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Abstract The methods of quantum probability theory are radically different from
standard probability as developed over the last 300 years. While the results of quan-
tum probability, such as expectation values, are the same as standard probability
theory, the methods used are strange, as they deal with operators and wave functions
and use strange rules of manipulation. We ask whether there are operators and wave
functions in standard probability theory. By generalizing a theorem of Khinchine on
characteristic functions, we show that indeed the strange probabilistic methods of
quantum mechanics follow from standard probability theory.
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1 Introduction

Quantum mechanics is the most successful theory ever devised, by far. It explains
everything that we know about matter, atoms, stars, the universe, chemistry, and
indeed all physical phenomena that it has been applied to. Moreover, quantum
mechanics predicts bizarre phenomena, such as vacuum fluctuations, that have been
experimentally observed.

Quantum mechanics is a probability theory. While the probabilistic “results”
of quantum mechanics are of the same nature as standard probability theory, for
example expectation values and probability densities, the method of calculation is
radically different from standard probability theory. Quantum mechanics uses wave
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functions, operators, and methods which are seemingly totally foreign to standard
probability theory.

There have been numerous attempts to formulate quantum mechanics as a
standard probability theory. It is fair to say that these attempts have not succeeded.
We reverse the question and ask: Since quantum mechanics is certainly the most
successful probability theory ever devised, we ask whether standard probability
theory has the concepts of wave functions and operators. We emphasize that we
are not trying to formulate quantum mechanics as a standard probability theory;
quite the contrary, we are trying to see if standard probability theory contains the
ideas and methods of quantum probability theory and if it could be formulated in
quantum mechanical language [2, 3, 8].

Notation Operators will be denoted by bold-face letters and the corresponding
random variables by lower case letters. When it is not obvious what random variable
the characteristic function and corresponding probability density are referring to, we
use the notation Ma.�/ and Pa.a/ where the subscript denotes the random variable.
All integrals go from �1 to 1 or the appropriate range of the variables. Also, it
is assumed that eigenfunctions are normalized to one for the discrete case and to a
delta function for the continuous case.

2 Characteristic Functions

For a probability density, P.x/, the characteristic function, M.�/; is the expectation
value of ei�x

M.�/ D hei�xi D
Z

ei�xP.x/ dx (1)

and from the characteristic function, one may obtain the probability density by
Fourier inversion,

P.x/ D 1

2�

Z
M.�/e�i�xd� (2)

The characteristic function is standard in probability theory for many reasons
[4, 7]. It is often easier to manipulate probabilistic results by using the characteristic
function compared to the probability density function itself. For example, the
moments, defined by

hxni D
Z

xnP.x/ dx (3)
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may be obtained from

hxni D 1

in
dn

d�n
M.�/

ˇ̌
ˇ̌
�D0

(4)

Since differentiation is easier then integration, Eq. (4) is often easier to use than
Eq. (3) if indeed we know M.�/: Furthermore the characteristic function is very
useful for obtaining probability densities for new variables [5].

The characteristic function is generally complex, but not every complex function
is a characteristic function since it has to be derivable from a positive density
function. What are necessary and sufficient conditions for a function M.�/ to be
a characteristic function? Khinchine solved this problem [6]. A function, M.�/,
is a characteristic function if and only if there exists a function, g.x/; so that the
characteristic function is expressed in the following form [6, 7]

M.�/ D
Z

g�.x/g.x C �/dx (5)

If there is such a function, it should be normalized to one, which insures that the
corresponding density will integrate to one. While this theorem is fundamental
in probability theory, it appears that the significance and properties of the g.x/
functions have not been extensively studied. We will argue that they are the
“wave functions” of quantum mechanics, and that the generalization of Khinchine’s
theorem that we present in Sect. 3 leads to the concept of operators in standard
probability theory. We first present our idea for the Khinchine theorem as originally
given, Eq. (5), before we give the general result in the next section.

Rewrite Khinchine’s theorem in the following way

M.�/ D
Z

g�.x/e� d
dx g.x/dx (6)

where in going from Eqs. (5)–(6) we have used the fact that e� d
dx is the translation

operator in that for any function f .x/ [10]

e� d
dx f .x/ Df .x C �/ (7)

We now insert i as indicated

M.�/ D
Z

g�.x/ei�. 1
i

d
dx /g.x/dx (8)

and write Eq. (6) as

M.�/ D
Z

g�.x/ei�p g.x/dx (9)
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where we have defined the operator, p; by

p D 1

i

d

dx
(10)

We now calculate the expectation value by way of Eq. (4). In anticipation of the
result we shall use the letter p for the random variables since it will turn out to be
momentum and the letter p is standard for momentum. In particular,

h pi D 1

i

d

d�
M.�/

ˇ̌
ˇ̌
�D0

(11)

D 1

i

d

d�

Z
g�.x/ei�pg.x/dx

ˇ̌
ˇ̌
�D0

(12)

D
Z

g�.x/

�
1

i

@

@�

�
ei�pg.x/dx

ˇ̌
ˇ̌
�D0

(13)

D
Z

g�.x/pei�pg.x/dx

ˇ̌
ˇ̌
�D0

(14)

or

h pi D
Z

g�.x/p g.x/dx D
Z

g�.x/

�
1

i

d

dx

�
g.x/dx (15)

This is precisely how one calculates the average momentum in quantum mechanics
when the system has the “wave function” g.x/ [1, 9]. Therefore we argue that for
this case (momentum) the g’s of the Khinchine theorem are the wave functions of
quantum mechanics. Note that the g’s are generally complex functions and that the
operator p is self-adjoint, as indeed they should be. The reason for self-adjointness
will be discussed in Sect. 3

The Probability Density What is the probability density that corresponds to the
characteristic function given by Eq. (5)? Again, we use p for the random variable,
which is an ordinary variable, and should not be confused with the operator p: Using
Eq. (2) we have

P. p/ D 1

2�

Z
M.�/e�i�pd� (16)

D 1

2�

“
g�.x/ g.x C �/e�i�pd�dx (17)

Making a change of variables

x0 D x C � dx0 D d� (18)



Quantum Operators and Wave Functions 137

we have

P. p/ D 1

2�

“
g�.x/ g.x0/e�i.x0�x/pdx0dx (19)

D 1

2�

�Z
g�.x/eixpdx

� �Z
g.x0/e�ix0pdx0

�
(20)

that is

P. p/ D 1

2�

ˇ̌
ˇ̌Z g.x/e�ixpdx

ˇ̌
ˇ̌2 (21)

But this is precisely the probability density of “momentum” in quantum mechanics
[1, 9].

Comment Notice that the random variable p is continuous, ranging from �1
to 1: That is indeed the case in quantum mechanics, and we say that momentum is
not quantized. How quantization for other physical quantities comes in will be clear
when we discuss general operators and general random variables in the next section.

3 Generalization of Khinchine’s Theorem

We now generalize Khinchine’s theorem to apply to arbitrary self adjoint operators.
Ma.�/ is a characteristic function if and only if for a self adjoint operator A there
exists the representation

Ma.�/ D
Z

g�.x/ei�Ag.x/dx (22)

We prove this in Appendix A, “Khinchine Theorem for Operators”. For the
expectation value we have, using Eq. (2), that

hai D 1

i

d

d�
Ma.�/

ˇ̌
ˇ̌
�D0

(23)

D 1

i

d

d�

Z
g�.x/ei�A g.x/dx

ˇ̌
ˇ̌
�D0

(24)

D
Z

g�.x/

�
1

i

@

@�

�
ei�A g.x/dx

ˇ̌
ˇ̌
�D0

(25)

D
Z

g�.x/Aei�A g.x/dx

ˇ̌
ˇ̌
�D0

(26)
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giving

hai D
Z

g�.x/A g.x/ dx (27)

This is precisely the standard manner of calculating expectation values in quantum
mechanics for a physical quantity associated with the self-adjoint operator A [1, 9].

3.1 Probability Density

We now discuss the probability density that corresponds to the characteristic
function given by Eq. (22). Substitute Eq. (22) into Eq. (2) to obtain

P.a/ D 1

2�

Z
Ma.�/e�i�ad D 1

2�

“
g�.x/ei�A g.x/e�i�adx d� (28)

We evaluate Eq. (28) in Appendix B, “Probability Density”. Here we state the result.
There are two cases: namely, if we have discrete or continuous random variables.
This follows naturally, as we show in the Appendix “Probability Density”. In short,
it is the spectrum of the operator A which determines whether the random variables
are discrete or continuous. Moreover the random variables are the eigenvalues of the
operator.

Continuous case If the spectrum of the operator has continuous eigenvalues we
write

Aua.x/ D aua.x/ (29)

where a and ua.x/ are the eigenvalues and corresponding eigenfunctions of the
operator A. The probability density as evaluated by way of Eq. (28) is given by

P.a/ D jc.a/j2 (30)

where

c.a/ D
Z

g.x/u�
a .x/dx (31)

Hence, the random variables are the a0s (the eigenvalues) and their range is the range
of the eigenvalues.

Discrete case If the spectrum of the operator is discrete, we write

Aun.x/ D anun.x/ (32)
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then the probability distribution is given by

P.a/ D
X
n

jcnj2ı.a � an/ (33)

where

cn D
Z

g.x/u�
n .x/dx (34)

Notice that the probability density is non-zero only when the random variable, a;

is one of the discrete eigenvalues. In this case we have quantization. We may write
Eq. (33) as

P.an/ D jcnj2 (35)

Discussion The probability densities derived above are called the Born rule. We
have derived them from the generalization of the Khinchine theorem, Eq. (22). Also,
we proved that the random variables are the eigenvalues of the operator A, which is
usually just assumed in quantum mechanics.

3.2 Two Ways of Calculating Expectation Values

We have shown, using Eq. (22) that one may calculate expectation values by

hai D
Z

g�.x/A g.x/ dx (36)

which is the standard quantum mechanical way. However in standard probability
theory we calculate expectation values by

hai D
X

(random variable) � (probability) (discrete case) (37)

for the discrete case, and by

hai D
Z

(random variable) � (probability) (continuous case) (38)

for the continuous case. Substituting Eqs. (30) and (35) we have

hai D
X

an

ˇ̌
ˇ̌
Z

g.x/u�
n .x/dx

ˇ̌
ˇ̌2 (discrete case) (39)

hai D
Z

a

ˇ̌
ˇ̌
Z

g.x/u�
a .x/dx

ˇ̌
ˇ̌2

da (continuous case) (40)
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It is well known in quantum mechanics that the two methods are the same, that is
that

Z
g�.x/A g.x/ dx D

X
an

ˇ̌
ˇ̌Z g.x/u�

n .x/dx

ˇ̌
ˇ̌2

(discrete case) (41)

Z
g�.x/A g.x/ dx D

Z
a

ˇ̌
ˇ̌Z g.x/u�

a .x/dx

ˇ̌
ˇ̌2 da (continuous case) (42)

In Appendix C, “Standard vs. Quantum Manner of Calculating Expectation Values”
we show the equivalence for the sake of readers that may not be familiar with the
result.

4 Conclusion

We summarize the main results. We have generalized Khinchine’s theorem for a
self-adjoint operator A by showing that a function, Ma.�/; defined by

Ma.�/ D
Z

g�.x/ei�A g.x/dx (43)

is a proper characteristic function. From Eq. (43) we have shown that the usual rules
of quantum probabilities follow. In particular we have shown that:

1. The expected value is

hai D
Z

g�.x/A g.x/ dx (44)

2. The random variables are the eigenvalues of the operator A.
3. If the eigenvalues, a, are continuous, then the probability density associated with

the characteristic function is

P.a/ D
ˇ̌
ˇ̌Z g.x/u�

a .x/dx

ˇ̌
ˇ̌2

(45)

where ua.x/ are the eigenfunctions.
4. If the eigenvalues, an, are discrete with corresponding eigenfunctions un.x/; the

probability density is given by

P.an/ D
ˇ̌
ˇ̌Z g.x/u�

n .x/dx

ˇ̌
ˇ̌2

(46)
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The above items are exactly how one obtains the random variables and probabil-
ities in quantum mechanics. We have derived them from the characteristic function
defined by Eq. (43).

Acknowledgements The author thanks Dr. J. Ben-Benjamin for reading the manuscript and for
making a number of suggestions.

Appendix A: Khinchine Theorem for Operators

We prove that Ma.�/ is a characteristic function corresponding to the self-adjoint
operator, A; if and only if, there exists the representation

Ma.�/ D
Z

g�.x/ei�A g.x/dx (47)

for some function g.x/: First, we show that Ma.�/ produces a proper probability
density. Substituting Eq. (47) into Eq. (2) the probability density is then

P.a/ D 1

2�

Z
M.�/e�i�ad� D 1

2�

“
g�.x/ei�A g.x/e�i�adx d� (48)

We first consider the continuous case. Since the operator is self-adjoint, the
solution to the eigenvalue problem

Au˛.x/ D ˛u˛.x/ (49)

produces real eigenvalues, ˛; and complete and orthogonal eigenfunctions, u˛.x/

Z
u�̨.x/uˇ.x/dx D ı.˛ � ˇ/ (50)

Z
u�̨.x/u˛.x0/d˛ D ı.x � x0/ (51)

Since the eigenfunctions are complete and orthogonal, we can expand any
function as

g.x/ D
Z

u˛.x/c.˛/d˛ (52)

and inversely

c.˛/ D
Z

u�̨.x/ g.x/dx (53)
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Substituting Eq. (52) into Eq. (48) we have

P.a/ D 1

2�

ZZZZ
u�̌ .x/c�.ˇ/ei�Au˛.x/c.˛/e�i�adxdˇd˛d� (54)

Using the fact that

ei�Au˛.x/ D ei�˛u˛.x/ (55)

we have

P.a/ D 1

2�

ZZZZ
u�̌ .x/c�.ˇ/ei�˛u˛.x/c.˛/e�i�adxdˇd˛d� (56)

D
“

F�.ˇ/ı.a � ˛/ı.˛ � ˇ/F.˛/dˇd˛ (57)

The � integration gives

Z
ei�˛e�i�ad� D 2�ı.˛ � ˇ/ (58)

and using Eq. (50) we have

P.a/ D
“

c�.ˇ/ı.a � ˛/ı.˛ � ˇ/c.˛/dˇd˛ (59)

Therefore

P.a/ D jc.a/j2 (60)

Equation (60) shows that we have a manifestly positive density, and that it will be
normalized to one if the wave function is normalized to one because

Z
jc.a/j2 da D

Z
j g.x/j2 dx (61)

This proves the sufficiency of the form given by Eq. (47).
To prove the necessity, suppose we have the probability distribution P.˛/; and

hence the characteristic function is given by

M.�/ D
Z

ei�˛P.˛/ d˛ (62)
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We expand, not the probability distribution but the square root of P.˛/

p
P.˛/ D

Z
u˛.x/f .x/dx (63)

Since
p
P.˛/ is real we also have

p
P.˛/ D

Z
u�̨.x/f �.x/dx (64)

Therefore

M.�/ D
Z

ei�˛
p
P.˛/

p
P.˛/ d˛ (65)

D
•

u�̨.x0/f �.x0/ u˛.x/f .x/ei�˛dxd˛dx
0

(66)

D
•

u�̨.x0/f �.x0/
˚
ei�Au˛.x/

�
f .x/dxdx0d˛ (67)

D
“

f �.x0/
n
ei�Aı.x � x

0
/
o
f .x/dxdx0 (68)

or

Ma.�/ D
Z

f �.x/ei�Af .x/dx (69)

which is of the form given by Eq. (47).
A similar proof follows for the discrete case.

Appendix B: Probability Density

We now derive the probability density corresponding to Ma.�/; where

Ma.�/ D
Z

g�.x/ei�Ag.x/ d� (70)

Using Eq. (2) we have

Pa.a/ D 1

2�

“
g�.x/ei�Ag.x/e�i�adx d� (71)
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To evaluate Eq. (71) we consider two separate cases depending on whether the
spectrum of the operator A is continuous or discrete. For a discrete spectrum we
write

Aun.x/ D anun.x/ (72)

where the eigenfunctions satisfy completeness and orthogonality properties

Z
u�
n .x/uk.x/dx D ınk (73)

X
n

u�
n .x/un.x

0/ D ı.x � x0/ (74)

We expand the wave function as

g.x/ D
X
n

cnun.x/ (75)

with

cn D
Z

g.x/u�
n .x/dx (76)

Substituting Eq. (75) into Eq. (71) we have

P.a/ D 1

2�

“ X
n;m

c�
mu

�
m.x/ei�Acnun.x/e

�i�adx d� (77)

Using

ei�Aun.x/ D ei�anun.x/ (78)

gives

P.a/ D 1

2�

“ X
n;m

c�
mu

�
m.x/ei�ancnun.x/e

�i�adx d� (79)

D 1

2�

Z X
n;m

c�
mınm.x/ei�ancne

�i�a d� (80)

D 1

2�

X
n

jcnj2
Z
ei�an�i�a d� (81)
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Therefore

P.a/ D
X
n

jcnj2ı.a � an/ (82)

Equation (82) shows that the an are the random variables with corresponding
probability jcnj2: This is exactly the quantum mechanical result. One can write
Eq. (82) as

P.an/ D jcnj2 (83)

Note: Since A is self-adjoint the eigenvalues are real, as they should be, since
they represent measurable quantities.

For the continuous case we write

Au˛.x/ D au˛.x/ (84)

and the eigenfunctions satisfy

Z
u�̨.x/uˇ.x/dx D ı.˛ � ˇ/ (85)

Z
u�̨.x/u˛.x0/d˛ D ı.x � x0/ (86)

Expand g.x/ as

g.x/ D
Z
c.˛/u˛.x/d˛ (87)

with

c.˛/ D
Z

g.x/u�̨.x/dx (88)

and substitute Eq. (87) into (71) to obtain

Pa.a/ D 1

2�

ZZZZ
c�.˛/u�̨.x/ei�Ac.ˇ/uˇ.x/e�i�adx d�d˛dˇ (89)

D 1

2�

ZZZZ
c�.˛/u�̨.x/ei�ˇc.ˇ/uˇ.x/e�i�adx d�d˛dˇ (90)

D
“

c�.˛/c.ˇ/ı.˛ � ˇ/ı.a � ˇ/d˛dˇ (91)



146 L. Cohen

which evaluates to

Pa.a/ D jc.a/j2 (92)

Appendix C: Standard vs. QuantumManner of Calculating
Expectation Values

We show Eq. (41) of the text, which we repeat here

Z
g�.x/A g.x/ dx D

X
an

ˇ̌
ˇ̌Z g.x/u�

n .x/dx

ˇ̌
ˇ̌2

discrete case (93)

We expand g.x/

g.x/ D
X

cnun.x/ (94)

where

cn D
Z

g.x/u�
n .x/dx (95)

Starting with the left hand side of Eq. (93) we have

Z
g�.x/A g.x/ dx (96)

D
Z X

n;m

c�
mu

�
m.x/Acnun.x/ dx (97)

D
Z X

n;m

c�
mu

�
m.x/ancnun.x/ dx (98)

D
X
n;m

c�
mınmancn (99)

D
X
n

an

ˇ̌
ˇ̌Z g.x/u�

n .x/dx

ˇ̌
ˇ̌2 (100)

which is Eq. (93). The proof for the continuous case, Eq. (42), follows an analogous
derivation.
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