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Abstract We introduce non-isotropic Heisenberg groups with multi-dimensional
centers and the corresponding Schrödinger representations. The Wigner and Weyl
transforms are then defined. We prove the Stone-von Neumann theorem for the
non-isotropic Heisenebrg group by means of Stone-von Neumann theorem for the
ordinary Heisenebrg group. Using this theorem, the Fourier transform is defined in
terms of these representations and the Fourier inversion formula is given. Pseudo-
differential operators with operator-valued symbols are introduced and can be
thought of as non-commutative quantization. We give necessary and sufficient
conditions on the symbols for which these operators are in the Hilbert-Schmidt
class. We also give a characterization of trace class pseudo-differential operators
and a trace formula for these trace class operators.
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1 Introduction

The Heisenberg group is the simplest non-commutative nilpotent Lie group. It
is actually the first locally compact group whose infinite-dimensional, irreducible
representations were classified. Harmonic analysis on the Heisenberg group is a
subject of constant interest in various areas of mathematics, from Partial Differential
Equations to Geometry and Number Theory.
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We fix the vector .a1; a2; � � � ; an/ in R
n. The non-isotropic Heisenberg group on

R
n � R

n � R is defined by the group law

.z; t/ � .z0; t0/ D
0
@z C z0; t C t0 C 1

2

nX
jD1

aj.xjy
0
j � x0

jyj/

1
A ;

for all z D .x; y/, z0 D .x0; y0/ in R
n � R

n and t; t0 are in R. If we let aj D 1, for all
1 � j � n, then we get the ordinary Heisenberg group H

n see [4]. The center of the
non-isotropic Heisenberg group H

n is the 1-dimensional subgroup Z given by

Z D f.0; 0; t/ 2 R
n � R

n � R W t 2 Rg :

In the non-isotropic Heisenberg group the terms xky0
l for l 6D k, do not appear in

the group law. In other words we do not consider these directions in the group law.
We want to generalize this group to a group that has changes in other directions
as well. Moreover, we want to look at a group with a multi-dimensional center
which is of interest in Geometry. To do this, we consider n � n orthogonal matrices
B1;B2; : : : ;Bm such that

Bj
�1Bk D �B�1

k Bj; j 6D k: (1)

Example 1.1 Let m D 2, then

B1 D
�
1 0

0 �1
�

and B2 D
�
0 1

1 0

�
satisfy the above conditions.

Then we define the non-isotropic Heisenberg group with multi-dimensional
center G on R

n � R
n � R

m by

.z; t/ � .z0; t0/ D
�
z C z0; t C t0 C 1

2
Œz; z0�

�
;

for .z; t/ and .z0; t0/ in R
n � R

n � R
m where z D .x; y/, z0 D .x0; y0/ in R

n � R
n,

t; t0 2 R
m and Œz; z0� 2 R

m is defined by

Œz; z0�j D x0 � Bjy � x � Bjy
0; j D 1; 2; : : : ;m:

The center of the non-isotropic Heisenberg group with multi-dimensional center is
of dimension m and of the form .0; 0; t/, t 2 R

m. To see this, we denote the center
of G by C.G/. Let .z0; t0/ be in C.G/, then for all .z; t/ 2 G

.z; t/ � .z0; t0/ D .z0; t0/ � .z; t/:

Hence, Œz; z0� D 0. Therefore, for all x; y 2 R
n

x0Bjy � xBjy0 D 0; 1 � j � n:
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In particular for x D x0, and for all y 2 R
n

�
x0;Bj.y � y0/

� D 0:

So, B�1
j x0 D 0, which implies x0 D 0. Similarly we get y0 D 0.

In fact, G is a unimodular Lie group on which the Haar measure is just the
ordinary Lebesgue measure dzdt. Moreover, this is a special case of the Heisenberg
type group. The Heisenberg type group first was introduced by A. Kaplan [6]. The
geometric properties of the H-type group is studied in e.g. [7].

Note that if we let m D 1 and B1 D �In where In is the n � n identity matrix.
Then we get the ordinary Heisenberg group H

n.
It is well-known from [9, 10, 13] that Weyl transforms have intimate connections

with analysis on the Heisenberg group and with the so-called twisted Laplacian
studied in, e.g., [1, 11, 12]. We begin with a recall of the basic definitions and
properties of Weyl transforms and Wigner transforms in, for instance, the book [13].
Let � 2 L2.Rn�R

n/. Then the Weyl transformW� W L2.Rn/ ! L2.Rn/ is defined by

.W� f ; g/L2.Rn/ D .2�/�n=2
Z
Rn

Z
Rn
�.x; �/W. f ; g/.x; �/ dx d�; f ; g 2 L2.Rn/;

where W. f ; g/ is the Wigner transform of f and g defined by

W. f ; g/.x; �/ D .2�/�n=2
Z
Rn

e�i��pf
�
x C p

2

	
g

�
x � p

2

	
dp; x; � 2 R

n:

Closely related to the Wigner transform W. f ; g/ of f and g in L2.Rn/ is the Fourier–
Wigner transform V. f ; g/ given by

V. f ; g/.q; p/ D .2�/�n=2
Z
Rn

eiq�yf
�
y C p

2

	
g

�
y � p

2

	
dy; q; p 2 R

n:

It is easy to see that

W. f ; g/ D V. f ; g/^

for all f and g in L2.Rn/, where ^ denotes the Fourier transform given by

bF.�/ D .2�/�n=2
Z
Rn

e�ix��F.x/ dx; � 2 R
n;

for all F in L1.Rn/.
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Let � be a measurable function on R
n�R

n. Then the classical pseudo-differential
operator T� associated to the symbol � is defined by

.T�'/ .x/ D .2�/�n=2
Z
Rn

eix���.x; �/ O'.x/ d�; x 2 R
n;

for all ' in the Schwartz space S.Rn/, provided that the integral exists. Once the
Fourier inversion formula is in place, a symbol � defined on the phase space Rn�R

n

is inserted into the integral for the purpose of localization and a pseudo-differential
operator is obtained. Another basic ingredient of pseudo-differential operators on
R

n in the genesis is the phase space Rn � R
n, which we can look at as the Cartesian

product of the additive group R
n and its dual that is also the additive group R

n.
These observations allow in principle extensions of pseudo-differential operators to
other groups G provided that we have an explicit formula for the dual of G and an
explicit Fourier inversion formula for the Fourier transform on the group G. This
program has been carried out in, e.g., [2, 3, 8, 14]. The aim of this paper is to look
at pseudo-differential operators on the non-isotropic Heisenberg group with multi-
dimensional center.

In Sect. 2, We define the Schrödinger representation corresponding to the non-
isotropic Heisenberg group. Using the representation, we define the �-Wigner and
�-Weyl transform related the non-isotropic Heisenberg group. The Moyal identity
for the �-Wigner transform and Hilbert-Schmidt properties of the �-Weyl transform
are proved. In Sect. 3, Using the Schrödinger represenation for the ordinary
Heisenberg group we prove the Stone-von Neumann theorem on G. Using the Von-
Neumann theorem for the non-isotropic group with multi-dimensional center, we
define the operator-valued Fourier transform of G in Sect. 4. Then, in Sect. 5, we
define pseudo-differential operators corresponding to the operator-valued symbols.
Then the L2-boundedness and the Hilbert-Schmidt properties of pseudo-differential
operators on the group G are given. Trace class pseudo-differential operators on the
group G are given and a trace formula is given for them.

2 Schrödiner Representations for Non-isotropic Heisenberg
Groups with Multi-dimensional Centers

Let

R
m� D R

m n f0g

and let � 2 R
m�. We define the Schrödinger representation of G on L2.Rn/ by

.��.q; p; t/'/ .x/ D ei��teiq�B�.xCp=2/'.x C p/; x 2 R
n
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for all ' 2 L2.Rn/ and .q; p; t/ 2 G, where z D .q; p/ 2 R
n � R

n and B� DPm
jD1 �jBj. If we let

.��.q; p/'/ .x/ D eiq�B�.xCp=2/'.x C p/:

Then

��.q; p; t/ D ei��t��.q; p/:

To prove that �� is a group homomorphism, we need the following easy lemma.

Lemma 2.1 For all z; z0 2 R
n � R

n and � 2 R
m� we have

��.z/��.z
0/ D e

i
2 ��Œz;z0���.z C z0/:

The following theorem tells us that �� is in fact a unitary group representation of
G on L2.Rn/.

Theorem 2.2 �� is a unitary group representation of G on L2.Rn/.

Proof By Lemma 2.1, it is easy to see that for all .z; t/ and .z0; t0/ in G,

��..z; t/ � .z0; t0// D ��.z; t/��.z
0; t0/:

Now let '; 2 L2.Rn/. Then for all .q; p; t/ 2 G,

.��.q; p; t/';  / D
Z
Rn

ei��teiq�B�.xCp=2/'.x C p/ .x/ dx

D
Z
Rn
'.y/e�i��te�iq�B�.y�p=2/ .y � p/ dy

D
Z
Rn
'.y/.��.�z;�t/ / .y/ dy

D .'; ��.�z;�t/ / :

Hence ��.z; t/� D ��..z; t/�1/. ut
In fact �� is an irreducible representation of G on L2.Rn/. To prove this we need

some preparation. Let f ; g 2 L2.Rn/. We define the �-Fourier Wigner transform of
f and g on R

n � R
n by

V�. f ; g/.q; p/ D .2�/�n=2 .��.q; p/f ; g/ :
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In fact,

V�. f ; g/.q; p/ D .2�/�n=2
Z
Rn

eiB
t
�q�xf .x C p

2
/g.x � p

2
/ dx:

Therefore, the �-Fourier Wigner transform is related to the ordinary Fourier Wigner
transform by

V�. f ; g/.q; p/ D V. f ; g/.Bt
�q; p/: (2)

Note that

V�. f ; g/.q;�p/ D V�.g; f /.q; p/; q; p 2 R
n:

Now, we define the �-Wigner transform of f ; g 2 L2.Rn/ by

W�. f ; g/ D 2V�. f ; g/:

In fact, �-Wigner transform has the form

W� . f ; g/ .x; �/ D j�j�n.2�/�n=2
Z
Rn

e�ip�� f .
Bt
�x

j�j2 C p

2
/g.

Bt
�x

j�j2 � p

2
/ dp

and it is related to the ordinary Wigner trasform by

W�. f ; g/.x; �/ D j�j�nW. f ; g/.
Bt
�x

j�j2 ; �/

for all x; � in R
n. Moreover,

W�. f ; g/ D W�.g; f /:

By using (1) and the fact that Bj, 1 � j � n are orthogonal matrices, we get the
following result.

Proposition 2.1 B�Bt
� D j�j2I, where I is the identity n � n matrix. In particular

detB� D j�jn.
The following proposition gives us the relation between the dimesion of the

center of the non-isotropic Heisenebrg group and its phase space.

Proposition 2.2 Let G be the non-isotropic Heisenberg group on R
n � R

n � R
m.

Then m � n2.
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Proof For all 1 � k � m and 1 � i; j � n, let .Bk/ij be the entry of the matrix Bk in
the i-th row and j-th column. Then the n2 � m matrix

C D

2
66666666666664

.B1/11 .B2/11 : : : .Bm/11

.B1/12 .B2/12 : : : .Bm/12
:::

:::
: : :
:::

.B1/1n .B2/1n : : : .Bm/1n

.B1/21 .B2/21 : : : .Bm/21

.B1/22 .B2/22 : : : .Bm/22
:::

:::
:::

:::

.B1/nn .B2/nn : : : .Bm/nn

3
77777777777775

has rank m. To prove this, it is enough to show that the columns of C are linearly
independent. Let Ci be the i-th column of C and let � 2 R

m be such that

mX
iD1

�iC
i D 0:

It follows that B� D 0. Therefore by Proposition 2.1, we get � D 0. ut
Let � 2 S.Rn � R

n/ and f 2 S.Rn/, then we define the �-Weyl transform W�
� f

of f corresponding to the symbol � by

�
W�
� f ; g

�
L2.Rn/

D .2�/�n=2
Z
Rn

Z
Rn
�.x; �/W�. f ; g/.x; �/ dx d�;

for all g 2 S.Rn/. Therefore, using the Parseval’s identity, we have

�
W�
� f ; g

�
L2.Rn/

D .2�/�n=2
Z
Rn

Z
Rn

O�.q; p/V�. f ; g/.q; p/ dq dp:

Hence, formally we can write,

�
W�
� f

�
.x/ D .2�/�n

Z
Rn

Z
Rn

O�.q; p/ .��.q; p/f / .x/ dq dp:

Proposition 2.3 Let � 2 S.Rn � R
n/. Then the �-Weyl transform W�

� is given by

W�
� D W�� ;

where W�� is the ordinary Weyl transform corresponding to the symbol

��.x; �/ D �.B�x; �/:
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Proposition 2.4 Let � 2 S.Rn � R
n/. Then the �-Weyl transform W�

� is a Hilber-
Schmidt operator with kernel

k�� .x; p/ D .F2�/
�
B�.

x C p

2
/; p � x

�
;

where F2� is the ordinary Fourier transform of � with respect to the second
variable, i.e.,

.F2�/ .x; p/ D .2�/�n=2
Z
Rn

e�i��p�.x; �/ d�:

Moreover,

kW�
� kHS D j�j�n=2k�kL2.Rn�Rn/

Proof By Proposition 2.4 and the kernel of the ordinary Weyl transform (see [13]
for details), we have

k�� .x; p/ D .F2��/
�
x C p

2
; p � x

�

D .F2�/
�
B�.

x C p

2
/; p � x

�
:

Hence,

kW�
� k2HS D

Z
Rn

Z
Rn

jk�� .x; p/j2 dx dp

D
Z
Rn

Z
Rn

ˇ̌
ˇ̌.F2�/

�
B�.

x C p

2
/; p � x

�ˇ̌
ˇ̌
2

dx dp

D j�j�n
Z
Rn

Z
Rn

j.F2�/ .x; p/j2 dx dp

D j�j�nk�k2L2.Rn�Rn/
;

which completes the proof. ut
Let F and G be functions in L2.R2n/. The �-twisted convolution of F and G

denoted by F �� G on R
2n is defined by

.F �� G/.z/ D
Z
R2n

F.z � w/G.w/e
i
2 �:Œz;w� dw:

By Lemma 2.1 we get the following theorem.
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Theorem 2.3 Let � and � be in L2.R2n/. Then

W�
�W

�
� D W�

!;

where O! D .2�/�n. O� �� O�/.
Using the Moyal identity for the ordinary Wigner transform we have the follow-

ing Moyal identity for the �-Wigner transform and �-Fourier Wigner transform.

Proposition 2.5 For all f1; f2; g1; g2 in L2.Rn/

.W�. f1; g1/;W�. f2; g2// D j�j�n . f1; f2/ .g1; g2/;

and

.V�. f1; g1/;V�. f2; g2// D j�j�n . f1; f2/ .g1; g2/:

Now, we are ready to prove the following theorem.

Theorem 2.4 For all � 2 R
m�, �� is a unitary irreducible representation of G on

L2.Rn/.

Proof suppose M � L2.Rn/ is a nonzero closed invariant subspace of �� and f 2
M n f0g. Then

��.q; p; t/M � M; .q; p; t/ 2 G:

If M 6D L2.Rn/, then we can find g 2 L2.Rn/ such that

.��.q; p; t/f ; g/ D 0; .q; p; t/ 2 G:

But,

.��.q; p; t/f ; g/ D ei��t .��.q; p/f ; g/

D ei��t.2�/n=2V�. f ; g/.p; q/:

So,

V�. f ; g/.q; p/ D 0

for all .p; q/ 2 R
n � R

n. By the Moyal identity,

kV�. f ; g/k2L2.Rn�Rn/
D j�j�nk fk2L2.Rn/

kgk2L2.Rn/
D 0:

So, f D 0 or g D 0 which is a contradiction. ut
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3 Stone-Von Neumann Theorem on G

Let U.L2.Rn// be the space of unitary operators on L2.Rn/. Let h 2 R
�, then the

Schrödinger representation �h W Hn ! U.L2.Rn// on the ordinary Heisenebrg group
is defined by

.�h.q; p; t/'/ .x/ D eihteiq�.xChp=2/f .x C hp/; x 2 R
n;

for all f 2 L2.Rn/. Then �h is an irreducible unitary representation of Hn on L2.Rn/.
By the Stone-von Neumann theorem, any irreducible unitary representation of Hn

on a Hilbert space that is non-trivial on the center is equivalent to some �h. More
precisely we have

Theorem 3.1 Let � be an irreducible unitary represenatation of Hn on a Hilbert
spaceH, such that �.0; 0; t/ D eihtI for some h 2 R

�. Then � is unitarily equivalent
to �h.

Similarly, we prove the Stone-von Neumann theorem for the non-isotropic
Heisenberg group G. To prove we use the following lemma.

Lemma 3.2 Let � 2 R
m�. The mapping ˛� W G ! H

n defined by

˛�.q; p; t/ D .Bt
�q;

p

j�j ;
� � t
j�j /; .q; p; t/ 2 G

is a surjective homomorphism of Lie groups. In particular, G= ker˛� is isomorphic
to Hn where

ker˛� D f.0; 0; t/ W .t; �/ D 0g:

Proof To prove ˛� is a group homomorphism, let .q; p; t/; .q0; p0:t0/ 2 G. Then

˛�..q; p; t/ �G .q0; p0; t0// D ˛�.q C q0; p C p0; t C t0 C 1

2
Œz; z0�/

D
�
Bt
�.q C q0/;

p C p0

j�j ; � � .t C t0 C 1

2
Œz; z0�/=j�j

�

Since � � Œz; z0� D .q0;B�p/ � .q;B�p0/, therefore

˛�..q; p; t/ �G .q0; p0; t0//

D .Bt
�q;

p

j�j ;
� � t
j�j / �Hn .Bt

�q
0;

p0

j�j ;
� � t0
j�j /

D ˛�..q; p; t/ �Hn ˛�.q
0; p0; t0//: (3)

Surjectivity is easy to see, since B� is invertible. ut



Pseudo-differential Operators on Non-isotropic Heisenberg Groups 25

The following lemma gives the connection between the Schrödinger represen-
tation on the ordinary Heisenberg group H

n and the representations �� on the
non-isotropic Heisenberg group G.

Lemma 3.3 For all � 2 R
m�,

�� D �j�j ı ˛�:

Now, we are ready to prove the Stone von-Neumann theorem for the non-
isotropic Heiseneberg group.

Theorem 3.4 Let …� be an irreducible unitary group representation of G on a
Hilbert space H such that …�.0; 0; t/ D ei��tI, for some � 2 R

m. Then …� is
unitarily equivalent to ��

Proof Let …j�j W H
n ! U.H/ be defined by …j�j D …�PT where T is the

isomorphism of Hn onto G= ker˛� (see Lemma 3.2) and P is the projection from
G= ker˛� onto G. Then …j�j.0; 0; t0/ D eij�jto I, for all t0 2 R. Moreover,…j�j is an
irreducible unitary representation of Hn on the Hilbert space H. This can be easily
seen by using the fact that…� is an irreducible unitary representation of G on H.

ut

4 Fourier Transforms and the Fourier Inversion Formula
on G

By the Stone-von Neumann theorem every irreducible unitary representation of G
which acts non-trivially on the center is in fact unitarily equivalent to exactly one of
��, � 2 R

m�. Hence, the identification of f�� W � 2 R
m�g with R

m� will be used.
Let f 2 L1.G/ and � 2 R

m�. We define the Fourier transform of f at � to be the
bounded linear operator Of .�/ from L2.Rn/ into L2.Rn/ given by

Of .�/' D
Z
Rm

Z
R2n

f .z; t/ .��.z; t/'/ dz dt; ' 2 L2.Rn/:

To see the boundedness of Of .�/, let '; 2 L2.Rn/. Then By Schwarz inequality

ˇ̌
ˇ
�Of .�/';  

	ˇ̌
ˇ �

Z
Rm

Z
R2n

j f .z; t/j j .��.z; t/';  / j dz dt

�
Z
Rm

Z
R2n

j f .z; t/j k��.z; t/'kL2.Rn/k kL2.Rn/ dz dt:

� k fkL1.G/k'kL2.Rn/k kL2 .Rn/:
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Set

f �.z/ D .2�/�m=2
Z
Rm

ei��tf .z; t/ dt:

Then Of .�/' has the form

Of .�/' D .2�/m=2
Z
R2n

f �.z/ .��.z/'/ dz:

Therefore we have following proposition relating the Fourier transform Of .�/ to the
�-Weyl transform.

Proposition 4.1 Let f 2 L1.G/. Then for all � 2 R
m�

Of .�/ D .2�/.2nCm/=2W�
. f�/_ ;

where . f �/_ is the inverse Fourier transform of f � on R2n.

We have the following Plancheral’s formula for the Fourier transform on the non-
isotropic Heisenberg group with multi-dimensional center.

Theorem 4.1 Let f 2 L2.G/ and � 2 R
m�. Then Of .�/ W L2.Rn/ ! L2.Rn/ is a

Hilbert-Schmidt operator. In fact we have

(i) The kernel of Of .�/ is given by

k�.x; p/ D .2�/.nCm/=2
�F�1

1 f �
� �

B�.
x C p

2
/; p � x

�

where F�1
1 f � is the ordinary inverse Fourier transform of f � with respect to the

first variable, i.e.,

�F�1
1 f �

�
.x; p/ D .2�/�n=2

Z
Rn

eix�qf �.q; p/ dq: .x; p/ 2 R
n � R

n:

(ii) The Hilbert-Schmidt norm of Of .�/ is given by

k Of .�/k2HS D .2�/mCnj�j�nk f �k2L2.R2n/:

(iii) Let d	.�/ D .2�/�.nCm/j�jn d�. We have the following Plancheral’s formula
Z
Rm

k Of .�/k2HS d	.�/ D k fk2L2.G/:
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Proof Let ' be in L2.Rn/. Then for all x 2 R
n,

�Of .�/'
	
.x/ D .2�/m=2

Z
R2n

f �.q; p/ .��.q; p/'/ .x/ dq dp

D .2�/m=2
Z
R2n

f �.q; p/eiq�B�.xC p
2 /'.x C p/ dq dp

D
Z
Rn

�
.2�/m=2

Z
Rn

eiq�B�. xCp
2 /f �.q; p � x/ dq

�
'.p/ dp

D
Z
Rn

k�.x; p/'.p/ dp

where

k�.x; p/ D .2�/.nCm/=2
�F�1

1 f �
� �

B�.
x C p

2
/; p � x

�
:

Hence the Hilbert-Schmidt norm of Of .�/ is given by

k Of .�/jk2HS D kk�k2L2.Rn�Rn/

D .2�/.nCm/
Z
Rn

Z
Rn

ˇ̌
ˇ̌�F�1

1 f �
� �

B�.
x C p

2
/; p � x

�ˇ̌
ˇ̌
2

dx dp

D .2�/.nCm/
Z
Rn

Z
Rn

ˇ̌�F�1
1 f �

�
.x; p/

ˇ̌2 j�j�n dx dp

D j�j�n.2�/.nCm/k f �k2L2.R2n/ (4)

where in (4) we used the Parseval’s identity for the ordinary Fourier transform. ut
Now we are ready to prove the inversion formula for the non-isotropic group

Fourier transform.

Theorem 4.2 Let f be a Schwartz function on G. Then we have

f .z; t/ D
Z
Rm

tr
�
��.z; t/

�Of .�/
	
d	.�/; .z; t/ 2 G:

Proof For all .z; t/ 2 G,

��.z; t/
� Of .�/ D ��.�z;�t/

Z
Rm

Z
R2n

f .Qz; Qt/ ��.Qz; Qt/ dQz dQt

D
Z
Rm

Z
R2n

f .Qz; Qt/ �� ..�z;�t// � .Qz; Qt// dQz dQt
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D
Z
Rm

Z
R2n

f .Qz; Qt/ ��
�

�z C Qz;�t C Qt C 1

2
Œ�z; Qz�

�
dQz dQt

D
Z
Rm

Z
R2n

f .Qz; Qt/ei �2 �Œ�z;Qz��� .�z C Qz;�t C Qt/ dQz dQt:

Now, we let z0 D �z C Qz and t0 D �t C Qt. W get

��.z; t/
� Of .�/ D

Z
Rm

Z
R2n

g.z0; t0/��.z0; t0/ dz0 dt0;

where

g.z0; t0/ D e�i �2 �Œz;z0�f .z0 C z; t0 C t/:

Hence,

��.z; t/
� Of .�/ D Og.�/:

By Theorem 4.1, the kernel of Og.�/ is given by

k�.x; p/ D .2�/.nCm/=2
�F�1

1 g�
� �

B�.
x C p

2
/; p � x

�
:

Therefore,

tr
�
��.z; t/

� Of .�/
	

D
Z
Rn

k�.x; x/ dx:

So, for z D .u; v/ 2 R
n � R

n,

k�.x; x/ D .2�/.nCm/=2
�F�1

1 g�
�
.B�x; 0/

D .2�/m=2
Z
Rn

eiB�x��g�.�; 0/ d�:

On the other hand, it is easy to see that

g�.z0/ D e�i �2 �Œz;z0�e�i��tf �.z C z0/:

So, for z D .u; v/ 2 R
n � R

n, and z0 D .�; 0/, we get

g�.�; 0/ D e
�i
2 B�v��e�i��tf �.� C u; v/:
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Hence,

k�.x; x/ D .2�/m=2
Z
Rn

eiB�x��e
�i
2 B�v��e�i��tf �.� C u; v/ d�

D .2�/m=2e�i��tei.�B�xCB�v=2/�u
Z
Rn

ei.B�x�B�v=2/�� f �.�; v/ d� (5)

Therefore,

tr
�
��.z; t/

� Of .�/
	

D .2�/m=2e�i��teiB�v=2�u
Z
Rn

e�ix�Bt
�u


Z
Rn

ei��.�B�v=2CB�x/f �.�; v/ d�

�
dx

D .2�/.mCn/=2e�i��teiB�v=2�u
Z
Rn

e�ix�Bt
�u

�F�1
1 f �

�
.�B�v=2C B�x; v/ dx

D .2�/.mCn/=2e�i��tj�j�n
Z
Rn

e�ix�u �F�1
1 f �

�
.x; v/ dx

D .2�/m=2Cne�i��tj�j�nf �.u; v/:

By integrating both sides of

tr
�
��.z; t/

� Of .�/
	
.2�/�.nCm/j�jn D .2�/�m=2e�i��tf �.z/

with respect to �, we get the Fourier inversion formula. ut

5 Pseudo-differential Operators on Non-isotropic Heisenberg
Groups with Multi-dimensional Centers

Let B.L2.Rn// be the C�-algebra of all bounded linear operators on L2.Rn/. Then
consider the operator valued symbol

� W G � R
m� ! B.L2.Rn//:

We define the pseudo-differential operator T� W L2.G/ ! L2.G/ corresponding to
the symbol � by

.T� f / .z; t/ D
Z
Rm

tr
�
��.z; t/

��.z; t; �/Of .�/
	
d	.�/; .z; t/ 2 G
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for all f 2 L2.G/. Let HS.L2.Rn// be the space of Hilbert-Schmidt operators on
L2.Rn/. We have the following theorem on L2-boundedness of pseudo-differential
operators.

Theorem 5.1 Let � W G � R
m� ! HS.L2.Rn// be such that

C2� D
Z
Rm

Z
G

k�.z; t; �/k2HS dz dt d	.�/ < 1:

Then T� W L2.G/ ! L2.G/ is a bounded linear operator and

kT�kop � C� ;

where k � kop is the operator norm on the C�-algebra of bounded linear operators
on L2.G/.

Proof Let f 2 L2.G/. Then by Minkowski’s inequality we have

kT� fkL2.G/ D
( Z

Rm

Z
R2n

ˇ̌
ˇ̌
Z
Rm

tr
�
��.z; t/

��.z; t; �/Of .�/
	
d	.�/

ˇ̌
ˇ̌
2

dz dt

) 1=2

�
Z
Rm


Z
Rm

Z
R2n

ˇ̌
ˇtr

�
��.z; t/

��.z; t; �/Of .�/
	ˇ̌
ˇ
2

dz dt

� 1=2
d	.�/

�
Z
Rm


Z
Rm

Z
R2n

k�.z; t; �/k2HSk Of .�/k2HS dz dt
� 1=2

d	.�/

D
Z
Rm

k Of .�/kHS

Z

Rm

Z
R2n

k�.z; t; �/k2HS dz dt
� 1=2

d	.�/:

� C�k fkL2.G/ (6)

where in (6), we used Hölder’s inequality. ut
The following result tells us that under suitable conditions, two symbols of the

same pseudo-differential operator are equal.

Proposition 5.1 Let � W G � R
m� ! HS.L2.Rn// be such that

Z
Rm

Z
G

k�.z; t; �/k2HS dz dt d	.�/ < 1:
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Furthermore suppose that

Z
Rm

k�.z; t; �/kHS d	.�/ < 1; .z; t/ 2 G; (7)

sup
.z;t;�/2G�Rm�

k�.z; t; �/kHS < 1; (8)

and the mapping

G � R
m� 3 .z; t; �/ 7! ��.z; t/

��.z; t; �/ 2 HS.L2.Rn// (9)

is weakly continuous. Then T� f D 0 for all f only if

�.z; t; �/ D 0

for almost all .z; t; �/ 2 G � R
m�.

Proof For all .z; t/ 2 G, we define fz;t 2 L2.G/ by

bfz;t.�/ D �.z; t; �/���.z; t/:

Then, for all .w; s/ 2 G

.T� fz;t/ .w; s/ D
Z
Rm

A�z;t.w; s/ d	.�/;

where

A�z;t.w; s/ D tr
�
��.w; s/

��.w; s; �/�.z; t; �/���.z; t//
�
:

Let .z0;w0/ 2 G. Then by the weak-continuity of the mapping (9),

A�z;t.w; s/ ! A�z;t.z0; t0/

as .w; s/ ! .z0; t0/. Moreover, by (8), there exits C > 0 such that

jA�z;t.w; s/j � Ck�.z; t; �/kHS
Therefore, by (7) and Lebesgue’s dominated convergence theorem,

.T� fz;t/ .w; s/ ! .T� fz;t/ .z0; t0/
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as .w; s/ ! .z0; t0/. Therefore T� fz;t is continuous on G and since by the assumption
of the proposition T� fz;t D 0 almost every where, hence

.T� fz;t/ .z; t/ D 0:

But

.T� fz;t/ .z; t/ D
Z
Rm

tr
�
��.z; t/

��.z; t; �/�.z; t; �/���.z; t/
�
d	.�/

D
Z
Rm

tr
�
�.z; t; �/��.z; t; �/

�
d	.�/

D
Z
Rm

k�.z; t; �/k2HS d	.�/ D 0

Hence, k�.z; t; �/kHS D 0 for almost all � 2 R
m� and therefore,

�.z; t; �/ D 0

for almost all .z; t; �/ 2 G � R
m� ut

The following theorem gives necessary and sufficient conditions on a symbol �
for T� W L2.G/ ! L2.G/ to be a Hilbert-Schmidt operator.

Theorem 5.2 Let � W G � R
m� ! HS

�
L2.Rn/

�
be a symbol satisfying the

hypothesis of Proposition 5.1. Then T� W L2.G/ ! L2.G/ is a Hilbert-Schmidt
operator if and only if

�.z; t; �/ D ��.z; t/W
�
.˛.z;t/��/^ ; .z; t; �/ 2 G � R

m�;

where ˛ W G ! L2.G/ is weakly continuous mapping for which

Z
Rm

Z
R2n

k˛.z; t/k2L2 .G/ dz dt < 1;

sup
.z;t;�/2G�Rm�

j�j�n=2k.˛.z; t//��kL2.R2n/ < 1

and
Z
Rm

j�jn=2k.˛.z; t//��kL2.R2n/ d� < 1:

Proof We first prove the sufficiently. Let f 2 S.G/. Then by Proposition 4.1,

.T� f / .z; t/ D j�jn.2�/�m=2
Z
Rm

tr
�
W�
.˛.z;t//��/^W

�
. f�/_

	
d�:
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By Proposition 2.3 and the trace formula in [5], we get

tr
�
W�
.˛.z;t/��/^W

�
. f�/_

	

D .2�/�n
Z
R2n
.˛.z; t/��/^.B�x; �/ . f �/_.B�x; �/ dx d�

D .2�/�nj�j�n
Z
R2n
.˛.z; t/��/^.x; �/ . f �/_.x; �/ dx d�

D .2�/�nj�j�n
Z
R2n
.˛.z; t/��/.z0/ . f �/.z0/ dz0:

Hence,

.T� f / .z; t/ D .2�/�.mC2n/=2
Z
Rm

Z
R2n
.˛.z; t/��/.z0/ . f �/.z0/ dz0 d�

D .2�/�.mC2n/=2
Z
Rm

Z
R2n
˛.z; t/.z0; �/f .z0; �/ dz0 d�:

So, the kernel of T� is a function on R
2nCm � R

2nCm given by

k.z; t; z0; t0/ D .2�/�.mC2n/=2˛.z; t/.z0; �/; .z; t/; .z0; t0/ 2 R
2nCm: (10)

Therefore,

Z
Rm

Z
R2n

Z
Rm

Z
R2n

jk.z; t; z0; �/j2 dz dt dz0 d�

D .2�/�.2nCm/
Z
Rm

Z
R2n

Z
Rm

Z
R2n

j˛.z; t/.z0; �/j2 dz dt dz0 d�

D .2�/�.2nCm/
Z
Rm

Z
R2n

k˛.z; t/k2L2 .G/ dz dt < 1:

Thus, T� is a Hilbert-Schmidt operator. Conversely, suppose that T� W L2.G/ !
L2.G/ is a Hilbert Schmidt operator. Then there exists a function k in L2.R2nCm �
R
2nCm/ such that

.T� f / .z; t/ D
Z
Rm

Z
R2n

k.z; t; z0; �/f .z0; �/ dz0 d�; .z; t/ 2 G;

for all f 2 L2.G/. We define ˛ W G ! L2.G/ by

˛.z; t/.z0; �/ D .2�/.mC2n/=2k.z; t; z0; �/:
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Then reversing the argument in the proof of the sufficiency and using Proposi-
tion 5.1, we have

�.z; t; �/ D ��.z; t/W
�
.˛.z;t/��/^ ; .z; t; �/ 2 G � R

m�:

ut
Corollary 5.3 Let ˇ 2 L2.G � G/ be such that

Z
Rm

Z
R2n

jˇ.z; t; z; t/j dz dt < 1:

Let

�.z; t; �/ D ��.z; t/W
�
.˛.z;t/��/^ ; .z; t; �/ 2 G � R

m�;

where

˛.z; t/.z0; �/ D ˇ.z; t; z0; �/; .z; t/; .z0; �/ 2 G � R
m�:

Then T� W L2.G/ ! L2.G/ is a trace class operator and

tr.T� / D .2�/�.2nCm/
Z
Rm

Z
R2n
ˇ.z; t; z; t/ dz dt:

Corollary 5.3 follows from the formula (10) on the kernel of the pseudo-
differential operator in the proof of the preceding theorem.

Theorem 5.4 Let � W G � R
m� ! HS

�
L2.Rn/

�
be a symbol satisfying the

hypothesis of Proposition 5.1. Then T� W L2.G/ ! L2.G/ is a trace class operator
if and only if

�.z; t; �/ D ��.z; t/W
�
.˛.z;t/��/^ ; .z; t; �/ 2 G � R

m�;

where ˛ W G ! L2.G/ is a mapping such that the conditions of Theorem 5.2 are
satisfied and

˛.z; t/.z0; �/ D
Z
Rm

Z
R2n
˛1.z; t/.w; s/˛2.w; s/.z

0; �/ dw ds

for all .z; t/ and .z0; �/ in G � R
m�, where ˛1 W G ! L2.G/ and ˛2 W G ! L2.G/

are such that
Z
Rm

Z
R2n

k˛j.z; t/k2L2.G/ dz dt < 1; j D 1; 2:
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Moreover, the trace of T� is given by

tr.T� / D
Z
Rm

Z
R2n
˛.z; t/.z; t/ dz dt

D
Z
Rm

Z
R2n

Z
Rm

Z
R2n
˛1.z; t/.w; s/˛2.w; s/.z; t/ dw ds dz dt:

Theorem 5.4 follows from Theorem 5.2 and the fact that every trace class
operator is a product of two Hilbert-Schmidt operators.
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