki and γki are the same as (1) and (3). The optimal solutions
for uki , vi , and γki are derived from the convexity of objective function Jsct , the
constraints, and Karush–Kuhn–Tucker conditions. The algorithm of sFCMCT is
summarized in Algorithm 5.



96 Y. Hamasuna and Y. Endo

Algorithm 5: sFCMCT

sFCMCT 1 Set initial cluster centers and parameters m and κki .
sFCMCT 2 Calculate uki ∈ U by using following equation:

uki =
(

1
dki

) 1
m−1

∑c
l=1

(
1
dkl

) 1
m−1

sFCMCT 3 Calculate vi ∈ V by using following equation:

vi =
∑n

k=1 (uki )
m (xk + γki )∑n

k=1 (uki )
m

sFCMCT 4 Calculate γki ∈ Γ by using following equation:

γki = − αki (xk − vi ) ,

αki = min

{
κki

‖xk − vi‖ , 1

}

sFCMCT 5 If convergence criterion is satisfied, stop. Otherwise go back to
sFCMCT 2.

FCMCT can handle a set of objects which consists different sizes or shapes of
clusters by determining the suitable value of parameter κki Entropy based FCMCT
and possibilistic model is also constructed by the same procedures. See reference
[10] for details.

4.2 Semi-supervised Fuzzy c-Means by Opposite Criteria

The pairwise constraints are considered as a prior knowledges about which data
should be in the same or different cluster [3, 18]. We propose clusterwise tolerance
based pairwise constraints from that sense: if (xk, xl) ∈ ML, γki and γli are calculated
to be in the same cluster, while (xq , xr ) ∈ CL, γqi and γri are calculated to be in the
different cluster.

First, we define a set of must or cannot-linked objects. A set ML(xk) consists
of must-linked objects which are linked with a data xk , while CL(xk) consists of
cannot-linked ones which are linked with a data xk .

ML(xk) = {ξ | ξ ∈ X, (xk, ξ) ∈ ML} ,

CL(xk) = {ξ | ξ ∈ X, (xk, ξ) ∈ CL} .
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The proposed clusterwise tolerance based pairwise constraints uses these sets
to determine the upper bound of clusterwise tolerance vector |K (xk, vi )| which is
defined between an object and a cluster center.

A value of K (xk, vi ) is calculated as the sum of κki which are in ML(xk) and
CL(xk).

K (xk, vi ) =
∑

xq∈ML(xk )

κqi −
∑

xr∈CL(xk )

κri .

If K (xk, vi ) > 0,γki is calculated to benear the cluster center vi ,while K (xk, vi ) <

0, γki is calculated to be distant the cluster center vi . In case that K (xk, vi ) = 0, it
is ineffective to calculate γki . From above, we can handle a prior knowledge as the
vector in L2-space by using clusterwise tolerance concept.

Next, we propose semi-supervised standard fuzzy c-means for data with clus-
terwise tolerance by opposite criteria (SSsFCMCT). The objective function of SSs-
FCMCT is as follows:

Jssct (U, Γ, V ) =
n∑

k=1

c∑

i=1

(uki )
m ‖xk + γki − vi‖2.

The dissimilarity is described as (4) as well as sFCMCT. The constraint on uki
remains the same as (1). The constraint on γki (3) is rewritten as follows:

‖γki‖2 ≤ (K (xk, vi ))
2 , ∀k, i. (5)

The optimal solutions for uki , vi , and γki are derived from the convexity of objec-
tive function Jssct , the constraints, and Karush–Kuhn–Tucker conditions. We con-
sider three cases for deriving the optimal solution for γki . First, we consider the case
of K (xk, vi ) = 0. In this case, we can get trivial optimal solution γki = 0, because
the constraint (5) is not considered. Second, we consider the case of K (xk, vi ) > 0.
In this case, we can get the optimal solution for γki by minimizing objective function
Jssct , because xk is considered to be near the cluster center vi . Third, we consider
the case of K (xk, vi ) < 0. In this case, we can get the optimal solution for δki by
maximizing objective function Jssct , because xk is considered to be distant from the
cluster center vi .

The algorithm of SSsFCMT is summarized in Algorithm 6.
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Algorithm 6: SSsFCMCT

SSsFCMCT 1 Set initial cluster centers and parameters m and κki .
SSsFCMCT 2 Calculate uki ∈ U by using following equation:

uki =
(

1
dki

) 1
m−1

∑c
l=1

(
1
dkl

) 1
m−1

SSsFCMCT 3 Calculate vi ∈ V by using following equation:

vi =
∑n

k=1 (uki )
m xk + γki∑n

k=1 (uki )
m

SSsFCMCT 4 Calculate γki ∈ Γ by using following equation:

γki =
⎧
⎨

⎩

−αki (xk − vi ), K (xk, vi ) > 0,
0 K (xk, vi ) = 0,
|K (xk ,vi )|(xk−vi )

‖xk−vi‖ K (xk, vi ) < 0,

αki = min

{
κki

‖xk − vi‖ , 1

}

SSsFCMCT 5 If convergence criterion is satisfied, stop. Otherwise go back to
SSsFCMCT 2.

SSFCMCT handle the pairwise constraints as soft or hard constraints without
breaking the L2-space by using the concept of clusterwise tolerance and determining
the suitable value of κki . The effectiveness of SSsFCMCT and entropy based model
are omitted here, see reference [11] for details of numerical experiments.

5 Conclusions

We introduced two types of new concepts to construct significant clustering algo-
rithms. One is tolerance and penalty-vector concepts for handling uncertain data in
clustering procedures. The other is clusterwise tolerance concept for semi-supervised
learning. These concepts are quite similar approach in the viewpoint of handling
objects to be flexible to the clustering topics. We construct two clustering algorithms
FCMT and FCMQ for handling uncertain data. We also construct SSFCMCT for
semi-supervised learning based on FCMCT.

These concepts have a potential for not only clustering but also data analysis topics
in various ways. We will consider and propose the way to apply those concepts
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to resolve conventional and brand new clustering topics. We will moreover show
the effectiveness of tolerance based methods and the difference between ones and
conventional methods.
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Robust Clustering Algorithms Employing
Fuzzy-Possibilistic Product Partition

László Szilágyi

Abstract One of the main challenges in the field of clustering is creating
algorithms that are both accurate and robust. The fuzzy-possibilistic product par-
tition c-means clustering algorithm was introduced with the main goal of producing
accurate partitions in the presence of outlier data. This chapter presents several clus-
tering algorithms based on the fuzzy-possibilistic product partition, specialized for
the detection of clusters having various shapes including spherical and ellipsoidal
shells. The advantages of applying the fuzzy-possibilistic product partition are pre-
sented in comparison with previous c-means clustering models. Besides being more
robust and accurate than previous probabilistic-possibilistic mixture partitions, the
product partition is easier to handle due to its reduced number of parameters.

Keywords Fuzzy c-means clustering · Possibilistic c-means clustering · Spherical
shell clustering · Elliptic shell clustering · Fuzzy partition

1 Introduction

Robustness in clustering refers to the stability or reproducibility of the achieved par-
tition, and insensitivity to several kinds of noise including extremely outlier data.
The fuzzy c-means (FCM) algorithm introduced by Bezdek [1] is a very popular
clustering model due to the fine partitions it usually produces and its easily com-
prehensible alternating optimization (AO) scheme. However, the probabilistic con-
straints involved in FCM make it sensitive to outlier data. To combat this problem,
several solutions have been proposed, which found their way towards relaxing the
probabilistic constraint.

An early solutionwas given byDavé [2],who introduced an extra, specially treated
noisy class to attract feature vectors situated far from all normal cluster prototypes.
This theory was later extended by Menard et al. [3], while further noise tolerant
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fuzzy c-means versions were introduced by Chintalapudi andKam [4], andAlanzado
and Miyamoto [5]. Alternately, Krishnapuram and Keller proposed the possibilistic
c-means algorithm (PCM) [6], which produces the partition based on statistical rules.
This approach seemed a fine solution for the sensitivity to outliers, but it frequently
led to coincident clusters [7]. To avoid the latter, Timmet al. [8] set up a repulsive force
between all couples of cluster prototypes of PCM, the strength of which decreased
with distance. Their method successfully avoided coincident clusters, but failed to
accurately treat cases when two clusters are really close to each other. Two versions
of fuzzy-possibilistic partition mixtures were proposed by Pal et al. [9, 10], out of
which the second one (possibilistic fuzzy c-means (PFCM)) appears to be a reliable
clustering model in most scenarios. However, even PFCM can fail in the presence of
extreme outliers [11]. The fuzzy-possibilistic product partition (FPPP) and the fuzzy-
possibilistic product partition c-means algorithm (FP3CM) [11] were intended to be
a solution for this problem. This chapter will revisit and discuss the achievements of
FPPP in this matter.

All c-means algorithms mentioned above work with point-type cluster prototypes
that are computed as weighted means of the input data. However, frequently emerge
situations when the shape of the clusters differs from the default. To cope with such
scenarios, several solutions have been proposed. Linear manifolds are usually mod-
eled via adaptive fuzzy c-varieties [12], while spherical ones via the fuzzy c-spherical
shell (FCSS) algorithmmodel byKrishnapuram et al. [13]. Elliptical prototypes were
introduced by the adaptive fuzzy c-shells algorithm [14], and the fuzzy c-ellipsoidal
shells clusteringmodel [15]. Generalized versions of shell clusters to the quadric case
were given by Krishnapuram et al. [16]. Further quadric prototype models include
the fuzzy c-quadrics [17] and the fuzzy c-quadric shells [18]. The norm-induced
shell prototypes introduced by Bezdek et al. [19] can be adapted to detect ellipses,
quadrics, and rectangles as well. Later, Hoeppner extended the palette of detectable
shapes with his fuzzy c-rectangular shell models [20]. Out of these shaped cluster
models, only FCSS has explicit expressions to compute the cluster prototypes in
each iteration of the main AO loop. All others use nonlinear implicit expressions that
need to be solved in an iterative way. The latter, besides being more complicated to
implement, also represents a higher computational load.

This chapter is dedicated to present the fuzzy-possibilistic product partition
c-means algorithm, and its c-spherical shell and c-elliptical shell versions: their def-
inition, optimization scheme, and the clusters they find in various scenarios, empha-
sizing the advantages they provide in comparison to previous c-means and c-shell
clustering models.

2 Preliminaries

All c-means clusteringmodels partition a set of object dataX = {x1, x2, . . . , xn} into
a number of c clusters based on the minimization of a quadratic objective function.
According to the partitions they employ, there are three fundamental approaches,
namely
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1. Hard c-means algorithm (HCM) [21] that uses probabilistic crisp partition,
2. Fuzzy c-means algorithm (FCM) [1] that uses probabilistic fuzzy partition,
3. Possibilistic c-means algorithm (PCM) [13] that uses a less constrained fuzzy

partition than the one used by FCM, without sticking to probabilistic conditions.

Mixed partitions were introduced in the theory of c-means clustering models to
improve certain properties of the fundamental algorithms. Some of these solutions
are presented in the following sections.

2.1 The Fuzzy-Possibilistic c-Means Clustering Algorithm

The fuzzy-possibilistic c-means (FPCM) clustering algorithm introduced by Pal
et al. [9] uses a linear combination of a probabilistic and a possibilistic partition.
The objective function is defined as:

JFPCM =
c∑

i=1

n∑

k=1

[umik + t pik]||xk − vi ||2 =
c∑

i=1

n∑

k=1

[umik + t pik]d2
ik , (1)

where vi represents the prototype or centroid value or representative element of
cluster i (i = 1 . . . c), uik ∈ [0, 1] is the probabilistic fuzzy membership function
showing the degree to which input vector xk belongs to cluster i , tik ∈ [0, 1] is the
possibilistic fuzzymembership function showing the degree of compatibility of input
vector xk with cluster i , m > 1 and p > 1 are the probabilistic and possibilistic
fuzzyfication exponents, respectively, and dik = ||xk − vi ||. The above objective
function is minimized under the probabilistic and possibilistic constraints, written as

c∑

i=1

uik = 1 ∀k = 1 . . . n and
n∑

k=1

tik = 1 ∀i = 1 . . . c . (2)

Using the zero gradient conditions of the above objective function, we obtain the
following optimization formulas for the iterative AO scheme of the algorithm:

uik = d−2/(m−1)
ik

c∑
j=1

d−2/(m−1)
jk

and tik = d−2/(p−1)
ik

n∑
l=1

d−2/(p−1)
il

∀ i = 1 . . . c
∀ k = 1 . . . n

, (3)

vi =

n∑
k=1

[umik + t pik]xk
n∑

k=1
[umik + t pik]

∀ i = 1 . . . c . (4)
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FPCM has the main advantage of not using the penalty terms ηi , thus making
the parameter adjustment easier. However, the possibilistic effect of the algorithm
loses its strength as the number of input vectors grows. In case of n >> c, FPCM
practically reduces to FCM, regardless of the value of the exponent p.

2.2 The Possibilistic-Fuzzy c-Means Clustering Algorithm

The possibilistic-fuzzy c-means (PFCM) algorithm, proposed by Pal et al. [10],
minimizes the objective function

JPFCM =
c∑

i=1

n∑

k=1

[aumik + bt pik]d2
ik +

c∑

i=1

ηi

n∑

k=1

(1 − tik)
p , (5)

constrained by the conventional probabilistic and possibilistic conditions of FCM
and PCM, given as

⎧
⎨

⎩

0 ≤ uik ≤ 1 ∀i = 1 . . . c ∀k = 1 . . . n
c∑

i=1
uik = 1 ∀k = 1 . . . n , (6)

⎧
⎨

⎩

0 ≤ tik ≤ 1 ∀i = 1 . . . c ∀k = 1 . . . n

0 <
c∑

i=1
tik < c ∀k = 1 . . . n . (7)

Tradeoff parameters a and b control the strength of the possibilistic and prob-
abilistic term in the mixed partition. Exponents m and p have the same role as in
FPCM,while penalty terms ηi are inherited from the definition of the PCMalgorithm.

The minimization formulas for updating the partition are

uik = d
−2
m−1
ik

c∑
j=1

d
−2
m−1
jk

and tik =
[
1 +

(
bd2

ik

ηi

) 1
p−1

]−1

∀ i = 1 . . . c
∀ k = 1 . . . n

, (8)

while cluster prototypes are obtained as:

vi =

n∑
k=1

[aumik + bt pik]xk
n∑

k=1
[aumik + bt pik]

∀ i = 1 . . . c . (9)
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PFCM was found accurate and robust [10], but still sensitive to outlier data to a
certain degree [11].

2.3 Further Hybrid Fuzzy c-Means Clustering Models

Another mixed c-means clustering model was proposed by Szilágyi et al. [22], which
incorporated all three fundamental partition components into a linearly combined
partition. The trade-off among the three components was controlled by two parame-
ters α and β, while all other parameters were inherited from FCM and PCM. The
algorithm was found runtime efficient due to quick convergence. It was successfully
employed in an application involving medical image segmentation.

3 The Fuzzy-Probabilistic Product Partition Fuzzy
c-Means Clustering Algorithm

In a probabilistic fuzzy partition, any outlier input vector xout receives high member-
ship values with respect to all clusters, that is, ui,out ≈ 1/c, which strongly influence
all cluster prototypes. On the other hand, in a possibilistic approach, outlier input
vectors receive very low typicality values with respect to all clusters. Motivated by
an intuition stemming from the above facts, the fuzzy-possibilistic product partition
and the corresponding c-means clustering model was launched as a hypothesis that
a cluster prototype update formula of form

vi =
∑n

k=1 μm
ikτ

p
ikxk∑n

k=1 μm
ikτ

p
ik

∀ i = 1 . . . c . (10)

where μik (i = 1 . . . c, k = 1 . . . n) describe a probabilistic fuzzy partition that is not
necessarily equivalent with the FCM’s one, and τik , (i = 1 . . . c, k = 1 . . . n) stand
for the elements of a possibilistic partition matrix, could be beneficial in terms of
partition accuracy and outlier suppression. To obtain such an optimization formula,
the objective function of FP3CM was defined as:

JFP3CM =
c∑

i=1

n∑

k=1

umik
[
t pikd

2
ik + (1 − tik)

pηi
]
, (11)

constrained by the conventional probabilistic condition given in Eq. (6) and the con-
ventional possibilistic conditions given in Eq. (7). The only parameters of FP3CM
are the fuzzy exponentm > 1, the possibilistic exponent p > 1, and the conventional
penalty terms of the possibilistic partition denoted by ηi (i = 1 . . . c).
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The minimization formulas are obtained using zero gradient conditions, aided by
Lagrangemultipliers in case of the probabilistic term.We need to compute the partial
derivatives of the functional:

L = JFP3CM +
n∑

k=1

λk

(
1 −

c∑

i=1

uik

)
, (12)

where λk (k = 1 . . . n) stand for the Lagrange multipliers. The zero crossing of the
partial derivatives with respect to tik (∀i = 1 . . . c, ∀k = 1 . . . n) leads to:

∂L
∂tik

= 0 ⇒ umik
[
pt p−1

ik d2
ik − ηi p(1 − tik)

p−1
]

= 0.

If uik = 0, the value of tik does not make a difference. Otherwise we get

(
1 − tik
tik

)p−1

= d2
ik

ηi
⇒ 1

tik
− 1 =

(
d2
ik

ηi

)1/(p−1)

,

which finally leads to a formula that is identical with the prototype update formula
of PCM:

tik =
[
1 +

(
d2
ik

ηi

)1/(p−1)
]−1 ∀ i = 1 . . . c

∀ k = 1 . . . n
. (13)

Further on, let us examine the zero crossing of partial derivatives with respect to
uik . For any i = 1 . . . c and any k = 1 . . . n we get

∂L
∂uik

= 0 ⇒ mum−1
ik

[
t pikd

2
ik + ηi (1 − tik)

p
] = λk,

which implies

uik =
(

λk

m

)1/(m−1)

× [
t pikd

2
ik + ηi (1 − tik)

p
]−1/(m−1)

. (14)

The probabilistic condition says
c∑

j=1
u jk = 1,which by themeans of Eq. (14) becomes

1 =
(

λk

m

)1/(m−1)

×
c∑

j=1

[
t pjkd

2
jk + η j (1 − t jk)

p
]−1/(m−1)

. (15)

Dividing Eq. (14) by (15) term by term, leads to
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uik = [t pikd2
ik + ηi (1 − tik)p]−1/(m−1)

c∑
j=1

[t pjkd2
jk + η j (1 − t jk)p]−1/(m−1)

, (16)

which holds for any i = 1 . . . c, and any k = 1 . . . n. Finally, let us investigate the
zero crossings of the partial derivatives with respect to vi (i = 1 . . . c):

∂L
∂vi

= 0 ⇒ −2
n∑

k=1

umik t
p
ik(xk − vi ) = 0 ,

which implies

vi

n∑

k=1

umik t
p
ik =

n∑

k=1

umik t
p
ikxk ⇒ vi =

∑n
k=1 u

m
ik t

p
ikxk∑n

k=1 u
m
ik t

p
ik

, (17)

valid for any i = 1 . . . c, having indeed the formwewished in Eq. (10). Let us remark
the followings:

1. The possibilistic memberships tik are established exactly the same way, as in
the PCM algorithm. This does not imply that the penalty terms ηi should be set
exactly as recommended by Krishnapuram and Keller [6].

2. The probabilistic memberships uik are somewhat similar to the ones given by
FCM, but distances are distorted according to the possibilitic memberships tik and
penalty terms ηi . In fact, uik values tend to the ones given by FCM as ηi → +∞.

3. Outlier input vectors xk are indicated by the algorithm with a low value of

max{ m+p

√
umik t

p
ik, i = 1 . . . c}.

4. The defuzzification of the final partition should be performed according to the
following rule: xk is assigned to cluster with index wk , where

wk = argmax
j

(
umjk t

p
jk | j = 1 . . . c

)
. (18)

In case of equal ηi values, for any i = 1 . . . c, the rule may be applied as: wk =
argmax

j

(
u jk | j = 1 . . . c

) = argmin
j

(
d jk | j = 1 . . . c

)
.

The AO algorithm of FP3CM is summarized in Algorithm 1.
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Algorithm 1: The alternating optimization algorithm of FP3CM clustering
algorithm
Data: Input data X = {x1, x2, . . . , xn}
Result: Final cluster prototypes v1, v2, . . . , vc
Result: Partition matrices U = {uik} and T = {tik}, with i = 1 . . . c, k = 1 . . . n
Fix the number of clusters c, 2 ≤ c ≤ n;
Set fuzzy exponent m and possibilistic exponent p, both greater than 1;
Set possibilistic penalty terms ηi (i = 1 . . . c);
Initialize cluster prototypes vi (i = 1 . . . c);
repeat

Update possibilistic membership values using Eq. (13);
Update probabilistic membership values using Eq. (16);
Update cluster prototypes using Eq. (17);

until cluster prototypes vi (i = 1 . . . c) converge;
Defuzzify of the obtained product partition as indicated in Eq. (18).

4 Spherical Shell Clustering Algorithm Using
Fuzzy-Possibilistic Product Partition

As introduced in [23], the fuzzy-possibilistic product partition c-spherical shell clus-
tering (FP3CSS) algorithm minimizes

JFP3CSS =
c∑

i=1

n∑

k=1

umik
[
t pikd

2
ik + (1 − tik)

pηi
]
, (19)

where the distance between vector xk and the prototype of cluster with index i is
defined as

dik = ∣∣||xk − θi ||2 − ρ2i
∣∣ , (20)

cluster i being represented by a spheroid having its center in θi and radius ρi . The
above presented objective function is optimized under the conventional probabilistic
and possibilistic constraints given in Eqs. (6) and (7). The only parameters of FP3CSS
are the fuzzy exponentm > 1, the possibilistic exponent p > 1, and the conventional
penalty terms of the possibilistic partition denoted by ηi (i = 1 . . . c).

To obtain aminimization algorithmof the objective function JFP3CSS, zero gradient
conditions and Lagrange multipliers are used. The partition update formulas are
obtained exactly in the same format as in case of FP3CM, indicated in Eqs. (13) and
(16), but using the definition of dik given in Eq. (20).

To deduce an update formula for cluster prototypes, we will turn to the technique
proposed by Krishnapuram et al. [13], namely we reformulate the distance dik in a
different form that is equivalent to the previous one given in Eq. (20)

d2
ik = ξT

i

[
xk
1

] [
xk
1

]T

ξi + 2xT
k xk

[
xk
1

]T

ξi + (xT
k xk)

2 , (21)
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where ξi describes the prototype of cluster i in the following manner:

ξi =
[ −2θi

θT
i θi − ρ2i

]
. (22)

Now let us investigate the zero crossing of the partial derivative of the objective
function with respect to ξi , i = 1 . . . c:

∂L
∂ξi

= 0 ⇒ 2
n∑

k=1

umik t
p
ik

([
xk
1

] [
xk
1

]T

ξi + (xT
k xk)

[
xk
1

])
= 0,

which implies

(
n∑

k=1

umik t
p
ik

[
xk
1

] [
xk
1

]T
)

ξi = −
(

n∑

k=1

umik t
p
ik(x

T
k xk)

[
xk
1

])

and finally leads to

ξi = −
(

n∑

k=1

umik t
p
ik

[
xk
1

] [
xk
1

]T
)−1 (

n∑

k=1

umik t
p
ik(x

T
k xk)

[
xk
1

])
, (23)

valid for any i = 1 . . . c. The center θi and radius ρi can be extracted from ξi using
Eq. (22).

The initialization of cluster prototypes is a key issue.As the cost functionmayhave
several local minima, it is important to start the algorithm in the neighborhood of the
global optimum. Krishnapuram et al. [13] recommended using the FCM algorithm
to produce initial estimates for the shell centers θi0 and radii ρi obtained as:

⎧
⎪⎪⎨

⎪⎪⎩

θi0 = vi

ρi0 =
n∑

k=1
umik ||xk−vi ||

n∑
k=1

umik

, (24)

where vi (i = 1 . . . c) are final FCM cluster prototypes and uik (i = 1 . . . c, k =
1 . . . n) are final FCM fuzzy membership functions.

The AO algorithm of FP3CSS is summarized in Algorithm 2.
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Algorithm 2: The alternating optimization algorithm of FP3CSS clustering
algorithm
Data: Input data X = {x1, x2, . . . , xn}
Result: Final cluster prototype descriptors ξ1, ξ2, . . . , ξc
Result: Partition matrices U = {uik} and T = {tik}, with i = 1 . . . c, k = 1 . . . n
Fix the number of clusters c, 2 ≤ c ≤ n/3;
Set fuzzy exponent m and possibilistic exponent p, both greater than 1;
Set possibilistic penalty terms ηi (i = 1 . . . c), as recommended by Krishnapuram and Keller
in [6];
Initialize cluster prototypes descriptors ξi (i = 1 . . . c) according to Eq. (24);
repeat

Update distances dik (i = 1 . . . c, k = 1 . . . n) using Eq. (20);
Update possibilistic membership values using Eq. (13);
Update probabilistic membership values using Eq. (16);
Update cluster prototype descriptors ξi (i = 1 . . . c) using Eq. (23);
Identify cluster prototypes (θi , ρi ), i = 1 . . . c according to Eq. (22);

until cluster prototypes ξi (i = 1 . . . c) converge;

The degree of membership of input vector xk with respect to cluster i is given by m+p
√
umik t

p
ik ;

Vector xk is an identified outlier, if
c∑

i=1

m+p
√
umik t

p
ik < ε, where ε is a predefined small

constant (e.g. ε = 0.01).

5 Elliptical Shell Clustering Algorithm Using
Fuzzy-Possibilistic Product Partition

Ellipsoids in computational geometry are usually described by a center point, one
radius value in each dimension, and a rotation vector which defines the orientation
of the ellipsoid. Here we define an ellipsoid as a collection of points x that satisfy
the equation:

(x − θ)TA(x − θ) = ρ2 ,

where θ is the center of the ellipsoid, ρ is a variable that controls the size of the
ellipsoid (radii vary proportionally with ρ), and matrixA is a positive definite matrix
that describes the shape and orientation of the ellipsoid. Under such circumstances,
the distance of any data point xk (k = 1 . . . n) from cluster prototype number i
(i = 1 . . . c), defined by θi , ρi , and Ai is computed as:

dik = ζik − ρi , (25)

where
ζik = ||xk − θi ||A =

√
(xk − θi )TA(xk − θi ) . (26)

The objective function of the fuzzy-possibilistic product partition elliptic shell
(FP3CES) clustering algorithm is:
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JFP3CES =
c∑

i=1

n∑

k=1

umik[t pikd2
ik + (1 − tik)

pηi ] ,

which will be optimized under the probabilistic and possibilistic constraints given in
Eqs. (6) and (7), and a further constraint det(Ai ) = ρi fixed, which assures that each
possible ellipsoid has a unique description using its own θi , ρi , and Ai values [24].

In order to optimize the above objective function, we need to find the optimal clus-
ter prototypes (θi , ρi ,Ai for any i = 1 . . . c) and optimal fuzzymembership functions
uik and tik , for any i = 1 . . . c and k = 1 . . . n. The optimum is reached via grouped
coordinate minimization by alternately optimizing the partition with fixed cluster
prototypes, and then optimizing the cluster prototypes keeping the partition fixed.
The alternating optimization is stopped when the norm of variation of cluster proto-
types during an iteration stays below a predefined constant ε. The alternately applied
optimization formulas are obtained from zero crossing of the objective function’s
partial derivatives, using Lagrange multipliers where necessary. The optimization
formulas thus obtained are necessary conditions of finding the objective function’s
optimum:

• The partition update formulas are obtained exactly in the same format as in case
of FP3CM, indicated in Eqs. (13) and (16), but using the definition of dik given in
Eqs. (25) and (26).

• Cluster prototype centers θi and radii ρi (∀i = 1 . . . c) need to be extracted via
Newton’s method from implicit equations:

⎧
⎪⎪⎨

⎪⎪⎩

n∑
k=1

umik t
p
ik

dik
ζik
(xk − θi ) = 0

n∑
k=1

umik t
p
ikdik = 0

. (27)

• Ellipse orientation matrices Ai (i = 1 . . . c) are obtained as:

Ai = z
√

ρi det(Si )S−1
i , (28)

where

Si =
n∑

k=1

umik t
p
ik

dik
ζik

(xk − θi )(xk − θi )
T . (29)

and z is the number of dimensions.

The FP3CES algorithm is summarized in Algorithm 3.
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Algorithm 3: The alternating optimization algorithm of FP3CES clustering
algorithm
Data: Input data X = {x1, x2, . . . , xn}
Result: Final cluster prototype descriptors θi , ρi ,Ai , for all i = 1 . . . c
Result: Partition matrices U = {uik} and T = {tik}, with i = 1 . . . c, k = 1 . . . n
Fix the number of clusters c, 2 ≤ c ≤ n/3;
Set fuzzy exponent m and possibilistic exponent p, both greater than 1;
Set possibilistic penalty terms ηi (i = 1 . . . c), as recommended by Krishnapuram and Keller
in [6];
Initialize cluster prototypes to represent the circles described by Eq. (24);
repeat

Update ζik and dik values (i = 1 . . . c, k = 1 . . . n) according to Eqs. (26) and (25),
respectively.
Update possibilistic membership values using Eq. (13);
Update probabilistic membership values using Eq. (16);
Update cluster centers θi and radii ρi (i = 1 . . . c) via Newton’s method applied to
equation system (27);
Update matrices Si (i = 1 . . . c) using Eq. (29);
Update matrices Ai (i = 1 . . . c) using Eq. (28);

until cluster prototypes converge;
The degree of membership of input vector xk with respect to elliptic cluster i is given by
m+p

√
umik t

p
ik .

xk is an identified outlier, if
c∑

i=1

m+p
√
umik t

p
ik < ε, where ε is a predefined small constant

(e.g. 0.01).

6 Experimental Evaluation

In this section, we will perform some numerical tests to evaluate the behavior of
the FPPP partition in various scenarios, examining the robustness and accuracy.
Each FPPP-based algorithm is compared with its corresponding probabilistic fuzzy
clustering algorithm derived from FCM, andwith the additive mixture model derived
from PFCM. The pure possibilistic algorithm is excluded from these tests due to its
frequently coincident cluster prototypes.

6.1 Evaluation of the c-Means Clustering Algorithms

Two clusters and one outlier input vector. Let us consider two sets of ν data points
each, uniformly distributed along unit-radius circles: xk = (cos 2kπ

ν
, 2 + sin 2kπ

ν
)T

and xν+k = (cos 2kπ
ν
,−2 + sin 2kπ

ν
)T , ∀k = 1 . . . ν . The input data set also includes

an outlier, situated at x2ν+1 = (δ, 0)T , where δ is a parameter with positive real
value. We will attempt to classify these n = 2ν + 1 vectors into c = 2 clusters,
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Fig. 1 Two scenarios for the numerical test of robustness: (left) two clusters and an outlier, (right)
nine clusters and an outlier

setting the initial cluster prototypes in the middle of the two circles: v1 = (0, 2)T

and v2 = (0,−2)T .
During the iterative optimization of all tested algorithms, the cluster prototypes

will be attracted by the outlier vector. As long as the outlier cannot tear off any of
the two prototypes, v1 and v2 will behave symmetrically, having their coordinates
v1 = (α,β)T andv2 = (α,−β)T .Agraphical representationof the problem is shown
in Fig. 1(left). The question is, how α and β will depend on the outlier’s position δ
in case of all tested algorithms, and how far the outlier vector can go without tearing
off one of the cluster prototypes.

Figure2 presents the outcome of numerical simulations performed on all tested
algorithms in various circumstances. In case of all previous algorithms, the further
the outlier goes, the stronger it attracts the centroids, and at a certain boundary, one
of the prototypes is torn out by the outlier. On the other hand, FP3CM behaves like
a gravity system: the further the outlier is situated, the weaker its effect is upon the
cluster centroids. No matter how far the outlier is, the obtained partition is correct.
The outlier receives such a low membership value to both clusters that it can be
easily assigned to the noisy class at defuzzification. Figure2c shows the behavior
of FP3CM in case of various values of possibilistic exponent p, at a constant value
of fuzzy exponent m = 2. The plots reveal that stronger possibilistic component or
lower values of p lead to more efficient rejection of the outlier effect. However, when
the outlier is not too far, lower exponent values also cause stronger deviation of the
cluster centroids.

Accuracy test with nine regular clusters and an outlier. As it is shown in
Fig. 1(right), the input data in this second test consists of 9 sets of vectors uniformly
distributed along unit radius circles, situated in the neighborhood of the origin. Ini-
tially, the cluster prototypes are placed in the middle of the nine circles. The single
outlier vector is placed somewhere along the big circle of radius δ, with its center in
the origin. The aim of this study is to establish, which is the limit value for δ where
tested algorithms crash in various circumstances.

The obtained limit distances are summarized in Table1. These values emphasize
the fact that previous algorithms may have enhanced the robustness of FCM, they
may have enabled the outlier to fall somewhat further (no more than by one order of
magnitude) without making the clustering crash. The novel clustering model FP3CM
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Fig. 2 a, b Position of the two symmetrical cluster prototypes at m = 2 and p = 6: a the β
coordinate plotted against the position of the outlier δ, b logarithmic plot ofα coordinate against the
distance of the outlier. Some of these graphs end at the threshold value of δ where the algorithms fail.
In case of FP3CM, the further the outlier wanders, the less influence it has upon cluster prototypes;
c The α coordinate produced by the proposed algorithm FP3CM, at m = 2 and various values of
p. The algorithm manages to suppress the effect of extreme outliers

Table 1 The limit distance δ, in case of various algorithms and circumstances, where the tested
algorithm fails to produce nine accurate clusters
Algorithm Circumstances Limit

distance
Algorithm Circumstances Limit

distance

m p
√

ηi a b m p
√

ηi a b

FCM 2 361 PFCM 2 3 1.0 1 5 437

FPCM 2 5 361 PFCM 2 3 1.5 1 5 521

FPCM 2 2 367 PFCM 2 3 2.0 1 5 593

FPCM 2 1.2 401 PFCM 2 3 2.5 1 5 546

PFCM 2 2 1.0 2 3 410 PFCM 2 2 1.0 1 5 459

PFCM 2 2 1.5 2 3 479 PFCM 2 2 1.5 1 5 602

PFCM 2 2 2.0 2 3 563 PFCM 2 2 2.0 1 5 789

PFCM 2 2 2.5 2 3 649 PFCM 2 2 2.5 1 5 1001

PFCM 2 5 1.0 1 5 394 PFCM 2 2 3.0 1 5 1220

PFCM 2 5 1.5 1 5 421 PFCM 2 2 4.0 1 5 1354

PFCM 2 5 2.0 1 5 428 PFCM 2 2 5.0 1 5 1089

PFCM 2 5 2.5 1 5 370 FP3CM wide range +∞
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Table 2 Partition accuracies and confusion matrices in various scenarios
Circumstances IRIS type FCM PFCM FP3CM Correct decisions

v1 v2 v3 v1 v2 v3 v1 v2 v3

no

outlier

added

Setosa

Versicolor

Virginica

50 0 0

0 47 3

0 11 39

50 0 0

0 47 3

0 11 39

50 0 0

0 48 2

0 7 43

FCM → 136

PFCM → 136

FP3CM → 141

outlier

added

at20

Setosa

Versicolor

Virginica

50 0 0

0 50 0

0 16 34

50 0 0

0 50 0

0 15 35

50 0 0

0 47 3

0 7 43

FCM → 134

PFCM → 135

FP3CM → 140

outlier

added

at30

Setosa

Versicolor

Virginica

50 0 0

1 49 0

0 21 29

50 0 0

1 49 0

0 18 32

50 0 0

0 47 3

0 7 43

FCM → 128

PFCM → 131

FP3CM → 140

outlier

added at

50or106

Setosa

Versicolor

Virginica

50 0 0

3 47 0

0 50 0

50 0 0

3 47 0

0 50 0

50 0 0

0 47 3

0 7 43

FCM crashes

PFCM crashes

FP3CM → 140

seems to efficiently suppress the influence of the outlier vector, leading to accurate
partitions for any high value of δ.

Numerical tests using IRIS data. In the following, we analyze the accuracy and
robustness of the investigated clustering models using the IRIS data set [25], which
consists of 150 labeled feature vectors of four dimensions (sepal length and width,
petal length and width), organized in three clusters (“setosa”,“versicolor”, and
“virginica”) of fifty vectors each. It is a reported fact, that conventional cluster-
ing models like FCM produce 133-134 correct decisions when classifying IRIS
data. PFCM produced the best reported accuracy with 140 correct decisions using
a = b = 1,m = p = 3, and initializing vi with terminal FCMprototypes [10].Under
less advantageous circumstances, PFCM reportedly produced 136-137 correct deci-
sions.

We have tested the FP3CM clustering model in a wide range of the fuzzy and
the possibilistic exponents. The best partition achieved by FP3CM has 141 correct
decisions, which is above any reported result. We also need to remark, that almost
any parameter setting leads to good partition quality. To make sure FP3CM clusters
accurately, the possibilistic term should not be too strong, it is recommendable to
keep the possibilistic exponent at p ≥ 2.

A series of numerical tests using the IRIS data targeted the clustering robust-
ness. We artificially inserted an outlier vector into the input data set, with coordi-
nates x151 = (δ, δ, δ, δ)T , and proceeded all vectors to clustering into c = 3 groups.
Table2 gives us an overview upon accuracy, confusion matrices, and sensibility to
the outlier’s position. As we can see in the table, most existing clustering models
failed somewhere between δ = 30 and δ = 50, while the FP3CM algorithm led to
high quality partition even at δ = 106, being less affected by distant outliers. All
these tests were performed atm = 2.0, p = 3.5,

√
ηi = 0.7 ∀i = 1 . . . c, a = 1, and

b = 5. Further details can be found in [11].

Application in blind speaker grouping. The FP3CM clustering algorithm was
employed in a human speech processing framework, to distinguish the voice
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signals of various speakers in a small group. Also in this application, the FPPP
partition based c-means clustering outperformed the FCM and PFCM algorithms in
terms of accuracy. Details are reported in [26].

6.2 Evaluation of the c-Spherical Shells
Clustering Algorithms

In the following, we will perform some numerical tests to evaluate the robust-
ness and accuracy of the c-spherical shell algorithms. We will compare the perfor-
mance of FP3CSS with counter candidates like the FCSS [13], and the unpublished
possibilistic-fuzzy c-spherical shell (PFCSS) clustering we derived from the ultimate
robust and accurate PFCM [10]. It is necessary to remark that most shell clustering
algorithms were published without testing them in noisy environment. This study
investigates the accuracy of algorithms in noisy environment, in order to emphasize
the advantages of the FPPP partition.

Four circles and one outlier. Let us consider four sets of ν data points each, uni-
formly distributed in the proximity of four circles of equal radius, as shown in Fig. 3.
The input data set also includes an outlier, situated at x4ν+1 = (0, δ)T , where δ is a
positive real valued parameter. We will attempt to find c = 4 two-dimensional shell
clusters among these n = 4ν + 1 vectors. These input vectors were fed to three algo-
rithms: FCSS, PFCSS, and the proposed FP3CSS, setting the initial clusters in the
proximity of the ideal solution using the FCM-based technique mentioned in Sect. 4.
The question is, how these algorithms will identify the four circles within the data
set.

Figure3 exhibits the obtained circles for various values of the δ parameter. The
circles identified by FCSS are drawn with dash-and-dotted line, the ones of PFCSS
with dashed lines, while the circles of the FP3CSS algorithm are represented with
continuous lines. Although FCSS gives the outlier approximately 1/c = 0.25 proba-
bility to belong to each of the classes, this does not visibly affect the identified circles
when outlier stays at short distance (δ ≈ 10). However, as the outlier goes further,
the identified circles drift away from the actual position of the input vectors, and at
a certain level of δ, one of the identified circles will jump to cross the outlier. At
this level, FCSS can be considered failed. PFCSS can keep the identified circles in
the proximity of the ideal solution somewhat further than FCSS, but when it loses
the control (at δ ≈ 14) it starts acting similarly to FCSS. Tests have revealed that
the product partition based algorithm identifies all circles with high accuracy even
at high values of δ in order of 103–106. These results were produced at the following
parameter settings:

• FCSS used the most popular value of the fuzzy exponent, m = 2;
• PFCSS was performed using a stronger possibilistic factor caused by fuzzy expo-
nent set to m = 6 and possibilistic exponent to p = 2. Trade-off parameters were
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Fig. 3 Four identified circles in various circumstances. Circles of FCSS are drawn with dash-and-
dotted lines, the result of PFCSS with dashed lines, while the identified circles of the FP3CSS are
drawn with continuous lines
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Fig. 4 Identified circles in case of two circle clusters of ν = 10 vectors each, and an increasing
number of outliers: a 5 outliers; b 15 outliers; c 30 outliers. Cluster prototypes were initially set in
the proximity of the ideal solution. Outliers vectors are indicated by squares (�). Identified circles
of FCSS are drawn with dotted lines, the result of PFCSS with dashed lines, while the identified
circles of the proposed FP3CSS are represented with continuous lines

also set to favor the possibilistic term: a = 1 and b = 5; the possibilistic penalty
terms ηi were established by the rules set in [6].

• FP3CSS was using the same settings as PFCSS for m, p, and ηi .

Twocircles and several outliers. In a newexample,we use two circle shaped clusters
defined by ν = 12 data points each. This time we add several outliers at random
positions within a larger rectangular box that incorporates both circles. The number
of added outliers gradually grows from 5 to 30, and the clustering is performed using
initialization of the cluster prototypes in the proximity of the ideal solutions.

Figure4 summarizes the outcome of the tested three algorithms in various cir-
cumstances. The chance of producing errors visibly grows with the number of added
outliers. FCSS fails earlier than PFCSS, but practically there is no qualitative differ-
ence in their outcome. These algorithms cannot keep the cluster prototypes even if
they are initialized with the ideal positions. On the other hand, the product partition
based algorithm can handle the case even if the number of added outliers exceeds
the count of correct input vectors. It is necessary to remark that all algorithms fail
if initialized randomly. Consequently, choosing good estimates at the beginning is
indeed a key issue. Further details and test cases can be found in [23], including a
three-dimensional problem with two spheres and several outliers.

6.3 Evaluation of the c-Elliptical Shells
Clustering Algorithms

Let us define a problem with c = 12 ellipses to be identified, of random radii and
orientation, each represented by ν = 18 data points situated along the boundary,
as shown in the middle panel of Fig. 5. The ellipse centers are situated on a circle
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Fig. 5 Magnified view of identified ellipses in case of 12ν + 5 = 221 input vectors and c = 12
elliptic shell clusters. Cluster prototypes were initialized as unit radius circles centered in ideal
position. Ellipses identified by FCES are drawn with dotted lines, the result of PFCES with dashed
lines, while the identified ellipses of the proposed FP3CES are represented with continuous lines

of 10-unit radius, thus the center of ellipse number i (i = 1 . . . c) is given by vi =
(10 cos(2πi/c), 10 sin(2πi/c))T . Five further data points (not too distant outliers)
are added to the input data set, as shown in Fig. 5. The resulting data set is clustered
to c = 12 elliptic shell clusters via FCES, PFCES and FP3CES algorithms. Initial
cluster prototypes are set as unit radius circles placed at vi (i = 1 . . . c), drawn in
Fig. 5 with light and narrow dotted lines. The four outer panels of Fig. 5 exhibits the
outcome of all three algorithms.

Again, we can easily notice the superiority of the FP3CES algorithm as it iden-
tifies all ellipses with hardly visible mistakes, while the outliers bring considerable
obstacles for the counter candidate algorithms. In general, FCES produces stronger
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distortions than PFCES, but none of them can be called accurate in the presence of
outliers. These results were produced using the following parameter settings:

• FCES was using the most popular value of the fuzzy exponent, m = 2;
• PFCESwas performed using a stronger possibilistic factor (as recommended by its
authors [10]) caused by fuzzy exponent set tom = 2.5 and possibilistic exponent to
p = 1.5. Trade-off parameters were set equal: a = b = 1; the possibilistic penalty
terms ηi were established by the rules set in [6].

• FP3CES was using the same settings as PFCES for m, p, and ηi .

The initialization of cluster prototypes is a key issue that strongly influences
the outcome of the clusters. As the cost function may have several local minima,
it is important to start the algorithm in the neighborhood of the global optimum.
Without proper initialization, none of the tested elliptic shell clustering algorithms
can produce accurate results.

7 Conclusion

This chapter presented several variants of fuzzy-possibilistic product partition based
clustering algorithms, and showed their improved behavior compared to previous
clusteringmodels, emphasizing the efficient outlier rejection. Besides the better accu-
racy and robustness, another advantage of the fuzzy-possibilistic product partition
compared to the possibilistic-fuzzy partition [10], is the lack of trade-off parameters
between probabilistic and possibilistic terms, making the proposed algorithm eas-
ier to tune. Consequently, algorithms derived from FP3CM are good candidates for
various data mining problems in noisy environment.
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Consensus-Based Agglomerative
Hierarchical Clustering

José Luis García-Lapresta and David Pérez-Román

Abstract In this contribution, we consider that a set of agents assess a set of alterna-
tives through numbers in the unit interval. In this setting, we introduce a measure that
assigns a degree of consensus to each subset of agents with respect to every subset of
alternatives. This consensus measure is defined as 1 minus the outcome generated by
a symmetric aggregation function to the distances between the corresponding indi-
vidual assessments. We establish some properties of the consensus measure, some of
them depending on the used aggregation function. We also introduce an agglomera-
tive hierarchical clustering procedure that is generated by similarity functions based
on the previous consensus measures.

Keywords Consensus · Clustering · Aggregation functions · OWA operators

1 Introduction

When a group on agents show their opinions about a set of alternatives, an important
issue is to know the homogeneity of these opinions. In this chapter we consider
that agents evaluate each alternative by means of a number in the unit interval.
For measuring the consensus in a group of agents over a subset of alternatives, we
propose to aggregate the distances between the corresponding individual assessments
through an appropriate symmetric aggregation function. This outcome measures the
dispersion of individual opinions in a similar way to the Gini index [19] measures
the inequality of individual incomes (see Yitzhaki [32]). The consensus measure we
propose is just 1 minus the mentioned dispersion measure.
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The most important is not to know the degree of consensus in a specific group of
agents, but comparing the consensus of different group of agents with respect to an
alternative or a subset of alternatives. This is the starting point of the agglomerative
hierarchical clustering procedure we propose. We consider as linkage clustering
criterion one generated by a consensus-based similarity function that merges clusters
or individuals by maximizing the consensus.

The rest of the chapter is organized as follows. Section2 contains some nota-
tion and basic notions. In Sect. 3, we introduce and analyze the proposed consensus
measures. Section4 contains our proposal of consensus-based agglomerative hierar-
chical clustering. In Sect. 5, we illustrate the introduced procedures with an example.
Finally, in Sect. 6, we conclude with some remarks.

2 Preliminaries

Given y, z ∈ [0, 1]k , by y ≥ z we mean yi ≥ zi for every i ∈ {1, . . . , k}. Given
y ∈ [0, 1]k , the decreasing reordering of the coordinates of y is indicated as y[1] ≥
· · · ≥ y[k]. In particular, y[1] = max{y1, . . . , yk} and y[k] = min{y1, . . . , yk}.

Given a real number y, by �y� we denote the integer part of y, i.e., the greatest
integer number smaller than or equal to y.

With #I we denote the cardinality of I . With P2(A) = {I ⊆ A | #I ≥ 2} we
denote the family of subsets of at least two elements.

We begin by defining standard properties of real functions on [0, 1]k . For further
details the interested reader is referred to Fodor and Roubens [12], Calvo et al. [6],
Beliakov et al. [4], Torra and Narukawa [27], Grabisch et al. [20] and Beliakov et al.
[3].

Definition 1 Let F : [0, 1]k −→ [0, 1] be a function.

(1) F is idempotent if for every y ∈ [0, 1] it holds F(y · 1) = y.
(2) F is symmetric if for every permutation π on {1, . . . , k} and every y ∈ [0, 1]k

it holds F(yπ(1), . . . , yπ(k)) = F( y).
(3) F is monotonic if for all y, z ∈ [0, 1]k it holds y ≥ z ⇒ F( y) ≥ F(z).
(4) F is compensative if for every y ∈ [0, 1]k it holds y[k] ≤ F( y) ≤ y[1].
(5) F is self-dual if for every y ∈ [0, 1]k it holds F(1 − y) = 1 − F( y).
(6) F is stable for translations if for all y ∈ [0, 1]k and t ∈ [0, 1] such that y +

t · 1 ∈ [0, 1]k it holds F( y + t · 1) = F( y) + t .

Definition 2

(1) Given k ∈ N, a function F (k) : [0, 1]k −→ [0, 1] is called an k-ary aggregation
function if it is monotonic and satisfies the boundary conditions F (k)(0) = 0
and F (k)(1) = 1. In the extreme case of k = 1, the convention F (1)(y) = y for
every y ∈ [0, 1] is considered.

(2) An aggregation function is a sequence F = (
F (k)

)
k∈N of k-ary aggregation

functions.
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(3) An aggregation function F = (
F (k)

)
k∈N satisfies a property (in particular, those

appearing in Definition 1) whenever F (k) satisfies the same property for every
k ∈ N.

It is easy to see that for every k-ary aggregation function, idempotency and com-
pensativeness are equivalent.

For the sake of simplicity, the k-arity is omitted whenever it is clear from the
context.

An interesting class of aggregation functions is the family of OWA operators,
introduced by Yager [29].

A weighting vector of dimension k is a vector w = (w1, . . . , wk) ∈ [0, 1]k such

that
k∑

i=1

wi = 1.

Definition 3 Given a weighting vector w of dimension k, the OWA operator asso-
ciated with w is the aggregation function Fw : [0, 1]k −→ [0, 1] defined as

Fw(y1, . . . , yk) =
k∑

i=1

wi · y[i].

Some well-known aggregation functions are specific cases of OWA operators.
With appropriate weighting vectors w = (w1, . . . , wk) we obtain

(1) The maximum, for w = (1, 0, . . . , 0).
(2) The minimum, for w = (0, . . . , 0, 1).
(3) The arithmetic mean, for w = (

1
k , . . . ,

1
k

)
.

(4) The t-trimmed means:

• If t = 1, for w = (
0, 1

k−2 , . . . ,
1

k−2 , 0
)
.

• If t = 2, for w = (
0, 0, 1

k−4 , . . . ,
1

k−4 , 0, 0
)
.

• . . . .

(5) The median:

(a) If k is odd, for wi =
{
1, if i = k+1

2 ,

0, otherwise.

(b) If k is even, for wi =
{
0.5, if i ∈ {

k
2 ,

k
2 + 1

}
,

0, otherwise.

(6) The mid-range, for w = (0.5, 0, . . . , 0, 0.5).

OWA operators are continuous, idempotent (hence, compensative), symmetric,
and stable for translations. They have been characterized by Fodor et al. [11].

Centered OWA operators have been introduced by Yager [31] in order to give
“the most weight to the central scores in the argument tuples and less weighting to
the extreme values”. We now introduce a more general notion than that provided by
Yager. It was introduced by García-Lapresta and Martínez-Panero [14].
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Definition 4 Given a weighting vector w of dimension k, the OWA operator asso-
ciated with w is centered if the following two conditions are satisfied:

(1) wk+1−i = wi for every i ∈ {1, . . . , k}.
(2) wi ≤ w j whenever i < j ≤ � k+1

2 � or i > j ≥ � k+1
2 �.

Thefirst condition is equivalent to the property of self-duality (seeGarcía-Lapresta
andLlamazares [13, Proposition 5]). The second condition isweaker than the original
of Yager [31], called strongly decaying, that requires strict inequalities wi < w j .

Yager [31] requires a third condition in the definition of centered OWA operators,
inclusiveness: wi > 0 for every i ∈ {1, . . . , k}. That condition is very restrictive
for our purposes, since it eliminates some interesting OWA operators as median and
trimmed means, among others.

Definition 5 An extended OWA (EOWA) operator is a sequence of OWA opera-
tors (Fwk )k∈N with associated weighting vectors wk = (wk

1, . . . , w
k
k ), one for each

dimension k ∈ N.

FollowingMayor and Calvo [24], Calvo andMayor [7], Beliakov et al. [4, pp. 54–
56] and Beliakov et al. [3, pp. 73–76]), we can show graphically an EOWA operator
as a weighting triangle where the entries in each row add up to one:

w1
1

w2
1 w2

2
w3

1 w3
2 w3

3
w4

1 w4
2 w4

3 w4
4

w5
1 w5

2 w5
3 w5

4 w5
5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A very useful approach for obtaining the EOWAweights is the functional method
introduced by Yager [30, 31]. Given a BUM function, i.e., a monotonic function f :
[0, 1] −→ [0, 1] such that f (0) = 0 and f (1) = 1, the associated EOWA weights
are defined as

wk
i = f

(
i

k

)
− f

(
i − 1

k

)
, i = 1, . . . , k. (1)

Yager [31] proposes to generate BUM functions by means of centering functions.
A centering function is a function g : [0, 1] −→ R satisfying the following con-

ditions:

1 g(x) > 0 for every x ∈ [0, 1].
2 g(0.5 + x) = g(0.5 − x) for every x ∈ [0, 0.5].
3 g(x) < g(y) for x < y ≤ 0.5 and g(x) < g(y) for x > y ≥ 0.5.

Then, the function f : [0, 1] −→ [0, 1] defined as
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f (x) =

∫ x

0
g(y) dy

∫ 1

0
g(y) dy

(2)

is a BUM function.

3 Consensus

For measuring the degree of consensus among a group of agents that provide their
opinions on a set of alternatives, different proposals can be found in the literature
(see Martínez-Panero [23] for an overview of different notions of consensus).

In the social choice framework, the notion of consensus measure was introduced
by Bosch [5] in the context of linear orders. Additionally, Bosch [5] and Alcalde-
Unzu and Vorsatz [1] provided axiomatic characterizations of several consensus
measures in the context of linear orders. García-Lapresta and Pérez-Román [15]
extended that notion to the context of weak orders and they analyzed a class of
consensus measures generated by distances. Alcantud et al. [2] provided axiomatic
characterizations of some consensus measures in the setting of approval voting. In
turn, Erdamar et al. [8] extended the notion of consensus measure to the preference-
approval setting through different kinds of distances, and García-Lapresta et al. [18]
introduced another extension to the framework of hesitant linguistic assessments.

Let A = {1, . . . ,m}, with m ≥ 2, be a set of agents and let X = {x1, . . . , xn},
with n ≥ 2, be the set of alternatives which have to be evaluated in the unit interval.

A profile is a matrix

V =

⎛

⎜⎜⎜⎜⎝

v1
1 · · · v1

i · · · v1
n

· · · · · · · · · · · · · · ·
va
1 · · · va

i · · · va
n

· · · · · · · · · · · · · · ·
vm
1 · · · vm

i · · · vm
n

⎞

⎟⎟⎟⎟⎠
= (

va
i

)

consisting of m rows and n columns of numbers in [0, 1], where the element va
i

represents the assessment given by the agent a ∈ A to the alternative xi ∈ X .
Let V = (

va
i

)
be a profile, π a permutation on A, σ a permutation on {1, . . . , n},

I ∈ P2(A) and ∅ �= Y ⊆ X . The profiles V π , Vσ and V−1, and the subsets I π

and Yσ are defnined as follows:

(1) V π = (
uai

)
where uai = v

π(a)
i .

(2) Vσ = (
uai

)
where uai = va

σ(i).
(3) V−1 = (

uai
)
where uai = 1 − va

i .
(4) I π = {

π−1(a) | a ∈ A
}
, i.e., a ∈ I π ⇔ π(a) ∈ I .

(5) Yσ = {xσ−1(i) | xi ∈ Y }, i.e., xi ∈ Yσ ⇔ xσ(i) ∈ Y .
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We now introduce a consensus measure associated with a symmetric aggregation
function. Given a profile, it assigns a degree of consensus in each subset of at least
two agents with respect to a subset of alternatives.

Definition 6 Let F = (
F (k)

)
k∈N be a symmetric aggregation function. Given a

profile V = (va
i ), the degree of consensus in a subset of agents I ∈ P2(A) over a

subset of alternatives ∅ �= Y ⊆ X is defnined as

CF (V, I,Y ) = 1 − F

(∣∣va
i − vb

i

∣∣a,b∈I , a<b
xi∈Y

)
.

In Proposition 1 we establish some properties of the consensus notion introduced
inDefinition 6.Normalizationmeans that the degree of consensus is always in the unit
interval. Anonymity means that all agents are treated in the same way. Unanimity
establishes necessary and sufficient conditions for reaching maximum consensus.
Maximum dissension establishes necessary and sufficient conditions for reaching
minimum consensus in two agents. Positiveness establishes that with more than
two agents the degree of consensus is never minimum. Neutrality means that all
alternatives are treated in the same way. And reciprocity means that if all the agents
reverse their assessments, then the degree of consensus does not change.

Proposition 1 Let F = (
F (k)

)
k∈N be a symmetric aggregation function. The fol-

lowing properties are satisfied:

(1) Normalization: CF (V, I,Y ) ∈ [0, 1].
(2) Anonymity: CF (V π , I π ,Y ) = CF (V, I,Y ) for every permutation π on A.
(3) Unanimity: If for every xi ∈ Y there exists ti ∈ [0, 1] such that va

i = ti for
every a ∈ I , then CF (V, I,Y ) = 1.
Additionally, if F (k)( y) = 0 ⇔ y = 0, for all k ∈ N and y ∈ [0, 1]k , and
CF (V, I,Y ) = 1, then for every xi ∈ Y there exists ti ∈ [0, 1] such that va

i =
ti for every a ∈ I .

(4) Maximum dissension: If
((

va
i = 0 and vb

i = 1
)
or

(
va
i = 1 and vb

i = 0
))

for
all xi ∈ Y , then CF (V, {a, b},Y ) = 0.
Additionally, if F (k)( y) = 1 ⇔ y = 1, for all k ∈ N and y ∈ [0, 1]k , and
CF (V, {a, b},Y ) = 0, then

((
va
i = 0 and vb

i = 1
)
or

(
va
i = 1 and vb

i = 0
))

for all xi ∈ Y .
(5) Positiveness: If F (k)( y) = 1 ⇔ y = 1, for all k ∈ N and y ∈ [0, 1]k , and

#I > 2, then CF (V, I,Y ) > 0.
(6) Neutrality:CF (Vσ , I,Yσ ) = CF (V, I,Y ) for every permutation σ on {1, . . . , n}.
(7) Reciprocity: CF (V−1, I,Y ) = CF (V, I,Y ).
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Proof It is straightforward.

Remark 1 Let (Fwk )k∈N an EOWA operator with associated weighting vectors
wk = (wk

1, . . . , w
k
k ), k ∈ N. It is easy to check that Fwk ( y) = 0 ⇔ y = 0, for

every y ∈ [0, 1]k , if and only if wk
1 > 0; and Fwk ( y) = 1 ⇔ y = 1, for every

y ∈ [0, 1]k , if and only if wk
k > 0.

Consequently, any EOWAoperator satisfying wk
1 > 0 and wk

k > 0 for every k ∈
N verifies all the properties included in Proposition 1. Therefore, when considering
the EOWA operators generated by the maximum, the minimum, the trimmed means
and the median, the corresponding consensus measures do not satisfy the strong
versions of unanimity and maximum dissension.

For our purposes, an interesting class of EOWA operators is the one generated by
centered OWA operators (in the sense of Definition4) satisfying wk

1 = wk
k > 0 for

every k ∈ N.

4 Clustering

There are many clustering algorithms (see Ward [28], Jain et al. [21] and Everitt
et al. [9], among others). Most methods of hierarchical clustering use an appropriate
metric (for measuring the distance between pairs of observations), and a linkage cri-
terion which specifies the similarity/dissimilarity of sets as a function of the pairwise
distances of observations in the corresponding sets.

Ward [28] proposed an agglomerative hierarchical clustering procedure, where
the criterion for choosing the pair of clusters to merge at each step is based on the
optimization of an objective function.

Usually, clusters are merged by minimizing a distance between clusters. The
complete, single and average linkage clustering take into account the maximum,
minimum and mean distance between elements of each cluster, respectively. In turn,
centroid linkage clustering is based on the distances between the clusters centroids.

In all thementioned linkage clustering criteria there is a loss of information. In our
proposal, clusters are merged when maximizing the consensus and, consequently, all
the information is used for merging clusters.

Definition 7 Let F = (
F (k)

)
k∈N be a symmetric aggregation function. Given a

profile V = (va
i ), the similarity function relative to a subset of alternatives ∅ �= Y ⊆

X
SYF : (

P(A) \ {∅})2 −→ [0, 1]

is defined as

SYF (I, J ) =
{
CF (V, I ∪ J,Y ), i f #(I ∪ J ) ≥ 2,

1, i f #(I ∪ J ) = 1.
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Remark 2 In the extreme case of two agents and a single alternative, the similarity
between these agents on that alternative is just 1 minus the distance between their
assessments. More formally, given an alternative xi ∈ X and two different agents
a, b ∈ A, we have

S{xi }
F ({a}, {b}) = CF (V, {a, b}, {xi }) = 1 − ∣∣va

i − vb
i

∣∣ .

The agglomerative hierarchical clustering procedurewepropose has some similar-
ities to the ones provided by García-Lapresta and Pérez-Román [16, 17], in different
settings. Given an aggregation function F = (

F (k)
)
k∈N and a profile V = (va

i ), our
proposal consists of a sequential process addressed by the following stages:

(1) The initial clustering is A Y
0 = {{1}, . . . , {m}}.

(2) Calculate the similarities between all the pairs of agents, SYF ({a}, {b}) for all
a, b ∈ A.

(3) Select the two agents a, b ∈ A that maximize SYF and construct the first cluster
AY
1 = {a, b}.

(4) The new clustering is A Y
1 = (

A Y
0 \ {{a}, {b}}) ∪ {

AY
1

}
.

(5) Calculate the similarities SYF (AY
1 , {c}) and take into account the previously com-

puted similarities SY ({c}, {d}), for all {c}, {d} ∈ A Y
1 .

(6) Select the two elements of A Y
1 that maximize SYF and construct the second

cluster Ai
2.

(7) Proceed as in previous items until obtaining the next clustering A i
2 .

The process continues in the same way until obtaining the last cluster, A Y
m−1 =

{A}.
In the case of several pairs of agents or clusters are in a tie, then proceed in a

lexicographic manner in 1, . . . ,m.

5 An Illustrative Example

In order to illustrate the agglomerative hierarchical clustering procedure introduced
in Sect. 4, consider a set of eight experts A = {1, 2, 3, 4, 5, 6, 7, 8} assessing a set
of six alternatives X = {x1, x2, x3, x4, x5, x6} through the following profile

V =

⎛

⎜⎜⎜⎜⎜⎜⎝

1.0 0.9 0.7 0.5 0.5 0.0 0.5 1.0
0.8 0.0 0.6 0.4 0.3 0.8 1.0 0.8
0.6 0.6 0.6 1.0 0.2 0.6 0.7 1.0
0.4 0.4 0.4 0.3 0.9 0.7 0.3 0.7
0.3 0.3 0.7 1.0 0.0 0.9 0.2 1.0
0.0 1.0 0.5 1.0 0.5 0.7 1.0 0.7

⎞

⎟⎟⎟⎟⎟⎟⎠
.

In order to show the importance of the aggregation function for defnining the
consensus measure that generates the cluster formation, we have considered four
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centered EOWA operators (in the sense of Definition4): the arithmetic mean, the
1-trimmed mean (or olympic EOWA operator) and two specific cases generated by
the functional method introduced by Yager [30, 31].

The clustering processes have been carried out for the case of all the alternatives
(Y = X ). The outcomes are summarized in the corresponding dendrograms.

The dendrograms generated by the arithmetic mean and the 1-trimmed mean are
shown in Figs. 1 and 2, respectively.

Figure3 shows the dendrogram that corresponds to consider the EOWA operator
whose weights are given by applying Eq. (1) to the BUM function generated by
Eq. (2) with the piecewise linear centering function g1 defnined as

g1(x) =
{
2x, if 0 ≤ x ≤ 0.5,

2 − 2x, if 0.5 ≤ x ≤ 1.

In this case, the weights are wk
i = 2(2i − 1)

k2
for i ≤ k + 1

2
, and wk

i = wk+1−i

if i ≥ k + 1

2
.

Similarly, Fig. 4 shows the dendrogram that corresponds to consider the EOWA
operator whose weights are given by applying Eq. (1) to the BUM function gener-
ated by Eq. (2) with the parabolic centering function g2(x) = 4(x − x2). Now the
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Fig. 1 Dendrogram obtained with the arithmetic mean
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Fig. 2 Dendrogram obtained with the 1-trimmed mean
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Fig. 3 Dendrogram obtained with the EOWA operator generated by g1
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Fig. 4 Dendrogram obtained with the EOWA operator generated by g2

weights are wk
i = 3k(2i − 1) − 6i(i − 1) − 2

k3
for i ≤ k + 1

2
, and wk

i = wk+1−i if

i ≥ k + 1

2
.

6 Concluding Remarks

When a group of agents show their opinions about a set of alternatives, an interesting
problem is to know what is the consensus in the whole group or in a subset of
agents with respect to one or several alternatives. The most important is not to know
the corresponding degrees of consensus, but to compare the consensus in different
subsets of agents and alternatives. With our proposal, this information can be easily
achieved.Evenmore, the proposed consensus-based clustering and the corresponding
dendrograms provide a rich and visual picture of the homogeneity in the individual
opinions.

The mentioned consensus and clustering procedures are static. However, in con-
sensus reaching processes the degree of consensus in a specific situation is only the
starting point of a dynamic and iterative process that pursues to increase the agree-
ment among agents. A consensus reaching process consists of several rounds where
a human or virtual moderator may invite some agents to modify their opinions in



134 J.L. García-Lapresta and D. Pérez-Román

order to increase the collective agreement (see Fedrizzi et al. [10], Saint and Lawson
[26], Martínez and Montero [22] and Palomares et al. [25], among others).

These consensus reachingprocesses and the corresponding clustering analyses can
be carried out in the setting of this contribution. The fact that the proposed consensus
measure is associatedwith an aggregation function provides flexibility to the process.
Once are determined the alternatives xi where the degree of consensus in the whole
group of agents, CF (V, A, {xi }), is smaller than the overall degree of consensus
CF (V, A, X), the moderator may invite those agents whose opinions over xi are
quite different to themedian assessment to properlymodify their assessments. If these
agents move their assessments on the selected alternatives towards the corresponding
median assessments, then the degree of consensus increases. Due to themonotonicity
of the aggregation function, the overall degree of consensus increases as well. All
these changes can be visualized through the corresponding dendrograms.
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1 Introduction

Cluster analysis is one of the most rudimentary data analysis techniques and, at the
same time, one of the most popular and powerful; cf., e.g., Kaufman and Rousseeuw
[16],Miyamoto et al. [21]. It ismost often usedwhen no extra information is available
and, thus, there is no clue as to the structure of the data set at hand. In order to execute
a cluster analysis exercise one has to make a number of choices. First of all, the data
set must be characterized in terms of attributes and their values for particular data
points1 which may be task dependent. Then, a clustering technique, some measures
of distance/similarity, and other parameters related to a chosen clustering technique
have to be assumed. The choice of parameters may be guided by the experience of a
user, availability of data (values of the attributes to be used), some available metadata
or may be based on results of some preliminary data analysis; cf., e.g., Torra et al.
[28]. As soon as the choice is done, one can run a selected clustering algorithm and
obtain some groups of data points, i.e., a partition of the data set under consideration.
Usually, such an exercise is repeated several times for different configurations of the
above mentioned parameters in order to find an “optimal” one. The whole process
may be seen as a kind of a transformation which turns a data set of individual data
points into groups of such data points.

In this paper we consider the problem which may be interpreted to be a kind
of a reverse engineering related one that is applied to the results of the previously
described source clustering process. Namely, we assume that a partition of the data
set is given and we want to discover parameters of the process (transformation) that
have resulted in the given partition. It is very common to consider the data sets that are
divided into subsets (clusters, classes, groups, . . .) in a certain manner, which is more
or less “certain” or “justified”, and attempt to reconstruct the given division using
some “other” data than just the respective labels. This is most often done in order
to validate or check the quality of the classification, clustering, machine learning,
etc. schemes. More advanced purposes may involve model building and checking,
as well as – quite to the contrary – verification of the original, prior division of the
data set. There may also be other objectives, some of them quite classical, like the
detection of outliers, and also very specific ones, like the assessment of adequacy of
the classification data to the labels or forming some descriptions of known groups
of data in terms of the values of some of the attributes characterizing them.

It is easy to notice that the results of the above reverse engineering type clustering
process can provide the analyst and user with a very useful information. However,
to be usable in practice, that is, also for novice users, domain specialists, very often
with a limited command of data analysis, clustering, etc., who are now presumably
the largest target group of users in virtually all real world applications, they must be
presented in some aggregated form that involves a broadly perceived granulation of

1It is possible to start with a data similarity/distance matrix, if available, without an explicit charac-
terization of the data in terms of some attributes values, and such a setting also seems to provide a
reasonable context for the paradigm proposed in this paper, but we will leave this case for a possible
further study.
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data and information, and some summarization, both of a numerical and linguistic
character.

The problem of comprehensiveness of data analysis, data mining, machine learn-
ing, etc. results (patterns) had been known for some time, and it had been presum-
ably Michalski who already in the early 1980s devised the so called postulate of
comprehensibility whose essence can be summarized as (cf. [19]): “. . . The results
of computer induction should be symbolic descriptions of given entities, semanti-
cally and structurally similar to those a human expert might produce observing the
same entities. Components of these descriptions should be comprehensible as single
‘chunks’ of information, directly interpretable in natural language, and should relate
quantitative and qualitative concepts in an integrated fashion. . .”. Michalski’s vision
has had a great impact on machine learning, data mining, data analysis, etc. research,
and has been further developed by many authors, cf. Craven and Shavlik [5], Zhou
[29], Pryke and Beale [23], Fish, Gruber and Sick [10], to name just a few. A recent
study on the comprehensiveness of linguistic summaries by Kacprzyk and Zadrożny
[15] combines many ideas from those works, and recasts them in the context of a
very natural representation of results via natural language.

Most of the above mentioned works on the comprehensiveness of data analy-
sis/mining results emphasize as the main reasons for the importance of compre-
hensibility, cf. Kacprzyk and Zadrożny [15], to name a few: (1) To be confident in
the performance and usefulness of the algorithms, and to be willing to use them, the
users have to understand how the result is obtained and what it means, (2) The results
obtained should be novel and unexpected, in one sense or another, and these results
can only be accessible to the human if they are understandable, (3)Usually, the results
obtained may imply some action to be taken, and hence their comprehensiveness is
clearly crucial, (4) The results obtained may provide much insight into a potential
better feature representation which, to be meaningful, should be comprehensible, (5)
The results obtained can be employed for refining knowledge about a domain or field
in question, and the more comprehensible, the better.

As we will see, the reverse engineering type approach to clustering can be viewed
to be following at the conceptual level the above mentioned philosophy of attaining
comprehensiveness. First, the clustering process itself implies an increase of compre-
hensiveness of data as it produces per se representations of results that are closer to
human perception. Then, which is the essence of the approach proposed in this paper,
we go further and try to find those parameters of the clustering algorithm employed
that have led to the results obtained. That is, an extremely important additional
knowledge is derived about the algorithms, parameters, types of distance/similarity
functions, etc. This all is useful and greatly helps a potential user to understand
(comprehend) intrinsic relations between many aspects of the data analysis process.

Clearly, this paper is just a first step into a deeper comprehensiveness related
clustering analysis, for instance, following ideas proposed inKacprzyk and Zadrożny
[15]. The problem needs a further study which will be done in next papers.

We performed the experiments, meant to show the feasibility of the proposed idea
and the nature of results, on two data sets. One of them was the classic Fisher’s Iris
data set and the other one – an empirical data set measuring the numbers of vehicles
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passing by definite points on motorways, originating from Germany. In both these
cases it could be assumed that the prior partition was available, but possibly of a
different standing, what is discussed in Sect. 2.2.

The structure of the paper is the following. In the next section we formally define
the proposed concept of the reverse engineering type clustering and give some related
motivations. In Sect. 3 we briefly point out some related work. Section4 presents and
discusses the results of the computational experiments and, finally, we conclude by
pointing out possible directions of the further research.

2 The Concept of the Reverse Engineering in Clustering

2.1 The Concept

This paper presents a study, inwhichwe try to develop a reverse engineering type pro-
cedure of reconstructing a certain partition2 of a data set, X, X = {xi }i , i = 1, . . . , n,

into p subsets (clusters), Aq , q = 1, . . . , p. We assume that each object, indexed i ,
is characterized bym variables, so that xi = (xi1, . . . , xik, . . . , xim). Having the par-
tition PA = {Aq}q given in some definite manner, we now try to figure out details
of the clustering procedure which, when applied to X , could have produced the par-
tition PA or its possibly accurate approximation. That is, we search in the space of
configurations, spanned by

(i) the choice of the clustering algorithm, and characteristic parameters of the
respective algorithm(s);

(ii) the selection or other operations on the set of variables (e.g. subsetting, aggre-
gation), and

(iii) the definition of a similarity/distance measure between objects, used in the
algorithm.

The partition, resulting from applying the clustering procedure with a candidate
configuration of the above parameters is denoted PB and is composed of clusters
Bq′, q ′ = 1, . . . , p′, PB = {Bq′}q′. The search is performed by minimizing a certain
criterion, denoted Q(PA, PB). Thus, if we denote the set of parameters that is being
optimized in the search by Z (notwithstanding the potential differences in the actual
content of Z ), and space of values of these parameters by �, then we are looking in
� for a Z∗ that minimizes Q(PA, PB). Formally, we can treat Z as a transformation
of the data set X (a cluster operator) and thus denote the optimization problem for a
given data set X and its known partition PA as follows:

Z : X → P(X), Z(X) = P (1)

2The concept of a Reverse Cluster Analysis has been introduced by Ríos and Velásquez [25] in case
of the SOM based clustering but it is meant there in a rather different sense as associating original
data points with the nodes in the trained network.
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Z∗ = arg minZ∈�Q(PA, Z(X)) (2)

where P(X) denotes the set of all possible partitions of the data set X .
Notice that this optimization problem is in line with the reverse engineering par-

adigm. Because of the irregularity of circumstances of this search (the nature of the
search space and the values of the performance criterion), the solution of the opti-
mization problem defined above is a challenging task. In our experiments, presented
later on in the paper, this is performed with the use of evolutionary algorithms.

In order to bring the problem formulated here closer to some real life situation,
let us consider the following example: assume a secondhand car dealer disposes of
a set of data on (potential) customers, who visit the website of the dealer, call this
set Y , and the set of data on those, who actually bought a car, the set X . Naturally,
the set X is much smaller than Y (it may constitute, say, less than 1% of Y ). In this
case, PA might be based on the makes and/or types of cars purchased (data set X).
The dealer might wish to identify the partition of X , disregarding the labeling by car
makes/types, that approximates possibly well PA. The obvious objective would be
to identify the “classes” of (potential) customers, at whom it would be effective to
address the promotional offers or just information, regarding definite makes/types
of cars. Upon finding the Z∗ that produces PB that is the closest to PA, one might
hope that by applying Z∗ to Y it would be possible to define the classes of the
(potential) customers, at whom appropriate offers could be addressed during their
search through the website. These classes would form the partition Z∗(Y ).

2.2 Some Interpretations

The idea of the proposed paradigm can be understood in a variety of manners. In a
way, it reminds of identifying the best classifier, expressed in this case through Z∗.
Namely, the current setting may be seen as typical for the supervised learning in that
a known a priori grouping PA is the starting point. However, we are not interested
here in a further classification of incoming data points but in the understanding of the
process through which the grouping PA emerged. This is strongly related to the issue
of comprehensibility. On the other hand, Z∗ may be indeed interpreted as a part of
an interesting, though usually utterly inefficient, classification scheme. Namely, in
general, the classification would be carried out for the subsequent xi , i = n + 1, . . . ,
in such a way that:

PB = Z∗(X ∪ {xi }) (3)

would be computedwhichwould place xi in one of the clusters of PB . An unorthodox
character of such a classification scheme consists in that the partition PB may be, in
general, different from PA. This will be especially true when we consider the batch
classification, i.e., when {xi } in (3) is replaced with a whole set of data points to be
classified simultaneously, like in the example, described at the end of the preceding
section.
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The classification scheme sketched above may be formally written down as:

P(X) → � → P(X′), X ⊆ X′ (4)

and would be usually prohibitively expensive from the computational point of view.
However, in some cases an excessive cost may be avoided. As pointed out by
Miyamoto [20], in case of some clustering algorithms, referred to as inductive clus-
tering techniques, appropriate classification rules R may be derived based on the
partition those algorithms yield, so that a direct classification of a new data point xi
using the rule R yields exactly the same result as by starting over the whole clustering
procedure for the data set X enlarged with xi , i.e.,:

Z∗(X ∪ {xi })[xi ] = R(P, xi ) (5)

where P[xi ] denotes a cluster to which xi belongs in the partition P (here P =
Z∗(X ∪ {xi }), i.e., a partition resulting from the application of the “classifier” (clus-
tering configuration) Z∗ to the enlarged data set X), and

R : � × X → 2X (6)

denotes a rule which for a given partition P (here� is equated with the set of all
partitions of the set X) and a data point xi yields a cluster of P to which xi should
be assigned.

Thus, if Z∗ obtained in our reverse engineering process (2) for PA refers to an
inductive clustering technique (e.g., belonging to the family of k-means algorithms),
then new data points can be directly classified to one of the clusters of PA (in this case
using the 1-nn classification technique with respect to the centroids of the clusters of
PA) with the same effect which would result from going through the classification
scheme (4).

A different view of the applicability of our approach is the following one: based
on a given partition PA of a set X we want to derive a clustering scheme which then
may be justified to be applied to a whole family of sets {X j } of which X is just an
exemplary member. It may be understood:

• more narrowly, i.e. as if a given Z∗ (rather than PB), obtained for the assumed �,
or

• more broadly, if i.e. as the entire procedure, leading from some PA through choices,
related to � and Z, down to PB = Z(X),

were a specific kind of classification, namely when we intend to group, or partition,
much bigger sets of data than X , underlying PA and PB . Under such circumstances:

(a) we do not expect an absolute or ideal accuracy of results over large data
sets but we wish to preserve the essential character of the prior partition
(or “distribution”) PA, and

(b) we would like to check (and preserve) the validity of the Z∗ for various, even
apparently similar PA’s.



Using a Reverse Engineering Type Paradigm in Clustering … 143

Another important aspect of the approach considered consists in the status of the
prior partition PA. Two issues are essential here:

(I) where does this partition come from (what is its relation to the data set X)?
(II) what is the degree of certainty of this prior partition (degree of our belief in its

validity)?

Depending upon the answers to these questions, we deal with entirely different
cases, or tasks, even if the methodologies applied may remain the same. An extreme,
“absolute” case takes place when

A. with respect to (I) above: the partitioning PA has been imposed on the data set
X irrespectively of the values of the particular attributes,3 , i.e., PA has (at least
apparently) nothing to do with the attributes of the data set X (i.e. either it is
simply given, and we do not know anything about the relation between PA and
the attributes k = 1, . . . ,m, or we know that the division has been performed on
the basis of the attribute(s) not accounted for in X ), and, at the same time

B. with respect to (II) above: the partition is fully certain and we are therefore fully
convinced of its validity – it is the only correct partition of X in a given context.

This extreme case should be softened to account for the partitions,which are produced
by experts, so it may be assumed that:

C. with respect to (I) above: they take into account, even if implicitly, the actual
data from X , and

D. with respect to (II) above: their opinions can be put to doubt, or at least under
discussion. Thereby, we come to the situation in which PB may give rise to a
feedback, enriching our knowledge that has led to PA.4

Thus, in the scenario when A and D are true, i.e., a given partition PA is somehow
transcendent with respect to the set of attributes characterizing X and, at the same
time, we are not fully convinced in its validity, we would be interested if it is pos-
sible to recover partition PA using some Z∗ but we should expect that the best PB

obtained may be quite different from PA. Moreover, we can think of PB as a legit-
imate replacement for PA, which may be therefore treated just as the starting point
for getting to a “real” partition of X .

In another scenario, when B and C are true, i.e., whenwe treat the partition PA as a
valid one and at the same timewe know that it has been established with the reference
to the actual values of the attributes characterizing the data set X , we will be more
concerned with recovering exactly PA and the benefits from carrying out the reverse
engineering procedure would be primarily related to getting a better insight into the
very meaning of the particular attributes and their role in justifying the real/valid

3Possibly except for an identifier attribute, whichmakes it possible to distinguish particular elements
of X .
4Actually, even in the “absolute” case, doubts may arise, if the situation resembles the one of
multiple overlapping distributions, i.e. although PA is well established and “certain”, it is hardly
reflected in the data, represented by X , so that many objects xi might be equally well assigned to
different clusters.
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partition PA; this all has a clear relation to the issue of comprehensibility mentioned
above.

The above can well be illustrated in terms of the example, described at the end
of Sect. 2.1. Thus, although we know that labeling by car makes/types is “certain”,
this might not be true of the actually imposed partition PA, which, in addition, is
definitely associated with the customer data in X . Hence, the iterative procedure,
involving consecutively obtained partitions PB , and corresponding configurations
Z∗, might be treated as a learning procedure of finding the best match between the
customer data and the cars purchased.

3 Related Work

The idea of a reverse engineering type clustering as presented in Sect. 2 is obviously
novel. However, the procedure, formally represented by (2), may be seen as referring
to many facets which are individually addressed in the literature by multiple authors
in various contexts and settings. Let us briefly remind the main aspects which are
relevant for our considerations.

The choice of the attributes has been thoroughly studied, in particular, in the
context of the classification [13], but also in the area of more broadly meant data
analysis. Many different approaches have been proposed, which are applicable for
our purposes. Some of them take into account the information on classes, to which
elements of X are assigned, some not. In our case, both modes are possible as we
start with a partition which may be interpreted as the classification. The choice of an
appropriate family of techniques may be based on the aspects discussed at the end
of Sect. 2.2. Namely, if the partition PA is to be seen as the valid one, then taking
into account the information on class assignments is more justified than in the other
cases. In our experiments, reported in the next section, we associate weights with
the attributes and the values of the weights are optimized during the evolutionary
procedure. This may effectively lead to completely ignoring some of the attributes
characterizing the data set X . Notice that the choice of attributes has also been
discussed in the literature on the comprehensibility of data analysis, data mining,
machine learning, etc. results, and Craven and Shavlik [5] may be here a good source
of information.

Another important decision concerns the choice of the distances/similarities from
among the plethora of those proposed in the literature [6]. This choice has, of course,
to take into account the scale with which a given attribute is endowed, i.e., nominal,
ordinal, interval or ratio. For the latter type of attributes it may be convenient to
assume a parametrized family of distances, e.g., Minkowski distance, what makes
simpler the representation for the purposes of an evolutionary optimization. One can
even go further, using a fuller survey of similarity/dissimilarity measures presented
in Choi, Cha and Tappert [4], in which those measures are classified into classes, and
a similar reverse type analysis is performed. This will not be, however, considered
in this paper and be left for a further study.
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The essence of the problem of the reverse engineering clustering formulation
as meant in this paper is the formulation and solution of the optimization problem
defined in (2). Its important component is the performance criterion denoted as Q
which usually will be identified with a measure of the fit between two partitions.
In particular, we will often interpret Q in such a way that it should measure how
well the partition PB , produced using Z∗, matches the originally given partition PA.
Such measures belong to a broader family of the cluster validity measures, which
are meant to evaluate the quality of the partition produced by a clustering algorithm;
cf., e.g., Halkidi et al. [12], Arbelaitz et al. [1]. According to Brun et al. [2] three
broad classes of such measures may be distinguished which not necessarily refer
to a golden standard partition, in our case denoted as PA. The first class comprises
internal measures which are based on the properties of the clusters produced. The
second class of the relativemeasures “is based on comparisons of partitions generated
by the same algorithm with different parameters or different subsets of the data” (cf.
[2]). And finally, the third class comprises the external measures referring to the
comparison of partitions produced by the algorithm and a partition known a priori to
be a valid one. As our primary goal is the reconstruction of a cluster operator which
could have produced a given partition PA for a given data set X , then we are first of
all interested in the usage of the external validity measures (cf. the next section and
the use of the Rand validity measure therein). However, it should be stressed that in
different scenarios, discussed in Sect. 2, also other types of measures may be of use.
In particular, if our belief in the validity of a given partition PA is not full, then we
can define the quality criterion as a combination of an external and internal one, for
instance, looking for PB which provides a balance between the matching of PA and
having a high quality (e.g., internal consistency) in terms of one or more internal
measures.

Another parameter of the clustering procedure whose choice attracted a lot of
attention in the literature is the fixed number of clusters assumed, e.g., for the
k-means family of clustering algorithms. The choice of the value for this parameter
has evidently a far reaching influence on the obtained partition while it may seem
rather arbitrary. Thus, a number of approaches has been proposed which usually base
on the earlier mentioned validity measures. Namely, the optimal number of clusters
is recognized as the number for which a given validity measure attains its extremum
or satisfies some specific formula (Charrad et al. [3]). In our general approach, the
actual number of clusters present in the partition PA is a natural candidate for the
value of this parameter. However, such a choice may be questioned when taking into
account the assumption (A) mentioned earlier or considering the reverse engineering
of PA to obtain Z∗ as a first step towards partitioning other, possibly much larger,
datasets using Z∗.

An example of a software package which combines all the above mentioned
main aspects and, thus, is very relevant for our idea of the reverse engineering type
clustering, is the NbClust package [3] available on the R platform. It is primarily
oriented at supporting the choice of the number of clusters. However, this package
actually implements a number of:
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• clustering algorithms,
• cluster validity indexes (measures), and
• distance measures (dissimilarity measures)

and makes it possible to use them in various configurations, together with a varying
number of clusters, where appropriate, to search for the “best” one for a given data
set. The configuration is pointed out as the best when the majority of the validity
measures involved confirm its superiority. Thus, the NbClust package may be seen as
a valuable and extremely relevant tool to carry out the endeavor laid out in this paper.
However, our proposal provides a broader framework for the emerging type of data
analysis and makes it possible to envision some interesting directions for the further
research. Moreover, it adds to the analysis an important aspect of comprehensibility
of results obtained.

4 The Experiments

4.1 The General Outline

On the algorithmic side, the experiments we have performed and report here made
use of the classical clustering techniques, including:

1. k-means,
2. the DBSCAN algorithm, and
3. the progressive merger procedures.

These were parameterized along the following lines:

1. k-means by the number of clusters assumed,
2. DBSCAN by the proximity and neighbor number parameters, and
3. the progressive merger procedures – by the coefficients of the Lance–Williams

formula [17].

Furthermore, concerning the variables, either a possibility of choice among them
was introduced (actually, weighting schemes were used with the aim of potentially
eliminating some variables), or some aggregations were defined. The distances were
parameterized by the exponent in the Minkowski distance definition.

We also employed two different setups for the evolutionary algorithm, serving to
search through � to find Z∗, one entirely developed by one of the authors, another
one originating from the R library. The fitting function used for guiding the search
was either based on:
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Fig. 1 Average hourly
profiles of traffic for the
classes of weekdays

• the number of incorrectly classified objects, or
• the basic Rand index [14], relying on the counting of pairs of objects being in the
same and in different clusters in the two partitions compared:

QR = 2(r + s)/(n(n − 1)),

where r is the number of pairs of objects of X which are in the same cluster in
both partitions, and s is the number of pairs of objects of X which are in different
clusters in both partitions compared. Since the expected value of this criterion for
the randomly generated partitions is not zero, an adjusted form, taking into account
the bias of expectation, provided by Hubert and Arabie [14], is also used. In actual
computations, the Rand-based indices were complemented with the weighted sum
of the parameters involved in Z , so as to balance the importance of the two aspects.

As said, the experiments that we report here involve two data sets (Iris and vehicle
traffic). In the case of the Iris data, the status of PA appears to be relatively close to
the “absolute” one, mentioned before, although definite doubts may also arise in this
case. In the case of the traffic data, which represent the numbers of vehicles passing in
consecutive hours of the 24-h cycle, the partition PA is based on the classification of
the days of theweek, holidays etc., and reflects the expert’s opinion on how these days
ought to be treated. This case is illustrated in Fig. 1. In this case a single observation
or object is, therefore, a vector of the numbers of vehicles passing a given point on
the road during a given day, at subsequent hours (24 numbers), plus the label of the
day of the week.

We have performed two series of experiments, using various choices in these two
series. The subsequent two sections summarize the results from these two series of
experiments.

4.2 Experiment Series 1

In this series the following assumptions have been made: the algorithms used have
been from the k-means and hierarchical agglomeration families. Their implemen-
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tation in the R package “cluster” by Maechler et al. [18], based on Kaufman and
Rousseeuw [16], has been employed.

The “pam” (partitioning around medoids) method is a variant of the k-means with
the number of clusters, “k” (p in our notation) as the sole parameter. The algorithm
“agnes” (agglomerative nesting) is a hierarchical clustering method, parameterized
by the number of clusters, p, and a scalar a. The latter is used to obtain coefficients of
the Lance–Williams [16] formula in a highly simplifiedmanner, as a = a1 = a2, b =
1 − 2a, and c = 0, where the original formula is given as

d({Ci ,C j },Cl ) = a1d(Ci ,Cl ) + a2d(C j ,Cl ) + bd(Ci ,C j ) + c|d(Ci ,Cl ) − d(C j ,Cl )|.

where d(Ci ,C j ) denotes the distance between two clusters Ci and C j , and {Ci ,C j }
denotes a cluster resulting from the merging of two clusters Ci and C j , respectively.

The distances between the data points xi , x j ∈ X has been defined as weighted
Minkowski distances, i.e.

d(xi , x j ) =
(∑

k
wk |xik − x jk |v

)1/v
,

where wk are the weights assigned to the variables, which can also assume the value
of 0. In this manner, both the vector {wk}k , and the exponent v could be treated
as parameters, defining the space �, along with the coefficients of the clustering
algorithms.

To solve the optimization problem we used the Differential Evolution (DE) [27]
metaheuristic, which is an evolutionary global optimization algorithm, and its imple-
mentation in the “DEoptim” R package by Mullen et al. [22]. DE is a state-of-the-art
real-parameter global optimizer whose various modifications and applications are
surveyed in Das and Suganthan [7].

Chromosomes are represented as vectors of real numbers Z = (π, a, v,
w1, . . . ,wn) ∈ �. After rounding, the first parameter represents the number of clus-
ters p = round(π), the second is a parameter a of the Lance–Williams formula (which
is not used in the k-means algorithm), the third is an exponent v of the Minkowski
distance, and the next are weights w1, . . . ,wn of the variables. The search space �

was defined by constraining the possible values of individual elements to: p ∈ [1,
10], a ∈ [0, 1], v ∈ [0.1, 4], and wi ∈ [0, 1].

Thedistinctive feature ofDE is thedifferentialmutationoperatorwhichboils down
to the addition of a scaled difference between two randomly chosen individuals Z2

and Z3 to a third randomly picked vector Z1

Z ′ = Z1 + F · (Z2 − Z3)

where F is a scalar parameter known as the scaling factor, typically F ∈ [0.4, 1).
By assuming that the creation of new individuals is based on differences between
population members, we arrive at the adaptation of the search direction to the local
shape of the objective function.
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Table 1 Summary of results for the first series of experiments

Data Algorithm Optimized
parameters (Z)

Adjusted Rand
index

Rand index

Iris pam p, v,w1, . . . ,w4 0.758 0.892
p 0.730 0.880

agnes p, a,w1, . . . ,w4 0.922 0.966
p, a 0.759 0.892

Traffic pam p, v,w1, . . . ,w24 0.600 0.821

p 0.581 0.823
agnes p, a,w1, . . . ,w24 0.654 0.850

p, a 0.625 0.837

For each dataset and algorithm we have run the DE algorithm for 1000 iterations.
In Table1 we provide the values of the best Rand index and its adjusted variant
obtained. In the reference cases only the optimal values of the basic parameters of
algorithms (i.e. p and a) were sought for. In the test case we have also optimized the
exponent v from the Minkowski measure and the vector of weights of the attributes.

In all cases the optimization of the whole configuration Z of the clustering pro-
cedure leads to better results. Sometimes the difference is significant. We have also
observed that the hierarchical clustering allows for a more accurate reconstruction
of the reference partitions in our datasets than the k-means (in the form of “pam”).

The optimized value of the exponent v was varied over the range from 0.8 to 2.3
which confirms that the whole family of these measures is useful, despite the loss of
formal properties for the values of v below 1. This is in agreement with the recent
paper by De Amorim [8], in which feature rescaling with the use of Lp norm proves
useful for the hierarchical clustering.

The regularization with the L1 norm resulted in the attribute selection of weights
in the traffic dataset which has implied some of them to be zero.

Table2 provides highly interesting results for the traffic data dealt with using the
full Z and choosing the “agnes” algorithm.

Thus, this result, to a large extent induced by the conditions of computation, rather
than a “natural” tendency of themethod, shows that perhaps the expert’s opinion as to
the original classes, ought to be verified (Monday profiles being classified along with
those for Tuesday, Wednesday and Thursday). This result is shown in Fig. 2 where,
indeed, the hourly traffic distribution on Mondays is not different from distributions
for other weekdays except for Friday. This is exactly the instance of the potential
feedback we mentioned before.

Cluster 2 is visualized in Fig. 2 as subplot (e). In this case, apart from the typ-
ical morning and afternoon peaks we observe a very high traffic intensity late in
the night. The days for which such unusual phenomenon is observed are scattered
throughout the year and represent different days of the week. This could be an effect
of measurement errors and will undergo additional plausibility checks.
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Table 2 Results for traffic data for the entire vector of parameters Z , with the use of hierarchical
aggregation (values of Rand index = 0.850, of adjusted Rand = 0.654). The upper part of the table
shows the coincidence of patterns in particular Aq , based on the days of the week, and obtained Bq

Days of the week Clusters obtained

1 2 3 4 5

Friday 1 2 42 0 3

Monday 45 2 0 0 2

Saturday 0 1 0 46 1

Sunday 0 1 0 1 47

Tu-We-Th 140 3 0 0 4

Parameters

p 5 w1 through w24 – weights of variables, corresponding to the

consecutive hours of the day

a 0.78

v 0.91

w1–w6 0.47 0.45 0.62 0.17 0.48 0.84

w7–w12 1.00 0 0.90 0.58 0.83 0.33

w13–w18 0.07 0.09 0.48 0 0 0.96

w19–w24 0.30 0.43 0.79 0.53 0.25 0.90

In case of the traffic intensity data anomalies are typically detected through the
assessment of specially trained operators. The ability to approximate their partitions
bymeans of an appropriately tuned clustering algorithmmakes it possible to automate
this procedure. The anomaly detection differs from the classification because the
training samples consist nearly entirely of typical observations. Moreover, a new
observation can be anomalous in a great variety of ways. This case represents a
one-class learning problem consisting of identifying whether a given observation is
typical rather than distinguishing between different classes.

4.3 Experiment Series 2

In this series three kinds of clustering algorithms have been used: DBSCAN, the
k-means, and the progressive merger. The evolutionary algorithm used has been
developed by one of the present authors [26].

The use of specialized genetic operators requires the application of a selection
method to execute them in all iterations of the algorithm. The traditional method with
a small probability ofmutation and a high probability of crossover is not applicable in
this case because the number of operators is greater than 2 and their properties cannot
be easily described as the exploration or exploitation. In the approach used here
[26] it is assumed that an operator that generates good results should have a higher
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Fig. 2 Interpretation of clusters described in Table2

probability of execution andmore frequently affect the population.But it is very likely
that the operator, proper for one individual, would give worse effects for another one,
for instance because of its location in the domain of possible solutions. Thus, each
individual may have its own preferences. So, each individual has a vector of floating
point numbers in addition to the encoded solution. Each number corresponds to one
genetic operation. It is a measure of quality of the genetic operator (a quality factor).
The higher the factor, the higher the probability of using the operator. The ranking of
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qualities becomes a base to compute the probabilities of appearance and execution of
the genetic operators. The simple normalization of the vector of quality coefficients
turns it into a vector of operators’ execution probabilities. This set of probabilities
can be treated as a base of experience of each individual and according to it, an
operator is chosen in each epoch of the algorithm. Due to the experience gathered
one can maximize the chances of its offspring to survive.

The essential criterion used was simply the number of “misclassified” objects
for a given data set, i.e. with respect to the prior PA. Because of this difference,
and also because of different evolutionary strategies, as well as parameter vectors Z ,
somewhat different results have been obtained (although, like in series 1, all variables
have been explicitly weighted, and the distance exponent has varied as well). For
clarity, we will characterize these result below in a more general terms.

The results obtained with DBSCAN, parameterized with the number of neighbors
and the maximum distance, have been the poorest, namely not less than 12 misclas-
sified objects in the Iris case, out of the total of 150, depending upon the settings of
the evolutionary algorithm, and not less than 104 misclassified objects in the traffic
case, out of the total of 341.

For the classical k-means, the results, with respect to the criterion assumed, but
also quite intuitively, have been much better: three clusters and only 4 objects mis-
classified for the Iris data, and 60 misclassified objects for the traffic data – but with
the “optimum” number of clusters equal 8! One can compare these results with 64
misclassified objects, shown in Table2 for series 1, when the “proper” number of
clusters, i.e. 5, was actually forced.

In the case of the hierarchical merger procedures the difference with series 1
has additionally boiled down to the complete parameterization of the procedure,
according to the Lance–Williams formula (five coefficients). The results obtained
have been comparable with those for the k-means in terms of their “quality”: only 2
misclassified objects for the Iris data (three clusters), and 64 for the traffic data (with
5 clusters as the “optimum” number).

4.4 Computational Aspects

An effort oriented towards the rationalization of the computational aspect was explic-
itly made only in series 2 of experiments. This effort has consisted in trying out
various comparison strategies, variants of representations, etc. All in all, the results,
shortly characterised here, have been obtained using a modest workstation equip-
ment,5 without any parallelization, although in both series the search often has taken
a long time (in days). In the case of series 2 most of the respective calculations have
not been actually terminated in the strict sense, even though the changes in the last
iterations performed have not shown any significant changes.

5Series 2: PC class 4-core processor station, 3.2 GHz, under 64 bit Linux Fedora 17; simulation
software written in C and compiled with g++.
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Thus, it appears obvious that in the case of larger prior data sets some specially
devised schemes have to be applied, including also parallelization, and even some
massively parallel computational paradigms. Yet, if the results of the nature exempli-
fied here turned out sufficient for our purposes, even the relatively modest equipment
similar to that used here, might be adequate.

5 Conclusions

The study performed demonstrated, first of all, the computational feasibility of the
proposed reverse engineering type clustering approach. Then, the results themselves
turned out to be both promising in terms of their accuracy, and in the possibility of
drawing meaningful substantive conclusions, notably as shown, for instance, for the
case of traffic data in series 1 of experiments.

There are several directions, in which our further work could be done. One of them
is related to the exploration of the space� in terms of the dependence of results on its
particular dimensions. Thus, for instance, Table3 shows the values of the exponent
v obtained for various experiments. It can be easily seen that these values vary a lot,
even if some of them “cluster” within a definite segment. Thus, experiments have
to be designed in order to explicitly check the sensitivity of partitions obtained and
their quality Q with respect to changes in the particular variables, entering Z . At the
same time, the results obtained with this respect seem to imply that taking a relatively
broad interval of feasible values of v could be justified.

Another direction would consist in the explicit inclusion of the feedback loop,
mentioned already here. In case the PB indicates a definite manner of partitioning the
set X that distinctly differs in some aspect(s) from PA though the questionmight arise
of how to reformulate PA along appropriate lines, and to check whether an iterative
procedure converges (quickly) to some terminal, but also meaningful, partition P∗.

A pragmatic direction of work would lead to the design of such schemes of a
reverse engineering type clustering which are possibly most efficient numerically,

Table 3 The values of the exponent v determined in a sample of experiments

Experiment Series 1,
pam

Series 1,
agnes

Series 2,
DBSCAN1

Series 2,
DBSCAN2

Series 2,
DBSCAN3

Series 2,
k-means

Iris data 1.02 2.98 1.88 3.94 2.11 3.17

Traffic data 1.35 0.91 1.72 0.70 1.03 2.08

Experiment Series 2,
aglom1

Series 2, aglom2

Iris data 1.88 2.93

Traffic data 1.58 1.58

DBSCAN1, DBSCAN2, DBSCAN3 and aglom1, aglom2 denote, respectively, experiments differ-
ing by some aspects, especially related to the calculation of the quality criterion
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and can be used for bigger data sets to obtain Z∗, and then to effectively cluster yet
bigger data sets with Z∗.

From the point of view of implementability and usefulness of our results to a
larger group of users who are the target group in virtually all nontrivial real world
applications, that is, novice users or domain expertswith a limited commandof formal
and computational data analysis, data mining, clustering, etc. tools and techniques,
a very important area of future research will certainly be related to an increase of
comprehensibility. This would help those users better understand the very relations
between sets of data, clustering methods and their parameters, distance/similarity
functions employed, etc. and in such a way make the users more convinced in the
operation of the tools and techniques and what they can provide, and then persuaded
them to use them in practice.
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15. Kacprzyk, J., Zadrożny, S. (2013)Comprehensiveness ofLinguisticData Summaries:ACrucial
Role of Protoforms. In: Christian Moewes and Andreas Nürnberger (Eds.): Computational
Intelligence in Intelligent Data Analysis. Springer-Verlag, Berlin, Heidelberg, 207–221.

16. Kaufman, L., Rousseeuw, P.J. (1990) Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, New York.

17. Lance, G.N.,Williams. W.T. (1966) A General Theory of Classificatory Sorting Strategies. 1.
Hierarchical systems. Computer Journal, 9, 373–380.

18. Maechler,Martin, et al. (2015) “cluster: cluster analysis extended Rousseeuw et al.”R package,
version 2.0.3.

19. Michalski, R. (1983) A theory and methodology of inductive learning. Artificial Intelligence:
20(2), 111–161.

20. Miyamoto, S. (2014) Classification Rules in Methods of Clustering (featured article). IEEE
Intelligent Informatics Bulletin, 15(1), 15–21.

21. Miyamoto, S., Ichihashi, H., Honda, K. (2008) Algorithms for Fuzzy Clustering: Methods in c-
Means Clustering with Applications. Springer-Verlag, Berlin Heidelberg, Studies in Fuzziness
and Soft Computing 229.

22. Mullen, K.M, Ardia, D., Gil, D., Windover, D., Cline, J. (2011) DEoptim: An R Package for
Global Optimization by Differential Evolution. Journal of Statistical Software, 40(6), 1–26.

23. Pryke, A., Beale, R. (2004) Interactive Comprehensible Data Mining. In: Y. Cai (ed.): Ambient
Intelligence for Scientific Discovery, Springer, LNCS 3345, 48–65.

24. R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

25. Ríos, S.A., Velásquez J.D. (2011) Finding Representative Web Pages Based on a SOM and a
Reverse Cluster Analysis. International Journal on Artificial Intelligence Tools 20(1) 93–118.
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On Hesitant Fuzzy Clustering and Clustering
of Hesitant Fuzzy Data

Laya Aliahmadipour, Vicenç Torra and Esfandiar Eslami

Abstract Since the notion of hesitant fuzzy set was introduced, some clustering
algorithms have been proposed to cluster hesitant fuzzy data. Beside of hesitation in
data, there is some hesitation in the clustering (classification) of a crisp data set. This
hesitation may be arise in the selection process of a suitable clustering (classifica-
tion) algorithm and initial parametrization of a clustering (classification) algorithm.
Hesitant fuzzy set theory is a suitable tool to deal with this kind of problems. In this
study, we introduce two different points of view to apply hesitant fuzzy sets in the
data mining tasks, specially in the clustering algorithms.

Keywords Hesitant fuzzy sets · Data mining · Clustering algorithm · Fuzzy
clustering

1 Introduction

Clustering and classification are important tasks in data mining. Clustering methods
divide a data set into different clusters such that elements of the same cluster are as
similar as possible and elements of different clusters are as dissimilar as possible.
Clustering algorithms classify the data into k partitions, which together satisfy the
following requirements: (1) each partition must contain at least one object, and (2)
each object must belong to exactly one partition. Notice that the second requirement
can be ignored in some fuzzy clustering techniques.
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In general, based on [1] the major clustering methods for crisp data can be clas-
sified into the following categories: Partitioning methods such as K -means [2] and
K -medoids [3], Hierarchical methods such as AGNES (AGglomerative NESting)
and DIANA (DIvisive ANAlysis) [3], Density-based methods, such as DBSCAN and
OPTICS [4], Grid-based methods such as STING [5] and Model-based methods such
as SOM and EM [6, 7]. The choice of a clustering algorithm depends both on the type
of available data and on the particular purpose of the application.

Since fuzzy set theory was introduced [8], this issue has been much consid-
ered in data mining methods such as classification [9] and clustering [10]. Later,
K.T. Atanassov introduced the notion of intuitionistic fuzzy set (A-IFS) [11] as a
generalization of fuzzy set. A-IFS is characterized by a membership function and a
non-membership function. Recently, in order to consider the importance of hesitation
and uncertainty in the nature of some problems, a new extension of fuzzy set was
introduced. It is hesitant fuzzy set (HFS) [12]. It was introduced to deal with hesitant
situations which were not well managed by the previous tools. A HFS is defined in
terms of a function that returns a set of membership values for each element in the
domain.

Fuzzy sets, intuitionistic fuzzy sets and hesitant fuzzy sets can be applied in the
clustering tasks from two points of view:

1. Consider uncertain data and, in particular, fuzzy data (FD) [13], intuitionistic
fuzzy data (IFD) [14] and hesitant fuzzy data (HFD) [15].

2. Consider crisp data set but uncertain clusters and, in particular, fuzzy partition
(FP) [16], intuitionistic fuzzy partition (IFP) [17, 18] and hesitant fuzzy partition
(HFP) [19].

Figure1 illustrates these two perspectives. In the following sections we focus on
hesitant fuzzy clustering algorithms and review the algorithms proposed in the lit-
erature from both points of view. First, Sect. 2 presents some basic definitions and
descriptions we need later. Section3 reviews some clustering algorithms for hesitant
fuzzy data. Section4 introduces hesitant fuzzy clustering algorithms on crisp data
sets. Finally, we summarize the results and give some ideas for future work.

2 Preliminaries

In this section, we present some basic concepts related to hesitant fuzzy clustering
algorithms.

2.1 Hesitant Fuzzy Sets

The membership degree of a HFS is represented by several possible values in [0, 1].
The definition is as follows:
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Fig. 1 The classification of fuzzy and clustering methods

Definition 1 ([12]) Let X be a fixed set and P(U ) be the power set of U , then a
hesitant fuzzy set (HFS) on X in terms of a function h is such that when applied to X
returns a subset of [0, 1], i.e., h : X → P([0, 1]).

We use the term typical HFS [20] when the subsets h(x) are finite. Furthermore,
given a set of fuzzy sets, a HFS can be defined in accordance with the union of their
memberships as follows:

Definition 2 ([12]) Let M = {μ1,μ2, . . . ,μn} be a set of n membership functions
on a reference set X . The HFS associated with M , hM is defined as:

hM(x) =
⋃

μ∈M
{μ(x)} for all x ∈ X

Xia and Xu [21] called h(x) a hesitant fuzzy element (HFE). A hesitant fuzzy
element (HFE) is a set of values in [0, 1], and a HFS is a set of HFEs, for each x ∈ X .

Definition 3 ([12]) Given a HFE, h, we define the intuitionistic fuzzy value (IFV)

Aenv(h) as the envelope of h, where Aenv(h) can be represented as (h−, 1 − h+),
with h− = inf{γ|γ ∈ h} and h+ = sup{γ|γ ∈ h}.

Based on the relationship between the HFEs and IFVs, Xia and Xu in [21] defined
some new operations on the HFEs. Let h, h1 and h2 be HFEs and λ be a real number
then,

• hλ = ∪γ∈h{γλ},
• λ h = ∪γ∈h{1 − (1 − γ)λ},
• h1 ⊕ h2 = ∪γ1∈h1,γ2∈h2{γ1 + γ2 − γ1γ2},
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• h1 ⊗ h2 = ∪γ1∈h1,γ2∈h2{γ1γ2},
• hc = ∪γ∈h{1 − γ},
• h1 ∪ h2 = ∪γ1∈h1,γ2∈h2 max {γ1, γ2} ,
• h1 ∩ h2 = ∪γ1∈h1,γ2∈h2 min {γ1, γ2}.
Here, we recall some concepts involved in hesitant fuzzy sets which will be used in
the present work. They are distance measures, aggregation operators and correlation
coefficients.

2.2 Hesitant Fuzzy Distance Measure

Recall that for any two objects A1, A2 in a reference set X , a distance is a mapping,
d : X × X → R. d(A1, A2) is the distance between A1 and A2 when,

1. 0 ≤ d(A1, A2) ≤ 1,
2. d(A1, A2) = 0 if and only if A1 = A2,
3. d(A1, A2) = d(A2, A1).

Let A1 and A2 be two HFSs on X = {x1, . . . , xn}, some examples of distances
used on HFSs in clustering problems follow.

1. Hesitant normalized Hamming distance [22]:

d1 (A1, A2) = 1

n

n∑

i=1

⎡

⎣ 1

lxi

lxi∑

j=1

|hσ( j)
A1

(xi ) − hσ( j)
A2

(xi )|
⎤

⎦ (1)

2. Hesitant normalized Euclidean distance [22]:

d2 (A1, A2) =
⎡

⎣1

n

n∑

i=1

⎛

⎝ 1

lxi

lxi∑

j=1

|hσ( j)
A1

(xi ) − hσ( j)
A2

(xi )|2
⎞

⎠

⎤

⎦

1
2

(2)

where hσ( j)
A1

(xi ) and hσ( j)
A2

(xi ) are the j th largest values in hA1(xi ) and hA2(xi ),
respectively, which will be used thereafter. In most cases, lhA1

(xi ) 	= lhA2
(xi ), and

for convenience, let lxi = max{lhA1
(xi ), lhA2

(xi )} for each xi in X being lhA1
(xi )

and lhA2
(xi ) the number of values hA1(xi ) and hA2(xi ). To operate correctly, we

should extend the hesitant fuzzy set with the lesser number of values until both
of them have the same length when we compare them. To extend the shorter
one, we can extend it by adding any value in it, which mainly depends on the
user preferences. We can add maximum value (as optimist), minimum value
(as pessimist) or the average value of the existed memberships. All these are
determined based on the appropriate score and accuracy function. Also Xu and
Xia in [22] further extended the above distancemeasures anddefined a generalized
hesitant normalized distance as follows:
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3. Generalized hesitant normalized distance:

d3 (A1, A2) =
⎡

⎣ 1

n

n∑

i=1

⎛

⎝ 1

lxi

lxi∑

j=1

|hσ( j)
A1

(xi ) − hσ( j)
A2

(xi )|λ
⎞

⎠

⎤

⎦

1
λ

(3)

where λ > 0. It is noted that the parameter λ provides the decision makers more
choices and can be assigned different values according to different decision makers.
Several novel distance and similarity measures between hesitant fuzzy sets (HFSs)
are developed, in which both the values and the numbers of values of HFE are taken
into account.

2.3 Hesitant Fuzzy Aggregation Operators

Xia and Xu presented in [21] some aggregation operators, such as hesitant fuzzy
weighted averaging and hesitant fuzzy weighted geometric which are defined as
follows. Other aggregation operators for HFS can be found in [23].

Definition 4 ([21]) Let h1, h2, . . . , hn be a collection of HFEs the hesitant fuzzy
weighted averaging (HFWA) operator is defined by

HFW A(h1, . . . , hn) = ⊕n
i=1(wi hi ), (4)

wherew = (w1, . . . , wn)
T is a weighting vector (i.e.,wi ∈ [0, 1] and∑n

i=1 wi = 1).
In case of w = (1/n, . . . , 1/n)T , then the (HFWA) operator reduces to the hesitant
fuzzy averaging (HFA) operator:

HFA(h1, . . . , hn) = ⊕n
i=1

(
1

n
hi

)

=
⋃

γ1∈h1,...,γn∈hn

{
1 −

n∏

i=1

(1 − γi )
1
n }. (5)

Definition 5 Let hi (i = 1, . . . , n) be a collection of HFEs,w = (w1, . . . , wn)
T be a

weighting vector of them. Then, the generalized hesitant fuzzy weighted geometric
(GHFWG) operator is defined as

GHFW Aλ (h1, . . . , hn) = (⊕n
i=1 (wi hi )λ

) 1
λ . (6)
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2.4 Hesitant Fuzzy Correlation Coefficient

We recall that two variables are correlated if there is a (linear) relation between them.
It is an important concept in data analysis. Because of this, different correlation
coefficients have been defined to different types of information (see [23] for details
on its application to HFSs). Chen et al. [24] defined the informational energy for HFSs
and a related correlation between HFSs. We review them below.

Definition 6 ([24]) Let H be a typical HFS (i.e., with a finite number of membership
degrees) on X = {x1, . . . , xn}, the informational energy of the HFS H , is defined as
follows,

EHFS(H) =
n∑

i=1

⎛

⎝ 1

l(hM(xi ))

lxi∑

j=1

h2Mσ( j)(xi )

⎞

⎠ , (7)

where hM(xi ) is a HFE and hMσ( j)(xi ) are the j th largest values of hM(xi ) and
l(hM(xi )) is the number of values in hM(xi ).

Definition 7 ([24]) Let H1 and H2 be two typical HFSs on X = {x1, . . . , xn}, the
correlation between M and N is defined by,

CHFS(H1, H2) =
n∑

i=1

⎛

⎝ 1

lxi

lxi∑

j=1

h1Mσ( j)(xi )h
2
Mσ( j)(xi )

⎞

⎠ , (8)

where lxi = max{l(h1M(xi )), l(h2M(xi ))} and h1M(xi ), h
2
M(xi ) are a HFE for H1, H2,

respectively.

Let M , N be two HFSs, the correlation satisfies:

• CHFS(M,M) = EHFS(M);
• CHFS(M, N ) = CHFS(N ,M).

By using Definitions 6 and 7 the following correlation coefficient is obtained.

Definition 8 Let M , N be two typical HFSs on X = {x1, . . . , xn} the correlation
coefficient between M and N is,

ρHFS(M, N ) = CHFS(M, N )

[CHFS(M,M)]1/2[CHFS(N , N )]1/2 . (9)

3 Clustering of Hesitant Fuzzy Data

In this section, we present the proposed clustering algorithms that deal with uncertain
information. Thus, the given input information is a set of hesitant fuzzy sets (HFSs),
on feature space X = {x1, x2, ..., xn} in the following form:
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S = {D1, D2, . . . , Dm}

Dj = {(xi , hDj (xi ))|i = 1, 2, . . . , n}, j = 1, 2, . . . ,m,

hDj (xi ) = {μk |μk ∈ [0, 1], k = 1, 2, . . . , K },

where S is a set of HFSs as HFD and hDj (xi ) is a set of experts assessments with
arbitrary cardinality K which states that Dj satisfies feature xi . Until now, four
clustering algorithms have been proposed to cluster HFD. Brief descriptions of them
follow. See also [15] for a comparison.

Hesitant Fuzzy Data Clustering Based on Correlation Coefficients of HFSs.Chen
et al. in [24] propose some correlation coefficient formulas for HFSs and apply them
to clustering under hesitant fuzzy environments. They used the derived correlation
coefficient formulas to calculate the degrees of correlation among HFSs aiming at
clustering different data. They cluster the data based on hesitant fuzzy equivalence
matrices and the transitive closure technique, which is computationally costly and
thus clustering needs a significant amount of time.

Hesitant Fuzzy Agglomerative Hierarchical Clustering.Authors in [25] propose a
novel hesitant fuzzy agglomerative hierarchical clustering algorithm for HFD. Their
algorithm has four steps and it considers each of the given HFDs as a unique cluster.
In the first step, a distance matrix is calculated by utilizing the weighted Hamming
distance or theweightedEuclidean distance betweenHFSs, and distances of each pair
of HFSs are compared. In the second step, the two clusters with the smallest distance
are merged and a new center is calculated from them with the equation in Definition
4. In the third step, the distance matrix is updated. Steps 2 and 3 are repeated until the
desirable number of clusters is achieved.Also, they extend the algorithm to cluster the
interval-valued hesitant fuzzy sets. They illustrate the effectiveness of the clustering
algorithm by experimental results.

Hierarchical Hesitant Fuzzy K-Means Clustering Algorithm. Chen et al. in [26]
propose a new clustering algorithm based on a combination of hierarchical and K -
means methods for hesitant fuzzy data. They considered that K-means algorithm is
sensitive to initial environment, i.e., initial clusters. So, for obtaining a better perfor-
mance they used the results of hierarchical clustering as initial clusters for K -means
algorithm. They show that such utilization can greatly reduce the computational cost
arising from selecting the initial seeds randomly as original K -means algorithm. The
hybrid method can significantly accelerate the clustering process. As a summary pro-
posed algorithm has two procedures: (i) hierarchical procedure similar to hesitant
fuzzy agglomerative hierarchical clustering and (i i) K -means procedure for hesitant
fuzzy data using the hesitant fuzzy distance measure and the hesitant fuzzy weighted
averaging (HFWA) operator. They have shown that this approach is a valuable tool
to do clustering for HFDs.
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Clustering of Generalized Hesitant Fuzzy Data. Authors in [27] propose a new
hierarchical algorithm for clustering of generalized hesitant fuzzy (GHF) informa-
tion. Qian et al. [28] introduced generalized hesitant fuzzy sets (GHFSs), on feature
space X = {x1, x2, ..., xn} in the following form:

S = {D1, D2, . . . , Dm}

Dj = {(xi , hDj (xi ))|i = 1, 2, . . . , n}, j = 1, 2, . . . ,m,

hDj (xi ) = {αk
i |αk

i =< μk
i , ν

k
i >, 0 ≤ μk

i , ν
k
i ≤ 1, 0 ≤ μk

i + νk
i ≤ 1, k ∈ K },

where S is a data set of D,
j s and hDj (xi ) is a set of experts assessments which

states that Dj satisfies feature xi . So, they developed a novel generalized hesitant
fuzzy hierarchical clustering (GHFHC) algorithm [27] for GHFSs, which is based
on the agglomerative hierarchical clustering algorithms and the intuitionistic fuzzy
basic operators. The main difference between the former hesitant fuzzy clustering
algorithms [24–26] and the GHFHC algorithm is that the latter deals with GHF
information and needs less computational efforts. One of the advantages of applying
hesitant fuzzy set is that clustering hesitant and vague information permits us to find
patterns among hesitant fuzzy data.

4 Hesitant Fuzzy Clustering

In this section, we apply hesitant fuzzy sets to a clustering context, and use them to
cluster crisp data sets. As a matter of fact, there are several kind of hesitations. In
this chapter we just consider the following two cases:

Case 1: Hesitation arises from uncertain initial parameterizations.
Case 2: Hesitation arises from the choice of a suitable clustering algorithms.

Hesitant fuzzy partitions (HFPs) [19] are introduced to consider case 1. Authors in
[29] proposed a hesitant fuzzy decisionmakingmethod to choose a suitable clustering
algorithm for a given data set to consider case 2.

4.1 H-Fuzzy Partition

Authors in [19] define a method to construct H-fuzzy partitions from a set of FPs
obtained from several executions of fuzzy clustering algorithms with various initial-
ization of their parameters. Their purpose is to consider some local optimal solutions
to find a global optimal solution also letting the user to consider various reliable
membership values and cluster centers to evaluate her/his problem using different
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cluster validity indices. To introduce HFP, we present definitions of FP and IFP in
the following:

Definition 9 ([18]) Let X be a reference set. Then, a set of membership functions
M = {μ1, . . . ,μn} on X is a fuzzy partition of X if for all x ∈ X ,

∑n
i=1 μi (x) = 1

holds.

Definition 10 Let X be a reference set. Then, a set of AIFSs A = {A1, . . . , Am}
where Ai = 〈μi ,πi 〉 is an I-fuzzy partition if

1.
∑m

i=1 μi (x) = 1 for all x ∈ X ,
2. for all x ∈ X , there is at most one i such that νi (x) = 0 (there is at most one IFS

such that μA(x) + πA(x) = 1 for all x).

Proposition 1 ([18]) I-fuzzy partitions generalize fuzzy partitions.

The definition of HFP is for typical hesitant fuzzy sets [20] as follows:

Definition 11 ([19]) Let X = {x1, . . . , xn} be a reference set. Let H∗ be a HFS on
X H∗ = {〈x, ĥ j 〉 | j = 1, 2, . . . ,m}, where m is the number of clusters and ĥ j =
{μk

j | k = 1, 2, . . . ,κ} are hesitant fuzzy elements. That is ĥ j is a finite set such that

ĥ j ⊆ [0, 1] and κ is the number of membership degrees in ĥ j (i.e., the cardinality of
ĥ j is κ. We can use κ j for j = 1, 2, . . . ,m. However for the sake of simplicity they
use κ j = κ for all j). Then H∗ is a hesitant fuzzy partition (H-fuzzy partition) if

∑m
j=1

∑κ
k=1 μk

j (x)

κm
≤ 1 ∀x ∈ X, 0 ≤ μk

j (x) ≤ 1. (10)

Also they consider a more general case in which the set ĥ j is infinite. This is a
generalization of the former definition and they use it later to prove that this definition
generalizes the one for I-fuzzy partitions discussed above (see Definition 10).

Definition 12 ([19]) Let X = {x1, . . . , xn} be a reference set. Then a set of HFE

H = {ĥ1, . . . , ĥm}, where ĥ j is an infinite set, is a hesitant fuzzy partition if the
following holds (note that the following inequality is a reformulation of Eq. (10)):

m∑

j=1

∫ 1
0 yμ j (x)(y)dy

m
∫ 1
0 μ j (x)(y)dy

≤ 1 ∀x ∈ X, (11)

where μ j (x) is the characteristic function of the set ĥ j (x).

Authors underline that this definition is not only valid for hesitant fuzzy set but
also for type-2 fuzzy sets as μ j (x) can be a fuzzy set. Note that if ĥ j (x) is a single
value then we have type-1 fuzzy sets, if ĥ j (x) is a finite set we have typical hesitant
fuzzy sets, and when ĥ j (x) is a fuzzy set we have type-2 fuzzy sets. In this case the
membership degree of x to cluster j is given by the membership function μ j (x)(y)
for y ∈ [0, 1] instead of having μ j (x) a single value.
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Proposition 2 ([19]) H-fuzzy partitions generalize I-fuzzy partitions.

In [19] a method is described for construction of H-Fuzzy partitions.

4.2 Data Clustering Based on Hesitant Fuzzy Decision
Making

Authors in [29] deal with hesitation to choose a clustering algorithm for a data set
without any prior knowledge about it. So, they model this hesitation by a hesitant
fuzzy decision making problem. That is, the problem of choosing a proper clustering
algorithm. To this end two categories of clustering algorithms are considered. They
are (i) partitioning methods and (i i) hierarchical clustering methods. Each of them
is suitable for a particular type of data distribution. So, they consider FCM [16]
and agglomerative hierarchical (linkage family) [3] as representative of partitioning
methods and hierarchical clustering methods, respectively.

To determine whether the FCM family or the hierarchical clustering algorithms
is the most suitable for the data, authors introduce a procedure based on a new
hesitant fuzzy decision making method for the data clustering. It is a hesitant fuzzy
decision making problem which deals with the clustering task. So, the two clustering
algorithms play the role of experts in a hesitant fuzzy decision making problem.
Each of them assigns various membership degrees for each data to the each cluster.
Then, a procedure is proposed to choose an appropriate clustering algorithm. This
procedure is based on Neutrosophic FCM (NFCM) clustering algorithm [30]. The
proposed procedure for a given data set S has two phases [29]:

Phase 1. Determine suitable cluster number.
Phase 2. Determine appropriate clustering algorithm through hesitant fuzzy deci-

sion making method and then apply the clustering algorithm to the data
points.

5 Conclusion

In this study, we have considered the issue of fuzzy set membership hesitation in
the data mining tasks and, in particular, in clustering methods. We review existing
hesitant fuzzy clustering methods from two points of view. Some of them deal with
the hesitation in the nature of data and others consider the hesitation to cluster the
crisp data. The formermethods can be useful whenwe collect the data in an uncertain
environment and final clusters are analysed by experts. The latter methods can be
more useful than the former in real world problem.

The aim of this chapter was to show that hesitant fuzzy sets can be applied in
different contexts within data clustering.
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Experiences Using Decision Trees
for Knowledge Discovery

Eva Armengol, Àngel García-Cerdaña and Pilar Dellunde

Abstract Knowledge discovery is the process of identifying useful patterns from
large data sets. There are two families of approaches to be used for knowledge dis-
covery: clustering, when the classes of domain objects are not known; and inductive
learning algorithms, when the classes are known and the goal is to construct a domain
model useful to identify new unseen objects. Clustering algorithms have also been
proposed to analyze the data when the classes are known. However, to our knowl-
edge, inductive learning methods are not used to analyze the available data but only
for prediction. What we propose here is a methodology, namely FTree, that uses a
decision tree to analyze both the available data identifying patterns and some impor-
tant aspects of the domain (at least from the domain’s part represented by the data
at hand) such as similarity between classes, separability, characterization of classes
and even some possible errors on data.

1 Introduction

Knowledge Discovery (KD) is defined in [12] as the process of identifying valid,
novel, useful and understandable patterns from large data sets. Its goal is to develop
models useful for data analysis and prediction. However, both data analysis and
prediction are two different tasks and depending in which of them we want to focus,
the way to construct the model will be different. In some cases, the data available
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are descriptions of domain objects and the goal is to find some regularities among
groups of objects. In such situations, clustering algorithms are the most useful tools.
Clustering algorithms [9] are unsupervised learning algorithms that group domain
objects by similarity. Possibly, there is no prior information about neither how many
classes can be defined in the domain nor about which are the important attributes
that could characterize them. Commonly, the user has to give as input parameter the
number of clusters, and the algorithm works with it. Once the clusters are formed, they
can be described in terms of prototypes, i.e., a vector of characteristics representing
the centroid of the cluster (see for instance [8]).

In many domains, even when facing large databases, experts know how many
classes exist and which are they. In such situation, clustering algorithms can also be
used although the most common choice are supervised learning algorithms such as
the inductive ones. The goal of inductive learning algorithms is the construction of
a domain theory from the known data, i.e., to characterize each one of the classes of
the domain by means of discriminant descriptions. Commonly this domain theory is
further used to predict the classification of unseen objects. Given a solution class Ci,
the discrimination task for inductive learning methods is defined as follows:

• Given: a set E containing positive E+ and negative E− examples of a class Ci.
• Find: a description Di such that it is satisfied by elements in E+ and it is not

satisfied by any of the elements in E−.

A class Ci can be described by more than one description Di. To build a model of
a domain we have to perform the discrimination task over each one of the classes.
As we have already mentioned before, unlike than clustering methods, the goal of
inductive learning methods is to build a predictive model, i.e., a model capable to
classify unseen domain objects correctly. One of the widely used inductive learning
methods are the decision trees. We have two forms of decision trees:

• classification trees, when the predicted outcome is the class to which the data
belong. The most used algorithm is ID3 [16], called C4.5 in its commercial version
[17].

• regression trees, when the predicted outcome can be considered a real number.
The most used algorithm is CART [5].

In this paper we will focus on classification problems and on classification trees.
However, now we are not interested on prediction but in analysis of the available
data. In particular, we want to focus on a problem that Pazzani [15] mentions: “most
of literature is about validity and process, and very little is about utility, novelty
and understability”. We are also interested on dealing with huge databases but our
primary goal is to discover knowledge that experts can understand and use. For this
reason we do not speak here about the scalability of the approach we propose. We
want to remark than the more examples we have, the more accurate inductive learning
methods are. This means that they cannot be confident enough when we are facing
small databases.

Decision trees have proved to be easy to understand by domain experts. Neverthe-
less, as Pazzani remarks [15], this point has not been objectively proved. However, our
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experience in working with physicians of different medical specialities, has shown
us that experts quickly understand the knowledge coded in form of attribute-value
and also are capable to assess the validity of the knowledge represented by either a
decision tree or a rule set. In fact, most of our previous work focused on building
predictive models [2, 3] but, during the interaction with the experts, we observed
that sometimes the expert was more interested on the attributes taken into account
during the construction of the tree than in the predictivity of the final model.

In [1] we pointed out that, given a decision tree, the path from the root to a leaf
can be interpreted as an explanation of the classification since it contains the pairs
attribute-value relevant for the classification. In the current paper we go beyond that
idea and propose the use of decision trees for knowledge discovery. Our point is that
the nodes of a tree (except leaves) contain sets of examples of different classes. In
addition, the path from the root to that node gives an idea of the similarity between
two or more classes.

In this paper we propose FTree (Filtered Tree), a methodology for analyzing the
information available of a domain using decision trees. The idea is to use some known
algorithm for decision tree growing, such as ID3, and analyze the tree shape. With
FTree we can also take into account some background knowledge given by the expert
and focus only on a subset of the available domain objects satisfying some pattern
(i.e., a subset of pairs attribute-value). To get an accurate domain model, inductive
learning methods and particularly decision trees need as many domain objects as
possible. However, since FTree is an analysis tool, it can be used without being
aware of the data base size. Moreover, with the FTree analysis we can identify lack
of knowledge in the database and, therefore, to acquire appropriate examples.

The paper is organized as follows. Section 2 presents the basics on decision trees:
what are they, which is their utility, how they are grown, measures used to grow
them, etc. In Sect. 3 we introduce the FTree methodology useful to analyze a data set
in accordance with the decision tree structure. Then we present two case studies of
application of FTree on the domain. In Sect. 4 we analyze the domain of malignant
melanoma. In Sect. 5 we analyze the domain of assessing the quality of life of people
with intellectual disabilities. Section 6 discusses some aspects of the application of
FTree. Final sections are devoted to related work and conclusions.

2 Classification Decision Trees

A Decision Tree (DT) is a directed acyclic graph in the form of a tree. The root of
the tree has not incoming edges and the remaining ones have exactly one incoming
edge. Nodes without outgoing edges are called leaf nodes and the others are internal
nodes. A DT is a classifier expressed as a recursive partition of the set of known
examples of a domain [12]. The goal is to create a domain model predictive enough
to classify future unseen domain objects.

Each node of a tree has associated a set of examples that are those satisfying the
path from the root to that node. For instance, the node size of the tree shown in Fig. 1
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texture

form

size

round planar

bigsmall

smoothspots texture = smooth
texture = spots
form = planar :  
form round

size = small
size = big : 

Fig. 1 Example of a DT for mushroom classification. Both representations are equivalent and we
will use in the current paper the one in the right side

ID3 (examples, attributes)
create a node
if all examples belong to the same class return class as the label for the node
otherwise

A  best attribute
for each possible value vi of A

add a new tree branch below node
examplesvi  subset of examples such that A = vi

ID3(examplesvi, attributes - {A})
return node

Fig. 2 ID3 algorithm for growing a decision tree

has associated all the examples having texture = spots and form = round. Notice
also that the leaves of a tree determine a partition of the original set of examples,
since each domain object only can be classified following one of the paths of the
tree.

The construction of a decision tree is performed by splitting the source set of
examples into subsets based on an attribute-value test. This process is repeated on
each derived subset in a recursive manner called recursive partitioning. Figure 2
shows the ID3 algorithm [16, 18] commonly used to construct decision trees. To
construct a decision tree, domain objects have to be represented by means of a set
of pairs attribute-value. These values may be continuous-valued or categorical. Each
tree node represents an attribute ai selected by some criteria and each arch is followed
according to the value vi1 of ai. For instance, Fig. 1 shows an example classifying
mushrooms as eatable or poisonous. Attributes describing a mushroom are texture,
form and, size. The most relevant attribute for classifying a mushroom is texture
because if it is smooth the mushroom can be classified as eatable. Otherwise the
node has to be expanded. The next relevant attribute is form with two possible
values: planar corresponding only to poisonous mushrooms; and round that is a
characteristic shared by both classes of mushrooms. Finally, the attribute size allows
a perfect classification of all the known mushrooms.
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Notice that from a decision tree we can extract rules giving descriptions of classes.
For instance, some eatable mushrooms are described by means of the rule:

texture = spots and form = round and size = small ⇒ eatable.

That is to say, each path from the root to a leaf form a description of a class. When
all the examples of a leaf belong to the same class such description is discrimi-
nant. Notice also that intermediate nodes represent characteristics shared by several
classes. For instance some eatable and poisonous mushrooms share a texture with
spots and a round form.

A key issue of the construction of decision trees is the selection of the most relevant
attribute to split a node. Each measure uses a different criteria, therefore the selected
attribute could be different depending on it and, thus the whole tree could also be
different. The most common measures are based on the degree of impurity of a node.
They compare the impurity of a node, say t, with the impurity of the children nodes
t1 . . . tk generated by an attribute ai. This comparison is done for each one of the
attributes used to represent the domain objects. The general expression to calculate
the gain Δ associated to an attribute ai is the following:

Δ(ai) = I(t) −
k∑

j=1

N(tj)

N
· I(tj)

where I(·) is an impurity measure, N is the total number of examples associated to the
parent node tj, k is the number of different values taken by ai and N(tj) is the number
of examples associated with the child node tj. To build regression trees, the most
common used impurity measure is the Gini’s index that measures the divergences
between the probability distributions of the attribute values according to the following
expression:

Gini(t) = 1 −
c∑

i=1

p2
i

where c are the class labels and pi is the number of examples of the current node
that belong to the class i. Concerning classification trees the most common impurity
measure is the entropy H which is defined by:

H(t) = −
c∑

i=1

pi log2 pi

When the entropy is used as the impurity measure I , the difference in entropy is
known as information gain [18] or also as Quinlan’s gain.

A different kind of criteria to select the more relevant attribute is to split a node
is the one proposed in [11]. This method consist in the comparison of the partition
induced by an attribute, say ai, with the correct partition, i.e., the partition that clas-
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sifies correctly all the known examples. This comparison is done by using the López
de Mántaras distance (LM). The best attribute is the one inducing the partition which
is closest to the correct partition of the subset of training examples corresponding
to this node. The distance LM is an entropy-based normalized metric defined in the
set of partitions of a finite set. The entropy of a partition can be described as the
information conveyed by the uncertainty that a randomly selected object belongs to
a certain class. Given a finite set X and a partition P = {P1, . . . , Pn} of X in n sets,
the entropy of P is defined as (| · | is the cardinality function):

H(P) = −
n∑

i=1

pi · log2 pi, where pi = |Pi|
|X|

and where the function x · log2 x is defined to be 0 when x = 0. The López de Mán-
taras’ distance between two partitions P = {P1, . . . , Pn} and Q = {Q1, . . . , Qm} is
defined as:

LM(P,Q) = H(P|Q) + H(Q|P)

H(P ∩ Q)
, (1)

where

H(P|Q) = −
n∑

i=1

m∑

j=1

rij · log2
rij

qj
, H(Q|P) = −

m∑

j=1

n∑

i=1

rij · log2
rij

pi
,

H(P ∩ Q) = −
n∑

i=1

m∑

j=1

rij · log2 rij,

with qj = |Qj|
|X| , and rij = |Pi ∩ Qj|

|X| .

There are other different ways to select attributes as the one proposed by [13] that
selects an attribute taking into account a cost criteria. For a summary on the subject
we refer to [12].

There are at least three issues that have to be taken into account when constructing
decision trees: the use of background knowledge, the presence of attributes with
unknown values, and the scalability. Let us to briefly analyze them.

Background Knowledge. For many domains, there is some corpus of knowledge that
can be used to extract some kind of new knowledge. However, decision trees in its
primary form do not use background knowledge, that is to say, they cannot take
benefit from already well known knowledge. For this reason there are many works
focusing on how decision trees can exploit background knowledge. For instance,
Ortega and Fisher [14] take into account expert’s knowledge to rank the attributes
that are candidates to expand a node, and the above mentioned work by Núñez [13]
has a domain ontology relating domain concepts.
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Management of unknown values. There are several options to deal with unknown
values. One is to consider the most frequent value for that attribute among the objects
belonging to a class. Another possibility is to calculate the probability for a class Cj

than the value of ai is vi by means of the formula:

prob(ai = vi|class = Cj) = prob(ai = vi&class = Cj)

prob(class = Cj)

Quinlan in [16] points out that these methods can produce bad results, for this reason
he proposes the option of considering unknown as another value. Commonly, the
management of unknown values (except in the last option) is considered as a data
pre-processing independently of the tree construction.

Scalability. Algorithms for constructing decision trees assume that the whole data-
base is in the main memory. However this assumption is not true in many applications
and for this reason there are some approaches focused on using decision trees on huge
databases. SPRINT [20] is a scalable version of CART [5] one of the most common
algorithms used to construct regression trees. In order to avoid having all the infor-
mation of attributes in the memory, SPRINT maintains attribute lists that are vertical
partitions of the dataset. These lists are created in a preprocessing phase. RainForest
[6] is a framework into which all the simple algorithms for constructing trees can be
used. In order to reduce the necessary memory, the idea in RainForest is to define
both the AVC-sets that are tables relating each attribute-value pair with a class label,
and the AVC-groups that are groups of AVC-sets associated to each tree node.

3 FTree: Decision Trees for Knowledge Discovery

In this section we introduce FTree, a methodology for analyzing decision trees. This
approach is based on our experience on interacting with domain experts. We see
that decision trees are actually easy to understand for them since the attributes are
the same used by experts. What we propose is to build a decision tree with some
standard algorithm (in particular we use ID3 in our implementation) and use FTree
to give some guidelines to analyze the tree together with a domain expert. In fact,
this idea was also behind the assertion from [15] in the sense that, in addition to be
consistent with the data, the induced model has also to be consistent with the expert’s
prior knowledge. FTree allows to introduce some filter with the idea of constructing
a tree with only a subset of known examples. This modification allows the expert to
focus on some characteristics that he considers important. For instance, one of the
characteristics considered as relevant to diagnose a mole as a malignant melanoma is
the presence of roundish pagetoid cells, therefore the experts want that this attribute
appears in the tree and thus, only lesions having this kind of cells are considered in
growing the tree.
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Fig. 3 Example of decision
tree for the Iris dataset

A decision tree groups the set of known examples according to the values of
some relevant attributes (those in the paths from the root to a leaf). ID3 produces a
decision tree where each path from the root to a leaf gives the pairs attribute-value
that are important to classify an example as belonging to a class. Each path can be
interpreted as a general description di of a class Ci since di contains the features
assessed as relevant for the classification. As we pointed out in [1] the tree paths can
be interpreted as the explanation of the classification but they can also be interpreted
as the similarity among a subset of examples of a class. For instance, from the tree
shown in Fig. 3 we can interpret that all iris setosa are similar in that they have
petalwidth≤ 0.6. Also, we see that both iris versicolor and iris virginica are similar
because they have 0.6 < petalwidth ≤ 1.7.

Our purpose goes beyond this interpretation since the FTree methodology uses
decision trees to analyze the known examples of a domain. We will illustrate FTree
with examples of three datasets from the Machine Learning repository of the Irvine’s
University [4]: Iris, Splice and Soybean. The Iris dataset has 150 domain objects
distributed in three classes each one with 50 objects: iris setosa, iris versicolor and
iris virginica. The Splice dataset has 3190 domain objects distributed in three classes:
EI (767), IE (768) and N (1655). The Soybean dataset contains around 300 domain
objects distributed on 18 solution classes, most of them having 10 objects, and four
of the classes having 40 objects each.

The FTree methodology proposes the analysis of a decision tree at two levels:
global, focusing on the shape of the tree; and local, focusing on the length of the
paths. Thus, from the shape of the tree we can extract global information about the
data set at hand, specifically referred to the separability and characterization of the
classes. We can extract the following situations:

• Width of the tree. Relation between the number of classes and the number of
branches of the tree. Cases:

1. �classes � �branches. If a tree has a number of branches similar to the number
of classes then we can assume that the classes are clearly separable.

2. �classes � �branches. There is a lot of variability among the elements of a class,
therefore it has been necessary to construct many branches in order to characterize
all the elements, i.e., there is overfitting. A possibility to be discussed with the
domain expert could be the division of one or more classes.
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3. �classes > �branches. The elements cannot be separated, therefore this means
that several classes are very similar. A possibility is that, in fact, these classes are
the same.

• High depth of the tree. If the tree depth is similar to the number of attributes used
to represent the domain objects, we can assume that the classes are difficult to
separate. For instance, objects of the iris dataset are described with a set of four
attributes. The tree in Fig. 3 has depth 4, therefore we can interpret that some of
the classes are very similar because it has been necessary to use all the attributes
to separate them. Particularly, some iris versicolor and iris virginica are only
different in the attribute petalwidth.

• Low depth of the tree. If the tree depth is much more smaller than the number
of attributes used to represent the objects, the classes are easy to separate. For
instance, Fig. 4 shows an sketch of the tree grown from the dataset Splice. The
depth of this tree is 4, whereas domain objects are described using 60 attributes,
therefore the classes are easy to separate.

We want to remark that the situations mentioned above show a general landscape
of the domain since they may not be applicable to some particular cases. For instance,
leaf 4 of the tree in Fig. 4 is satisfied by examples of the classes EI and N, that is to
say, the path is short but it is not enough to separate both classes.

Commonly, a tree completely expanded (i.e., without trying to avoid overfitting)
lies in intermediate cases that allow to analyze subparts of the domain. Let us to
see now how the FTree methodology proposes a local analysis of the decision tree.
As we already mentioned, this local analysis is mainly centered on the tree paths
focusing on both their length and the number of examples associated to the nodes.

• Overfitting. Many paths with leaves containing only one element mean that all the
classes of the domain are very similar and that probably the set of attributes used
to represent the domain objects is not the most appropriate one. In such situation
we need to perform a further domain analysis. This could be the case of leaves 6
and 7 in Fig. 5.

• Pure populated leaves. Paths with many elements on the leaf shows classes that are
easy to characterize and to distinguish from the others, specially when the paths
are short in comparison with the number of attributes that describe the domain
objects. For instance, the class iris setosa is univocally characterized only using
the attribute petalwidth having value lower than 0.6 (Fig. 3). In the sketch of the
Soybean tree shown in Fig. 5 we see that all the 10 examples of the class downy-
mildew are classified using only 3 attributes (i.e., leafspots-size, fruit-spots and
mold-growth).

• Pure non-populated leaves. Paths with few elements mean that there are sev-
eral classes with similar aspect, i.e., difficult to characterize and distinguish. For
instance, the sketch shown in Fig. 6 serves to classify only 4 domain objects belong-
ing to three different solution classes which are only different in the value of one
of the attributes.
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Nuc-30 = A
Nuc-32 = C (102 N)                           (1)
Nuc-32 = T

Nuc-31 = C (28 N)                          (2)
Nuc-31 = A (23 N)                          (3)
Nuc-31 = G

Nuc-35 = G (58 EI; 5 N)            (4)
Nuc-35 = A

Nuc-52 = T (4 N)                (5)
Nuc-52 = C (1 N)                (6)
Nuc-52 = A (1 EI)               (7)

Nuc-35 = C (8 N)                       (8)
Nuc-35 = T

Nuc-49 = T (4 N)                (9)
Nuc-49 = A (1 EI)             (10)

Nuc-31 = T (24 N)                         (11)
Nuc-32 = A (117 N; 1 EI)                (12)
Nuc-32 = G (96 N; 1 IE)                  (13)

Nuc-30 = T
Nuc-35 = G

Nuc-31 = C (22 N)                          (14)
Nuc-31 = A (13 N)                          (15)
Nuc-31 = G

Nuc-32 = C (6 N)                      (16)
Nuc-32 = T (56 EI; 5 N)           (17)
Nuc-32 = A (8 N)                      (18)
Nuc-32 = G (6 N)                      (19)

Nuc-31 = T (19 N)                          (20)
Nuc-35 = A (106 N)                           (21)
Nuc-35 = C (93 N; 1 EI)                    (22)
Nuc-35 = T (116 N)                           (23)

Nuc-30 = C (23 EI; 418 N; 1 IE)           (24)

Classes: EI (767); IE (768); N (1655)

Attributes: 60

Values : A, C, T, G

Nuc-30 = C
Nuc-31 = G (43 N; 23 EI)                 (25)
Nuc-31 = A 

Nuc-55 = T (18 N)                          (26)
Nuc-55 = G (34 N)                         (27)
Nuc-55 = C

Nuc-27 = A (5 N)          (28)
Nuc-27 = C (8 N)                      (29)
Nuc-27 = T (1 N; 1 IE)              (30)
Nuc-27 = G                                 

Nuc-55 = A (49 N)                         (31)
Nuc-31 = C (118 N)                          (32)
Nuc-31 = T (133 N)                          (33)

Fig. 4 Sketch of a decision tree for the Splice dataset. The right-side tree is the expansion of the
leaf 24

• Impure populated leaves. Paths with leaves containing examples of several classes
but with a majority of examples of one of the classes show us two possible situa-
tions: (1) there is some error on the input data or (2) the examples of the minority
classes are special cases that need to be analyzed in detail. For instance, the leaves
12, 13, and 22 in Fig. 4 contain many examples of class N (117, 96, and 93 respec-
tively) and only one of the class EI. Therefore the experts should focus on these
examples to detect possible input errors.

• Mixed leaves. Paths with leaves containing examples of several classes but none
of them has a clear majority. This means that with the attributes used to describe
the domain objects, the classes cannot be separated, i.e., they are very similar.
Therefore, the expert needs to analyze these classes. This could be, for instance,
the case of the leaf 25 in Fig. 4.

It is important to remark that the attributes forming the tree depend on the measure
chosen to determine which of them are relevant. Consequently, the picture proposed
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leafspots-size= GT_1.8
fruit-spots = DNA : Brown-stem-rot (5) (1)
fruit-spots = normal

mold-growth = present : Downy-mildew (10) (2)
mold-growth = absent

            date = October : Alternarialeaf-spot (13) (3)
            date = September

fruiting-bodies = absent
temp = normal

leaf-shread = present : Alternarialeaf-spot (3) (4)
leaf-shread = absent

crop-hist = same-lst-sev-years : Frog-eye-leaf-spot (2) (5)
crop-hist = same-lst-2-years

external-decay = firm-and-dry : Frog-eye-leaf-spot (1) (6)
external-decay = absent : Alternarialeaf-spot (1) (7)

crop-hist = diff-lst-year : Alternarialeaf-spot (2) (8)
crop-hist = same-lst-year : Frog-eye-leaf-spot (2) (9)

temp = GT-normal : Alternarialeaf-spot (9) (10)
fruiting-bodies = present : Brown-spot (3) (11)

Fig. 5 Sketch of a decision tree for the Soybean dataset

leafspots-size= GT_1.8
fruit-spots = normal

        mold-growth = absent
date = July

severity = pot
   area-damaged = scattered

crop-hist = same-lst-sev-years : Frog-eye-leaf-spot (1)
crop-hist = diff-lst-year : Alternarialeaf-spot (2)

area-damaged = whole-field : Brown-spot (1)

Fig. 6 Sketch of a decision tree for the Soybean dataset

by the tree will be different depending on that measure. Therefore, a first issue to
take into account is that the expert has to agree with the majority of the attributes
used in the tree, otherwise a different measure should be used. It is also possible that
the expert has in mind some patterns (i.e., background knowledge) that should be
used, for instance he could be interested on forcing the presence of some attribute
with some particular value. An example will be shown in the next section were we
will use decision trees to analyze a database containing descriptions of skin lesions.

Let us suppose now that the domain expert has some domain knowledge that
considers important and, therefore, it has to be used during the process of construction
of the tree. If the resulting tree has high overfitting degree, this means that the
knowledge introduced has to be reconsidered since it is shared by many different
classes. Conversely, if the resulting tree separates well the classes, the knowledge
can be considered as valid.
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In the next section we show our experience in using decision trees to support der-
matologists in building a domain theory capable to differenciate malignant melanoma
from benignant skin lesions.

4 Case Study I: Identification of Malignant Melanoma

We use a decision tree to analyze a data set containing descriptions of 144 melanocytic
lesions, 43 out of them are malignant melanoma (MM) and the remaining 101 are
benignant. The goal of the experts is to identify MM in early stages since in these
situations the characteristics of MM are not clearly developed. We want to remark
that all these analysis of the current database, the results and the comments have
been performed together with an expert dermatologist.

Figure 7 shows the decision tree over the whole data base. This tree (as all others
in the experiments) has been grown using the LM distance as measure to select the
most relevant attribute. The numbers between parenthesis show how many lesions
of each class are identified by the path from the root to a node. First of all we want
to remark that the expert agrees the attributes assessed as the most relevant. As we
will see later, most of them are the same used by experts to identify whether or not
a skin lesion is malignant.

An analysis of the subtree of root typical-basal=mild reveals that this is an
important characteristic to identify benignant lesions since only two out of 27 are
MM. Because it is very important to avoid false negatives, i.e., to identify all pos-
sible MM, the tree path shows that only lesions such that, in addition to typical-
basal=mild, have dermal-nests=no and PG-global=none are MM. Notice,
however, that this path also has one false positive, i.e., a benignant lesion with the

Fig. 7 A decision tree from
a data set containing
descriptions of 144
melanocytic lesions, 144
MM and 101 benignant

melanocytic = yes (43 MM; 101B)
   typical-basal = mild (2MM; 25B)

dermal-nests= yes (14B)
      dermal-nests = no (2MM; 11B)

PG-global = pleomorphic (4B)
PG-global = monomorphic (6B)
PG-global = none (2MM; 1B)

typical-basal = marked (19MM; 6B)
dermal-cells = nucleated-typical and non-nucleated (1MM)
dermal-cells = nucleated-atypical and plump (11MM; 1B)

asymmetry= symmetric (1B)
asymmetry = one-axis (2MM)
asymmetry = two-axes (9MM)

dermal-cells = nucleated-atypical (5MM)
dermal-cells = nucleated-typical and plump (1MM; 2B)
dermal-cells = no (1MM; 3B)

typical-basal = typical (7MM; 14B)
PG-global = pleomorphic (1B)

      PG-global = monomorphic (7MM; 13B)
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same important characteristics than MM. The consulted experts agree with this result
and they will have to try to find other additional characteristics to avoid the false pos-
itive.

The subtree of root typical-basal=marked reveals that there are 25 lesions satis-
fying such characteristic 6 out of them are benignant, therefore it is a good character-
istic to identify MM. The same subtree shows that dermal-cells=nucleated-typical
and plump is satisfied by two benignant lesions and one MM; and when dermal-
cells=no is satisfied by one MM and 3 benignant lesions. Because the goal is to
avoid false negatives, the expert prefers to diagnose a melanocytic lesion with marked
atypia as a MM although this can produce false positives (at least 4 in the data base
at hand).

Finally, the subtree of root typical-basal= typical shows an important issue for
experts’ discussion. This subtree describes 20 lesions that have, in addition PG-
global=monomorphic. We see that 7 of them are MM and 13 of them are benignant.
Therefore, this subtree supports the experts on identifying a subset of lesions very
susceptible from errors, at least using the current set of attributes for describing a
lesion.

The experts have some background knowledge about the important characteris-
tics identifying a MM. They use the algorithm in Fig. 8 based on the addition and
substraction of points according to the characteristics of a melanocytic lesion. In
particular, the algorithm adds 1 when the lesion has roundish pagetoid cells; it also
adds 1 when dermal cells are atypical nucleated; rests 1 when the dermal papilla is
edged; and rests 1 when the basal cells are typical. The sum of these assessments
result in a number S such that:

• if S = −2 the lesion probably is a nevus (benignant);
• if S = −1 the lesion probably is a nevus but it may also be a MM;
• otherwise the lesion is probably a MM.

The specificity of such algorithm is 95 % and the sensitivity is 86 % (on the data
base at hand it produces 5 false negatives).

Fig. 8 Algorithm followed
by dermatologists on the
database at hand, to
differentiate MM from
benignant skin lesions

Melanocytic
lesion 

-2 +1-1 +2

Roundish pagetoid cells  1
Atypical nucleated dermal cells  1
Edged-dermal papilla  -1
Typical basal cells  -1

0

Most 
probable 
NEVUS

Probable 
NEVUS
May be 
Melanoma

Most probable
MELANOMA
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Typical-basal = typical and DP_papilla = edged
PG_global= pleomorphic (1 B)

     PG_global = monomorphic (4 MM; 4 B)

DP_papilla = edged
     pagetoid-infiltration= no

globules = yes (25 B)
globules = no

corneal = 1 (1 MM)
      corneal = 0 (6 B)

pagetoid-infiltration = yes
junctional-nests-features = thickenings (1 MM)
junctional-nests-features = clusters (4 MM)
junctional-nests-features = no (1 MM; 9 B)

Fig. 9 Two decision trees grow from subsets of examples according to the algorithm used by
dermatologists. The upper part shows the DT from examples with typical-basal= typical, dermal-
papilla=edged. The lower part shows the DT from examples with dermal-papilla=edged

The next experiment consisted on take as basis the algorithm followed by the
experts to diagnose malignant melanoma (Fig. 8). If we give as initial pattern
typical-basal= typical and dermal-papilla=edged (i.e., the attribute-value pairs
that according to the expert’s knowledge are signals of benignancy), then FTree
constructs the tree shown in the upper part of Fig. 9 that is satisfied by 4 MM and
28 benignant lesions. Therefore, these characteristics seem to be the appropriate to
distinguish benignant lesions from malignant ones. However, we seen that the tree
is not able to classify all the objects satisfying the pattern because 19 of them have
the value of the attribute PG-global unknown.

Taking as initial pattern only the characteristics considered as important to
assess malignancy (i.e., dermal-cells=atypical and nucleated and pagetoid-
cells= roundish) we see that the database contains only 3 lesions (2 MM and 1
benign). Therefore, no conclusion can be obtained from this little sample.

Let us analyze now the lesions with S = −1, i.e., those that a priori are benignant
but that could be MM. A possibility for S = −1 is that the lesion has only one
characteristic of malignity, so we have analyzed the subset of lesions having dermal-
papilla=edged. There are 48 lesions satisfying this pattern, 7 of them are MM and
the remaining ones are benignant. When expanding the tree (see lower part of Fig. 9)
we have found that when, in addition, they have not pagetoid-infiltration 32 of them
are benignant and 1 is MM. The remaining 15 lesions have pagetoid infiltration and 6
of them are MM and 9 of them are benignant. Therefore, we have found here another
subset of lesions on which the expert have to focus in order to distinguish between
MM and benignant. The database does not contain enough information to analyze
other subsets of lesions having S = −1.

Finally, concerning lesions having 0 as result of the dermatologist’s algorithm,
none of the possible combinations of attribute-values has enough elements to perform
a relevant analysis. In fact, this means that the hypothesis of diagnosing a skin lesion



Experiences Using Decision Trees for Knowledge Discovery 183

as MM when the result of the algorithm is zero has not enough evidence on the
database at hand.

From this preliminary work, we can conclude that the database has not enough
information to extract predictive conclusions but allows to focus on some aspects
as, for instance, the attributes considered relevant for the experts. Our analysis has
allowed to determine areas of the domain knowledge on which more information is
needed. For instance, hypothesis about which attribute-values are signals of malig-
nancy (those included in the expert’s algorithm in Fig. 8) cannot be confirmed because
the database has not enough information. Therefore, experts need to obtain addi-
tional skin descriptions to cover this area. A similar situation occurs for lesions
with S = 0. Our analysis also shows that even in the case that the attribute-values
used by the experts as characteristics of benignancy are correct, they are not enough
since the attribute PG-global is unknown in most of the benignant lesions. Thus, on
the one hand it is necessary to analyze what happens with lesions having typical-
basal= typical, dermal-papilla=edged and PG-global=monomorphic; and on
the other hand it is necessary to include the value of the attribute PG-global for all
descriptions.

5 Case Study II: Quality of Life Assessment for People
with Intellectual Disabilities

In this section we analyze a database with information about quality of life of people
with intellectual disabilities. The concept of quality of life (QoL) was introduced
into the fields of education, health care, and social services in the early l980s. The
notion of QoL includes both objective and subjective factors but far from seeing this
subjective information a serious drawback, we regard it as an opportunity, both from
a theoretical and from a practical point of view. The data we deal with is based on the
Shalock and Verdugo [19] model to assess the QoL of a person. This model considers
that there are 8 dimensions that have to be taken into account: emotional well-being
(EW), interpersonal relations (IR), material well-being (MW), personal development
(PD), physical well-being (PW), self-determination (SD), social inclusion (SI) and
rights (RI). Experts are interested in knowing which kind of strategies could be
done in order to improve the QoL. To achieve this goal it is important to know the
interrelations among the different dimensions and we propose the use of FTrees to
perform this analysis.

The database we use is formed by 5158 records corresponding to answers to the
GENCAT questionnaire [7]. The questionnaire has 69 questions divided in 8 blocks,
one for each dimension of the QoL model proposed by Shalock and Verdugo [8]. Each
question could be answered by an integer from 1 to 4, where 4 means the maximum
agreement and 1 the minimum agreement. Each dimension has associated between
8 and 10 questions. Because the database has the punctuation for each question
separately, we performed a pre-processing phase where the questions corresponding
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to each one of the dimensions has been grouped. So, for instance, there are 8 questions
related to the emotional well-being (EW); let us suppose that a person has given the
punctuations 2, 3, 2, 3, 4, 2, 3, 2 to each one of the EW questions. After the pre-
processing we considered that this person has 21 points in EW. The aggregation of
the punctuation of the 8 dimensions gives the global index of quality of life (IQV)
that has also been discretized. The records of the data base are distributed in three
classes in the following way: 391 examples with IQV low, 3888 with IQV medium,
and 879 with IQV high. We discretized the data based on a preliminary statistical
analysis.

We grow a decision tree with the whole data base using the ID3 algorithm and
the LM distance to select the relevant attributes at each level. For reasons of space
we do not show the tree completely expanded. According to this methodology, the
most relevant feature turns out to be SI. The study also shows that the tree has high
overfitting although there are several impure populated leaves, mainly classifying
many examples with medium IQV and few examples with low or high IQV. As an
illustration of the result, Fig. 10 shows a part of the subtree of root SI = medium.
When SD = medium the majority of the examples have high or medium IQV and
only 4 examples have low IQV. From the tree we can extract symbolic rules relating
dimensions, such as: if SI = medium, SD = medium and IR = low the IQV is always
medium.

Fig. 10 Part of the decision tree grown from the whole database. In parenthesis the number of
examples satisfying each node. H stands for high IQV, M stands for medium, and L stands for low
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Figure 11 shows the development of the subtree classifying examples with SI =
medium, SD = medium and IR = high. First of all we see that the subtree has high
depth, that is, the depth of the tree (8) is almost equal to the number of attributes
describing the domain objects. We show that the majority of leaves have few exam-
ples, this means that it is difficult to separate the classes. The main conclusion here
is that a good classification can be obtained using only the three upper levels of the
subtree (those upper the dashed line). Also we see that high values of IQV are related
with high values of RI and EW since the 74 examples with IQV high are classified
in this part of the tree.

We also used the FTree methodology to analyze parts of the database and trying
to enlight some relations between the dimensions. The idea is to select a subgroup of
examples satisfying some conditions and to see which are the features that allow the
distinction among the groups having different IQV. In the global analysis we see that
SI, SD and RI seem to be relevant dimensions, so now we give some trees constructed
based on them.

The feature SD has been discretized in four intervals: very-low, low, medium, and
high. We grow a tree for each one of the values of SD, however for lack of space we
only show the ones concerning toSD= medium and SD= low although we discuss all
of them. When SD= high we obtained a tree with several impure populated leaves. In
particular there is a path that discriminates 209 out of 324 examples having IQV high.
In fact, when SD= high and IR= very-high the tree classifies 236 examples with IQV
high and also 4 having IQV medium. The tree has some branches of depth 4 trying

Fig. 11 A complete expansion of the subtree of root SI = medium, SD = medium and IR =high
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Fig. 12 Ftree classifying the examples with SD = medium

to discriminate between medium and high values of IQV but there is overfitting. A
conclusion from this tree is that SD and IR are highly related.

When SD = very-low the tree has overfitting and it is not able to clearly discrimi-
nate between medium and low levels of IQV. This means that the frontier in defining
both levels should be revised. The most interesting situations appear when SD = low
and SD = medium. In both cases the subtrees have a maximum depth of 8 or 9 and
high overfitting. This means that it is very difficult to separate the classes.

Figure 12 shows the tree built from the examples with SD = medium. We pruned
the tree in order to avoid overfitting and to allow a better view of the tree. All those
impure populated leaves lead to overfitting when the algorithm tries to separate the
examples of the class with lower number of examples. From the tree we can extract
the following rules:

• When SD = medium, IR = low, the IQV never is high (it classifies 11 out of 22
examples with IQV low).

• When SD = medium, IR = high or very-high, the IQV never is low (it classifies
285 out of 462 with IQV high).

When IR = low, there are not examples with IQV high. We do not show here the
tree because it has not any path that clearly separates the examples of the classes
low and medium. This tree has a high depth (some paths have length 7) and high
overfitting. Therefore, the conclusion is that both classes are not separable, at least
with the discretization intervals we used.

When IR = medium, most of examples have IQV medium and low. The tree has
not a high depth if we want to separate the examples having IQV low from those
having IQV high. This can be done using the attributes IR, PD and SD. Most of
examples having IQV medium (212 out of 221) are classified under low and medium
values of PD.

When IR = high the tree is deeper than in the previous cases we can extract the
following rules:

• When IR = high, SD = very-low, the IQV never is high.
• When IR = high, SD = medium or high, the IQV never is low.
• When IR = high, SD = low, SI = high, the IQV never is low.
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The analysis of the domain using decision trees allows us to extract some inter-
esting aspects to be discussed with the expert. Because in this particular domain
the attributes to be used to describe the examples are out of discussion, we see that
the discretization has to be redone in a most accurate way since it seems to be the
cause of obtaining deep trees with high overfitting and that are not able to completely
separate the classes. Examples of the minor class of impure populated nodes could
serve as basis to change this discretization.

With the current discretization, we focused only on subtrees that separate high
values of IQV from low values. We see that trees mainly use the dimensions SI, SD
and IR with which overfitting can be avoided and also most of leaves are impure
populated. Other dimensions that sometimes are relevant are PD and PW although
they appear in lower levels of the tree. We also see that rights (RI), material well-
being (MW) or aspects related with a particular person such as the age or the genre
do not seem to be relevant. Conversely, what seems to be very important is the
self-determination (SD) of the person, i.e., the capability of deciding about its own
life.

When analyzing the three most relevant attributes with their respective levels, we
found trees with high overfitting, but when we purge them focussing on the separation
of low and high values of IQV, we obtain, in general, trees with deep 3 or 4, meaning
that may be with a more accurate discretization the classes could be well separated.
There are two exceptions to this: one is the tree obtained using only those examples
with SD = low and the other is the tree obtained using only those examples with IR
= high. In both cases the depth of the tree grows due to one example with low IQV
that has to be separated from the examples with IQV high. This example could be
an error and, thus, it should be analyzed in depth by the expert.

We also see that high values of IQV are related with high values of the three
mentioned dimensions. In other words, low values of SD are mainly produced when
SI is high or when EW is high. This is an interesting aspect that needs to be analyzed
in depth by the experts: the relation among these dimensions. Notice that IQV seems
to be directly correlated with SD (and the same happens with IR): as higher the value
of the dimension is, the highest is the value of IQV.

From our analysis we propose to the expert to analyze in more detail the following
aspects:

• In which sense SI, SD and IR could be key factors in the definition of the quality
of life of a person with intellectual disabilities.

• Why material well-being and rights appear in low levels of the trees, denoting a
low degree of relevancy.

• Analyze the validity of the rules mentioned in the previous section, and propose a
theory of relationship between dimensions that could be tested in a further analysis.
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6 Discussion

The shortcomings of the kind of analysis we propose are the ones of the decision
trees. In particular, this analysis could not be possible on huge data sets because
decision trees are not scalable. We plan to explore how to perform this analysis in
such situations. We think that possible solutions could be the use of algorithms such
as SPRINT [20] and RainForest [6] that are able to construct decision trees on huge
data sets. Because experts commonly want to analyze subsets of data (for instance,
only melanocytic lesions with typical basal cells) it is also possible that, in fact, the
size of the data set is not a problem. However this is a restriction because then we
could not have to analyze the entire set of data.

As we already mentioned, the attributes used to grow the tree depend on the
selection criteria, therefore a first issue to take into account is whether or not the
expert agrees the subset of features composing the tree. If he does not it would be
necessary to use other criteria since it is fundamental that most of the attributes in
the tree (especially those in the top levels) coincide with the ones commonly used by
the expert. Nevertheless, when any of the trees grown uses the attributes considered
by the experts as relevant we have to face with an interesting situation: according to
the data at hand, the attributes that they assess as relevant actually they are not, and
it would be necessary to reconsider these attributes.

We also have to take into account the presence of attributes with unknown values.
In our experiments we deal with unknown as it was another value when partition the
data set according to the values of an attribute an then assessing the most relevant
attribute. However, once selected the most relevant attribute, the domain objects
having unknown value in that attribute does not satisfy any path of the tree. For
instance, in the domain of melanomas, there are some objects that have not value in
the attribute typical-basal, and therefore they are not classified by the tree. As a way
to obtain some information from these objects, we propose to construct another tree
with them. This focuses the expert’s attention on the actual importance of the values
of the main tree. That is to say, if the expert considers that the attribute typical-basal
is important, he must always give some value to it. In constructing a second tree with
the remaining unclassified objects, the expert can also focus on alternative subsets
of attributes that could be taken into account when the primarily important attributes
(those in the first tree) have not values.

7 Related Work

Our work is related with approaches that use decision trees with background knowl-
edge. In our case, the background knowledge is only used to obtain a subset of
domain objects from which to grow the tree. In fact, our goal and the one of the other
approaches using decision trees is different. Whereas these approaches use decision
trees to obtain a domain model useful for prediction, our goal is the analysis of the
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available data. This is an important difference because to obtain a predictable model
it is necessary to have as much examples as possible. Instead, the analysis we propose
can be made even for small databases.

Therefore, most of works use background knowledge to improve the predictivity.
The kind of background varies according to the domain and the concrete goal of
the application. Thus [13] introduces the EG2 algorithm, an extension of the ID3
algorithm that uses an is-a hierarchy associated to the attributes and a cost criteria
to select them.

An interesting paper that describes how to incorporate domain knowledge to
improve a model is the one of [14]. The authors explain their experience when
using C4.5 on the Reaction Control System (RCS) domain and obtained a tree that
did not use the attributes commonly taken into account by domain experts. What
they propose is to bias C4.5 by changing its criteria of selecting relevant attributes.
Therefore, instead of using the information gain measure they use a kind of ranking
taking into account the preferences of domain experts. Our motivation in using FTree
is the same: attributes relevant according to the expert’s criteria should be included
in the tree. However, the procedure proposed by Ortega and Fisher is more dynamic
than ours since in FTree the expert preferences are a filter of the original data and all
the domain objects that do no satisfy them are excluded for tree growing. Instead,
Ortega and Fisher’s approach does not excludes any original domain object.

Sivagama introduces in [21] a formal analysis of how the Gini’s coefficient splits a
dataset. The relation between this work and FTree can be find in a final reflexion that
the author performs in the sense that how the extracted rules are easily understood by
domain experts. Consequently, he points out that these rules can be used to access the
database to analyze it. Our approach goes beyond this idea since we can see FTree
as this access to the database (since it filters objects) but then we propose to grow a
tree in order to classify the domain objects satisfying the query.

Tsai et al. [22] also mentions the problem that the attributes included in the decision
trees are not the ones commonly used by the expert. This is an important aspect since
the consequence is that the expert has some kind of reluctance to use the obtained
model. For this reason authors propose an approach that uses the expert experience
in growing the tree. The idea is that experts analyze both the tree and the examples
and determine possible paths that does not agree with their experience. These paths
can be object of discussion in order to determine either if they correspond to invalid
data or if they enlight some kind of new knowledge. This kind of analysis is similar
to the one performed with FTree. However, in our approach we also propose a global
analysis of the tree since we point out that the form of the tree (i.e., its depth, its
width, etc.) is also important to extract general characteristics of the domain. The
main difference is that Tsai et al., use this analysis to improve the classification
accuracy whereas we propose FTree itself as a way to analyze the available data.
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8 Conclusions

The work introduced in the present paper focuses on the analysis of a knowledge
base. The common methods used for knowledge discovery are the clustering ones.
They are unsupervised methods since they suppose that the classes of domain objects
are not known in advance. The case where the classes are known is not commonly
considered as knowledge discovery but as either classification or prediction. In that
situation the goal is to find good descriptions of the classes and this goal is achieved
by means of inductive learning methods such as, for instance, decision trees. The
claim of the present paper is that decision trees can also be useful for knowledge
discovery.

Our approach consists of constructing a decision tree classifying all the known
examples and then to analyze this tree using the FTree methodology. Ftree gives some
guidelines to interpret the structure of a tree, allowing to focus on conflictive parts of
the dataset at hand. Thus, FTree allows to identify lacks of knowledge, possible errors
in the data, classes that are too similar that could be merged, etc. This methodology
has emerged from our experience in interacting with domain experts and has proved
to be an useful tool. We used FTree to analyze two databases, one concerning the
identification of malignant melanoma and the other concerning the assessment of
life quality of people with intellectual disabilities. In addition, FTree allows growing
trees focusing on subsets of attribute-values that experts consider relevant. With the
resulting tree is possible to detect (as we have show in the data base of melanomas)
that some attributes are not so relevant as experts expected.
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L-Fuzzy Bags

Fateme Kouchakinejad, Mashaallah Mashinchi and Radko Mesiar

Abstract This chapter studies L-fuzzy bags and some of its applications in which
L is a complete lattice. Furthermore, the concepts of α-cuts, (L-fuzzy) bag relations
and related theorems are given. The chapter ends with the characterization of the
algebraic structure of bags and L-fuzzy bags.

1 Introduction

The theory of bags, an alternative name for multisets, as a natural extension of the set
theory was introduced by Yager [19]. So far, bags have been employed in practice;
for example, in flexible querying [16], representation of relational information [19],
decision problem analysis [2], criminal career analysis [8], and in biology [13]. As
another example, bags can play the role of primary data bases in the real world prob-
lems. As a matter of fact, all of information should be considered in the data mining
tasks [6], and in particular in the fuzzy clustering where each data point has a mem-
bership degree in each cluster. So, from the mathematical point of view, each cluster
should be considered as a fuzzy bag, see [18]. Some other applications can be found
in [3, 11, 14–17]. However, due to some existing drawbacks in the first definition of
bags [19], the necessity of a revision of this notion has grown. The definitions pro-
posed by Delgado et al. [5] for bags and fuzzy bags have improved these drawbacks.
As it is shown in [9], there is some incompatibility with the nature of fuzziness in the
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fuzzy bag’s definition in [5]. The proposed definition for fuzzy bags in [10] resolved
this problem. In this chapter, we summarize our recent results concerning bags and
L-fuzzy bags from [9, 10] adding several examples and observations.

The chapter is structured as follows. In the next section, basic definitions and
results concerning bags and L-fuzzy bags are reviewed. Section3 deals with rela-
tions on bags and L-fuzzy bags. In Sect. 4, the α-cuts of L-fuzzy bags are studied.
Section5 brings the characterization of the algebraic structure of bags and L-fuzzy
bags. Finally, some concluding remarks are added.

2 Definitions

It should be mentioned that, in general, non-empty sets P and O can be arbitrary
(finite or infinite) but they are considered to be finite in this chapter. Throughout this
chapter, In = {1, 2, . . . , n}, where n ∈ N andN is the set of natural numbers. Also,
P and O are twofinite universes (sets) called “properties” and “objects”, respectively.
We have the following definitions.

Definition 1 ([5]) A (crisp) bag B f is a pair ( f, B f ), where f : P → P(O) is a
function and B f is the following subset of P × N0

B f = {(p, card( f (p)))|p ∈ P}.

Here, P(O) is the power set of O , N0 = N ∪ {0}, card(X) is the cardinality of
set X .

We will use the convention that card(∅) = 0 if necessary. Also, we will not
distinguish {(p, card( f (p))), p ∈ P} and {(p, card( f (p))), p ∈ P, f (p) �= ∅}.
Note 1 For the sake of simplicity, whenever f (p) = ∅ we may not write (p, 0) in
the set B f .

In this characterization, a bagB f consists of two parts. The first one is the function
f that can be seen as an information source about the relation between objects and
properties. The second part B f is a summary of the information in f obtained by
means of the count operation card(.). This summary corresponds to the classical
view of bags in the sense of [19]. Observe that, up to trivial cases, the knowledge
of B f is not enough to recover the original information source f (this was the main
drawback of the original approach to bags in [19]). Obviously, f determines B f

univocally. However, we prefer to keep the notation ( f, B f ) for bags as proposed in
[4, 5] due to the higher transparency and link to the original notion of bags given
in [19].

Notation 1 B(P, O) is the set of all bags B f = ( f, B f ) defined in Definition 1.
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Table 1 Several functions: age-people

p 17 21 27 35

f1(p) {Bill,Sue} {John,Tom} ∅ ∅
f2(p) {Bill,Sue} {John,Tom,Stan} ∅ {Ben}
f3(p) ∅ {Stan} {Ana} {Ben}
f4(p) {Bill} {John,Stan} ∅ ∅
f5(p) {John,Tom} {Ana,Stan} ∅ ∅

Definition 2 We have B0 = (0, B0) and B1 = (1, B1) where, 0(p) = ∅, 1(p) =
O for all p ∈ P , B0 = {(p, 0), p ∈ P} and B1 = {(p, card(O)), p ∈ P}. Clearly,
B0,B1 ∈ B(P, O).

Example 1 ([4]) Let O = {John, Ana, Bill, Tom, Sue, Stan, Ben} and P =
{17, 21, 27, 35} be the set of objects and the set of properties, respectively. Let
f1, f2, f3, f4, f5 : P → P(O)be the functions inTable1with fi (p) ⊆ O for all p ∈
P . So, we can define bags B fi = ( fi , B fi ), 1 ≤ i ≤ 5. Where,
B f1 = {(17, 2), (21, 2)},
B f2 = {(17, 2), (21, 3), (35, 1)},
B f3 = {(21, 1), (27, 1), (35, 1)},
B f4 = {(17, 1), (21, 2)} and
B f5 = {(17, 2), (21, 2)}.

Now, we can define some binary operations between bags.

Definition 3 ([5]) Let ∗ ∈ {∪,∩, \}. Then

B f ∗ Bg = B f ∗g = ( f ∗ g, B f ∗g),

where f ∗ g : P → P(O) such that ( f ∗ g)(p) = f (p) ∗ g(p) for all p ∈ P .

Example 2 ([4]) We can obtain some new bags from operations among bags in
Example 1, where their functions are shown in Table2 and the corresponding sum-
maries are as follows
B f1∪ f2 = {(17, 2), (21, 3), (35, 1)},
B f2∩ f3 = {(21, 1), (35, 1)},
B f1\ f3 = {(17, 2), (21, 2)},
B f3\ f2 = {(27, 1)},
B f1∪ f5 = {(17, 4), (21, 4)},
B f1∩ f5 = {(17, 0), (21, 0), (27, 0), (35, 0)}.

It should be noted that the values of function for different properties need not be
disjoint. This means f (p) ∩ f (p

′
) may be a non-empty set. As an example consider

the bag B f1∪ f5 in Example 2.
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Table 2 Operations on functions from Example 1

p 17 21 27 35

( f1 ∪ f2)(p) {Bill,Sue} {John,Tom,Stan} ∅ {Harry}
( f2 ∩ f3)(p) ∅ {Stan} ∅ {Harry}
( f1 \ f3)(p) {Bill,Sue} {John,Tom} ∅ ∅
( f3 \ f2)(p) ∅ ∅ {Mary} ∅
( f1 ∪ f5)(p) {Bill,Sue, John,Tom} {John,Tom,Ana,Stan} ∅ ∅
( f1 ∩ f5)(p) ∅ ∅ ∅ ∅

From the point of view of the functions associated to a bag, we have the following
definition.

Definition 4 ([5]) (i) A bag B f is a sub bag of Bg , denoted by B f � Bg, if f (p) ⊆
g(p) for all p ∈ P .
(ii) Two bags B f and Bg are equal, denoted by B f = Bg if B f � Bg and Bg � B f

that means if f = g.

Remark 1 ([5]) Operations ∩ and ∪ in B(P, O) satisfy the laws of idempotency,
commutativity, associativity, monotonicity and distributivity.Moreover,B0 is neutral
for operation ∪ and B1 is neutral for operation ∩.
Definition 5 ([5]) Let B f = ( f, B f ). Then, complement of B f is B f c = (B f )c =
( f c, B f c), where f c : P → P(O) is such that f c(p) = O \ f (p) for all p ∈ P .

As an example, observe that (B0)c = B1.
In what follows, L is a complete lattice and FL(O) = {A|A : O → L} is the set

of all L-fuzzy subsets of O . In the case of L = [0, 1], we write F(O).

Definition 6 ([10]) An L-fuzzy bag B̃ f̃ is a pair ( f̃ , B f̃ ), where f̃ : P → FL(O)

is a function and B f̃ is the following subset of P × L × N0

B f̃ = {(p, δ, card(Op
δ ))|p ∈ P, δ ∈ L}.

where, Op
δ = {o ∈ O| f̃ (p)(o) = δ}.

Obviously, a bag is a particular case of L-fuzzy bag where, for all p ∈ P , f̃ (p)
is a crisp subset of O . Similar to bags, an L-fuzzy bag B̃ f̃ consists of two parts. The
first one is the function f̃ that can be seen as an information source about the relation
between objects and properties. The second part B f̃ is a summary of the information
in f̃ obtained by means of the count operation card(.).

Note 2 ([10]) In the case that L = [0, 1], the defined bag in Definition 6 is called
fuzzy bag.
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Table 3 The degrees of memberships for Example 3

p o

Ben Sue Tom John Stan Bill Kim Ana Sara

Young 0.7 0.2 0.4 0.0 0.7 0.4 0.2 0.7 0.1

Middle age 0.3 0.8 0.7 0.3 0.3 0.7 0.8 0.3 0.5

Old 0.1 0.2 0.1 0.9 0.1 0.1 0.2 0.1 0.5

Table 4 The degrees of memberships for Example 4

p o

Ben Sue Tom John Stan Bill Kim Ana Sara

Tall 0.8 0.6 0.0 0.1 0.8 0.6 0.5 0.7 0.5

Medium 0.3 0.1 0.1 0.6 0.3 0.1 0.8 0.1 0.5

Short 0.1 0.0 0.9 0.4 0.1 0.0 0.2 0.0 0.1

Here, the concept of L-fuzzy bag is illustrated by two examples.

Example 3 ([10])Let L = [0, 1],O = {Ben,Sue,Tom, John,Stan,Bill,Kim,Ana,
Sara} and P = {young,middle age, old} is the set of some linguistic descriptions of
age. Let the degrees of membership of all o ∈ O in the set of each property p ∈ P
are given as in Table3.

So, by Definition 6, we can define fuzzy bag B̃ f̃ = ( f̃ , B f̃ ) where,

f̃ (young) = { 0.7
Ben

,
0.2

Sue
,
0.4

Tom
,
0.7

Stan
,
0.4

Bill
,
0.2

Kim
,
0.7

Ana
,
0.1

Sara
},

f̃ (middle age) = { 0.3
Ben

,
0.8

Sue
,
0.7

Tom
,
0.3

John
,
0.3

Stan
,
0.7

Bill
,
0.8

Kim
,
0.3

Ana
,
0.5

Sara
},

f̃ (old) = { 0.1
Ben

,
0.2

Sue
,
0.1

Tom
,
0.9

John
,
0.1

Stan
,
0.1

Bill
,
0.2

Kim
,
0.1

Ana
,
0.5

Sara
},

and

B f̃ = {(young, 0.7, 3), (young, 0.4, 2), (young, 0.2, 2), (young, 0.1, 1),
(middle age, 0.8, 2), (middle age, 0.7, 2), (middle age, 0.5, 1),

(middle age, 0.3, 4), (old, 0.9, 1), (old, 0.5, 1), (old, 0.2, 2), (old, 0.1, 5)}.

Example 4 ([10]) Let L = [0, 1], O be as in Example 3 and P = {tall,medium,

short} is the set of some linguistic descriptions of height. Let the degrees of mem-
bership of all o ∈ O in the set of each property p ∈ P be given as in Table4.

So, by Definition 6, we can define fuzzy bag B̃g̃ = (g̃, B g̃) where,
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Table 5 The membership fuzzy sets for Example 5

p o

Ben Sue Tom John Stan

Young { 0.40.6 , 0.5
0.7 , 0.6

0.8 } { 0.90.2 , 0.8
0.3 } { 0.70.4 , 0.8

0.5 } { 1
0.0 } { 0.50.6 , 0.5

0.7 , 0.6
0.8 }

Middle age { 0.70.2 , 0.8
0.3 , 0.7

0.4 } { 0.70.8 , 0.8
0.9 } { 0.70.7 , 0.8

0.8 } { 0.80.3 , 0.9
0.4 , 0.8

0.5 } { 0.70.2 , 0.8
0.3 , 0.7

0.4 }
Old { 1

0.1 } { 0.80.1 , 0.9
0.2 } { 0.80.1 , 0.9

0.2 , 0.8
0.3 } { 1

0.9 } { 0.90.1 }

g̃(tall) = { 0.8
Ben

,
0.6

Sue
,
0.1

John
,
0.8

Stan
,
0.6

Bill
,
0.5

Kim
,
0.7

Ana
,
0.5

Sara
},

g̃(medium) = { 0.3
Ben

,
0.1

Sue
,
0.1

Tom
,
0.6

John
,
0.3

Stan
,
0.1

Bill
,
0.8

Kim
,
0.1

Ana
,
0.5

Sara
},

g̃(short) = { 0.1
Ben

,
0.9

Tom
,
0.4

John
,
0.1

Stan
,
0.2

Kim
,
0.1

Sara
},

and

B g̃ = {(tall, 0.8, 2), (tall, 0.7, 1), (tall, 0.6, 2), (tall, 0.5, 2), (tall, 0.1, 1),
(medium, 0.8, 1), (medium, 0.6, 1), (medium, 0.5, 1), (medium, 0.3, 2),

(medium, 0.1, 4), (short, 0.9, 1), (short, 0.4, 1), (short, 0.2, 1), (short, 0.1, 3)}.

Remark 2 Let in Definition 6, the lattice is FL(L). Then, we have type-2 L-fuzzy

bag B̃ f̃ 2 = ( f̃ 2, B f̃ 2).

Example 5 Let L = F([0, 1]), O = {Ben,Sue,Tom, John,Stan} and P be as in the
Example 3. Let the membership of each o ∈ O in the set of each property p ∈ P be
given as in Table5.

So, by Definition 6 and Remark 2, we can define type-2 L-fuzzy bag B̃ f̃ 2 =
( f̃ 2, B f̃ 2) where,

f̃ 2(Young) = {{ 0.40.6 , 0.5
0.7 , 0.6

0.8 }
Ben

,
{ 0.90.2 , 0.8

0.3 }
Sue

,
{ 0.70.4 , 0.8

0.5 }
Tom

,
{ 1
0.0 }
John

,
{ 0.50.6 , 0.5

0.7 , 0.6
0.8 }

Stan
},

f̃ 2(Middle age) = {{ 0.70.2 , 0.8
0.3 , 0.7

0.4 }
Ben

,
{ 0.70.8 , 0.8

0.9 }
Sue

,
{ 0.70.7 , 0.8

0.8 }
Tom

,
{ 0.80.3 , 0.9

0.4 , 0.8
0.5 }

John
,
{ 0.70.2 , 0.8

0.3 , 0.7
0.4 }

Stan
},

f̃ 2(Old) = {{ 1
0.1 }
Ben

,
{ 0.80.1 , 0.9

0.2 }
Sue

,
{ 0.80.1 , 0.9

0.2 , 0.8
0.3 }

Tom
,
{ 1
0.9 }
John

,
{ 0.90.1 }
Stan

},

and
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B f̃ 2 = {(young, {0.6
0.8

}, 2), (young, {0.5
0.7

}, 2), (young, {0.5
0.6

}, 1), (young, {0.4
0.6

}, 1),

(young, {0.8
0.5

}, 1), (young, {0.7
0.4

}, 1), (young, {0.8
0.3

}, 1), (young, {0.9
0.2

}, 1),

(young, {1.0
0.0

}, 1), (middle age, {0.8
0.9

}, 1), (middle age, {0.8
0.8

}, 1),

(middle age, {0.7
0.8

}, 1), (middle age, {0.7
0.7

}, 1), (middle age, {0.8
0.5

}, 1),

(middle age, {0.9
0.4

}, 1), (middle age, {0.7
0.4

}, 2), (middle age, {0.8
0.3

}, 3),

(middle age, {0.7
0.2

}, 2), (old, {1.0
0.9

}, 1), (old, {0.8
0.3

}, 1), (old, {0.9
0.2

}, 2),

(old, {1.0
0.1

}, 1), (old, {0.9
0.1

}, 1), (old, {0.8
0.1

}, 2)}.

Remark 3 ([10]) As it can be seen, the more important part of an L-fuzzy bag is
information function f̃ . Therefore, it is possible to study the properties of L-fuzzy
bags just by considering their information functions.

Notation 2 ([10]) We set B̃L(P, O) as the set of all L-fuzzy bags B̃ f̃ = ( f̃ , B f̃ ).
Where, f̃ : P → FL(O) and B f̃ are as defined in Definition 6. Also, we set B̃(P, O)

as the set of all fuzzy bags.

The following theorem gives the relation among bags, fuzzy bags and L-fuzzy
bags.

Theorem 1 ([10]) Let a complete lattice L1 be a sub lattice of a complete lat-
tice L2. Then, B̃L1(P, O) ⊆ B̃L2(P, O). In particular, B(P, O) = B̃{0,1}(P, O) ⊆
B̃[0,1](P, O) = B̃(P, O).

Here, we define the binary operations among L-fuzzy bags.

Definition 7 Let B̃ f̃i ∈ B̃L(Pi , Oi ) for all i ∈ In be given L-fuzzy bags, O =
∩i∈In Oi �= ∅ and P = ∩i∈In Pi �= ∅. Then, their intersection is L-fuzzy bag

∩i∈In B̃ f̃i = (∩i∈In f̃i , B
∩i∈In f̃i ), (1)

where ∩i∈In f̃i : P → FL(O) such that (∩i∈In f̃i )(p) = ∩i∈In f̃i (p). Also,

B∩i∈In f̃i = {(p, δ, card(Op
δ ))|p ∈ P, δ ∈ L},

where Op
δ = {o ∈ O|(∩i∈In f̃i )(p)(o) = δ}.

Note that by Definition 6, ∩i∈In B̃ f̃i = B̃∩i∈In f̃i .
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Table 6 Values of f̃1(p)(o)

p o

Nancy Lia Elena Suzi Sam

Tall 0.6 0.8 0.3 0.0 0.6

Medium 0.8 0.4 0.6 0.2 0.4

Short 0.0 0.0 0.8 1.0 0.3

Table 7 Values of f̃2(p)(o)

p o

Liu Sam Bob Suzi

Extremly tall 0.9 0.2 0.4 0.0

Tall 1.0 0.7 0.7 0.0

Medium 0.1 0.3 0.2 0.3

Short 0.0 0.2 0.1 0.9

Definition 8 Let B̃ f̃i ∈ B̃L(Pi , Oi ) for all i ∈ In be given L-fuzzy bags, O =
∪i∈In Oi and P = ∪i∈In Pi . Then, their union is L-fuzzy bag

∪i∈In B̃ f̃i = (∪i∈In f̃i , B
∪i∈In f̃i ), (2)

where ∪i∈In f̃i : P → FL(O) such that (∪i∈In f̃i )(p) = ∪i∈In f̃i (p). Also,

B∪i∈In f̃i = {(p, δ, card(Op
δ ))|p ∈ P, δ ∈ L},

where Op
δ = {o ∈ O|(∪i∈In f̃i )(p)(o) = δ}.

Note that by Definition 6, ∪i∈In B̃ f̃i = B̃∪i∈In f̃i .

Example 6 LetO1 = {Nancy,Lia,Sam,Elena,Suzi},O2 = {Liu,Sam,Bob,Suzi},
P1 = {tall,medium, short}, P2 = {extremely tall, tall,medium, short} and
L = [0, 1]. Consider B̃ f̃1 ∈ B̃(P1, O1) and B̃ f̃2 ∈ B̃(P2, O2) in which the values of
f̃1 and f̃2 are as in Tables6 and 7.
So, the intersection is B̃ f̃1∩ f̃2 = ( f̃1 ∩ f̃2, B f̃1∩ f̃2) where,

( f̃1 ∩ f̃2)(tall) = { 0.6

Sam
},

( f̃1 ∩ f̃2)(medium) = { 0.2

Suzi
,
0.3

Sam
},

( f̃1 ∩ f̃2)(short) = { 0.9

Suzi
,
0.2

Sam
}.

and
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B f̃1∩ f̃2 = {(tall, 0.6, 1), (medium, 0.2, 1), (medium, 0.3, 1), (short, 0.9, 1), (short, 0.2, 1)}.

And the union is B̃ f̃1∪ f̃2 = ( f̃1 ∪ f̃2, B f̃1∪ f̃2) where,

( f̃1 ∪ f̃2)(extremely tall) = { 0.9
Liu

,
0.2

Sam
,
0.4

Bob
},

( f̃1 ∪ f̃2)(tall) = { 1.0
Liu

,
0.7

Sam
,
0.7

Bob
,

0.6

Nancy
,
0.8

Lia
,

0.3

Elena
},

( f̃1 ∪ f̃2)(medium) = { 0.8

Nancy
,
0.4

Lia
,

0.6

Elena
,
0.3

Suzi
,
0.1

Liu
,
0.4

Sam
,
0.2

Bob
},

( f̃1 ∪ f̃2)(short) = { 0.8

Elena
,
1.0

Suzi
,
0.3

Sam
,
0.1

Bob
}.

and

B f̃1∪ f̃2 ={(extremely tall, 0.2, 1), (extremely tall, 0.4, 1), (extremely tall, 0.9, 1),

(tall, 0.3, 1), (tall, 0.6, 1), (tall, 0.7, 2), (tall, 0.8, 1), (tall, 1.0, 1),

(medium, 0.1, 1), (medium, 0.2, 1), (medium, 0.3, 1), (medium, 0.4, 2),

(medium, 0.6, 1), (medium, 0.8, 1), (short, 0.1, 1), (short, 0.3, 1),

(short, 0.8, 1), (short, 1.0, 1)}.

The following definition equips the set of all L-fuzzy bags with an order.

Definition 9 ([10]) (i) An L-fuzzy bag B̃ f̃ is an L-fuzzy sub bag of B̃g̃, denoted by
B̃ f̃ �̃ B̃g̃ if and only if f̃ (p) ⊆̃ g̃(p) for all p ∈ P . That means B̃ f̃ �̃ B̃g̃ if and only
if for all p ∈ P , f̃ (p) be an L-fuzzy subset of g̃(p).
(ii) Two L-fuzzy bags B̃ f̃ and B̃g̃ are equal, denoted by B̃ f̃ ∼= B̃g̃ if B̃ f̃ �̃ B̃g̃ and
B̃g̃ �̃ B̃ f̃ that means if f̃ = g̃.

The next theorem gives some useful results about L-fuzzy bags.

Theorem 2 ([10])Operations∪ and∩ in B̃L(P, O) satisfy the laws of idempotency,
commutativity, associativity, monotonicity and distributivity. Moreover, B0 is neutral
for operation ∪ and B1 is neutral for operation ∩.
In the following definition, we review the concept of the complement of an L-fuzzy
bag.

Definition 10 ([10]) Let η : L → L be a fixed strong negation [1], this means an
involutive decreasing bijection. Consider B̃ f̃ = ( f̃ , B f̃ ). Then, the η−complement
of B̃ f̃ is L-fuzzy bag (B̃ f̃ )c = ( f̃ c, B f̃ c), where f̃ c : P → FL(O) such that
f̃ c(p)(o) = η( f̃ (p)(o)) for all p ∈ P and o ∈ O .

Note that by Definition 6, (B̃ f̃ )c = B̃ f̃ c .

Note 3 ([10]) In Definition 10, if L = [0, 1] and η is the standard negation, η(x) =
1 − x for all x ∈ [0, 1] [1], then B̃ f̃ c is called the complement of B̃ f̃ .
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Example 7 ([10]) The complement of the fuzzy bag in Example 4 is B̃g̃c = (g̃c, B g̃c)

where,

g̃c(tall) = { 0.2
Ben

,
0.4

Sue
,
1.0

Tom
,
0.9

John
,
0.2

Stan
,
0.4

Bill
,
0.5

Kim
,
0.3

Ana
,
0.5

Sara
},

g̃c(medium) = { 0.7
Ben

,
0.9

Sue
,
0.9

Tom
,
0.4

John
,
0.7

Stan
,
0.9

Bill
,
0.2

Kim
,
0.9

Ana
,
0.5

Sara
},

g̃c(short) = { 0.9
Ben

,
1.0

Sue
,
0.1

Tom
,
0.6

John
,
0.9

Stan
,
1.0

Bill
,
0.8

Kim
,
1.0

Ana
,
0.9

Sara
},

and

B g̃c = {(tall, 1.0, 1), (tall, 0.9, 1), (tall, 0.5, 2), (tall, 0.4, 2), (tall, 0.3, 1),
(tall, 0.2, 2), (medium, 0.9, 4), (medium, 0.7, 2), (medium, 0.5, 1),

(medium, 0.4, 1), (medium, 0.2, 1), (short, 1.0, 3), (short, 0.9, 3),

(short, 0.8, 1), ( short, 0.6, 1), (short, 0.1, 1)}.

Note 4 In the process of determining the degrees of membership in Definition 6,
some degrees are very close to each other and may be they are not different in the
decision maker’s point of view. This situation appears specially when the cardinality
of O is big. In this case, we can cluster the objects based on their degrees of mem-
bership. For example consider Example 5 in the case that we have card(O) = 100.

Table 8 Clusters

Cluster head Cluster members
0.06
70

0.08
12 , 0.08

19 , 0.00
23 , 0.08

27 , 0.08
46 , 0.05

52 , 0.06
70 , 0.02

74 , 0.04
75 , 0.08

90
0.11
21

0.11
21 , 0.12

48 , 0.11
60 , 0.10

65 , 0.13
66

0.15
15

0.16
1 , 0.15

15 , 0.15
35 , 0.14

36 , 0.14
40

0.18
33

0.17
5 , 0.18

33 , 0.18
49 , 0.17

76 , 0.19
84 , 0.18

86
0.24
47

0.26
7 , 0.23

13 , 0.26
29 , 0.26

34 , 0.24
47 , 0.24

50 , 0.24
63 , 0.23

71
0.34
57

0.31
3 , 0.35

43 , 0.34
57 , 0.37

59 , 0.35
72 , 0.30

82 , 0.37
87 , 0.31

96
0.42
51

0.45
11 , 0.44

20 , 0.40
28 , 0.43

31 , 0.40
45 , 0.42

51 , 0.39
62 , 0.40

64 , 0.45
80 , 0.44

94 , 0.45
95

0.51
44

0.53
4 , 0.54

17 , 0.51
44 , 0.49

55 , 0.49
56 , 0.49

93 , 0.51
97 , 0.51

98
0.58
38

0.60
6 , 0.58

38 , 0.55
39 , 0.62

42 , 0.58
69 , 0.55

81 , 0.63
88

0.69
9

0.65
8 , 0.69

9 , 0.65
77 , 0.73

78 , 0.65
79 , 0.74

83 , 0.69
85

0.79
2

0.79
2 , 0.75

10 , 0.83
16 , 0.77

24 , 0.82
25 , 0.80

30 , 0.78
61

0.82
73 , 0.78

89 , 0.78
92 , 0.82

99 , 0.79
100

0.90
53

0.91
14 , 0.87

26 , 0.91
32 , 0.87

37 , 0.85
41 , 0.90

53 , 0.90
58 , 0.93

91
0.96
22

1.00
18 , 0.96

22 , 0.94
54 , 0.94

67 , 0.96
68
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Let us have the following fuzzy set for the property “young”.

f̃ (young) ={0.16
o1

,
0.79

o2
,
0.31

o3
,
0.53

o4
,
0.17

o5
,
0.60

o6
,
0.26

o7
,
0.65

o8
,
0.69

o9
,
0.75

o10
,

0.45

o11
,
0.08

o12
,
0.23

o13
,
0.91

o14
,
0.15

o15
,
0.83

o16
,
0.54

o17
,
1.00

o18
,
0.08

o19
,
0.44

o20
,
0.11

o21
,

0.96

o22
,
0.00

o23
,
0.77

o24
,
0.82

o25
,
0.87

o26
,
0.08

o27
,
0.40

o28
,
0.26

o29
,
0.80

o30
,
0.43

o31
,
0.91

o32
,

0.18

o33
,
0.26

o34
,
0.15

o35
,
0.14

o36
,
0.87

o37
,
0.58

o38
,
0.55

o39
,
0.14

o40
,
0.85

o41
,
0.62

o42
,
0.35

o43
,

0.51

o44
,
0.40

o45
,
0.08

o46
,
0.24

o47
,
0.12

o48
,
0.18

o49
,
0.24

o50
,
0.42

o51
,
0.05

o52
,
0.90

o53
,
0.94

o54
,

0.49

o55
,
0.49

o56
,
0.34

o57
,
0.90

o58
,
0.37

o59
,
0.11

o60
,
0.78

o61
,
0.39

o62
,
0.24

o63
,
0.40

o64
,
0.10

o65
,

0.13

o66
,
0.94

o67
,
0.96

o68
,
0.58

o69
,
0.06

o70
,
0.23

o71
,
0.35

o72
,
0.82

o73
,
0.02

o74
,
0.04

o75
,
0.17

o76
,

0.65

o77
,
0.73

o78
,
0.65

o79
,
0.45

o80
,
0.55

o81
,
0.30

o82
,
0.74

o83
,
0.19

o84
,
0.69

o85
,
0.18

o86
,
0.37

o87
,

0.63

o88
,
0.78

o89
,
0.08

o90
,
0.93

o91
,
0.78

o92
,
0.49

o93
,
0.44

o94
,
0.45

o95
,
0.31

o96
,
0.51

o97
,
0.51

o98
,

0.82

o99
,
0.79

o100
}

By K-medoids method and choosing 13 clusters, we have the results of Table8.

3 Relations on Bags and Fuzzy Bags

Let Pi and Oi be the sets of properties and objectives for all i ∈ In , respectively. We
have the following results.

Definition 11 ([10]) An n-dimensional bag is the pair Bl = (l, Bl) where,

l : �i∈In Pi → �i∈InP(Oi )

and
Bl = {((p1, . . . , pn), card(l(p1, . . . , pn)))|pi ∈ Pi , i ∈ In}.

It should bementioned that inwhat follows, for convenience,weuse both notations
� and × for Cartesian product.
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Table 9 Values of ( f1 × f2)((p1, p2))

(p1, p2) ( f1 × f2)((p1, p2))

(male, 18) {A,C,D,E,G,H, I, J,K} × {B, J}
(male, 19) {A,C,D,E,G,H, I, J,K} × {E,K,L}
(male, 20) {A,C,D,E,G,H, I, J,K} × {A,D}
(male, 21) {A,C,D,E,G,H, I, J,K} × {I}
(male, 22) {A,C,D,E,G,H, I, J,K} × {C,F,G,H,M}
(female, 18) {B,F,L,M} × {B, J}
(female, 19) {B,F,L,M} × {E,K,L}
(female, 20) {B,F,L,M} × {A,D}
(female, 21) {B,F,L,M} × {I}
(female, 22) {B,F,L,M} × {C,F,G,H,M}

Definition 12 ([10]) Let B fi ∈ B(Pi , Oi ) for all i ∈ In . Define bag �i∈InB fi =
(�i∈In fi , B�i∈In fi ) as the Cartesian product of {B fi }i∈In which is called Cn-bag.
Where, (�i∈In fi )((p1, . . . , pn)) = �i∈In fi (pi ) as the Cartesian product of n sets
and

B�i∈In fi = {((p1, . . . , pn), card(�i∈In fi (pi ))|pi ∈ Pi , for all i ∈ In}.

Note that by Definition 1, B�i∈In fi = �i∈InB fi .

Theorem 3 ([10]) Cn-bag B�i∈In fi is an n-dimensional bag.

Example 8 ([10]) Let O = {A,B,C,D,E,F,G,H, I, J,K,L,M}, P1 =
{male, female} and P2 = {18, 19, 20, 21, 22}. Let B f1 ∈ B(P1, O) and B f2 ∈
B(P2, O), where

f1(male) = {A,C,D,E,G,H, I, J,K}, f1(female) = {B,F,L,M},
f2(18) = {B, J}, f2(19) = {E,K,L}, f2(20) = {A,D},
f2(21) = {I}, f2(22) = {C,F,G,H,M}.

Hence, theC2-bag ofB f1 andB f2 isB f1× f2 = ( f1 × f2, B f1× f2), where the values
of ( f1 × f2)((p1, p2)) are as in Table9. So, according to Table9, B f1× f2 is as follows.

B f1× f2 ={((male, 18), 18), ((male, 19), 27), ((male, 20), 18), ((male, 21), 9),

((male, 22), 45), ((female, 18), 8), ((female, 19), 12), ((female, 20), 8),

((female, 21), 4), ((female, 22), 20)}

Definition 13 Let B fi ∈ B(Pi , Oi ) for all i ∈ In and O = ∪i∈In Oi . Define bag con-
junctive Cartesian product of {B fi }i∈In , which is called Cc

n-bag, by
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Table 10 Values of ( f1 ×c f2)((p1, p2))

(p1, p2) ( f1 ×c f2)((p1, p2))

(male, 18) {J}
(male, 19) {E,K}
(male, 20) {A,D}
(male, 21) {I}
(male, 22) {C,G,H}
(female, 18) {B}
(female, 19) {L}
(female, 20) ∅
(female, 21) ∅
(female, 22) {F,M}

�c
i∈InB fi = (�c

i∈In fi , B
�c

i∈In fi ), (3)

where �c
i∈In fi : �i∈In Pi → P(O) such that (�c

i∈In fi )((p1, p2, . . . , pn)) =
∩i∈In fi (pi ) for all pi ∈ Pi . Also,

B�c
i∈In fi = {((p1, p2, . . . , pn), card(�i∈In fi (pi )))|pi ∈ Pi for all i ∈ In}.

Note that by Definition 1, �c
i∈InB fi = B�c

i∈In fi .

Definition 14 Let B fi ∈ B(Pi , Oi ) for all i ∈ In and O = ∪i∈In Oi . Define bag dis-
junctive Cartesian product of {B fi }i∈In , which is called Cd

n -bag, by

�d
i∈InB fi = (�d

i∈In fi , B
�d

i∈In fi ), (4)

where �d
i∈In fi : �i∈In Pi → P(O) such that (�d

i∈In fi )((p1, p2, . . . , pn)) =
∪i∈In fi (pi ) for all pi ∈ Pi . Also,

B�d
i∈In fi = {((p1, p2, . . . , pn), card(�i∈In fi (pi )))|pi ∈ Pi for all i ∈ In}.

Note that by Definition 1, �d
i∈InB fi = B�d

i∈In fi . Moreover, f i (pi ) ⊆ Oi ⊆ O for
all i ∈ In and thus, ∩i∈In is well defined.

Example 9 Let B f1 ∈ B(P1, O) and B f2 ∈ B(P2, O) be as in Example 8. The Cc
n-

bag of B f1 and B f2 is B f1×c f2 = ( f1 ×c f2, B f1×c f2), where the values of ( f1 ×c

f2)((p1, p2)) are as in Table10.
So, according to Table10, B f1×c f2 is as follows.
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B f1×c f2 ={((male, 18), 1), ((male, 19), 2), ((male, 20), 2), ((male, 21), 1),

((male, 22), 3), ((female, 18), 1), ((female, 19), 1), ((female, 20), 0),

((female, 21), 0), ((female, 22), 2)}.

Definition 15 ([10]) Fix Cn−bag B�n
i=1 fi . An n−ary bag relation is a sub bag of

Cn−bag B�n
i=1 fi which is denoted by B fR = ( fR, B fR ).

Example 10 ([10]) Consider C2−bag of Example 8. The bag, B fR = ( fR, B fR ), is
a 2−ary bag relation which introduces people who are older than twenty, where

fR((male, 20)) = {A,C,D,E,G,H, I, J,K} × {A,D},
fR((male, 21)) = {A,C,D,E,G,H, I, J,K} × {I},
fR((male, 22)) = {A,C,D,E,G,H, I, J,K} × {C,F,G,H,M},

fR((female, 20)) = {B,F,L,M} × {A,D},
fR((female, 21)) = {B,F,L,M} × {I},
fR((female, 22)) = {B,F,L,M} × {C,F,G,H,M}

and

B fR = {((male, 20), 18), ((male, 21), 9), ((male, 22), 45), ((female, 20), 8),

((female, 21), 4), ((female, 22), 20)}.

Definition 16 ([10]) Let Rn ⊆ �i∈InP(Oi ) and ln : �i∈In Pi → �i∈InP(Oi ). Then,
Bln

Rn
= (ln, B

ln
Rn

), where

Bln
Rn

= {((p1, . . . , pn), card(ln(p1, . . . , pn)))| ln(p1, . . . , pn) ∈ Rn}

is called the bag induced by Rn .

Example 11 ([10]) Let O1 = {mi |i ∈ I40} and O2 = {wi |i ∈ I40} where, mi , wi for
all i ∈ I40 are man and woman, respectively. Let R2 = {(mi , wi )|i ∈ I40} shows the
relation of “spouse”. Now, Table11 gives l2 : P1 × P2 → R2 ⊆ P(O1) × P(O2),
where P1 = P2 = {A, B, AB, O} is the set of all blood groups.

Thus, byDefinition 16,we canpresent this informationby the bagBl2
R2

= (l2, B
l2
R2

),

where Bl2
R2

is as follows.

Bl2
R2

= {((A, A), 3), ((A, B), 3), ((A, AB), 3), ((B, A), 5), ((B, B), 1),

((B, AB), 2), ((B, O), 3), ((AB, A), 4), ((AB, B), 2), ((AB, AB), 2),

((AB, O), 1), ((O, A), 3), ((O, B), 2), ((O, AB), 2), ((O, O), 4)}.
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Table 11 function l2
(p1, p2) l2(p1, p2)(o1, o2)

(A, A) {(m5, w5), (m11, w11), (m26, w26)}
(A, B) {(m4, w4), (m18, w18), (m36, w36)}
(A, AB) {(m12, w12), (m27, w27), (m39, w39)}
(A, O) ∅
(B, A) {(m8, w8), (m25, w25), (m28, w28), (m31, w31), (m35, w35)}
(B, B) {(m14, w14)}
(B, AB) {(m17, w17), (m23, w23)}
(B, O) {(m9, w9), (m20, w20), (m32, w32)}
(AB, A) {(m3, w3), (m22, w22), (m38, w38), (m40, w40)}
(AB, B) {(m6, w6), (m29, w29)}
(AB, AB) {(m2, w2), (m15, w15)}
(AB, O) {(m37, w37)}
(O, A) {(m10, w10), (m24, w24), (m30, w30)}
(O, B) {(m1, w1), (m19, w19)}
(O, AB) {(m13, w13), (m21, w21)}
(O, O) {(m7, w7), (m16, w16), (m33, w33), (m34, w34)}

Remark 4 ([10]) As a matter of fact, if people eat food that is not compatible with
their blood type, they will experience many health problems. On the other hand, if a
person eats food that is compatible, he/shewill be healthier [20]. Since an appropriate
diet can affect the unborn child’s health, giving a proposal of a special diet to spouses
can be helpful. Using the concept of relations on bags, one can screen all spouses
with the similar blood groups.

Now, we study relations on L-fuzzy bags and give some results about them. First,
we should review the concept of n-dimensional L-fuzzy bag.

Definition 17 ([10]) An n-dimensional L-fuzzy bag is the pair B̃l̃ = (l̃, Bl̃) where,

l̃ : �i∈In Pi → �i∈InFL(Oi )

and

Bl̃ = {((p1, . . . , pn), δ, card(Op1,...,pn
δ ))|pi ∈ Pi , i ∈ In, δ ∈ L , Op1,...,pn

δ }.

where, Op1,...,pn
δ = {(o1, . . . , on) ∈ �i∈In Oi |l̃(p1, . . . , pn)(o1, . . . , on) = δ}.

Notation 3 ([10]) In the sequel, we use notation FL(O)n for
FL(O) × FL(O) × · · · × FL(O)︸ ︷︷ ︸

n−t imes

.
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Definition 18 ([10]) Let B̃ f̃i ∈ B̃L(Pi , Oi ) for all i ∈ In . Define L-fuzzy bag Carte-
sian product of {B̃ f̃i }i∈In , which is called Cn-L-fuzzy bag, by

�n
i=1B̃ f̃i = (�n

i=1 f̃i , B
�n

i=1 f̃i ).

where, (�n
i=1 f̃i )((p1, . . . , pn)) = �n

i=1 f̃i (pi ) is the Cartesian product of n L-fuzzy
sets and

B�n
i=1 f̃i = {((p1, . . . , pn), δ, card(Op1,...,pn

δ ))|pi ∈ Pi , i ∈ In, δ ∈ L , Op1,...,pn
δ },

and Op1,...,pn
δ = {(o1, . . . , on) ∈ �n

i=1Oi |min{ f̃1(p1)(o1), . . . , f̃n(pn)(on)} = δ}.
Note that by Definition 6, B�n

i=1 f̃i = �n
i=1B f̃i .

Theorem 4 ([10]) Cn-L-fuzzy bag is an n-dimensional L-fuzzy bag.

An example of a 2-dimensional L-fuzzy bag is given in the following example.

Example 12 ([10]) Consider the fuzzy bags of Examples 3 and 4. The C2-fuzzy bag
of B̃ f̃ and B̃g̃ is B̃ f̃ ×g̃ = ( f̃ × g̃, B f̃ ×g̃), where the values of ( f̃ × g̃)((p1, p2)) are
as in Table12. According to Table12, B f̃ ×g̃ can be easily given.

Definition 19 Let B̃ f̃i ∈ B̃L(Pi , Oi ) for all i ∈ In and O = ∪i∈In Oi . Define L-fuzzy
bag conjunctive Cartesian product of {B̃ f̃i }i∈In , which is called Cc

n-L-fuzzy bag, by

�c
i∈In B̃ f̃i = (�c

i∈In f̃i , B
�c

i∈In f̃i ), (5)

where �c
i∈In f̃i : �i∈In Pi → FL(O) is such that (�c

i∈In f̃i )((p1, p2, . . . , pn)) =
∩i∈In f̃i (pi ) for all pi ∈ Pi . Also,

B�c
i∈In f̃i = {((p1, p2, . . . , pn), δ, card(Op1,p2,...,pn

δ ))|pi ∈ Pi , δ ∈ L},

where Op1,p2,...,pn
δ = {o ∈ O|(�d

i∈In f̃i )((p1, p2, . . . , pn))(o) = δ}.

Note that by Definition 6, �d
i∈In B̃ f̃i = B̃�d

i∈In f̃i .

Definition 20 Let B̃ f̃i ∈ B̃L(Pi , Oi ) for all i ∈ In and O = ∪i∈In Oi . Define L-fuzzy
bag disjunctive Cartesian product of {B̃ f̃i }i∈In , which is called Cd

n -L-fuzzy bag, by

�d
i∈In B̃ f̃i = (�d

i∈In f̃i , B
�d

i∈In f̃i ), (6)

where �d
i∈In f̃i : �i∈In Pi → FL(O) such that (�d

i∈In f̃i )((p1, p2, . . . , pn)) =
∪i∈In f̃i (pi ) for all pi ∈ Pi . Also,
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Table 13 The values of ( f̃ ×c g̃)((p1, p2))(o) with minimum
(p1, p2) o

Ben Sue Tom John Stan Bill Kim Ana Sara

(young, tall) 0.8 0.6 0.4 0.1 0.8 0.6 0.5 0.7 0.5

(young, medium) 0.7 0.2 0.4 0.6 0.7 0.4 0.8 0.7 0.5

(young, short) 0.7 0.2 0.9 0.4 0.7 0.4 0.2 0.7 0.1

(middle age, tall) 0.8 0.8 0.7 0.3 0.8 0.7 0.8 0.7 0.5

(middle age, medium) 0.3 0.8 0.7 0.6 0.3 0.7 0.8 0.3 0.5

(middle age, short) 0.3 0.8 0.9 0.4 0.3 0.7 0.8 0.3 0.5

(old, tall) 0.8 0.6 0.1 0.9 0.8 0.6 0.5 0.7 0.5

(old, medium) 0.3 0.2 0.1 0.9 0.3 0.1 0.8 0.1 0.5

(old, short) 0.1 0.2 0.9 0.9 0.1 0.1 0.2 0.1 0.5

Table 14 The values of ( f̃ ×c g̃)((p1, p2))(o) with product
(p1, p2) o

Ben Sue Tom John Stan Bill Kim Ana Sara

(young, tall) 0.56 0.12 0.0 0.0 0.56 0.24 0.1 0.49 0.05

(young, medium) 0.21 0.02 0.04 0.0 0.21 0.04 0.01 0.49 0.05

(young, short) 0.07 0.0 0.36 0.0 0.07 0.0 0.04 0.0 0.01

(middle age, tall) 0.21 0.24 0.0 0.03 0.24 0.42 0.4 0.21 0.25

(middle age, medium) 0.09 0.08 0.07 0.18 0.09 0.07 0.16 0.03 0.25

(middle age, short) 0.03 0.0 0.63 0.12 0.03 0.0 0.16 0.0 0.05

(old, tall) 0.08 0.12 0.0 0.09 0.08 0.06 0.10 0.07 0.25

(old, medium) 0.03 0.02 0.01 0.54 0.03 0.01 0.16 0.01 0.25

(old, short) 0.1 0.0 0.09 0.36 0.01 0.0 0.04 0.0 0.05

B�d
i∈In f̃i = {((p1, p2, . . . , pn), δ, card(Op1,p2,...,pn

δ ))|pi ∈ Pi , δ ∈ L},

where Op1,p2,...,pn
δ = {o ∈ O|(�d

i∈In f̃i )((p1, p2, . . . , pn))(o) = δ}.

Note that by Definition 6, �d
i∈In B̃ f̃i = B̃�d

i∈In f̃i .

Remark 5 Definitions 19 and 20 can be defined with t-norm T or t-conorm S,
see [7], instead of minimum or maximum, respectively, i.e. we can consider
T ( f̃1(p1)(o), . . . , f̃n(pn)(o)) and S( f̃1(p1)(o), . . . , f̃n(pn)(o)) for all o ∈ O ,
respectively.

Example 13 Consider the fuzzy bags of Examples 3 and 4. The Cc
n-L-fuzzy bag of

B̃ f̃ and B̃g̃ is B̃ f̃ ×c g̃ = ( f̃ ×c g̃, B f̃ ×c g̃), where the values of ( f̃ ×c g̃)((p1, p2)) for
three different t-norms are given in Tables13, 14 and 15. It is easy to write B̃ f̃ ×d g̃

using the tables.

Definition 21 ([10]) FixCn−L-fuzzy bagB�i∈In f̃i . Ann−aryL-fuzzy bag relation is
a L-fuzzy sub bag ofCn−L-fuzzy bagB�i∈In f̃i which is denoted by B̃ f̃ R = ( f̃ R, B f̃R ).
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Table 15 The values of ( f̃ ×c g̃)((p1, p2))(o) with Lukasiewicz t-norm
(p1, p2) o

Ben Sue Tom John Stan Bill Kim Ana Sara

(young, tall) 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.4 0.0

(young, medium) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(young, short) 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0

(middle age, tall) 0.1 0.4 0.0 0.0 0.1 0.3 0.3 0.0 0.0

(middle age, medium) 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0

(middle age, short) 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0

(old, tall) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(old, medium) 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0

(old, short) 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0

Definition 22 ([10]) Let R̃n ⊆ �i∈InFL(Oi ) and l̃n : �i∈In Pi → �i∈InFL(Oi ).

Then, Bl̃n
R̃n

= (l̃n, B
l̃n
R̃n

) is the fuzzy bag induced by R̃n and l̃n . Where,

Bl̃n
R̃n

= {((p1, . . . , pn), δ, card(Op1,...,pn
δ,l̃n

))| pi ∈ Pi , i ∈ In, δ ∈ L}

and Op1,...,pn
δ,l̃n

= {(o1, . . . , on) ∈ �i∈In Oi |l̃((p1, . . . , pn))(o1, . . . , on) = δ, l̃n

((p1, . . . , pn)) ∈ R̃n}.
Example 14 ([10]) Let L = [0, 1], O be as in Example 4 and R2 = {(o1, o2)|o1, o2 ∈
O, o1 = o2}. Now, let Table16 gives l̃2 : P1 × P2 → R̃2 ⊆ F(O)2, where P1 =
{young,middle age, old} and P2 = {tall,medium, short}.

Thus, by Definition 22, we can present this information by the fuzzy bag Bl̃2
R̃2

=
(l̃2, B

l̃2
R̃2

), where Bl̃2
R̃2

can be easily given using information of Table16.

4 Alpha-Cuts of L-Fuzzy Bags

The notion of α-cut plays a fairly big role in the fuzzy theory. So, in this section, we
define this notion for the bags. Here are some notations.

Notation 4 ([12]) If α ∈ L , then ↑ α = {c ∈ L|c ≥ α}. Thus, ↑ is a mapping from
L into P(L) and ↑ α is called the up set of α.

Definition 23 ([10]) The α-cut of an L-fuzzy bag B̃ f̃ = ( f̃ , B f̃ ) ∈ B̃L(P, O) is
defined as the crisp bag (B̃ f̃ )α = ( f̃α, B f̃α ), where for all p ∈ P

f̃α(p) = f̃ (p)−1(↑ α),

for all α ∈ L .
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Theorem 5 ([10]) Let B̃ f̃ and B̃g̃ ∈ B̃L(P, O). If B f̃α = Bg̃α for all α ∈ L, then
B̃ f̃ = B̃g̃ .

Thus, we have the following situation. A function f̃ (p) : O → L induces a func-
tion f̃ (p)−1 ↑: L → P(O). We already know from the Theorem 5 that associating
f̃ (p) with the function f̃ (p)−1 ↑ is an injection.

Theorem 6 ([10]) Let L be a complete lattice, FL(O) be the set of all mappings
from O to L, and L(O) be the set of all mappings g : L → P(O) such that for all
subsets D of L,

g(∨D) = ∩d∈Dg(d).

Then, the mapping � : FL(O) → L(O) given by �( f̃ (p)) = f̃ (p)−1 ↑ is a bijec-
tion.

In the case of fuzzy bags, we study them more specifically see the following.

Definition 24 ([10]) Let α ∈ [0, 1]. Then, α-cut of fuzzy bag B̃ f̃ ∈ B̃(P, O) is a
crisp bag (B̃ f̃ )α = ( f̃α, B f̃α ) where, f̃α : P → P(O) is a function in which for all
p ∈ P , f̃α(p) = {o ∈ O| f̃ (p)(o) � α} and

B f̃α = {(p, card( f̃α(p)))|p ∈ P}.

Definition 25 ([10]) Let α ∈ [0, 1]. Then, strong α-cut of fuzzy bag B̃ f̃ ∈ B̃(P, O)

is the crisp bag (B̃ f̃ )α� = ( f̃α� , B f̃α� ) where, f̃α� : P → P(O) is a function which
for all p ∈ P , f̃α�(p) = {o ∈ O| f̃ (p)(o) > α} and

B f̃α� = {(p, card( f̃α�(p)))|p ∈ P}.

Note that by Definition 1, we have B f̃α = (B̃ f̃ )α and B f̃α� = (B̃ f̃ )α� .

Notation 5 ([10]) For all p ∈ P , we set
f̃[α,β)(p) = {o ∈ O|α ≤ f̃ (p)(o) < β} and
f̃(α,β](p) = {o ∈ O|α < f̃ (p)(o) ≤ β}.
Some useful results for the fuzzy bags are given in the next theorem.

Theorem 7 ([10]) Let B̃ f̃ , B̃g̃ ∈ B̃(P, O), α, β ∈ [0, 1] and α � β.

(i) B f̃β� �̃B f̃β �̃B f̃α� �̃B f̃α ,
(ii) B f̃α = B f̃β if and only if B f̃[α,β) = B0,
(iii) B f̃α� = B f̃β� if and only if B f̃(α,β] = B0,
(iv) (B̃ f̃ ∪ B̃g̃)α = B f̃α ∪ Bg̃α and (B̃ f̃ ∪ B̃g̃)α� = B f̃α� ∪ Bg̃α� ,
(v) (B̃ f̃ ∩ B̃g̃)α = B f̃α ∩ Bg̃α and (B̃ f̃ ∩ B̃g̃)α� = B f̃α� ∩ Bg̃α� .

In the following example, we compute α-cuts of a fuzzy bag.
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Table 17 The values of f̃α(p) for Example 15

α p

Young Middle age Old

0.0 O O O

0.1 O \ {John} O O

0.2 O \ {John,Sara} O {Sue, John,Kim,Sara}
0.3 O \ {Sue, John,Kim,Sara} O {John,Sara}
0.4 O \ {Sue, John,Kim,Sara} {Sue,Tom,Bill,Kim,Sara} {John,Sara}
0.5 {Ben,Stan,Ana} {Sue,Tom,Bill,Kim,Sara} {John,Sara}
0.7 {Ben,Stan,Ana} {Sue,Tom,Bill,Kim} {John}
0.8 ∅ {Sue,Kim} {John}
0.9 ∅ ∅ {John}

Example 15 ([10]) Consider the fuzzy bag of Example 3.We compute α-cuts,B f̃α =
( f̃α, B f̃α ). Where, f̃α(p) is presented in Table17 and B f̃α is as follows

B f̃0 = {(young, 9), (middle age, 9), (old, 9)}, B f̃0.1 = {(young, 8), (middle age, 9), (old, 9)},
B f̃0.2 = {(young, 7), (middle age, 9), (old, 4)}, B f̃0.3 = {(young, 5), (middle age, 9), (old, 2)},
B f̃0.4 = {(young, 5), (middle age, 5), (old, 2)}, B f̃0.5 = {(young, 3), (middle age, 5), (old, 2)},
B f̃0.7 = {(young, 3), (middle age, 4), (old, 1)}, B f̃0.8 = {(middle age, 2), (old, 1)},
B f̃0.9 = {(old, 1)}.

Definition 26 ([10]) LetB f ∈ B(P, O) and α ∈ [0, 1].We define fuzzy bag ˜αB f =
B̃α̃ f = (α̃ f , B α̃ f ). Where,

α̃ f (p)(o) = min(α, χ f(p) (o)) = αχ f(p) (o),

for all o ∈ O and p ∈ P .

Theorem 8 ([10]) Let B̃ f̃ be a fuzzy bag and let B f̃α be α-cut of B̃ f̃ . Then,

B̃ f̃ =
⋃

α∈[0,1]
α̃B f̃α

.

Theorem 9 ([10]) Let B̃ f̃ be a fuzzy bag and let B f̃α� be a strong α-cut of B̃ f̃ . Then,

B̃ f̃ =
⋃

α∈[0,1]
α̃B f̃α�

.
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Theorem 10 ([10]) Let B̃ f̃ ∈ B̃(P, O) and {Bg̃α |α ∈ [0, 1]} be a class of elements
of B(P, O) such that B f̃α� � Bg̃α � B f̃α . Then,

B̃ f̃ =
⋃

α∈[0,1]
α̃Bg̃α

.

Theorem 11 ([10]) Let {Bgα |α ∈ [0, 1]} be a class of elements of B(P, O). There
exists B̃ f̃ ∈ B̃(P, O) such that for all α ∈ [0, 1], B f̃α = Bgα if and only if for all
α, β ∈ [0, 1] such that α ≤ β, Bgβ � Bgα and Bg0 = B1.

So far, L-fuzzy bags and some basic concepts relevant to them are given. In the
next section, the algebraic structure of the L-fuzzy bags is studied.

5 Algebraic Structure of Bags and L-Fuzzy Bags

In this section, we study the algebraic structure of bags and L-fuzzy bags. Let � and
B(P, O) be as in Notation 1 and Definition 4. We have the following results. For
terminology of this section, see [12].

Corollary 1 ([9]) (B(P, O),∪,∩,c ,B0,B1) is a De Morgan algebra.

Theorem 12 ([9]) (B(P, O),∪,∩,c ,B0,B1) is a complete Boolean algebra.

Hence, the set of all bags equipped with the proposed order is a complete Boolean
algebra. Now, let B̃L(P, O) and �̃ be as in Notation 2 and Definition 9.

Theorem 13 ([10]) (B̃L(P, O), �̃) is a bounded distributive lattice.

Definition 27 ([12]) Let X be a bounded lattice and let x ∈ X . Then, an element x∗
is a pseudocomplement of x if x ∧ x∗ = 0 and y ≤ x∗ whenever x ∧ y = 0. That is,
for each x ∈ X , there is a unique largest element whose meet with x is 0.

Theorem 14 ([10]) (B̃L(P, O),∪,∩,B0,B1) is pseudocomplemented.

An element in a bounded lattice has at most one pseudocomplement since two
pseudocomplements must each be less or equal to the other and hence equal. If every
element has a pseudocomplement then the bounded lattice is pseudocomplemented
and the unary operation ∗ is called a pseudocomplement. The equation x∗ ∨ x∗∗ = 1
is called Stone’s identity and a Stone algebra is a pseudocomplemented distributive
lattice satisfying this identity [12].

Definition 28 ([12]) If (S,∨,∧,∗ , 0, 1) is a Stone algebra, then for S∗ = {s∗ ∈
S|s ∈ S}, (S∗,∨,∧,∗ , 0, 1) is a Boolean algebra and it is called center of S.

Theorem 15 ([10]) (B̃L(P, O),∪,∩,∗ ,B0,B1) is a Stone algebra whose center
consists of the bags in B(P, O).
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Here, consider FL(O)n as in Notation 3. We have the following order on it.

Definition 29 ([10]) Let ( Ã1, Ã2, . . . , Ãn), (B̃1, B̃2, . . . , B̃n) ∈ FL(O)n . Then,
( Ã1, Ã2, . . . , Ãn)�̃(B̃1, B̃2, . . . , B̃n) if and only if Ãi ⊆̃B̃i for all i ∈ In .

Note that since FL(O) is a Stone algebra, FL(O)n is so as well [12]. The next
theorem shows that the lattice of all L-fuzzy bags is isomorphic to the lattice of
n-Cartesian product of FL(O).

Theorem 16 ([10]) B̃L(P, O) is isomorphic to FL(O)n, where n = card(P).

Now, let B̃ f̃ , B̃g̃ ∈ B̃L(P, O) and n = card(P). Then, by Definition 9, B̃ f̃ �̃B̃g̃ if
and only if f̃ (p)⊆̃g̃(p) for all p ∈ P . Thatmeans B̃ f̃ �̃B̃g̃ if and only if f̃ (pi )⊆̃g̃(pi )
for all i ∈ In if and only if 	(B̃ f̃ )�̃	(B̃g̃). Since 	 is one to one and onto, 	 is an
order isomorphism and thus a lattice isomorphism. So, B̃L(P, O) is a Stone algebra
as already observed in Theorem 15.

6 Concluding Remarks

The notions of bags, L-fuzzy bags and some of their applications in which L is a
complete lattice have been given. Furthermore, the concepts of α-cuts, (L-fuzzy) bag
relations and related theorems were given and by some examples, these definitions
have been illustrated. Finally, the algebraic structure of bags and L-fuzzy bags have
been studied.
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A Perspective on Differences Between
Atanassov’s Intuitionistic Fuzzy Sets
and Interval-Valued Fuzzy Sets

Eulalia Szmidt and Janusz Kacprzyk

Abstract In the paper we show our perspective on some differences between
Atanassov’s intuitionistic fuzzy sets (A-IFSs, for short) and Interval-valued fuzzy
sets (IVFSs, for short). First, we present some standard operators and extensions for
the A-IFSs which have no counterparts for IVFSs. Next, we show on an example
a practical application based on one of such operators. We also revisit, and further
analyze, the concepts of two possible representations of A-IFSs: the two term one,
in which the degrees of membership and non-membership are only involved, and
the three term one, in which in addition to the above degrees of membership and
non-membership the so called hesitation margin is explicitly accounted for. Though
both representations are mathematically correct and may be considered equivalent,
the second one involves explicitly an additional, conceptually different information
than the degree of membership and non-membership only even if it directly results
from these two degrees. We then show on some examples of decision making type
problems its intuitive appeal and usefulness for reflecting more sophisticated inten-
tions and preferences of the user which cannot be fully reflected via their counterpart
IVFSs based models. Finally, we recall different measures that are important from
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1 Introduction

Atanassov’s intuitionistic fuzzy sets (Atanassov [1, 5, 7]), which are a generaliza-
tion of fuzzy sets (Zadeh [57]), have found numerous applications in various areas.
Their ability to better reflect human intentions, preferences, constraints, etc. is due
to an ability to reflect an additional type of uncertainty related to a “pro” and “con”
type representation both via a degree of membership, as in the case of traditional
fuzzy sets, and also via a degree of non-membership. Such an approach follows other
modern approaches based on some sort of bipolarity in judgments, evaluations, etc.
(cf. Dubois and Prade [16], Grabisch, Greco and Pirlot [18]. The introduction of
both a degree of membership and non-membership – which, by definition, do not
need to sum up to 1 – results in the existence of an inherent degree of a lack of
knowledge which is equal to how much the sum of the degree of membership and
non-membership differs from 1, and which is called a hesitation margin. It is worth
emphasizing that though the hesitationmargin is a direct result of the degree of mem-
bership and non-membership, and can be viewed by a pure mathematical argument
as irrelevant, it conveys a very relevant information that can be used in all kind soft
human centric applications, especially decision making.

It is noteworthy that the A-IFSs can be considered to be a tool for grasping many
aspects of uncertainty that are relevant for our purposes. First, they can represent the
fuzziness because of the degree of membership and non-membership. Second, the
hesitation margin can represent a lack of knowledge. Finally, the three degrees com-
bined, that is, the membership, non-membership and hesitation, can indirectly rep-
resent uncertainty related to repetitive random events (cf. Szmidt and Kacprzyk [28,
29]).

In the literature there are two ways of constructing models using the A-IFS tools
and techniques: using the two terms only, i.e. the degree of membership and non-
membership (e.g., Atanassov [5]) or all three terms, i.e. the membership and non-
membership degree and the hesitation margin (e.g., Szmidt and Kacprzyk [30, 32],
Tasseva et al. [56], Atanassov et al. [9], Szmidt and Baldwin [24, 25], Deng and
Feng [15], Tan and Zhang [55], Narukawa and Torra [21]). Both ways are equally
correct from the mathematical point of view. Just to give an example, while consid-
ering distances, which are crucial in many theoretical analyses and applications, no
matter if we use two or three terms describing the A-IFSs, all necessary and sufficient
conditions of the distance are fulfilled. The reason can be stated as to be related to
the fact that these analyses are related more to the syntactic than semantic aspects.
However, the situation changes when we are concerned with applications because
the use of the three term representation may easily be shown to provide a new insight
and hence results; this can be implied by the fact that semantic aspects are more
relevant in that case.

In spite of the fact that in the models based on the use of the A-IFSs almost always
the degree of membership and non-membership are applied, sometimes the A-IFSs
are said to be equal to the interval-valued fuzzy sets (IVFSs) as formally A-IFSs can
be presented via the intervals. This may be equivalent from a formal point of view,



A Perspective on Differences Between … 223

but differs in terms of the very meaning. This is the motivation of our paper – to show
some differences between A-IFSs and IVFSs going beyond a purely formal analysis.

We start from the presentation of some operators and extensions of the A-IFSs
which have not counterparts for the IVFSs.

Next, we consider intervals which formally can be employed to represent the
A-IFSs. We consider the two term and the three term representations of the A-IFSs
with their corresponding interval interpretations. Simple examples show that the
three term A-IFS representation, as opposed to the two term A-IFS representation,
makes it possible to explicitly consider different “scenarios” of an uncertain future
which is not possible for IVFSs. We show that the two term representation of A-IFSs
can be expressed by one interval, whereas the three term representation of A-IFSs,
while looking for it counterpart in terms of intervals, should be expressed by two
intervals (which is obviously different than in the case of the IVFSs).

Next, we examine some selected measures that are important from the decision
making point of view. The distance measures were our first object of interest due to
their general relevance. The calculation of the distances, in particular by examining
the correctness of someHausdorff distances using the two approaches to represent the
A-IFSs, clearly indicates that the three term A-IFS representation is a more reliable
choice. Remember that the three term A-IFS representation can be expressed via two
intervals, i.e., in a different way than for the IVFSs approach for which only one
interval is considered.

Similar conclusions about advantages of the three term representation of the
A-IFSs and the influence of each of the three terms while considering the distances,
remain valid for the Pearson correlation coefficient (Szmidt and Kacprzyk [39]),
Spearman correlation coefficient (Szmidt and Kacprzyk [40]), Kendall correlation
coefficient (Szmidt and Kacprzyk [43, 44]), Principal Component Analysis (Szmidt
andKacprzyk [46], Szmidt et al. [48]), rankingprocedures (Szmidt andKacprzyk [35,
36, 38]), construction of a classifier for imbalanced and overlapping classes (cf.
Szmidt andKukier [52–54]), construction of the intuitionistic fuzzy trees (Bujnowski
et al. [11]), etc.

It is worth stressing again that not only the three type representation of A-IFSs
but also the two type representation differs from IVFSs because: we collect data in
a different way, look for different answers, and use different types of operators for
both kinds of models.

2 A Brief Introduction to A-IFSs

One of the possible generalizations of a fuzzy set in X (Zadeh [57]) given by

A
′ = {< x,μA′ (x) > |x ∈ X} (1)

where μA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A
′
, is an A-IFS

(Atanassov [1, 5, 7]) A is given by



224 E. Szmidt and J. Kacprzyk

A = {< x,μA(x), νA(x) > |x ∈ X} (2)

where: μA : X → [0, 1] and νA : X → [0, 1] such that

0<μA(x) + νA(x)< 1 (3)

and μA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-
membership of x ∈ A, respectively. (An approach to the assigning memberships and
non-memberships for A-IFSs from data is proposed by Szmidt and Baldwin [26]).

Obviously, each fuzzy set may be represented by the following A-IFS:
A = {< x,μA′ (x), 1 − μA′ (x) > |x ∈ X}.

An additional concept for each A-IFS in X , that is not only an obvious result of
(2) and (3) but which is also relevant for applications, we will call (Atanassov [5])

πA(x) = 1 − μA(x) − νA(x) (4)

a hesitation margin of x ∈ A which expresses a lack of knowledge of whether x
belongs to A or not (cf. Atanassov [5]). It is obvious that 0<πA(x)< 1, for each
x ∈ X .

The hesitation margin turns out to be important while considering the distances
(Szmidt and Kacprzyk [27, 30, 32], entropy (Szmidt and Kacprzyk [31, 33]), simi-
larity (Szmidt and Kacprzyk [34]) for the A-IFSs, etc. i.e., the measures that play a
crucial role in virtually all information processing tasks (Szmidt [23]).

The hesitation margin turns out to be relevant for applications – in image process-
ing (cf. Bustince et al. [12, 13]), the classification of imbalanced and overlapping
classes (cf. Szmidt and Kukier [52–54]), the classification applying intuitionistic
fuzzy trees (cf. Bujnowski [11]), group decision making (e.g., [10]), genetic algo-
rithms [22], negotiations, voting and other situations (cf. Szmidt and Kacprzyk
papers).

2.1 Two and Three Term Representations of A-IFSs

In our previous works (e.g., Szmidt [23], Szmidt and Kacprzyk [30, 47, 50]) we have
analyzed in detail both types of representations of the A-IFSs, i.e., using two and
three terms.We have also presented geometrical representations for both approaches.
Here, because of limited space, we only remind briefly the idea.

The two term representation of the A-IFSs means that only the membership value
μ and non-membership value ν are taken into account assuming (correctly) that we
know the value of the third term π from (4) as π(.) = 1 − μ(.) − ν(.). However, the
fact that π can be directly calculated does not mean that it should be omitted in the
formulas. It will be elaborated upon later.

The three term representation of the A-IFSs means that the membership value
μ, non-membership value ν, and the value of the hesitation margin π are explicitly
taken into account.
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3 Operations and Extensions Specific to the A-IFSs
but Not IVFSs

The A-IFSs can be viewed as a direct generalization of the fuzzy sets, but their
theory comprises some modal operators that have no equivalents in the traditional
fuzzy logic (cf. Atanassov [5–7]). Over the A-IFSs (and only for them, in particular
not for the IVFSs) the modal operators of necessity and possibility are introduced.

Foe each A-IFS A Atanassov [5–7] introduced:

• the necessity operator:

A = {〈x,μA(x), 1 − μA(x)〉|x ∈ X}, (5)

• the possibility operator:

♦A = {〈x, 1 − νA(x), νA(x)〉|x ∈ X}. (6)

However, if A is an ordinary fuzzy set, then due to Atanassov [5–7]:

A = A = ♦A. (7)

The equalities (7) show that these operators do not have analogues in the case of
fuzzy sets. On the other hand, for the A-IFSs, (7) is not fulfilled, i.e., the operators do
not give the same results. Moreover, these two operators are extended (cf. Atanassov
[5]) to many other modal-type operators over the IFSs which have no analogues
either in the IVFS theory or in modal logic (cf. Atanassov [5–7]). The first group of
the extended modal operators are the following:

Dα(A) = {〈x,μA(x) + α.πA(x), νA(x) + (1 − α).πA(x)〉|x ∈ X}, (8)

Fα,β(A) = {〈x,μA(x) + α.πA(x), νA(x) + β.πA(x)〉|x ∈ X} (9)

Gα,β(A) = {〈x,α.μA(x),β.νA(x)〉|x ∈ X}, (10)

Hα,β(A) = {〈x,α.μA(x), νA(x) + β.πA(x)〉|x ∈ X}, (11)

H∗
α,β(A) = {〈x,α.μA(x), νA(x) + β.(1 − α.μA(x) − νA(x))〉|x ∈ X}, (12)

Jα,β(A) = {〈x,μA(x) + α.πA(x),β.νA(x)〉|x ∈ X}, (13)

J ∗
α,β(A) = {〈x,μA(x) + α.(1 − μA(x) − β.νA(x)),β.νA(x)〉|x ∈ X}, (14)

where α,β ∈ [0, 1] and α + β ≤ 1.
The above operators are extended to the operators (cf. Atanassov [5, 7]):
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dα(A) = {〈x, νA(x) + α.πA(x),μA(x) + (1 − α).πA(x)〉|x ∈ X}, (15)

fα,β(A) = {〈x, νA(x) + α.πA(x),μA(x) + β.πA(x)〉|x ∈ X}, (16)

gα,β(A) = {〈x,α.νA(x),β.μA(x)〉|x ∈ X}, (17)

hα,β(A) = {〈x,α.νA(x),μA(x) + β.πA(x)〉|x ∈ X}, (18)

h∗
α,β(A) = {〈x,α.νA(x),μA(x) + β.(1 − α.νA(x) − μA(x))〉|x ∈ X}, (19)

jα,β(A) = {〈x, νA(x) + α.πA(x),β.μA(x)〉|x ∈ X}, (20)

j∗
α,β(A) = {〈x, νA(x) + α.(1 − νA(x) − β.μA(x)),β.μA(x)〉 (21)

Pα,β(A) = {〈x,max(α,μA(x)),min(β, νA(x))〉|x ∈ X}, (22)

Qα,β(A) = {〈x,min(α,μA(x)),max(β, νA(x))〉|x ∈ X}, (23)

where α + β ≤ 1.
For other extensions of the modal operators we refer an interested reader to

Atanassov’s [5, 7] works. What is worth stressing, the presented operators are not
considered for the IVFSs.

Another kind of operators defined over the A-IFSs are the topological operators
(cf. Atanassov [2]) which are analogous of the operators of closure C and interior
I from topology (e.g. [19]). In [3] relations between the modal and the topological
operators over the A-IFSs were studied.

Definition 1 ([2]) For each A-IFS A, we define:

C(A) = {〈x, K , L〉|x ∈ E} (24)

where:

K = max
y∈E

μA(y)

L = min
y∈E

νA(y)

and
I (A) = {〈x, k, l〉|x ∈ E} (25)

where:

k = min
y∈E

μA(y)

l = max
y∈E

νA(y)
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In the area of IVFSs neither modal nor topological operators exist.
The A-IFSs being a generalization of fuzzy sets are, in turn, generalized, too. One

of the generalizations of the A-IFSs are the intuitionistic L-fuzzy sets in which the
values of functions μ and ν are elements of some fixed lattice L. Another extension
of the A-IFSs are the A-IFSs of type 2, for which (3) is replaced by

0 ≤ μA(x)
2 + νA(x)

2 ≤ 1 (26)

Another generalization of the A-IFS are the so called temporal A-IFSs (cf. [4]).
It was not our goal to study here either all operations or extensions of the A-IFSs

but to stress that the A-IFSs are different from the IVFSs just from this point of view
as the respective operators and extensions do not exist for the IVFSs.

Now we will show an example of using one of the A-IFS operators discussed
above. It is worth stressing that a counterpart IVFS model would be difficult to
derived.

3.1 Using an Extended Modal Operator for the A-IFS
as a Natural Way to Obtaining an Intuitionistic Fuzzy
Classifier for the Imbalanced Classes

The recognition of imbalanced classes is well known as an important and tough
task. Here we will describe briefly an intuitionistic fuzzy classifier making use of
one of the extended modal operators for the A-IFSs and data presented via the A-
IFSs. After expressing the data by relative frequency distributions, the algorithm
presented by Szmidt and Baldwin [24–26] is applied to describe smaller and bigger
classes in the space of all attributes. As a result, a data instance e is described as an
intuitionistic fuzzy element (all three terms are taken into account: the membership
value μ, non-membership value ν, and hesitation margin π), i.e.

e : (μe, νe,πe) (27)

To enhance the possibility of a proper classification of instances belonging to a
smaller class, while training the intuitionistic fuzzy classifier, the hesitation margins
are used which assign the (width of) intervals where the unknown values of mem-
berships lie. Namely, the Dα(A) operator (8) is applied making it possible to see as
well as possible the elements of the class we are interested in. To be more precise,
the values of the hesitation margins are divided so as to better “see” the smaller class,
i.e. each instance e (27) is expressed as

e : (μe + απe, νe + (1 − α)πe) (28)

where α ∈ (0.5, 1) is a parameter.
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To guarantee the best behavior of the fuzzy classifier, the parameter α is chosen
separately for each attribute, and next, the results are aggregated (see Szmidt and
Kukier [52–54]).

The abovemodel is built for each attribute separately, and then the obtained results
are aggregated. A full description of the classifier and very promising results of its
use are presented in Szmidt and Kukier [52–54].

Here we only wish to emphasize that the idea of the presented classifier making
use of the operator Dα(A) (8) is rather natural within the A-IFSs, while it would be
difficult both to invent and implement it within the IVFSs.

Now we will consider an interpretation of the A-IFSs as intervals which seems to
prove that the A-IFSs and IVFSs are “the same”. However, a deeper analysis shows
something different.

4 Representation of the A-IFSs by Intervals

We will consider here the fact with its consequences that the A-IFSs can be repre-
sented in the form of intervals.

Imagine a very simple situation with a degenerated, one element, A-IFS A con-
sisting of x only. Assuming the two term representation of A-IFSs, i.e., A = {<
x,μ, ν >} we may consider A in the form of an interval, namely:

[μ(x), 1 − ν(x)] (29)

which, from (4), is equivalent to

[μ(x),μ(x) + π(x)] (30)

The use of (29)–(30) makes it possible to express A in terms of the upper and lower
membership values (instead of in terms of the membership and non-membership
degrees). In other words, the two term representation is equivalent to the represen-
tation of the A-IFSs by one interval.

Example 1 Let x be a house with its advantages expressed by the membership value
μ, and disadvantages expressed by the non-membership value ν. Using the two term
representation of the respective A-IFS implies that the advantage of the house lies in
the interval [μ(x),μ(x) + π(x)].

In turn, consider the same situation with a degenerated A-IFS consisting of one
element x only but by making use of the three term representation of A, i.e., A =
< x,μ, ν,π >. Using all three terms means that the membership degree μ lies in the
interval

[μmin,μmax ] = [μ,μ + π] (31)
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and the non-membership degree ν lies in the interval

[νmin, νmax ] = [ν, ν + π] (32)

Next, for (31) and (32) the condition (3) must be fulfilled which means that it is not
allowed, for example, that < x,μ + π, ν + π >.

Other possibilities of making use of the hesitation margin π to construct models
are considered, e.g., in Montero et al. [20] but in this paper we stick to the above
interpretation.

Example 2 Consider again the house x described above by using the two term
representation of the A-IFSs. Now, we will employ the three term description
< x,μ, ν,π > with advantages given by μ(x), disadvantages expressed by ν(x),
and lack of knowledge considering both the advantages, and the disadvantages given
by π(x). Assume < x, 0.4, 0.2, 0.4 > which means that μ(x) is from the interval
[0.4, 0.8], and ν(x) is from the interval [0.2, 0.6]. In other words, we have the fol-
lowing possibilities:
– in the best situation the home assessment is
{< x, 0.8, 0.2, 0 >}, i.e. μ = 0.8, ν = 0.2, and π = 0,
– in the worst situation the home assessment is
{< x, 0.4, 0.6, 0 >}, i.e. μ = 0.4, ν = 0.6, and π = 0,
– in an average situation the home assessment is
{< x, 0.6, 0.4, 0 >}, i.e. μ = 0.6, ν = 0.4, and π = 0.

We may notice that the three term representation of A-IFSs makes it possible
to use more information, and obtain more insight in a more transparent way than
while using the two term representation. For instance, it is easy to consider different
“scenarios” (cf. Example 2) taking into account the values of the hesitation margins.
Considering such scenarios might be useful while decisions are to be made about
some future events which can be described to some extent only, like, e.g., in voting
processes, introducing a new product into a market, looking for a new job or buying
a house. The success or defeat depend then strongly on the values of the hesitation
margins. It is whymarket analysis and pre-voting analysis are performed, to reduce as
much as possible a lack of knowledge (hesitation margin) concerning a phenomenon
in question.

It is worth stressing that the three term representation is different from the repre-
sentation used in the IVFSs.

In otherwords, theA-IFSs expressed by the two term representation and the IVFSs
are, like Atanassov and Gargov [8] said, “equipollent”, that is, deducible from each
other, but still not “the same” (e.g. because of different operators),whereas theA-IFSs
expressed via three term representation are equivalent to considering two intervals
which for sure means that they are not “the same” as the IVFSs.
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5 Two and Three Term A-IFSs Measures

Almost all important measures used in the area of A-IFSs, as well as in other areas,
are non-linear. For example distances which play a decisive role in many models,
and are a basis for many other measures, are usually non-linear. So it seems natural
to expect that quite different qualitative results will be obtained while using the
two term representation of the A-IFSs than the results obtained while using the
three term representation of the A-IFSs. Szmidt and Kacprzyk [30, 32], Szmidt and
Baldwin [24, 25] discuss the results obtained for the most often used distances when
the two and the three term representations of the A-IFS are used. Examples of the
distances between any two A-IFSs A and B in X = {x1, x2, . . . , xn} while using the
three term representation (Szmidt and Kacprzyk [30], Szmidt and Baldwin [24, 25])
may be as follows:

• the normalized Hamming distance:

lI F S(A, B) = 1

2n

n∑

i=1

(∣∣μA(xi ) − μB(xi )
∣∣+

∣∣νA(xi ) − νB(xi )
∣∣ + ∣∣πA(xi ) − πB(xi )

∣∣
)

(33)

• the normalized Euclidean distance:

eI F S(A, B) =
(

1

2n

n∑

i=1

(μA(xi )−μB(xi ))
2+

(νA(xi ) − νB(xi ))
2 + (πA(xi ) − πB(xi ))

2

) 1
2

(34)

The values of both distances are from the interval [0, 1].
The corresponding distances to the above ones while using the two term repre-

sentation of the A-IFSs are:

• the normalized Hamming distance:

l
′
(A, B) = 1

2n

n∑

i=1

(
|μA(xi ) − μB(xi )| + |νA(xi ) − νB(xi )|

)
(35)

• the normalized Euclidean distance:

q
′
(A, B) =

(
1

2n

n∑

i=1

(μA(xi ) − μB(xi ))
2 + (νA(xi ) − νB(xi ))

2

) 1
2

(36)
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Both the two term distances and three term distances [23, 30] are correct from
the mathematical point of view, i.e. all the needed properties are fulfilled, but prac-
tical problem solutions are more intuitively appealing while using the three term
representations (cf. e.g., Szmidt and Kacprzyk [36]).

Even a more convincing argument for using the three term representation of the
A-IFSs occurs in the case of the Hausdorff distance based on the Hamming metric.

The Hausdorff Distance

The Hausdorff distance (defined by Hausdorff in 1914) is the maximum distance of
a set to the nearest point in the other set, i.e.

Definition 2 The Hausdorff distance H(A, B) for two finite sets A = {a1, . . . , ap}
and B = {b1, . . . , bq}, is:

H(A, B) = max{h(A, B), h(B, A)} (37)

where
h(A, B) = max

a∈A
min
b∈B

d(a, b) (38)

where:

• a and b mean elements of sets A and B respectively,
• d(a, b) means any metric between elements a and b,
• h(A, B) and h(B, A) (38) are called the directed Hausdorff distances.

To assign the directed Hausdorff distance h(A, B) from A to B each element of
A is ranked based on its distance to the nearest element of B, and then the highest
ranked element points out the value of the distance; The values h(A, B) and h(B, A)
may be different (the directed distances are not symmetric).

Definition 2 implies that for A and B containing one element each (a1 and b1,
respectively), the Hausdorff distance is just equal to d(a1, b1). In other words, if
a formula which is expected to express the Hausdorff distance gives for separate
elements the results which are not consistent with the metric d used (e.g., the Ham-
ming distance, the Euclidean distance, etc.), the formula considered is not a proper
definition of the Hausdorff distance.

By applying the algorithm of calculating the directed Hausdorff distances, while
using the two term type distance (35) for the A-IFSs, we obtain:

dh(A, B) = 1

n

n∑

i=1

max{|μA(xi ) − μB(xi )| , |νA(xi ) − νB(xi )|} (39)

If the above distance is a properly calculated Hausdorff distance, in the case
of the degenerated, i.e., one-element sets A = {< x,μA(x), νA(x) >} and B =
{< x,μB(x), νB(x) >}, it should give the same results as the the two term type
Hamming distance. It means that while using the two term type Hamming distance,



232 E. Szmidt and J. Kacprzyk

for the degenerated, one element A-IFSs, the following equations should give just
the same results:

l
′
(A, B) = 1

2
(|μA(x) − μB(x)| + |νA(x) − νB(x)|) (40)

dh(A, B) = max{|μA(x) − μB(x)| , |νA(x) − νB(x)|} (41)

where (40) is the normalized two term type Hamming distance, and (41) should be
its counterpart Hausdorff distance.

However, it is easy to show that in general the above condition does not work.
For example, for the following one element A-IFSs [37]: A, B, ∈ X = {x}, A =
< x, 1, 0 >, B = {< x, 1

4 ,
1
4 >}, the result obtained from (41) is:

dh(A, B) = max{|1 − 1/4|, |0 − 1/4|} = 0.75

The corresponding Hamming distance calculated from (40) is:

l
′
(A, B) = 0.5(|1 − 1/4| + |0 − 1/4||) = 0.5

i.e. the value of the Hamming distances (40) used to propose the Hausdorff measure
(41), and the value of the resulting Hausdorff distance (41) calculated for the separate
elements are not consistent (as they should be).

Szmidt and Kacprzyk [37] have shown that the inconsistencies as shown above
occur for an infinite number of other cases, and the conditions were formulated under
which (40) and (41) produce the same results. The conclusion is that an attempt to
construct the Hausdorff distance using the two term type Hamming distance between
the A-IFSs seems to be an unjustified idea.

On the other hand, by applying the three term type Hamming distance for the
A-IFSs, we obtain correct (in the sense of Definition 2) Hausdorff distance.

To bemore precise, if we calculate the three term typeHamming distance between
two degenerated, i.e. one-element A-IFSs, A and B in the spirit of Szmidt and
Kacprzyk [30, 32], Szmidt and Baldwin [24, 25], i.e., in the following way:

lI F S(A, B) = 1

2
(|μA(x) − μB(x)| + |νA(x) − νB(x)| + |πA(x) − πB(x)|) (42)

then, it is possible to give a counterpart of the above distance in terms of the max
function:

H3(A, B) = max{|μA(x) − μB(x)| , |νA(x) − νB(x)| , |πA(x) − πB(x)|} (43)

If H3(A, B) (43) is a properly specified Hausdorff distance (in the sense that for two
degenerated, one element A-IFSs the result is equal to the metric used), the following
condition should be fulfilled:
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1

2
(|μA(x) − μB(x)| + |νA(x) − νB(x)|) + |πA(x) − πB(x)|) =

= max{|μA(x) − μB(x)| , |νA(x) − νB(x)| , |πA(x) − πB(x)|} (44)

Szmidt and Kacprzyk [37] have shown that the above condition is always valid. It
means that, in general, the three term Hausdorff distance (43) (expressed using the
memberships, non-memberships and hesitation margin degrees) and the Hamming
distance (42) give for one element A-IFSs fully consistent results (as it should be).

The similar conclusions about the importance of the three term representation of
the A-IFSs, from the perspective of the distances, remain valid for

• the Pearson correlation coefficient (Szmidt and Kacprzyk [39]),
• the Spearman correlation coefficient (Szmidt and Kacprzyk [40]),
• the Kendall correlation coefficient (Szmidt and Kacprzyk [43, 44]),
• the Principal Component Analysis (Szmidt and Kacprzyk [46], Szmidt et al. [48]),
• ranking procedures (Szmidt and Kacprzyk [35, 36, 38]),
• similarity measures (Szmidt and Kreinovich [51], Szmidt and Kacprzyk [34]),
• construction of a classifier for imbalanced and overlapping classes (cf. Szmidt and
Kukier [52–54]),

• constructing intuitionistic fuzzy trees (Bujnowski et al. [11]).

For example, in [39, 40, 42] was shown that the third term (hesitation margin) could
considerably enhance the Pearson correlation coefficient of the variables considered
(in [49] as it was shown on the well-known benchmarks from the UC, Irvine). An
analogical conclusion was drawn for the Spearman correlation coefficient [40] and
the Kendall correlation coefficient. It seems to be quite natural to take into account
the third term as for practical purposes (e.g., in decision making) it seems rather use-
ful to know correlation concerning a lack of knowledge represented by the variables
considered. The same approach – from theoretical considerations to a verification
on benchmarks [45, 48], followed by the solution of real world examples that are
planned – was used in the case of the Principal Component Analysis. In [51] it was
shown that in order to produce similarity measures which were in a better accordance
with common sense, we should take into account all three terms. Examples are pre-
sented in [34]. Next, without taking into account the third term, the classifier for the
elements from imbalanced classes [52–54] would not be built. Because of the space
limitation we are not able to discuss here in length all the obtained results. How-
ever, in general, analysis of the results obtained from the above mentioned models
(Szmidt and Kacprzyk [35, 36, 38–40, 43, 44, 46, 48], Szmidt and Kukier [52–54],
Bujnowski et al. [11]) have shown that each of the three terms plays an important
role in data analysis and decision making.

It is worth stressing again that not only the three type representation of the A-IFSs
but also the two type representation differ conceptually from the IVFSs because: we
collect data in a different way, look for different answers, and use different types of
operators while using the two kinds of models.



234 E. Szmidt and J. Kacprzyk

6 Conclusion

We have pointed out some differences between the A-IFSs and IVFSs mainly from
the semantics focused perspective that is relevant for applications. First, we have
paid attention to the fact that some operators and extensions typical for the A-IFSs
do not exist for the IVFSs. The fact has been illustrated by a practical example of
using one of such operators to build a classifier for imbalanced classes.

We have also revisited, and further analyzed, the concepts of two possible repre-
sentations of the A-IFSs, namely, the two term one, in which the degrees of mem-
bership and non-membership are only involved, and the three term one, in which in
addition to the above degrees of membership and non-membership the so called hes-
itation margin is explicitly accounted for. Making use of the two representations of
the A-IFSs we have considered the representation of the A-IFS via intervals conclud-
ing that the three term representation differs considerably from the representation
used for the IVFSs. In comparison to the IVFSs, the three term representation of the
A-IFSs gives possibilities to analyze in a deeper way more sophisticated aspects of
the problems, for instance in decision making.

Finally, we have recalled several measures that are important from the point of
view of applications. It turns out that the three term representation of A-IFSs (which
differs from the IVFSs) leads to viewmeasures that are interesting from the theoretical
and useful from the practical point of view.

This all can be viewed as a strong argument that, from the perspective of the
existenceofmanyoperations, semantics and applications, the statement of an inherent
equivalence between the A-IFSs and IVFSs may possibly be justified just from a
narrow perspective of purely formal point of view but not generally, that is, in the
perspective of looking for a general and applicable framework.
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Part III
Rough Sets



Attribute Importance Degrees
Corresponding to Several Kinds of Attribute
Reduction in the Setting of the Classical
Rough Sets

Masahiro Inuiguchi

Abstract In this paper, we propose several attribute reduction concepts which are
ordered linearly. For each attribute reduction, we give a discernibility matrix which
enables to enumerate all reduced attribute sets. We define measures to evaluate the
specificity of decision class and the retention ability of specificity corresponding to
the proposed concepts of attribute reduction. Using those measures, attribute im-
portance degrees are defined based on cooperative game theory. We show that the
attribute importance degree is very different by the requirement to what extent we
preserve the class information of objects. Finally, we describe the possible applica-
tion of the attribute reduction to the group decision making and give modifications
in case when decision classes are linearly ordered.

1 Introduction

Rough set [5, 6] is a useful tool for reasoning from data. Attribute reduction and
rule induction are major applications of rough sets. The classical rough sets are
generalized in many ways but we focus on the classical rough sets in this paper.
More specifically, we investigate attribute reduction and attribute importance of the
classical rough sets.

Several approaches [2–4, 8] to attribute reduction, or simply, reducts in rough
set theory have been investigated. In classical rough sets, they are classified into
two kinds: reducts preserving lower approximations and reducts preserving upper
approximations (or equivalently, reducts preserving boundary regions) [2, 8]. The
calculations of those reducts are well investigated. Corresponding to those reducts,
set functions have been defined and degrees of attribute importance based on set
functions have been investigated [1, 2].

In this paper, we show that other kinds of reducts can be defined. They are between
the two kinds of reducts and linearly ordered. We present discernibility matrices to
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calculate all kinds of reducts. Moreover, we investigate the attribute importance and
interaction indices. Set functions are defined corresponding to those reducts and the
numerical attribute importance degrees are definedbased on cooperative game theory.
It is shown that the degrees of attribute importance are very different depending on the
underlying reducts. A possible application of the proposed reducts to group decision
making and modifications for the ordinal decision attribute are given.

This paper is organized as follows. In next section, we introduce decision tables
and the rough set approach briefly. The proposed approach is described in Sect. 3.
In Sect. 4, a numerical example is given to see the meaningfulness of the proposed
approach. Application guide for the proposed approach is described in Sect. 5. In
Sect. 6, a possible application of the proposed approach is described and modifica-
tions to a case when the decision attribute is ordinal is given. Concluding remarks
are given in Sect. 6.

2 Decision Tables and Rough Set Approach

2.1 Decision Tables and Rough Sets

The classical rough sets are defined under an equivalence relation which is often
called an indiscernibility relation. In this paper, we restrict ourselves to discussions
of the classical rough sets under decision tables. A decision table is characterized
by four-tuple I = 〈U,C ∪ {d}, V, ρ〉, where U is a finite set of objects, C is a finite
set of condition attributes, d is a decision attribute, V = ⋃

a∈C∪{d} Va and Va is a
domain of the attribute a, and ρ : U × C ∪ {d} → V is an information function such
that ρ(x, a) ∈ Va for every a ∈ C ∪ {d}, x ∈ U .

Given a set of attributes A ⊆ C ∪ {d}, we can define an equivalence relation
IA referred to as an indiscernibility relation by IA = {(x, y) ∈ U ×U | ρ(x, a) =
ρ(y, a), ∀a ∈ A}. From IA, we have an equivalence class, [x]A = {y ∈ U | (y, x) ∈
IA}. When A = {d}, we define

D = {Dj , j = 1, 2, . . . , p} = {[x]{d} | x ∈ U }, Di 	= Dj (i 	= j). (1)

Dj is called a ‘decision class’. There exists a unique v j ∈ Vd such that ρ(x, d) = v j

for each x ∈ Dj , i.e., Dj = {x ∈ U | ρ(x, d) = v j }. Moreover, since Di ∩ Dj = ∅
(i 	= j) and

⋃D = U hold, D forms a partition.
For a set of condition attributes A ⊆ C , the lower and upper approximations of

an object set X ⊆ U are defined as follows:

A∗(X) = {x | [x]A ⊆ X}, A∗(X) = {x | [x]A ∩ X 	= ∅}. (2)

A pair (A∗(X), A∗(X)) is called a rough set of X . The boundary region of X is
defined by BNA(X) = A∗(X) − A∗(X). Since [x]A can be seen as a set of objects
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indiscernible from x ∈ U in view of condition attributes in A, A∗(X) is interpreted
as a collection of objects whose membership to X is noncontradictive in view of
condition attributes in A. BNA(X) is interpreted as a collection of objects whose
membership to X is doubtful in view of condition attributes in A. A∗(X) is interpreted
as a collection of possible members. For x ∈ U , the generalized decision class ∂A(x)
of x with respect to a condition attribute set A ⊆ C is defined by

∂A(x) = {ρ(y, d) | y ∈ [x]A}. (3)

Let X , Y ⊆ U . We have the following properties: (for other properties, see [6]):

A∗(X) ⊆ X ⊆ A∗(X), (4)

A ⊆ B ⇒ A∗(X) ⊆ B∗(X), A∗(X) ⊇ B∗(X), (5)

A∗(X ∩ Y ) = A∗(X) ∩ A∗(Y ), A∗(X ∪ Y ) = A∗(X) ∪ A∗(Y ), (6)

A∗(X ∪ Y ) ⊇ A∗(X) ∪ A∗(Y ), A∗(X ∩ Y ) ⊆ A∗(X) ∩ A∗(Y ), (7)

BNA(X) = A∗(X) ∩ A∗(U − X), A∗(X) = X − BNA(X), (8)

A∗(X) = X ∪ BNA(X) = U − A∗(U − X), (9)

A∗(X) = A∗(X) − A∗(U − X) = U − A∗(U − X). (10)

2.2 Attribute Reduction

Attribute reduction is one of the major topics in rough set approaches. It indicates
minimally necessary attributes to classify objects and reveals important attributes.
A set of minimally necessary attributes is called a reduct. In the classical rough set
analysis, reducts preserving lower approximations are frequently used. Namely, a
set of condition attributes, A ⊆ C is called a reduct if and only if it satisfies (L1)
A∗(Dj ) = C∗(Dj ), j = 1, 2, . . . , p and (L2) 	 ∃a ∈ A, (A − {a})∗(Dj ) = C∗(Dj ),
j = 1, 2, . . . , p. Since we discuss several kinds of reducts, we call this reduct, a
‘reduct preserving lower approximations’ or an ‘L-reduct’ for short. LetRL be a set
of L-reducts. Then

⋂RL is called the ‘core preserving lower approximation’ or the
‘L-core’. Attributes in the L-core are important because without any of them, we
cannot preserve all lower approximations of decision classes.

We consider reducts preserving upper approximations or equivalently, preserving
boundary regions [2, 8]. A set of condition attributes, A ⊆ C is called a ‘reduct pre-
serving upper approximations’ or a ‘U-reduct’ for short if and only if it satisfies (U1)
A∗(Dj ) = C∗(Dj ), j = 1, 2, . . . , p and (U2) 	 ∃a ∈ A, (A − {a})∗(Dj ) = C∗(Dj ),
j = 1, 2, . . . , p. On the other hand, a set of condition attributes, A ⊆ C is called a
‘reduct preserving boundary regions’ or a ‘B-reduct’ for short if and only if it satisfies
(B1) BNA(Dj ) = BNC(Dj ), j = 1, 2, . . . , p and (B2) 	 ∃a ∈ A, BN(A−{a})(Dj ) =
BNC(Dj ), j = 1, 2, . . . , p.

The following relations are known among L-reducts, U-reducts and B-reducts:
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(R1) A U-reduct is also a B-reduct and vice versa.
(R2) There exists an L-reduct A for a U-reduct B such that B ⊇ A.
(R3) There exists an L-reduct A for a B-reduct B such that B ⊇ A.

Those relations can be proved easily from (6), (9) and (10). Since B-reduct is equiv-
alent to U-reduct, we describe only U-reduct in what follows. Let RU be a set of
U-reducts. Then

⋂RU is called the ‘core preserving upper approximation’ or the
‘U-core’. Attributes in the U-core are important because without any of them, we
cannot preserve all upper approximations of decision classes.

To obtain a part or all of reducts, many approaches have been proposed in the
literature [6, 7]. Among them, we mention an approach based on a discernibility
matrix [7]. In this approach, we construct a Boolean function which characterizes
the preservation of the lower approximations to obtain L-reducts. Each L-reduct is
obtained as a prime implicant of the Boolean function. For the detailed discussion
of the discernibility matrix for L-reducts, see Ref. [7]. However, the discernibility
matrix is included in a special case of the discernibility matrix described later.

2.3 Game-Theoretic Approach to Attribute Importance

Corresponding to reducts, we obtain set functions. Under set functions, we can evalu-
ate the importance of eachmember by cooperative game theory. Therefore, in order to
measure the importance of condition attribute, we apply cooperative game theory.We
introduce indices based on the Shapley function. Given a set function μ : 2C → R,
the Shapley value of a ∈ C is defined by

φS
μ(a) =

∑

K⊆C−{a}

(|C | − |K | − 1)!|K |!
|C |! (μ(K ∪ {a}) − μ(K )), (11)

where |Z | shows the cardinality of set Z . The Shapley value of a ∈ C shows the
contribution degree to μ of condition attribute a. The Shapley value is extended to
measure the interaction among condition attributes. The Shapley interaction index
of A ⊆ C is given by

I Sμ (A) =
∑

K⊆C−A

(|C | − |K | − |A|)!|K |!
(|C | − |A| + 1)!

∑

L⊆A

(−1)|A|−|L|μ(K ∪ L). (12)

The meanings of the Shapley value and interaction index strongly depend on set
function μ. When |A| = 2, I Sμ (A) = I Sμ ({a1, a2}) shows the interaction between a1
and a2. If I Sμ (A) > 0, the simultaneous existence of a1 and a2 creates a synergy effect.
On the other hand, if I Sμ (A) < 0 the simultaneous existence of a1 and a2 creates a
cancel effect.
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We also introduce Möbius transform mμ of μ defined by

mμ(A) =
∑

B⊆A

(−1)|A−B|μ(B), (13)

for each A ⊆ C . mμ is also called as Harsanyi dividend or simply dividend of μ.
Möbius transformmμ(A) shows the value obtained by the creation of a set (coalition)
A ⊆ C , i.e., additional value which cannot be obtained by sets B strictly smaller than
A. Namely, mμ(A) can be also seen as a kind of interaction index of A.

Corresponding to L-reducts, the following set function μQ is considered and the
attribute importance and interaction indices have been calculated in Greco et al. [1]:

μQ(A) = γA(D) =

p∑

i=1

|A∗(Di )|

|U | , (14)

where γA(D) is called a ‘quality of approximation’ of partition D. Moreover, corre-
sponding to U-reducts, the following two set functions μsp and μcl are considered and
the attribute importance and interaction indices have been calculated in Inuiguchi
and Tsurumi [2]:

μsp(A) = σA(D) =

p∑

i=1

|U − A∗(Di )|

(p − 1)|U | =

∑

x∈U
(p − |∂A(x)|)

(p − 1)|U | , (15)

μcl(A) = πA(D) = γA(E) =

q∑

i=1

|A∗(Ei )|

|U | , (16)

where E is a partition with elementary sets Ei = {y ∈ U | ∂C(y) = ∂C(x)} for any
x ∈ U , ∂A(x) = {Di | y ∈ Di , y ∈ [x]A} for A ⊆ C and q = |E |. σA(D) and πA(D)

are called a ‘measure of specificity’ and a ‘classification power index’ with respect
to partition D, respectively.

We note that L- and U-reducts can be characterized as follows by using measures
μQ, μsp and μcl. Namely, a set of condition attributes A ⊆ C is called an L-reduct
if and only if it satisfies (L1′) μQ(A) = μQ(C) and (L2′) 	 ∃a ∈ A, μQ(A − {a}) =
μQ(C). Similarly, a set of condition attributes A ⊆ C is called anU-reduct if and only
if it satisfies (U1′) μsp(A) = μsp(C) and (U2′) 	 ∃a ∈ A, μsp(A − {a}) = μsp(C), or a
set of condition attributes A ⊆ C is called an U-reduct if and only if it satisfies (U1′′)
μcl(A) = μcl(C) and (U2′′) 	 ∃a ∈ A, μcl(A − {a}) = μcl(C). In the sense described
above, μQ corresponds to L-reducts while μsp and μcl correspond to U-reducts.
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3 Refinement of Attribute Reduction and Attribute
Importance

3.1 Refinement of Attribute Reduction

Consider a coverFk = {Di1 ∪ Di2 ∪ · · · ∪ Dik | 1 ≤ i1 < i2 < · · · < ik ≤ p} for k ∈
{1, 2, . . . , p − 1}. A condition attribute set A is called an Fk-reduct if and only
if (F1(k)) A∗(F) = C∗(F) for all F ∈ Fk and (F2(k)) 	 ∃ a ∈ A, (A − {a})∗(F) =
C∗(F) for all F ∈ Fk .

From (9) and (10), we know that an Fk-reduct A is a minimal set such that
A∗(F) = C∗(F) for all F ∈ Fp−k . Moreover, from (6), an Fk-reduct A satisfies
(Fl1) for all l ≤ k and therefore, from (9) and (10), it satisfies A∗(F) = C∗(F) for
all F ∈ Fp−l and for all l ≤ k. Note that F1-reducts are equivalent to L-reducts and
Fp−1-reducts are equivalent to U-reducts. From this observation the strong-weak
relations among Fk-reducts for 1 ≤ k ≤ p − 1 can be depicted as in Fig. 1. The
reducts located on the upper side of Fig. 1 are strong, i.e., the condition to be the
upper reduct is stronger than the lower. On the contrary, the reducts located on the
lower side of Fig. 1 are weak, i.e., the condition to be the lower reduct is weaker than
the upper. Therefore, for any reduct A located on the upper side, there exists a reduct
B located on the lower side such that B ⊆ A.

LetR(k) be a set of Fk-reducts. Then
⋂R(k) is called the ‘Fk-core’. Attributes

in the L-core are important because without any of them, we cannot preserve C∗(F)
for all F ∈ Fk .

As all L-reducts can be calculated using a discernibility matrix [7], allFk-reducts
for 1 ≤ k ≤ p − 1 can be calculated by a discernibilitymatrix. The (i, j)-component
Dk

i j of the discernibility matrix Dk for calculating Fk-reducts is obtained as the
following set of attributes:

Dk
i j =

{ {a ∈ C | ρ(xi , a) 	= ρ(x j , a)}, if ∂C(xi ) 	= ∂C(x j ) and |∂C(xi )| ≤ k,
C, otherwise.

(17)

Fig. 1 The strong-weak
relation among reducts



Attribute Importance Degrees Corresponding to Several Kinds of Attribute … 247

Then all Fk-reducts are obtained as prime implicants of a Boolean function,

f k =
∧

i, j :xi ,x j∈U

∨
Dk

i j , (18)

where we regard a ∈ Dk
i j as a statement that ‘the reduct includes a’.

Note thatDk
i j can be obtained fromDl

i j with l > k by exchanging all components

of i-th row such that |∂C(xi )| > k with C . Then, once D p−1
i j is obtained, the other

decision matrices can be obtained easily.

3.2 Attribute Importance

Attribute importance can be also considered with respect to Fk . Corresponding to
(15) and (16), we can define the following set functions with respect to Fk (1 ≤ k ≤
p − 1);

μ
sp
k (A) =

∑

i1,...,ik∈{1,...,p}
i j 	=il

|A∗(Di1 ∪ · · · ∪ Dik )|

(
p − 1
k − 1

)
|U |

, (19)

μcl
k (A) =

∑

Ei∈E
x∈Ei ,|∂C (x)|≤k

|A∗(Ei )|

|U | . (20)

Note that when k = 1, both μ
sp
k (A) and μcl

k (A) equal to μQ(A) in (14). On the other
hand, we have μsp(A) = μ

sp
k (A) and μcl(A) = μcl

k (A) + |{x ∈ U | |∂C(x)| = p}| /
|U | when k = p − 1. Moreover, μcl(A) = μcl

k (A) when k = p. When there is no
x ∈ U such that |∂C(x)| = p, we have μcl(A) = μcl

p−1(A).
AsμQ corresponds to L-reducts and bothμsp andμcl correspond toU-reducts, both

μ
sp
k and μcl

k correspond to Fk-reducts. Namely, A ⊆ C is an Fk-reduct if and only if
(F1(k)′) μ

sp
k (A) = μ

sp
k (C) and (F2(k)′) 	 ∃ a ∈ A, μsp

k (A − {a}) = μ
sp
k (C). Similarly,

A ⊆ C is anFk-reduct if and only if (F1(k)′′)μcl
k (A) = μcl

k (C) and (F2(k)′′) 	 ∃ a ∈ A,
μcl
k (A − {a}) = μcl

k (C).
As shown above, we obtain intermediate set functions between μQ and μsp as well

as between μQ and μcl. Moreover, by a linear combination of those set functions μ
sp
k

and μcl
k , we may obtain different attribute importance and interaction indices as well

as different Möbius transforms.
We introduce onemore set functionμ∂

k related toμcl
k . Similar toμcl

k , wemay define
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μ∂
k (A) =

∑

i :|∂C (xi )|≤k

[∂C(xi ) = ∂A(xi )]

|U | , (21)

where [statement] takes 1 if statement is true and 0 otherwise. we have

μcl
k (A) ≤ μ∂

k (A), ∀A ⊆ C. (22)

Although ∂C(xi ) = ∂A(xi ) for some xi ∈ U , xi is not always counted in the nu-
merator of μcl

k . For example, when there exists x j ∈ U such that ∂C(x j ) ⊂ ∂C(xi ) but
∂A(x j ) = ∂A(xi ) = ∂C(xi ), xi ∈ U satisfying ∂A(xi ) = ∂C(xi ) is not counted in the
numerator of μcl

k because A∗(Ek) = ∅ for Ek ∈ E such that xi ∈ Ek . This evaluation
is same as that for xl ∈ U such that ∂C(xl) 	= ∂A(xl). From the viewpoint of the
preservation of generalized decision classes of x ∈ U , μcl

k underestimates the ability
of A. μcl

k evaluates the degree of the preservation of partition E while μ∂
k evaluates

the degree of the preservation of generalized classes of x ∈ U . The preservation of
partition E would be less important than the preservation of generalized decision
classes ∂C(x), x ∈ U . From this reason, we think μ∂

k is more significant than μcl
k .

Measure μ∂
k also corresponds to Fk-reducts. Namely, A ⊆ C is an Fk-reduct if

and only if (F1(k)′′′) μ∂
k (A) = μ∂

k (C) and (F2(k)′′′) 	 ∃ a ∈ A, μ∂
k (A − {a}) = μ∂

k (C).
Moreover, we have μ∂

k = μQ when k = 1.
As μ∂

k is defined by generalized decision classes ∂A(x), x ∈ U , we express μ
sp
k

also by using generalized decision classes ∂A(x), x ∈ U . We obtain

μ
sp
k (A) =

∑

i :|∂A(xi )|≤k

(
p − |∂A(xi )|
k − |∂A(xi )|

)

(
p − 1
k − 1

)
|U |

. (23)

As shown in (23), μsp
k depends on the sizes of generalized decision classes, |∂A(x)|,

x ∈ U . As |∂A(x)|, x ∈ U are small, the decision classes of objects x ∈ U are specif-
ically determined. Therefore, we recognize that μ

sp
k evaluates well the degree of

specificity. Moreover, we note that μ
sp
k does not be influenced by ∂C(x), x ∈ U but

only ∂A(x), x ∈ U .
While μ

sp
k is influenced by the size of generalized decision classes of objects xi

such that |∂A(xi )| ≤ k, μ∂
k is influenced only by the preservation of ∂C(xi ). There-

fore, μ∂
k does not reflect size |∂A(xi )| very much and neither μcl

k due to (22). From
this observation, the linear combinations would be meaningful for μ∂

k k = 1, 2, . . . ,
p − 1. For example, set functions

μ̂∂
k (A) =

k∑

q=1

μ∂
q (A)

k
, A ⊆ C, k = 1, 2, . . . , p − 1. (24)
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would be meaningful. Because of the linearity of Shapley interaction index and
Möbius transform, we have

I S
μ̂∂
k
(A) =

k∑

q=1

I Sμ∂
q
(A)

k
, A ⊆ C, k = 1, 2, . . . , p − 1, (25)

mμ̂∂
k
(A) =

k∑

q=1

mμ∂
k
(A)

k
, A ⊆ C, k = 1, 2, . . . , p − 1. (26)

We note that μsp
k , μ

cl
k , μ

∂
k and μ̂∂

k described in this section satisfy the monotonicity,
i.e., μ : 2C → R satisfies the monotonicity if and only if μ(A) ≥ μ(C), ∀A, B ⊆ C .
Therefore, the normalized those set functions can be seen as fuzzy measures.

4 A Numerical Example

Consider the decision table shown in Table 1. The decision table is given in a profile-
wise way. There are four decision attribute values 1, 2, 3 and 4. In column d of
Table 1, a frequency distribution of objects sharing a common profile (condition
attribute values) is given. For example, (1, 0, 1, 0) on row w1 implies that there are
two objects taking 1 for a1, 1 for a2, 1 for a3 and 1 for a4 and one of them takes 1 for
d while the other takes 3 for d. Similarly, (2, 0, 0, 0) on row w3 implies that there
are two objects taking 2 for a1, 2 for a2, 3 for a3, 1 for a4 and 1 for d.

By the proposed decision matrix method, we obtain {a2} and {a1, a3} as F1-
reducts, {a1, a3} and {a1, a2, a4} as F2-reducts, and {a1, a2, a4} and {a1, a3, a4} as
F3-reducts. We have {a1} as the F2-core and {a1, a4} as the F3-core. We have no

Table 1 A decision table

Profile a1 a2 a3 a4 d

w1 1 1 1 1 (1, 0, 1, 0)

w2 1 1 2 2 (1, 0, 0, 1)

w3 2 2 3 1 (2, 0, 0, 0)

w4 3 3 4 2 (0, 1, 0, 0)

w5 4 1 2 2 (0, 1, 1, 0)

w6 2 5 3 2 (1, 0, 0, 0)

w7 2 4 4 2 (0, 0, 2, 0)

w8 4 1 5 5 (0, 1, 1, 1)

w9 4 1 5 4 (1, 0, 1, 1)
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Table 2 Measures, Shapley interaction indices and Möbius transforms
A μ

sp
1 I S

μ
sp
1

m
μ
sp
1

μ
sp
2 I S

μ
sp
2

m
μ
sp
2

μ
sp
3 I S

μ
sp
3

m
μ
sp
3

a1 0.0556 0.0556 0.0556 0.1481 0.1204 0.1481 0.3148 0.2099 0.3148

a2 0.3333 0.1759 0.3333 0.3333 0.1512 0.3333 0.3333 0.1265 0.3333

a3 0.1667 0.0926 0.1667 0.2593 0.1265 0.2593 0.3519 0.1481 0.3519

a4 0 0.0093 0 0.0741 0.0463 0.0741 0.2593 0.1821 0.2593

a1a2 0.3333 −0.1296 −0.0556 0.3333 −0.1358 −0.1481 0.4074 −0.1420 −0.2407

a1a3 0.3333 0.0370 0.1111 0.4444 0.0123 0.0370 0.5556 −0.0494 −0.1111

a1a4 0.1667 0.0370 0.1111 0.3333 0.0494 0.1111 0.6111 0.0247 0.0370

a2a3 0.3333 −0.1852 −0.1667 0.3704 −0.1728 −0.2222 0.4074 −0.1605 −0.2778

a2a4 0.3333 −0.0185 0.0000 0.3704 −0.0247 −0.0370 0.5185 −0.0309 −0.0741

a3a4 0.1667 −0.0185 0 0.2593 −0.0988 −0.0741 0.4630 −0.1420 −0.1481

a1a2a3 0.3333 −0.0556 −0.1111 0.4444 0.0556 0.0370 0.5556 0.1667 0.1852

a1a2a4 0.3333 −0.0556 −0.1111 0.4444 −0.0185 −0.0370 0.6667 0.0185 0.0370

a1a3a4 0.3333 −0.0556 −0.1111 0.4444 −0.0926 −0.1111 0.6667 −0.0556 −0.0370

a2a3a4 0.3333 0.0556 0 0.3704 0.0556 0.0370 0.5185 0.0556 0.0741

C 0.3333 0.1111 0.1111 0.4444 0.0370 0.0370 0.6667 −0.0370 −0.0370

A μ∂
1 I S

μ∂
1

m
μ∂
1

μ∂
2 I S

μ∂
2

m
μ∂
2

μ∂
3 I S

μ∂
3

m
μ∂
3

a1 0.0556 0.0556 0.0556 0.0556 0.2037 0.0556 0.0556 0.2037 0.0556

a2 0.3333 0.1759 0.3333 0.3333 0.1759 0.3333 0.3333 0.1759 0.3333

a3 0.1667 0.0926 0.1667 0.2778 0.1852 0.2778 0.2778 0.1852 0.2778

a4 0 0.0093 0 0.1111 0.1019 0.1111 0.4444 0.4352 0.4444

a1a2 0.3333 −0.1296 −0.0556 0.3333 −0.1296 −0.0556 0.3333 −0.1296 −0.0556

a1a3 0.3333 0.0370 0.1111 0.6667 0.1481 0.3333 0.6667 0.1481 0.3333

a1a4 0.1667 0.0370 0.1111 0.5000 0.1481 0.3333 0.8333 0.1481 0.3333

a2a3 0.3333 −0.1852 −0.1667 0.4444 −0.1852 −0.1667 0.4444 −0.1852 −0.1667

a2a4 0.3333 −0.0185 0 0.4444 −0.0185 0 0.7778 −0.0185 0

a3a4 0.1667 −0.0185 0 0.2778 −0.2407 −0.1111 0.6111 −0.2407 −0.1111

a1a2a3 0.3333 −0.0556 −0.1111 0.6667 −0.0556 −0.1111 0.6667 −0.0556 −0.1111

a1a2a4 0.3333 −0.0556 −0.1111 0.6667 −0.0556 −0.1111 1 −0.0556 −0.1111

a1a3a4 0.3333 −0.0556 −0.1111 0.6667 −0.2778 −0.3333 1 −0.2778 −0.3333

a2a3a4 0.3333 0.0556 0 0.4444 0.0556 0 0.7778 0.0556 0

C 0.3333 0.1111 0.1111 0.6667 0.1111 0.1111 1 0.1111 0.1111

F1-core, i.e., the F1-core is the empty set. Shapley interaction indices and Möbius
transform with respect to μ

sp
k and μ∂

k are obtained as in Table 2. In the first column of
Table 2, objects in A are shown except case A = C . As shown in Table 2, the attribute
importance degrees I Sμ ({ai }), i = 1, 2, 3, 4 are different by k and between μ

sp
k and

μ∂
k . Moreover, we observe signs of I Sμ ({ai }) and mμ are similar. When k = 1, a2

takes the largest attribute importance degree. This is consistent with the fact that {a2}
is a unique singleton F1-reduct (L-reduct). Attributes a1 and a3 compose the other
F1-reduct. Between a1 and a3, a3 takes the larger attribute importance degree than a1.
This implies that attribute a3 determines the decision attribute values more than a1.
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Indeed, musp1 = μ∂
1 takes larger or equal values for attribute set A including a3 than

for attribute set A including a1. As shown in Table 2, I S
μ
sp
1
({a1, a3}) = I S

μ∂
1
({a1, a3})

and I S
μ
sp
1
({a1, a4}) = I S

μ∂
1
({a1, a4}) take same positive values. Namely attributes a1

and a3 are complementary, i.e., their simultaneous existence creates a synergy effect.
I S
μ
sp
1
(B) = I S

μ∂
1
(B), for any B ⊆ C such that |B| = 2 and a2 ∈ B take negative values.

This fact implies any condition attribute have a cancel effect with a2 because {a2}
is an F1-reduct (L-reduct) so that only a2 is sufficient. I Sμsp

1
({a3, a4}) = I S

μ∂
1
({a3, a4})

take a negative value because additional information about attribute a4 does not give
any effect on μ

sp
1 and μ∂

1 when values of a3 are known.
When k = 2, {a1} is the F2-core. Namely, a1 is qualitatively important. Never-

theless, attribute importance degree I S
μ
sp
2
({a1}) is less than I S

μ
sp
2
({a2}) and I S

μ
sp
2
({a3}).

This is because the improvement of the specificity I S
μ
sp
2
by adding attribute a1 is not

very large. Therefore, the attributes in the Fk-core would not always be important
quantitatively. On the other hand, attribute importance degree I S

μ∂
2
({a1}) is larger than

I S
μ∂
2
({ai }), i = 2, 3, 4. This result coincides well to the fact that a1 is in the F2-core.

By the addition of a1 to {a3} and {a4}, there are big positive improvements in μ∂
2 .

This fact can also be observed from values of mμ∂
2
({a1, a3}) and mμ∂

2
({a1, a4}). In

this case, the preservation degree of generalized decision classes expresses well the
importance degrees of attributes in theF2-core. Because we do not think the sizes of
generalized decision classes in μ∂

2 , the importance degrees with respect to μ∂
2 would

reflect the membership to F2-core more than those with respect to μ
sp
2 . I

S
μ
sp
2
and mμ

sp
2

are rather different from I S
μ∂
2
and mμ∂

2
, respectively. This difference comes from the

difference between underlying measures μ
sp
2 and μ∂

2 : μ
sp
2 takes into consideration the

sizes of generalized decision while μ∂
2 does not.

When k = 3, {a1, a4} is theF3-core.Namely, a1 and a4 are qualitatively important.
In this case even inμ

sp
3 ,we observe that the attribute importance degrees I S

μ
sp
3
({a1}) and

I S
μ
sp
3
({a4}) are larger than I S

μ
sp
3
({a2}) and I S

μ
sp
3
({a3}). Similarly, the attribute importance

degrees I S
μ∂
3
({a1}) and I S

μ∂
3
({a4}) are larger than I S

μ∂
3
({a2}) and I S

μ∂
3
({a3}). Then, in

both cases, the attribute importance degrees correspond to the membership to the
F3-core. However, I Sμsp

3
({a1}) is larger than I S

μ
sp
3
({a4}) while I S

μ∂
3
({a1}) is smaller than

I S
μ∂
3
({a4}). As described before, μsp

3 takes into consideration the sizes of generalized

decision while μ∂
3 does not. This implies that adding a1 would keep generalized

decision classes small-sized, while adding a4 would preserve a lot of generalized
decision classes. I S

μ
sp
3
and mμ

sp
3
are different from I S

μ∂
3
and mμ∂

3
to some extent. For

example, when A = {a3, a4}, they are very different. These differences imply that
the evaluations are significantly different by viewpoints: specificity of decision class
versus preservation of generalized decision classes.

Because μ∂
k does not consider the sizes of generalized decision classes ∂C(x), x ∈

U , we calculate Shapley interaction indices and Möbius transforms for μ̂∂
k , k = 2, 3.

The smaller the preserved generalized decision classes ∂C(x) is, the larger weights
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Table 3 Shapley interaction indices and Möbius transforms of μ̂∂
k

A μ̂∂
2 I S

μ̂∂
2

mμ̂∂
2

μ̂∂
3 I S

μ̂∂
3

mμ̂∂
3

a1 0.0556 0.1296 0.0556 0.0556 0.1543 0.0556

a2 0.3333 0.1759 0.3333 0.3333 0.1759 0.3333

a3 0.2222 0.1389 0.2222 0.2407 0.1543 0.2407

a4 0.0556 0.0556 0.0556 0.1852 0.1821 0.1852

a1a2 0.3333 −0.1296 −0.0556 0.3333 −0.1296 −0.0556

a1a3 0.5 0.0926 0.2222 0.5556 0.1111 0.2593

a1a4 0.3333 0.0926 0.2222 0.5000 0.1111 0.2593

a2a3 0.3889 −0.1852 −0.1667 0.4074 −0.1852 −0.1667

a2a4 0.3889 −0.0185 0 0.5185 −0.0185 0

a3a4 0.2222 −0.1296 −0.0556 0.3519 −0.1667 −0.0741

a1a2a3 0.5 −0.0556 −0.1111 0.5556 −0.0556 −0.1111

a1a2a4 0.5 −0.0556 −0.1111 0.6667 −0.0556 −0.1111

a1a3a4 0.5 −0.1667 −0.2222 0.6667 −0.2037 −0.2593

a2a3a4 0.3889 0.0556 0 0.5185 0.0556 0

C 0.5 0.1111 0.1111 0.6667 0.1111 0.1111

μ̂∂
k puts. The results are shown in Table 3. The obtained values are different from

those obtained for μ
sp
k and μ∂

k . We recognize again that the attribute importance
degree strongly depends on the viewpoint. The major differences between μk and μ̂∂

k
is in the following fact. While μk(A) considers the size of ∂A(x) for all x ∈ U , μ̂∂

k
considers the size of ∂A(x) only for x ∈ U such that ∂A(x) = ∂C(x).

5 Application Guide for the Proposed Approach

We have proposed a few measures showing the performances of attribute set. The
attribute importance degrees and Shapley interaction indices are significantly dif-
ferent depending on the measures. In this section, we describe an application guide
for the proposed attribute importance degrees and Shapley interaction indices. The
usage of those important degrees and interaction indices depends on the situation of
the analysis. We should two kinds of selection: parameter k and measure we use.

The selection of parameter k depends on the acceptable size of generalized deci-
sion class ∂C(x) of an object x ∈ U . If we regard ∂C(x) ≤ k̄ informative, in other
words, we do not think that ∂C(x) > k̄ is valuable information, we select k = k̄. Now,
we describe the selection of themeasure.Whenwe evaluate an attribute set A ⊆ C by
its specificity, i.e., to what extent the decision classes of objects are known precisely
with the attributes in A, the measure of specificity μ

sp
k should be selected. When we

evaluate an attribute set A by its preservation of generalized decision class ∂C(x),
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x ∈ U , measure μ∂
k should be used. When the preservation of small-sized general-

ized decision class is more important than the preservation of large-sized generalized
decision class, measure μ̂∂

k should be selected, where we note that μ̂∂
1 = μ∂

1 .
In such a way, when we have a meaningful measure for the evaluation of an at-

tribute set A ⊆ C , we apply Shapley interaction indices as well asMöbius transforms
to the measure for the evaluation of attribute importance degrees and interaction in-
dices.

6 Possible Application and Modifications

There are many reducts as shown in the previous sections. Then there may have a
question which reduct we should use. The selection of reduct basically depends on
the aim of application. In this section, we would suggest a possible application to
group decision making and give a modification in the case when decision attribute
is ordinal.

Assume that there are several people who classify same objects into p classes.
Each person can classify objects based on their experiences and feelings. We assume
also that objects are characterized by a certain number of condition attributes and
that people’s evaluations are totally based on those condition attribute values. Using
the classification results by all people, we would like to assign a class agreeable
among all people to an object. Avoiding a big argument, we do not need to make
such assignments for all objects but as many objects as we can.

Even if people assign different classes to an object, we may decide the agreeable
class by some negotiation. However, if people assign many different classes to an
object, it would be difficult to have a consensus in the assignment of the class. There-
fore,wemay restrict the negotiation into objects having small difference.Considering
such a situation, wemay restrict the negotiation into objects having k different classes
assigned by people. UsingFk-reducts, μ

sp
k , μ

∂
k and μ̂∂

k , wemay knowwhich attributes
are important. Therefore, we may discuss the classification of the object consider-
ing from the most important condition attributes to the least important conditions
attributes.

Considering quality evaluations rather than classification, we may face situations
where decision attribute is ordinal. Namely, wemay have an order D1 ≺ D2 ≺ · · · ≺
Dp on decision classes. We again consider the case when several people evaluate
the decision attribute values on same objects and assign unique decision attribute
value agreeable among all people to an object. In this case, we obtain the strength
of difference in object evaluation between decision classes, i.e., the difference in
object evaluation between Di and Di+2 is larger than that between Di and Di+1.
Moreover, let us assume that the difference in object evaluation between Di and
Di+1 is a constant for any i ∈ [1, p − 1].

Under this situation, the application ofFk-reducts suggested above does not work
well because the preservation of lower approximation of D1 ∪ Dp is qualitatively
different from that of the lower approximation of Di ∪ Di+1, i.e., while the latter
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preserves the closeness of the individual evaluations into Di or Di+1, the former
does not always but individual evaluations into two extreme classes. In order to treat
the situation,we should take care of the order of decision attribute values and consider
reducts, importance degrees suitable for the situation.

Considering the order, we propose the following modifications. Let us introduce
the following notations: D[l,r ] = {Dk | k ∈ [l, r ]} (l ≤ r ), dmin(xi ) = min{v | Dv ∈
∂P(xi )} and dmax(xi ) = max{v | Dv ∈ ∂P(xi )}. First, corresponding to the general
decisions ∂P(xi ), we define a decision attribute interval IP(xi ) by

IP(xi ) = {Dl | l ∈ [dmin(xi ), dmax(xi )]} . (27)

Moreover, we define Ik = {C∗(D[l,r ]) | r − l = k − 1}. Then we can define Ik-
reducts by replacing Fk with Ik . Since Ik is a family of a decision class intervals,
Ik-reducts are more suitable to the case when the decision attribute is ordinal.

The calculations of Ik-reducts can be made by a discernibility matrix (17) with
replacement of ∂C(xi ) with IC(xi ). The measures corresponding to Ik-reducts are
defined by

ν
sp
k (A) =

p−k+1∑

i=1

|A∗(D[i,i+k−1])|
(p − k + 1)|U | , (28)

ν∂
k (A) =

∑

i :|IC (xi )|≤k

[IC(xi ) = IA(xi )]

|U | , (29)

ν̂∂
k (A) =

k∑

q=1

ν∂
q (A)

k
. (30)

The alternations described above are suitable for the situation where the decision
attribute is ordinal.

7 Concluding Remarks

We have shown that several kinds of attribute reduction exist between previous two
reducts: L- and U-reducts. We have shown that they are calculated also by discerni-
bility matrices.We investigate measures corresponding to the proposed several kinds
of attribute reduction. We proposed three measures showing specificity, preservation
of generalized decision classes and the weighted preservation of generalized deci-
sion classes. Attribute importance degrees and interaction indices associated with the
measures have been studied. We showed that the attribute importance degrees and
interaction indices are significantly different by the underlying measure. Moreover,
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a possible application of the proposed approach is described and a modification for
a case when the decision attribute is ordinal is given.

The applications of the proposed attribute importance degrees and interaction
indices as well as a further development of the proposed approach are topics for the
future research.
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A Review on Rough Set-Based
Interrelationship Mining

Yasuo Kudo and Tetsuya Murai

Abstract Interrelationship mining, proposed by the authors, aims at extracting
characteristics of objects based on interrelationships between attributes. Interrela-
tionship mining is an extension of rough set-based data mining, which enables us to
extract characteristics based on comparison of values of two different attributes such
that “the value of attribute a is higher than the value of attribute b.” In this paper, we
mainly review theoretical aspects of rough set-based interrelationship mining.

1 Introduction

Rough set theory, originally proposed by Z. Pawlak [12, 13], provides a mathemat-
ical basis of set-based approximation of concepts and logical data analysis. Var-
ious extensions of rough set models have been proposed to apply the concept of
rough set to various kinds of data: Probabilistic rough sets (e.g., variable precision
rough set [18], Bayesian rough set [15], three-way decisions with probabilistic rough
sets [16]), rough set for incomplete information [11], and dominance-based rough
set approach [1]. These extended rough set models are based on discernibility of
objects by comparing attribute values. However, in Pawlak’s rough set theory and
these extended rough set models, interrelationship between attributes have not been
disused as far as the authors know.

The authors have formulated interrelationship between attributes in the framework
of rough set theory [3] and proposed a concept of rough set-based interrelationship
mining to extract characteristics based on interrelations betweendifferent attributes in
a given decision table [4]. Interrelationship mining is an extension of rough set-based
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datamining,which enables us to extract characteristics basedon comparisonof values
of two different attributes such that “the value of attribute a is higher than the value of
attribute b.” To the best of our knowledge, there is no other research that formulates
interrelationship between attributes in the framework of rough set theory. In this
paper, we review theoretical aspects of rough set-based interrelationship mining
based on the authors’ previous works [3, 4, 7, 9, 10].

The reminder of this paper is organized as follows: In Sect. 2, we introduce basic
concepts of rough set theory. Next, a formulation of rough set-based interrelation-
ship mining and its basic property [3, 4, 10] are introduced in Sect. 3. In Sect. 4, we
review theoretical aspects of interrelated condition attributes that are newly intro-
duced attributes to explicitly represent interrelationships between attributes [7, 9].
Finally, Sect. 5 provides conclusion of this paper. Appendix A describes proofs of
theoretical properties in this paper.

2 Rough Set

In this section, we review the rough set theory, in particular, decision tables and
relative reducts. Note that the contents of this section are mainly based on [13, 14].

2.1 Decision Table and Lower and Upper Approximations

Generally, data analysis subjects by rough sets are described by decision tables.
Formally, a decision table is the following structure:

S = (U,AT , V, ρ), (1)

where U is a finite and nonempty set of objects, AT
def= C ∪ {d} is a finite and non-

empty set of attributes, whereC is a set of condition attributes and d /∈ C is a decision
attribute, V is a set of values of attributes, and ρ : U × AT → V is a function that
assigns a value ρ(x,a) ∈ V for each object x ∈ U at each attribute a ∈ AT .

Indiscernibility relations based on subsets of attributes provide classifications
of objects in decision tables. For any set of attributes A ⊆ AT , the indiscernibility
relation IND(A) is the following binary relation on U:

IND(A) = {(x, y) ∈ U × U | ρ(x,a) = ρ(y,a),∀a ∈ A}. (2)

If a pair (x, y) is in IND(A), then two objects x and y are indiscernible with
respect to all attributes in A. It is well-known that any indiscernibility relation is
an equivalence relation and, for each object x ∈ U, an equivalence class [x]A by an
indiscernibility relation IND(A) is defined by
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[x]A = {y ∈ U | (x, y) ∈ IND(A)}. (3)

The set of all equivalence classes by an equivalence relation IND(A) consists
of a partition on the domain U, denoted by U/IND(A). In particular, the indis-
cernibility relation IND({d}) based on the decision attribute d provides a partition
D = {D1, . . . ,Dk}, and each element Di ∈ D is called a decision class.

Classifying objects with respect to condition attributes provides approximation of
decision classes. Formally, for any set B ⊆ C of condition attributes and any decision
class Di ∈ D, we let:

B(Di) = {x ∈ U | [x]B ⊆ Di}, (4)

B(Di) = {x ∈ U | [x]B ∩ Di �= ∅}. (5)

The setsB(Di) andB(Di) are called lower approximation and upper approximation
of the decision class Di with respect to the set B of condition attributes, respectively.
Particularly, the lower approximation B(Di) is the set of objects that are correctly
classified to the decision class Di by checking all attributes in B.

2.2 Relative Reduct

All discernible objects of the given decision table are able to be correctly classified
to the corresponding decision classes by evaluating values of all condition attributes.
In this case, some attributes may be essential for correct classification and other
attributes may be redundant. A minimal set of condition attributes to classify all
discernible objects to correct decision classes is called a relative reduct of the decision
table.

For any subset X ⊆ C of condition attributes in a decision table S, we let:

POSX(D) =
⋃

Di∈D
X(Di). (6)

The set POSX(D) is called the positive region of D by X. All objects x ∈ POSX(D)

are classified to correct decision classes by checking all attributes in X. In particular,
the set POSC(D) is the set of all discernible objects in S.

The concept of relative reduct is formally introduce as follows: A set A ⊆ C is
called a relative reduct of the decision table S if the set A satisfies the following
conditions:

1.POSA(D) = POSC(D), and (7)

2.POSB(D) �= POSC(D) for any proper subset B ⊂ A. (8)
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In general, there are plural relative reducts in a decision table. The common part
of all relative reducts is called the core of the decision table.

The authors [2] proposed an evaluation criterion for relative reducts based on the
roughness of partitions generated from the relative reducts. For each relative reduct
A ⊆ C, the evaluation score ACov(A) of A is defined by

ACov(A) = |D|
∑

[x]A∈U/IND(A)

|{Di ∈ D | [x]A ∩ Di �= ∅}|
, (9)

where |X| is the cardinality of the set X.
The score ACov(A) of each relative reduct A corresponds to the arithmetic mean

of the coverage scores of decision rules generated from the relative reduct A [2]. A
relative reduct A generates more useful decision rules than any other relative reducts
B such that ACov(B) < ACov(A), where the usefulness is evaluated by the coverage.
Therefore, the relative reductAwith higher evaluation scoreACov(A) generatesmore
useful decision rules with higher coverage scores rather than any relative reducts with
lower evaluation scores.

Example 1 ([9])
Table 1 is an example of a decision table S used in [7, 9]. The decision table
consists of a set of six users of sample products; U = {u1, . . . , u6} as the set of
objects, the set of attributes AT that is divided into the set of condition attributes
C = {Member,Sex,Before,After} that represents users’ membership, sex, eval-
uation before/after using a sample product, respectively, and the decision attribute
Purchase that represents users’ answer to the question about purchase.

In Table 1, there are the following three relative reducts: {Member,Sex,Before},
{Member,Before,After}, and {Sex,Before,After}.

Let A = {Member,Before,After} be a relative reduct in Table 1 and we con-
sider the evaluation score of the relative reduct A defined by the Eq. (9). The parti-
tion U/IND(A) by the indiscernibility relation IND(A) consists of six singletons of
objects, i.e., each object can be distinguished from every other object by A:

U/IND(A) = {{u1}, {u2}, {u3}, {u4}, {u5}, {u6}}.

For each equivalence class [x]A ∈ U/IND(A), it is obvious that there exists just one
decision classDi ∈ D such that [x]A ∩ Di �= ∅, and therefore, the denominator of the
Eq. (9) is equal to the number of equivalence classes in U/IND(A). It concludes that
the evaluation score ACov(A) is 1

3 :

ACov(A) = |D|
|U/IND(A)| = 2

6
= 1

3
.

The relative reduct A generates the following six decision rules:

• (M = yes) ∧ (B = normal) ∧ (A = normal) → (P = yes),
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Table 1 An example of decision table [7]

U Member Sex Before After Purchase

u1 yes female normal normal yes

u2 no female normal v.g. yes

u3 no male good v.g. yes

u4 no female good good yes

u5 no male normal normal no

u6 yes female good normal no

• (M = no) ∧ (B = normal) ∧ (A = v.g.) → (P = yes),
• (M = no) ∧ (B = good) ∧ (A = v.g.) → (P = yes),
• (M = no) ∧ (B = good) ∧ (A = good) → (P = yes),
• (M = no) ∧ (B = normal) ∧ (A = normal) → (P = no),
• (M = yes) ∧ (B = good) ∧ (A = normal) → (P = no),

whereM,B,A, andP are abbreviations of the attributesMember,Before,After, and
Purchase, respectively. The coverage score of each decision rule is calculated by
the number of objects that satisfy both the antecedent and conclusion of the decision
rule divided by the number of objects that satisfy the conclusion of the rule. We then
have the coverage score 1

4 for each decision rule with the conclusion (P = yes), and
the coverage score 1

2 for each decision rule with the conclusion (P = no). Therefore,
the arithmetic mean of the coverage scores of the six decision rules is

1

6

(
4 × 1

4
+ 2 × 1

2

)
= 1

3
,

and it is equal to the evaluation score ACov(A).

3 Interrelationship Mining

In this section,we reviewour formulation of rough set-based interrelationshipmining
with respect to the authors’ previous manuscripts [3, 4, 10].

3.1 Observations and Motivations

Indiscernibility of objects, a basis of rough set data analysis, is based on comparison
of attribute values between objects. For example, an indiscernibility relation IND(B)

by a subset of attributes B ⊆ AT defined by (2) is based on the equality of attribute
values in Va of each attribute a ∈ B. In the dominance-based rough set approach [1],
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a dominance relationship between objects is based on comparison of attribute values
of objects according to the total order relationship among attribute values in each
attribute.

Comparison of attribute values between objects in rough set data analysis is, how-
ever, restricted to compare attribute values of the same attribute, i.e., the comparison
between two values of each attribute a ∈ AT in the following two cases:

• Between a value of an object x, ρ(x,a), and a value v ∈ Va, e.g., the definition of
semantics of decision logic, or

• Between a value of an object x, ρ(x,a), and a value of another object y, ρ(y,a),
e.g., indiscernibility relations.

This restriction indicates that the interrelationship between attributes are not con-
sidered when we discuss indiscernibility of objects by values of attributes, even
though values of different attributes are actually comparable. However, this fact
indicates that it is difficult to extract the following characteristics that are based on
comparison of attribute values between different attributes by using rough set-based
data analysis [5]:

• The answer of question A is identical to the answer of question B,
• A sample A is similar to a sample B,
• The design of car A is preferred by users than the design of car B.

Therefore, by extending the domain of comparison of attribute values from each
value set Va to Cartesian product Va × Vb with another attribute b, values of different
attributes become comparable. This extension enable us to describe interrelationships
between attributes by comparison between attribute values of different attributes in
the framework of rough set theory.

3.2 A General Expression of Decision Tables

Information tables describe connections between objects and attributes by table-style
format. In this paper, similar to the authors’ recent works [7, 9], we use a general
expression of information tables that was used by Yao et al. [17] defined by

S = (U,AT , {Va | a ∈ AT},RAT , ρ), (10)

where U is a finite and nonempty set of objects, AT is a finite and nonempty set of
attributes, Va is a nonempty set of values for a ∈ AT ,RAT = {{Ra} | a ∈ AT} is a set
of families {Ra} of binary relations defined on each Va, ρ is an information function
ρ : U × AT → V that assigns a value ρ(x,a) ∈ Va of the attribute a ∈ AT to each
object x ∈ U, where V = ⋃

a∈AT Va is the set of values of all attributes in AT .
The family {Ra} of binary relations for each attribute a ∈ AT can contain various

binary relations; similarity, dissimilarity, dominance relation on Va and usual infor-
mation tables are implicitly assumed that the family {Ra} consists of only the equality
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relation = on Va [17]. We also assume that the equality relation = is included into
the family {Ra} for every attribute a ∈ AT .

An information table is called a decision table if the set of attributes AT is parti-
tioned into two disjoint sets; i.e., a setC of condition attributes and a setD of decision
attributes. In this paper, without losing generality, we assume that D is a singleton,
i.e., D = {d}, and the attribute d is called the decision attribute.

Example 2 We extend the decision table S = (U,AT , V, ρ) represented by Table 1
by adding the following family of binary relations defined on the set Va for attribute
a ∈ AT in S [7]:

Member : {=}, Sex : {=},
Before : {=,�Before,Before},After : {=,�After,After},

Purchase : {=,�Purchase,Purchase},

where each relation �a is a preference relation that is defined as follows:

�Before: v.g. � good � normal � bad � v.b.,
�After: v.g. � good � normal � bad � v.b.,
�Purchase: yes � no.

This extension enables us to treat the preference relationship of objects by comparing
attribute values of each object.

3.3 Interrelationships Between attributes

We can consider many kinds of interrelations between attributes by comparison
of attribute values, e.g., the equality, equivalence, order relations, similarity, etc.
According to the observations and motivations in the previous subsection, inter-
relationships between attributes in a given decision table by a binary relation are
characterized as follows [3].

Definition 1 Let a,b ∈ C be any condition attributes of a given decision table S, and
R ⊆ Va × Vb be any binary relation. We call that attributes a and b are interrelated
byR if and only if there exists an object x ∈ U such that (ρ(x,a), ρ(x,b)) ∈ R holds.

We denote the set of objects that those values of attributes a and b satisfy the
relation R as follows:

R(a,b)
def= {x ∈ U | (ρ(x,a), ρ(x,b)) ∈ R}, (11)

and we call the set R(a,b) the support set of the interrelation between a and b by R.



264 Y. Kudo and T. Murai

An interrelationship between two attributes by a binary relation provides a for-
mulation of comparison of attribute values between different attributes. However, to
simplify the formulation, we allow the interrelationship between the same attribute.

Indiscernibility relations in a given decision table by interrelationships between
attributes are introduced [3].

Definition 2 Let S be a decision table, and suppose that condition attributes a,b ∈
C are interrelated by a binary relation R ⊆ Va × Vb, i.e., R(a,b) �= ∅ holds. The
indiscernibility relation on U based on the interrelationship between a and b by R is
defined by

IND(aRb) = {(x, y) ∈ U × U | x ∈ R(a,b) iff y ∈ R(a,b)} . (12)

For any objects x and y, (x, y) ∈ IND(aRb) means that x is not discernible from
y from the viewpoint of whether the interrelationship between the attributes a and b
by the relation R holds. Any binary relation IND(aRb) on U defined by (12) is an
equivalence relation, and we can construct equivalence classes from an indiscerni-
bility relation IND(aRb).

3.4 Decision Tables for Interrelationship Mining

To explicitly treat interrelationships between attributes, we need to reformulate the
information table S by (10) by using the given binary relations between values of
different attributes. This reformulation is based on revising the setRAT of families of
binary relations for comparing attribute values and expression of interrelationships
by new condition attributes.

Definition 3 ([10]) Let S be an information table by (10). The information table Sint
for interrelationship mining with respect to S is defined as follows:

Sint = (U,ATint, V ∪ {0, 1},Rint, ρint), (13)

where U and V = ⋃
a∈AT Va are identical to S.

The set Rint of families of binary relations is defined by

Rint = RAT ∪
{

{Rai×bi} Rai×bi ⊆ Vai × Vbi ,

∃ai,bi ∈ C, ai �= bi

}
∪ {{=} | For each aRb}, (14)

where each family {Rai×bi} = {R1
ai×bi

, . . . ,Rni
ai×bi

} consists of ni (ni ≥ 0) binary rela-
tion(s) defined on Vai × Vbi . The expression aRb is defined below.

The set ATint is defined by

ATint = AT ∪ {aRb | ∃R ∈ {Ra×b},R(a,b) �= ∅}, (15)
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and each expression aRb is called an interrelated condition attribute. AT = C ∪ {d}
is identical to S.

The information function ρint is defined by

ρint(x, c) =
⎧
⎨

⎩

ρ(x, c), if c ∈ AT ,

1, c = aRb and x ∈ R(a,b),

0, c = aRb and x /∈ R(a,b).

(16)

The redefined information table Sint intends to treat not only the information about
interrelationships between attributes but also combinations of attribute values as in
the original information system S. Therefore, Sint needs to contain all binary relations
used in S.

Note that not all pairs of two attributesmust have some binary relations and ni = 0,
i.e., {Rai×bi} = ∅, means that we do not compare attribute values between ai and bi.
Note also that the set RAT used in (14) is also identical to the case of the original
information table S and every family {Ra} for each attribute a ∈ AT is assumed to
contain at least the equality on Va.

Each interrelated condition attribute aRb represents whether each object x ∈ U
supports the interrelationship between the attributes a,b ∈ C by the binary relation
R ⊆ Va × Vb. Therefore, all interrelated condition attributes are binary attributes. For
every interrelated condition attribute,weonly treat the equality relation for comparing
attribute values of different objects. This is because interrelated condition attributes
are nominal attributes.

Indiscernibility of objects by an interrelationship between two attributes a and b
by a binary relation R in the original decision table S is representable by an indis-
cernibility relation by the singleton {aRb} in Sint as follows [10].
Proposition 1 Let S be a decision table, a,b ∈ C be condition attributes in S, R ⊆
Va × Vb be a binary relation, and Sint be an information table for interrelationship
mining with respect to S such that R ∈ {Ra×b}. The following equality holds:

INDS(aRb) = INDSint ({aRb}), (17)

where INDS(aRb) is the indiscernibility relation for S defined by (12), and
INDSint ({aRb}) is the indiscernibility relation for Sint by a singleton {aRb} of an
interrelated condition attribute defined by (2).

Proposition 2 indicates, however, that the addition of interrelated condition
attributes to the original decision table does not improve the total classification ability
of the original decision table; interrelated condition attributes affect the representa-
tion ability of decision rules as we will discuss in Sect. 4.2.

Proposition 2 Let S be a decision table and Sint be an information table for inter-
relationship mining with respect to S. The following equality holds:

INDSint (AT) = INDSint (ATint), (18)
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where INDSint (AT) is the indiscernibility relation for Sint by using all attributes in AT
of the original decision table S, and INDSint (ATint) is the indiscernibility relation for
Sint by using all attributes of Sint including interrelated condition attributes.

The following corollary represents that the addition of interrelated condition
attributes to the original decision table does not enlarge the lower approximations of
decision classes with respect to all condition attributes.

Corollary 1 Let S be a decision table and Sint be an information table for inter-
relationship mining with respect to S. For every decision class D ∈ D of Sint , The
following equality holds:

C(D) = Cint(D), (19)

where C is the set of all condition attributes of S and Cint = ATint \ {d} is the set of
all condition attributes of Sint including interrelated condition attributes.

Example 3 ([7])
We introduce an interrelationship between two attributes After and Before in

Table 1 by comparing the values of these attributes. Because the range of these
two attributes are identical, we can regard the preference relation After as a binary
relation A×B defined on VAfter × VBefore.

We then construct an interrelated condition attribute A  B. The support set of
the interrelationship between After and Before by the relation A×B is

A×B (A,B) = {u1, u2, u3, u4, u5}.

The information function is updated as follows:

ρint(x,A  B) =
{
1, x ∈A×B (A,B),

0, x /∈A×B (A,B).

Table 2 is the decision tableSint for interrelationshipminingwith respect toTable 1,
i.e., the original table S, and the interrelated condition attribute A  B. The indis-
cernibility relation INDSint ({A  B}) is:

INDSint ({A  B}) = {(ui, uj) | 1 ≤ i, j ≤ 5} ∪ {(u6, u6)}.

It is easily confirmed that the indiscernibility relation INDSint ({A  B}) is identical
to the indiscernibility relation INDS(A  B) using the support set A×B (A,B) and
defined by (12).

Table 2 has the following six relative reducts:

{Member,Sex,Before}, {Member,Before,After}, {Sex,Before,After},
{Member,After,A  B}, {Sex,Before,A  B}, {Sex,After,A  B}.

It is obvious that all relative reducts for Table 1 are also relative reducts for Table 2.
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Table 2 Decision table for interrelationship mining [7]

U Member Sex Before After A  B Purchase

u1 yes female normal normal 1 yes

u2 no female normal v.g. 1 yes

u3 no male good v.g. 1 yes

u4 no female good good 1 yes

u5 no male normal normal 1 no

u6 yes female good normal 0 no

4 Theoretical Aspects of Interrelated Condition Attributes

In this section, we review theoretical aspects of interrelated decision attributes. The
contents of this section is based on [7, 9].

4.1 Properties of Interrelated Attributes in Relative Reducts

In this subsection, we discuss a few properties of interrelated condition attributes that
appear in relative reducts that are extracted from decision tables for interrelationship
mining [7].

As we reviewed in the previous section, the indiscernibility relation IND({aRb})
by an interrelated attributeaRb is based onwhether the interrelationship between two
attributes a and b by a binary relationR on Va × Vb. The basis of the interrelationship
betweena andb is comparison between valuesρint(x,a) andρint(x,b) for each object
x ∈ U.

We then consider that the discernibility of elements by an interrelated attribute
aRb is strongly connected to the discernibility of eitheraorb. Proposition 3describes
connection between interrelated attributes aRb and attributes a and b.

Proposition 3 ([7]) Let Sint be a decision table for interrelationship mining. If there
exists a relative reduct A ⊆ ATint of Sint that contains an interrelated attribute aRb,
then there exists at least one relative reduct B ⊆ ATint such that either a ∈ B or b ∈ B
holds.

Proposition 3 is applicable to any two condition attributes a and b and any binary
relation R on Va × Vb, and it does not depend on any specific property of the binary
relation R. Note also that Proposition 3 does not depend on the number of decision
classes and this property is available to multi-valued decision attribute.

As an example, the set {Member,After,A  B} is a relative reduct of Table 2
in Example 3 and it includes an interrelated attribute A  B. Proposition 3 indicates
that there exists at least one relative reduct B such that After ∈ B or Before ∈ B, and
actually, a set {Member,Before,After} is also a relative reduct of Table 2.
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The following corollary is easily obtained from Proposition 3.

Corollary 2 ([7]) Let S be a decision table, and a and b be two condition attributes
of S that do not appear in any relative reduct of S. Then, for any binary relation R on
Va × Vb and the interrelated attribute aRb by the binary relation R, the interrelated
attribute aRb does not appear in any relative reduct of the decision table Sint that
are induced from the table S.

This corollary indicates that the interrelationship between condition attributes
that do not appear in any relative reduct is useless from a viewpoint of correct
classification of elements. Selection of useful pairs of attributes is an important issue
of interrelationship mining, and therefore, this property may provide a guideline for
selecting pairs of condition attributes to consider interrelationships.

Obviously, the inverse of Proposition 3, i.e., if there is no relative reduct that con-
tains the interrelated attribute aRb, then there is also no relative reduct that contains
either a or b, is not satisfied. A counterexample of the converse of Proposition 3 is
shown in [7].

4.2 Representation Ability of Interrelated Attributes

In this subsection, we discuss the representation ability of interrelated attributes [9].
Let a,b ∈ C are two condition attributes in a given decision table S, and aRb ∈

ATint be an interrelated attribute by a binary relation R ∈ {Ra×b} in the information
table Sint for interrelationship mining. The following property has an important role
for the representation ability of interrelated attributes.

Proposition 4 ([9]) Let B = {a,b} be any set of two condition attributes in C,
aRb ∈ ATint be an interrelated attribute based on the attributes a,b ∈ C and a
binary relation R ⊆ Va × Vb, and B′ ⊆ ATint be a set of attributes generated by
replacing either the attribute a or the attribute b in B by the interrelated attribute
aRb. The following equation holds:

[x]B ⊆ [x]B′ , ∀x ∈ U. (20)

This proposition indicates that the partitionU/IND(B′) is equal to or coarser than
the partition U/IND(B), which implies the following important property about the
evaluation scores of relative reducts with interrelated attributes.

Proposition 5 ([9]) Suppose that B ⊆ ATint is a subset of condition attributes in the
information table Sint for interrelationship mining. For any two condition attributes
a,b ∈ B, let a set B′ be either B′ = (B \ {a}) ∪ {aRb} or B′ = (B \ {b}) ∪ {aRb}.
Then the following inequality holds:

ACov(B) ≤ ACov(B′). (21)
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Corollary 3 ([9]) Let B and B′ in Proposition 5 be both relative reducts in the
information table Sint for interrelationship mining such that ACov(B) ≤ ACov(B′).
The number of decision rules generated from B′ is smaller than (or at least equal to)
the number of decision rules generated from B.

Therefore, if we replace an attribute a (or b) in a relative reduct by an interrelated
attribute aRb, and the resulted set of this replacement is also a relative reduct, this
replacement improves the representation ability of decision rules.

Example 4 ([9]) From Examples 1 and 3, we know that a subset of condition
attributes A = {Member,Before,After} and a subset A′ = {Member,After,A 
B} are both the relative reducts in Table 2. Note that the relative reduct A′ corre-
sponds to the result of replacement of the attribute Before in the relative reduct A by
the interrelated attribute A  B.

From the relative reduct A′, we have the following partition U/IND(A′):

U/IND(A′) = {{u1}, {u2, u3}, {u4}, {u5}, {u6}},

i.e., two users u2, u3 ∈ U are not discernible each other by the relative reduct A′
Similar to the case of the partition U/IND(A) in Example 3, for each equivalence

class [x]A′ ∈ U/IND(A′), it is obvious that there exists just one decision classDi ∈ D
such that [x]A′ ∩ Di �= ∅. It implies that the denominator of the Eq. (9) is also equal
to the number of equivalence classes in U/IND(A′), and therefore, the evaluation
score ACov(A′) is

ACov(A′) = |D|
|U/IND(A′)| = 2

5
.

The evaluation score ACov(A′) exceeds the evaluation score ACov(A) = 1
3 in

Example 1.
Actually, the relative reduct A′ generates the following five decision rules and it

can represent the characteristics in Table 2 with smaller number of decision rules
rather than using the relative reduct A as in Example 1:

• (M = yes) ∧ (A = normal) ∧ (A  B = 1) → (P = yes),
• (M = no) ∧ (A = v.g.) ∧ (A  B = 1) → (P = yes),
• (M = no) ∧ (A = good) ∧ (A  B = 1) → (P = yes),
• (M = no) ∧ (A = normal) ∧ (A  B = 1) → (P = no),
• (M = yes) ∧ (A = normal) ∧ (A  B = 0) → (P = no).

5 Conclusion

In this paper, we reviewed theoretical aspects of rough set-based interrelationship
mining proposed by the authors: A formulation of rough set-based interrelationship
mining [3, 4, 10] and properties of interrelated condition attributes [7, 9]. Even
though we did not describe in this paper, the authors have also discussed decision
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logics for interrelationship mining [5], interrelationships between attributes from
a viewpoint of rough sets on two universes [6], and interrelationship mining for
incomplete decision tables [8].

Rough set-based interrelationship mining extends the range of application of
rough set theory by extracting not only the characteristics in decision table by compar-
ing the values of same attributes between different objects, but also the characteristics
by comparing the values of different attributes with the same object. Applications of
rough set-based interrelationship mining to life-oriented data analysis and bigdata
analysis are planed as important future issues.

Acknowledgements The authors would like to thank the anonymous reviewers for their valuable
comments.This work was supported by JSPS KAKENHI Grant Number JP25330315.

Proofs of Theoretical Properties

Proposition 1 Let S be a decision table, a,b ∈ C be condition attributes in S, R ⊆
Va × Vb beabinary relation, andSint be an information table Sint for interrelationship
mining with respect to S such that R ∈ {Ra×b}. The following equality holds:

INDS(aRb) = INDSint ({aRb}),

where INDS(aRb) is the indiscernibility relation for S defined by (12), and
INDSint ({aRb}) is the indiscernibility relation for Sint by a singleton {aRb} of an
interrelated condition attribute defined by (2).

Proof Suppose (x, y) ∈ INDS(aRb) holds. By the definition of INDS(aRb) by (12),
x ∈ R(a,b) holds if and only if y ∈ R(a,b) holds. Therefore, for the interre-
lated condition attribute aRb, it implies that either ρ(x,aRb) = ρ(y,aRb) = 1 or
ρ(x,aRb) = ρ(y,aRb) = 0 holds, which concludes (x, y) ∈ INDSint ({aRb}). The
converse is also proved similarly.

Proposition 2 Let S be a decision table and Sint be an information table for inter-
relationship mining with respect to S. The following equality holds:

INDSint (AT) = INDSint (ATint),

where INDSint (AT) is the indiscernibility relation for Sint by using all attributes in AT
of the original decision table S, and INDSint (ATint) is the indiscernibility relation for
Sint by using all attributes of Sint including interrelated condition attributes.

Proof Because AT ⊆ ATint by the definition of the information table Sint for interre-
lationship mining, INDSint (AT) ⊇ INDSint (ATint) holds trivially. We show the con-
verse set inclusion. Suppose (x, y) ∈ INDSint (AT) holds. For any two attributes
a,b ∈ AT and any binary relation R ∈ {Ra×b} such that R(a,b) �= ∅, the assump-
tion (x, y) ∈ INDSint (AT) implies that ρ(x,a) = ρ(y,a) and ρ(x,b) = ρ(y,b) hold.
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This implies that (ρ(x,a), ρ(x,b)) ∈ R holds if and only if (ρ(y,a), ρ(y,b)) ∈ R
holds, i.e., x ∈ R(a,b) holds if and only if y ∈ R(a,b) holds. By the definition
of attribute value assignment for interrelated attributes by (16), it concludes that
ρ(x,aRb) = ρ(y,aRb) holds. Therefore, x is indiscernible from y by any interre-
lated attribute aRb and (x, y) ∈ INDSint (ATint) holds. This concludes the equality
INDSint (AT) = INDSint (ATint).

Corollary 1 Let S be a decision table and Sint be an information table for inter-
relationship mining with respect to S. For every decision class D ∈ D of Sint , The
following equality holds:

C(D) = Cint(D),

where C is the set of all condition attributes of S and Cint = ATint \ {d} is the set of
all condition attributes of Sint including interrelated condition attributes.

Proof From the definitions of the decision table S, C = AT \ {d} holds. By Proposi-
tion 2, it is easily confirmed that INDSint (C) = INDSint (Cint) holds, which concludes
C(D) = Cint(D) for every decision class D ∈ D of Sint .

Proposition 3 ([7]) Let Sint be a decision table for interrelationship mining. If there
exists a relative reduct A ⊆ ATint of Sint that contains an interrelated attribute aRb,
then there exists at least one relative reduct B ⊆ ATint such that either a ∈ B or b ∈ B
holds.

Proof ([7]) Suppose that the interrelated attribute aRb by a binary relation R on
Va × Vb appears in a relative reduct A. From the definition of relative reducts,
there exist two elements x, y ∈ U such that x and y are discernible each other by

A, however, x and y are not discernible by A′ def= A \ {aRb}. This means that the
values of x and y at aRb are different each other, and without losing general-
ity, we assume that ρint(x,aRb) = 1 and ρint(y,aRb) = 0. This assumption means
(ρint(x,a), ρint(x,b)) ∈ R and (ρint(y,a), ρint(y,b)) /∈ R hold, respectively, which
implies that either the values of x and y at a are different or the values of x and y
at b are different. Again, without loosing generality, we assume that the values of x
and y at a are different. By this assumption, the subset A′ ∪ {a} satisfies the condi-
tion 1) of relative reducts; the attribute a can discern x from y and the subset A′ can
discern other elements that belong to different decision class each other. Moreover,
the set B ⊆ A′ ∪ {a} with no redundant attributes is a relative reduct and it is easily
confirmed that a ∈ B. It concludes the proof.

Corollary 2 ([7]) Let S be a decision table, and a and b be two condition attributes
of S that do not appear in any relative reduct of S. Then, for any binary relation R on
Va × Vb and the interrelated attribute aRb by the binary relation R, the interrelated
attribute aRb does not appear in any relative reduct of the decision table Sint that
are induced from the table S.
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Proof It is obvious from Proposition 3.

Proposition 4 ([9])LetB = {a,b}be any set of two condition attributes inC,aRb ∈
ATint be an interrelated attribute based on the attributes a,b ∈ C and a binary
relation R ⊆ Va × Vb, and B′ ⊆ ATint be a set of attributes generated by replacing
either the attribute a or the attribute b in B by the interrelated attribute aRb. The
following equation holds:

[x]B ⊆ [x]B′ , ∀x ∈ U. (22)

Proof Suppose that y ∈ [x]B holds and let ρ(x,a) = v and ρ(x,b) = w be the
values of x at the attributes a and b, respectively. Because y ∈ [x]B, ρ(y,a) = v

and ρ(y,b) = w also hold. In the binary relation R ⊆ Va × Vb that is used for
constructing the interrelated attribute aRb ∈ ATint , if (v,w) ∈ R holds, it implies
ρ(x,aRb) = ρ(y,aRb) = 1; otherwise, if (v,w) /∈ R holds, it implies ρ(x,aRb) =
ρ(y,aRb) = 0. Therefore, the object y is still indiscernible from x by replacing either
a or b by aRb, which concludes y ∈ [x]B′ .

Proposition 5 ([9]) Suppose that B ⊆ ATint is a subset of condition attributes in the
information table Sint for interrelationship mining. For any two condition attributes
a,b ∈ B, let a set B′ be either B′ = (B \ {a}) ∪ {aRb} or B′ = (B \ {b}) ∪ {aRb}.
then the following inequality holds:

ACov(B) ≤ ACov(B′).

Proof Let NB and NB′ be the denominators of ACov(B) and ACov(B′), respec-
tively. By the definition of ACov(·) by (9), it is sufficient to show NB′ ≤ NB. Let
U/IND(B) and U/IND(B′) be the sets of equivalence classes by the indiscernibility
relations IND(B) and IND(B′), respectively, and suppose that there arem equivalence
classes in U/IND(B′), i.e, there are m objects x1, . . . , xm ∈ U and U/IND(B′) =
{[x1]B′ , . . . , [xm]B′ }. ByProposition 4, for each equivalence class [xi]B′ ∈ U/IND(B′),
there exist ki(≥ 1) equivalence classes [yi1 ]B, . . . , [yiki ]B ∈ U/IND(B) such that

[xi]B′ = ⋃iki
j=i1

[yj]B holds. Therefore, U/IND(B) = {[y11]B, . . . , [y1k1 ]B, . . . , [ym1 ]B,
. . . , [ymkm

]B}. For each decision class D ∈ D, it is clear that D ∩ [xi]B′ �= ∅ holds if
and only if there is at least one equivalence class [yil ]B such thatD ∩ [yil ]B �= ∅ holds.

This fact implies that |{D ∈ D | D ∩ [xi]B′ �= ∅}| ≤ ∑iki
j=i1

|{D ∈ D | D ∩ [yj]B �= ∅}|
holds, which concludes NB′ ≤ NB.

Corollary 3 ([9]) Let B and B′ in Proposition 5 be both relative reducts in the
information table Sint for interrelationship mining such that ACov(B) ≤ ACov(B′).
The number of decision rules generated from B′ is smaller than (or at least equal to)
the number of decision rules generated from B.

Proof It is obvious from Proposition 5.
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OWA Aggregation of Probability
Distributions Using the Probabilistic
Exceedance Method

Ronald R. Yager

Abstract We note the use of the OWAOperator in multi-criteria decision problems
for aggregating the individual criteria satisfactions. We consider the situation where
the criteria satisfactions have some uncertainty, are finite probability distributions.
We note the requirement of needing to order these probability distributions. We
note it is often not possible to obtain the required ordering over probability distribu-
tions. To circumvent this problem we introduce an approach called the Probabilistic
Exceedance Method, PEM, which allows us to provide a surrogate for the OWA
aggregation of probability distributions that doesn’t require a linear ordering over
the probability distributions.

1 Introduction

Multi-criteria decision-making often requires the aggregation of an alternative’s sat-
isfactions to the individual criteria to obtain the alternatives overall satisfaction to
the task of interest. One commonly used method for performing this aggregation is
the Ordered Weighted Averaging (OWA) Operator [1, 2]. Here the arguments in the
OWA aggregation are the individual criteria satisfactions. In this work we look at the
case in which there is some probabilistic uncertainty associated with the criteria sat-
isfactions. The criteria satisfactions are probability distributions over a finite domain.
Here we must perform the OWA aggregation where the arguments are discrete prob-
ability distributions. A central feature of the OWA operator is an ordering of the
arguments being aggregated based upon their values, the bigger value the higher in
the ordering. Here thenwemust an ordering over these probability distributions, a not
necessarily easy task. One method for obtaining a linear ordering over a collection
of finite probability distributions is to use stochastic dominance [3–6]. This requires
a pairwise comparison of individual probability distributions to determine whether
one stochastically dominates another. Using these pairwise comparisons we can get a
binary relationship over the probability distributions fromwhich we can generate the
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desired linear ordering. A problem that arises here is that often the relationship is not
complete, there are pairs of probability distributions for which neither stochastically
dominates the other; as a result we can not obtain the required linear ordering. One
way the address this problem is to provide a surrogate for the OWA aggregation of
probability distributions, one that can be used even if we don’t have the required
linear ordering and is compatible with the OWA aggregation in the case in which
there exists the required ordering. Here we introduce the Probabilistic Exceedance
Method, PEM, as a surrogate.

2 OWA Operators in Multi-criteria Decision Problems

The OWA operator has found considerable use in multi-criteria decision-making.
Assume C = {C1, . . . ,Cq} are a collection of criteria of interest to a decision maker.
Let X be a set of alternatives. For any alternative x ∈X let Ck(x) ∈ [0, 1] indicate the
degree to which x satisfies the alternative Ck. A commonly used decision procedure
is to use a point wise decision function M(C1(x), . . . ,Cq(x)] = D(x) to evaluate
each alternative and then select the alternative with the largest value for D. Here the
value of D(x) does depend on any other alternative and satisfies Arrow’s requirement
that the decision procedure is independent of irrelevant alternatives [7].

In this approach the decision function captures the relationship between the
criteria, the so-called decision imperative. One popular formulation for the deci-
sion function is to use the Ordered Weighted Averaging (OWA) operator. Here
D(x) = OWA(C1(x), . . . ,Cq(x)]. In the following for notational convenience we
denote ak = Ck(x) then D(x) = OWA(a1, . . . , aq). The OWA operator is defined in
the following.

Definition An OWA operator of dimension q is mapping OWA: Rq → R that has
an associated collection of q weights W = [w1, . . . ,wq]such that all wj ∈ [0, 1] and
�jwj = 1 where OWA(a1, . . . , aq) = �jwjbj with bj being the jth largest of the i.

We refer W to as the OWA weighting vector. We note that we can express this

formulation as OWA(a1, . . . , aq) =
q∑

j=1

wjaρ( j)) where ρ is an index function so that

ρ(j) is the index of the jth largest of the arguments.
A fundamental aspect of this operator is the ordering step, the arguments are

ordered in descending order with respect to their values. Thus here the argument
ai is not associated with a particular weight wi but with the weight associated with
a particular ordered position. This ordering step introduces a non-linearity into the
aggregation process.

The OWA operator is known to be a mean (averaging) type operator in that it has
the following properties: Boundedness, Monotonicity, Symmetry and Idempotency.

The OWA operator can implement many different types of aggregation depending
on the choice of the weighting vector W. The different implementations of the OWA
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operator is related to the form of we weighting vector. For example weighting vector
W∗ such that wj = 0 for j = 1 to q − 1 and wq = 1 results in the formulation
OWA(a1, . . . , aq) = Mini[ai]. On the other hand the weighting vector W∗ such that
wi = 1 and wj = 0 for j = 2 to q results in the formulation OWA(a1, . . . , aq) =
Maxj[ai]. The weighting vector WAVE where wj = 1/q gives the simple average,

OWA(a1, . . . , aq) = 1
q

q∑

i=1

ai.

In the framework of multi-criteria decision making the choice of weighting vec-
tor W is a reflection of the decision imperative, the relationship between the cri-
teria. For example of weighting vector W∗which results in the OWA aggregation
OWA(a1, . . . , aq) = Min1[ai], can be seen as modeling the requirement to satisfy
“all” the criteria. The case where wj = 1/q can be seen as implementing the impera-
tive where we want to satisfy some of the criteria.

A crucial step in using the OWA operator to evaluate the overall satisfaction of a
decision alternative x is the ordering of the alternative’s satisfactions to the individual
criteria, the Ci(x). In the case in which the individual criteria satisfactions are scalar
values this required ordering is a simple task. In situations in which the individual
criteria satisfactions are more complex objects then scalar values the ordering of
these satisfactions can become difficult. Here we look at one such situation.

3 Probabilistic Satisfactions to Criteria

We now want to consider the situation in which the satisfactions to the criteria by
alternative x rather than being scalar values have some uncertainty that is expressed
via a probability distribution.

Assumewehave a collection of criteria,C = {C1, . . . ,Ck, . . . ,Cq}. Let our objec-
tive function for aggregating the criteria satisfaction be based on an OWA operator
having weighting vector W = [w1, . . . ,wi, . . . ,wq]. Let Y = {y1, . . . , yj, . . . , yn}
be a finite set of numeric values from unit interval providing the possible degrees
of satisfaction of an alternative to the criteria. In the following we will assume the
indexing of the the elements in Y is such that y1 > y2 > · · · > yj > yj+1 > · · · > yn.
The indexing of the yj is in descending order. The set Y essentially reflects the deci-
sion maker’s ability to distinguish different levels of satisfaction. The fact that Y is
finite provides no real restriction it just takes advantage of the reality of the limited
human ability to discriminate.

Here we shall assume the value of Ck(x), the satisfaction of the kth criteria by x, is
the probability distribution Pk where Pk = [pk1, . . . , pkn] is a probability distribution
on the space Y such that pkj is the probability that the satisfaction of the kth criteria by
alternative x is equal to yj. Here we see that all pkj ∈ [0, 1] and that for each criteria
Ck we have

n∑

j=1

pkj = 1.
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To use theOWAaggregation to combine theCk(x)wemust have an ordering of the
Ck(x), with respect to which are the bigger. Since these are probability distributions
determining this ordering is not easy. Nevertheless, let us assumewe have an ordering
L over the criteria satisfactions by x. Here then L(i) is the index of criteria with the
ith largest satisfaction by alternative x. Thus here PL(i) is the probability distribution
with the ith best satisfaction.

Having this ordering using the OWA operator we can calculate the aggregated

probability distributionP=
q∑

i=1

wiPL(i).HereP is a nvectorwhose jth component pj =
q∑

i=1

wipL(i)jwhere pL(i)j is the probability of yj for the ith probability distribution in the

order L. Thus here p = [p1, . . . , pj, . . . , pn] = [
q∑

i=1

wipL(i)1, . . . ,

q∑

i=1

wipL(i)j, . . . ,

q∑

i=1

wipL(i)n] where pj is the aggregated probability associated with the satisfaction

level yj. This aggregated value is obtained using the OWA aggregation operator.
We see that P is a probability distribution on Y since each pj ∈ [0, 1] and

n∑

i=1

Pj =
n∑

j=1

( q∑

i=1

wipL(i)j

)
=

q∑

i=1

⎛

⎝
n∑

j=1

wipL(i)j

⎞

⎠ =
q∑

i=1

wi

⎛

⎝
n∑

j=1

pL(i)j

⎞

⎠ =
q∑

j=1

wi = 1

Thus here the aggregated value of the Ck(x) is itself a probability distribution on the
space Y.

Let us look at this for some special cases of W. Consider the case where w1 = 1

and wi = 0 for all i= 2 to q. Here pj =
q∑

i=1

wipL(i)j = pL(1)j, it is the probability of yj

for the criteria with the largest criteria satisfaction. pL(1). Thus here our aggregated
probability distribution, P, is simply the probability distribution of the most satisfied
criteria. If the OWA weighting vector W is such that wq = 1 and wi = 0 for i �=
q then pj =

q∑

i=1

wipL(i)j = pL(q)j, it is the probability of yj for the criteria with the

smallest satisfaction. Thus here P is simple the probability distribution of the least
satisfied criteria. Finally we see in the special case where the OWA weights are such

that the wi = 1/q for all i then P =
q∑

i=1

1

q
pL(i)j = 1

q

q∑

k=1

pkj. It is simply the average

of the Ck(x) and no ordering is necessary.
Once have obtained the vector P = [p1, . . . , pj, . . . , pn] by aggregation of the

Ck(x) using the OWA operator we can use this to obtain an expected value for
alternative x



OWA Aggregation of Probability Distributions … 281

EV(OWA(C1(x), . . . ,Cq(x))) =
n∑

i=1

pjyj (1)

We can use these expected values to compare the different alternatives.

4 Stochastic Dominance

In the proceeding, to be able to perform the OWA aggregation we assumed the avail-
ability of the ordering L over the criteria with respect to their satisfaction by alternate
x. However, in the current situation, where the Ck(x) are probability distributions
over the space Y, it is not obvious how to determine that Ck1(x) > Ck2(x). That is
we need to obtain an ordering over probability distributions. One established way
to obtain an ordering over probability distributions, like the Ck(x), is via the idea of
stochastic dominance [6]. Here for each Ck(x), probability distribution pk, we obtain

an n vector tk = [tk(1), . . . , tk(j), . . . , tk(n)] where tk(j) =
j∑

r=1

pkr. Since yj > yj+1

then tk(j) = Prob(Ck(x) ≥ yj), thus tk(j) is the probability that x’s satisfaction to cri-
teria Ck is at least yj. For given Pk,Ck(x), tk is known as its Exceedance Distribution
Function [8]. Here we shall use EDFk and EDFk(j) synonymously for tk and tk(j).
We note that for each criteria Ck, we can view tk(j) as a function of j, with j going
from 1 to n, having the properties: 1. tk(1) = pk1, 2. tk(n) = 1 and 3. tk(j + 1) ≥ tk(j)
(monotonicity in j).

Using the exceedance distribution functionwe say that Ck1(x) stochastically dom-
inates Ck2(x), denoted Ck1(x) >SD Ck2(x) if tk1 ≥ tk2 for all j = 1 to n and for at
least one j we have tk1 > tk2 . Essentially we see that Ck1(x) stochastically dominates
Ck2(x) if for each value yj ∈ Y, Ck1(x) has at least as big a probability of having a
satisfaction larger or equal yj then does Ck2(x).

We observe that stochastic dominance provides a pairwise comparison between
the probability distributions corresponding to the criteria satisfactions by x. Formally,
it is providing a binary relationship R over the space C = {C1, . . . ,Cq} so that Ck1
R Ck2 if Ck1(x) >SD Ck2(x). It is well known that in some cases the relationship R
can generate a linear order L over the space C [9, 10]. However to be able to obtain
a linear ordering L we need that the relationship R be transitive and complete, that
is we need

(1) Transitivity: if Ck1 R Ck2 and Ck2 R Ck3 then Ck1 R Ck3
(2) Completion: for all pairs Ck1 ,Ck2 we have either Ck1 R Ck2 or Ck2 R Ck1

Condition two, completion. requires that we must be able to establish for each
pair Pk1 and Pk2 whether Pk1 >SD Pk2 or Pk2 >SD Pk1 .

In order for the probability distributions, p1, . . . , pk, . . . , pq, associated with the
satisfactions of the criteria in C with a alternative x to induce a linear order L using
stochastic dominance we observe that the following fundamental relationship must
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exist between the collection of associated exceedance distribution functions, the
tk = [tk(1), . . . , tk(j), . . . , tk(n)]. If L(i) is the index of the ith criteria is C in the
ordering L then at each j we must have

tL(1)(j) ≥ tL(2)(j) ≥ · · · ≥ tL(q)(j) (2)

Thus the ordering of the tk(j) with respect to k must be so that it is the same at each
j. We shall refer to this condition as homogeneity among the exceedance distribu-
tion functions. Thus the assumption of a linear ordering among the Pk implies the
satisfaction of the homogeneity condition.

We note in real applications it is frequently not possible to satisfy over the col-
lection of Pk’s the conditions of transitivity and completeness needed to generate a
linear order L over the collection of criteria C needed implement to OWA aggrega-
tion, OWA(P1, . . . , Pk, . . . ,Pq). In order to work around this real world difficulty
we must look for other methods to calculate an aggregation of the Pk’s that do not
require the linear ordering but are “consistent” with stochastic dominance. We shall
refer to these methods as surrogates [6].

We shall say that a method is a valid surrogate method for the calculation
OWA(P1, . . . , Pk, . . . ,Pq) if it is such that if there exists a stochastic dominance
(SD) induced linear ordering L then the surrogate approach always gives the same
result as using OWA(P1, . . . , Pk, . . . ,Pq), it is consistent with the approach that
uses the order L, furthermore however, we require that the surrogate method can be
used in situations when there is not an available an SD induced linear ordering L.

Implicit in this consistency condition is the fact that for any surrogate method,
if the Pk’s are such that their associated exceedance distribution functions satisfy
the homogeneity condition and hence induce an SD based linear ordering L then the
calculation of the aggregation of the P1, . . . , Pq using this surrogate method must be
equal to the OWA aggregation OWA(P1, . . . ,Pq) calculated using the linear ordering
L that is obtained to from the homogenous distribution.

We now turn to the task of obtaining a surrogate method for calculating the OWA
aggregation of a collection of arguments that are probability distributions.

5 PEM the Probabilistic Exceedance Method

Let C = {C1, . . . ,Ck, . . . ,Cq} be a collection of criteria. Assume Y = {y1, . . . ,
yj, . . . , yn} are the set of values used to indicate the degree of satisfaction to the
criteria by an alternative x. Here we assume that the set Y has an ordering and the
indexing of the elements in Y such that yj > yj+1. Furthermore, the overall satisfac-
tion by alternative x to the collection of criteria is determined by anOWAaggregation
OWA(C1(x), . . . ,Ck(x), . . .Cq(x)) where Ck(x) is the satisfaction of the criterion
Ck by x and the OWA operator has a weighting vector W = [w1, . . . , wi, . . . ,wq].

In the situation of interest here we assume there exists some uncertainty in our
knowledge of an alternative’s satisfactions to the criteria. Specifically in this case
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each Ck(x) is a probability distribution, Pk, over the space Y. In particular Pk =
[pk1, . . . , pkj, . . . , pkn] where pkj is the probability that the satisfaction of Ck by x is

equal to yj. Here each pkj,∈ [0, 1] and
n∑

j=1

pkj = 1. Our objective her is to find the

OWA aggregation of these probability distributions

P = OWA(C1(x), . . . ,Ck(x), . . . ,Cq(x)) = OWA(P1, . . . ,Pk, . . . ,Pq]

where P is a probability distribution over Y.
Here we shall suggest a surrogate method for accomplishing this aggregation

one that can be used without having to provide an ordering over the probability
distributions. We shall refer to this as the Probabilistic Exceedance Method, PEM,
approach. Subsequently we shall show that this is a valid surrogate for the approach
that uses the ordering. We note that one benefit of the PEM method is that it will
allow us to perform the aggregation whether an order over the Pk exists or not.

The following is the PEM algorithm, a surrogate, for calculating an OWA aggre-
gation of probability distributions. Here we denote P̃ = PEM(p1, . . . , pk, . . . , pq)

(1) For each probability distribution Pk calculate its associated exceedance
distribution function. EDFk = [EDFk(1), . . . ,EDFk(j), . . . ,EDFk(n)] where

EDFk(j) =
j∑

t=1

pkt.

We note that EDFk(j) is the probability that the alternative’s satisfaction to Ck is at
least yj.

(2) Let gj(i) be an index function so that gj(i) is the index of the ith largest of the
EDFk at j. That is EDFgj(i) is the i

th largest value of EDFk(j).
(3) Let Bj = OWA(EDF1(j), . . . ,EDFk(j), . . . ,EDFq(j)) using the weighting

vector W, that is Bj =
q∑

i=1

wiEDFgj(i). We note we can perform this OWA aggre-

gation since each EDFk(j) is a scalar and hence we can obtain ordering gj.
(4) Here our aggregated value P̃ = [p̃1, . . . , p̃j, . . . , p̃n] is defined such that

for j = 1 to n we have p̃j = Bj – Bj−1. (Note by convention we define B0 = 0)
Let us assure ourselves that P̃ is a probability distribution. We first note that since

all EDFk(j) ∈ [0, 1] then all Bj ∈ [0, 1]. Furthermore since for each k, EDFk(j) ≥
EDFk(j−1) thenBj ≥ Bj−1, hence each p̃j = Bj − Bj−1 ≥0. Further sinceBj ∈ [0, 1]
then each p̃j ∈ [0, 1]. We further observe that since for all k, EDFk(n) =

n∑

j=1

pkj = 1

then Bn = OWA[1, . . . , 1] = 1. Finally we see that
n∑

j=1

p̃j =
n∑

j=1

(Bj − Bj−1) =
Bn − B0 = 1.

We can provide an intuitive understanding of what is happening in this PEM
method. We now recall that Bj = OWA(EDF1(j), . . . ,EDFq(j)), since the OWA
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operator is a type of averaging operator then essentially Bj is a kind of average
of the EDFk(j) at j over k, here then Bj = Average of EDFk(j) = EDFk(j). Sim-
ilarly Bj−1 is a kind of average over k of the EDFk’s at j − 1, Bj−1 = Average
EDFk(j −1) = EDFk(j − 1). Finally see that
p̃j = Bj − Bj−1 = EDFk(j) − EDFk(j − 1)
it is a kind of difference of these averages. Now recall that for each k, EDFk(j) −
EDFk(j −1) = pkj it is the probability of the element yj in probability distribution
pk. Thus we see that p̃j can be viewed as a kind average of the pkj over k.

Thus we see that the PEM provides a probability distribution P̃ over the space Y
where p̃j, the aggregated probability associated with outcome is yj, can be viewed as
a kind of average of the pkj over k.

We provide the following example illustrating this PEM algorithm
Example: Let Y = {y1, y2, y3, y4, y5} with yj > yj+1. Assume we have four crite-
ria whose respective satisfactions by alternative x are the probability distributions
P1,P2,P3,P4, shown in Table1. In Table1 the entry at the intersection of row Pk and
column j is the probability pkj.

In Table2 we provide the respective exceedance distribution functions. In Table2

the entry at the intersection of row EDFk and column j is EDFk(j) =
j∑

t=1

pkt.

In Table3 we provide the ordering of the EDFk’s for each j. In this table the entry
at the intersection of row i and column j is EDFgj(i), the i

th largest of the values in
the column j.

Assume our desired aggregation is based on an OWA operator with weighting
vector W having components wi for i = 1–4. Using this OWA operator we have

Bj = OWA(EDFgj(1)(j),EDFgj(2)(j),EDFgj(3)(j),EDFgj(4)(j)).

Table 1 Probability Distributions

j = 1 j = 2 j = 3 j = 4 j = 5

P1 0.4 0.0 0.0 0.5 0.1

P2 0.2 0.2 0.2 0.2 0.2

P3 0.5 0.2 0.2 0.1 0

P4 0 0 0.3 0.2 0.5

Table 2 Exceedance Distribution Functions

j = 1 j = 2 j = 3 j = 4 j = 5

EDF1 0.4 0.4 0.4 0.9 1

EDF2 0.2 0.4 0.6 0.8 1

EDF3 0.5 0.7 0.9 1 1

EDF4 0 0 0.3 0.5 1
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Table 3 Ordered EDF’s

j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 0.5 0.7 0.9 1 1

i = 2 0.4 0.4 0.6 0.9 1

i = 3 0.2 0.4 0.4 0.8 1

i = 4 0 0 0.3 0.5 1

Inserting the values in Table3 we get

B1 = 0.5w1 + 0.4w2 + 0.2w3 + 0w4

B2 = 0.7w1 + 0.4w2 + 0.4w3 + 0w4

B3 = 0.9w1 + 0.6w2 + 0.4w3 + 0.3w4

B4 = 1w1 + 0.9w2 + 0.8w3 + 0.3w4

B5 = 1w1 + 1w2 + 1w3 + 1w4 = 1

and B0 = 0. From this we obtain the aggregated vector p̃ with 5 components

p̃j = Bj − Bj−1 for j = 1 to 5.

The actual values of the Bj’s and in turn the p̃j’s will depend on the OWA weighting
vector W. Let us look at this for some notable examples of W.

Case 1. w1 = 1,w2 = 0,w3 = 0,w4 = 0. Here

B0 = 0,B1 = 0.5,B2 = 0.7,B3 = 0.9,B4 = 1 and B5 = 1

and hence

p̃1 = B1 − 0 = B1 = 0.5, p̃2 = B2 − B1 = 0.2, p̃3 = B3 − B2 = 0.2

p̃4 = B4 − B3 = 0.1 and p̃5 = B5 − B4 = 0

Case 2. w1 = w2 = w3 = 0 and w4 = 1. Here

B1 = 0,B2 = 0,B3 = 0.3,B4 = 0.5,B5 = 1

and hence
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p̃1 = B1 − 0 = B1 = 0, p̃2 = B2 − B1 = 0, p̃3 = B3 − B2 = 0.3

p̃4 = B4 − B3 = 0.2 and p̃5 = B5 − B4 = 0.5

Case 3. All wi = 1
4 . In this case

B1 = 1

4
(0.5 + 0.4 + 0.2) = 1.1

4

B2 = 1

4
(0.7 + 0.4 + 0.4) = 1.5

4

B3 = 1

4
(0.9 + 0.6 + 0.4 + 0.3) = 2.2

4

B4 = 1

4
(1 + 0.9 + 0.8 + 0.5) = 3.2

4

B5 = 1

4
(1 + 1 + 1 + 1) = 4

4
= 1

In this case

p̃1 = 1.1

4
, p̃2 = 1

4
(1.5 − 1.1) = 0.4

4
, p̃3 = 1

4
(2.2 − 1.5) = 0.7

4

p̃4 = 1

4
(3.2 − 2.2) = 1

4
, p̃5 = 1

4
(4 − 3.2) = 0.8

4

6 Showing that PEM Algorithm Is a Surrogate

Earlier we indicated that for a procedure such as the PEM algorithm, PEM(P1, . . . ,

Pk, . . . , Pq), to be a valid surrogate for the calculation OWA(P1, . . . Pk, . . . ,Pq)
it must have the same value as OWA(P1, . . . Pk, . . . ,Pq) in the case where the con-
stituent probability distributions, thePk, are such that they can induce a linear ordering
with respect to the stochastic dominance relationship.

In the case where there exists a linear ordering L over the Pk, with PL(i) being the
ith element in this ordering, we indicated that

OWA(P1, . . . Pk, . . . ,Pq) = P̂ =
q∑

i=1

wiPL(i) = [p̂1, . . . , p̂ j , . . . p̂n].

Here p̂ is a probability distribution on Y such that p̂j =
q∑

i=1

wipL(i)j where pL(i)j is the

probability of yj in the ith distribution in the ordering of the pk.
If the PEM algorithm is to be a valid surrogate then in the case where there

exists a stochastic dominance based linear ordering L over the pk and if P̃ =
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PEM(P1, . . . ,Pk, . . . ,Pq) with P̃ = [p̃1, . . . , p̃j, . . . p̃n] we must have p̃j = p̂j for
j = 1 to q.

In order to provide the proof we recall an observation we made earlier; if the Pk
induce a linear ordering L with respect to stochastic dominance then their associated
EDFk’s have homogeneity property, the ordering of the EDFk’s is the same for j, at
each j the ordering is L. We now show for the case where there is a linear ordering
on the pk, the case where the ordering of the EDFk’s is the same at each j, then the
using the PEM algorithm leads to the same result as the OWA(P1, . . . ,Pq), P̃ = P̂.

Consider the special case of the PEM algorithm, PEM(P1, . . . ,Pq) in which the
ordering of the EDFk(j) is the same at each j. In this case gj(i) = g(i) = L(i). Here
when we implement the PEM algorithm we have to calculate

Bj = OWA(EDF1(j),EDF2(j), . . . ,EDFq(j)) =
q∑

i=1

wiEDFgj(i)(j),

however in this special case we have for all j that gj(i) = L(i) and hence

Bj =
q∑

i=1

wiEDFL(i)(j).

In this special case of linearly ordered probability distributions for all j

p̃j = Bj − Bj−1 =
q∑

i=1

wiEDFL(i)(j) −
q∑

i=1

wiEDFL(i)(j − 1) =
q∑

i=1

wi(EDFL(i)(j) − EDFL(i)(j − 1)).

Since EDFL(i)(j) − EDFL(i)(j − 1) = pL(i)j then p̃j =
q∑

i=1

wipL(i)(j). We see this is

the same as the value p̂j obtained using the OWA(P1, . . . ,Pq) with the ordering L.
Thus the PEM algorithm approach provides a surrogate for calculating the OWA

aggregation of probability distributions; it can be used when we don’t have a linear
ordering on the probability distributions being aggregated and if we do have a linear
ordering it yields the same result as we would get using the OWA with the linear
order.

In the following we shall look at the preceding example where we used the PEM
algorithm and show that we actually used it in its surrogate mode. For our subsequent
discussion we shall find it useful to provide a richer version of the Table3. Here each
entry is of the form EDFgj(i)/K = gj(i). Here in addition to providing ith largest value
of EDF for column j we also provide K the index of the criteria that provides this
value (Table4).

Here we see that ordering is not the same for all j. In particular columns 3 and 4
we have
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Table 4 Enhanced EDF’s

j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 0.5/K = 3 0.7/K = 3 0.9/K = 3 1/K = 3 1/K = 3

i = 2 0.4/K = 1 0.7/K = 1 0.6/K = 2 0.9/K = 1 1/K = 1

i = 3 0.2/K = 2 0.4/K = 2 0.4/K = 1 0.4/K = 2 1/K = 2

i = 4 0/K = 4 0/K = 4 0.3/K = 4 0.3/K = 4 1/K = 4

j = 3 j = 4
g3(1) occurs at K = 3 g4(1) occurs at K = 3
g3(2) occurs at K = 2 g4(2) occurs at K = 1
g3(3) occurs at K = 1 g4(3) occurs at K = 2
g3(4) occurs at K = 4 g4(4) occurs at K = 4

Thus the ordering is not the same and hence there is not linear ordering L over
probability distributions, however the use of the PEM method allowed us to obtain
an aggregated probability distribution.

In the preceding we showed how to find the OWA aggregation of P1, . . . ,Pq using
the surrogate PEM algorithm. This aggregation resulted in a probability distribution
P̃ = [p̃1, . . . , p̃j, . . . p̃n] over the space Y= {y1, . . . , yn}where p̃j is the probability
of yj. It is important to emphasize that the elements yj in Y need not be numeric
values, all that is required is that we have an ordering on the elements which we
assumed to be yj > yj+1.

Once having this aggregated probability distribution we can apply it in many of
the kinds of operations required in decision-making. The operations we can perform,
with the aggregated probability distribution, depend on whether the set Y is non-
numeric or numeric. If it is numeric we havemore structure and hencemore available
operations then if it is non-numeric. Actually any operation that can be performed
in the case of a non-numeric set Y can be performed in a numeric space. Because it
is richer we shall look at the situation when Y is a numeric space.

7 Conclusion

We discussed the use of the Ordered Weighted Averaging (OWA) Operator in multi-
criteria decision problems as a means of aggregating the individual criteria satis-
factions. We looked at the situation where the criteria satisfactions are probability
distributions and commented on the need of getting linear order over these proba-
bility distributions. We introduced the idea of using pairwise stochastic dominance
to provide the necessary ordering relationship over the probability distributions. We
indicated that while this approach is appropriate, it is often not possible, since the
presence of a stochastic dominance relationship between all pairs of probability
distributions is not always the case, the relationship is not complete. To circum-
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vent this problem we introduced an approach called the Probabilistic Exceedance
Method, PEM, which allowed us to provide a surrogate for the OWA aggregation of
probability distributions that doesn’t require a linear ordering over the probability
distributions.
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A Dynamic Average Value-at-Risk Portfolio
Model with Fuzzy Random Variables

Yuji Yoshida

Abstract A perception-based portfolio model under uncertainty is presented. In
the proposed model, randomness and fuzziness are evaluated respectively by proba-
bilistic expectation and the mean values with evaluation weights and λ-mean func-
tions. Introducing average value-at-risks under conditions, this paper formulates
average value-at-risks in dynamic stochastic environment. By dynamic program-
ming approach, an optimality condition of the optimal portfolios for dynamic aver-
age value-at-risks is derived. It is shown that the optimal average value-at-risk is a
solution of the optimality equation under a reasonable assumption, and an optimal
portfolio weight is obtained from the equation.

1 Introduction

Fuzzy random variables, which were introduced by Kwakernaak [5], are applied to
decision-making under uncertainty with fuzziness like linguistic data in statistics,
engineering and economics. This paper deals with a financial portfolio model with
fuzzy random variables. Soft computing like fuzzy logic works effectively for finan-
cial models in uncertain environment. To represent uncertainty in this paper, we use
fuzzy random variables which have two kinds of uncertainties, i.e. randomness and
fuzziness. In this model, randomness is used to represent the uncertainty regarding
the belief degree of frequency, and fuzziness is applied to linguistic imprecision of
data because of a lack of knowledge regarding the current stock market. At the finan-
cial crisis in October 2008 and January 2016, we have observed the serious distrust of
the market that the risky information regarding banks and security companies, and it
is surely a kind of risks occurring from the imprecision of information. The fuzziness
comes from the imprecision of data because of a lack of knowledge, and such serious
distrust in the stock market will be represented by the fuzziness of information in
finance models.
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In financial market, the portfolio is one of the most useful risk allocation tech-
niques for stable asset management. The minimization of the financial risk as well
as the maximization of the return are important themes in the asset management. In
a classical portfolio theory, Markowitz’s mean-variance model is studied by many
researchers and fruitful results have been achieved, and then the variance is investi-
gated as the risk for portfolios [6, 7]. In this paper we focus on the drastic decline
of asset prices. Recently, value-at-risk (VaR) is used widely to estimate the risk that
asset prices decline based on worst scenarios. VaR is a risk-sensitive criterion based
on percentiles, and it is one of the standard criteria in asset management. Average
value-at-risk (AVaR) is a kind of coherent risk-level indexes of the asset at a specified
probability of decline and it is used to select portfolios after due consideration ofworst
scenarios in investment.We extend the AVaR for real-valued random variables to one
regarding fuzzy random variables from the viewpoint of perception-based approach
in Yoshida [10]. We formulate a portfolio problem with fuzzy random variables, and
we discuss the fundamental properties of the extendedAVaR. Estimation of uncertain
quantities is important in decisionmaking. Yoshida [9] introduced themean, the vari-
ance and the covariances of fuzzy random variables, using evaluation weights and
λ-mean functions. This paper estimates fuzzy numbers and fuzzy random variables
by probabilistic expectation and these criteria, which are characterized by possibility
and necessity criteria for subjective estimation and a pessimistic-optimistic index
for subjective decision. In this paper, using the results in Yoshida [9–15], we discuss
dynamic average value-at-risk portfolio optimization with fuzzy random variables,
which is one of extended models from Yoshida [14].

2 Perception-Based Estimations for Fuzzy Random
Variables

Let R = (−∞,∞) be the set of all real numbers. A fuzzy number is denoted by
its membership function ã : R → [0, 1] which is normal, upper-semicontinuous,
fuzzy convex and has a compact support (Zadeh [18]). Denote by R the set of all
fuzzy numbers. For a fuzzy number ã, its α-cuts are given by ãα = {x ∈ R | ã(x) ≥
α} (α ∈ (0, 1]) and ã0 = cl{x ∈ R | ã(x) > 0}, where cl denotes the closure of an
interval. The α-cut is also written by closed intervals ãα = [ã−

α , ã+
α ] (α ∈ [0, 1]).

Hencewe introduce a partial order�, so called the fuzzy max order, on fuzzy numbers
R: Let ã, b̃ ∈ R be fuzzy numbers. ã � b̃ means that ã−

α ≥ b̃−
α and ã+

α ≥ b̃+
α for all

α ∈ [0, 1]. An addition and a scalar multiplication for fuzzy numbers are defined
as follows: For ã, b̃ ∈ R and λ ∈ R satisfying λ ≥ 0, the addition ã + b̃ of ã and b̃
and the nonnegative scalar multiplication λã of λ and ã are fuzzy numbers given by
their α-cuts (ã + b̃)α = [ã−

α + b̃−
α , ã+

α + b̃+
α ] and (λã)α = [λã−

α ,λã+
α ], where ãα =

[ã−
α , ã+

α ] and b̃α = [b̃−
α , b̃+

α ] (α ∈ [0, 1]). We also use the following metric dH onR
induced from Hausdorff metric: dH (ã, b̃) = supα∈[0,1] max{|ã−

α − b̃−
α |, |ã+

α − b̃+
α |}

for ã, b̃ ∈ R.
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LetΩ be a sample space and let P be a non-atomic probability onΩ . LetX be a set
of real-valued random variables on Ω . A fuzzy-number-valued map X̃ : Ω → R is
called a fuzzy random variable ifω �→ X̃−

α (ω) andω �→ X̃+
α (ω) aremeasurable for all

α ∈ [0, 1], where X̃α(ω) = [X̃−
α (ω), X̃+

α (ω)] = {x ∈ R | X̃(ω)(x) ≥ α} is theα-cut
(Kwakernaak [5]). Kruse andMeyer [4] gave a perception-based definition regarding
the expectation Ẽ(X̃) of a fuzzy random variable X̃ , which is induced from Zadeh’s
extension principle, as follows.

Ẽ(X̃)(x) = sup
X∈X : E(X)=x

inf
ω∈Ω

X̃(ω)(X (ω)) (1)

for x ∈ R, where X is the set of all integrable real-valued random variables and
E(X) = ∫

Xd P . Then, the expectation Ẽ(X̃) is a fuzzy number whose α-cut is
given by

Ẽ(X̃)α = [E(X̃−
α ), E(X̃+

α )] (2)

forα ∈ (0, 1]. Theα-cut of fuzzy number (1) can be generally given by the following
Aumann integral: Ẽ(X̃)α = {E(X)|X ∈ X and X (ω) ∈ X̃α(ω) for allω ∈ Ω}. Puri
and Ralescu [8] discussed the conditional expectation of fuzzy random variables by
Aumann integral, and López-Díaz et al. [2] studied it for statistics with fuzzy data.
For a functionalϕ : X → R as a general estimation of real-valued random variables,
by the perception-based approachwe can discuss fuzzy extensions ϕ̃ of the estimation
ϕ which is defined as follows:

ϕ̃(X̃)(x) = sup
X∈X :ϕ(X)=x

inf
ω∈Ω

X̃(ω)(X (ω)), x ∈ R (3)

for a fuzzy random variable X̃ ∈ X̃ (Fig. 1, Yoshida [11]).
Denote by Φ a family of functionals ϕ : X → R which satisfy the following

conditions (a) and (b):

Fig. 1 Perception-based
estimation of a fuzzy random
variable
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(a) ϕ(X) ≤ ϕ(Y ) holds for all real-valued random variables X, Y ∈ X satisfying
X (ω) ≤ Y (ω) for all ω ∈ Ω . (non-decreasing property)

(b) Let {Xn}n ⊂ X and X ∈ X be a sequence and its limit, i.e. limn→∞ Xn(ω) =
X (ω) for all ω ∈ Ω . Then it holds that limn→∞ ϕ(Xn) = ϕ(X). (continuity)

Then the family Φ has the following properties (i)–(ii):

(i) If ϕ1,ϕ2 ∈ Φ, then it holds that ϕ1 + ϕ2 ∈ Φ.
(ii) If ϕ ∈ Φ and λ ∈ [0,∞), then it holds that λϕ ∈ Φ.

The following lemma gives fundamental properties for the perception-based
estimations (Yoshida [11]).

Lemma 1 Let ϕ ∈ Φ. Define a functional ϕ̃ : X̃ → R by

ϕ̃(X̃)(x) = sup
X∈X :ϕ(X)=x

inf
ω∈Ω

X̃(ω)(X (ω)), x ∈ R (4)

for a fuzzy random variable X̃ ∈ X̃ . Then the following (i)–(v) hold.

(i) The α-cut of ϕ̃(X̃) is given by a closed interval

ϕ̃(X̃)α = [ϕ(X̃−
α ),ϕ(X̃+

α )] (5)

for α ∈ (0, 1].
(ii) It holds that ϕ̃(X̃) 
 ϕ̃(Ỹ ) for all fuzzy random variables X, Y ∈ X̃ satisfying

X̃(ω) 
 Ỹ (ω) for all ω ∈ Ω , where 
 is the fuzzy max order on R.
(iii) Let {X̃n}n ⊂ X̃ and X̃ ∈ X̃ be a sequence and its limit, i.e. limn→∞ X̃n(ω) =

X̃(ω) for all ω ∈ Ω . Then it holds that limn→∞ ϕ̃(X̃n) = ϕ̃(X̃), where we use
the metric dH on R.

(iv) If ϕ satisfies ϕ(X + Y ) ≤ ϕ(X) + ϕ(Y ) for all X, Y ∈ X , then it holds that
ϕ̃(X̃ + Ỹ ) 
 ϕ̃(X̃) + ϕ̃(Ỹ ) for all X̃ , Ỹ ∈ X̃ , where

(X̃ + Ỹ )(ω)(x) = sup
X,Y∈X : X (ω)+Y (ω)=x

min{X̃(ω)(X (ω)), Ỹ (ω)(Y (ω))} (6)

for ω ∈ Ω and x ∈ R.
(v) If ϕ satisfies ϕ(λX) = λϕ(X) for all λ ∈ R and X ∈ X , then it holds that

ϕ̃(λX̃) = λϕ̃(X̃) for all λ ∈ R and X̃ ∈ X̃ , where

(λX̃)(ω)(x) = sup
X∈X :λX (ω)=x

X̃(ω)(X (ω)) (7)

for ω ∈ Ω and x ∈ R.

Example (Perception-based estimation).
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(i) Let M be a σ-field on Ω and let G be a sub-σ-field of M. The conditional
expectation of an integrable fuzzy random variable X̃ is a fuzzy random variable

Ẽ(X̃ |G)(ω′)(x) = sup
X∈X : E(X |G)(ω′)=x

inf
ω∈Ω

X̃(ω)(X (ω)) (8)

for ω′ ∈ Ω and x ∈ R, where we take ϕ = E( · |G)(ω′) ∈ Φ in (3). Its α-cut is
given by Ẽ(X̃ |G)α = [E(X̃−

α |G), E(X̃+
α |G)]. Puri and Ralescu [8] discussed the

properties of this extension.
(ii) For a real-valued random variable X ∈ X with a continuous cumulative dis-

tribution function, x �→ FX (x) = P(X < x) for which there exists a non-
empty open interval I such that FX (·) : I → (0, 1) is a strictly increasing
and onto. Then there exists a strictly increasing and continuous inverse func-
tion F−1

X : (0, 1) → I . We note that FX (·) : I → (0, 1) and F−1
X : (0, 1) → I

are one-to-one and onto, and we have FX (inf I ) = limx↓inf I FX (x) = 0 and
FX (sup I ) = limx↑sup I FX (x) = 1. The value-at-risk (VaR) at a risk probabil-
ity p is given by the percentile of the distribution function FX .

VaRp(X) =
⎧
⎨

⎩

inf I if p = 0
sup{x ∈ I | FX (x) ≤ p} if p ∈ (0, 1)
sup I if p = 1.

(9)

Then we have FX (VaRp(X)) = p and VaRp(X) = F−1
X (p) for p ∈ (0, 1). The

average value-at-risk (AVaR) at a probability p is given by

AVaRp(X) = 1

p

∫ p

0
VaRq(X) dq (10)

if p ∈ (0, 1] and AVaRp(X) = inf I if p = 0. Average value-at-risk of a fuzzy
random variable X̃ is a fuzzy number such that

˜AVaRp(X̃)(x) = sup
X∈X :AVaRp(X)=x

inf
ω∈Ω

X̃(ω)(X (ω)) (11)

for x ∈ R, where we take ϕ = AVaRp(·) ∈ Φ in (3). Its α-cut is given by
˜AVaRp(X̃)α = [AVaRp(X̃−

α ),AVaRp(X̃+
α )], and this estimation (11) also has

the following properties [13].

Lemma 2 Let X̃ , Ỹ ∈ X̃ be fuzzy random variables. Let a probability p ∈ (0, 1).
Then the following (i)–(iii) hold.

(i) If X̃ ≤ Ỹ , then ˜AVaRp(X̃) ≤ ˜AVaRp(Ỹ ).

(ii) ˜AVaRp(ã X̃) = ã ˜AVaRp(X̃) for fuzzy numbers ã ∈ R satisfying ã � 0.

(iii) ˜AVaRp(X̃ + ã) = ˜AVaRp(X̃) + ã for fuzzy numbers ã ∈ R.
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(iii) Let G be a sub-σ-field of M. Let FX ( · | G) be a function on R given by x(∈
R) �→ FX (x | G) = P(X < x | G) = E(1{X<x} | G). Then we define a value-
at-risk of X (∈ X ) under a condition G at a risk probability p by

VaRp(X | G) =
⎧
⎨

⎩

inf I if p = 0
sup{x ∈ I | FX (x | G) ≤ p} if p ∈ (0, 1)
sup I if p = 1.

(12)

We note that VaRp(X | G) is a random variable adapted to the σ-field G, and we
also have P(X ≤ VaRp(X | G)) = p for p ∈ (0, 1). The average value-at-risk
(AVaR) at a probability p is given by

AVaRp(X | G) = 1

p

∫ p

0
VaRq(X | G) dq (13)

if p ∈ (0, 1] and AVaRp(X | G) = inf I if p = 0. Average value-at-risk of a
fuzzy random variable X̃ under a condition G at a risk probability p is a fuzzy
random variable

˜AVaRp(X̃ | G)(ω′)(x) = sup
X∈X :AVaRp(X |G)(ω′)=x

inf
ω∈Ω

X̃(ω)(X (ω)) (14)

for ω′ ∈ Ω and x ∈ R. Then the α-cut of (14) is given by ˜AVaRp(X̃ | G)α =
[ ˜AVaRp(X̃−

α |G), ˜AVaRp(X̃+
α |G)]. This estimation (14) also has the following

similar properties, which are easily checked by Lemma 2 and Yoshida [14].

Lemma 3 Let X̃ , Ỹ , Z̃ ∈ X̃ be fuzzy random variables and let G be a sub-σ-field of
M such that G is the σ-field generated by the fuzzy random variable Z̃ . Let Ỹ and G
be independent and let a probability p ∈ (0, 1). Then (i)–(v) hold.

(i) If X̃ ≤ Ỹ , then ˜AVaRp(X̃ | G) ≤ ˜AVaRp(Ỹ | G).

(ii) ˜AVaRp(Ỹ | G) = ˜AVaRp(Ỹ ).

(ii) ˜AVaRp(Z̃ | G) = Z̃ .

(iv) ˜AVaRp(Z̃ X̃ | G) = Z̃ ˜AVaRp(X̃ | G) if Z̃ � 0.

(v) ˜AVaRp(X̃ + Z̃ | G) = ˜AVaRp(X̃ | G) + Z̃ .

3 Estimation of Fuzzy Numbers with Evaluation Weights

Yoshida [9] has studied an evaluation of fuzzy numbers by evaluation weights which
are induced from fuzzymeasures to evaluate a confidence degree that a fuzzy number
takes values in an interval.With respect to fuzzy random variables, the randomness is
evaluated by probabilistic expectation and the fuzziness is estimated by the evaluation
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weights and the following function. Let λ ∈ [0, 1] and let gλ : I → R be a map such
that

gλ([x, y]) = λx + (1 − λ)y (15)

for [x, y] ∈ I, where I denotes the set of all bounded closed intervals. This scalar-
ization is used for the estimation of fuzzy numbers to give a mean value of the
interval [x, y] with a weight λ, and gλ is called a λ-mean function and λ is called
a pessimistic-optimistic index which indicates the pessimistic degree of attitude in
decisionmaking [3]. Let a fuzzy number ã ∈ R. Amean value of the fuzzy number ã
with respect to λ-mean functions gλ and an evaluation weight w(α), which depends
only on ã and α, is given as follows [11]:

Eλ(ã) =
∫ 1
0 gλ(ãα) w(α) dα

∫ 1
0 w(α) dα

, (16)

where ãα = [ã−
α , ã+

α ] is the α-cut of the fuzzy number ã. In (16), w(α) indicates a
confidence degree that the fuzzy number ã takes values in the interval ãα at each
level α. Hence, an evaluation weight w(α) is called the possibility evaluation weight
wP(α) if wP(α) = 1 for α ∈ [0, 1], and w(α) is called the necessity evaluation
weight wN (α) if wN (α) = 1 − α for α ∈ [0, 1]. Especially, for a fuzzy number ã ∈
R, the means in the possibility and necessity cases are represented respectively by
E P(ã) and E N (ã), and we can consider their combination νE P(ã) + (1 − ν)E N (ã)

with a parameter ν ∈ [0, 1] (Yoshida [9, 10]). Themean Eλ has the following natural
properties of the addition and scalar multiplication and the monotonicity regarding
the fuzzy max order �.

Lemma 4 ([9]). Let λ ∈ [0, 1]. For fuzzy numbers ã, b̃ ∈ R and real numbers θ, ζ,
the following (i)–(iv) hold.

(i) Eλ(ã + 1{θ}) = Eλ(ã) + θ.
(ii) Eλ(ζã) = ζEλ(ã) if ζ ≥ 0.

(iii) Eλ(ã + b̃) = Eλ(ã) + Eλ(b̃).
(iv) If ã � b̃, then Eλ(ã) ≥ Eλ(b̃) holds.

For a fuzzy random variable X̃(∈ X̃ ), the mean of the expectation E(Eλ(X̃)) is
a real number

E(Eλ(X̃)) = E

(∫ 1
0 gλ(X̃α) w(α) dα

∫ 1
0 w(α) dα

)
. (17)

Then, from Lemma 4, we obtain the following results.

Lemma 5 ([9, 11]). Let λ ∈ [0, 1]. For a fuzzy number ã ∈ R, integrable fuzzy ran-
dom variables X̃ , Ỹ , an integrable real-valued random variable Z and a nonnegative
real number ζ, the following (i)–(v) hold.

(i) E(Eλ(X̃)) = Eλ(Ẽ(X̃)).
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(ii) E(Eλ(ã)) = Eλ(ã) and E(Eλ(Z)) = E(Z).
(iii) E(Eλ(ζ X̃)) = ζE(Eλ(X̃))).
(iv) E(Eλ(X̃ + Ỹ )) = E(Eλ(X̃)) + E(Eλ(Ỹ )).
(v) If X̃ � Ỹ , then E(Eλ(X̃)) ≥ E(Eλ(Ỹ )) holds.

Let X̃c be a family of fuzzy random variables X̃ ∈ X̃ such that {X̃±
α | α ∈ [0, 1]}

are comonotonic, i.e., there exists a real-valued random variable X ∈ X such that for
X̃±

α (α ∈ [0, 1]) there exists a non-decreasing function h±
α : R(X) → R satisfying

X̃±
α (ω) = h±

α (X (ω)) for all ω ∈ Ω , where R(X) is the range of X .

Example Let X ∈ X be an integrable real-valued random variable and let ã ∈ R be
a fuzzy number ã(x) = max{1 − |x |/c, 0} for x ∈ R, where c is a positive number.
Let X̃ ∈ X̃ be a triangle-type fuzzy random variable such that

X̃(ω)(·) = 1{X (ω)}(·) + ã(·) (18)

for ω ∈ Ω , where 1{·} denotes the characteristic function of a singleton. Then
X̃±

α (ω) = X (ω) ± (1 − α)c = h±
α (X (ω)) for ω ∈ Ω , where h±

α (x) = x ± (1 − α)c
α ∈ [0, 1]. Therefore X̃±

α (α ∈ [0, 1]) are comonotnic [10, 16], and we obtain
X̃ ∈ X̃c.

Because AVaRp is comonotonically additive from [10, Proposition 3(iii)], we can
easily check the following proposition by (15), (16), [13, Lemma 1(ii)] and [17,
Lemma 2.1].

Proposition 1 Let λ ∈ [0, 1] and p ∈ (0, 1). Then it holds that

Eλ(˜AVaRp(X̃)) = AVaRp(Eλ(X̃)) (19)

for integrable fuzzy random variables X̃ ∈ X̃c.

Finally we introduce variances and covariances of fuzzy random variables from
the viewpoint of λ-mean functions and evaluation weights. From (19), for fuzzy
random variables X̃ and Ỹ , we define variances and covariances as follows:

V (Eλ(X̃)) = E
(
(Eλ(X̃) − E(Eλ(X̃)))2

)
, (20)

Cov(Eλ(X̃), Eλ(Ỹ )) = E
(
(Eλ(X̃) − E(Eλ(X̃)))(Eλ(Ỹ ) − E(Eλ(Ỹ )))

)
(21)

for λ ∈ [0, 1], where V ( · ) and Cov( · , · ) denote the variance and the covariance of
real-valued random variables. Then we can easily check the following lemma.

Lemma 6 Let λ ∈ [0, 1]. For fuzzy numbers ã, b̃ ∈ R, integrable fuzzy random vari-
ables X̃ , Ỹ and a nonnegative real number ζ, the following (i)–(v) hold.
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(i) V (Eλ(ã)) = 0.
(ii) V (Eλ(X̃ + ã)) = V (Eλ(X̃)).

(iii) V (Eλ(ζ X̃)) = ζ2V (Eλ(X̃)).
(iv) Cov(Eλ(X̃), Eλ(ã)) = Cov(Eλ(ã), Eλ(X̃)) = 0.
(v) Cov(Eλ(X̃ + ã), Eλ(Ỹ + b̃)) = Cov(Eλ(X̃), Eλ(Ỹ )).

4 A Dynamic Portfolio Model with Fuzzy Random
Variables

First we explain a portfolio model with n stocks, where n is a positive integer. Let
{0, 1, 2, . . . , T } be the time space with an expiration date T , where T is a positive
integer. For an asset i = 1, 2, . . . , n, a stock price process {Si

t }T
t=0 is given generally

by rates of return Ri
t as follows. Let Si

t = Si
t−1(1 + Ri

t ) for t = 1, 2, . . . , T , where
{Ri

t }T
t=1 is an integrable sequence of independent real-valued random variables sat-

isfying 1 + Ri
t ≥ 0 for t = 1, 2, . . . , T .

In this paper, we deal with rates of return have fuzzy element, i.e., they are given
by independent fuzzy random variables {R̃i

t }T
t=1 ⊂ X̃ . Hence we assume that

1 + R̃i
t � 0 (22)

for i = 1, 2, . . . , n and t = 1, 2, . . . , T . Then wt = (w1
t , w

2
t , . . . , w

n
t ) is called a

portfolio weight vector if it satisfiesw1
t + w2

t + · · · + wn
t = 1, and further a portfolio

(w1
t , w

2
t , . . . , w

n
t ) is said to allow for short selling if wi

t ≥ 0 for all i = 1, 2, . . . , n.
The rate of return with a portfolio (w1

t , w
2
t , . . . , w

n
t ) is given by

R̃t = w1
t R̃1

t + w2
t R̃2

t + · · · + wn
t R̃n

t , (23)

and the reward at time t (= 1, 2, . . . , T ) follows

S̃t = S̃t−1

n∑

i=1

wi
t (1 + R̃i

t ) = S̃t−1(1 + R̃t ), (24)

and we take an initial stock price by a real number S̃0 = 1 for simplicity. In (23),
portfolio weights wt = (w1

t , w
2
t , . . . , w

n
t ) are decided sequentially and predictably.

The risk of S̃t is related to the information Mt−1 up to time t − 1, and the average
value-at-risk of S̃t under information Mt−1 at a probability p is

˜AVaRp(S̃t | Mt−1) = ˜AVaRp

(
S̃t−1

n∑

i=1

wi
t (1 + R̃i

t ) | Mt−1

)

= ˜AVaRp

(
S̃t−1(1 + R̃t ) | Mt−1

)
. (25)
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The term (25) means the risk of worst scenarios which occur on the transition from
time t − 1 to time t . Therefore, taking the sum of the risks which occur at each time,
this paper deals with the following dynamic portfolio problem regarding the total of
average value-at-risks (25) under information {Mt−1}T

t=1. Let a discount rate β be a
positive constant and let λ ∈ [0, 1].
Dynamic Portfolio Problem 1 (D1): Maximize the total average value-at-risk

E

(
Eλ

(
T∑

t=1

βt−1
˜AVaRp(S̃t | Mt−1)

))
(26)

with portfolio weights wt = (w1
t , w

2
t , . . . , w

n
t ) satisfying w1

t + w2
t + · · · + wn

t =
1 and wi

t ≥ 0 (i = 1, 2, . . . , n; t = 1, 2, . . . , T ).

ByLemmas 2 and3,DynamicPortfolio Problem1 (D1) is reduced to the following
problem.

Dynamic Portfolio Problem 2 (D2): Maximize the total average value-at-risk

Eλ

(
T∑

t=1

βt−1
t−1∏

s=1

(1 + Ẽ(R̃s)) · (1 + ˜AVaRp(R̃t ))

)

= Eλ

(
T∑

t=1

βt−1
t−1∏

s=1

(
1 + Ẽ

(
n∑

i=1

wi
s R̃i

s

))
·
(
1 + ˜AVaRp

(
n∑

i=1

wi
t R̃i

t

)))

(27)
with portfolios wt = (w1

t , w
2
t , . . . , w

n
t ) satisfying w1

t + w2
t + · · · + wn

t = 1 and
wi

t ≥ 0 (i = 1, 2, . . . , n; t = 1, 2, . . . , T ).

Define the set of portfolios byW = {(w1, w2, . . . , wn) ∈ R

n | w1 + w2 + · · · +
wn = 1 and wi ≥ 0 (i = 1, 2, . . . , n)}. By Lemmas 4 and 5, we can easily check the
following dynamic programming [14].

Theorem 1 The optimal average value-at-risk for (27) in Dynamic Portfolio Prob-
lem 2 (D2) is given by v1 which is defined inductively by the sequence {vt } of sub-
total-sum average value-at-risks after time t − 1 satisfying the following backward
optimality equations:

vt−1 = max
(w1,w2,...,wn)∈W

{
1 + Eλ

(
˜AVaRp

(
n∑

i=1

wi R̃i
t−1

))

+ β

(
1 +

n∑

i=1

wi Eλ(Ẽ(R̃i
t−1))

)
vt

}
(28)

for t = 2, 3, . . . , T , and
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vT = max
(w1,w2,...,wn)∈W

{
1 + Eλ

(
˜AVaRp

(
n∑

i=1

wi R̃i
T

))}
. (29)

In the next section we focus on the average value-at-risks at each time in (28) and
(29).

5 Portfolio Optimization for Average Value-at-Risks

First we estimate the rate of return for a portfolio [12]. Let t = 1, 2, . . . , T and let
λ ∈ [0, 1]. Let the mean, the variance and the covariance of (23) respectively by

μi
t = E(Eλ(R̃i

t )),

σi i
t = V (Eλ(R̃i

t )),

σ
i j
t = Cov(Eλ(R̃i

t ), Eλ(R̃ j
t )) (i �= j)

for i, j = 1, 2, . . . , n, where V ( · ) andCov( · , · ) denote the variance and the covari-
ance of real-valued random variables. In this section, we assume the rate of return
R̃i

t ∈ X̃c for i = 1, 2, . . . , n. Further we assume that the determinant of the variance-
covariance matrixΣt = [σi j

t ] is not zero and there exists its inverse matrixΣ−1
t . This

assumption is natural and it can be realized easily by taking care of the combinations
of assets. For a portfoliow = (w1, w2, . . . , wn) satisfyingw1 + w2 + · · · + wn = 1
and wi ≥ 0 (i = 1, 2, . . . , n), we calculate the expectation and the variance regard-
ing R̃t = w1 R̃1

t + w2 R̃2
t + · · · + wn R̃n

t . The expectation μt of the rate of return R̃t

with the portfolio w is

μt = E(Eλ(R̃t )) =
n∑

i=1

wi E(Eλ(R̃i
t )) =

n∑

i=1

wiμi
t . (30)

On the other hand, the variance (σt )
2 of the rate of return R̃t with the portfolio w is

(σt )
2 = V (Eλ(R̃t )) =

n∑

i=1

n∑

j=1

wiw jσ
i j
t (31)

for i = 1, 2, . . . , n. In this paper we deal with a portfolio model which has the
following representation:

(VaR) = (the mean) − (a positive constant κ(p)) × (the standard deviation),
(32)

where the positive constantκ(p) is given corresponding to probability p (Fig. 2). One
of the most popular sufficient condition for (32) is what the distribution of the rate
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Fig. 2 Value-at-risk at a
probability p

of return is Gaussian [1]. From Proposition 1, for a given positive probability p the

mean of the average value-at-risk Eλ( ˜AVaRp(R̃t )) = AVaRp(Eλ(R̃t )) is evaluated
as

Eλ( ˜AVaRp(R̃t )) =
n∑

i=1

wiμi
t − κ

√√√√
n∑

i=1

n∑

j=1

wiw jσ
i j
t (33)

with a positive constant κ = 1
p

∫ p
0 κ(q) dq.

Let

μt =

⎡

⎢⎢⎢⎣

μ1
t

μ2
t
...

μn
t

⎤

⎥⎥⎥⎦ , Σt =

⎡

⎢⎢⎢⎣

σ11
t σ12

t · · · σ1n
t

σ21
t σ22

t · · · σ2n
t

...
...

. . .
...

σn1
t σn2

t · · · σnn
t

⎤

⎥⎥⎥⎦ , 1 =

⎡

⎢⎢⎢⎣

1
1
...

1

⎤

⎥⎥⎥⎦ ,

At = 1tΣ−1
t 1, Bt = 1tΣ−1

t μt , Ct = μt
t Σ

−1
t μt , Δt = At Ct − B2

t ,

where t denotes the transpose of a vector. Now we discuss the following AVaR
portfolio problem without allowance for short selling. The following form comes

from the average value-at-risk ˜AVaRp(R̃t ) given in (33).

AVaR-portfolio problem (AP): Let t = 1, 2, . . . , T . Maximize the average value-
at-risk

Eλ( ˜AVaRp(R̃t )) =
n∑

i=1

wiμi
t − κ

√√√√
n∑

i=1

n∑

j=1

wiw jσ
i j
t (34)

with respect to portfolios w = (w1, w2, . . . , wn) satisfying w1 + w2 + · · · +
wn = 1 and wi ≥ 0 for i = 1, 2, . . . , n.
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We have the analytical solutions regarding AVaR-portfolio problem (AP) under
the following condition.

Condition 1: 1 + βvt > 0 for all t = 1, 2, . . . , T .

If Condition 1 is not satisfied at some time t , it means that the portfolio is bankrupt
at the time t . Under Condition 1, Theorem 1 is written as following theorem.

Theorem 2 Suppose Condition 1 is satisfied. The optimal average value-at-risk v1
in Theorem 1 is given by the sequence {vt } of sub-total-sum average value-at-risks
after time t − 1 satisfying the following backward optimality equations:

vt−1 = max
(w1,w2,...,wn )∈W

(1 + βvt )

⎛

⎝1 +
n∑

i=1

wi μi
t−1 − κ

1 + βvt

√√√√
n∑

i=1

n∑

j=1

wi w j σ
i j
t−1

⎞

⎠ (35)

for t = 2, 3, . . . , T , and

vT = max
(w1,w2,...,wn)∈W

⎛

⎝1 +
n∑

i=1

wiμi
T − κ

√√√√
n∑

i=1

n∑

j=1

wiw jσ
i j
T

⎞

⎠ . (36)

Lemma 7 ([12]). Let t = 1, 2, . . . , T . Let At and Δt be positive. Let the constant κ
satisfy κ2 > Ct . Then the following (i) and (ii) hold.

(i) The solution of AVaR-portfolio problem (AP) is given by

w∗ = ξtΣ
−1
t 1 + ηtΣ

−1
t μt , (37)

and then the corresponding average value-at-risk is

Eλ

(
˜AVaRp

(
n∑

i=1

w∗i R̃i
t

))
= Bt − √

Atκ2 − Δt

At
, (38)

wherew∗ = (w∗1, w∗2, . . . , w∗n),γt = Bt
At

+ Δt

At

√
At κ2−Δt

, ξt = Ct −Bt γt

Δt
andηt =

At γt −Bt

Δt
.

(ii) Further, if Σ−1
t 1 ≥ 0 and Σ−1

t μt ≥ 0, then the portfolio (37) satisfies w∗ ≥ 0,
i.e. w∗ is a portfolio without allowance for short selling. Here, 0 denotes the
zero vector.

Assume the condition (32) holds. Then, for a risk probability p, we take a constant
κ in (33) by

κ = − 1

p

∫ p

0
Φ−1(q) dq, (39)

where Φ−1 is the inverse function of the cumulative normal distribution function
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Φ(z) = 1√
2π

∫ z

−∞
e− t2

2 dt (40)

for z ∈ R. Applying Lemma 7 to Theorem 2, we obtain the following results.

Theorem 3 Suppose Condition 1 is satisfied. Assume Eλ(Ri
t ) (t = 1, 2, . . . , T ; i =

1, 2, . . . , n) have normal distributions, and let κ = − 1
p

∫ p
0 Φ−1(q) dq in (33). Then

the optimal average value-at-risk v1 in Theorem 2 is calculated by the sequence
{vt } of sub-total-sum average value-at-risks after time t − 1 satisfying the following
backward optimality equations:

vt−1 = (At−1 + Bt−1)(1 + βvt ) − √
At−1κ2 − Δt−1(1 + βvt )2

At−1
(41)

for t = 2, 3, . . . , T and

vT = AT + BT − √
AT κ2 − ΔT

AT
. (42)

On the other hand, the optimal portfolios in Theorem 2 and Lemma 7 are obtain
as follows [15].

Corollary 1 Suppose Condition 1 is satisfied. Let At and Δt be positive for t =
1, 2, . . . , T . Let κ = − 1

p

∫ p
0 Φ−1(q) dq, and let κt−1 = κ

1+βvt
(t = 2, 3, . . . , T ) and

κT = κ. Assume κt−1 satisfies κ2
t−1 > Ct−1(t = 2, 3, . . . , T ). Then the following (i)

and (ii) hold.

(i) The optimal portfolios (33) in Theorem 2 are given by

w∗
t = ξtΣ

−1
t 1 + ηtΣ

−1
t μt (43)

for t = 1, 2, . . . , T , whereγt = Bt
At

+ Δt

At

√
At κ2−Δt

, ξt = Ct −Bt γt

Δt
andηt = At γt −Bt

Δt
.

(ii) Further, if Σ−1
t 1 ≥ 0 and Σ−1

t μt ≥ 0 for t = 1, 2, . . . , T , then the portfolio (43)
satisfies wt ≥ 0, i.e. w∗

t is a portfolio without allowance for short selling.

In the rest of this section we demonstrate the falling of asset prices in AVaR-
portfolio problem (AP) at each time t . Let λ ∈ [0, 1]. Regarding asset price S̃t with
a portfolio wt , the theoretical bankruptcy at time t occurs on a scenario ω(∈ Ω)

satisfying S̃t (ω) 
 0, i.e. it follows 1 + R̃t (ω) 
 0 from (24). By similar idea, for a
constant ρ̄ satisfying ρ̄ ∈ [0, 1], a set of sample paths

{ω ∈ Ω | 1 + Eλ(R̃t (ω)) ≤ 1 − ρ̄} = {ω ∈ Ω | Eλ(R̃t (ω)) ≤ −ρ̄} (44)

is the event of scenarios where the asset price S̃t will fall from the current price S̃t−1

to a lower level than 100(1 − ρ̄)% of the current price S̃t−1, i.e. the rate of falling
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is 100 ρ̄%. Then, the parameter ρ̄ is called the rate of falling, and the probability of
falling is also given by

p̄ = P(Eλ(R̃t ) ≤ −ρ̄). (45)

For example, p̄ denotes the probability of the falling below par value if ‘ρ̄ = 0’ and
it indicates the probability of the bankruptcy if ‘ρ̄ = 1’. From this observation, we
obtain the following results.

Let p be a positive probability. A value-at-risk regarding the rate of return R̃t at
probability p is given by a real number v(p) satisfying

P(Eλ(R̃t ) ≤ v(p)) = p. (46)

The value-at-risk v(p) is the upper bound of the rate of return R̃t at the worst sce-
narios under a given risk probability p, and then v(p) = VaRp(Eλ(R̃t )). Then, from
Proposition 1, it holds that

Eλ( ˜AVaRp(R̃t )) = AVaRp(Eλ(R̃t )) = 1

p

∫ p

0
VaRq(Eλ(R̃t )) dq = 1

p

∫ p

0
v(q) dq.

(47)
On the other hand, from (45) and (46), the average rate of falling is given by ρ =
− 1

p

∫ p
0 v(q) dq. Therefore the average rate of falling follows ρ = −Eλ( ˜AVaRp(R̃t )).

Let the expected rate of return by γ = E(Eλ(R̃t )). Then for the optimal portfolios
(43) at each time t we can find the following corresponding relation holds among
the expected rate of return γ, the average rate of falling ρ and the risk probability of
falling p [15]:

Expected rate of return γ

� γ = Btρ + Ct

Atρ + Bt

Average rate of falling ρ

� p2 exp
(
Φ−1(p)2

) = 1

2π(Atρ2 + 2Btρ + Ct )

Risk probability of falling p

This relation will be useful not only for theoretical analysis but also for actual man-
agement in finance.
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Group Decision Making: Consensus
Approaches Based on Soft Consensus
Measures

Francisco Javier Cabrerizo, Ignacio Javier Pérez,
Francisco Chiclana and Enrique Herrera-Viedma

Abstract A group decision making situation involves multiple decision makers
communicating with others to reach a decision. In such a situation, the most impor-
tant issue is to obtain a decision that is best acceptable by the decision makers, and,
therefore, consensus has attained a great attention and it is a major goal of group
decision making situations. To measure the closeness among the opinions given by
the decision makers, different approaches have been proposed. At the beginning,
consensus was meant to be a unanimous and full agreement. However, because this
situation is often not reachable in practice, the use of a softer consensus, which
assesses the level of agreement in a more flexible way and reflects the large spec-
trum of possible partial agreements, is a more reasonable approach. Soft consensus
approaches better reflects a real human perception of the essence of consensus and,
therefore, they have been widely used. The purpose of this contribution is to review
the different consensus approaches based on soft consensus measures that have been
proposed.
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1 Introduction

One of themost crucial human activities is decisionmaking,which consists of finding
the best alternative, variant, opinion, and so on, from among some possible ones. This
task generally involves multiple decision makers to make the decision [10, 34, 47]
and, then, it is called a multiperson or group decision making (GDM) situation [34].

In aGDMsituation there is a groupof decisionmakers expressing their preferences
or opinions concerning a set of different alternatives. In such a context, the question
is to find a solution which is best acceptable by the whole group of decision makers.
Here, the process arriving at an agreed-upon opinion, perhaps consensus, by using
in a democratic way knowledge of the different decision makers, leads to better
decision [5].

The term consensus has been used for centuries in different areas and contexts.
When it is used inGDMcontexts, an important issue is the verymeaning of consensus
and the problems related to its essence.

First, consensus makes reference to the state of accordance with a group of deci-
sion makers in the sense that they show similar preferences or opinions related to the
alternatives in question. In this sense, consensus was initially meant as a complete
agreement. In such a way, some authors proposed consensus measures assuming
values in-between 0, meaning no consensus or partial consensus, and 1, meaning
full consensus [3, 51]. The above situation has however been considered impracti-
cal in most real world situations as decision makers on rare occasions arrive at that
complete agreement. Therefore, the very essence of consensus was reconsidered,
and it was admitted that the decision makers are not willing to fully change their
preferences or opinions so that the consensus will not be a complete agreement. A
milestone was here a special issue of the Synthese journal [40]. In particular, the
paper written by Loewer and Laddaga [41] is the most relevant for this purpose, in
which, these authors clearly made the case for a soft concept of consensus stating
that:

… It can correctly be said that there is a consensus among biologists that Darwinian natural
selection is an important cause of evolution though there is currentlyno consensus concerning
Gould’s hypothesis of speciation. This means that there is a widespread agreement among
biologists concerning the first matter but disagreement concerning the second…

It was suggested that a fuzzy majority is suitable, and that it makes sense to
speak about a degree of consensus, or a distance from ideal consensus. The linguistic
quantifiers, exemplified, for example, by ‘most”, “almost all”, “much more than
a half”, and so on, are a natural manifestation of this fuzzy majority. Linguistic
quantifiers can be handled by a calculus of linguistically quantified propositions
[56], and also by using aggregation operators or aggregation functions [20, 53], in
particular, Yager’s OWA (Ordered Weighted Average) operators [54], which offer a
much needed generality and flexibility [57]. Janusz Kacprzyk introduced the concept
of a fuzzy majority related to a fuzzy linguistic quantifier into GDM situations [32–
34]. Since then, the concept of a fuzzy majority has been the key point for new
definitions of soft consensus [6, 31, 36, 37], which assess the degree of agreement
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in a more flexible way, reflecting the large spectrum of possible partial agreements
and guiding the discussion process until widespread agreement, not always full, is
achieved among the decision makers.

Second, consensus refers as a process to reach agreement. This process involves
an evolution of the preferences expressed by the decision makers towards agreement
with respect to their preferences. In such a situation, the point of departure is a the set
of preferences given by the particular decisionmakers concerning in general opinions
as to the values of some quantities. At the beginning, the preferences expressed by
the decision makers was equated with some utilities resulting from some courses
of actions, the probabilities of them, and alike [12, 18, 22]. Nevertheless, since
GDM situations are centered on decision makers, coming with inherent subjectivity,
imprecision and vagueness in the articulation of preferences, the theory of fuzzy sets
[55], has delivered new tools in this field for a long time, as it is a more adequate
tool to represent often not clear-cut human preferences encountered in most practical
cases. Fuzzy logic has played here a considerable role by providing means for the
representation and processing of imprecise information and preferences [17].

Because it is important to obtain an approved solution by all the decision makers,
the consensus is one of the major goals of GDM situations. Concretely, consensus
approaches based on soft consensus measures have been widely proposed in the
literature [6, 31], as it is more human-consistent and suitable for reflecting human
perceptions of the meaning of consensus.

The objective of this contribution is to review the different consensus approaches
based on soft consensus measures that have been proposed in the literature. To do
so, the pioneering contributions are described and a comprehensive presentation of
the state of the art of all kinds of consensus related problems is shown. After some
decades of fruitful research in this field, it is a good time for looking backward an
review what the research has been developed on this topic.

This contribution is outlined as follows. In Sect. 2, we introduce the GDM frame-
work and the usual consensus process. Section3 highlights the pioneering and most
important contributions existing on consensus approaches based on soft consensus
measures. In Sect. 4, we describe the main consensus approaches based on soft con-
sensus measures. Finally, in Sect. 5, we present some conclusions and future work.

2 Preliminaries

This section is devoted to introduce the GDM framework to develop consensus
processes. Concretely, the GDM situation is defined, the formats of preferences
utilized by the decision makers to provide their opinions are presented, and the usual
consensus process is described.
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2.1 GDM Framework

There have been several efforts in the specialized literature to create different models
to correctly address and solve GDM situations. Some of them make use of fuzzy set
theory as it is a good tool to model and deal with vague or imprecise opinions [19,
23, 38, 48].

In a classical GDM situation [9, 19, 34], there is a problem to solve, a solution set
of possible alternatives, X = {x1, x2, . . . , xn} (n ≥ 2), and a group of two or more
decision makers, E = {e1, e2, . . . , em} (m ≥ 2), characterized by their background
and knowledge, who express their opinions about the alternatives to achieve a com-
mon solution. In a fuzzy context, the objective is to classify the alternatives from best
to worst, associating with them some degrees of preference expressed in the [0, 1]
interval.

Decision makers can use several preference representation structures to provide
their preferences or opinions about the alternatives in a GDM situation. The most
common ones that have been widely used in the literature are the following:

• Preference orderings. Using this preference representation structure, the opinions
of a decision maker el ∈ E about a set of feasible alternatives X are described as a
preference ordering Ol = {ol

1, . . . , ol
n}, where ol(·) is a permutation function over

the indexes set {1, . . . , n} [52]. Hence, a decision maker gives an ordered vector
of alternatives from best to worst.

• Utility values. Using this preference representation structure, a decision maker
el ∈ E expresses his/her opinions about a set of feasible alternatives X by means
of a set of n utility values Ul = {ul

1, . . . , ul
n}, ul

i ∈ [0, 1]. Here, the higher the
value for an alternative, the better it satisfies decision maker’s objective [28].

• Preference relations. In this case, the preferences given by the decision maker on
X are described by a function µPl : X × X → D where µPl (xi , x j ) = pl

i j can
be interpreted as the preference degree or intensity of the alternative xi over x j

expressed in the information representation domain D. Different types of prefer-
ence relations can be used according to the domain used to evaluate the intensity
of the preference:

1. Fuzzy preference relations [34]: If D = [0, 1], every value pl
i j in the matrix Pl

represents the preference degree or intensity of preference of the alternative xi

over x j : pl
i j = 1/2 indicates indifference between xi and x j , pl

i j = 1 indicates
that xi is absolutely preferred to x j , and pi j > 1/2 indicates that xi is preferred
to xk . It is usual to assume the additive reciprocity property pl

i j + pl
ji = 1 ∀i, j .

2. Multiplicative preference relations [49]: If D = [1/9, 9], and then every value
pl

i j in thematrix Pl represents a ratio of the preference intensity of the alternative
xi to that of x j , i.e., it is interpreted as xi is pl

i j times good as x j : pl
i j = 1 indicates

indifference between xi and x j , pl
i j = 9 indicates that xi is unanimously preferred

and pl
i j ∈ {2, 3, . . . , 8} indicates intermediate evaluations. It is usual to assume

the multiplicative reciprocity property pl
i j · pl

ji = 1 ∀i, j too.
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3. Linguistic preference relations [23, 24]: If D = S, where S is a linguistic term set
S = {s0, . . . , sg} with odd cardinality (g+1), sg/2 being a neutral label (meaning
“equally preferred”) and the rest of labels distributed homogeneously around it,
then every value pl

i j in the matrix Pl represents the linguistic preference degree
or linguistic intensity of preference of the alternative xi over x j .

Among the different representation formats that decision makers may use to pro-
vide their opinions, fuzzy preference relations [34, 44] are one of the most used
because of their effectiveness as a tool for modelling decision processes. In partic-
ular, they are very useful when we want to aggregate decision makers’ preferences
into a collective one [34, 52], which is carried out by using aggregation functions or
aggregation operators [20, 53].

Finally, according to the importance of each decision maker, GDM situations are
usually classified into two groups [11, 46]:

• A GDM situation is heterogeneous when the opinions of the decision makers are
not equally important.

• A GDM situation is homogeneous if every opinion is treated equally.

A way to implement this heterogeneity is to assign a weight to every decision
maker. Weights are qualitative or quantitative values that can be assigned in several
different ways [11]: (i) weights can be assigned directly, (ii) or they can be obtained
automatically from the opinions provided by the decision makers. The weights can
be interpreted as a fuzzy subset, I , with a membership function, µI : E → [0, 1],
in such a way that µI (el) ∈ [0, 1] denotes the importance degree of the decision
maker within the group, or how relevant is the decision maker in relation with the
problem to be solved [14, 15]. Finally, it should be pointed out that fuzzy measures
and fuzzy integrals [21, 43] can also be used to implement the heterogeneity among
the decision makers.

2.2 Consensus Process

A way of solving GDM situations is by carrying out a selection process to choose a
solution set of alternatives from the opinions provided by the decision makers [19,
48], without taking into account the level of agreement. It involves two different
steps [7, 48]: (i) aggregation of individual preferences, and (ii) exploitation of the
collective preference.However, this process can lead sometimes solutions that are
not well accepted by some decision makers in the group [5, 50], because they could
consider that their opinions have not been considered properly to obtain the solution,
and, hence, they might reject it. To avoid this situation, it is advisable that decision
makers carry out a consensus process. For this reason, GDM problems are usually
faced by applying a consensus process and a selection process before a final solution
can be obtained [38].
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Two approaches may be distinguished in the formulation of a consensus process.
The traditional one, in which the process is modeled by using matrix calculus or
Markov chains to model the time evolution of changes of opinions toward consensus
[12, 18, 22]. The approaches exemplified by the above citations have contributed
much to the understanding of the process and its dynamics. However, it has been con-
sidered much more promising to run the consensus process with the help of a special
agent, called a moderator, whose task is to help the decision makers involved while
changing their testimonies towards consensus, by rational argument, persuasion, and
so on. This second approach, in which there is a moderator, is more promising in
practice and the most used.

According to this second approach, a consensus process is an iterative process
composed of several consensus rounds, where the decision makers accept to change
their opinions following the advice given by amoderator, which knows the agreement
in each moment of the consensus process by means of the computation of some
consensus measures.

3 Pioneering Contributions

In this section, the innovative and prominent contributions in the field of consensus
approaches based on soft consensus measures are revised. As we have aforemen-
tioned, people are generally willing to accept that consensus has been reached when
most actors agree with the opinions associated with the most relevant alternatives.
The milestone was a special issue published in the Synthese journal:

B. Loewer. Special issue on consensus. Synthese 62 (1), 1–122 (1985).

Among many papers therein, Loewer and Laddaga wrote the most important one
for our purpose:

B. Loewer, R. Laddaga. Destroying the consensus. Synthese 62 (1), 79–96 (1985).

Here the first approach for a soft concept of consensus was clearly made, sug-
gesting that a fuzzy majority is appropriate, and that it makes sense to speak about a
degree of consensus, or a distance from (ideal) consensus.

According to Loewer and Laddaga, Kacprzyk and Fedrizzi introduced the con-
cept of a fuzzy majority using Zadeh’s fuzzy linguistic quantifier to compute soft
consensus measures in the following prominent contributions:

J. Kacprzyk, M. Fedrizzi. Soft consensus measure for monitoring real consensus reaching
processes under fuzzy preferences. Control and Cybernetics 15 (3–4), 309–323 (1986).

J. Kacprzyk, M. Fedrizzi. A ‘soft’ measure of consensus in the setting of partial (fuzzy)
preferences. European Journal of Operational Research 34 (3), 316–325 (1988).

J. Kacprzyk, M. Fedrizzi. A ‘human-consistent’ degree of consensus based on fuzzy logic
with linguistic quantifiers. Mathematical Social Sciences 18 (3), 275–290 (1989).
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Then, the classical operational definition of consensus was expressed by a lin-
guistically quantified proposition as:

“Most (Q1) of the important (B) individuals agree
as to almost all (Q2) relevant (I ) alternatives”

(1)

where: Q1 and Q2 are fuzzy linguistic quantifiers [56], e.g.,“most” and “almost all”,
and B and I stand for fuzzy sets denoting the importance/relevance of the individuals
and alternatives.

The above works constituted the basis of many consensus approaches based on
soft consensusmeasures proposed later. In the following, some of themost prominent
contributions are presented:

• Herrera, Herrera-Viedma and Verdegay defined the first soft consensus model in
GDM problems in a fuzzy linguistic context:

F. Herrera, E. Herrera-Viedma, J. L. Verdegay, A model of consensus in group decision
making under linguistic assessments. Fuzzy Sets and Systems 78 (1), 73–87 (1996).

This prominent contribution has shown a high impact in the fuzzy decisionmaking
community, and it is considered a highly cited paper according to the Essential Sci-
ence Indicators (ESI) database, published by Thomson Reuters. Here, the authors
present a new consensus model for GDM problems based on fuzzy linguistic pref-
erence relations defined in an ordinal fuzzy linguistic approach [26, 27]. As main
novelty, two types of soft consensus measures to guide the consensus process are
defined: (i) consensus degrees, and (ii) proximity measures. In addition, they are
applied in three activity levels: (i) level of preference, (ii) level of alternative, and
(iii) level of preference relation. The consensus degrees indicate how far a group
of decision makers is from the maximum consensus, and the proximity measures
indicate how far each decision maker is from current consensus labels over the
preferences. In such a way, the moderator is provided with a complete consensus
instrument to control the consensus process.

• Later, assuming also a fuzzy linguistic context, the same authors presented the first
consensus model which is guided by both consensus and consistency measures:

F. Herrera, E. Herrera-Viedma, J. L. Verdegay. A rational consensus model in group
decision making using linguistic assessments. Fuzzy Sets and Systems 88 (1), 31–49
(1997).

In this new approach, the moderator is provided with consistency measures to
guide the consensus process too. This consensus approach offers the possibility of
achievingmore rational consensus solutions, i.e., less distorted consensus solutions
due to inconsistencies in the decision makers’ preferences.

• Other prominent contribution in soft consensus was proposed by Herrera-Viedma,
Herrera, and Chiclana:

E. Herrera-Viedma, F. Herrera, F. Chiclana. A consensus model for multiperson decision
making with different preference structures. IEEE Transactions on Systems Man and
Cybernetics-Part A: Systems and Humans 32 (3), 394–402 (2002).
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In this consensus approach, the decision makers can provide their preferences
with different preference representation structures. Two main novelties are also
contained in this contribution. Firstly, soft consensus measures are computed by
comparison between decisionmakers’ solutions and not between decisionmakers’
preferences, as it usually happens in previous consensus approaches. In such a
way, the problem of computing consensus measures is overcome when we use
different preference representation structures in GDM problems. And secondly,
using these measures, a feedback mechanism based on simple and easy rules to
help decisionmakers change their preferences is defined. Therefore, the consensus
process could be guided automatically, without a moderator, avoiding the possible
subjectivity that he/she could introduce into the process. We should point out that
this consensus contribution is a highly cited paper according to the ESI database
too.

• Herrera-Viedma, Martinez, Mata and Chiclana dealt with the consensus problem
when the GDM problem is defined in a fuzzy multi-granular linguistic context,
i.e., by assuming that decision makers could use different linguistic term sets to
provide their preferences:

E. Herrera-Viedma, L. Martinez, F. Mata, F. Chiclana. A consensus support system model
for group decision-making problems with multigranular linguistic preference relations.
IEEE Transactions on Fuzzy Systems 13 (5), 644–658 (2005).

The main novelty of this contribution is to present an automatic control system
to guide the consensus process that substitutes the moderator’s actions. To do so,
this approach uses the consensus degrees to decide when the consensus process
should finish and the proximity measures to define a recommendation system that
recommends decision makers about the preferences that they should change in the
next consensus rounds. This contribution is also considered a highly cited paper
according to the ESI database.

• Finally, other seminal consensus contribution was proposed by Herrera-Viedma,
Alonso, Chiclana, and Herrera in:

E. Herrera-Viedma, S. Alonso, F. Chiclana, and F. Herrera. A consensus model for group
decision making with incomplete fuzzy preference relations. IEEE Transactions on Fuzzy
Systems 15 (5), 863–877 (2007).

Themain novelty of this soft consensus approach is that it provides tools to support
the consensus processes in the presence of missing values or incomplete informa-
tion inGDMsituations. Here, the authors define the first consensus approach based
on soft consensus measures which is carried out automatically (without a moder-
ator) by three kinds of measures: consensus measures, consistency measures and
incompleteness measures, too. Similarly, this contribution is considered a highly
cited paper in the ESI database.

Finally, the main novelties of the above prominent consensus approaches based
on soft consensus measures are summarized in Table1.
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Table 1 Most prominent soft consensus approaches

Contribution Novelties

F. Herrera, E. Herrera-Viedma, J. L. Verdegay,
A model of consensus in group decision making
under linguistic assessments. Fuzzy Sets and
Systems 78 (1), 73–87 (1996)

• It defines the first soft consensus approach in
a fuzzy linguistic context
• It uses both consensus degrees and proximity
measures to guide the consensus process

F. Herrera, E. Herrera-Viedma, J. L. Verdegay.
A rational consensus model in group decision
making using linguistic assessments. Fuzzy
Sets and Systems 88 (1), 31–49 (1997).

• It is guided by both consensus and
consistency measures

E. Herrera-Viedma, F. Herrera, F. Chiclana. A
consensus model for multiperson decision
making with different preference structures.
IEEE Transactions on Systems Man and
Cybernetics-Part A: Systems and Humans 32
(3), 394–402 (2002)

• Different preference representation structures
can be used

• Soft consensus measures are computed by
comparison between decision makers’
solutions

• A feedback mechanism is incorporated

E. Herrera-Viedma, L. Martinez, F. Mata, F.
Chiclana. A consensus support system model
for group decision-making problems with
multigranular linguistic preference relations.
IEEE Transactions on Fuzzy Systems 13 (5),
644–658 (2005)

• It is defined in a fuzzy multi-granular
linguistic context

• It presents an automatic control system
substituting the moderator’s actions

E. Herrera-Viedma, S. Alonso, F. Chiclana,
and F. Herrera. A consensus model for group
decision making with incomplete fuzzy
preference relations. IEEE Transactions on
Fuzzy Systems 15 (5), 863–877 (2007)

• It supports consensus processes in the
presence of incomplete information

4 Consensus Approaches Based on Soft Consensus
Measures

Consensus approaches based on soft consensus measures have been a hot topic in
recent years [31], and different approaches can be found in the literature according to
different criteria: (i) reference domain used to compute soft consensus measures, (ii)
coincidence concept used to compute the soft consensus measures, (iii) generation
method of recommendations, and (iv) guiding measures.

In the following subsections, these different consensus approaches are described
in more detail.
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4.1 Consensus Approaches Based on the Reference Domain

Two different consensus approaches can be found according to the reference domain
utilized to compute the consensus measures.

Firstly, consensusmeasures focused on the decisionmaker set have been presented
in [16, 34, 36, 37], in which consensus measures are computed in three steps: (i) for
each pair of decision makers, a degree of agreement as to their preferences between
all the pair of alternatives are computed, (ii) these degrees are aggregated to obtain a
degree of agreement of each pair of decision makers as to their preferences between
Q1 pairs of alternatives, and (iii) these degrees are aggregated to obtain a degree of
agreement of Q2 pairs of decision makers as to their preferences between Q1 pair
of alternatives, which is the degree of consensus sought.

Secondly, consensus measures focused on the alternative set have been presented
in [23, 24, 29, 30], in which the consensus measures are computed at the three
different levels of representation of a preference relation: (i) level of preference,
indicating the consensus degree existing among all them preference values attributed
by the m decision makers to a specific preference, (ii) level of alternative, which
allows us to measure the consensus existing over all the alternative pairs where a
given alternative is present, and (iii) level of preference relation, which evaluates the
social consensus, that is, the current consensus existing among all the decisionmakers
about all the preferences. It allows us, for example, to identify which decisionmakers
are close to the consensus solutions, or in which alternatives the decision makers are
having more trouble to reach consensus.

Comparing both approaches, the latter seems better to design consensus processes
allowing us to guide the decision makers to modify their opinions during the discus-
sion process.

4.2 Consensus Approaches Based on the Coincidence
Method

In the literature, we can find soft consensus measures valued in [0, 1], where a value
close to 1 indicates a high level of consensus and a value close to 0 indicates a
low level of consensus [4, 30, 34, 36, 38]. On the other hand, instead of using
numerical values in [0, 1], soft consensus measures based on linguistic labels have
been proposed [24, 25] to evaluate the level of consensus. Anyway, to obtain the level
of consensus achieved in each round of the consensus process, the similarity among
the preferences provided by the decision makers on the alternatives is measured. Soft
consensus measures are based on the coincidence concept [25], and we can identify
three different methods for computing them [7]:

1. Consensus measures based on strict coincidence among preferences [24, 35].
Here, similarity criteria among preferences are used to compute the coincidence
concept. In such a case, only two possible results are assumed: 1 if the opinions



Group Decision Making: Consensus Approaches … 317

are equal and, otherwise, a value of 0. The advantage of this approach is that the
computation of the consensus degrees is simple and easy. The drawback of this
approach is that the consensus degrees obtained do not reflect the real consensus
situation.

2. Consensus measures based on soft coincidence among preferences [1, 29, 34,
36]. As above, similarity criteria among preferences are used to compute the
coincidence concept, but, now, a major number of possible coincidence degrees
is considered. It is assumed that the coincidence concept is a gradual concept
assessed with different degrees defined in the unit interval [0, 1]. The advantage
of this approach is that the consensus degrees obtained reflect better the real
consensus situation. The drawback of this approach is that the computation of the
consensus degrees is more difficult because we need to define similarity criteria
to compute the consensus measures, and, sometimes it is not possible to define
them directly.

3. Consensus measures based on coincidence among solutions [2, 28]. Here, simi-
larity criteria among the solutions obtained from the decisionmakers’ preferences
are used to compute the coincidence concept and different degrees assessed in
[0, 1] are assumed. The advantage of this approach is that the consensus degrees
are obtained comparing not the opinions but the position of the alternatives in each
solution, what allows us to reflect the real consensus situation in each moment of
the consensus reaching process. The drawback of this approach is that the com-
putation of the consensus degrees is more difficult than in the above approaches
becausewe need to define similarity criteria and it is necessary to apply a selection
process before obtaining the consensus degrees.

It should be pointed out that the second and third methods, which reflect the
real consensus state within the group of decision makers [6], are the most useful
approaches to design consensus processes allowing us to advice the decision makers
during the consensus process [31]. In particular, the second method is applied in
contexts under preference relations and the third one is applied in decision situations
under different formats of preference representation.

4.3 Consensus Approaches Based on the Generation Method
of Recommendations

The generation method of recommendations to the decision makers is very important
in order to increase the consensus level. From this point of view, the first consensus
approaches proposed in the literature [23, 24, 34, 36, 38] can be considered as basic
approaches based on a moderator, who monitors the agreement in each moment of
the consensus process and is in charge of supervising and addressing the consensus
process towards success. However, the moderator can introduce some subjectivity in
the process.
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To overcome this drawback, consensus approaches have been proposed by substi-
tuting themoderator figure or providingmoderator with better analysis tools, making
more effective and efficient the decision making processes:

• Consensus approaches incorporating a feedback mechanism substituting the mod-
erator’s actions have been developed [28–30]. In these approaches, proximitymea-
sures are calculated to evaluate the proximity between the individual decision
makers’ preferences and the collective one. These proximity measures allow to
identify the preference values provided by the decision makers that are contribut-
ing less to reach a high consensus state. In such a way, the feedback mechanism
gives advice to those decision makers to find out the changes they need to make
in their opinions to obtain a solution with a better consensus degree.

• Consensus approaches have been proposed using a novel data mining tool [39],
the so called action rules [45], to stimulate and support the discussion in the group.
The purpose of an action rule is to show how a subset of flexible attributes should
be changed to obtain an expected change in the decision attribute for a subset of
objects characterized by some values of the subset of stable attributes. According
to it, these action rules are used to indicate and suggest to the moderator with
which decision makers and with respect to which options it may be expedient to
deal.

It should be pointed out that the current consensus trends are committed to develop
automated feedback mechanisms replacing the moderator, in particular, when con-
sensus processes are developed in crowded social environments [1]. In addition,
new feedback mechanisms which implement strategies that adjust the number of
changes required depending on the level of consensus among decision makers in
each consensus round are being proposed [42].

4.4 Consensus Approaches Based on Guidance Measures

The pairwise comparison in preference relations helps the decisionmakers to provide
their preferences by focusing only on two elements once at a time. It allows to reduce
uncertainty and hesitation while leading to the higher of consistency. The problem
is that the definition of a preference relation does not imply any kind of consistency
property, and the decision makers’ preferences can be inconsistent [13]. Luckily,
the lack of consistency can be quantified and monitored, and it has been used as
a parameter to validate the final solution obtained after a consensus process [11,
24]. In such a way, consensus approaches using both consistency and consensus
measures to guide the consensus process have been presented in [8, 24, 30]. Here,
a consensus/consistency level is usually calculated as a weighted aggregation of the
consistency level and the consensus degree, and it is used as a control parameter to
decide if the consensus process has to finish.

It should be pointed out that the incorporation of other additional criteria in the
consensus process, as, for instance, consistency measures, contributes to enrich the
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consensus processes and to achieve more adequate solutions in the GDM. For exam-
ple, the use of the consistency measures avoids misleading solutions, which cannot
be detected by the consensus approaches using only consensus degrees.

5 Conclusions and Future Work

In this contribution, we have reviewed the different consensus approaches based
on soft consensus measures that have been proposed in the literature in which the
consensus process is guided by a moderator. To do so, some basic concepts to under-
stand the topic have been introduced, and both the pioneering and most relevant
contributions on consensus approaches have been highlighted. In addition, several
approaches of consensus in GDM according to different criteria have been analyzed.

In the future, it is worth continuing this research by studying the current trends
in the development of consensus approaches and by bringing out several issues that
could represent challenges to be faced.
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Abstract In this chapter, we show how the concepts of overlap function and overlap
index can be used to define fuzzy measures which depend on the specific data of each
considered problem.
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1 Introduction

Inmany problems, it is crucial to find a relation between groups of data. Such relation
can be expressed, for instance, in terms of an appropriate fuzzy measure or capacity
[10, 21] which reflects the way the different data are connected to each other [20].

In this chapter, taking into account this fact and following the developments in
[8], we introduce a method to build capacities [20, 21] directly from the data (inputs)
of a given problem. In order to do so, we make use of the notions of overlap function
and overlap index [4, 5, 7, 12–14, 16] for constructing capacities which reflect how
different data are related to each other.
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This paper is organized as follows: after providing somepreliminaries,we analyse,
in Sect. 3, some properties of overlap functions and indexes. In Sect. 4 we discuss
a method for constructing capacities from overlap functions and overlap indexes.
Finally, we present some conclusions and references.

2 Preliminaries

Given a referential set (or universe) U, a fuzzy set A over U is defined in terms of a
mapping μA:

μA : U → [0, 1] .

For simplicity, we write A(i) instead of μA(i). We denote by FS(U) the space of
all fuzzy sets defined over U. We will only deal with fuzzy sets defined over a
finite referential set U, so we can consider U = {1, . . . , n}. card(U) stands for the
cardinality of U.

We consider in FS(U) the usual partial order defined by Zadeh. Union and inter-
section between fuzzy sets are defined by means of the max and min, respectively.
We say that (x1, . . . , xn) ≤ (y1, . . . , yn) if and only if xi ≤ yi for every i ∈ U.

By abuse of notation, we denote by ∅ empty set (that is, the fuzzy set where the
membership values of all the elements are equal to 0), and by U the fuzzy set with
all its memberships equal to 1.

The support of a fuzzy set A ∈ FS(U) is given by:

supp(A) = {i ∈ U | A(i) �= 0}.

We say that A is a full fuzzy set if supp(A) = U. To distinguish fuzzy sets from
the classical subsets of U, we will use the notation Ã for the latter.

Let Ã ⊆ U and t ∈ [0, 1]. By tÃ we denote the fuzzy set given by:

tÃ(i) =
{
t if i ∈ Ã ;
0 otherwise.

By abuse of notation, we write 1Ã to denote 1Ã for every Ã ⊆ U, since 1Ã equals
the characteristic function of the set Ã. Note that this definition corresponds to the
basic function b(̃A, t) introduced by Benvenuti et al. in 2002 [2].

Given a function F : [0, 1]k → [0, 1] (with k ∈ N) and k fuzzy sets Ak ∈ FS(U),
the symbol F(A1, . . . ,Ak) denotes the fuzzy set over U whose membership function
is given by:

F(A1, . . . ,Ak)(i) = F(A1(i), . . . ,Ak(i)).

Definition 1 Let n ≥ 2. An n-dimensional aggregation function [1, 6, 9, 11, 15, 17,
18] is a mapping M : [0, 1]n → [0, 1] such that:
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1. M(0, . . . , 0) = 0 and M(1, . . . , 1) = 1;
2. M is increasing.

2.1 Capacities

In the following, we recall some basic notions concerning capacities [21].

Definition 2 Let U = {1, 2, . . . , n}. A capacity (or non-additive measure) over U
is a mapping m : 2U → [0, 1] such that

1. m(∅) = 0 and m(U) = 1;
2. If Ã ⊂ B̃ then m(̃A) ≤ m(̃B).

Example 1 1. Any probability measure yields an example of a capacity.
2. The bottom capacity is defined by

m∗(̃A) =
{
1 if Ã = U;
0 otherwise.

3. The top capacity is defined by

m∗(̃A) =
{
0 if Ã = ∅;
1 otherwise.

Definition 3 If m is a capacity over U = {1, . . . , n}, then:
1. m is called additive if m(̃A ∪ B̃) = m(̃A) + m(̃B) whenever Ã ∩ B̃ = ∅.
2. m is called symmetric if m(̃A) = m(̃B) whenever card (̃A) = card (̃B).
3. m is called supermodular (submodular) ifm(̃A ∪ B̃) + m(̃A ∩ B̃) ≥ m(̃A) + m(̃B)

(m(̃A ∪ B̃) + m(̃A ∩ B̃) ≤ m(̃A) + m(̃B)) for every Ã, B̃ ∈ 2U .
4. m is called modular if it is supermodular and submodular.

Remark 1 Since we have m(∅) = 0 for every capacity m, additivity and modularity
are equivalent properties of capacities.

Capacities can be obtained from aggregation functions as follows.

Proposition 1 ([3, 21]) Let m : 2U → [0, 1] be a set function. The following items
are equivalent.

1. m is a capacity.
2. There exists an aggregation function M : [0, 1]n → [0, 1] such that, for every

Ã ∈ 2U

m(̃A) = M(1Ã) .
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3 Overlap Functions and Overlap Indexes

The concept of overlap function was extensively studied in [7]. Here we make a
revision of the most relevant definitions and results for the present work.

Definition 4 An overlap function is a mapping GO : [0, 1]2 → [0, 1] such that:

1. GO(x, y) = GO(y, x) for every x, y ∈ [0, 1];
2. GO(x, y) = 0 if and only if xy = 0;
3. GO(x, y) = 1 if and only if xy = 1;
4. GO is increasing;
5. GO is continuous.

Overlap function can be seen as a generalization of continuous t-norms without
divisors of zero. The class of all overlap functions is convex.

Overlap functions can be used to build overlap indexes by aggregating them. We
start by recalling some basic notions about the idea of an overlap index and we will
formalize the construction method in Theorem 1.

Definition 5 An overlap index is amappingO : FS(U) × FS(U) → [0, 1] such that
(O1) O(A,B) = 0 if and only ifA andB have disjoint supports; that is,A(i)B(i) = 0

for every i ∈ U;
(O3) O(A,B) = O(B,A);
(O4) If B � C, then O(A,B) ≤ O(A,C).

An overlap index such that
(O2’) O(A,B) = 1 if there exists i ∈ U such that A(i) = B(i) = 1

is called a normal overlap index.

Remark 2 In the original definition of overlap index [12], condition (O2) states that

O(A,B) = 1 if A(i) = 0 orB(i) = 1 orA(i)B(i) = 0

for all i ∈ U. For A = ∅ we obtain the following contradiction: (O1) implies that
O(A,A) = 0 whereas (O2) implies O(A,A) = 1. Therefore we removed condition
(O2) from the definition of an overlap index.

Example 2 1. The first example of overlap index in the literature is Zadeh’s con-
sistency index [22]:

OZ(A,B) = n
max
i=1

(min(A(i),B(i))).

Note that OZ is normal.
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2. LetM : [0, 1]2 → [0, 1] be a symmetric aggregation function such thatM(x, y) =
0 if and only if xy = 0. We have that

OM,Z(A,B) = n
max
i=1

(M(A(i),B(i)))

is a normal overlap index that generalizes Zadeh’s index.

Remark 3 For each overlap index O : FS(U) × FS(U) → [0, 1], the functionMO :
[0, 1]n → [0, 1] given by

MO(E) = O(E,U)

O(U,U)

with E ∈ [0, 1]n, is an aggregation function without divisors of zero.

3.1 Modularity of Overlap Indexes

We are going to analyze several properties of overlap indexes that will be relevant
for the construction of capacities from them.We first introduce the idea of symmetry
for overlap indexes.

Definition 6 Let O : FS(U) × FS(U) → [0, 1] be an overlap index and let E ∈
FS(U). O is E-symmetric if for every A,B ∈ FS(U) such that card(supp(A)) =
card(supp(B)) it holds that:

O(A,E) = O(B,E).

Example 3 1. Every overlap index O is E-symmetric if E = ∅ ∈ FS(U).
2. Consider the strongest overlap index:

Os(A,B) =
{
0 if A,B are disjoint fuzzy sets;

1 otherwise.

We have that Os is E-symmetric for every full set E.

Note that an overlap index can not be E-symmetric unless E is a full fuzzy set, as
the next result shows.

Proposition 2 If O is an overlap index which is E-symmetric with respect to some
fuzzy set E ∈ FS(U), E �= ∅, then E is a full fuzzy set.

Proof Assume that E is not a full fuzzy set and that

k = min(card(supp(E)), n − card(supp(E))) > 0 .
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Let Ã ⊆ supp(E) and B̃ ⊆ U\supp(E) with card (̃A) = card (̃B) = k. Consider the
fuzzy sets

A = 1Ã and B = 1B̃ .

We have that O(E,A) > 0 (since E and A are not mutually disjoint) whereas
O(E,B) = 0. Therefore, O can not be E-symmetric. �

Now we consider the notion of modularity.

Definition 7 Let O : FS(U) × FS(U) → [0, 1] be an overlap index and let E ∈
FS(U).

1. O is called E-supermodular if O(E,A ∩ B) + O(E,A ∪ B) ≥ O(E,A) +
O(E,B) holds for all A,B ∈ FS(U). Similarly, O is called E-submodular if
O(E,A ∩ B) + O(E,A ∪ B) ≤ O(E,A) + O(E,B) for all A,B ∈ FS(U).

2. If O is E-submodular and E-supermodular, then O is simply called E-modular.

Example 4 1. Every overlap index O is E-modular for E = ∅ ∈ FS(U).
2. The overlap index Oπ is E-modular for every fuzzy set E.
3. OZ is E-submodular but not E-modular.

The following construction method of overlap indexes by means of aggregation
functions can be found in [13].

Theorem 1 Let M : [0, 1]n → [0, 1] be an aggregation function such that
M(x1, . . . , xn) = 0 if and only if x1 = · · · = xn = 0 and let GO : [0, 1]2 → [0, 1]
be an overlap function. The mapping O : FS(U) × FS(U) → [0, 1] given by

O(A,B) = M(GO(A(1),B(1)), . . . ,GO(A(n),B(n))) (1)

is a normal overlap index in the sense of Definition 5.
Conversely, if GO is an overlap function and M : [0, 1]n → [0, 1] is an aggrega-

tion function such that O defined by Eq.1 is an overlap index, thenM(x1, . . . , xn) = 0
if and only if x1 = · · · = xn = 0.

4 Capacities from Overlap Indexes, and Overlap Functions

In this section, we present the core of the present chapter. Taking into account the
usual construction of Bayesian conditional probabilities, we follow an analogous
procedure to build a capacity from an overlap function.

We start introducing a bit of notation. Let E ∈ FS(U) be a fixed non-empty fuzzy
set (that is, with at least one membership different from zero). Given Ã ∈ 2U , let us
define a fuzzy set EÃ induced by E as follows:
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EÃ(i) =
{
E(i) if i ∈ Ã;
0 otherwise.

Observe that EÃ is the fuzzy intersection of the fuzzy set E and the crisp set Ã, since

EÃ(i) = min(1Ã(i),E(i)) .

Therefore, any aggregation function with no zero divisors could also be used instead
of the minimum in this definition for the subsequent developments.

Now we are ready to introduce our main result.

Theorem 2 If E ∈ FS(U) is a fixed, non-empty fuzzy set, then the mapping mO,E :
2U → [0, 1] given by

mO,E (̃A) = 1

O(E,E)
O(E,EÃ)

is a capacity for every overlap index O.

Proof First of all observe thatmO,E iswell defined sinceO(E,E) �= 0 andO(E,EÃ) ≤
O(E,E). If Ã = U, then it follows that EÃ = E, so we have thatmO,E (̃A) = 1. More-
over, if Ã = ∅, then EÃ(i) = 0 for every i ∈ U. So, in particular, O(EÃ,E) = 0.
Finally, if Ã ⊂ B̃, then it follows thatEÃ ⊆ EB̃, so, in particular,O(E,EÃ) ≤ O(E,EB̃)

and hence mO,E (̃A) ≤ mO,E (̃B). �

Recall that Benvenuti et al. [3] defined for each aggregation function M :
[0, 1]n → [0, 1] and e ∈]0, 1] such thatM(E) > 0, where E = (e, . . . , e), a capacity
mM,e : 2U → [0, 1] given by

mM,e(̃A) = M(eÃ)

M(E)

(for e = 1 see also Proposition 1). Obviously, in the terms of Theorem 2, mO,E =
mMO,e. HereMO was defined in Remark 3.

Remark 4 Observe that, for a fixed full probability measure P on U, if we consider
the overlap index OP introduced in Remark 3, we recover the definition of Bayesian
conditional probabilities, i.e., mOP,E = PsuppE .

Of course, the question of how two of these measures relate to each other arises.

Proposition 3 Let O be an overlap index. For all full fuzzy sets E1,E2 ∈ FS(U), the
following statements are equivalent:

1. mO,E1 (̃A) ≤ mO,E2 (̃A) for every Ã ∈ 2U.

2. minÃ∈2U
O(E2 ,̃AE2 )

O(E1 ,̃AE1 )
= O(E2,E2)

O(E1,E1)
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Proof The inequality mO,E1 (̃A) ≤ mO,E2 (̃A) implies that

O(E2,E2)

O(E1,E1)
≤ O(E2, ÃE2)

O(E1, ÃE1)
(2)

for every Ã ∈ 2U , so (2) holds. Conversely, if (2) holds, then Eq.2 is satisfied as well
and we obtain (1). �

Corollary 1 Let E1,E2 ∈ FS(U) such that O(E1,E1) = 1. If E1 ⊆ E2, then
mO,E1 (̃A) ≤ mO,E2 (̃A) for every Ã ∈ 2U.

Proof IfE1 ⊆ E2, thenwe have that 1 ≥ O(E2,E2) ≥ O(E1,E1) = 1. Consequently,

1 = O(E2,E2)

O(E1,E1)
≤ O(E2, ÃE2)

O(E1, ÃE1)

for every Ã ∈ 2U , which implies that mO,E1 (̃A) ≤ mO,E2 (̃A) for every Ã ∈ 2U . �

In order to reverse the construction method and get an overlap function from a
measure, we need the concept of contraction.

Definition 8 LetE ∈ FS(U). The contraction toE (orE-contraction) is themapping
CE : FS(U) → FS(U) defined by:

CE(A) = {(i,E(i)A(i)) | i ∈ U}.

Remark 5 The definition of contraction can be generalized by substituting the prod-
uct with any other t-norm or even an overlap function. We postpone the analysis of
the resulting operators to future works.

Let us continue by introducing some notations. For a fixed fuzzy set E ∈ FS(U)

and for Ã ∈ 2U , we define

Cl(E, Ã) = {A ∈ FS(U) | A ⊆ EÃ and A � EB̃ for every B̃ ⊂ Ã}.

The proof of the following lemma is straightforward.

Lemma 1 Let E ∈ FS(U). Then Cl(E, Ã) = ∅ for every Ã ∈ 2U such that Ã ∩
supp(E) = ∅.

Then we can state the following.

Proposition 4 Let E be a full fuzzy set. The family (Cl(E, Ã))Ã∈2U is a partition of
the set {A ∈ FS(U) | A ⊆ E}.
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Proof For any A ⊆ E let’s take Ã = supp(A). Then, and only then A ⊆ EÃ and for
any B̃ which is a proper subset of Ã, A � EB̃, i.e., A ∈ Cl(E, Ã). The fact that
Cl(E, Ã) ∩ Cl(E, B̃) = ∅ for Ã �= B̃ is trivial. Hence {Cl(E, Ã)|̃A ∈ 2U} is a parti-
tion of {A ∈ FS(U) | A ⊆ E}. �

Now we can show how to recover overlap indexes from capacities.

Theorem 3 Let m be a capacity such that m(̃A) = 0 if and only if Ã = ∅. If E is a
full fuzzy set, then the function OE,m : FS(U) × FS(U) → [0, 1] defined by:

OE,m(A,B) =
{
m(̃A) if A ∩ B ∈ Cl(E, Ã);
1 otherwise

is a normal overlap index such that the capacity induced by OE,m is equal to m.

Proof First of all, due to Proposition 4, OE,m is well defined. Let us prove that OE,m

is an overlap index.

(O1) Assume thatOE,m(A,B) = 0. Sincem(̃A) �= 0 for every Ã �= ∅, this happens if
and only ifA ∩ B ∈ Cl(E,∅), i.e., if and only ifA andB have disjoint supports.

(O3) Symmetry is obvious from the definition.
(O4) Let A ∈ FS(U) be arbitrary, but fixed and let B ⊆ C. If A ∩ C � E, then

OE,m(A,C) = 1 ≥ OE,m(A,B). Now let us assume that A ∩ C ⊆ E. From
Proposition 4 and the fact thatA ∩ B ⊆ A ∩ C, it follows that there exist Ã, B̃ ∈
2U with B̃ ⊆ Ã such thatA ∩ C ∈ Cl(E, Ã) andA ∩ B ∈ Cl(E, B̃). Sincem is a
capacity, we have thatm(̃A) ≤ m(̃B) and thereforeOE,m(A,B) ≤ OE,m(A,C).

(O2’) Note that U = U ∩ U. So if E �= U it follows that OE,m(U,U) = 1, whereas
if E = U, we have that U ∈ Cl(U,U) and OE,m(U,U) = m(U) = 1.

Finally, note that EÃ = EÃ ∩ E ∈ Cl(E, Ã) for every Ã ∈ 2U , which concludes the
proof of the theorem since

mOE,m,E (̃A) = 1

OE,m(E,E)
OE,m(E,EÃ) = m(̃A) .

This completes the proof. �

Theorem 3 can be extended to include non-strict measures as follows.

Corollary 2 Consider a capacity m. Let Ã0 = {i ∈ U | m({i}) = 0}. Suppose that
E is a fuzzy set such that E(i) �= 0 for i /∈ Ã0. The function O : FS(U) × FS(U) →
[0, 1] given by
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OE,m,̃A0
(A,B) =

{
m(̃A) if A ∩ B ∈ Cl(E, Ã\Ã0);
1 otherwise

is an overlap index.

Proof Symmetry and monotonicity are clear. We only need to check that (O1) holds.
To see (O1), note that O(A,B) = 0 if and only if A ∩ B ∈ Cl(E, Ã\Ã0) for some Ã ∈
2U such thatm(̃A) = 0. But,m(̃A) = 0 if and only if Ã ⊆ Ã0, due to the monotonicity
of capacities. So, min(A(i),B(i)) = 0 if i ∈ Ã0.�

Example 5 For the bottom capacitym∗, we obtain Ã0 = {i ∈ U | m∗({i}) = 0} = U.
Thus, setting E = ∅ yields the following overlap function:

OE,m∗,U(A,B) =
{
0 if A ∩ B = ∅;
1 otherwise,

which is the strongest overlap index.

Corollary 3 For every capacity m there exists a fuzzy set E and a continuous overlap
index OE,m such that the measure induced by OE,m is equal to m.

Proof It is just a matter of using the overlap index defined by means of Theorem 3
and Corollary 2. �

4.1 Construction of Capacities from Overlap Indexes Based
on Overlap Functions

We can make use of Theorem 1 to get capacities from overlap functions and aggre-
gation functions.

Proposition 5 Let M : [0, 1]n → [0, 1] be an aggregation function such that
M(x1, . . . , xn) = 0 if and only if x1 = · · · = xn = 0, let GO : [0, 1]2 → [0, 1] be
an overlap function and let E ∈ FS(U) be a non-empty fuzzy set. The mapping
mE,M,GO : 2U → [0, 1] is given by

mE,M,GO (̃A) = 1

M(GO(E))
M(GO(E(1),EÃ(1)), . . . ,GO(E(n),EÃ(n))),

where M(GO(E)) = M(GO(E(1),E(1)), . . . ,GO(E(n),E(n)) is a capacity.

Note that if we take E = U, then we have mU,M,GO (̃A) = M(1Ã).

Proposition 6 Let M be an aggregation function as in Proposition 5. For any non-
empty fuzzy set E, we have:
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1. mE,M,GO (̃A) = 0 if and only if E(i) = 0 for every i ∈ Ã;
2. mE,M,GO (̃A) = 1 whenever E(i) �= 0 for every i ∈ Ã.

Proof 1. If mE,M,GO (̃A) = 0, then

1

M(GO(E))
M(GO(E(1),EÃ(1)), . . . ,GO(E(n),EÃ(n))) = 0 .

Since M is an aggregation function, this implies that GO(E(i),EÃ(i)) = 0 for
every i = 1, . . . , n. From the definition of an overlap function, this happens only
if E(i)EÃ(i) = 0 for every i = 1, . . . , n. If EÃ(i) �= 0 it follows that E(i) = 0,
which is impossible due to the definition ofEÃ. Therefore,we infer thatEÃ(i) = 0
for every i ∈ Ã, that is, if i ∈ Ã then E(i) = 0. The other direction follows from
the fact that E(i) = 0 for every i ∈ Ã implies that EÃ(i) = 0 for every i ∈ U.

2. If Ã is as in the statement of this property, then we obtain EÃ = E, and the result
follows from the monotonicity of aggregation and overlap functions. �

The following corollary is a straightforward consequence of the previous result.

Corollary 4 Let M be an aggregation function as in Proposition 5. For any non-
empty fuzzy set E, we have:

1. mE,M,GO satisfies the property

mE,M,GO (̃A) = 0 if and only if Ã = ∅

if and only if E is a full fuzzy set.
2. mE,M,GO(supp(E)) = 1.

Theorem 4 For a fixed overlap function GO and an n-ary aggregation function M
as in Proposition 5, the following claims are equivalent:

1. For each non-empty fuzzy subset E ∈ FS(U), the measure mE,M,GO is additive.
2. M is modular, i.e., M(max(x, y)) + M(min(x, y)) = M(x) + M(y) for all

x, y ∈ [0, 1]n.
Proof Observe first that any modular aggregation function M such that
M(x1, .., xn) = 0 only if x1 = · · · = xn = 0 has the form M(x1, . . . , xn) = ∑n

i=1
fi(xi) , where each fi : [0, 1] → [0, 1] is increasing, fi(x) = 0 only if x = 0, and∑

fi(1) = 1, see, e.g., [19]. To see the necessity, observe that the additivity ofmE,M,GO

implies that

M(GO(E(1),EÃ(1)), . . . ,GO(E(n),EÃ(n))) =
M(GO((E(1), EÃ(1)), 0, . . . , 0)) + M(0, . . . , 0,GO(E(n),EÃ(n))).
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In view of the mean value theorem for overlap functions, this equality is equivalent
to

M(x1, . . . , xn) = M(x1, 0, . . . , 0) + M(0, x2, 0, . . . , 0) + · · · + M(0, . . . , 0, xn)

for every x1, . . . , xn ∈ [0, 1]. Defining fi(x) = M(0, 0, . . . , 0, x, 0, . . . , 0), where
the x is in the i-th position, the result follows. To see the converse, observe that
M(x1, . . . , xn) = ∑n

i=1 fi(xi) is an aggregation function such thatM(x1, . . . , xn) = 0
if and only if x1 = · · · = xn = 0. �

Observe that ifM satisfies the requirements of the previous theorem, thenmE,M,GO

is additive for all GO and all E �= ∅.

5 Conclusions

In this chapter we have made a summary of the developments in [8] and discussed
a method to build capacities from overlap indexes and overlap measures. In this
way, relationships among data in the problem can be taken into account in order to
build an appropriate measure which will later be used to determine the aggregation
procedure.

In future research, we intend to analyse aggregations that make use of our mea-
sures, such as Sugeno, Shilkret, Choquet or copula-based integrals, and compare the
obtained results using other aggregations in different problems, such as, for instance,
digital fingerprint recognition or decision making.
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Clustering Alternatives and Learning
Preferences Based on Decision Attitudes
and Weighted Overlap Dominance

Camilo Franco, Jens Leth Hougaard and Kurt Nielsen

Abstract An initial assessment on a given set of alternatives is necessary
for understanding complex decision problems and their possible solutions. Attitudes
and preferences articulate and come together under a decision process that should
be explicitly modeled for understanding and solving the inherent conflict of decision
making. This paper revises multi-criteria modeling of imprecise data, inferring out-
ranking and indifference binary relations and classifying alternatives according to
their similarity or dependency. After the initial assessment on the set of alternatives,
preference orders are built according to the attitudes of decision makers, aiding the
decision process by identifying solutions with minimal dissention.

Keywords Decision attitudes ·Dependency-based clustering ·Preference learning ·
Consensus and dissention

1 Introduction

Outrankingmethodologies are usually implemented for ordering agiven set of objects
(alternatives), based on its associated multidimensional data (see e.g. [4, 10, 12]).
Here we explore an outranking approach for imprecise data, measuring the volume of
imprecision on all dimensions (criteria/attributes), and computing the multi-criteria
likelihood of outranking among pairs of alternatives. Based on the weighted overlap
dominance (WOD)model [10], a pairwise comparison process is developed bymeans
of criteriaweights and decision attitudes, understanding the different relations among
alternatives and building solutions for intelligent decision support (see e.g. [7]).

The WOD model proposes a volume-based pairwise methodology for dealing
with interval information. Due to the interval nature of data, decision attitudes
are used to handle the uncertainty in estimating preference relations. In this way,
attitudes have an impact on preferences according to the amount of evidence that is
required for affirming an outranking dominance relation, evaluating the amount of
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overlap existing among intervals. Besides, attitudes are also related to the purpose
of aggregation in obtaining an overall value from the different pieces of evidence.
Hence, both the verification of sufficient evidence and its means of aggregation are
related to decision attitudes, having a determinant role for classifying alternatives
according to their similarity or dependency. After the initial screening of the deci-
sion problem, decision support is offered by learning preferences and minimizing
dissention among attitudes, aiding the decision process for reaching a satisfactory
solution.

The focus of this paper consists in offering a multi-criteria framework for clas-
sifying alternatives according to their similarity, which is modeled by means of a
dependency relation arising from the outranking-preference order. Then, dependent
alternatives are grouped together, conforming a clustered set of alternatives which
can be totally ordered according to the WOD procedure. Nonetheless, the method-
ology should also allow learning a preference order on the initial set of alternatives.
For this purpose, relevance measures are examined, and decision support is offered
on attitude-based solutions with minimum dissention.

This paper is organized as follows. Section2 revises the WOD outranking pro-
cedure. Section3 extends the WOD model for imprecision, interval weights and
decision attitudes. Section4 presents the whole clustering and preference learning
methodology for decision support, concluding with some final comments for future
research.

2 Articulation of Outranking-Preferences from Interval
Data

The WOD procedure [10] is a multi-criteria outranking model that has been ini-
tially proposed to handle interval-valued scores for a given set of alternatives. This
procedure makes use of criteria weights and risk attitude parameters to identify the
outranking-preference relations holding among alternatives.

Consider a set of decision makers (DMs) D, which can be composed of individual
DMs or coalitions of DMs, a set of alternatives N , and a set of criteria M . For every
alternative a ∈ N and criterion i ∈ M , there is a minimum and maximum score,
respectively given by x L

ai , x
U
ai ∈ [0, 1], such that x L

ai ≤ xUai , expressing the suitability
of a with respect to i .

The nature of interval scores can be grounded on interval fuzzy sets [2, 9], as
initially proposed in [5, 6], where an interval-valued fuzzy set A is defined by its
(specifically designed) membership function μA : N → [0, 1]2. Therefore, under
the framework for multi-criteria decision support and theWOD procedure, the fuzzy
interval degree

μai = [x L
ai , x

U
ai ] ∈ [0, 1]2,

represents the extent up to which a verifies (fuzzy) criterion i .
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In this way, for every alternative a ∈ N , the multi-dimensional suitability degree
of a regarding the set of criteria M , |M | = m, is given by the hypercube,

ca = [
x L
a1, x

U
a1

] × · · · × [
x L
am, x

U
am

]
.

Each DM (e ∈ D) has an associated vector of weights we ∈ [0, 1]m , expressing
the subjective relative importance of criteria, and a couple of subjective decision
attitudes given by βe ∈ [0, 1] and γe ∈ R

+. In this way, hypercubes, weights and
attitude parameters are the basic input for the WOD procedure.

Based on this information, a pairwise comparison process is developed among
alternatives a, b ∈ N , being previously labeled such that,

we · cUa =
m∑

i=1

we
i x

U
ai ≥ we · cUb =

m∑

i=1

we
i x

U
bi . (1)

Examining the alternatives’ hypercubes, together with the vector of weights we,
the sets Ẑ , Ž and Z̃ can be respectively defined for all pairs (a, b), such that

Ẑ(a, b) = {c j ⊆ ca|we · cLj ≥ we · cUb }, (2)

Ž(a, b) = {c j ⊆ ca|we · cUj ≤ we · cLb }, (3)

Z̃(a, b) = {c j ⊆ cb|we · cLj ≥ we · cLa }. (4)

Hence, Ẑ(a, b) contains the subset of ca which is above (the upper bound of) cb,
Ž(a, b) contains the subset of ca which is below (the lower bound of) cb, and Z̃(a, b)
contains the subset of cb which is covered by (above the lower bound of) ca .

Examining the amount of overlap existing between ca and cb, theWODprocedure
infers the preference relation holding among a and b. There are three kinds of overlap,
namely no overlap, partial overlap and complete overlap, which can be examined
through sets Ẑ , Ž and Z̃ (2)–(4).

In the first place, if Z̃(a, b) is empty, then there is no overlap between a and b,
being there a sure outranking situation where no uncertainty exists that a outranks b,
denoted by a � b. However, if it holds that Z̃(a, b) �= Ø, then there is some overlap
between ca and cb, being there some uncertainty on the outranking situation that
holds among (a, b).

In this way, if Ž = ∅, then there is partial overlap in the sense that we · cUb ≥
we · cLa ≥ we · cLb , and an outranking situation holds such that,

a � b ⇔ P (a, b) > βe, (5)

where P is a proxy for the probability that a value randomly drawn from ca is higher
than a value (randomly) drawn from cb. Here P is defined such that,
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P (a, b) = V (Ẑ)

V (ca)
+ V (ca \ Ẑ)

V (ca)

V (cb \ Z̃)

V (cb)
,

with V (·) being a volume operator such that V (Ø)=0 and ∀x ∈ [0, 1]2m ,

V (x) =
m∏

i=1

(xUi − x L
i ).

The idea is that P has to be higher than βe in order for a to outrank b. In this sense,
βe is a risk attitude parameter for establishing the outranking of a over b, where the
higher it is, the lower the risk of affirming outranking without sufficient evidence.

Now, in the case that P (a, b) ≤ βe, then both alternatives are considered to be
indifferent, i.e., a ∼ b holds.

On the other hand, if Ž �= ∅, then there is complete overlap in the sense that
we · cLb ≥ we · cLa . In this case, it holds that

a � b ⇔ C (a, b) > γe, (6)

where C is a proxy for the probability that a value randomly drawn from ca is higher
than a value (randomly) drawn from cb. Here C is defined such that,

C (a, b) = V (Ẑ)

V (Ž)
.

Then, ifC (a, b) = γe orC (a, b) < γe holds, then it respectively holds that a ∼ b
or that b � a. Here the outranking situation is determined by the ratio between the
volume of ca that is over cb (Ẑ ), and the volume of ca that is below cb (Ž ). Thus,
γe expresses the risk attitude towards affirming an outranking relation of a over b,
such that the higher it is, the lower the risk of affirming outranking without sufficient
evidence. Nonetheless, as it is defined here, the inverse outranking relation holds if
no initial outranking is verified, which somehow passes the risk to the other (inverse)
relation. That is, the reciprocal outranking relation for this overlapping case entails
a reciprocal risk attitude which forces risk proneness no matter the value of γe. This
is a problematic issue which is addressed in the following Sect. 3, together with the
crisp estimation of criteria weights we.

Concluding the WOD process, and examining the outcome of this procedure,
alternatives are ordered according to their interval scores. As a result, two types of
binary relations hold, i.e., outranking, (�) or indifference (∼).

As it has been shown in [10], the outranking relation� is a semi-transitive relation,
such that for everya, b, c ∈ N , ifa � b and b � c hold, then it cannot hold that c � a.
Hence, � is irreflexive, i.e., it does not hold that a � a, and asymmetric, i.e., if it
holds that a � b, then it does not hold that b � a.

Even more, the indifference relation is a non-transitive equivalence relation, i.e.,
being reflexive and symmetric.
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For example, consider three alternatives a, b, c ∈ N , such that a � b and b � c
hold. Then, due to the semi-transitivity of �, it holds either that a � c or that a ∼ c.
But if a ∼ c holds, then it cannot be that ∼ is transitive while both a � b and b � c
are true.

Therefore, the WOD procedure assigns binary pairwise relations that conform an
(semi-transitive) outranking order on N , which can be used to cluster alternatives
into different classes of dependency, as it will be examined in Sect. 4.

3 Extending WOD for Imprecision, Interval Weights
and Decision Attitudes

3.1 Imprecision

The WOD framework can be extended for representing the volume of imprecision
for both crisp data (i.e., data in the form of μ = [x L , xU ], such that x L = xU ) and
interval data (where x L < xU holds). This can be done by imprecision functions
δ : [0, 1]2 → [ε, 1], such as [6],

δ(μ) = xU − x L + ε.

Imprecision functions [6] characterize imprecision by a minimum amount of
imprecision equal to ε, if and only if the lower and upper bounds are the same,
and a maximum amount of imprecision equal to 1, if and only if the lower bound
is minimum, i.e. x L = 0, and the upper bound is maximum, i.e. xU = 1. Then, the
measure for imprecision will be positive and greater than ε every time the upper
bound of the interval is greater than its lower bound, and the greater the difference
between the lower and upper bounds, the greater it will be the uncertainty due to
imprecision.

As a result, ∀a ∈ N , the volume of imprecision associated to alternative a is given
by,

V δ (ca) =
m∏

i=1

δ(μai ).

3.2 Interval Weights

Now, it is necessary to address the estimation of the vector of weights we. Criteria
weights allow establishing the trade-off between criteria for their complete compa-
rability. Up to now we have been assuming the existence of a crisp vector of weights
we ∈ [0, 1]m .
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These weights are essential for the overall aggregation of criteria, establishing
a hierarchy among criteria for arriving at an informed judgment over the decision
problem. Considering that weights are based on the DMs’ beliefs or a-priori knowl-
edge regarding the relative importance of the criteria in M , their estimation can be
aided by allowing their interval valuation. Thus, the computation of an outranking
situation could be developed on a set of lower and upper bounds for the possible
values of weights.

In this way, ∀e ∈ D, there is an initial set of interval weights ŵe ∈ [0, 1]2m , with
lower and upper bounds respectively given by ŵL , ŵU ∈ [0, 1]m , such that (2)–(4)
can be reformulated as follows,

Ẑ e(a, b) = {c j ⊆ ca|ŵL · cLj ≥ ŵU · cUb }, (7)

Ž e(a, b) = {c j ⊆ ca|ŵU · cUj ≤ ŵL · cLb }, (8)

Z̃ e(a, b) = {c j ⊆ cb|ŵL · cLj ≥ ŵL · cLa }. (9)

Hence, interval weights extend theWODmethod, computing the respective upper
and lower bounds of weights with the ones of overlapping hypercubes, properly
identifying the amount of (imprecise) weighted overlap for every pair (a, b).

3.3 Decision Attitudes on (inverse) Outranking and
Indifference

Asmentioned above, there is a certain difficulty when determining a unique value for
γe, because the higher its value, the less risk there is for affirming outranking without
sufficient evidence, but at the same time, the higher the risk in affirming the inverse
outranking situation. Hence, the attitude parameter γe could refer to an interval-
valued parameter expressing in a more general and faithful manner the attitudes of
DMs.

In this way, defining γ′
e = [γL , γU ] ∈ [0, 1]2, it is possible to extend the WOD

procedure for the parameter γ′
e to faithfully represent an attitude parameter. Hence,

re-visiting the complete overlap case, the definition for an outranking relation can
be reformulated by,

a � b ⇔ C (a, b) > γU
e , (10)

and indifference can be explicitly defined such that,

a ∼ b ⇔ γU
e ≥ C (a, b) ≥ γL

e . (11)

Thus, if neither (10) nor (11) holds, then the inverse outranking situation holds,
such that b � a. As a result, ∀a, b ∈ N , indifference exists every time that C(a, b)
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lies inside the region given by γ′
e = [γL , γU ], and a outranks b only if C(a, b) is

greater than γU , while b outranks a only if C(a, b) is less than γL . In this way, the
reciprocity of the attitude parameter is avoided, allowing DMs to be truly risk averse
by setting γL sufficiently low and γU sufficiently high. Otherwise, risk proneness is
expressed by setting γ′

e such that γL = γU .

3.4 Aggregation Attitudes

Now, in order to model decision attitudes towards the purpose of multi-criteria
aggregation, consider the aggregation function F : [0, 1]m → [0, 1], such that F(0,
. . . , 0) = 0, F(1, . . . , 1) = 1, and ∀xi , yi ∈ [0, 1], F(x1, . . . , xm) > F(y1, . . . , ym)
whenever ∀i, xi > yi .

Then, three attitudes for aggregation can be considered, which can be somehow
related to different degrees of orness and andness of aggregation operators (see e.g.
[3]). On the one hand, a conjunctive aggregation is related to a demanding attitude,
which requires that all criteria are completely satisfied. This attitude is represented
through an operator F = Ft , such that Ft (0, 1) = Ft (1, 0) = 0 holds. Hence, the
aggregation operator Ft can be associated with an overlapping operator [1], e.g.,
Ft = min.

On the other hand, a disjunctive aggregation is related to a soft attitude, which
requires that at least one criterion is satisfied. This attitude is represented by an oper-
ator F = Fs , such that Fs(0, 1) = Fs(1, 0) = 1 holds. Therefore, the aggregation
operator Fs can be associated with a grouping operator [1], e.g., Fs = max.

Otherwise, taking an averaging attitude, it is required that in average all criteria
are satisfied, allowing some trade-off or compensation among them. Its associated
operator is given by F = Fb, such that 0 < Fb(0, 1) = Fb(1, 0) < 1 holds. This
aggregation operator Fb can be computed by the Choquet integral, generalizing the
(weighted) arithmetic mean (see e.g., [8, 11]).

Therefore, taking different attitudes on the purpose of aggregation, the WOD
procedure can be formulated through the set of aggregation operators

F = {Ft , Fs, Fb},

inferring an outranking order for each attitude. For this purpose, ∀a ∈ N , the product
of ŵe and ca is computed by

ŵe ⊗ ca = [
ŵL ⊗ cLa , ŵ

U ⊗ cUa
] =

[
F∀i∈M(ŵ

L x L
ai ), F∀i∈M(ŵ

U xUai )

]
. (12)

After labeling alternatives such that ŵU ⊗ cUa ≥ ŵU ⊗ cUb , the different overlap-
ping sets (7)–(9) can be reformulated by,
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Ẑ e(a, b) = {c j ⊆ ca|ŵL ⊗ cLj ≥ ŵU ⊗ cUb }, (13)

Ž e(a, b) = {c j ⊆ ca|ŵU ⊗ cUj ≤ ŵL ⊗ cLb }, (14)

Z̃ e(a, b) = {c j ⊆ cb|ŵL ⊗ cLj ≥ ŵL ⊗ cLa }. (15)

Then, no overlap exists if it holds that

ŵL ⊗ cLa > ŵU ⊗ cUb ,

partial overlap exists if it holds that

ŵL ⊗ cLb < ŵL ⊗ cLa ≤ ŵU ⊗ cUb ,

and there is complete overlap if it holds that

ŵL ⊗ cLa < ŵL ⊗ cLb .

Then, following (13)–(15), P(a, b) and G(a, b) express the attitude-based like-
lihood that any point belonging to ca is greater than any other point in cb, inferring
outranking and indifference binary relations as in (5) and (10)–(11).

4 Preference-Based Clustering and Decision Support

4.1 Building Clusters and Preference Orders

Following the multi-criteriaWOD procedure, a certain dependencymay arise among
alternatives due to the semi-transitivity of the outranking order. Hence, alternatives
can be clustered together into semi-equivalent classes, addressing the formation of
new (clustered) alternatives along the decision process. These clusters can then be
used to simplify the decision problem, or can be refined until a preference order
(weak or total order) is identified.

First of all, under the specification of attitude parameters βe = 1 and γ′
e = [0, K ],

where K ∈ R

+ is sufficiently high, all overlapping alternatives are clustered together
under a semi-equivalence class, due to the verification of indifference on all pairs
(a, b). Under such scenario, there is an absolutely risk-averse attitude towards out-
ranking, such that no outranking relation can hold (among overlapping pairs (a, b)).

Such a risk averse scenario can be relaxed by more risk-neutral or risk-prone
attitudes, identifying a higher number of clusters. These clusters represent semi-
equivalent classes, which are defined by (at least) any three alternatives a, b, c ∈ N
such that a � b, a ∼ c and b � c hold.
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In this way, the semi-transitivity of the outranking order allows semi-equivalent
classes to emerge. On formal terms, given a subset of alternatives E ⊆ N , E consists
in a semi-equivalence class if its elements are either related through the indifference
relation ∼, or in case a � b for some pair a, b ∈ E , then a is dependent with b by a
third element c ∈ E , such that either a ∼ c and c � b or c � a and b ∼ c.

As a result, considering the hierarchy of semi-equivalence classes Et ⊆ N , such
that E1 � E2 � · · · � ET , and the individual alternatives a ∈ N such that a /∈ Et , it
follows that a total order holds on N ′ = {E1 ∪ · · · ∪ ET ∪ N \ E}, where E is the set
of all semi-equivalent classes. That is, taking the clusters of dependent alternatives
as new alternatives, a total order arises which can be used to assess the decision
problem and identify initial solutions together with their associated attitudes.

Therefore, the existence of semi-equivalence classes highlights the complexity of
assigning a weak or total order on the initial set of alternatives N . In fact, alternatives
may hold a conflicting dependency between them, making it impossible to establish
a ranking unless a specific rank-construction procedure is applied.

Following the initial proposal of [6], alternatives can be ranked according to their
relevance. In this way, alternatives are scored (and accordingly ranked) with respect
to the number and the importance of the alternatives that they outrank. That is,
∀a ∈ N , the relevance of a is given by,

σ(a) = sa + α
∑

∀b∈Sa
sb, (16)

where Sa is the set of alternatives that are outranked by a, sa = |Sa|, andα ∈ [0, 1] is a
parameter that can be calibrated for minimizing the number of (tied) rank-equivalent
alternatives. Thus, the optimal value for α obtains a weak order that is as close as
possible to a total order on N .

In summary, the whole procedure consists in taking the attitudes and criteria
weights for every DM e ∈ D, and for every attitude and set of weights, compute an
(outranking semi-transitive) order on N , resulting from theWOD evaluation of data.
Then, a total order can be identified on the new set of alternatives N ′, or a preference
order can be learnt by means of (16), under an optimal value of α. In consequence,
for all the given combinations of decision attitudes and criteria weights, the system
returns a total order on the new set of alternatives N ′, together with a (weak or total)
preference order on the initial set of alternatives N .

4.2 Attitude-Based Decision Support

Based on the outcome of the extended-WOD procedure, decision support can be
offered on the different attitudes and the amount of consensus existing on the deci-
sion problem. In this way, for all the combinations of attitudes and weights, a total
preference order ρ′ is identified for N ′, and a preference order ρ is identified for
N . Once these solutions are known, the system can offer support for resolving con-
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flict among them, aiming at reducing dissention. The goal of the system focuses
on interacting with DMs for maximizing consensus and arriving at a satisfactory
solution.

The decision process is guided towards reducing discrepancies among attitudes
and differentDMs, suggesting decisionswithmaximal consensus (see e.g. [7]).Given
multiple (weak or total) preference orders, dissention degrees are introduced here
to measure the amount of disagreement for all pairs of orders ρ1, ρ2, computing the
position of alternative a ∈ ρ1, ρ2, respectively given by θa1 and θa2 , and obtaining the
pairwise dissention degree D(ρ1, ρ2), such that,

D(ρ1, ρ2) =
∑

∀a∈N
|θa1 − θa2 |. (17)

The decision process aims at maximizing consensus, based on the previous cal-
culation of pairwise dissention degrees among all orders. Then, the system identifies
all pairs ρ1, ρ2 with minimal dissention, suggesting a common set of attitudes and
weights that increases the general consensus on a satisfactory solution. This process
is iterated by eliciting new attitudes and/or weights, where DMs can rectify their
input until no further consensus can be reached (i.e., until the amount of minimal
dissention remains unchanged). In consequence, decision attitudes guide the artic-
ulation of preferences through the interaction between the system and DMs, also
supporting a hypothetical negotiation process among different DMs.

5 Conclusion

The WOD outranking procedure has been examined and extended for considering
imprecise data together with decision attitudes and interval weights, understanding
and reconfiguring alternatives for building solutions and intelligent decision support.
In this way, a clustering methodology has been provided with the purpose of aiding
the decision process, grouping dependent alternatives and learning preference orders,
aiming at supporting the consensus between different attitudes and DMs.

For further research, experimental simulations and/or case studies should be car-
ried out, testing the extended WOD procedure for attitude-based clustering, prefer-
ence learning and decision support. From a theoretical perspective, it could be studied
how reciprocal preference structures entail equally reciprocal (risk) attitudes on the
affirmation of preference relations, exploring in detail the relation between prefer-
ences and attitudes. Even more, the linguistic representation of non-reciprocal (risk)
attitudes should be examined, modeling the negotiation process of DMs, focusing
on the strategical behavior of DMs and their possible characterization for optimal
decision making.
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