Pseudo-differential Operators on Non-isotropic Heisenberg Groups with Multi-dimensional Centers

Shahla Molahajloo

Abstract We introduce non-isotropic Heisenberg groups with multi-dimensional centers and the corresponding Schrödinger representations. The Wigner and Weyl transforms are then defined. We prove the Stone-von Neumann theorem for the non-isotropic Heisenebrg group by means of Stone-von Neumann theorem for the ordinary Heisenebrg group. Using this theorem, the Fourier transform is defined in terms of these representations and the Fourier inversion formula is given. Pseudo-differential operators with operator-valued symbols are introduced and can be thought of as non-commutative quantization. We give necessary and sufficient conditions on the symbols for which these operators are in the Hilbert-Schmidt class. We also give a characterization of trace class pseudo-differential operators and a trace formula for these trace class operators.

Keywords Pseudo-differential operators • Heisenberg group • Schrödinger representations • Wigner transforms • Weyl transforms • Fourier transforms • Hilbert-Schmidt operators

Mathematics Subject Classification (2000). Primary 47G30; Secondary 35S05

1 Introduction

The Heisenberg group is the simplest non-commutative nilpotent Lie group. It is actually the first locally compact group whose infinite-dimensional, irreducible representations were classified. Harmonic analysis on the Heisenberg group is a subject of constant interest in various areas of mathematics, from Partial Differential Equations to Geometry and Number Theory.

S. Molahajloo (🖂)

Department of Mathematics, Institute for Advanced Studies in Basic Sciences, No. 444, Yousef Sobouti Boulevard, 45137-66731, Zanjan, Iran e-mail: molahajloo@iasbs.ac.ir; smollaha@gmail.com

[©] Springer International Publishing AG 2017

M.W. Wong, Hongmei Zhu (eds.), *Pseudo-Differential Operators: Groups, Geometry and Applications*, Trends in Mathematics, DOI 10.1007/978-3-319-47512-7_2

We fix the vector (a_1, a_2, \dots, a_n) in \mathbb{R}^n . The non-isotropic Heisenberg group on $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$ is defined by the group law

$$(z,t)\cdot(z',t') = \left(z+z',t+t'+\frac{1}{2}\sum_{j=1}^n a_j(x_jy'_j-x'_jy_j)\right),\,$$

for all z = (x, y), z' = (x', y') in $\mathbb{R}^n \times \mathbb{R}^n$ and t, t' are in \mathbb{R} . If we let $a_j = 1$, for all $1 \le j \le n$, then we get the ordinary Heisenberg group \mathbb{H}^n see [4]. The center of the non-isotropic Heisenberg group \mathbb{H}^n is the 1-dimensional subgroup Z given by

$$Z = \{(0,0,t) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} : t \in \mathbb{R}\}.$$

In the non-isotropic Heisenberg group the terms $x_k y'_l$ for $l \neq k$, do not appear in the group law. In other words we do not consider these directions in the group law. We want to generalize this group to a group that has changes in other directions as well. Moreover, we want to look at a group with a multi-dimensional center which is of interest in Geometry. To do this, we consider $n \times n$ orthogonal matrices B_1, B_2, \ldots, B_m such that

$$B_j^{-1}B_k = -B_k^{-1}B_j, \quad j \neq k.$$
 (1)

Example 1.1 Let m = 2, then

 $B_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ and $B_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ satisfy the above conditions.

Then we define the non-isotropic Heisenberg group with multi-dimensional center \mathbb{G} on $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^m$ by

$$(z,t)\cdot(z',t') = \left(z+z',t+t'+\frac{1}{2}[z,z']\right),$$

for (z, t) and (z', t') in $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^m$ where z = (x, y), z' = (x', y') in $\mathbb{R}^n \times \mathbb{R}^n$, $t, t' \in \mathbb{R}^m$ and $[z, z'] \in \mathbb{R}^m$ is defined by

$$[z, z']_j = x' \cdot B_j y - x \cdot B_j y', \quad j = 1, 2, \dots, m$$

The center of the non-isotropic Heisenberg group with multi-dimensional center is of dimension m and of the form (0, 0, t), $t \in \mathbb{R}^m$. To see this, we denote the center of \mathbb{G} by $C(\mathbb{G})$. Let (z_0, t_0) be in $C(\mathbb{G})$, then for all $(z, t) \in \mathbb{G}$

$$(z, t) \cdot (z_0, t_0) = (z_0, t_0) \cdot (z, t)$$

Hence, $[z, z_0] = 0$. Therefore, for all $x, y \in \mathbb{R}^n$

$$x_0 B_j y - x B_j y_0 = 0, \quad 1 \le j \le n.$$

In particular for $x = x_0$, and for all $y \in \mathbb{R}^n$

$$(x_0, B_i(y - y_0)) = 0$$

So, $B_i^{-1}x_0 = 0$, which implies $x_0 = 0$. Similarly we get $y_0 = 0$.

In fact, \mathbb{G} is a unimodular Lie group on which the Haar measure is just the ordinary Lebesgue measure *dzdt*. Moreover, this is a special case of the Heisenberg type group. The Heisenberg type group first was introduced by A. Kaplan [6]. The geometric properties of the H-type group is studied in e.g. [7].

Note that if we let m = 1 and $B_1 = -I_n$ where I_n is the $n \times n$ identity matrix. Then we get the ordinary Heisenberg group \mathbb{H}^n .

It is well-known from [9, 10, 13] that Weyl transforms have intimate connections with analysis on the Heisenberg group and with the so-called twisted Laplacian studied in, e.g., [1, 11, 12]. We begin with a recall of the basic definitions and properties of Weyl transforms and Wigner transforms in, for instance, the book [13]. Let $\sigma \in L^2(\mathbb{R}^n \times \mathbb{R}^n)$. Then the Weyl transform $W_\sigma : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is defined by

$$(W_{\sigma}f,g)_{L^{2}(\mathbb{R}^{n})} = (2\pi)^{-n/2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \sigma(x,\xi) W(f,g)(x,\xi) \, dx \, d\xi, \quad f,g \in L^{2}(\mathbb{R}^{n}),$$

where W(f, g) is the Wigner transform of f and g defined by

$$W(f,g)(x,\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{-i\xi \cdot p} f\left(x + \frac{p}{2}\right) \overline{g\left(x - \frac{p}{2}\right)} dp, \quad x,\xi \in \mathbb{R}^n.$$

Closely related to the Wigner transform W(f, g) of f and g in $L^2(\mathbb{R}^n)$ is the Fourier–Wigner transform V(f, g) given by

$$V(f,g)(q,p) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{iq \cdot y} f\left(y + \frac{p}{2}\right) \overline{g\left(y - \frac{p}{2}\right)} dy, \quad q,p \in \mathbb{R}^n.$$

It is easy to see that

$$W(f,g) = V(f,g)^{\wedge}$$

for all f and g in $L^2(\mathbb{R}^n)$, where \wedge denotes the Fourier transform given by

$$\widehat{F}(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{-ix\cdot\xi} F(x) \, dx, \quad \xi \in \mathbb{R}^n,$$

for all *F* in $L^1(\mathbb{R}^n)$.

Let σ be a measurable function on $\mathbb{R}^n \times \mathbb{R}^n$. Then the classical pseudo-differential operator T_{σ} associated to the symbol σ is defined by

$$(T_{\sigma}\varphi)(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{ix\cdot\xi} \sigma(x,\xi)\hat{\varphi}(x) d\xi, \quad x \in \mathbb{R}^n,$$

for all φ in the Schwartz space $S(\mathbb{R}^n)$, provided that the integral exists. Once the Fourier inversion formula is in place, a symbol σ defined on the phase space $\mathbb{R}^n \times \mathbb{R}^n$ is inserted into the integral for the purpose of localization and a pseudo-differential operator is obtained. Another basic ingredient of pseudo-differential operators on \mathbb{R}^n in the genesis is the phase space $\mathbb{R}^n \times \mathbb{R}^n$, which we can look at as the Cartesian product of the additive group \mathbb{R}^n and its dual that is also the additive group \mathbb{R}^n . These observations allow in principle extensions of pseudo-differential operators to other groups G provided that we have an explicit formula for the dual of G and an explicit Fourier inversion formula for the Fourier transform on the group G. This program has been carried out in, e.g., [2, 3, 8, 14]. The aim of this paper is to look at pseudo-differential operators on the non-isotropic Heisenberg group with multi-dimensional center.

In Sect. 2, We define the Schrödinger representation corresponding to the nonisotropic Heisenberg group. Using the representation, we define the λ -Wigner and λ -Weyl transform related the non-isotropic Heisenberg group. The Moyal identity for the λ -Wigner transform and Hilbert-Schmidt properties of the λ -Weyl transform are proved. In Sect. 3, Using the Schrödinger representation for the ordinary Heisenberg group we prove the Stone-von Neumann theorem on \mathbb{G} . Using the Von-Neumann theorem for the non-isotropic group with multi-dimensional center, we define the operator-valued Fourier transform of \mathbb{G} in Sect. 4. Then, in Sect. 5, we define pseudo-differential operators corresponding to the operator-valued symbols. Then the L^2 -boundedness and the Hilbert-Schmidt properties of pseudo-differential operators on the group \mathbb{G} are given. Trace class pseudo-differential operators on the group \mathbb{G} are given and a trace formula is given for them.

2 Schrödiner Representations for Non-isotropic Heisenberg Groups with Multi-dimensional Centers

Let

$$\mathbb{R}^{m^*} = \mathbb{R}^m \setminus \{0\}$$

and let $\lambda \in \mathbb{R}^{m^*}$. We define the Schrödinger representation of \mathbb{G} on $L^2(\mathbb{R}^n)$ by

$$(\pi_{\lambda}(q, p, t)\varphi)(x) = e^{i\lambda \cdot t}e^{iq\cdot B_{\lambda}(x+p/2)}\varphi(x+p), \quad x \in \mathbb{R}^n$$

for all $\varphi \in L^2(\mathbb{R}^n)$ and $(q, p, t) \in \mathbb{G}$, where $z = (q, p) \in \mathbb{R}^n \times \mathbb{R}^n$ and $B_{\lambda} = \sum_{i=1}^m \lambda_i B_i$. If we let

$$(\pi_{\lambda}(q,p)\varphi)(x) = e^{iq \cdot B_{\lambda}(x+p/2)}\varphi(x+p).$$

Then

$$\pi_{\lambda}(q, p, t) = e^{i\lambda \cdot t} \pi_{\lambda}(q, p).$$

To prove that π_{λ} is a group homomorphism, we need the following easy lemma.

Lemma 2.1 For all $z, z' \in \mathbb{R}^n \times \mathbb{R}^n$ and $\lambda \in \mathbb{R}^{m^*}$ we have

$$\pi_{\lambda}(z)\pi_{\lambda}(z')=e^{\frac{t}{2}\lambda\cdot[z,z']}\pi_{\lambda}(z+z').$$

The following theorem tells us that π_{λ} is in fact a unitary group representation of \mathbb{G} on $L^2(\mathbb{R}^n)$.

Theorem 2.2 π_{λ} is a unitary group representation of \mathbb{G} on $L^{2}(\mathbb{R}^{n})$.

Proof By Lemma 2.1, it is easy to see that for all (z, t) and (z', t') in \mathbb{G} ,

$$\pi_{\lambda}((z,t)\cdot(z',t'))=\pi_{\lambda}(z,t)\pi_{\lambda}(z',t').$$

Now let $\varphi, \psi \in L^2(\mathbb{R}^n)$. Then for all $(q, p, t) \in \mathbb{G}$,

$$(\pi_{\lambda}(q, p, t)\varphi, \psi) = \int_{\mathbb{R}^{n}} e^{i\lambda \cdot t} e^{iq \cdot B_{\lambda}(x+p/2)} \varphi(x+p)\overline{\psi(x)} \, dx$$
$$= \int_{\mathbb{R}^{n}} \varphi(y) \overline{e^{-i\lambda \cdot t} e^{-iq \cdot B_{\lambda}(y-p/2)} \psi(y-p)} \, dy$$
$$= \int_{\mathbb{R}^{n}} \varphi(y) \overline{(\pi_{\lambda}(-z, -t)\psi)} \, (y) \, dy$$
$$= (\varphi, \pi_{\lambda}(-z, -t)\psi) \, .$$

Hence $\pi_{\lambda}(z, t)^* = \pi_{\lambda}((z, t)^{-1}).$

In fact π_{λ} is an irreducible representation of \mathbb{G} on $L^2(\mathbb{R}^n)$. To prove this we need some preparation. Let $f, g \in L^2(\mathbb{R}^n)$. We define the λ -Fourier Wigner transform of f and g on $\mathbb{R}^n \times \mathbb{R}^n$ by

$$V_{\lambda}(f,g)(q,p) = (2\pi)^{-n/2} (\pi_{\lambda}(q,p)f,g).$$

In fact,

$$V^{\lambda}(f,g)(q,p) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{iB_{\lambda}^{r}q \cdot x} f(x+\frac{p}{2}) \overline{g(x-\frac{p}{2})} \, dx.$$

Therefore, the λ -Fourier Wigner transform is related to the ordinary Fourier Wigner transform by

$$V^{\lambda}(f,g)(q,p) = V(f,g)(B^{t}_{\lambda}q,p).$$
⁽²⁾

Note that

$$V^{\lambda}(f,g)(q,-p) = \overline{V^{\lambda}(g,f)}(q,p), \quad q,p \in \mathbb{R}^n.$$

Now, we define the λ -Wigner transform of $f, g \in L^2(\mathbb{R}^n)$ by

$$W^{\lambda}(f,g) = \widehat{V_{\lambda}(f,g)}.$$

In fact, λ -Wigner transform has the form

$$W^{\lambda}(f,g)(x,\xi) = |\lambda|^{-n} (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{-ip\cdot\xi} f(\frac{B_{\lambda}^t x}{|\lambda|^2} + \frac{p}{2}) \overline{g(\frac{B_{\lambda}^t x}{|\lambda|^2} - \frac{p}{2})} \, dp$$

and it is related to the ordinary Wigner trasform by

$$W^{\lambda}(f,g)(x,\xi) = |\lambda|^{-n} W(f,g)(\frac{B_{\lambda}^{t}x}{|\lambda|^{2}},\xi)$$

for all x, ξ in \mathbb{R}^n . Moreover,

$$W^{\lambda}(f,g) = \overline{W^{\lambda}(g,f)}.$$

By using (1) and the fact that B_j , $1 \le j \le n$ are orthogonal matrices, we get the following result.

Proposition 2.1 $B_{\lambda}B_{\lambda}^{t} = |\lambda|^{2}I$, where *I* is the identity $n \times n$ matrix. In particular det $B_{\lambda} = |\lambda|^{n}$.

The following proposition gives us the relation between the dimesion of the center of the non-isotropic Heisenebrg group and its phase space.

Proposition 2.2 Let \mathbb{G} be the non-isotropic Heisenberg group on $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^m$. Then $m \leq n^2$. *Proof* For all $1 \le k \le m$ and $1 \le i, j \le n$, let $(B_k)_{ij}$ be the entry of the matrix B_k in the i-th row and j-th column. Then the $n^2 \times m$ matrix

$$C = \begin{bmatrix} (B_1)_{11} & (B_2)_{11} & \dots & (B_m)_{11} \\ (B_1)_{12} & (B_2)_{12} & \dots & (B_m)_{12} \\ \vdots & \vdots & \ddots & \vdots \\ (B_1)_{1n} & (B_2)_{1n} & \dots & (B_m)_{1n} \\ (B_1)_{21} & (B_2)_{21} & \dots & (B_m)_{21} \\ (B_1)_{22} & (B_2)_{22} & \dots & (B_m)_{22} \\ \vdots & \vdots & \vdots & \vdots \\ (B_1)_{nn} & (B_2)_{nn} & \dots & (B_m)_{nn} \end{bmatrix}$$

has rank m. To prove this, it is enough to show that the columns of C are linearly independent. Let C^i be the i-th column of C and let $\lambda \in \mathbb{R}^m$ be such that

$$\sum_{i=1}^m \lambda_i C^i = 0$$

It follows that $B_{\lambda} = 0$. Therefore by Proposition 2.1, we get $\lambda = 0$.

Let $\sigma \in S(\mathbb{R}^n \times \mathbb{R}^n)$ and $f \in S(\mathbb{R}^n)$, then we define the λ -Weyl transform $W_{\sigma}^{\lambda}f$ of f corresponding to the symbol σ by

$$\left(W_{\sigma}^{\lambda}f,g\right)_{L^{2}(\mathbb{R}^{n})}=(2\pi)^{-n/2}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\sigma(x,\xi)W^{\lambda}(f,g)(x,\xi)\,dx\,d\xi,$$

for all $g \in \mathcal{S}(\mathbb{R}^n)$. Therefore, using the Parseval's identity, we have

$$\left(W_{\sigma}^{\lambda}f,g\right)_{L^{2}(\mathbb{R}^{n})}=(2\pi)^{-n/2}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\hat{\sigma}(q,p)V^{\lambda}(f,g)(q,p)\,dq\,dp.$$

Hence, formally we can write,

$$\left(W_{\sigma}^{\lambda}f\right)(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \hat{\sigma}(q,p) \left(\pi_{\lambda}(q,p)f\right)(x) \, dq \, dp.$$

Proposition 2.3 Let $\sigma \in \mathcal{S}(\mathbb{R}^n \times \mathbb{R}^n)$. Then the λ -Weyl transform W^{λ}_{σ} is given by

$$W^{\lambda}_{\sigma} = W_{\sigma_{\lambda}},$$

where $W_{\sigma_{\lambda}}$ is the ordinary Weyl transform corresponding to the symbol

$$\sigma_{\lambda}(x,\xi) = \sigma(B_{\lambda}x,\xi).$$

Proposition 2.4 Let $\sigma \in S(\mathbb{R}^n \times \mathbb{R}^n)$. Then the λ -Weyl transform W^{λ}_{σ} is a Hilber-Schmidt operator with kernel

$$k_{\sigma}^{\lambda}(x,p) = (\mathcal{F}_2\sigma)\left(B_{\lambda}(\frac{x+p}{2}), p-x\right),$$

where $\mathcal{F}_2\sigma$ is the ordinary Fourier transform of σ with respect to the second variable, i.e.,

$$(\mathcal{F}_2\sigma)(x,p) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{-i\xi \cdot p} \sigma(x,\xi) d\xi.$$

Moreover,

$$\|W_{\sigma}^{\lambda}\|_{HS} = |\lambda|^{-n/2} \|\sigma\|_{L^{2}(\mathbb{R}^{n} \times \mathbb{R}^{n})}$$

Proof By Proposition 2.4 and the kernel of the ordinary Weyl transform (see [13] for details), we have

$$k_{\sigma}^{\lambda}(x,p) = (\mathcal{F}_{2}\sigma_{\lambda})\left(\frac{x+p}{2}, p-x\right)$$
$$= (\mathcal{F}_{2}\sigma)\left(B_{\lambda}(\frac{x+p}{2}), p-x\right).$$

Hence,

$$\begin{split} \|W_{\sigma}^{\lambda}\|_{HS}^{2} &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |k_{\sigma}^{\lambda}(x,p)|^{2} dx dp \\ &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \left| (\mathcal{F}_{2}\sigma) \left(B_{\lambda}(\frac{x+p}{2}), p-x \right) \right|^{2} dx dp \\ &= |\lambda|^{-n} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |(\mathcal{F}_{2}\sigma) (x,p)|^{2} dx dp \\ &= |\lambda|^{-n} \|\sigma\|_{L^{2}(\mathbb{R}^{n} \times \mathbb{R}^{n})}^{2}, \end{split}$$

which completes the proof.

Let *F* and *G* be functions in $L^2(\mathbb{R}^{2n})$. The λ -twisted convolution of *F* and *G* denoted by $F *_{\lambda} G$ on \mathbb{R}^{2n} is defined by

$$(F *_{\lambda} G)(z) = \int_{\mathbb{R}^{2n}} F(z-w) G(w) e^{\frac{i}{2}\lambda \cdot [z,w]} dw.$$

By Lemma 2.1 we get the following theorem.

Theorem 2.3 Let σ and τ be in $L^2(\mathbb{R}^{2n})$. Then

$$W^{\lambda}_{\sigma}W^{\lambda}_{ au} = W^{\lambda}_{\omega}$$

where $\hat{\omega} = (2\pi)^{-n} (\hat{\sigma} *_{\lambda} \hat{\tau}).$

Using the Moyal identity for the ordinary Wigner transform we have the following Moyal identity for the λ -Wigner transform and λ -Fourier Wigner transform.

Proposition 2.5 For all f_1, f_2, g_1, g_2 in $L^2(\mathbb{R}^n)$

$$(W_{\lambda}(f_1,g_1),W_{\lambda}(f_2,g_2)) = |\lambda|^{-n} (f_1,f_2) (g_1,g_2),$$

and

$$(V_{\lambda}(f_1,g_1),V_{\lambda}(f_2,g_2)) = |\lambda|^{-n} (f_1,f_2) \overline{(g_1,g_2)}.$$

Now, we are ready to prove the following theorem.

Theorem 2.4 For all $\lambda \in \mathbb{R}^{m^*}$, π_{λ} is a unitary irreducible representation of \mathbb{G} on $L^2(\mathbb{R}^n)$.

Proof suppose $M \subset L^2(\mathbb{R}^n)$ is a nonzero closed invariant subspace of π_{λ} and $f \in M \setminus \{0\}$. Then

$$\pi_{\lambda}(q, p, t)M \subset M, \quad (q, p, t) \in \mathbb{G}.$$

If $M \neq L^2(\mathbb{R}^n)$, then we can find $g \in L^2(\mathbb{R}^n)$ such that

$$(\pi_{\lambda}(q, p, t)f, g) = 0, \quad (q, p, t) \in \mathbb{G}.$$

But,

$$(\pi_{\lambda}(q, p, t)f, g) = e^{i\lambda \cdot t} (\pi_{\lambda}(q, p)f, g)$$
$$= e^{i\lambda \cdot t} (2\pi)^{n/2} V_{\lambda}(f, g)(p, q).$$

So,

$$V_{\lambda}(f,g)(q,p) = 0$$

for all $(p, q) \in \mathbb{R}^n \times \mathbb{R}^n$. By the Moyal identity,

$$\|V_{\lambda}(f,g)\|_{L^{2}(\mathbb{R}^{n}\times\mathbb{R}^{n})}^{2} = |\lambda|^{-n}\|f\|_{L^{2}(\mathbb{R}^{n})}^{2}\|g\|_{L^{2}(\mathbb{R}^{n})}^{2} = 0.$$

So, f = 0 or g = 0 which is a contradiction.

23

3 Stone-Von Neumann Theorem on \mathbb{G}

Let $U(L^2(\mathbb{R}^n))$ be the space of unitary operators on $L^2(\mathbb{R}^n)$. Let $h \in \mathbb{R}^*$, then the Schrödinger representation $\rho_h : \mathbb{H}^n \to U(L^2(\mathbb{R}^n))$ on the ordinary Heisenebrg group is defined by

$$(\rho_h(q, p, t)\varphi)(x) = e^{iht}e^{iq \cdot (x+hp/2)}f(x+hp), \quad x \in \mathbb{R}^n,$$

for all $f \in L^2(\mathbb{R}^n)$. Then ρ_h is an irreducible unitary representation of \mathbb{H}^n on $L^2(\mathbb{R}^n)$. By the Stone-von Neumann theorem, any irreducible unitary representation of \mathbb{H}^n on a Hilbert space that is non-trivial on the center is equivalent to some ρ_h . More precisely we have

Theorem 3.1 Let π be an irreducible unitary representation of \mathbb{H}^n on a Hilbert space \mathcal{H} , such that $\pi(0, 0, t) = e^{iht}I$ for some $h \in \mathbb{R}^*$. Then π is unitarily equivalent to ρ_h .

Similarly, we prove the Stone-von Neumann theorem for the non-isotropic Heisenberg group $\mathbb{G}.$ To prove we use the following lemma.

Lemma 3.2 Let $\lambda \in \mathbb{R}^{m^*}$. The mapping $\alpha_{\lambda} : \mathbb{G} \to \mathbb{H}^n$ defined by

$$\alpha_{\lambda}(q, p, t) = (B_{\lambda}^{t}q, \frac{p}{|\lambda|}, \frac{\lambda \cdot t}{|\lambda|}), \quad (q, p, t) \in \mathbb{G}$$

is a surjective homomorphism of Lie groups. In particular, $G/\ker \alpha_{\lambda}$ is isomorphic to \mathbb{H}^n where

$$\ker \alpha_{\lambda} = \{ (0, 0, t) : (t, \lambda) = 0 \}.$$

Proof To prove α_{λ} is a group homomorphism, let $(q, p, t), (q', p'.t') \in \mathbb{G}$. Then

$$\alpha_{\lambda}((q, p, t) \cdot_{\mathbb{G}} (q', p', t')) = \alpha_{\lambda}(q + q', p + p', t + t' + \frac{1}{2}[z, z'])$$
$$= \left(B_{\lambda}^{t}(q + q'), \frac{p + p'}{|\lambda|}, \lambda \cdot (t + t' + \frac{1}{2}[z, z'])/|\lambda|\right)$$

Since $\lambda \cdot [z, z'] = (q', B_{\lambda}p) - (q, B_{\lambda}p')$, therefore

$$\alpha_{\lambda}((q, p, t) \cdot_{\mathbb{G}} (q', p', t'))$$

$$= (B_{\lambda}^{t}q, \frac{p}{|\lambda|}, \frac{\lambda \cdot t}{|\lambda|}) \cdot_{\mathbb{H}^{n}} (B_{\lambda}^{t}q', \frac{p'}{|\lambda|}, \frac{\lambda \cdot t'}{|\lambda|})$$

$$= \alpha_{\lambda}((q, p, t) \cdot_{\mathbb{H}^{n}} \alpha_{\lambda}(q', p', t')).$$
(3)

Surjectivity is easy to see, since B_{λ} is invertible.

The following lemma gives the connection between the Schrödinger representation on the ordinary Heisenberg group \mathbb{H}^n and the representations π_{λ} on the non-isotropic Heisenberg group \mathbb{G} .

Lemma 3.3 For all $\lambda \in \mathbb{R}^{m^*}$,

 $\pi_{\lambda} = \rho_{|\lambda|} \circ \alpha_{\lambda}.$

Now, we are ready to prove the Stone von-Neumann theorem for the nonisotropic Heiseneberg group.

Theorem 3.4 Let Π_{λ} be an irreducible unitary group representation of \mathbb{G} on a Hilbert space \mathcal{H} such that $\Pi_{\lambda}(0,0,t) = e^{i\lambda \cdot t}I$, for some $\lambda \in \mathbb{R}^m$. Then Π_{λ} is unitarily equivalent to π_{λ}

Proof Let $\Pi_{|\lambda|}$: $\mathbb{H}^n \to U(\mathcal{H})$ be defined by $\Pi_{|\lambda|} = \Pi_{\lambda} PT$ where *T* is the isomorphism of \mathbb{H}^n onto *G*/ker α_{λ} (see Lemma 3.2) and *P* is the projection from \mathbb{G} /ker α_{λ} onto \mathbb{G} . Then $\Pi_{|\lambda|}(0, 0, t_0) = e^{i|\lambda|t_o}I$, for all $t_0 \in \mathbb{R}$. Moreover, $\Pi_{|\lambda|}$ is an irreducible unitary representation of \mathbb{H}^n on the Hilbert space \mathcal{H} . This can be easily seen by using the fact that Π_{λ} is an irreducible unitary representation of \mathbb{G} on \mathcal{H} .

4 Fourier Transforms and the Fourier Inversion Formula on \mathbb{G}

By the Stone-von Neumann theorem every irreducible unitary representation of \mathbb{G} which acts non-trivially on the center is in fact unitarily equivalent to exactly one of $\pi_{\lambda}, \lambda \in \mathbb{R}^{m^*}$. Hence, the identification of $\{\pi_{\lambda} : \lambda \in \mathbb{R}^{m^*}\}$ with \mathbb{R}^{m^*} will be used. Let $f \in L^1(\mathbb{G})$ and $\lambda \in \mathbb{R}^{m^*}$. We define the Fourier transform of f at λ to be the bounded linear operator $\hat{f}(\lambda)$ from $L^2(\mathbb{R}^n)$ into $L^2(\mathbb{R}^n)$ given by

$$\hat{f}(\lambda)\varphi = \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} f(z,t) \left(\pi_{\lambda}(z,t)\varphi\right) dz dt, \quad \varphi \in L^2(\mathbb{R}^n)$$

To see the boundedness of $\hat{f}(\lambda)$, let $\varphi, \psi \in L^2(\mathbb{R}^n)$. Then By Schwarz inequality

$$\begin{split} \left| \left(\hat{f}(\lambda)\varphi, \psi \right) \right| &\leq \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} \left| f(z,t) \right| \left| \left(\pi_\lambda(z,t)\varphi, \psi \right) \right| dz \, dt \\ &\leq \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} \left| f(z,t) \right| \left\| \pi_\lambda(z,t)\varphi \right\|_{L^2(\mathbb{R}^n)} \|\psi\|_{L^2(\mathbb{R}^n)} \, dz \, dt. \\ &\leq \| f \|_{L^1(\mathbb{G})} \| \varphi \|_{L^2(\mathbb{R}^n)} \| \psi \|_{L^2(\mathbb{R}^n)}. \end{split}$$

Set

$$f^{\lambda}(z) = (2\pi)^{-m/2} \int_{\mathbb{R}^m} e^{i\lambda \cdot t} f(z,t) \, dt.$$

Then $\hat{f}(\lambda)\varphi$ has the form

$$\hat{f}(\lambda)\varphi = (2\pi)^{m/2} \int_{\mathbb{R}^{2n}} f^{\lambda}(z) (\pi_{\lambda}(z)\varphi) dz.$$

Therefore we have following proposition relating the Fourier transform $\hat{f}(\lambda)$ to the λ -Weyl transform.

Proposition 4.1 Let $f \in L^1(\mathbb{G})$. Then for all $\lambda \in \mathbb{R}^{m^*}$

$$\hat{f}(\lambda) = (2\pi)^{(2n+m)/2} W^{\lambda}_{(f^{\lambda})^{\vee}},$$

where $(f^{\lambda})^{\vee}$ is the inverse Fourier transform of f^{λ} on \mathbb{R}^{2n} .

We have the following Plancheral's formula for the Fourier transform on the nonisotropic Heisenberg group with multi-dimensional center.

Theorem 4.1 Let $f \in L^2(\mathbb{G})$ and $\lambda \in \mathbb{R}^{m^*}$. Then $\hat{f}(\lambda) : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is a Hilbert-Schmidt operator. In fact we have

(i) The kernel of $\hat{f}(\lambda)$ is given by

$$k_{\lambda}(x,p) = (2\pi)^{(n+m)/2} \left(\mathcal{F}_1^{-1} f^{\lambda} \right) \left(B_{\lambda}(\frac{x+p}{2}), p-x \right)$$

where $\mathcal{F}_1^{-1} f^{\lambda}$ is the ordinary inverse Fourier transform of f^{λ} with respect to the first variable, i.e.,

$$\left(\mathcal{F}_{1}^{-1}f^{\lambda}\right)(x,p) = (2\pi)^{-n/2} \int_{\mathbb{R}^{n}} e^{ix \cdot q} f^{\lambda}(q,p) \, dq. \quad (x,p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}.$$

(ii) The Hilbert-Schmidt norm of $\hat{f}(\lambda)$ is given by

$$\|\hat{f}(\lambda)\|_{HS}^2 = (2\pi)^{m+n} |\lambda|^{-n} \|f^{\lambda}\|_{L^2(\mathbb{R}^{2n})}^2$$

(iii) Let $d\mu(\lambda) = (2\pi)^{-(n+m)} |\lambda|^n d\lambda$. We have the following Plancheral's formula

$$\int_{\mathbb{R}^m} \|\hat{f}(\lambda)\|_{HS}^2 d\mu(\lambda) = \|f\|_{L^2(\mathbb{G})}^2.$$

Proof Let φ be in $L^2(\mathbb{R}^n)$. Then for all $x \in \mathbb{R}^n$,

$$\left(\hat{f}(\lambda)\varphi\right)(x) = (2\pi)^{m/2} \int_{\mathbb{R}^{2n}} f^{\lambda}(q,p) \left(\pi_{\lambda}(q,p)\varphi\right)(x) \, dq \, dp$$

$$= (2\pi)^{m/2} \int_{\mathbb{R}^{2n}} f^{\lambda}(q,p) e^{iq \cdot B_{\lambda}(x+\frac{p}{2})} \varphi(x+p) \, dq \, dp$$

$$= \int_{\mathbb{R}^{n}} \left((2\pi)^{m/2} \int_{\mathbb{R}^{n}} e^{iq \cdot B_{\lambda}(\frac{x+p}{2})} f^{\lambda}(q,p-x) \, dq \right) \varphi(p) \, dp$$

$$= \int_{\mathbb{R}^{n}} k_{\lambda}(x,p) \varphi(p) \, dp$$

where

$$k_{\lambda}(x,p) = (2\pi)^{(n+m)/2} \left(\mathcal{F}_1^{-1} f^{\lambda} \right) \left(B_{\lambda}(\frac{x+p}{2}), p-x \right).$$

Hence the Hilbert-Schmidt norm of $\hat{f}(\lambda)$ is given by

$$\begin{split} \|\hat{f}(\lambda)\|_{HS}^{2} &= \|k_{\lambda}\|_{L^{2}(\mathbb{R}^{n}\times\mathbb{R}^{n})}^{2} \\ &= (2\pi)^{(n+m)} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \left| \left(\mathcal{F}_{1}^{-1}f^{\lambda}\right) \left(B_{\lambda}(\frac{x+p}{2}), p-x\right) \right|^{2} dx \, dp \\ &= (2\pi)^{(n+m)} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \left| \left(\mathcal{F}_{1}^{-1}f^{\lambda}\right)(x,p) \right|^{2} |\lambda|^{-n} \, dx \, dp \\ &= |\lambda|^{-n} (2\pi)^{(n+m)} \|f^{\lambda}\|_{L^{2}(\mathbb{R}^{2n})}^{2} \end{split}$$
(4)

where in (4) we used the Parseval's identity for the ordinary Fourier transform. \Box

Now we are ready to prove the inversion formula for the non-isotropic group Fourier transform.

Theorem 4.2 Let f be a Schwartz function on \mathbb{G} . Then we have

$$f(z,t) = \int_{\mathbb{R}^m} tr\left(\pi_\lambda(z,t)^* \hat{f}(\lambda)\right) d\mu(\lambda), \quad (z,t) \in \mathbb{G}.$$

Proof For all $(z, t) \in \mathbb{G}$,

$$\pi_{\lambda}(z,t)^{*}\hat{f}(\lambda) = \pi_{\lambda}(-z,-t) \int_{\mathbb{R}^{m}} \int_{\mathbb{R}^{2n}} f(\tilde{z},\tilde{t}) \ \pi_{\lambda}(\tilde{z},\tilde{t}) \ d\tilde{z} \ d\tilde{t}$$
$$= \int_{\mathbb{R}^{m}} \int_{\mathbb{R}^{2n}} f(\tilde{z},\tilde{t}) \ \pi_{\lambda} \left((-z,-t)\right) \cdot (\tilde{z},\tilde{t}) \left(d\tilde{z} \ d\tilde{t}\right)$$

$$= \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} f(\tilde{z}, \tilde{t}) \ \pi_\lambda \left(-z + \tilde{z}, -t + \tilde{t} + \frac{1}{2} [-z, \tilde{z}] \right) \ d\tilde{z} \ d\tilde{t}$$
$$= \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} f(\tilde{z}, \tilde{t}) e^{i\frac{\lambda}{2} \cdot [-z, \tilde{z}]} \pi_\lambda \left(-z + \tilde{z}, -t + \tilde{t} \right) \ d\tilde{z} \ d\tilde{t}.$$

Now, we let $z' = -z + \tilde{z}$ and $t' = -t + \tilde{t}$. W get

$$\pi_{\lambda}(z,t)^* \hat{f}(\lambda) = \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} g(z',t') \pi_{\lambda}(z',t') \, dz' \, dt',$$

where

$$g(z',t') = e^{-i\frac{\lambda}{2}\cdot[z,z']}f(z'+z,t'+t).$$

Hence,

$$\pi_{\lambda}(z,t)^*\hat{f}(\lambda) = \hat{g}(\lambda).$$

By Theorem 4.1, the kernel of $\hat{g}(\lambda)$ is given by

$$k_{\lambda}(x,p) = (2\pi)^{(n+m)/2} \left(\mathcal{F}_1^{-1} g^{\lambda} \right) \left(B_{\lambda}(\frac{x+p}{2}), p-x \right).$$

Therefore,

$$tr\left(\pi_{\lambda}(z,t)^{*}\hat{f}(\lambda)\right) = \int_{\mathbb{R}^{n}} k_{\lambda}(x,x) \, dx.$$

So, for $z = (u, v) \in \mathbb{R}^n \times \mathbb{R}^n$,

$$k_{\lambda}(x,x) = (2\pi)^{(n+m)/2} \left(\mathcal{F}_1^{-1} g^{\lambda} \right) (B_{\lambda} x, 0)$$
$$= (2\pi)^{m/2} \int_{\mathbb{R}^n} e^{iB_{\lambda} x \cdot \xi} g^{\lambda}(\xi, 0) \, d\xi.$$

On the other hand, it is easy to see that

$$g^{\lambda}(z') = e^{-i\frac{\lambda}{2} \cdot [z,z']} e^{-i\lambda \cdot t} f^{\lambda}(z+z').$$

So, for $z = (u, v) \in \mathbb{R}^n \times \mathbb{R}^n$, and $z' = (\xi, 0)$, we get

$$g^{\lambda}(\xi,0) = e^{\frac{-i}{2}B_{\lambda}v\cdot\xi}e^{-i\lambda\cdot t}f^{\lambda}(\xi+u,v).$$

Hence,

$$k_{\lambda}(x,x) = (2\pi)^{m/2} \int_{\mathbb{R}^n} e^{iB_{\lambda}x\cdot\xi} e^{\frac{-i}{2}B_{\lambda}v\cdot\xi} e^{-i\lambda\cdot t} f^{\lambda}(\xi+u,v) d\xi$$
$$= (2\pi)^{m/2} e^{-i\lambda\cdot t} e^{i(-B_{\lambda}x+B_{\lambda}v/2)\cdot u} \int_{\mathbb{R}^n} e^{i(B_{\lambda}x-B_{\lambda}v/2)\cdot\xi} f^{\lambda}(\xi,v) d\xi \qquad (5)$$

Therefore,

$$tr\left(\pi_{\lambda}(z,t)^{*}\widehat{f}(\lambda)\right)$$

$$= (2\pi)^{m/2}e^{-i\lambda\cdot t}e^{iB_{\lambda}v/2\cdot u}\int_{\mathbb{R}^{n}}e^{-ix\cdot B_{\lambda}^{t}u}\left\{\int_{\mathbb{R}^{n}}e^{i\xi\cdot(-B_{\lambda}v/2+B_{\lambda}x)}f^{\lambda}(\xi,v)\,d\xi\right\}\,dx$$

$$= (2\pi)^{(m+n)/2}e^{-i\lambda\cdot t}e^{iB_{\lambda}v/2\cdot u}\int_{\mathbb{R}^{n}}e^{-ix\cdot B_{\lambda}^{t}u}\left(\mathcal{F}_{1}^{-1}f^{\lambda}\right)\left(-B_{\lambda}v/2+B_{\lambda}x,v\right)dx$$

$$= (2\pi)^{(m+n)/2}e^{-i\lambda\cdot t}|\lambda|^{-n}\int_{\mathbb{R}^{n}}e^{-ix\cdot u}\left(\mathcal{F}_{1}^{-1}f^{\lambda}\right)(x,v)\,dx$$

$$= (2\pi)^{m/2+n}e^{-i\lambda\cdot t}|\lambda|^{-n}f^{\lambda}(u,v).$$

By integrating both sides of

$$tr\left(\pi_{\lambda}(z,t)^{*}\hat{f}(\lambda)\right)(2\pi)^{-(n+m)}|\lambda|^{n} = (2\pi)^{-m/2}e^{-i\lambda \cdot t}f^{\lambda}(z)$$

with respect to λ , we get the Fourier inversion formula.

5 Pseudo-differential Operators on Non-isotropic Heisenberg Groups with Multi-dimensional Centers

Let $B(L^2(\mathbb{R}^n))$ be the C^* -algebra of all bounded linear operators on $L^2(\mathbb{R}^n)$. Then consider the operator valued symbol

$$\sigma: \mathbb{G} \times \mathbb{R}^{m^*} \to B(L^2(\mathbb{R}^n)).$$

We define the pseudo-differential operator $T_{\sigma} : L^2(\mathbb{G}) \to L^2(\mathbb{G})$ corresponding to the symbol σ by

$$(T_{\sigma}f)(z,t) = \int_{\mathbb{R}^m} tr\left(\pi_{\lambda}(z,t)^*\sigma(z,t,\lambda)\hat{f}(\lambda)\right) d\mu(\lambda), \quad (z,t) \in \mathbb{G}$$

for all $f \in L^2(\mathbb{G})$. Let $HS(L^2(\mathbb{R}^n))$ be the space of Hilbert-Schmidt operators on $L^2(\mathbb{R}^n)$. We have the following theorem on L^2 -boundedness of pseudo-differential operators.

Theorem 5.1 Let $\sigma : \mathbb{G} \times \mathbb{R}^{m^*} \to HS(L^2(\mathbb{R}^n))$ be such that

$$C_{\sigma}^{2} = \int_{\mathbb{R}^{m}} \int_{\mathbb{G}} \|\sigma(z,t,\lambda)\|_{HS}^{2} dz dt d\mu(\lambda) < \infty.$$

Then $T_{\sigma}: L^2(\mathbb{G}) \to L^2(\mathbb{G})$ is a bounded linear operator and

$$\|T_{\sigma}\|_{op} \leq C_{\sigma},$$

where $\|\cdot\|_{op}$ is the operator norm on the C^* -algebra of bounded linear operators on $L^2(\mathbb{G})$.

Proof Let $f \in L^2(\mathbb{G})$. Then by Minkowski's inequality we have

$$\|T_{\sigma}f\|_{L^{2}(\mathbb{G})} = \left\{ \int_{\mathbb{R}^{m}} \int_{\mathbb{R}^{2n}} \left| \int_{\mathbb{R}^{m}} tr\left(\pi_{\lambda}(z,t)^{*}\sigma(z,t,\lambda)\hat{f}(\lambda)\right) d\mu(\lambda) \right|^{2} dz dt \right\}^{1/2} \\ \leq \int_{\mathbb{R}^{m}} \left\{ \int_{\mathbb{R}^{m}} \int_{\mathbb{R}^{2n}} \left| tr\left(\pi_{\lambda}(z,t)^{*}\sigma(z,t,\lambda)\hat{f}(\lambda)\right) \right|^{2} dz dt \right\}^{1/2} d\mu(\lambda) \\ \leq \int_{\mathbb{R}^{m}} \left\{ \int_{\mathbb{R}^{m}} \int_{\mathbb{R}^{2n}} \|\sigma(z,t,\lambda)\|_{HS}^{2} \|\hat{f}(\lambda)\|_{HS}^{2} dz dt \right\}^{1/2} d\mu(\lambda) \\ = \int_{\mathbb{R}^{m}} \|\hat{f}(\lambda)\|_{HS} \left\{ \int_{\mathbb{R}^{m}} \int_{\mathbb{R}^{2n}} \|\sigma(z,t,\lambda)\|_{HS}^{2} dz dt \right\}^{1/2} d\mu(\lambda) \\ \leq C_{\sigma} \|f\|_{L^{2}(\mathbb{G})} \tag{6}$$

where in (6), we used Hölder's inequality.

The following result tells us that under suitable conditions, two symbols of the same pseudo-differential operator are equal.

Proposition 5.1 Let $\sigma : \mathbb{G} \times \mathbb{R}^{m^*} \to HS(L^2(\mathbb{R}^n))$ be such that

$$\int_{\mathbb{R}^m}\int_{\mathbb{G}}\|\sigma(z,t,\lambda)\|_{HS}^2\,dz\,dt\,d\mu(\lambda)<\infty.$$

Furthermore suppose that

$$\int_{\mathbb{R}^m} \|\sigma(z,t,\lambda)\|_{HS} \, d\mu(\lambda) < \infty, \quad (z,t) \in \mathbb{G},\tag{7}$$

$$\sup_{(z,t,\lambda)\in\mathbb{G}\times\mathbb{R}^{m^*}} \|\sigma(z,t,\lambda)\|_{HS} < \infty,$$
(8)

and the mapping

$$\mathbb{G} \times \mathbb{R}^{m^*} \ni (z, t, \lambda) \mapsto \pi_{\lambda}(z, t)^* \sigma(z, t, \lambda) \in HS(L^2(\mathbb{R}^n))$$
(9)

is weakly continuous. Then $T_{\sigma}f = 0$ *for all f only if*

$$\sigma(z,t,\lambda)=0$$

for almost all $(z, t, \lambda) \in \mathbb{G} \times \mathbb{R}^{m^*}$.

Proof For all $(z, t) \in \mathbb{G}$, we define $f_{z,t} \in L^2(\mathbb{G})$ by

$$\widehat{f_{z,t}}(\lambda) = \sigma(z,t,\lambda)^* \pi_\lambda(z,t).$$

Then, for all $(w, s) \in \mathbb{G}$

$$(T_{\sigma}f_{z,t})(w,s) = \int_{\mathbb{R}^m} A_{z,t}^{\lambda}(w,s) \, d\mu(\lambda),$$

where

$$A_{z,t}^{\lambda}(w,s) = tr\left(\pi_{\lambda}(w,s)^*\sigma(w,s,\lambda)\sigma(z,t,\lambda)^*\pi_{\lambda}(z,t)\right).$$

Let $(z_0, w_0) \in \mathbb{G}$. Then by the weak-continuity of the mapping (9),

$$A_{z,t}^{\lambda}(w,s) \to A_{z,t}^{\lambda}(z_0,t_0)$$

as $(w, s) \rightarrow (z_0, t_0)$. Moreover, by (8), there exits C > 0 such that

$$|A_{z,t}^{\lambda}(w,s)| \le C \|\sigma(z,t,\lambda)\|_{HS}$$

Therefore, by (7) and Lebesgue's dominated convergence theorem,

$$(T_{\sigma}f_{z,t})(w,s) \rightarrow (T_{\sigma}f_{z,t})(z_0,t_0)$$

as $(w, s) \rightarrow (z_0, t_0)$. Therefore $T_{\sigma}f_{z,t}$ is continuous on \mathbb{G} and since by the assumption of the proposition $T_{\sigma}f_{z,t} = 0$ almost every where, hence

$$(T_{\sigma}f_{z,t})(z,t)=0.$$

But

$$(T_{\sigma}f_{z,t})(z,t) = \int_{\mathbb{R}^m} tr\left(\pi_{\lambda}(z,t)^*\sigma(z,t,\lambda)\sigma(z,t,\lambda)^*\pi_{\lambda}(z,t)\right) d\mu(\lambda)$$
$$= \int_{\mathbb{R}^m} tr\left(\sigma(z,t,\lambda)^*\sigma(z,t,\lambda)\right) d\mu(\lambda)$$
$$= \int_{\mathbb{R}^m} \|\sigma(z,t,\lambda)\|_{HS}^2 d\mu(\lambda) = 0$$

Hence, $\|\sigma(z, t, \lambda)\|_{HS} = 0$ for almost all $\lambda \in \mathbb{R}^{m^*}$ and therefore,

$$\sigma(z,t,\lambda)=0$$

for almost all $(z, t, \lambda) \in \mathbb{G} \times \mathbb{R}^{m^*}$

The following theorem gives necessary and sufficient conditions on a symbol σ for $T_{\sigma}: L^2(\mathbb{G}) \to L^2(\mathbb{G})$ to be a Hilbert-Schmidt operator.

Theorem 5.2 Let $\sigma : \mathbb{G} \times \mathbb{R}^{m^*} \to HS(L^2(\mathbb{R}^n))$ be a symbol satisfying the hypothesis of Proposition 5.1. Then $T_{\sigma} : L^2(\mathbb{G}) \to L^2(\mathbb{G})$ is a Hilbert-Schmidt operator if and only if

$$\sigma(z,t,\lambda) = \pi_{\lambda}(z,t) W^{\lambda}_{(\alpha(z,t)^{-\lambda})^{\wedge}}, \quad (z,t,\lambda) \in \mathbb{G} \times \mathbb{R}^{m^*}.$$

where $\alpha : \mathbb{G} \to L^2(\mathbb{G})$ is weakly continuous mapping for which

$$\begin{split} & \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} \|\alpha(z,t)\|_{L^2(\mathbb{G})}^2 \, dz \, dt < \infty, \\ & \sup_{(z,t,\lambda) \in \mathbb{G} \times \mathbb{R}^{m^*}} |\lambda|^{-n/2} \|(\alpha(z,t))^{-\lambda}\|_{L^2(\mathbb{R}^{2n})} < \infty \end{split}$$

and

$$\int_{\mathbb{R}^m} |\lambda|^{n/2} \|(\alpha(z,t))^{-\lambda}\|_{L^2(\mathbb{R}^{2n})} \, d\lambda < \infty.$$

Proof We first prove the sufficiently. Let $f \in \mathcal{S}(\mathbb{G})$. Then by Proposition 4.1,

$$(T_{\sigma}f)(z,t) = |\lambda|^{n} (2\pi)^{-m/2} \int_{\mathbb{R}^{m}} tr\left(W_{(\alpha(z,t))^{-\lambda})^{\wedge}}^{\lambda} W_{(f^{\lambda})^{\vee}}^{\lambda}\right) d\lambda.$$

By Proposition 2.3 and the trace formula in [5], we get

$$tr\left(W_{(\alpha(z,t))}^{\lambda}W_{(f^{\lambda})^{\vee}}^{\lambda}\right)$$

= $(2\pi)^{-n}\int_{\mathbb{R}^{2n}}(\alpha(z,t))^{-\lambda}(B_{\lambda}x,\xi)(f^{\lambda})^{\vee}(B_{\lambda}x,\xi)dxd\xi$
= $(2\pi)^{-n}|\lambda|^{-n}\int_{\mathbb{R}^{2n}}(\alpha(z,t))^{-\lambda}(x,\xi)(f^{\lambda})^{\vee}(x,\xi)dxd\xi$
= $(2\pi)^{-n}|\lambda|^{-n}\int_{\mathbb{R}^{2n}}(\alpha(z,t))^{-\lambda}(z')(f^{\lambda})(z')dz'.$

Hence,

$$(T_{\sigma}f)(z,t) = (2\pi)^{-(m+2n)/2} \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} (\alpha(z,t)^{-\lambda})(z') (f^{\lambda})(z') dz' d\lambda$$

= $(2\pi)^{-(m+2n)/2} \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} \alpha(z,t)(z',\lambda) f(z',\lambda) dz' d\lambda.$

So, the kernel of T_{σ} is a function on $\mathbb{R}^{2n+m} \times \mathbb{R}^{2n+m}$ given by

$$k(z,t,z',t') = (2\pi)^{-(m+2n)/2} \alpha(z,t)(z',\lambda), \quad (z,t), (z',t') \in \mathbb{R}^{2n+m}.$$
 (10)

Therefore,

$$\begin{split} &\int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} |k(z,t,z',\lambda)|^2 \, dz \, dt \, dz' \, d\lambda \\ &= (2\pi)^{-(2n+m)} \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} |\alpha(z,t)(z',\lambda)|^2 \, dz \, dt \, dz' \, d\lambda \\ &= (2\pi)^{-(2n+m)} \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} \|\alpha(z,t)\|_{L^2(\mathbb{G})}^2 \, dz \, dt < \infty. \end{split}$$

Thus, T_{σ} is a Hilbert-Schmidt operator. Conversely, suppose that $T_{\sigma} : L^2(\mathbb{G}) \to L^2(\mathbb{G})$ is a Hilbert Schmidt operator. Then there exists a function k in $L^2(\mathbb{R}^{2n+m} \times \mathbb{R}^{2n+m})$ such that

$$(T_{\sigma}f)(z,t) = \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} k(z,t,z',\lambda) f(z',\lambda) \, dz' \, d\lambda, \quad (z,t) \in \mathbb{G},$$

for all $f \in L^2(\mathbb{G})$. We define $\alpha : \mathbb{G} \to L^2(\mathbb{G})$ by

$$\alpha(z,t)(z',\lambda) = (2\pi)^{(m+2n)/2}k(z,t,z',\lambda).$$

Then reversing the argument in the proof of the sufficiency and using Proposition 5.1, we have

$$\sigma(z,t,\lambda) = \pi_{\lambda}(z,t) W^{\lambda}_{(\alpha(z,t)^{-\lambda})^{\wedge}}, \quad (z,t,\lambda) \in \mathbb{G} \times \mathbb{R}^{m^*}.$$

Corollary 5.3 Let $\beta \in L^2(\mathbb{G} \times \mathbb{G})$ be such that

$$\int_{\mathbb{R}^m}\int_{\mathbb{R}^{2n}}|\beta(z,t,z,t)|\,dz\,dt<\infty.$$

Let

$$\sigma(z,t,\lambda) = \pi_{\lambda}(z,t) W^{\lambda}_{(\alpha(z,t)^{-\lambda})^{\wedge}}, \quad (z,t,\lambda) \in \mathbb{G} \times \mathbb{R}^{m^*},$$

where

$$\alpha(z,t)(z',\lambda) = \beta(z,t,z',\lambda), \quad (z,t), (z',\lambda) \in \mathbb{G} \times \mathbb{R}^{m^*}.$$

Then $T_{\sigma}: L^{2}(\mathbb{G}) \to L^{2}(\mathbb{G})$ is a trace class operator and

$$tr(T_{\sigma}) = (2\pi)^{-(2n+m)} \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} \beta(z,t,z,t) \, dz \, dt.$$

Corollary 5.3 follows from the formula (10) on the kernel of the pseudodifferential operator in the proof of the preceding theorem.

Theorem 5.4 Let $\sigma : \mathbb{G} \times \mathbb{R}^{m^*} \to HS(L^2(\mathbb{R}^n))$ be a symbol satisfying the hypothesis of Proposition 5.1. Then $T_{\sigma} : L^2(\mathbb{G}) \to L^2(\mathbb{G})$ is a trace class operator if and only if

$$\sigma(z,t,\lambda) = \pi_{\lambda}(z,t) W^{\lambda}_{(\alpha(z,t)^{-\lambda})^{\wedge}}, \quad (z,t,\lambda) \in \mathbb{G} \times \mathbb{R}^{m^*},$$

where $\alpha:\mathbb{G}\to L^2(\mathbb{G})$ is a mapping such that the conditions of Theorem 5.2 are satisfied and

$$\alpha(z,t)(z',\lambda) = \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} \alpha_1(z,t)(w,s)\alpha_2(w,s)(z',\lambda) \, dw \, ds$$

for all (z, t) and (z', λ) in $\mathbb{G} \times \mathbb{R}^{m^*}$, where $\alpha_1 : \mathbb{G} \to L^2(\mathbb{G})$ and $\alpha_2 : \mathbb{G} \to L^2(\mathbb{G})$ are such that

$$\int_{\mathbb{R}^m}\int_{\mathbb{R}^{2n}}\|\alpha_j(z,t)\|_{L^2(\mathbb{G})}^2\,dz\,dt<\infty,\quad j=1,2.$$

Moreover, the trace of T_{σ} is given by

$$tr(T_{\sigma}) = \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} \alpha(z, t)(z, t) \, dz \, dt$$
$$= \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} \int_{\mathbb{R}^m} \int_{\mathbb{R}^{2n}} \alpha_1(z, t)(w, s) \alpha_2(w, s)(z, t) \, dw \, ds \, dz \, dt$$

Theorem 5.4 follows from Theorem 5.2 and the fact that every trace class operator is a product of two Hilbert-Schmidt operators.

References

- R. Beals, P.C. Greiner, *Calculus on Heisenberg Manifolds*. Annals of Mathematics Studies, vol. 119 (Princeton University Press, Princeton, 1988)
- 2. R.T. Carlos Andres, L^p -estimates for pseudo-differential operators on \mathbb{Z}^n . J. Pseudo Differ. Oper. Appl. 2, 367–375 (2011)
- 3. Z. Chen, M.W. Wong, Traces of pseudo-differential operators on \mathbb{S}^{n-1} . J. Pseudo Differ. Oper. Appl. **4**, 13–24 (2013)
- 4. A. Dasgupta, M.W. Wong, Hilbert-Schmidt and trace class pseudo-differential operators on the Heisenberg group. J. Pseudo-Differ. Oper. Appl. **4**, 345–359 (2013)
- 5. J. Du, M.W. Wong, A trace formula for Weyl transforms. Approx. Theory Appl. 16, 41–45 (2000)
- 6. A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Am. Math. Soc. **258**, 147–153 (1980)
- 7. K.A. Korànyi, Geometric properties of Heisenberg type groups. Adv. Math. 56, 28–38 (1986)
- S. Molahajloo, M.W. Wong, Ellipticity, Fredholmness and spectral invariance of pseudodifferential operators on S¹. J. Pseudo Differ. Oper. Appl. 1, 183–205 (2010)
- 9. S. Thangavelu, *Lectures on Hermite and Laguerre Functions* (Princeton University Press, Princeton, 1993)
- 10. S. Thangavelu, Harmonic Analysis on the Heisenberg Group (Birkhäuser, Boston, 1998)
- 11. J. Tie, The non-isotropic twisted Laplacian on \mathbb{C}^n and the sub-Laplacian on \mathbf{H}_n . Commun. Partial Differ. Equ. **31**, 1047–1069 (2006)
- J. Tie, M.W. Wong, Wave kernels of the twisted Laplacian, in *Modern Trends in Pseudodifferential Operators*. Operator Theory: Advances and Applications, vol. 172 (Birkhäuser, Basel/Boston, 2007), pp. 107–115
- 13. M.W. Wong, Weyl Transforms (Springer, New York, 1998)
- 14. M.W. Wong, Discrete Fourier Analysis (Birkhaüser, Basel, 2011)