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Chapter 5
Dealing with Uncertainty in the Analysis 
and Reporting of MCDA

Catharina G.M. Groothuis-Oudshoorn, Henk Broekhuizen,  
and Janine van Til

Abstract  The aim of this chapter is to provide guidance regarding the various types 
and sources of uncertainty that influence the outcome of a multi-criteria decision 
analysis (MCDA) model. For each MCDA step, i.e., structuring, scoring, weighting, 
and aggregating, we will describe sources of uncertainty and point to methods to 
deal with these uncertainties. Also the use of sensitivity analyses and the relevance 
of qualifying and quantifying uncertainty in MCDA will be discussed. The consideration 
of uncertainty is a difficult but important balancing act between capturing the  
complex uncertainties of the decision and keeping the MCDA comprehensible for 
decision makers.

5.1  �Introduction

Multi-criteria decision analysis (MCDA) is no exact science. The output or outcome 
of any decision analysis depends on assumptions and decisions made while building 
the model and populating that model with criteria weights and performance scores. 
This is often referred to with the general term “uncertainty.” Uncertainty can be 
regarded as the lack of complete knowledge or certainty about what the model 
should look like and what the correct inputs are (French 1995). There are many 
types and sources of uncertainty that influence the outcome of the MCDA model in 
different ways, each of which deserves specific attention while interpreting the 
results of an MCDA.

This chapter first describes the different types of uncertainty. Second, it will give 
an overview of how the different types of uncertainty play a role in the stages of an 
MCDA (Chapter 4). Uncertainties in the structuring, scoring, weighting and aggregat-
ing stages are reported separately, by discussing sources of uncertainty, (appropriate) 
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reporting of uncertainty, and methods to study the influence of uncertainty on the 
outputs of the model. Finally, the use of sensitivity analyses and the relevance of 
qualifying and quantifying uncertainty in MCDA are discussed. Throughout the 
chapter we will point readers to further readings on the different topics.

Briggs and colleagues distinguished and defined four types of uncertainty in 
decision analytic modeling, namely, stochastic uncertainty, parameter uncertainty, 
heterogeneity, and structural uncertainty (Briggs et al. 2012). We use the example of 
a body weight scale to illustrate these different types of uncertainty. Stochastic 
uncertainty is the random, unexplained variability between different measurements 
of the weight of one person on a single weight scale of the same type and brand that 
occurs as a result of randomness, like the flipping of a coin or variation in the  
measurements of the weight of a single person if they are measured multiple times 
on the same device. Parameter uncertainty refers to the variability in the estimation 
of a parameter of interest as a result of different interpretation of the same measurement 
scale, for instance, the different readings of an analog weight scale by the same 
person on different days or by different persons (which cannot be attributed to  
actual differences in weight). The distinction between stochastic and parameter 
uncertainty is analogous to the difference between the standard deviation, a measure 
of variability of individuals in a population, and the standard error, i.e., a measure 
of precision of an estimated quantity. Like the standard error, parameter uncertainty 
can usually be reduced or eliminated by increasing the number of measurements. 
However, like the standard deviation, stochastic uncertainty cannot be eliminated 
but can only be better characterized, for instance, by describing the density  
of the random variation or the cumulative distribution. Heterogeneity is the  
between-person variability that can be explained by the persons’ characteristics, 
e.g., for weight estimates this is the difference in weight between persons as a result 
of their differences in body composition. Structural uncertainty refers to the notion 
that the output of any model is conditional on its structural assumptions with regard 
to the best way to reach the goal itself, for example whether it is preferred to  
measure weight on an analog or a digital weighting scale.

As described in the previous chapters, four stages can be identified in an MCDA: 
structuring, i.e., establishing the decision context and building the model,  
weighting, scoring, and aggregating (recommendation and sensitivity analysis)  
(see Fig. 5.1). In each stage of an MCDA, the different types of uncertainty can be 
identified.

5.1.1  �Problem Structuring

MCDA is mostly used in a group decision-making setting. Belton and Pictet  
distinguish three types of group decision-making models that can be employed  
during meetings in which judgments are elicited from decision makers: sharing, 
aggregating, and the comparing of judgments (Belton and Pictet 1997). In sharing 
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of judgments, decision makers act as one decision maker for the purposes of the 
MCDA model. This implies that, even though initially there may be disagreement in 
the group about the judgments given, one value for each weight and performance 
score has to be agreed upon by the group at each stage, and only that judgment is 
used in the analysis. In contrast, in aggregating judgments, the individual judgments 
of each decision maker are retained throughout the decision-making process, and 
they are aggregated over decision makers in the final outcome, for example, by  
taking the mean of all individual judgments. In comparing judgments, the weights 
and performance scores of the decision makers are again retained throughout the 
decision analysis, and the individual judgments are actively compared during the 
final discussion to obtain insight into differences in opinion that may exist in 
between group members.

A similar but slightly different distinction in the way to handle differences in 
judgments is that between statistical aggregation and behavioral aggregation of 
judgments. Statistical aggregation is similar to Belton and Pictet’s definition of 
aggregating: the group’s individual judgments are combined into a mean judgment 
with a measure of variance to capture the differences between the decision makers. 
Behavioral aggregation is similar to Belton and Pictet’s sharing of judgments: the 
group’s single judgment is arrived at through a structured group process where the 
group can “share their knowledge and allow persuasive arguments to change their 
views” and therefore to revise their judgments (Phillips 1999).
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Fig. 5.1  Overview of the value-based MCDA decision-making process (left) and a simple numeric 
example (right)
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The decision on which group decision model to use is a form of structural  
uncertainty, and moreover it influences the extent to which other types of  
uncertainty can be made explicit in later phases of the analysis. For instance, if at 
the first stage it is decided to use a sharing model where the weights and scores are 
set to single numbers despite possibly different judgments, the uncertainty around 
mean weight estimates (parameter uncertainty) and any differences between  
decisions makers (heterogeneity) cannot be studied. To clearly illustrate uncertainty 
in this chapter, we will use the statistical aggregating approach. We will illustrate 
the different stages of MCDA and the sources of uncertainty with a simplified case 
of a group decision in the medical context throughout this chapter (Text Box 5.1).

5.1.2  �Uncertainty in Problem Structuring

The choice of criteria in an MCDA is a source of structural uncertainty. Criteria 
have to reflect the different points of view of the actors in the decision and enable 
comparisons of between the alternatives (Bouyssou 1990). To reduce structural 
uncertainty about whether all relevant criteria are included in the analysis, it is 
advised to combine the top-down and bottom-up approach to developing a set of 
criteria. Top-down approaches are where actors first agree on the relevance of  
particular consequences and then come up with examples of those often result in 
hierarchical value trees. Alternatively, bottom-up approaches often start with drawing 
up extensive lists of criteria from different sets, which can later be structured into 
hierarchies if desired. In the problem structuring stage, the value tree has to be 
determined and the final set of criteria has to be determined. Structural uncertainty 
about the shape of the value tree and the number and type of criteria to include can 
be made explicit by making detailed notes of all decisions made in this step and by 
including as many actors as needed to come up with a broadly supported value tree.

The goal of problem structuring is to come up with a clear, logical, and shared 
point of view of what decision criteria and decision structure best reflect the decision 
at hand and help the decision makers to achieve their objective. The final list of 
criteria should be as simple as possible, yet capture the complexity of the decision. 
There are no guidelines on what is the optimal number of criteria and/or decision 
structure. In some cases the type of MCDA or the cognitive limitations of the  
stakeholders put a limit on the number of criteria or favor a certain value tree  
structure. When in doubt about including a criterion, it is always wise to include it 
in the analysis, as some MCDA methods allow a criterion to be dropped in a later 

Text Box 5.1: Case Description
Six urologists within a private practice have a discussion on reducing 
unwanted practice variation in the choice of the first-line treatment for stage I 
prostate cancer patients in their practice. At present, they prescribe four  
alternative types of treatment: active surveillance, radical prostatectomy, 
external beam radiation therapy, and brachytherapy.
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stage. The alternative of adding a criterion in a later stage is much more bothersome. 
Problem structuring is a skill that is acquired through experience. Flow charts,  
fish-bone diagrams, pro/cons lists, and quantitative techniques, such as the nominal 
group technique, can help groups come up with an adequate set of criteria and an 
adequate problem structure (Taner et al. 2007). However, it is known that the choice 
of criteria, MCDA method, and weight elicitation influences the outcome of the 
model. Besides extensive argumentation and good documentation of the way in 
which the decision problem was reflected in the choice of criteria, shape of the value 
tree, and choice of the MCDA method, the only way to explicitly study  
structural uncertainty is by testing the influence of the different options (i.e., different 
criteria sets, value trees, and MCDA techniques) on the outcome of the analysis. 
There are multiple examples of such tests in literature (van Til et al. 2014; IJzerman 
et al. 2012a, b).

Text Box 5.2: MCDA Model and Clinical Evidence
In the example, there are many criteria that potentially influence the choice of 
treatment in prostate cancer. The effectiveness of the treatment in prolonging 
life after diagnosis; the side effects of treatment, such as bowel problems, 
bladder problems, erection problems, and tiredness; and the process  
characteristics of treatment such as costs, duration, and frequency of follow-up 
needed all could influence treatment preference. For illustrative purposes, we 
limit the example to the four criteria mentioned in Table 5.1 and choose a 
simple multi-attribute rating technique (SMART) to demonstrate the different 
types of uncertainty in weighting, scoring, and sensitivity analysis.

SMART is a simple value-based MCDA method based on a linear additive 

value function. In our example, the model is V w xi
k

k ik=
=
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, where Vi is the 

overall value of treatment i, wk is the weight of the kth criterion as weighted 
using swing weighting, and xik is the performance of treatment i on k. The 
hypothetical clinical evidence for the example is given in Table 5.1.

Table 5.1  Bowel problems, incontinence, and erectile dysfunction as measured as 
probabilities of the event occuring in five years after treatment

Active 
surveillance

Surgical 
removal

External beam 
radiation therapy Brachytherapy

Sample size 1000 800 200 800
Survival (years) 10 [9.4–10.6] 15 [14.0–16.1] 12 [10.3–13.7] 12 [11.0–13.1]
Bowel problems 0 % 0 % 15 % 0 %
Incontinence 0 % 10 % 1 % 0.5 %
Erectile 
dysfunction

5 % 75 % 45 % 24 %

Based on Cooperberg et al. (2012), Hayes et al. (2013)
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5.2  �Uncertainty in Scoring

As described in Chapter 4, during the scoring stage either the available clinical  
evidence or expert judgment is used to judge the performance of the alternatives 
on the criteria, by transforming clinical performance (which may be measured on 
a variety of scales) to a common value scale. Both the clinical evidence and the 
expert judgments are possible sources of parameter and stochastic uncertainty, as 
well as heterogeneity (Durbach and Stewart 2012).

5.2.1  �Performance Estimates

Preferably, performance of the alternatives on the different criteria is based on  
clinical data (including patient registries, cost databases, etc.). In our example, the 
average survival for the four treatments could be drawn from scientific literature. 
When clinical evidence is used as input in an MCDA model, often only the point 
estimates are used. However, the parameter and stochastic uncertainty surrounding 
these estimates of performance measurements can be used to explicitly model 
uncertainty in the MCDA.  Parameter uncertainty in the performance estimates 
refers to the variability in the estimation of the outcome (for instance survival) as a 
result of the sampling (error). The standard errors or, equivalently, the confidence 
bounds of the point estimates obtained from clinical trial data can be used to represent 
the extent of the parameter uncertainty. Stochastic uncertainty, i.e., the unexplained 
variability in the clinical evidence, can be made visible by presenting the standard 
deviation or the range of the outcomes in the patient sample.

To demonstrate any heterogeneity in the clinical evidence in the model, one can 
calculate averages and standard deviations of outcome for different subgroups of 
patients. When clinical data is lacking, the performance estimates have to be based 
on expert judgments. Different expert elicitation techniques are available to do so 
(O’Hagan et al. 2006; Bojke et al. 2010; Bojke and Soares 2014). This introduces 
structural uncertainty to the model due to the differences in techniques. If clinical 
judgments are to replace clinical evidence, rather than just asking for point  
estimates of performance, experts should be asked to give distributions and/or  
confidence bounds for their estimates, if possible linked to patient characteristics. 
This enables analysts to take parameter uncertainty and heterogeneity into account.

5.2.2  �From Performance to Value

In valuing performance, the performance of the alternatives on the natural scale 
(e.g., survival in years) is transformed to a score which represents the value of that 
performance on a scale ranging from zero (no value) to one (maximum value). One 
can determine the relative value of the performance estimates for the alternatives, or 
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one can map the performance to estimate value of all intermediate performances with 
the use of partial value functions. This can either be done “locally,” meaning that the 
best and worst performance judgments of the alternatives on the criteria (as identified 
by experts) are used as the upper and lower bounds of the value function, or “globally,” 
meaning upper and lower bounds are based on estimates of worst and best possible 
outcomes, irrespective of the performance of the included alternatives. For example, 
although a diagnostic test with sensitivity of 100 % is highly unlikely in clinical  
practice, 100 % sensitivity can be used as a theoretical best possible outcome.

One source of structural uncertainty in the valuation stage is the shape of the 
value function. Most commonly, a linear function is assumed (Fig. 5.2a). This is a 
simple function that linearly scales all performance values between the worst level 
W (partial value of zero) and the best level B (partial partial value of one):
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In such a linear value function, it is assumed that an increase in performance 
results in an equal increase in value independently from where on the performance 
scale this increase occurs. So for survival, it would mean that the value of increasing 
survival from 0 to 5 years is the same as the value of increasing the survival from 15 
to 20 years. Confidence bounds for the value of performances can be obtained by 
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Fig. 5.2  (a) a partial value function where function scales linearly with increased survival. (b) a 
partial value function where there are diminishing returns with respect to survival, i.e. an increase 
from 0 to 5 years of survival is considered more valuable than an increase from 5 to 10 years of 
survival. (c) a partial function with a threshold. Here, all increases in survival less than 10 years are 
not considered valuable, but increases in survival of more than 10 years are considered valuable. (d) 
S-shaped partial value function. This can be seen as a smoothed version of the threshold function
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applying the partial value function on the confidence bounds of the performances 
(see Table 5.2 for the example).

However, many other forms of the value function exist. For example, there can 
be diminishing returns to prolonging life, and for some people, living after a certain 
age might decrease the incremental value of this outcome (Fig.  5.2b). For other 
outcomes, a value function with a threshold that may vary between decision makers 
may be more appropriate where performance (outcome) switches from no value to 
maximum value (Fig. 5.2c), or there can be a combination of a linear function and 
diminishing returns: the S-shaped value function (Fig. 5.2d). It is common to agree 
upon the shape of the functional form on a group level.

If one wants to deviate from the linear function, additional inputs are needed 
from decision makers to determine the particular shape of the value function. For 
example, in the bisection method, the decision maker is asked to define the point on 
the attribute scale which is halfway in value terms between the two endpoints. From 
this a two-piece linear value function can be constructed (Belton and Stewart 2002). 
This process can be repeated multiple times until the decision makers are indifferent 
between further bisections. In MACBETH, a value function for a particular  
criterion is constructed from the pairwise comparisons of the performance of  
alternatives on that criterion using linear programming (Costa et al. 2012).

As value judgments may differ between decision makers, the final construction of 
a value function can consequently be based on averages of these judgments or based 
on another central measure (median, mode). By calculating a standard error and 
confidence intervals along with the average value, a measure for parameter  
uncertainty can be obtained. Stochastic uncertainty in the value judgments can be 
quantified by calculating a standard deviation of the value judgments.

Heterogeneity refers to possible differences in the value function or value of 
outcomes between different groups of decision makers that may be explained with 
their backgrounds. For instance, thresholds for survival might be different in  
urologists that mostly see older patients, compared to urologists that see relatively 
younger patients in their daily work. By constructing value functions for the  
different groups, one can see whether heterogeneity is present.

Summarizing, all types of uncertainty influence the values from the scoring step. 
Uncertainty (parameter, stochastic, or heterogeneity) in the evidence implies also 
uncertainty in the value function. The uncertainty in evidence and the uncertainty 
due to differences in value judgments can be quantified by calculating standard 
errors, standard deviations, or confidence bounds.

5.3  �Uncertainty in Weighting

All inputs in the weighting stage are given by stakeholders (decision makers, 
patients, physicians, general public, etc.), which are therefore the main source of 
uncertainty in this stage. In the weights there can be structural uncertainty,  
parameter uncertainty, stochastic uncertainty, and heterogeneity.
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Parameter uncertainty in weights is the variability in the estimation of a parameter 
of interest as a result of sampling. Although their underlying value may be the same, 
different decision makers will interpret a weighting scale differently and thus will 
come up with different weights. This can be reflected by calculating the mean 
weight along with the variance measure for each criterion over a group of decision 
makers. The parameter uncertainty is a function of the sample size and the underlying 
stochastic uncertainty. The larger the sample size n, the smaller the parameter  
uncertainty will be as it is a function of n with 1/ n .

Individual weights are usually combined into an average weight over decision 
makers. The most commonly used method to combine individual weights is the 
arithmetic mean. However, in the analytic hierarchy process, the geometric mean is 
used to combine the weight estimates of different decision makers. The decision to 
use either the arithmetic mean or the geometric mean is important as it affects what 
method is appropriate for calculating the standard error around the mean weight.

Heterogeneity is the between-person variability that may be explained by the  
characteristics of the decision maker. For instance, erectile dysfunction as a result of 
treatment of prostate cancer may (or may not) be more important to a 40-year-old 
man compared to an 80-year-old man as the latter tends to have a less active sex life. 
It is important to have estimates of heterogeneity linked to background characteristics 
in MCDA, because the outcome of the analysis might be different for different 
(groups of) persons.

Stochastic uncertainty is the random, unexplained variability between different 
measurements of the weight estimates of one person. In most MCDA analyses,  
the magnitude of stochastic within-subject variability is not known as weight  
judgments are performed only once.

Table 5.2  Partial values in the urologists’ case, with 95 % confidence intervals for the partial 
values for survival based on the confidence bounds reported in the clinical trial reports

Active 
surveillance Surgical removal

External beam 
radiation therapy Brachytherapy

Average survival 0.50 [0.47–0.53] 0.75 [0.70–0.80] 0.6 [0.52–0.68] 0.6 [0.55–0.65]
Bowel problems 1 1 0.85 1
Incontinence 1 0.90 0.99 0.5
Erectile 
dysfunction

0.95 0.59 0.25 0.29

For example, the 95 % confidence interval for the average survival of patients under active  
surveillance is 9.4–10.6 years (Table 5.1), implying a confidence interval on the partial value from 
0.47 to 0.53

Text Box 5.3: Calculating Partial Values
Assuming a linear value function in the urologists’ case, the point estimates 
with confidence bounds of performance are transformed with Eq. 5.1 to the 
value estimates with confidence bounds (Table 5.2)
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Heterogeneity is similar to stochastic uncertainty in that both cannot be reduced. 
The difference is that differences in weights as a result of heterogeneity of the  
subject need to be understood rather than minimized, while large random variability 
in weights is undesirable.

The choice of the weight elicitation technique induces structural uncertainty, as 
the use of different techniques can result in differences in weight estimates of the 
criteria, or may imply different (methodological) meanings of weights (Choo et al. 
1999). Knowing that the exact weights vary based on the weight elicitation method 
stresses the need for sensitivity analysis on the final results. Previous research has 
shown that while exact weights might differ based on the weight elicitation method, 
the rank order of criteria is mostly maintained. In a few studies, it was shown that 
the differences in weights as a result of technique have a minor impact on the overall 
value of the alternatives. However, testing the range in which weights can vary 
before the rank order of alternatives changes (and to judge whether this extent of 
change is likely to happen as a result of the weight elicitation method) should be an 
important aim of sensitivity analysis (IJzerman et al. 2012a; van Til et al. 2014). To 
reduce structural uncertainty due to mismatches between the meaning of weights 
according to the MCDA model definitions and the decision makers’ understanding 
of the weights’ meanings, it is important to clearly explain the MCDA (elicitation) 
method to the decision makers.

Summarizing, all types of uncertainty influence the estimates of the weights. 
Parameter uncertainty can be made visible by presenting not only mean weights but 
also confidence intervals. Stochastic uncertainty and related structural uncertainty 
cannot be made explicit unless decision makers are asked to repeat their weight 
estimations with the same weight elicitation technique (stochastic uncertainty) or 
are asked to perform weight estimations with different weight elicitation techniques. 
Heterogeneity can be made visible by knowing and categorizing the decision  
makers and calculating mean weights (with confidence bounds) for the different 
subgroups.

5.4  �Aggregation Methods

After the scoring and weighting steps are completed, performance values and  
criteria weights are (statistically) aggregated in an overall value. The most  
commonly used aggregation method is additive weighting, where the partial values 
on the different criteria are multiplied by their criteria weights and then summed up 
per alternative (see Chapter 4). The simplicity of additive weighting is attractive 
because it is easily understood by decision makers. From a theoretical perspective, 
other statistical aggregation methods might be preferred (see, e.g., Zhou and Ang 
2009; Zanakis et al. 1998).

The choice of aggregation method is a form of structural uncertainty, since it can 
alter the model outcomes (Zhou and Ang 2009) and their interpretation. Moreover, 
because some approaches, such as the analytic hierarchy process, place very  
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specific requirements on the performance and weight elicitation techniques, the 
choice of aggregation method is a decision that has to be made early in the MCDA 
(Choo et al. 1999; Liberatore and Nydick 2008).

Another type of structural uncertainty is the decision at which point to aggregate 
the results of different decision makers in the weighting and performance stage.  
In essence, there are two ways to do so. One can average individual performance 
values and individual criteria weights (with measures of variance) and use an  
aggregation approach (for instance, an additive model) to calculate one overall 
value (with measures of variance). Alternatively, one can calculate an overall value 
for each individual and average the multiple estimations of overall value (with  
measures of variance). As aggregation is based on the product of two values, both 
approaches result in different average overall values and different measures of  
variance. Moreover, in the former case, providing a measure of parameter uncertainty 
by calculating a standard error of the overall value is difficult as the overall value is 
a sum of products of averages. One way to calculate the variance (and thus the  
standard deviation) of a product is the delta method (Rice 2006).

Finally, irrespective of the exact statistical aggregation method used, the output 
of an MCDA model is a point estimate of the overall value of the different  
alternatives. The impact of uncertainties on the aggregated overall value can be 
made explicit by calculating standard errors, confidence intervals, or ranges of the 
overall value of a treatment based on the standard errors (for parameter uncertainty) 
or standard deviations (for stochastic uncertainty) in the performances and weights. 
By reporting not only the point estimate of the overall value of a treatment but also 
its standard error or confidence interval, the parameter or stochastic uncertainty in 
the overall value is made visible.

5.5  �Sensitivity Analysis

The outcome of a value-based MCDA method is an overall value for each alternative. 
However, without information on the uncertainty surrounding the weight estimates 
and performance values, the stability of the overall value is not known. Therefore, 
the confidence with which the results of the MCDA can be interpreted is then also 
not known. If one or multiple types of uncertainty are taken into account, this will 
result in a distribution of values around the point estimates. The shape and spread of 
the value distribution provide information about the stability of the conclusions that 
can be drawn from the analysis.

Sensitivity analysis is the study of the impact of uncertainty throughout the 
decision-making process on its outcomes. Structural uncertainty occurs as a result 
of the choices made in problem structuring with regard to the shape of the value 
tree, the type and number of criteria included in the analysis, and the MCDA 
method chosen to perform the analysis (including the weight elicitation and value 
performance method). The impact of structural uncertainty on the outcome can 
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only be made explicit by performing MCDA for the same problem with different 
value trees, criteria, and MCDA methods. This type of sensitivity analysis is a 
time-consuming process which is usually not performed.

A more common type of sensitivity analysis is studying the impact of parameter 
uncertainty in weights and performances or heterogeneity on the outcome(s) of an 
MCDA. When assessing the impact of uncertainty, one can do so throughout the 
whole MCDA process, identifying sources and measuring the amount of uncertainty at 
each stage separately and then studying its impact on the outcome(s) of the MCDA 
process. Alternatively, one can assess the impact of uncertainty on the overall value 
after the criteria weights and performance values are aggregated. Both are  
commonly termed “sensitivity analysis” in literature, and the latter is also sometimes 
termed “robustness analysis” or “post hoc sensitivity analysis.” Although these two 
concepts are conceptually different, similar methods can be used during their  
application to demonstrate the uncertainty around the point estimates. In the next 
paragraphs, we will describe two commonly used methods for sensitivity analysis, 
namely, deterministic and probabilistic sensitivity analysis, and shortly touch upon 
some alternative methods.

In an earlier literature review in the healthcare context, 19 studies were identified 
where uncertainty was explicitly taken into account in the MCDA analysis 
(Broekhuizen et al. 2015a). In nine studies, the deterministic sensitivity approach 
was used, four studies used a probabilistic approach, and in other four studies  
(concerning environmental health issues), fuzzy set theory was applied. It seemed 
that in most MCDA-supported decisions, a deterministic sensitivity analysis was 
used because of its ease of use and because the increased insight in the stability of 
results was deemed sufficient. However, when the uncertainty in multiple model 
parameters needs to be considered simultaneously, approaches that use probability 
distributions should be applied.

Deterministic sensitivity analysis is the most straightforward method for (post 
hoc) sensitivity analysis. In deterministic sensitivity analysis, one parameter, that  
is a criterion weight or performance score, is varied at a time, and the impact of 
varying this parameter on the rank order of alternatives is observed. If the induced 
variation does not change the rank order of alternatives, i.e., the preference of one 
alternative over the other is preserved, the decision seems robust. Alternatively, one 
can assess the extent to which a parameter can be increased or decreased before the 
rank order of alternatives changes. The range in which the particular parameter is 
likely to change can be based on expert’ judgments or the variation in available 
clinical data.

Recall that the urologists in the example took the confidence bounds for the  
average survival across treatments options from the literature. We already demonstrated 
in an earlier section that these can be transformed to confidence bounds on partial 
values. However, it might also be insightful to consider the impact of the range of 
partial values on the overall value of treatments. This can be done by inserting  
partial values for the lower and upper confidence bounds in the overall value  
function. This results in a confidence interval of the overall value in which the 
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uncertainty depends only on the uncertainty present in the estimates for average 
survival (Fig. 5.3).

This deterministic sensitivity analysis reveals that there is overlap between  
the confidence bounds of overall values and that this depends (at least partly) on 
parameter uncertainty in the survival estimates. Furthermore, it seems that changing 
the survival estimates within confidence bounds can lead to rank reversals of  
alternatives. For example, it is possible that external beam radiation therapy has a 
higher overall value than surgical removal. The question remains, however, how 
likely it is that such a rank reversal between external beam radiation therapy and 
surgical removal occurs.

Deterministic sensitivity analysis can also be used to assess the impact of  
(uncertainty in the) criterion weights on the alternatives’ overall value by manually 
varying the criterion weights one by one and observing how the overall values of the 
alternatives change. For example, if we increase the weight of survival and thereby 
decrease the weights of the other criteria (because weights add up to one), alternatives 
that have longer survival will increase in overall value compared to alternatives with 
a relatively shorter survival. One can vary each criterion weight from its lowest  
possible value to its highest possible value and observe the effect on overall value of 
the alternatives (Fig.  5.4). Alternatively, and more effectively, one can vary the 
weights within the confidence bounds resulting from parameter uncertainty and  
heterogeneity in preferences within the group and see whether this variation would 
change the outcome of the model.

Another particular deterministic sensitivity graph, popular in health-economic 
assessments, is the tornado graph. A tornado graph shows the impact on model  
outcomes of arbitrary fixed changes (e.g., −10 % and +10 %) in single model parameters. 
It is especially useful for determining which model parameter has the greatest  
influence on the outcome (Briggs et al. 2012).

The results of the analysis as presented in Fig. 5.4 will provide the urologist 
with more information on the robustness of their results. Active surveillance has 
the highest value when the mean criteria weights of the group of urologists are 
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Fig. 5.3  Influence of parameter uncertainty in the survival estimates for the various treatments on 
their overall value in the urologists’ example. Note the overlapping confidence bounds that indi-
cate uncertainty regarding what treatment is more valuable
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used. However, intersections between lines imply rank reversals between treatments 
based on changes in criteria weights. If, for example, the weight put on survival 
would increase above 58 %, surgical removal would have the highest value, making 
it the preferred treatment. However, the threshold, i.e., the weight for survival 
where a rank reversal between surgical removal and active surveillance occurs, is 
8 % removed from the initial point estimate, and this falls within the variation of 
weights given by the individual urologists but not within the confidence interval of 
the average weight. The urologists must determine whether such an increase in 
weight is likely. For now, based on the deterministic sensitivity analysis, it seems 
that rank reversals are unlikely and that the preference for active surveillance is 
robust.

Although it is easy to implement, deterministic sensitivity analysis has two 
important drawbacks. First of all, only one model parameter (weight or performance 
score) is varied at a time. This is unrealistic because it assumes uncertainty in only 
one parameter, while actually multiple (or all) model parameters can be uncertain. 
Second, manually changing of model parameters, such as presented above or in a 
tornado graph, does not take into account the actual uncertainty in the model 
parameters. For example, if the observed range of a weight is between 40 % and 
60 %, it does not make sense to investigate rank reversals that occur when the 
weight is 80 %. This is a relevant issue for the urologists, because their deterministic 
sensitivity analysis shows them that rank reversals occur at particular combinations 
of survival estimates, but they cannot quantify the likelihood with which this 
might happen.

Instead of a deterministic sensitivity analysis, a probabilistic approach could be 
used to gain insight into the impact of the combination in uncertainty in the clinical 
evidence, scores, and/or weights on the overall value of the alternatives. For  
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Fig. 5.4  Each of these three graphs shows how the overall value of treatments would vary, had the 
urologists chosen different (i.e., higher or lower) weights for each of the criteria. This overall value 
is on the vertical axes, the weights are on the horizontal axes, and the vertical black lines denote 
the point estimates of the weights. Red active surveillance, Green surgical removal, Light blue 
external beam radiation therapy, Purple brachytherapy
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example, in a study by Wen et al., two different methods (a delta-method approach 
and a Monte Carlo approach) for constructing a confidence interval of the overall 
benefit-risk score from an MCDA model were compared (Wen et al. 2014). The 
objective of the study was to provide suggestions for incorporating the uncertainty 
in performance data based on clinical evidence into the MCDA model when  
evaluating the overall benefit-risk profiles of different treatment options. In a study 
by Broekhuizen et al., the impact of uncertainty in the performance estimates based 
on clinical evidence was studied along with the uncertainty in criteria weights as 
given by patients (Broekhuizen et al. 2015b). In stochastic multi-criteria acceptability 
analysis (SMAA), uncertainties in preference data and clinical trial data are  
combined, and a non-informative (uniform) distribution based on the rank order of 
criteria is used for the weight distributions (Tervonen et al. 2011; van Valkenhoef 
et al. 2012). Finally, Caster et al. use qualitative data on the rank order of criteria and 
combine this with probability distributions for clinical data (Caster et al. 2012).

In a probabilistic approach, uncertainty in model parameters is represented with 
probability distributions. There are many different types of probability distributions. 
When data is available, the empirical distribution can be used or assumptions with 
regard to a parametric distribution must be made. A comprehensive review of  
methods for eliciting probability distributions from (groups of) experts can be found 
in (O’Hagan et al. 2006).

After selecting or eliciting a probability distribution that reflects the uncertainty 
in each model parameter, one can assess how the uncertainty in all these parameters 
translates to uncertainty in the overall value of the alternatives, for example, by 
means of a Monte Carlo simulation approach. This approach consists of sampling 
from the distributions of one or multiple model parameters simultaneously and then 
calculating the overall value of the alternatives for each of these (combinations of) 
sampled estimates. By repeating this process a large number of times (e.g., 1000 or 
more), it can give decision makers an idea about the likely distribution of overall 
value of each included alternative (Broekhuizen et al. 2015b).

In our prostate cancer example, a normal probability distribution is selected for 
survival because of the large sample sizes in the clinical trials. After parametrizing 
this distribution based on standard errors reported in the clinical paper and running 
the Monte Carlo simulations, the distributions for the overall values as presented in 
Fig. 5.5 are obtained.

The amount of overlap between these distributions is an indicator of the  
likelihood that the treatments are in the correct preference order, while the width of 
the curves is an indicator of how likely the point estimates of the values are. If there 
is much overlap between the value distributions of two treatments, and the value 
distributions are “wide” (such as with the light-blue line), there is more uncertainty 
about which treatment has the highest value. This uncertainty can be quantified by 
taking the percentage of Monte Carlo samples in which a particular treatment has 
the highest value. This is called the first ranking probability. One minus the first 
ranking probability is a surrogate of decision uncertainty as it estimates the  
probability that the alternative with the highest mean value does not have the highest 
rank (Table 5.3).
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Other approaches apart from deterministic and probabilistic approaches to  
incorporate uncertainty analysis in MCDA have been identified, namely, Bayesian 
frameworks, fuzzy set theory, and grey theory (Broekhuizen et al. 2015a).

Within the Bayesian framework, a distinction can be made between approaches 
based on Bayesian networks (Fenton and Neil 2001) and approaches based on 
Dempster-Shafer theory (Beynon et al. 2000). Fuzzy set theory aims to capture the 
ambiguity present in human language and judgment and is often combined with 
the AHP method of MCDA. Comparable to fuzzy set theory are approaches based 
on grey theory (Ju-Long 1982). With these approaches one can address all types of 
uncertainty except for structural uncertainty. The applicability of these methods for 
addressing uncertainty is sometimes strictly dependent on the specific form of 
MCDA used. For example, SMAA is a strictly probabilistic method (Lahdelma 
and Hokkanen 1998). Other MCDA methods like AHP, PROMETHEE, TOPSIS, 
and ELECTRE can be combined with (almost) all uncertainty approaches.
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Fig. 5.5  Distribution of overall value of the alternatives in the urologists’ case, when normal  
distributions based on clinical literature are assigned to the “survival” performance parameter. 
Estimated using a gaussian kernel density

Table 5.3  Ranking probabilities in the urologists’ case, when the uncertainty in the survival 
estimates is represented with normal distributions (see Fig. 5.5) and after running 5000 Monte 
Carlo simulations

Probability of…
Active 
surveillance

Surgical 
removal

External beam 
radiation therapy Brachytherapy

… being ranked 1st 97 % 1 % 2 % –
… being ranked 2nd 3 % 68 % 29 % –
… being ranked 3rd – 31 % 64 % 5 %
… being ranked 4th – – 5 % 95 %

Please note that only uncertainty in survival is taken into account. When more parameters would 
be assigned probability distributions to reflect uncertainty, the probability of rank reversals may 
increase
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5.6  �Summary and Conclusions

Uncertainty is introduced into an MCDA at the following stages: the problem  
structuring stage, the performance valuation stage, and the criteria weighting stage. 
Structural uncertainty is introduced as a result of methodological choices such as 
the MCDA method, structuring of the value tree, type of weight and performance 
elicitation techniques used, and aggregation method. Parameter uncertainty occurs 
because of sampling error. Stochastic uncertainty is the uncertainty as a result of 
random, unexplained variation and can be made visible by presenting, e.g.,  
histograms/densities for the weights and performance values. Heterogeneity is the 
explained variation as a result of different background characteristics and values of 
the respondents. Often it is not possible or even desirable (in the case of heterogeneity) 
to reduce uncertainty, but the aim of this chapter was to explain how uncertainty can 
be made explicit throughout the decision process and to study its influence on the 
output of the MCDA.

We emphasized how the quantitative outcomes of the model depend on the way 
in which weight and performances are aggregated, while the interpretation of the 
output of the model depends also on the way in which the output is presented to the 
decision maker.

Through sensitivity analysis, the impact of uncertainty on the outcome of the 
decision analysis can be made explicit. We have demonstrated how different types 
of uncertainty in the inputs of the MCDA model influence its outputs and how 
uncertainty can be quantified with different measures of variability (standard  
deviation, standard error, range) or can be graphically displayed. Both deterministic 
sensitivity analysis and probabilistic sensitivity analysis were explained.

To fully analyze the impact of uncertainty in MCDA, additional efforts may be 
required from the decision makers in terms of additional model inputs (measures of 
variation, probability distributions, ranges of weights or scores) and from decision 
analyst in terms of analytic skills. A balance must be struck between increasing 
confidence of the decision makers in the output of the MCDA by demonstrating the 
impact of uncertainty and not losing confidence of decision makers in the MCDA 
itself by making the analyses too complicated.
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