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Preface

Two major congresses in mathematics took place back to back in the summer of
2015. The Tenth Congress of the International Society for Analysis, Applications
and Computation (ISAAC) was hosted by the University of Macau in China on
August 3–8, 2015, and this was followed by the Eighth International Congress on
Industrial and AppliedMathematics (ICIAM) held at the China National Convention
Center in Beijing on August 10–14, 2015. Presented at these two congresses were,
respectively, the special session “Pseudo-Differential Operators” and the mini-
symposium “Pseudo-Differential Operators in Industries and Technologies”. The
former was broader in nature embracing all aspects of pseudo-differential operators
in analysis, applications and computations, and the latter was skewed towards
“real-life” applications. The two camps of participants in these two events had
a significant and viable intersection. The editors of this volume belonged to this
intersection and decided to present a volume reflecting the core of the vibrant events
with papers most appropriately classified as Groups, Geometry and Applications.
The overarching themes are of course on pseudo-differential operators understood
by us as always in the broadest sense. These papers are complete papers by either
the participants or invited contributors. They are peer-reviewed using the standards
well established in pure and applied mathematics.

Categorized under Groups are two papers in ascending order of complexities
of the groups being considered. They are the affine group and the non-isotropic
Heisenberg group with multidimensional centre. Classified under Geometry are
also three papers with one on the curvatures of the Heisenberg group, the second
one on ellipticity on compact manifolds with boundary or edge and the final one
on localization operators related to the quaternion Fourier transforms. Last but not
least, the section that is best named as Applications in this volume contains more
than half of the papers. We begin with a time-frequency approach to the study
of the relationship of the Langevin equation and the simple harmonic oscillator.
This is then followed by two papers on the role of pseudo-differential operators
in probability with the first one in quantum probability and the second one in
mathematical probability. A paper on nonlinear systems of integro-differential
equations with anomalous diffusion modelled by fractional powers of the negative
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vi Preface

of the Laplacian is presented. The volume ends with one paper on the wavelet
transforms and two papers on the Stockwell transforms.

The aim of this volume is to show that the development of pseudo-differential
operators, which have been studied since the 1960s, is gaining momentum in its
ramifications not only on different settings such as groups and geometry, but also
in diverse applications such as quantum physics, probability and statistics and
time-frequency analysis. This resonates well with the contemporary societal needs
in basic research in mathematics relevant to the proliferation of interdisciplinary
sciences. This trend fits in well with previously published volumes on pseudo-
differential operators by Birkhäuser in Basel, and it is our vision that this endeavour
will result in quantum leaps in the years to come.

Toronto, Canada M.W. Wong
Toronto, Canada Hongmei Zhu
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Pseudo-Differential Operators on the Affine
Group

Aparajita Dasgupta and M.W. Wong

Abstract Pseudo-differential operators are defined on the affine group using the
Fourier inversion formula for the Fourier transform on the affine group. The Weyl
transform on the affine group is given and so are the L2-Lp estimates for pseudo-
differential operators on the affine group.

Keywords Affine group • SL(2, R) • Semi-direct product • Fourier transform •
Plancherel formula • Fourier inversion formula • Pseudo-differential operator •
Weyl transform • L2-Lp estimates

Mathematics Subject Classification (2000). Primary 47G30

1 Introduction

It is a well-known fact from [16] that pseudo-differential operators on R
n are

based on the Plancherel formula for the Fourier transform on R
n. The Plancherel

formula gives rise to the Fourier inversion formula, which says that the identity
operator for L2.Rn/ can be expressed in terms of the Fourier transform on R

n.
The Fourier inversion formula, albeit useful in many situations, gives a perfect

This research has been supported by the Natural Sciences and Engineering Research Council of
Canada under Discovery Grant 0008562.

A. Dasgupta
EPFL SB MATHAA PDE, MA C1 657 (Bâtiment MA), Station 8, CH-1015,
Lausanne, Switzerland
e-mail: aparajita.dasgupta@epfl.ch

M.W. Wong (�)
Department of Mathematics and Statistics, York University, 4700 Keele Street,
Toronto, ON, M3J 1P3, Canada
e-mail: mwwong@mathstat.yorku.ca

© Springer International Publishing AG 2017
M.W. Wong, Hongmei Zhu (eds.), Pseudo-Differential Operators: Groups,
Geometry and Applications, Trends in Mathematics,
DOI 10.1007/978-3-319-47512-7_1

1

mailto:aparajita.dasgupta@epfl.ch
mailto:mwwong@mathstat.yorku.ca


2 A. Dasgupta and M.W. Wong

symmetry, namely, the identity operator. By inserting a symbol, which is a suitable
function on the phase space R

n � R
n, we break the symmetry and obtain a much

more interesting and meaningful operator with many applications in sciences and
engineering. Such an operator is a pseudo-differential operator on R

n. To extend
pseudo-differential operators to other settings, we first observe that Rn is a group
and can also be identified with the set of all irreducible and unitary representations
that produce the Fourier inversion formula. So, it is natural to extend pseudo-
differential operators from R

n to other groups with explicit irreducible and unitary
representations that give Fourier inversion formulas for the Fourier transforms on
the groups. Such a program has been carried out in some detail for S1, Z, ZN , finite
abelian groups, compact groups and Heisenberg groups [1, 2, 6, 8–12] among others.

The aim of this paper is to move the program forward with the affine group. In
Sect. 2, we recall the basics of the affine group. The Schatten von-Neumann classes
that we need to study pseudo-differential operators on affine groups are recalled in
Sect. 3. The Fourier analysis that we need in this paper to define pseudo-differential
operators on the affine group are given in Sect. 4. Good references are [5, 14]. That
the Fourier inversion formula follows from the Plancherel formula for the Fourier
transform on the affine group is shown in Sect. 6. In Sect. 5, we prove that the Fourier
transform on the affine group is a Weyl transform on L2.R/ [13]. L2-Lp estimates
for pseudo-differential operators on the affine group are given in Sects. 7 and 8.

2 The Affine Group

Let U be the upper half plane given by

U D f.b; a/ W b 2 R; a > 0g:

Then we define the binary operation � on U by

.b1; a1/ � .b2; a2/ D .b1 C a1b2; a1a2/

for all points .b1; a1/ and .b2; a2/ in U. With respect to the multiplication �, U is a
non-abelian group in which .0; 1/ is the identity element and the inverse element of
.b; a/ is

�� b
a ;

1
a

�
for all .b; a/ in U. We call U the affine group. The left and right

Haar measures on U are given by

d� D db da

a2

and

d� D db da

a
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respectively. Let H2C.R/ be the subspace of L2.R/ defined by

H2C.R/ D f f 2 L2.R/ W supp.Of / � Œ0;1/g;

where supp.Of / is the set of every x in R for which there is no neighborhood of x on
which Of is equal to zero almost everywhere. Similarly, we define H2�.R/ to be the
subspace of L2.R/ by

H2�.R/ D f f 2 L2.R/ W supp.Of / � .�1; 0�g:

Obviously, H2C.R/ and H2�.R/ are closed subspaces of L2.R/.
Let �˙ W U ! U.H2˙.R// be mappings defined by

.�˙.b; a/f /.x/ D 1p
a
f
�x � a

b

�
; x 2 R;

for all points .b; a/ in U and all functions f in H2˙.R/. It can be shown that �˙ W
U ! U.H2˙/ are irreducible and unitary representations of U on H2˙.R/.

Details of the affine group and its representations can be found in [5, 14].
For a geometric understanding of the affine group, we look at the set G of all

affine mappings given by

G D fTb;a W R 3 x 7! Tb;ax D axC b 2 R; b 2 R; a > 0g:

G is a group with respect to the composition of mappings. Computing explicitly the
composition of the mappings Tb1;a1 and Tb2;a2 in G, we get for all x 2 R,

.Tb1;a1 ı Tb2;a2 /.x/ D Tb1;a1 .Tb2;a2x/ D Tb1;a1 .a2xC b2/

D a1a2xC b1 C a1b2 D Tb1Ca2b1;a1a2x:

Therefore

Tb1;a1 ı Tb2;a2 D Tb1Ca1b2;a1a2 :

Thus, the groupU is isomorphic toG and this is precisely the justification for calling
U the affine group.

We can give another way to look at the affine group. The set R of all positive
numbers is clearly an additive group isomorphic to the group fTb;1 W b 2 Rg
of translations, which we denote by N. That N is a normal subgroup of G is
easy to check. The set RC of all positive real numbers is a group with respect to
multiplication and is isomorphic to the group fT0;a W a > 0g of dilations, which we
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denote by A. Since N \ A D fT0;1g, it follows that the affine group G is given by

G D AN;

and we call G the internal semi-direct product of A and N and we write

G D A Ë N

or

G D R
C Ë R:

More information about semi-direct products can be found in Section 5.5 of the
book [4].

It should also be mentioned that the affine group is closely related to the special
linear group SL(2, R) given by

SL .2;R/ D
��

a b
c d

�
W a; b; c; d 2 R; ad � bc D 1

	
:

By the Iwasawa decomposition, we can write

SL .2;R/ D KAN;

where

K D
��

cos � � sin �
sin � cos �

�
W � 2 R

	
;

A D
��
˛ 0

0 1=˛

�
W ˛ > 0

	

and

N D
��
1 ˇ

0 1

�
W ˇ 2 R

	
:

The group AN is in fact the affine group. See [7] and page 136 of the book [15].

3 Schatten-von Neumann Classes

Let X be an infinite-dimensional, separable and complex Hilbert space with inner
product . ; /X and norm k kX . Let A W X ! X be a compact operator. Then

p
A�A W

X ! X is a positive and compact operator. Hence the spectral theorem gives an
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orthonormal basis f'k W k D 1; 2; : : : g for X consisting of eigenvectors of
p
A�A.

For k D 1; 2; : : : , let sk be the eigenvalue of
p
A�A corresponding to the eigenvector

'k. Then for 1 � p <1, we say that A is in the Schatten von-Neumann class Sp if

1X

kD1
spk <1:

If A 2 Sp, then the Schatten-von Neumann norm kAkSp of A is defined by

kAkSp D
 1X

kD1
spk

!1=p
:

By convention, S1 is taken to be the C�-algebra of all bounded linear operators on
X and the norm in S1 is simply the operator norm k k�.

4 Fourier Analysis on the Affine Group

We give in this section the Fourier analysis on the affine group emphasizing the
Fourier transform, the Plancherel formula and the Fourier inversion formula. To this
end, we find it convenient to reformulate the irreducible and unitary representations
of the affine group U on U.H2˙.R//. Let

RC D Œ0;1/

and

R� D .�1; 0�:

Then we look at the equivalents of �C W U ! U.H2C.R// and �� W U ! U.H2�.R//
denoted by, respectively, �C W U ! U.L2.RC// and �� W U ! U.L2.R�//, and
given by

.�C.b; a/u/.s/ D a1=2e�ibsu.as/; s 2 RC;

for all u 2 L2.RC/, and

.��.b; a/v/.s/ D a1=2e�ibsv.as/; s 2 R�;
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for all v 2 L2.R�/. For all ' 2 L2.R˙/, we define the functions D˙' on R˙ by

.D˙'/.s/ D jsj1=2'.s/; s 2 R˙:

The unbounded linear operators D˙ on L2.R˙/ are known as the Duflo–Moore
operators [3].

Let f 2 L2.U; d�/. Then we define the Fourier transform Of on f�C; ��g by

.Of .�˙/'/.s/ D
Z 1

0

Z 1

�1
f .b; a/.�˙.b; a/D˙'/.s/

db da

a2
; s 2 R˙;

for all ' 2 L2.R˙/. We have the Plancherel formula to the effect that

kOf .�C/k2S2 C kOf .��/k2S2 D kfk2L2.U;d�/;

where k kS2 is the norm in the Hilbert space S2 of all Hilbert-Schmidt operators on
L2.R/.

The Fourier inversion formula states that for all f 2 L2.U; d�/, we get

f .b; a/ D
p
a

2�
tr.DCOf .�C/�C.b; a/�/C

p
a

2�
tr.D�Of .��/��.b; a/�/

for all .b; a/ 2 U.
We find it convenient to denote f�C; ��g by f˙g. Let � W U � f˙g ! B.L2.R//

be a mapping, where B.L2.R// is the C�-algebra of all bounded linear operators on
L2.R/. Then for all f 2 L2.U; d�/, we define T� f formally to be the function on
U by

.T� f /.b; a/ D
p
a

2�

X

jD˙
tr .�.b; a; j/DjOf .�j/�j.b; a/�/; .b; a/ 2 U:

We call T� the pseudo-differential operator on the affine group U corresponding to
the operator-valued symbol � .

5 The Fourier Transform on the Affine Group

Let f 2 L2.U; d�/. Then for all ' 2 L2.RC/, we get for all s 2 .0;1/,

.Of .�C/'/.s/ D
Z 1

�1

Z 1

0

f .b; a/a1=2e�ibs.as/1=2'.as/
da db

a2
:
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Let as D t. Then da D dt
s and we have

.Of .�C/'/.s/

D
Z 1

�1

Z 1

0

f
�
b;

t

s

� � t
s

�1=2
e�ibst1=2'.t/s

dt db

t2

D
Z 1

�1

Z 1

0

f
�
b;

t

s

�
s1=2e�ibs'.t/

dt db

t

for all s 2 .0;1/. Thus, for all s 2 .0;1/,

.Of .�C/'/.s/ D
Z 1

0

Kf
C.s; t/'.t/ dt; (1)

where

Kf
C.s; t/ D

p
s

t

Z 1

�1
f
�
b;

t

s

�
e�ibsdb D

p
s

t
.2�/1=2.F1f /

�
s;
t

s

�
(2)

for 0 < s; t < 1, where F1f denotes the Fourier transform of f with respect to the
first variable.

Similarly, for all ' 2 L2.R�/, we obtain for all s 2 .�1; 0/,

.Of .��/'/.s/ D
Z 0

�1
Kf�.s; t/'.t/ dt;

where

Kf�.s; t/ D
pjsj
jtj .2�/

1=2.F1f /
�
s;
t

s

�

for �1 < s; t < 0.
Let f 2 L2.U; d�/. Then we define the bounded linear operator Of .�/ W L2.R/!

L2.R/ by

Of .�/' D Of .�C/'C C Of .��/'�;

where

'˙ D '	R˙
:
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Here,

	R˙
.s/ D

�
1; s 2 R˙;
0; s … R˙:

Thus, we have the following result.

Theorem 5.1 Let f 2 L2.U; d�/. Then for all ' 2 L2.R/,

.Of .�/'/.s/ D
Z 1

�1
Kf .s; t/ '.t/ dt; s 2 R;

where

Kf .s; t/ D

8
ˆ̂
<

ˆ̂
:

Kf
C.s; t/;

Kf�.s; t/;
0;

0;

s > 0; t > 0;
s < 0; t < 0;
s > 0; t < 0;
s < 0; t > 0:

(3)

That the Fourier transform on the affine group is a Weyl transform on L2.R/ is
the content of the following theorem. First we recall the twisting operator T in [13]
given by

.Tf /.x; y/ D f
�
xC y

2
; x � y

2

�
; x; y 2 R;

for all measurable functions f on R � R.

Theorem 5.2 Let f 2 L2.U; d�/. Then for all ' 2 L2.R/,

Of .�/' D W�f '; ' 2 L2.R/;

where

�f .x; 
/ D .2�/�1=2.F2TKf /.x; 
/; x; 
 2 R:

6 The Fourier Inversion Formula

We prove in this section the Fourier inversion formula for the Fourier transform on
the affine group.
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Theorem 6.1 For all f 2 L2.U; d�/, we have

f .b; a/ D
p
a

2�

X

jD˙
tr.DjOf .�j/�j.b; a/�/:

Proof Let ' 2 L2.RC/. Then by (1) and (2), we get for all s > 0,

.DCOf .�C/�C.b; a/�'/.s/

D s1=2.Of .�C/�C.b; a/�'/.s/

D s1=2
Z 1

0

Kf
C.s; t/.�C.b; a/�'/.t/ dt

D s1=2
Z 1

0

Kf
C.s; t/



�C


�b
a
;
1

a

�
'

�
.t/ dt

D
Z 1

0

s

t
.2�/1=2.F1f /

�
s;
t

s

�
a�1=2ei.b=a/t'

� t
a

�
dt

D
Z 1

0

s

at
.2�/1=2.F1f /

�
s;
at

s

�
a�1=2eibt'.t/a dt

D
Z 1

0

s

t
a�1=2.2�/1=2.F1f /

�
s;
at

s

�
eibt'.t/ dt:

So, the kernel K f ;b;a
C of DCOf .�C/�C.b; a/� is given by

K f ;b;a
C .s; t/ D s

t
a�1=2.2�/1=2.F1f /

�
s;
at

s

�
eibt

for all s and t in .0;1/. Since
Z 1

0

K f ;b;a
C .s; s/ ds D

Z 1

0

a�1=2.2�/1=2.F1f /.s; a/eibsds;

it follows that for all .b; a/ 2 U, DCOf .�C/�C.b; a/� is a trace class operator and

tr.DCOf .�C/�C.b; a/�/ D .2�/1=2
Z 1

0

a�1=2.F1f /.s; a/eibsds:

Similarly, for all .b; a/ 2 U, D�Of .��/.b; a/��.b; a/� is a trace class operator and

tr.D� Of .��/��.b; a/�/ D .2�/1=2
Z 0

�1
a�1=2.F1f /.s; a/eibsds:
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Therefore for all .b; a/ 2 U,

X

jD˙
tr.DjOf .�j/�j.b; a/�/ D a�1=2.2�/1=2

Z 1

�1
eibs.F1f /.s; a/ ds D 2�a�1=2f .b; a/

and this completes the proof. ut
Remark 6.2 It should be pointed out that in the preceding proof, we assume that the
function f is sufficiently well-behaved and a limiting argument should be used. The
details are omitted in order to manifest the essential fabric of the proof.

7 L2 Boundedness

Theorem 7.1 Let � be a measurable function on U � f˙g such that
X

jD˙

Z 1

0

Z 1

�1
k�.b; a; j/Djk2Sp

db da

a
<1;

where 1 � p � 2. Then T� W L2.U; d�/! L2.U; d�/ is a bounded linear operator.
Moreover,

kT�k� �
8
<

:

X

jD˙

Z 1

0

Z 1

�1
k�.b; a; j/Djk2Sp

db da

a

9
=

;

1=2

;

where k k� is the norm in the C�-algebra of all bounded linear operators on L2.R/.

Proof Let f 2 L2.U; d�/. Then using Minkowski’s inequality in integral form, we
get

kT� fkL2.U;d�/

D
�Z 1

0

Z 1

�1
j.T� f /.b; a/j2 db da

a2

	 1=2

D 1

2�

8
<̂

:̂

Z 1

0

Z 1

�1

ˇ
ˇ
ˇ
ˇ
ˇ̌
X

jD˙
tr .�.b; a; j/DjOf .�j/�j.b; a/�/

ˇ
ˇ
ˇ
ˇ
ˇ̌

2

db da

a

9
>=

>;

1=2

� 1

2�

X

jD˙

�Z 1

0

Z 1

�1
jtr .�.b; a; j/DjOf .�j/�j.b; a/�/j2 db da

a

	 1=2
: (4)
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For 1 � p � q � 1, it follows from the definition of the Schatten-von Neumann
classes that

Sp � Sq

and

kAkSq � kAkSp ; A 2 Sp:

Thus, it follows from (4) that

kT� fkL2.U;d�/

� 1

2�

X

jD˙

�Z 1

0

Z 1

�1
kOf .�j/k2S2k�.b; a; j/Djk2S2

db da

a

	 1=2

� 1

2�

X

jD˙

�Z 1

0

Z 1

�1
kOf .�j/k2S2k�.b; a; j/Djk2Sp

db da

a

	 1=2

D 1

2�

X

jD˙
kOf .�j/kS2

�Z 1

0

Z 1

�1
k�.b; a; j/Djk2Sp

db da

a

	 1=2

� 1

2�

8
<

:

X

jD˙
kOf .�j/k2S2

9
=

;

1=28
<

:

X

jD˙

Z 1

0

Z 1

�1
k�.b; a; j/Djk2Sp

db da

a

9
=

;

1=2

D 1

2�

8
<

:

X

jD˙

Z 1

0

Z 1

�1
k�.b; a; j/Djk2Sp

db da

a

9
=

;

1=2

kfkL2.U;d�/:

ut

8 L2-Lp Estimates, 2 � p � 1

Theorem 8.1 Let � be a measurable function on U � f˙g such that
X

jD˙

Z 1

0

Z 1

�1
k�.b; a; j/DjkpSp0

db da

a2�.p=2/
<1;
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where 2 � p < 1 and p0 is the conjugate index of p, i.e., 1p C 1
p0 D 1. Then

T� W L2.U; d�/! Lp.U; d�/ is a bounded linear operator and

kT�kB.L2.U;d�/;Lp.U;d�// � 1

2�

8
<

:

X

jD˙

�Z 1

0

Z 1

�1
k�.b; a; j/DjkpSp0

db da

a2�.p=2/

�2=p
9
=

;

1=2

;

where k kB.L2.U;d�/;Lp.U;d�// is the norm in the Banach space of all bounded linear
operators from L2.U; d�/ into Lp.U; d�/.

Proof Let f 2 Lp.U; d�/. Then using Minkowski’s inequality in integral form, we
get

kT� fkLp.U;d�/

D
�Z 1

0

Z 1

�1
j.T� f /.b; a/jp db da

a2

	 1=p

D 1

2�

8
<

:

Z 1

0

Z 1

�1

ˇ
ˇ
ˇ
ˇ̌
ˇ

X

jD˙
tr .�.b; a; j/DjOf .�j/�j.b; a/�//

ˇ
ˇ
ˇ
ˇ̌
ˇ

p

db da

a2�.p=2/

9
=

;

1=p

� 1

2�

X

jD˙

�Z 1

0

Z 1

�1
jtr .�.b; a; j/DjOf .�j/�j.b; a/�/jp db da

a2�.p=2/

	 1=p
: (5)

Now, using Hölder’s inequality and the Plancherel theorem, it follows from (5) that

kT� fkLp.U;d�/

� 1

2�

X

jD˙

�Z 1

0

Z 1

�1
kOf .�j/kpSpk�.b; a; jDj/kpSp0

db da

a2�.p=2/

	 1=p

D 1

2�

X

jD˙
kOf .�j/kSp

�Z 1

0

Z 1

�1
k�.b; a; j/DjkpSp0

db da

a2�.p=2/

	 1=p

� 1

2�

X

jD˙
kOf .�j/kS2

�Z 1

0

Z 1

�1
k�.b; a; j/DjkpSp0

db da

a2�.p=2/

	 1=p

D 1

2�

8
<

:

X

jD˙
kOf .�j/k2S2

9
=

;

1=28
<

:

X

jD˙

�Z 1

0

Z 1

�1
k�.b; a; j/DjkpSp0

db da

a2�.p=2/

�2=p
9
=

;

1=2

and this completes the proof. ut
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Remark 8.2 The estimate in Theorem 8.1 can be reformulated as

kT�kB.L2.U;d�/;Lp.U;d�// �
1

2�

8
<

:

X

jD˙
k k�.�; �; j/DjkSp0 kLp.U;d�p/

9
=

;

1=2

;

where d�p D db da
a2�.p=2/

for 2 � p <1. We fill in the endpoint p D1 in the following
theorem.

Theorem 8.3 Let � be a measurable function on U � f˙g be such that
X

jD˙
k k�.�; �; j/DjkS1k2L1.U;d�1/

<1:

Then T� W L2.U; d�/! L1.U; d�/ is a bounded linear operator and

kT�kB.L2.U;d�/;L1.U;d�// � 1

2�

8
<

:

X

jD˙
k k�.�; �; j/DjkS1k2L1.U;d�1/

9
=

;

1=2

:

Proof Let f 2 L1.U; d�/. Then by Minkowski’s inequality,

kT� fkL1.U;d�/

D 1

2�

��
�
�
�
�

X

jD˙
tr .�.�; �; j/DjOf .�j/�j.�; �/�/

��
�
�
�
�
L1.U;d�1/

� 1

2�

X

jD˙
ktr .�.�; �; j/DjOf .�j/�j.�; �/�/kL1.U;d�1/: (6)

Using Hölder’s inequality and Plancherel’s theorem, it follows from (6) that

kT� fkL1.U;d�/

� 1

2�

X

jD˙

��
�kOf .�j/kS1

k�.�; �; j/DjkS1
��
�
L1.U;d�1/

D 1

2�

X

jD˙
kOf .�j/kS1

kk�.�; �; j/kS1kL1.U;d�1/

�
X

jD˙
kOf .�j/kS2

�
�k�.�; �; j/DjkS1

�
�
L1.U;d�1/
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� 1

2�

8
<

:

X

jD˙
kOf .�j/k2S2

9
=

;

1=28
<

:

X

jD˙
kk�.�; �; j/kS1k2L1.U;d�1/

9
=

;

1=2

D 1

2�

8
<

:

X

jD˙
kk�.�; �; j/kS1k2L1.U;d�1/

9
=

;

1=2

kfkL2.U;d�/:

ut
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Pseudo-differential Operators on Non-isotropic
Heisenberg Groups with Multi-dimensional
Centers

Shahla Molahajloo

Abstract We introduce non-isotropic Heisenberg groups with multi-dimensional
centers and the corresponding Schrödinger representations. The Wigner and Weyl
transforms are then defined. We prove the Stone-von Neumann theorem for the
non-isotropic Heisenebrg group by means of Stone-von Neumann theorem for the
ordinary Heisenebrg group. Using this theorem, the Fourier transform is defined in
terms of these representations and the Fourier inversion formula is given. Pseudo-
differential operators with operator-valued symbols are introduced and can be
thought of as non-commutative quantization. We give necessary and sufficient
conditions on the symbols for which these operators are in the Hilbert-Schmidt
class. We also give a characterization of trace class pseudo-differential operators
and a trace formula for these trace class operators.
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Schmidt operators

Mathematics Subject Classification (2000). Primary 47G30; Secondary 35S05

1 Introduction

The Heisenberg group is the simplest non-commutative nilpotent Lie group. It
is actually the first locally compact group whose infinite-dimensional, irreducible
representations were classified. Harmonic analysis on the Heisenberg group is a
subject of constant interest in various areas of mathematics, from Partial Differential
Equations to Geometry and Number Theory.

S. Molahajloo (�)
Department of Mathematics, Institute for Advanced Studies in Basic Sciences, No. 444, Yousef
Sobouti Boulevard, 45137-66731, Zanjan, Iran
e-mail: molahajloo@iasbs.ac.ir; smollaha@gmail.com

© Springer International Publishing AG 2017
M.W. Wong, Hongmei Zhu (eds.), Pseudo-Differential Operators: Groups,
Geometry and Applications, Trends in Mathematics,
DOI 10.1007/978-3-319-47512-7_2

15

mailto:molahajloo@iasbs.ac.ir; smollaha@gmail.com


16 S. Molahajloo

We fix the vector .a1; a2; � � � ; an/ in R
n. The non-isotropic Heisenberg group on

R
n � R

n � R is defined by the group law

.z; t/ � .z0; t0/ D
0

@zC z0; tC t0 C 1

2

nX

jD1
aj.xjy

0
j � x0

jyj/

1

A ;

for all z D .x; y/, z0 D .x0; y0/ in R
n � R

n and t; t0 are in R. If we let aj D 1, for all
1 � j � n, then we get the ordinary Heisenberg group Hn see [4]. The center of the
non-isotropic Heisenberg groupHn is the 1-dimensional subgroup Z given by

Z D f.0; 0; t/ 2 R
n � R

n � R W t 2 Rg :

In the non-isotropic Heisenberg group the terms xky0
l for l 6D k, do not appear in

the group law. In other words we do not consider these directions in the group law.
We want to generalize this group to a group that has changes in other directions
as well. Moreover, we want to look at a group with a multi-dimensional center
which is of interest in Geometry. To do this, we consider n � n orthogonal matrices
B1;B2; : : : ;Bm such that

Bj
�1Bk D �B�1

k Bj; j 6D k: (1)

Example 1.1 Let m D 2, then
B1 D

�
1 0

0 �1
�
and B2 D

�
0 1

1 0

�
satisfy the above conditions.

Then we define the non-isotropic Heisenberg group with multi-dimensional
centerG on Rn � R

n � R
m by

.z; t/ � .z0; t0/ D


zC z0; tC t0 C 1

2
Œz; z0�

�
;

for .z; t/ and .z0; t0/ in R
n � R

n � R
m where z D .x; y/, z0 D .x0; y0/ in R

n � R
n,

t; t0 2 R
m and Œz; z0� 2 R

m is defined by

Œz; z0�j D x0 � Bjy � x � Bjy
0; j D 1; 2; : : : ;m:

The center of the non-isotropic Heisenberg group with multi-dimensional center is
of dimension m and of the form .0; 0; t/, t 2 R

m. To see this, we denote the center
of G by C.G/. Let .z0; t0/ be in C.G/, then for all .z; t/ 2 G

.z; t/ � .z0; t0/ D .z0; t0/ � .z; t/:

Hence, Œz; z0� D 0. Therefore, for all x; y 2 R
n

x0Bjy � xBjy0 D 0; 1 � j � n:
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In particular for x D x0, and for all y 2 R
n

�
x0;Bj.y � y0/

� D 0:

So, B�1
j x0 D 0, which implies x0 D 0. Similarly we get y0 D 0.

In fact, G is a unimodular Lie group on which the Haar measure is just the
ordinary Lebesgue measure dzdt. Moreover, this is a special case of the Heisenberg
type group. The Heisenberg type group first was introduced by A. Kaplan [6]. The
geometric properties of the H-type group is studied in e.g. [7].

Note that if we let m D 1 and B1 D �In where In is the n � n identity matrix.
Then we get the ordinary Heisenberg groupHn.

It is well-known from [9, 10, 13] that Weyl transforms have intimate connections
with analysis on the Heisenberg group and with the so-called twisted Laplacian
studied in, e.g., [1, 11, 12]. We begin with a recall of the basic definitions and
properties of Weyl transforms andWigner transforms in, for instance, the book [13].
Let � 2 L2.Rn�Rn/. Then theWeyl transformW� W L2.Rn/! L2.Rn/ is defined by

.W� f ; g/L2.Rn/ D .2�/�n=2
Z

Rn

Z

Rn
�.x; 
/W. f ; g/.x; 
/ dx d
; f ; g 2 L2.Rn/;

whereW. f ; g/ is the Wigner transform of f and g defined by

W. f ; g/.x; 
/ D .2�/�n=2
Z

Rn
e�i
�pf

�
xC p

2

�
g
�
x � p

2

�
dp; x; 
 2 R

n:

Closely related to the Wigner transformW. f ; g/ of f and g in L2.Rn/ is the Fourier–
Wigner transform V. f ; g/ given by

V. f ; g/.q; p/ D .2�/�n=2
Z

Rn
eiq�yf

�
yC p

2

�
g
�
y � p

2

�
dy; q; p 2 R

n:

It is easy to see that

W. f ; g/ D V. f ; g/^

for all f and g in L2.Rn/, where ^ denotes the Fourier transform given by

bF.
/ D .2�/�n=2
Z

Rn
e�ix�
F.x/ dx; 
 2 R

n;

for all F in L1.Rn/.
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Let � be a measurable function onRn�Rn. Then the classical pseudo-differential
operator T� associated to the symbol � is defined by

.T�'/ .x/ D .2�/�n=2
Z

Rn
eix�
�.x; 
/ O'.x/ d
; x 2 R

n;

for all ' in the Schwartz space S.Rn/, provided that the integral exists. Once the
Fourier inversion formula is in place, a symbol � defined on the phase spaceRn�Rn

is inserted into the integral for the purpose of localization and a pseudo-differential
operator is obtained. Another basic ingredient of pseudo-differential operators on
R

n in the genesis is the phase space Rn �R
n, which we can look at as the Cartesian

product of the additive group R
n and its dual that is also the additive group R

n.
These observations allow in principle extensions of pseudo-differential operators to
other groups G provided that we have an explicit formula for the dual of G and an
explicit Fourier inversion formula for the Fourier transform on the group G. This
program has been carried out in, e.g., [2, 3, 8, 14]. The aim of this paper is to look
at pseudo-differential operators on the non-isotropic Heisenberg group with multi-
dimensional center.

In Sect. 2, We define the Schrödinger representation corresponding to the non-
isotropic Heisenberg group. Using the representation, we define the �-Wigner and
�-Weyl transform related the non-isotropic Heisenberg group. The Moyal identity
for the �-Wigner transform and Hilbert-Schmidt properties of the �-Weyl transform
are proved. In Sect. 3, Using the Schrödinger represenation for the ordinary
Heisenberg group we prove the Stone-von Neumann theorem on G. Using the Von-
Neumann theorem for the non-isotropic group with multi-dimensional center, we
define the operator-valued Fourier transform of G in Sect. 4. Then, in Sect. 5, we
define pseudo-differential operators corresponding to the operator-valued symbols.
Then the L2-boundedness and the Hilbert-Schmidt properties of pseudo-differential
operators on the groupG are given. Trace class pseudo-differential operators on the
groupG are given and a trace formula is given for them.

2 Schrödiner Representations for Non-isotropic Heisenberg
Groups with Multi-dimensional Centers

Let

R
m� D R

m n f0g

and let � 2 R
m�. We define the Schrödinger representation of G on L2.Rn/ by

.��.q; p; t/'/ .x/ D ei��teiq�B�.xCp=2/'.xC p/; x 2 R
n
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for all ' 2 L2.Rn/ and .q; p; t/ 2 G, where z D .q; p/ 2 R
n � R

n and B� DPm
jD1 �jBj. If we let

.��.q; p/'/ .x/ D eiq�B�.xCp=2/'.xC p/:

Then

��.q; p; t/ D ei��t��.q; p/:

To prove that �� is a group homomorphism, we need the following easy lemma.

Lemma 2.1 For all z; z0 2 R
n � R

n and � 2 R
m� we have

��.z/��.z
0/ D e

i
2 ��Œz;z0���.zC z0/:

The following theorem tells us that �� is in fact a unitary group representation of
G on L2.Rn/.

Theorem 2.2 �� is a unitary group representation of G on L2.Rn/.

Proof By Lemma 2.1, it is easy to see that for all .z; t/ and .z0; t0/ in G,

��..z; t/ � .z0; t0// D ��.z; t/��.z0; t0/:

Now let '; 2 L2.Rn/. Then for all .q; p; t/ 2 G,

.��.q; p; t/';  / D
Z

Rn
ei��teiq�B�.xCp=2/'.xC p/ .x/ dx

D
Z

Rn
'.y/e�i��te�iq�B�.y�p=2/ .y � p/ dy

D
Z

Rn
'.y/.��.�z;�t/ / .y/ dy

D .'; ��.�z;�t/ / :

Hence ��.z; t/� D ��..z; t/�1/. ut
In fact �� is an irreducible representation ofG on L2.Rn/. To prove this we need

some preparation. Let f ; g 2 L2.Rn/. We define the �-Fourier Wigner transform of
f and g on Rn � R

n by

V�. f ; g/.q; p/ D .2�/�n=2 .��.q; p/f ; g/ :
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In fact,

V�. f ; g/.q; p/ D .2�/�n=2
Z

Rn
eiB

t
�q�xf .xC p

2
/g.x � p

2
/ dx:

Therefore, the �-Fourier Wigner transform is related to the ordinary Fourier Wigner
transform by

V�. f ; g/.q; p/ D V. f ; g/.Bt
�q; p/: (2)

Note that

V�. f ; g/.q;�p/ D V�.g; f /.q; p/; q; p 2 R
n:

Now, we define the �-Wigner transform of f ; g 2 L2.Rn/ by

W�. f ; g/ D 2V�. f ; g/:

In fact, �-Wigner transform has the form

W� . f ; g/ .x; 
/ D j�j�n.2�/�n=2
Z

Rn
e�ip�
 f .

Bt
�x

j�j2 C
p

2
/g.

Bt
�x

j�j2 �
p

2
/ dp

and it is related to the ordinary Wigner trasform by

W�. f ; g/.x; 
/ D j�j�nW. f ; g/.
Bt
�x

j�j2 ; 
/

for all x; 
 in Rn. Moreover,

W�. f ; g/ D W�.g; f /:

By using (1) and the fact that Bj, 1 � j � n are orthogonal matrices, we get the
following result.

Proposition 2.1 B�Bt
� D j�j2I, where I is the identity n � n matrix. In particular

detB� D j�jn.
The following proposition gives us the relation between the dimesion of the

center of the non-isotropic Heisenebrg group and its phase space.

Proposition 2.2 Let G be the non-isotropic Heisenberg group on R
n � R

n � R
m.

Then m � n2.
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Proof For all 1 � k � m and 1 � i; j � n, let .Bk/ij be the entry of the matrix Bk in
the i-th row and j-th column. Then the n2 � m matrix

C D

2

6
66
6
6
6
66
6
6
6
6
6
4

.B1/11 .B2/11 : : : .Bm/11

.B1/12 .B2/12 : : : .Bm/12
:::

:::
: : :
:::

.B1/1n .B2/1n : : : .Bm/1n

.B1/21 .B2/21 : : : .Bm/21

.B1/22 .B2/22 : : : .Bm/22
:::

:::
:::

:::

.B1/nn .B2/nn : : : .Bm/nn

3

7
77
7
7
7
77
7
7
7
7
7
5

has rank m. To prove this, it is enough to show that the columns of C are linearly
independent. Let Ci be the i-th column of C and let � 2 R

m be such that

mX

iD1
�iC

i D 0:

It follows that B� D 0. Therefore by Proposition 2.1, we get � D 0. ut
Let � 2 S.Rn � R

n/ and f 2 S.Rn/, then we define the �-Weyl transform W�
� f

of f corresponding to the symbol � by

�
W�
� f ; g

�
L2.Rn/

D .2�/�n=2
Z

Rn

Z

Rn
�.x; 
/W�. f ; g/.x; 
/ dx d
;

for all g 2 S.Rn/. Therefore, using the Parseval’s identity, we have

�
W�
� f ; g

�
L2.Rn/

D .2�/�n=2
Z

Rn

Z

Rn
O�.q; p/V�. f ; g/.q; p/ dq dp:

Hence, formally we can write,

�
W�
� f
�
.x/ D .2�/�n

Z

Rn

Z

Rn
O�.q; p/ .��.q; p/f / .x/ dq dp:

Proposition 2.3 Let � 2 S.Rn � R
n/. Then the �-Weyl transform W�

� is given by

W�
� D W�� ;

where W�� is the ordinary Weyl transform corresponding to the symbol

��.x; 
/ D �.B�x; 
/:
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Proposition 2.4 Let � 2 S.Rn � R
n/. Then the �-Weyl transform W�

� is a Hilber-
Schmidt operator with kernel

k�� .x; p/ D .F2�/


B�.

xC p

2
/; p � x

�
;

where F2� is the ordinary Fourier transform of � with respect to the second
variable, i.e.,

.F2�/ .x; p/ D .2�/�n=2
Z

Rn
e�i
�p�.x; 
/ d
:

Moreover,

kW�
� kHS D j�j�n=2k�kL2.Rn�Rn/

Proof By Proposition 2.4 and the kernel of the ordinary Weyl transform (see [13]
for details), we have

k�� .x; p/ D .F2��/


xC p

2
; p � x

�

D .F2�/


B�.

xC p

2
/; p � x

�
:

Hence,

kW�
� k2HS D

Z

Rn

Z

Rn
jk�� .x; p/j2 dx dp

D
Z

Rn

Z

Rn

ˇ
ˇ̌
ˇ.F2�/



B�.

xC p

2
/; p � x

�ˇˇ̌
ˇ

2

dx dp

D j�j�n
Z

Rn

Z

Rn
j.F2�/ .x; p/j2 dx dp

D j�j�nk�k2L2.Rn�Rn/
;

which completes the proof. ut
Let F and G be functions in L2.R2n/. The �-twisted convolution of F and G

denoted by F �� G on R2n is defined by

.F �� G/.z/ D
Z

R2n
F.z� w/G.w/e

i
2 �:Œz;w� dw:

By Lemma 2.1 we get the following theorem.
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Theorem 2.3 Let � and � be in L2.R2n/. Then

W�
�W

�
� D W�

!;

where O! D .2�/�n. O� �� O�/.
Using the Moyal identity for the ordinary Wigner transform we have the follow-

ing Moyal identity for the �-Wigner transform and �-Fourier Wigner transform.

Proposition 2.5 For all f1; f2; g1; g2 in L2.Rn/

.W�. f1; g1/;W�. f2; g2// D j�j�n . f1; f2/ .g1; g2/;

and

.V�. f1; g1/;V�. f2; g2// D j�j�n . f1; f2/ .g1; g2/:

Now, we are ready to prove the following theorem.

Theorem 2.4 For all � 2 R
m�, �� is a unitary irreducible representation of G on

L2.Rn/.

Proof suppose M � L2.Rn/ is a nonzero closed invariant subspace of �� and f 2
M n f0g. Then

��.q; p; t/M � M; .q; p; t/ 2 G:

IfM 6D L2.Rn/, then we can find g 2 L2.Rn/ such that

.��.q; p; t/f ; g/ D 0; .q; p; t/ 2 G:

But,

.��.q; p; t/f ; g/ D ei��t .��.q; p/f ; g/

D ei��t.2�/n=2V�. f ; g/.p; q/:

So,

V�. f ; g/.q; p/ D 0

for all .p; q/ 2 R
n � R

n. By the Moyal identity,

kV�. f ; g/k2L2.Rn�Rn/
D j�j�nk fk2L2.Rn/

kgk2L2.Rn/
D 0:

So, f D 0 or g D 0 which is a contradiction. ut
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3 Stone-Von Neumann Theorem on G

Let U.L2.Rn// be the space of unitary operators on L2.Rn/. Let h 2 R
�, then the

Schrödinger representation �h W Hn ! U.L2.Rn// on the ordinaryHeisenebrg group
is defined by

.�h.q; p; t/'/ .x/ D eihteiq�.xChp=2/f .xC hp/; x 2 R
n;

for all f 2 L2.Rn/. Then �h is an irreducible unitary representation ofHn on L2.Rn/.
By the Stone-von Neumann theorem, any irreducible unitary representation of Hn

on a Hilbert space that is non-trivial on the center is equivalent to some �h. More
precisely we have

Theorem 3.1 Let � be an irreducible unitary represenatation of Hn on a Hilbert
spaceH, such that �.0; 0; t/ D eihtI for some h 2 R

�. Then � is unitarily equivalent
to �h.

Similarly, we prove the Stone-von Neumann theorem for the non-isotropic
Heisenberg groupG. To prove we use the following lemma.

Lemma 3.2 Let � 2 R
m�. The mapping ˛� W G! H

n defined by

˛�.q; p; t/ D .Bt
�q;

p

j�j ;
� � t
j�j /; .q; p; t/ 2 G

is a surjective homomorphism of Lie groups. In particular, G= ker˛� is isomorphic
to Hn where

ker˛� D f.0; 0; t/ W .t; �/ D 0g:

Proof To prove ˛� is a group homomorphism, let .q; p; t/; .q0; p0:t0/ 2 G. Then

˛�..q; p; t/ �G .q0; p0; t0// D ˛�.qC q0; pC p0; tC t0 C 1

2
Œz; z0�/

D


Bt
�.qC q0/;

pC p0

j�j ; � � .tC t0 C 1

2
Œz; z0�/=j�j

�

Since � � Œz; z0� D .q0;B�p/ � .q;B�p0/, therefore

˛�..q; p; t/ �G .q0; p0; t0//

D .Bt
�q;

p

j�j ;
� � t
j�j / �Hn .Bt

�q
0;

p0

j�j ;
� � t0
j�j /

D ˛�..q; p; t/ �Hn ˛�.q
0; p0; t0//: (3)

Surjectivity is easy to see, since B� is invertible. ut
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The following lemma gives the connection between the Schrödinger represen-
tation on the ordinary Heisenberg group H

n and the representations �� on the
non-isotropic Heisenberg groupG.

Lemma 3.3 For all � 2 R
m�,

�� D �j�j ı ˛�:

Now, we are ready to prove the Stone von-Neumann theorem for the non-
isotropic Heiseneberg group.

Theorem 3.4 Let …� be an irreducible unitary group representation of G on a
Hilbert space H such that …�.0; 0; t/ D ei��tI, for some � 2 R

m. Then …� is
unitarily equivalent to ��

Proof Let …j�j W Hn ! U.H/ be defined by …j�j D …�PT where T is the
isomorphism of Hn onto G= ker˛� (see Lemma 3.2) and P is the projection from
G= ker˛� onto G. Then…j�j.0; 0; t0/ D eij�jto I, for all t0 2 R. Moreover,…j�j is an
irreducible unitary representation of Hn on the Hilbert space H. This can be easily
seen by using the fact that…� is an irreducible unitary representation of G onH.

ut

4 Fourier Transforms and the Fourier Inversion Formula
on G

By the Stone-von Neumann theorem every irreducible unitary representation of G
which acts non-trivially on the center is in fact unitarily equivalent to exactly one of
��, � 2 R

m�. Hence, the identification of f�� W � 2 R
m�g with R

m� will be used.
Let f 2 L1.G/ and � 2 R

m�. We define the Fourier transform of f at � to be the
bounded linear operator Of .�/ from L2.Rn/ into L2.Rn/ given by

Of .�/' D
Z

Rm

Z

R2n
f .z; t/ .��.z; t/'/ dz dt; ' 2 L2.Rn/:

To see the boundedness of Of .�/, let '; 2 L2.Rn/. Then By Schwarz inequality

ˇ
ˇ̌�Of .�/';  

�ˇˇ̌ �
Z

Rm

Z

R2n
j f .z; t/j j .��.z; t/';  / j dz dt

�
Z

Rm

Z

R2n
j f .z; t/j k��.z; t/'kL2.Rn/k kL2.Rn/ dz dt:

� k fkL1.G/k'kL2.Rn/k kL2 .Rn/:
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Set

f �.z/ D .2�/�m=2
Z

Rm
ei��tf .z; t/ dt:

Then Of .�/' has the form

Of .�/' D .2�/m=2
Z

R2n
f �.z/ .��.z/'/ dz:

Therefore we have following proposition relating the Fourier transform Of .�/ to the
�-Weyl transform.

Proposition 4.1 Let f 2 L1.G/. Then for all � 2 R
m�

Of .�/ D .2�/.2nCm/=2W�
. f�/_ ;

where . f �/_ is the inverse Fourier transform of f � on R2n.

We have the following Plancheral’s formula for the Fourier transform on the non-
isotropic Heisenberg group with multi-dimensional center.

Theorem 4.1 Let f 2 L2.G/ and � 2 R
m�. Then Of .�/ W L2.Rn/ ! L2.Rn/ is a

Hilbert-Schmidt operator. In fact we have

(i) The kernel of Of .�/ is given by

k�.x; p/ D .2�/.nCm/=2
�
F�1
1 f �

� 

B�.

xC p

2
/; p � x

�

where F�1
1 f � is the ordinary inverse Fourier transform of f � with respect to the

first variable, i.e.,

�
F�1
1 f �

�
.x; p/ D .2�/�n=2

Z

Rn
eix�qf �.q; p/ dq: .x; p/ 2 R

n �R
n:

(ii) The Hilbert-Schmidt norm of Of .�/ is given by

k Of .�/k2HS D .2�/mCnj�j�nk f �k2L2.R2n/:

(iii) Let d�.�/ D .2�/�.nCm/j�jn d�. We have the following Plancheral’s formula
Z

Rm
k Of .�/k2HS d�.�/ D k fk2L2.G/:
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Proof Let ' be in L2.Rn/. Then for all x 2 R
n,

�Of .�/'
�
.x/ D .2�/m=2

Z

R2n
f �.q; p/ .��.q; p/'/ .x/ dq dp

D .2�/m=2
Z

R2n
f �.q; p/eiq�B�.xC p

2 /'.xC p/ dq dp

D
Z

Rn



.2�/m=2

Z

Rn
eiq�B�. xCp

2 /f �.q; p � x/ dq

�
'.p/ dp

D
Z

Rn
k�.x; p/'.p/ dp

where

k�.x; p/ D .2�/.nCm/=2
�
F�1
1 f �

� 

B�.

xC p

2
/; p � x

�
:

Hence the Hilbert-Schmidt norm of Of .�/ is given by

k Of .�/jk2HS D kk�k2L2.Rn�Rn/

D .2�/.nCm/
Z

Rn

Z

Rn

ˇ
ˇ̌
ˇ
�
F�1
1 f �

� 

B�.

xC p

2
/; p � x

�ˇˇ̌
ˇ

2

dx dp

D .2�/.nCm/
Z

Rn

Z

Rn

ˇ̌�
F�1
1 f �

�
.x; p/

ˇ̌2 j�j�n dx dp

D j�j�n.2�/.nCm/k f �k2L2.R2n/ (4)

where in (4) we used the Parseval’s identity for the ordinary Fourier transform. ut
Now we are ready to prove the inversion formula for the non-isotropic group

Fourier transform.

Theorem 4.2 Let f be a Schwartz function on G. Then we have

f .z; t/ D
Z

Rm
tr
�
��.z; t/

�Of .�/
�
d�.�/; .z; t/ 2 G:

Proof For all .z; t/ 2 G,

��.z; t/
� Of .�/ D ��.�z;�t/

Z

Rm

Z

R2n
f .Qz; Qt/ ��.Qz; Qt/ dQz dQt

D
Z

Rm

Z

R2n
f .Qz; Qt/ �� ..�z;�t// � .Qz; Qt// dQz dQt
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D
Z

Rm

Z

R2n
f .Qz; Qt/ ��



�zC Qz;�tC QtC 1

2
Œ�z; Qz�

�
dQz dQt

D
Z

Rm

Z

R2n
f .Qz; Qt/ei �2 �Œ�z;Qz��� .�zC Qz;�tC Qt/ dQz dQt:

Now, we let z0 D �zC Qz and t0 D �tC Qt. W get

��.z; t/
� Of .�/ D

Z

Rm

Z

R2n
g.z0; t0/��.z0; t0/ dz0 dt0;

where

g.z0; t0/ D e�i �2 �Œz;z0�f .z0 C z; t0 C t/:

Hence,

��.z; t/
� Of .�/ D Og.�/:

By Theorem 4.1, the kernel of Og.�/ is given by

k�.x; p/ D .2�/.nCm/=2
�
F�1
1 g�

� 

B�.

xC p

2
/; p � x

�
:

Therefore,

tr
�
��.z; t/

� Of .�/
�
D
Z

Rn
k�.x; x/ dx:

So, for z D .u; v/ 2 R
n � R

n,

k�.x; x/ D .2�/.nCm/=2
�
F�1
1 g�

�
.B�x; 0/

D .2�/m=2
Z

Rn
eiB�x�
g�.
; 0/ d
:

On the other hand, it is easy to see that

g�.z0/ D e�i �2 �Œz;z0�e�i��tf �.zC z0/:

So, for z D .u; v/ 2 R
n � R

n, and z0 D .
; 0/, we get

g�.
; 0/ D e
�i
2 B�v�
e�i��tf �.
 C u; v/:
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Hence,

k�.x; x/ D .2�/m=2
Z

Rn
eiB�x�
e

�i
2 B�v�
e�i��tf �.
 C u; v/ d


D .2�/m=2e�i��tei.�B�xCB�v=2/�u
Z

Rn
ei.B�x�B�v=2/�
 f �.
; v/ d
 (5)

Therefore,

tr
�
��.z; t/

� Of .�/
�

D .2�/m=2e�i��teiB�v=2�u
Z

Rn
e�ix�Bt

�u

�Z

Rn
ei
�.�B�v=2CB�x/f �.
; v/ d


	
dx

D .2�/.mCn/=2e�i��teiB�v=2�u
Z

Rn
e�ix�Bt

�u
�
F�1
1 f �

�
.�B�v=2C B�x; v/ dx

D .2�/.mCn/=2e�i��tj�j�n
Z

Rn
e�ix�u �F�1

1 f �
�
.x; v/ dx

D .2�/m=2Cne�i��tj�j�nf �.u; v/:

By integrating both sides of

tr
�
��.z; t/

� Of .�/
�
.2�/�.nCm/j�jn D .2�/�m=2e�i��tf �.z/

with respect to �, we get the Fourier inversion formula. ut

5 Pseudo-differential Operators on Non-isotropic Heisenberg
Groups with Multi-dimensional Centers

Let B.L2.Rn// be the C�-algebra of all bounded linear operators on L2.Rn/. Then
consider the operator valued symbol

� W G � R
m� ! B.L2.Rn//:

We define the pseudo-differential operator T� W L2.G/ ! L2.G/ corresponding to
the symbol � by

.T� f / .z; t/ D
Z

Rm
tr
�
��.z; t/

��.z; t; �/Of .�/
�
d�.�/; .z; t/ 2 G
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for all f 2 L2.G/. Let HS.L2.Rn// be the space of Hilbert-Schmidt operators on
L2.Rn/. We have the following theorem on L2-boundedness of pseudo-differential
operators.

Theorem 5.1 Let � W G �R
m� ! HS.L2.Rn// be such that

C2� D
Z

Rm

Z

G

k�.z; t; �/k2HS dz dt d�.�/ <1:

Then T� W L2.G/! L2.G/ is a bounded linear operator and

kT�kop � C� ;

where k � kop is the operator norm on the C�-algebra of bounded linear operators
on L2.G/.

Proof Let f 2 L2.G/. Then by Minkowski’s inequality we have

kT� fkL2.G/ D
(Z

Rm

Z

R2n

ˇ
ˇ
ˇ
ˇ

Z

Rm
tr
�
��.z; t/

��.z; t; �/Of .�/
�
d�.�/

ˇ
ˇ
ˇ
ˇ

2

dz dt

) 1=2

�
Z

Rm

�Z

Rm

Z

R2n

ˇ
ˇ̌tr
�
��.z; t/

��.z; t; �/Of .�/
�ˇˇ̌2 dz dt

	 1=2
d�.�/

�
Z

Rm

�Z

Rm

Z

R2n
k�.z; t; �/k2HSk Of .�/k2HS dz dt

	 1=2
d�.�/

D
Z

Rm
k Of .�/kHS

�Z

Rm

Z

R2n
k�.z; t; �/k2HS dz dt

	 1=2
d�.�/:

� C�k fkL2.G/ (6)

where in (6), we used Hölder’s inequality. ut
The following result tells us that under suitable conditions, two symbols of the

same pseudo-differential operator are equal.

Proposition 5.1 Let � W G � R
m� ! HS.L2.Rn// be such that

Z

Rm

Z

G

k�.z; t; �/k2HS dz dt d�.�/ <1:
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Furthermore suppose that

Z

Rm
k�.z; t; �/kHS d�.�/ <1; .z; t/ 2 G; (7)

sup
.z;t;�/2G�Rm�

k�.z; t; �/kHS <1; (8)

and the mapping

G � R
m� 3 .z; t; �/ 7! ��.z; t/

��.z; t; �/ 2 HS.L2.Rn// (9)

is weakly continuous. Then T� f D 0 for all f only if

�.z; t; �/ D 0

for almost all .z; t; �/ 2 G � R
m�.

Proof For all .z; t/ 2 G, we define fz;t 2 L2.G/ by

bfz;t.�/ D �.z; t; �/���.z; t/:

Then, for all .w; s/ 2 G

.T� fz;t/ .w; s/ D
Z

Rm
A�z;t.w; s/ d�.�/;

where

A�z;t.w; s/ D tr
�
��.w; s/

��.w; s; �/�.z; t; �/���.z; t//
�
:

Let .z0;w0/ 2 G. Then by the weak-continuity of the mapping (9),

A�z;t.w; s/! A�z;t.z0; t0/

as .w; s/! .z0; t0/. Moreover, by (8), there exits C > 0 such that

jA�z;t.w; s/j � Ck�.z; t; �/kHS
Therefore, by (7) and Lebesgue’s dominated convergence theorem,

.T� fz;t/ .w; s/! .T� fz;t/ .z0; t0/
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as .w; s/! .z0; t0/. Therefore T� fz;t is continuous onG and since by the assumption
of the proposition T� fz;t D 0 almost every where, hence

.T� fz;t/ .z; t/ D 0:

But

.T� fz;t/ .z; t/ D
Z

Rm
tr
�
��.z; t/

��.z; t; �/�.z; t; �/���.z; t/
�
d�.�/

D
Z

Rm
tr
�
�.z; t; �/��.z; t; �/

�
d�.�/

D
Z

Rm
k�.z; t; �/k2HS d�.�/ D 0

Hence, k�.z; t; �/kHS D 0 for almost all � 2 R
m� and therefore,

�.z; t; �/ D 0

for almost all .z; t; �/ 2 G �R
m� ut

The following theorem gives necessary and sufficient conditions on a symbol �
for T� W L2.G/! L2.G/ to be a Hilbert-Schmidt operator.

Theorem 5.2 Let � W G � R
m� ! HS

�
L2.Rn/

�
be a symbol satisfying the

hypothesis of Proposition 5.1. Then T� W L2.G/ ! L2.G/ is a Hilbert-Schmidt
operator if and only if

�.z; t; �/ D ��.z; t/W�
.˛.z;t/��/^ ; .z; t; �/ 2 G � R

m�;

where ˛ W G! L2.G/ is weakly continuous mapping for which

Z

Rm

Z

R2n
k˛.z; t/k2L2 .G/ dz dt <1;

sup
.z;t;�/2G�Rm�

j�j�n=2k.˛.z; t//��kL2.R2n/ <1

and
Z

Rm
j�jn=2k.˛.z; t//��kL2.R2n/ d� <1:

Proof We first prove the sufficiently. Let f 2 S.G/. Then by Proposition 4.1,

.T� f / .z; t/ D j�jn.2�/�m=2
Z

Rm
tr
�
W�
.˛.z;t//��/^W

�
. f�/_

�
d�:
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By Proposition 2.3 and the trace formula in [5], we get

tr
�
W�
.˛.z;t/��/^W

�
. f�/_

�

D .2�/�n
Z

R2n
.˛.z; t/��/^.B�x; 
/ . f �/_.B�x; 
/ dx d


D .2�/�nj�j�n
Z

R2n
.˛.z; t/��/^.x; 
/ . f �/_.x; 
/ dx d


D .2�/�nj�j�n
Z

R2n
.˛.z; t/��/.z0/ . f �/.z0/ dz0:

Hence,

.T� f / .z; t/ D .2�/�.mC2n/=2
Z

Rm

Z

R2n
.˛.z; t/��/.z0/ . f �/.z0/ dz0 d�

D .2�/�.mC2n/=2
Z

Rm

Z

R2n
˛.z; t/.z0; �/f .z0; �/ dz0 d�:

So, the kernel of T� is a function on R2nCm � R
2nCm given by

k.z; t; z0; t0/ D .2�/�.mC2n/=2˛.z; t/.z0; �/; .z; t/; .z0; t0/ 2 R
2nCm: (10)

Therefore,

Z

Rm

Z

R2n

Z

Rm

Z

R2n
jk.z; t; z0; �/j2 dz dt dz0 d�

D .2�/�.2nCm/
Z

Rm

Z

R2n

Z

Rm

Z

R2n
j˛.z; t/.z0; �/j2 dz dt dz0 d�

D .2�/�.2nCm/
Z

Rm

Z

R2n
k˛.z; t/k2L2 .G/ dz dt <1:

Thus, T� is a Hilbert-Schmidt operator. Conversely, suppose that T� W L2.G/ !
L2.G/ is a Hilbert Schmidt operator. Then there exists a function k in L2.R2nCm �
R
2nCm/ such that

.T� f / .z; t/ D
Z

Rm

Z

R2n
k.z; t; z0; �/f .z0; �/ dz0 d�; .z; t/ 2 G;

for all f 2 L2.G/. We define ˛ W G! L2.G/ by

˛.z; t/.z0; �/ D .2�/.mC2n/=2k.z; t; z0; �/:
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Then reversing the argument in the proof of the sufficiency and using Proposi-
tion 5.1, we have

�.z; t; �/ D ��.z; t/W�
.˛.z;t/��/^ ; .z; t; �/ 2 G � R

m�:

ut
Corollary 5.3 Let ˇ 2 L2.G �G/ be such that

Z

Rm

Z

R2n
jˇ.z; t; z; t/j dz dt <1:

Let

�.z; t; �/ D ��.z; t/W�
.˛.z;t/��/^ ; .z; t; �/ 2 G � R

m�;

where

˛.z; t/.z0; �/ D ˇ.z; t; z0; �/; .z; t/; .z0; �/ 2 G � R
m�:

Then T� W L2.G/! L2.G/ is a trace class operator and

tr.T� / D .2�/�.2nCm/
Z

Rm

Z

R2n
ˇ.z; t; z; t/ dz dt:

Corollary 5.3 follows from the formula (10) on the kernel of the pseudo-
differential operator in the proof of the preceding theorem.

Theorem 5.4 Let � W G � R
m� ! HS

�
L2.Rn/

�
be a symbol satisfying the

hypothesis of Proposition 5.1. Then T� W L2.G/ ! L2.G/ is a trace class operator
if and only if

�.z; t; �/ D ��.z; t/W�
.˛.z;t/��/^ ; .z; t; �/ 2 G � R

m�;

where ˛ W G ! L2.G/ is a mapping such that the conditions of Theorem 5.2 are
satisfied and

˛.z; t/.z0; �/ D
Z

Rm

Z

R2n
˛1.z; t/.w; s/˛2.w; s/.z

0; �/ dw ds

for all .z; t/ and .z0; �/ in G � R
m�, where ˛1 W G ! L2.G/ and ˛2 W G ! L2.G/

are such that
Z

Rm

Z

R2n
k˛j.z; t/k2L2.G/ dz dt <1; j D 1; 2:
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Moreover, the trace of T� is given by

tr.T� / D
Z

Rm

Z

R2n
˛.z; t/.z; t/ dz dt

D
Z

Rm

Z

R2n

Z

Rm

Z

R2n
˛1.z; t/.w; s/˛2.w; s/.z; t/ dw ds dz dt:

Theorem 5.4 follows from Theorem 5.2 and the fact that every trace class
operator is a product of two Hilbert-Schmidt operators.
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and we let

H
1 D C � R;

then H1 becomes a noncommutative group when equipped with the multiplication �
given by

.z; t/ � .w; s/ D


zC w; t C sC 1

4
Œz;w�

�
; .z; t/; .w; s/ 2 H

1;

where Œz;w� is the symplectic form of z and w defined by

Œz;w� D 2 Im .zw/:

In fact,H1 is a unimodular Lie group on which the Haar measure is just the ordinary
Lebesgue measure dz dt.

Let h be the Lie algebra of left-invariant vector fields on H
1. Then a basis for h

is given by X, Y and T, where

X D @

@x
C 1

2
y
@

@t
;

Y D @

@y
� 1
2
x
@

@t

and

T D @

@t
:

It can be checked easily that

ŒX;Y� D �T

and all other commutators among X, Y and T are equal to 0. References for the
Heisenberg group, its Lie algebra, the sub-Laplacian �.X2 C Y2/ and the full
Laplacian�.X2CY2CT2/ can be found in [2–4, 10] among many others. Compact
and lucid accounts of Lie groups in [1, 8] are highly recommended.

The aim of this paper is to prove that the scalar curvature of the Heisenberg group
is a positive number. This is achieved by contracting from the Riemannian curvature
to the scalar curvature through the sectional curvature and the Ricci curvature. The
interest in curvature of the Heisenberg group H

1 stems from the fact [9] that H1

can be thought of as the three-dimensional surface that is the boundary of the four-
dimensional Siegel domain, so curvature of the Heisenberg group H

1 may be of
some interest in physics.
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Results on curvature of the Heisenberg group exist in the literature with a host
of different notation and convention. See, for instance, [2, 6, 7]. This paper, which
is very similar to the section on Riemannian approximants in [2], is another attempt
using notions that can be found in any graduate textbook on Riemannian geometry.

Since indices permeate Riemannian geometry, we find it convenient to label the
vector fields X, Y and T by X1, X2 and X3, respectively.

2 The Riemannian Metric

We begin with the fact that there exists a left-invariant Riemannian metric g on H
1

that turns X1, X2 and X3 into an orthonormal basis for h with respect to an inner
product denoted by . ; /. In fact,

g.x; y; t/ D
2

4
1C .y2=4/ �xy=4 �y2=2
�xy=4 1C .x2=4/ x=2
�y2=2 x=2 1

3

5

for all .x; y; t/ 2 H
1.

3 The Levi–Civita Connection

A connection r on H1 is a mapping

h � h 3 .X;Y/ 7! rXY 2 h

such that

• rX.Y C Z/ D rXY CrXZ;
• rXCYZ D rXZ CrYZ;
• rX. fY/ D X. f /Y C frXY;
• rfXY D frXY

for all vector fields X, Y and Z in h and all C1 real-valued functions f on H
1. The

torsion T of the connectionr is a mapping that assigns to two vector fields X and Y
in h another vector field T.X;Y/ in h given by

T.X;Y/ D rXY � rYX � ŒX;Y�:
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A connection r onH1 is said to be compatiblewith the Riemannian metric g on H1

if

X.Y;Z/ D .rXY;Z/C .Y;rXZ/ (1)

for all vector fields X Y and Z in h.
The following result is crucial.

Theorem 3.1 There exists a unique connectionr onH1 such thatr is torsion-free,
i.e.,

T.X;Y/ D 0

for all vector fields X and Y in h and r is compatible with the Riemannian metric g
on H1.

Proof For i; j 2 f1; 2; 3g, let ij be the real number given by

ij D .Xi;Xj/:

Then by compatibility,

Xijk D .rXiXj;Xk/C .Xj;rXiXk/; i; j; k 2 f1; 2; 3g: (2)

Since r is torsion-free, it follows that

rXiXj � rXjXi D ŒXi;Xj�; i; j 2 f1; 2; 3g:

Permuting the indices in (2), we obtain

Xjik D .rXjXi;Xk/C .Xi;rXjXk/ (3)

and

Xkij D .rXkXi;Xj/C .Xi;rXkXj/: (4)

By (2), (3) and (4), we get

Xijk C Xjik � Xkij

D 2.rXiXj;Xk/� .ŒXi;Xj�;Xk/C .ŒXj;Xk�;Xi/ � .ŒXk;Xi�;Xj/:

(5)
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Thus, the uniquness of r follows. It remains to prove the existence. For i; j; k 2
f1; 2; 3g; let

�k
ij D

1

2

3X

lD1
.Xigjl C Xjgil � Xlgij/g

lk;

where Œgjk� is the inverse of g D Œgij�, and we define rXiXj by

rXiXj D
3X

kD1
�k
ijXk:

ut
The connection alluded to in Theorem 3.1 is known as the Levi-Civita connec-

tion. The functions �k
ij are called the Christoffel symbols. We shall work with the

Levi–Civita connection from now on.

4 The Riemannian Curvature

Let r be the Levi–Civita connection on H
1. Then the Riemannian curvature R on

H
1 is the mapping that assigns three vector fields X, Y and Z in h another vector

field in h denoted by R.X;Y/Z and given by

R.X;Y/Z D rXrYZ � rYrXZ � rŒX;Y�Z: (6)

Remark 4.1 An intuitive way to think of the Riemannian curvature R is that it
measures the deviation of rXrY � rYrX from rŒX;Y�. It should be noted that the
opposite sign of R is also common in the literature. For example, the sign used in
[5, 7] is different from the one used in this paper.

The Riemannian curvature has many symmetries as given by the following
theorem, which can be proved easily using (6).

Theorem 4.2 Let X, Y Z and W be in h. Then we have the following symmetries.

• R.X;Y/Z C R.Y;X/Z D 0;
• .R.X;Y/Z;W/C .R.X;Y/W;Z/ D 0;
• R.X;Y/Z C R.Y;Z/X C R.Z;X/Y D 0;
• .R.X;Y/Z;W/ D .R.Z;W/X;Y/.

In order to perform computations on the Heisenberg group H
1, the following

theorem is very useful. It is the Koszul formula for the Heisenberg groupH1.
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Theorem 4.3 For all vector fields X, Y and Z in h; we have

.rXY;Z/ D 1

2
f.Z; ŒX;Y�/ � .Y; ŒX;Z�/ � .X; ŒY;Z�/g:

Proof By compatibility,

X.Y;Z/ D .rXY;Z/C .Y;rXZ/ D 0;
Y.X;Z/ D .rYX;Z/C .X;rYZ/ D 0

and

Z.X;Y/ D .rZX;Y/C .X;rZY/ D 0:

Since r is torsion-free, we use the Jacobi identity, i.e.,

ŒX; ŒY;Z��C ŒY; ŒZ;X��C ŒZ; ŒX;Y�� D 0

to get

0 D 2.rXY;Z/ � .Z; ŒX;Y�/C .Y; ŒX;Z�/C .X; ŒY;Z�/;

as asserted. ut
The following two theorems can be proved by means of the Koszul formula and

direct computations. The first theorem gives a useful formula for the Levi-Civita
connection and the second theorem provides an explicit formula for the Riemannian
curvature.

Theorem 4.4 The Levi-Civita connection r is given by

rX1X1 D 0; rX1X2 D � 12X3; rX1X3 D 1
2
X2;

rX2X1 D 1
2
X3; rX2X2 D 0; rX2X3 D � 12X1;

rX3X1 D 1
2
X2; rX3X2 D � 12X1; rX3X3 D 0:

Theorem 4.5 For all vector fields X, Y and Z in h;

R.X;Y/Z D �3
4
..Y;Z/X � .X;Z/Y/

C.Y;X3/.Z;X3/X � .X;X3/.Z;X3/Y
C.X;X3/.Y;Z/X3 � .Y;X3/.X;Z/X3:
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5 The Sectional Curvature

Let X and Y be two orthonormal vector fields in h. Then X and Y determine a plane
in h. Using left translations, we get a plane bundle on H

1. Let .z; t/ 2 H
1. Then we

can find a neighborhood U of the origin in T.z;t/H1 and a neighborhood N of .z; t/
in H

1 such that the exponential mapping exp W U ! N is a diffeomorphism. As
such, the plane (a subspace of T.z;t/H1) induces a submanifold of H1 locally and its
curvature is given by the so-called sectional curvature that we can now define.

Definition 5.1 Let X and Y be orthonormal vector fields in h. Then the sectional
curvature S.X;Y/ determined by X and Y is the number given by

S.X;Y/ D .R.X;Y/X;Y/:

We can now compute the sectional curvature of the Heisenberg group.

Theorem 5.2 Let X and Y be orthonormal vector fields in h. Then

S.X;Y/ D 3

4
� .X;X3/2 � .Y;X3/2:

Proof By Theorem 4.5,

R.X;Y/X

D �3
4
Œ.Y;X/X � .X;X/Y�

C.Y;X3/.X;X3/X � .X;X3/.X;X3/Y
C.X;X3/.Y;X/X3 � .Y;X3/.X;X/X3:

So,

S.X;Y/ D .R.X;Y/X;Y/ D 3

4
� .X;X3/2 � .Y;X3/2:

ut

6 The Ricci Curvature

Let X and Y be vector fields in h. Then we consider the linear mapping

h 3 Z 7! R.X;Z/Y 2 h:
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We denote this mapping by M.X;Y/ W h ! h and we define the Ricci curvature
r.X;Y/ of the Heisenberg group by

r.X;Y/ D trM.X;Y/:

Theorem 6.1 Let X and Y be vector fields in h. Then the Ricci curvature r.X;Y/ of
the Heisenberg group is given by

r.X;Y/ D 1

2
.X;Y/ � .X;X3/.Y;X3/:

Proof Using the orthonormal basis X1, X2 and X3 for H1, we get by means of
Theorem 4.5

R.X;Xj/Y

D �3
4
Œ.Xj;Y/X � .X;Y/Xj�

C.Xj;X3/.Y;X3/X � .X;X3/.Y;X3/Xj

C.X;X3/.Xj;Y/X3 � .Xj;X3/.X;Y/X3:

So, for j 2 f1; 2; 3g;

.R.X;Xj/Y;Xj/

D �3
4
Œ.Xj;Y/.X;Xj/� .X;Y/�

C.Xj;X3/.Y;X3/.X;Xj/ � .X;X3/.Y;X3/
C.X;X3/.Xj;Y/.X3;Xj/ � .Xj;X3/.X;Y/.X3;Xj/:

Therefore by Parseval’s identity,

trM.X;Y/

D �3
4
Œ.X;Y/ � 3.X;Y/�

C.X;X3/.Y;X3/� 3.X;X3/.Y;X3/
C.X;X3/.Y;X3/� .X;Y/

D 1

2
.X;Y/� 5

4
.X;X3/.Y;X3/;

as required. ut
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By Theorem 6.1, the Ricci curvature is the mapping Ric W h! h given by

Ric.X/ D 1

2
X � .X;X3/X3

for all X in h.

7 The Scalar Curvature

The scalar curvature � of the Heisenberg group is defined by

� D tr .Ric/:

Theorem 7.1 The scalar curvature � of the Heisenberg group is given by

� D 1

2
:

Proof Let V1, V2 and V3 be an orthonormal basis for H1. Then

� D tr .Ric/

D
3X

jD1
.RicVj;Vj/

D 1

2

3X

jD1
.Vj;Vj/ �

3X

jD1
.Vj;V3/

2

D 3

2
� 1 D 1

2
:

ut
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Ellipticity with Global Projection Conditions
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Abstract We give an overview of elliptic operators on a compact smooth manifold
with boundary or edge, with elliptic boundary or edge conditions in global projec-
tion approach, introduced in Schulze (J Funct Anal 179:374–408, 2001) and then
continued in Schulze and Seiler (J Funct Anal 206(2):449–498, 2004; J Inst Math
Jussieu 5(1):101–123, 2006). Such conditions are motivated by the fact that impor-
tant elliptic operators do not admit Shapiro-Lopatinskii elliptic conditions, though
they always admit global projection conditions. Basically Shapiro-Lopatinskii
conditions are a special case, such that the global projection idea unifies different
concepts. There is a similarity to Toeplitz operators whence it also makes sense
to talk about boundary or edge problems of Toeplitz type. Another stream of
investigations goes back to Atiyah-Patodi-Singer (Math Proc Camb Philos Soc
77/78/79:43–69/405–432/315–330, 1975/1976/1976), though the analytical ideas
and intentions from there are quite different. In our approach we focus on the
aspect of operator algebras in scales of Sobolev spaces or subspaces induced by
pseudo-differential projections, on parametrices within those structures, and on the
role of principal symbolic hierarchies coming from the singular analysis. Ellipticity
with global projection conditions in the singular analysis is also a source of new
challenges. A few of them are indicated in the final part of this exposition.
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1 Introduction

Standard ellipticity of a differential (or classical pseudo-differential) operator A on
a smooth manifold X is defined in terms of non-vanishing (or bijectivity) of its
homogeneous principal symbol � .A/. We then obtain a parametrix P within the
algebra of pseudo-differential operators, where � .P/ D ��1

 .A/. If X is closed
ellipticity is equivalent to the Fredholm property in Sobolev spaces, and invertibility
of such an A implies that A�1 belongs to the algebra again. However, if X is
not closed or non-smooth, e.g., a compact smooth manifold with boundary, or
a manifold with singularities, such as conical points or edges, we cannot expect
results of this kind, unless we do not refer to adequate new inventions, in particular,
to enlarging the concept of ellipticity in terms of new symbolic structures. An
example of such a generalization is Boutet de Monvel’s algebra of boundary value
problems (BVPs) with the transmission property, cf. [5], which developes a concept
of ellipticity of 2 � 2 block matrix operators A, based on a principal symbolic
hierarchy .� .A/; �@.A//, consisting of the interior symbol � .A/, only defined
in terms of the upper left corner A, and the operator-valued boundary symbol
�@.A/ which reflects the role of boundary conditions of trace and potential type.
Already Boutet de Monvel’s calculus is far from being elementary, and there
are some monographs on this topic, e.g., of Rempel and Schulze [16] or Grubb
[9]. Other generalizations, e.g., operators without the transmission property at the
boundary or operators of the edge calculus induce a new philosophy on how to
understand ellipticity and the nature of Sobolev spaces. This is, in fact, topic of
an entire stream of new developments. A common feature of what we intend to
discuss in this article is the nature of ellipticity of the additional symbolic level
analogously as �@.�/, and the key-word is global projection ellipticity, originally
introduced in [24] in the framework of Boutet de Monvel’s calculus. The � -elliptic
operators in corresponding upper left corners are quite arbitrary, of any order, and
they do not necessarily admit elliptic boundary conditions of Shapiro-Lopatinskii
type. Specific � -elliptic operators without Shapiro-Lopatinskii ellipticity at the
boundary have been studied before by Atiyah, Patodi, Singer [2], in connection
with index theory, using a completely different approach, and later on by Grubb,
Seeley [10], Nazaikinskij, Schulze, Sternin, Shatalov [14]. More references can be
found in the articles [18] of Savin, Schulze, Sternin, and [17] of Savin, Sternin. The
idea of algebras with involved projection operators has been extended by Seiler in a
number of recent papers [30, 31].

An elementary example of a � -elliptic operator is the Cauchy-Riemann operator
in a disk in the complex plane. It does not admit Shapiro-Lopatinskii elliptic
boundary conditions, but there are elliptic global projection conditions, as is shown
in [24]. The novelty in [24] is a unification of Shapiro-Lopatinskii and global
projection ellipticity in an operator algebra, extending the one of Boutet de Monvel,
including the computation of parametrices within the structure.
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In the present article we give a survey on this development and subsequent
results for operators without the transmission property and on manifolds with
edge, obtained in [27, 28], jointly with Seiler, and we comment new achievements
on global projection conditions for elliptic complexes [29]. Similarly as in the
theory for “scalar” operators, every elliptic complex of differential operators on a
smooth compact manifold with boundary – e.g., the Dolbeault complex – admits
elliptic boundary conditions of global projection type and as such induces Fredholm
complexes with additional spaces on the boundary that appear as images under
projections of Sobolev spaces on the boundary. Their nature will be explained below
in connection with projection data in Sect. 2.

2 Projections and Toeplitz Operators

Let Vect.M/ denote the set of smooth complex vector bundles over a smooth
manifoldM. Let T�M be the cotangent bundle overM with its canonical projection
� W T�M! M.

Theorem 2.1 Let J 2 Vect.M/ for a smooth closed manifold M, and let p W ��
MJ !

��
MJ be a smooth bundle morphism of homogeneity 0 in the covariable 
 6D 0, i.e.,

p.x; �
/ D p.x; 
/ for all .x; 
/ 2 T�Mn0, � 2 RC, and p2 D p. Then there exists
a P 2 L0cl.MI J; J/ such that � .P/ D p and P2 D P. Moreover, if p satisfies the
condition p� D p, the operator P can be chosen in such a way that P� D P.

This result is well-known, cf. [3, 33]. An explicit proof can be found in [24].
Concerning other known relations in connection with projection operators see the
book [4] of Booss-Bavnbek and K. Wojciechowski.

Proposition 2.2 Let P; Q be projections in a Hilbert space H such that P � Q is a
compact operator. Then the restrictions of P to imQ and of Q to imP are Fredholm
operators

PQ W imQ! imP; QP W imP! imQ

between the respective closed subspaces of H, and QP is a parametrix of PQ, and
vice versa.

In fact, the operator Q obviously acts as the identity on imQ. This gives us

QPPQ � 1imQ D QPPQ � Q2 D QP.PQ � QP/ W imQ! imQ;

i.e.,QPPQ�1imQ is a compact operator in imQ. It follows thatQP is a left parametrix
of PQ. In an analogous manner we see that PQQP � 1imP D PQ.QP � PQ/ W imP!
imP is compact, i.e., QP is also a right parametrix of PQ which means that PQ is a
Fredholm operator. At the same time we see that QP is also Fredholm.
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Remark 2.3 Let ind .P;Q/ denote the index of PQ W imQ! imP. Then we have

ind .P;Q/ D �ind .Q;P/:

Let J 2 Vect.M/ and

p W ��
MJ ! ��

MJ (1)

be a projection as in Theorem 2.1. Then we have

L WD im p 2 Vect.T�Mn0/ (2)

which is a subbundle of ��
MJ. Conversely for every L 2 Vect.T�Mn0/ there exists

a J 2 Vect.M/ such that L is a subbundle of ��
MJ. In fact, there exists an N and an

L? 2 Vect.T�Mn0/ such that L˚ L? D .T�Mn0/ �C
N .

Definition 2.4 A triple L WD .P; J;L/ will be called projection data on M when
P 2 L0cl.MI J; J/ is a projection as in Theorem 2.1, and L defined by (2). Let P.M/
denote the set of all such projection data.

Proposition 2.5

(i) For every J 2 Vect.M/ we have .id; J; ��
MJ/ 2 P.M/.

(ii) For every L D .P; J;L/,eL D . QP; QJ; QL/ 2 P.M/ we have

L˚eL WD .P˚ QP; J ˚ QJ;L˚ QL/ 2 P.M/:

(iii) Every L D .P; J;L/ 2 P.M/ admits complementary projection data L
? 2

P.M/ in the sense that L˚ L
? D .id;F; ��

MF/ for some F 2 Vect.M/.
(iv) Every L D .P; J;L/ 2 P.M/ has an adjoint L� D .P�; J;L�/ 2 P.M/ where

P� is the adjoint of P in L2.M; J/ and L� 2 Vect.T�Mn0/ given by im p� for
p� D � .P�/. Note that .L�/� D L.

(v) For every subbundle L of ��
MJ, J 2 Vect.M/, there exist projection data L D

.P; J;L/ 2 P.M/.

Let J 2 Vect.M/ and (1) be a projection as in Theorem 2.1. Then

L WD im p 2 Vect.T�Mn0/ (3)

is a subbundle of ��
MJ. Conversely for every L 2 Vect.T�Mn0/ there exists a J 2

Vect.M/ such that L is a subbundle of ��
MJ. In fact, there exists an N and an L? 2

Vect.T�Mn0/ such that L˚ L? D .T�Mn0/ � C
N .

Remark 2.6 For every L D .P; J;L/ 2 P.M/ we find complementary projection
data L? D .1 � P; J;L?/ by setting L? D im � .1 � P/ where we have L˚ L? D
��
MJ.
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Remark 2.7 For every L D .P; J;L/ we can form continuous projections also in
Sobolev spaces Hs.M; J/ of distributional sections in the bundle J,

P W Hs.M; J/! Hs.M; J/;

s 2 R. Let us set

Hs.M;L/ WD PHs.M; J/: (4)

This is a closed subspace ofHs.M; J/, in fact, a Hilbert space with the scalar product
induced by Hs.M; J/. Occasionally if P is regarded as an operator on Hs.M; J/ we
also write Ps.

Remark 2.8 Let L D .P; J;L/ and QL D . QP; QJ;L/ 2 P.M/ where J is a subbundle
of QJ .such that L is a subbundle also of ��

M
QJ/ and P W Hs.M; J/ ! Hs.M;L/ the

restriction of QP W Hs.M; QJ/! Hs.M; QL/ to Hs.M; J/. Then Hs.M;L/ D Hs.M; QL/.
Let us now formulate other properties of the spaces Hs.M;L/.

Proposition 2.9 We have continuous embeddings

Hs0.M;L/ ,! Hs.M;L/ (5)

for every s0 	 s that are compact for s0 > s.

Proposition 2.10

(i) The space H1.M;L/ DTs2R Hs.M;L/ is dense in Hs.M;L/ for every s 2 R.
(ii) Let H0.M;L/ be endowed with the scalar product from H0.M; J/, and let V �

H1.M;L/ be a subspace of finite dimension. Then the orthogonal projection
CV W H0.M;L/! V induces continuous operators CV W Hs.M;L/! V for all
s 2 R, and CV is a compact operator Hs.M;L/! Hs.M;L/ for every s 2 R.

Remark 2.11 Let L D .P; J;L/ 2 P.M/ and L
� D .P�; J;L�/ its adjoint in the

sense of Proposition 2.5 (iv). Then we have the subspaces

Hs.M;L/ � Hs.M; J/; H�s.M;L�/ � H�s.M; J/

for every s 2 R. The sesquilinear pairing .�; �/ W H1.M;L/ � H1.M;L�/ ! C

induced by

Hs.M; J/ �H�s.M; J/! C (6)

extends to a non-degenerate sesquilinear pairing

.�; �/ W Hs.M;L/ � H�s.M;L�/! C (7)
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for every s 2 R .which is nothing else than the restriction of (6) to the respective
subspaces/. If necessary the pairing will also be denoted by .�; �/Hs.M;L/�H�s.M;L�/.

Let Li D .Pi; Ji;Li/ 2 P.M/, i D 1; 2, and let A W H1.M;L1/ ! H1.M;L2/
be an operator that extends to a continuous operator A W Hs.M;L1/! Hs��.M;L2/
for all s 2 R and some � 2 R. Then there is a (unique) A� W H1.M;L�

2 / !
H1.M;L�

1 / defined by

.Au; v/H0.M;L2/�H0.M;L�
2 /
D .u;A�v/H0.M;L1/�H0.M;L�

1 /
(8)

for all u 2 H1.M;L1/, v 2 H1.M;L�
2 /, that extends to a continuous operator

A� W Hs.M;L�
2 /! Hs��.M;L�

1 / (9)

for every s 2 R, called the formal adjoint of A.
Given an L D .P; J;L/ 2 P.M/ with the subspaces

Hs.M;L/ ,! Hs.M; J/; s 2 R; (10)

we consider the embedding operator E given by (10). Analogously we observe the
embedding

e W L! ��
MJ (11)

as a subbundle, where (11) is assumed to be homogeneous of order 0 in 
. More
precisely, if S�M denotes the unit cosphere bundle induced by T�Mn0 (with respect
to a fixed Riemiannian metric on M) and if �1 W T�Mn0 ! S�M denotes the
canonical projection, defined by .x; 
/ ! .x; 
=j
j/, then we have L D ��

1 L1 for
L1 WD LjS�M 2 Vect.S�M/. Similarly we have ��

MJ D ��
1 ..�

�
MJ/1/; then we obtain

an embedding

e1.x; 
/ W .L1/.x;
/ ! ..��
MJ/1/.x;
/; .x; 
/ 2 S�M; (12)

which induces embeddings

e.x; 
/ W L.x;
/ ! .��
MJ/.x;
/; .x; 
/ 2 T�Mn0; (13)

defined by the composition of linear mappings

e.x; 
/ W L.x;
/ ! L.x;
=j
j/ ! ..��
MJ/1/.x;
=j
j/ ! .��

MJ/.x;
/

where the first mapping is defined by the bundle pull back under the embedding
S�M ,! T�Mn0, the second one by (12) and the third one by the identification
.��

MJ/.x;
/ D Jx, x 2 M. Then we have e.x; �
/ D e.x; 
/ for all � 2 R, .x; 
/ 2
T�Mn0.
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In the following we formulate operators which appear as lower right corners of
2 � 2 matrices of the Toeplitz analogue of Boutet de Monvel’s calculus below.

Definition 2.12 Let Li WD .Pi; Ji;Li/, i D 1; 2, with the corresponding operators
E1 W H1.M;L1/ ! H1.M; J1/ and P2 W H1.M; J2/ ! H1.M;L2/, respectively.
An operator of the form

A D P2 QAE1
for some QA 2 L�cl.MI J1; J2/; � 2 R, is called a Toeplitz operator of order � 2 R

associated with the projection data L1; L2. Let T �.MIL1;L2/ denote the set of all
Toeplitz operators onM of order �. Moreover, we set

T �1.MIL1;L2/ WD fP2 QCE1 W QC 2 L�1.MI J1; J2/g: (14)

Observe that T ��j.MIL1;L2/ � T �.MIL1;L2/ for every positive integer j and
T �1.MIL1;L2/ for every �. Thus

T �1.MIL1;L2/ �
\

�2R
T �.MIL1;L2/:

Note that T �1.MIL1;L2/ can be equivalently defined as the set of all A 2
T 1.MIL1;L2/ WD S

�2R T �.MIL1;L2/ such that there is an QA 2 L�cl.MI J1; J2/
for some � 2 R with A D P2 QAE1 where

QC WD P2 QAP1 2 L�1.MI J1; J2/I

then A D P2 QCE1. Moreover,

P2 QCE1 2 T �1.MIL1;L2/, P2 QCP1 2 L�1.MI J1; J2/: (15)

Proposition 2.13 Given Li 2 P.M/, i D 1; 2, we have a canonical isomorphism

T �.MIL1;L2/! fP2 QAP1 W QA 2 L�cl.MI J1; J2/g: (16)

Remark 2.14 The space T �.MIL1;L2/ can be identified with the corresponding
quotient space L�cl.MI J1; J2/= 
.

Observe that forLi 2 P.M/, i D 1; 2, and QA 2 L�cl.MI J1; J2/we have QA 
 P2 QAP1.
Theorem 2.15 An A 2 T �.MIL1;L2/ extends to a continuous operator

A W Hs.M;L1/! Hs��.M;L2/ (17)

for every s 2 R.



54 B.-W. Schulze

Remark 2.16 For every pair of projection data Li D .Pi; Ji;Li/ 2 P.M/, i D 1; 2,
there existMi D .Qi;C

m;Li/ 2 P.M/, such that

T �.MIL1;L2/ D T �.MIM1;M2/: (18)

In fact, every two bundles J1, J2 over M can be regarded as subbundles of a
trivial bundle C

m; it suffices to use the fact that J1 ˚ J2 has a complementary
bundle .J1 ˚ J2/? where J1 ˚ J2 ˚ .J1 ˚ J2/? D C

m for a resulting m. Let J?
i

be the complementary bundle of Ji in C
m, i D 1; 2. According to Theorem 2.1 with

the projection ��
MC

m ! ��
MJi along �

�
MJ

?
i we can associate pseudo-differential

projections QPi 2 L0cl.MICm;Cm/, QPi W Hs.M;Cm/ ! Hs.M;Cm/, i D 1; 2.
Moreover, we have our original projections Pi W ��

MJi ! Li which gives us
projections ��

MC
m ! Li and associated pseudo-differential projections Qi 2

L0cl.MICm;Cm/, where Qi D Pi QPi, and Qi W Hs.M;Cm/ ! Hs.M;Li/, i D 1; 2.
Relation (18) then follows from the fact that every QA 2 L�cl.MI J1; J2/ can be

identified with some QQA 2 L�cl.MICm;Cm/ by setting QQA D QA QP1.
Recall that when A 2 L�cl.MI J1; J2/, A0 2 L�cl.MI J0

1; J
0
2/ are pseudo-differential

operators, Ji; J0
i 2 Vect.M/, i D 1; 2, we have the direct sum

A˚ A0 WD diag.A;A0/ 2 L�cl.MI J1 ˚ J0
1; J2 ˚ J0

2/:

A similar operation is possible on the level of Toeplitz operators. In fact, let Li D
.Pi; Ji;Li/, L0

i D .P0
i; J

0
i ;L

0
i/, i D 1; 2, be projection data on M; then for A WD

P2 QAE1 2 T �.MIL1;L2/ and A0 WD P0
2
QA0R0

1 2 T �.MIL0
1;L

0
2/ we have the direct

sum

A˚ A0 WD diag.A;A0/ 2 T �.MIL0
1 ˚ L

0
1;L2 ˚ L

0
2/:

Proposition 2.17 Let Aj 2 T ��j.MIL1;L2/, j 2 N, be an arbitrary sequence. Then
there exists an A 2 T �.MIL1;L2/ such that

A �
NX

jD1
Aj 2 T ��.NC1/.MIL1;L2/ (19)

for every N 2 N, and A is uniquemod T �1.MIL1;L2/.
Definition 2.18 Let A 2 T �.MIL1;L2/, A D P2 QAE1 for some QA 2 L�cl.MI J1; J2/.
We define the homogeneous principal symbol of A as the bundle morphism

� .A/ W L1 ! L2;

fibrewise over .x; 
/ 2 T�M n 0 given as the composition

� .A/.x; 
/ D � .P2/.x; 
/� . QA/.x; 
/� .E1/.x; 
/: (20)
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Here � .E1/.x; 
/ is interpreted as (13) for L1 and J1 instead of L and J, respec-
tively, while � . QA/.x; 
/ and � .P2/.x; 
/ are the standard homogeneous principal
symbols of the corresponding classical pseudo-differential operators.

For simplicity, we occasionally identify � .A/ with � .P2/� . QA/� .P1/, where
� .P1/jL1 W L1 ! ��

MJ1 is identified with the embedding � .E1/.
Let S.�/.T�M n 0IL1;L2/ for L1; L2 2 Vect.T�M n 0/ denote the space of all

bundle morphisms

� W L1 ! L2

such that �.x; �
/ D ���.x; 
/, � 2 RC, as a linear mapping L1;.x;
/ ! L2;.x;
/ for
every .x; 
/ 2 T�M n 0.

Then � gives us a linear map

� W T �.MIL1;L2/! S.�/.T�M n 0IL1;L2/: (21)

Theorem 2.19

(i) The principal symbolic map (21) is surjective, and there is a right inverse

op W S.�/.T�M n 0IL1;L2/! T �.MIL1;L2/:

(ii) The kernel of (21) coincides with T ��1.MIL1;L2/.
Remark 2.20 Let A 2 T �.MIL1;L2/ be an operator such that � .A/ D 0. Then
(17) is a compact operator for every s 2 R.

In fact, Theorems 2.19 and 2.15 show that A 2 T ��1.MIL1;L2/ and A W
Hs.M;L1/ ! Hs��C1.M;L2/ is continuous; then the compactness of (17) is a
consequence of Proposition 2.9.

Theorem 2.21 Let A 2 T �.MIL0;L2/ and B 2 T �.MIL1;L0/ for �, � 2 R, and
L1; L0; L2 2 P.M/. Then we have AB 2 T �C�.MIL1;L2/ and

� .AB/ D � .A/� .B/: (22)

Theorem 2.22 Given A 2 T �.MIL1;L2/, Li D .Pi; Ji;Li/ 2 P.M/, i D 1; 2, for
the formal adjoint in the sense of Remark 2.11 we have A� 2 T �.MIL�

2 ;L
�
1 / where

L
�
i 2 P.M/ .see Proposition 2.5 (iv)/ for i D 1; 2, and

� .A
�/ D � .A/�:

Definition 2.23 An operator A 2 T �.MIL1;L2/, � 2 R, for Li 2 P.M/, i D 1; 2,
is called elliptic .of order �/ if � .A/ W L1 ! L2 is an isomorphism.
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Example 2.1 Let L D .P; J;L/ 2 P.M/, and let

a.�/ W ��
MJ ! ��

MJ

for any fixed � 2 R denote the unique smooth bundle morphism such that a.�/ W
��
1 J ! ��

1 J for �1 W S�M ! M is the identity map and a.�/.x; �
/ D ��a.�/.x; 
/
for all .x; 
/ 2 T�M n0, � 2 RC. Let QA 2 L�cl.MI J; J/ be any element with � . QA/ D
a.�/ and consider the composition P QAP 2 L�cl.MI J; J/. Then P QAR identified with
P QAPjH1.M;L/ represents an elliptic operator in T �.MIL;L/.
Definition 2.24 Let A 2 T �.MIL1;L2/, � 2 R, Li 2 P.M/, i D 1; 2. Then an
operator B 2 T ��.MIL1;L2/ is called a parametrix of A, if B satisfies the relations

CL WD I � BA 2 T �1.MIL1;L1/; CR WD I � AB 2 T �1.MIL2;L2/I (23)

here I denotes corresponding identity operators.

Remark 2.25 For every L WD .P; J;L/ 2 P.M/ and every � 2 R there exists an
elliptic operator R�

L
2 T �.MIL;L/.

In fact, let a.�/ 2 S�.cl/.T
�M n 0I J; J/ be the unique element that restricts to the

identity map on ��
1 J where �1 W S�M ! M is the canonical projection of the unit

cosphere bundle S�M induced by T�M to M. Set QA WD op.a.�//. Then P QAE for the
embedding E W Hs.M;L/ ! Hs.M; J/ is elliptic because � .P QAE/ W L ! L is an
isomorphism.

Proposition 2.26 Let A 2 T �.MIL1;L2/ be an elliptic operator, and represent
A as an element A 2 T �.MIM1;M2/ for Mi WD .Qi;C

m;Li/, i D 1; 2, for a
sufficiently large m .cf. Remark 2.16). Then there exists an elliptic operator A? 2
T �.MIM?

1 ;M
?
2 / for suitable M

?
i 2 P.M/ such that A˚ A? 2 L�cl.MICm;Cm/ is

elliptic in the standard sense.

Theorem 2.27 Let A 2 T �.MIL1;L2/, � 2 R, Li D .Pi; Ji;Li/ 2 P.M/.

(i) The operator A is elliptic .of order �/ if and only if

A W Hs.M;L1/! Hs��.M;L2/ (24)

is a Fredholm operator for some s D s0 2 R.
(ii) If A is elliptic, then (24) is Fredholm for all s 2 R, and dimkerA .as well as

the kernel itself / and dim cokerA are independent of s.
(iii) An elliptic operator A 2 T �.MIL1;L2/ has a parametrix B 2 T ��.MIL2;L1/,

and B can be chosen in such a way that the remainders in relation (23) are
projections

CL W Hs.M;L1/! V; CR W Hs��.M;L2/! W
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for all s 2 R, for V WD kerA � H1.M;L1/, and a finite-dimensional subspace
W � H1.M;L2/ such that W C imA D Hs��.M;L2/ and W \ imA D f0g
for all s 2 R.

Remark 2.28 The ellipticity of an operator A 2 T �.MIL1;L2/ for Li D .Pi; Ji;Li/,
i D 1; 2 only depends on the bundles L1; L2, not on the projections P1; P2 or the
chosen bundles J1; J2 over M. Of course, the spaces Hs.M;L1/ and Hs��.M;L2/
depend on the choice of projections P1; P2. So the Fredholm index of (24) may
change under varying projections.

The corresponding effect can be illustrated in functional analytic terms.

Theorem 2.29 Let Hi, i D 1; 2 be Hilbert spaces, and let Pi; Qi 2 L.Hi/ be
continuous projections such that Pi � Qi 2 K.Hi/, i D 1; 2. Moreover, let
A 2 L.H1;H2/ be an operator such that

A WD P2 QA W imP1 ! imP2

is a Fredholm operator. Then also

B WD Q2 QA W imQ1 ! imQ2

is a Fredholm operator, and we have

indA � indB D ind .P1;Q1/� ind .P2;Q2/: (25)

Corollary 2.30 Let A 2 T �.MIL1;L2/ for Lj WD .Pj; Jj;Lj/; B 2 T �.MIM1;M2/

forMj WD .Qj; Jj;Lj/, and assume that � .A/ D � .B/. Then the Fredholm indices
of A and B as operators

A W Hs.M;L1/! Hs��.M;L2/; B W Hs.M;M1/! Hs��.M;M2/

are related by formula (25), which is independent of s.

In fact, the Fredholm indices of A and B are independent of s, cf. Theorem 2.27,
and hence, we may apply (25) for any fixed s.

Remark 2.31 Let L WD .P; J;L/ andM WD .Q; J;L/ be projection data; we interpret
the operators

P W Hs.M;M/! Hs.M;L/ and Q W Hs.M;L/! Hs.M;M/

as elements of T 0.MIM;L/ and T 0.MIL;M/, respectively. Recall that we have an
identification

T 0.MIM;L/ Š fP QAQ W QA 2 L�cl.MI J; J/g;
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cf. Proposition 2.13. Inserting QA D P we obtain P QAQ D P W imQ ! imP. For
a similar reason we interpret Q as a Toeplitz operator Q QAP D Q W imP ! imQ
for QA D Q. Since � .P/ D � .Q/ D idL the operators P and Q are elliptic in the
respective classes. Moreover, we have

indP D ind .P;Q/; indQ D ind .Q;P/:

Remark 2.32 Let A; B 2 T �.MIL1;L2/ be elliptic, and assume that the principal
symbols

� .A/; � .B/ W L1 ! L2

coincide. Then we have

indA D indB:

In fact, Proposition 2.20 gives us � .A�B/ D 0, i.e., A�B 2 T ��1.MIL1;L2/,
and hence A is equal to B modulo a compact operator.

3 Operators with the Transmission Property

Let X be a compact C1 manifold with boundary Y, and let 2X denote the double
of X, obtained by gluing together two copies XC and X� of X along their common
boundary Y by the identity map. We then identify X with XC. Moreover, let eC
denote the operator of extension of functions on intXC by zero to the opposite side
X�, and let rC denote the operator of restriction of distributions on 2X to intXC. In
an analogous manner we define the operators e� and r� with respect to the minus-
side of 2X. On 2X we choose a Riemannian metric that is equal to the product metric
of Y � .�1; 1/ in a neighbourhood of Y for some Riemannian metric on Y.

For a given E 2 Vect.X/ we fix any QE 2 Vect.X/ and E D QEjX . Now let
E and F in Vect.X/ with fibre dimensions k and m, respectively. Consider the
space L�cl.2XI QE; QF/. For every chart 	 W V ! � on 2X, � � R

n open, and
trivialisations QEjV Š � � C

k, QFjV Š � � C
m, the push forward 	�A of an operator

A 2 L�cl.2XI QE; QF/ belongs to L�cl.�ICk;Cm/. By notation the push forward 	�
also refers to the chosen trivialisations of QEjV and QFjV ; for simplicity those are not
explicitly indicated here. This should not cause any confusion.

Let V \ Y 6D ;, V WD V 0 � .�1; 1/, where V 0 is a coordinate neighbourhood on
the boundary Y, and assume that 	 restricts to charts 	˙ W V˙ ! � � R˙ on X˙
for V˙ WD X˙ \ V , and to a chart 	0 WD 	jV0 W V 0 ! � on Y, � � R

n�1.
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Definition 3.1 For � 2 Z we define L�tr .2XI QE; QF/ to be the space of all elements
QA 2 L�cl.2XI QE; QF/ such that for every chart 	 W V ! � � R of the described kind
and ';  2 C1

0 .� � R/ the symbol

Qa.x; 
/ WD e�
f'.	� QA ge
 for e
 WD eix


is an m � k matrix of elements in S�tr.� �R � R
n/. Moreover, we set

L�tr .XIE;F/ WD frC QAeC W QA 2 L�tr .2XI QE; QF/g: (26)

Remark 3.2 The space L�tr .2XI QE; QF/ is closed in L�cl.2XI QE; QF/. Moreover, the space

f QA 2 L�tr .2XI QE; QF/ W rC QAeC D 0g (27)

is closed in L�tr .2XI QE; QF/, and we have

L�tr .XIE;F/ D L�tr .2XI QE; QF/=
; (28)

where =
 indicates the quotient space with respect to the equivalence relation QA 

QB, rC. QA � QB/eC D 0. This gives us a natural Fréchet topology also in the space
(28).

Proposition 3.3 Let� � R
q be an open set, and assume that a.y; t; �; �/ 2 S�tr.��

RC � R
n/ is independent of t for t > c for some constant c > 0. Then OpC.a/ WD

rCOp.Qa/eC .for any Qa.y; t; �; �/ 2 S�tr .� � R � R
n/ such that a D Qaj��RC�Rn/

induces a continuous operator

OpC.a/ W Hs
comp.y/.� � RC/!W Hs��

loc.y/.� � RC/

for every s 2 R; s > �1=2.
Theorem 3.4 An A 2 L�tr.XIE;F/ induces a continuous operator

A W Hs.X;E/! Hs��.X;F/

for every s 2 R, s > �1=2.
Given an A 2 L�tr .XIE;F/, A D rC QAeC for an QA 2 L�tr.2XI QE; QF/ we first have the

homogeneous principal symbol � . QA/ W ��
2X
QE! ��

2X
QF for �2X W T�.2X/ n 0! 2X,

and we set � .A/ WD � . QA/jT�Xn0,

� .A/ W ��
X E! ��

X F; (29)

�X W T�X n0! X .T�X D T�.2X/jX/. With (29) we associate a family of operators

�@.A/.y; �/ WD rC� .A/.y; 0; �;Dt/e
C D rCop.� .A/jtD0/.y; �/eC (30)
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for .y; �/ 2 T�Y n 0. This refers to the variables .y; t/ 2 Y � Œ0; 1/ of a collar
neighbourhood of the boundary. The family of operators (30) represents a bundle
morphism

�@.A/ W ��
Y E

0 ˝ Hs.RC/! ��
Y F

0 ˝ Hs��.RC/

for every fixed s 2 R, s > �1=2, �Y W T�Y n 0 ! Y, E0 WD EjY , F0 WD FjY .
Alternatively, we interpret �@.A/ as a morphism

�@.A/ W ��
Y E

0 ˝ S.RC/! ��
Y F

0 ˝ S.RC/;

S.RC/ WD S.R/j
RC

. We call � .A/ the principal interior symbol and �@.A/ the
principal boundary symbol of the operator A.

Example 3.1 Let A D P
j˛j�� a˛.x/D˛x be a differential operator in R

nC D fx D
.y; t/ 2 R

n W t > 0g,
a˛ 2 C1.Rn

C/. Then

� .A/.x; 
/ D
X

j˛jD�
a˛.x/


˛;

�@.A/.y; �/ D
X

j˛jD�
a˛.y; 0/.�;Dt/

˛:

Remark 3.5 For .��u/.t/ WD �1=2u.�t/, � 2 RC, we have

�@.A/.y; ��/ D �����@.A/.y; �/��1
�

for all � 2 RC.

We now formulate the 2�2 block matrix algebra of boundary value problems on
X with trace and potential conditions. The motivation is similar to that of classical
pseudo-differential operators on an open manifold where we complete the algebra
of differential operators to an algebra that contains the parametrices of elliptic
elements. In the present case it is the set of differential boundary value problems
with differential boundary conditions (up to an order reduction on the boundary)
that we complete to an algebra of pseudo-differential boundary value problems that
contains the parametrices of elliptic elements.

The spaces L�tr .XIE;F/ belong to the upper left corners. However, if we compose
two elements of that kind there appear remainder terms, here called Green operators.
In addition boundary operators as in classical BVPs (like Dirichlet or Neumann for
Laplacians) have to be designed. This is just the topic of the following discussion.
Also the respective 2�2 block matrices will be called Green operators since the 12-
and 21-entries have some similarity with the above-mentioned Green operators in
the upper left corners.
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First we need smoothing Green operators. They will also have a so-called type
d 2 N; and we begin with the case d D 0.

Let B�1;0.XI v/ for v WD .E;F; J1; J2/ for E; F 2 Vect.X/, J1 J2 2 Vect.Y/,
denote the space of all operators

G WD


G K
T Q

�
W
C1.X;E/
˚

C1.Y; J1/
�!

C1.X;F/
˚

C1.Y; J2/

such that G and G� extend to continuous operators

G W
Hs.X;E/
˚

Hs.Y; J1/
�!

C1.X;F/
˚

C1.Y; J2/
; G� W

Hs.X;F/
˚

Hs.Y; J2/
�!

C1.X;E/
˚

C1.Y; J1/

for all s 2 R, s > �1=2. Here G� is the formal adjoint of G in the sense

.u;G�v/L2.X;E/˚L2.Y;J1/ D .Gu; v/L2.X;F/˚L2.Y;J2/ (31)

for all u 2 C1.X;E/ ˚ C1.Y; J1/, v 2 C1.X;F/ ˚ C1.Y; J2/; the L2-scalar
products refers to the chosen Riemannian metrics on X and Y and to the Hermitean
metrics in the respective vector bundles.

In order to pass to operators of type d 2 N n f0g for every E 2 Vect.X/ we
fix an operator T W C1.X;E/ ! C1.X;E/ that is equal to idE0 ˝ @t in a collar
neighbourhood of Y, in the splitting of variables .y; t/ 2 Y � Œ0; 1/.

The space B�1;d.XI v/ of smoothing “BVPs” of type d 2 N n f0g is defined to
be the set of all operators

G D G0 C
dX

jD1
Gjdiag.Tj; 0/ (32)

for arbitrary Gj 2 B�1;0.XI v/, j D 0; : : : ; d.
In order to formulate the case of order � 2 R, d 2 N, we first introduce

corresponding operator-valued symbols. The notion refers to the spaces

H WD L2.RC;Ck/˚ C
j1 ; QH WD L2.RC;Cm/˚ C

j2

or Fréchet subspaces

S.RC;Ck/˚ C
j1 ; S.RC;Cm/˚ C

j2
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where the group actions are defined by

u.t/˚ c! �1=2u.�t/˚ c; � 2 RC:

Definition 3.6 Let k; m; j1; j2 2 N, � 2 R, � � R
q open, q D dimY. The space

R�;0
G .� � R

qIw/, w D .k;mI j1; j2/, of Green symbols of order � and type 0 is
defined to be the set of all

g.y; �/ 2 S�cl.� �R
qIL2.RC;Ck/˚ C

j1 ;S.RC;Cm/˚C
j2 /

such that

g�.y; �/ 2 S�cl.� � R
qIL2.RC;Cm/˚ C

j2 ;L2.RC;Ck/˚ C
j1 /:

Here g�.y; �/ is the pointwise adjoint in the sense

.u; g�.y; �/v/L2.RC;C
k/˚Cj1 D .g.y; �/u; v/L2.RC;C

m/˚Cj2 (33)

for all u 2 L2.RC;Ck/˚ C
j1 , v 2 L2.RC;Cm/˚ C

j2 .

Remark 3.7 It can be proved that every g.y; �/ 2 R�;0
G .��RqIw/ induced elements

g.y; �/ 2 S�cl.� � R
qIHs.RC;Ck/˚ C

j1 ;S.RC;Cm/˚ C
j2 /

for all s 2 R, s > �1=2.
Remark 3.8 The operator idCk ˝ @jt represents an operator-valued symbol

idCk ˝ @jt 2 Sjcl.� � R
qIHs.RC;Ck/;Hs�j.RC;Ck//

for every s 2 R .there is in this case no dependence on .y; �/ 2 � � R
q/.

In fact, the operator Tj WD @
j
t W Hs.RC/ ! Hs�j.RC/ belongs to C1.� �

R
q;L.Hs.RC/;Hs�j.RC// and satisfies the relation

Tj D �j��Tj��1
� for all � 2 RC:

Definition 3.9

(i) By R�;d
G .� � R

qIw/ for � 2 R, d 2 N, we denote the space of all operator
functions

g.y; �/ WD g0.y; �/C
dX

jD1
gj.y; �/diag.@

j
t; 0/



Ellipticity with Global Projection Conditions 63

for arbitrary gj.y; �/ 2 R��j;0.� � R
qIw/. The elements of R�;d

G .� � R
qIw/

are called Green symbols of order � and type d.
(ii) By R�;d.� � R

qIw/ for � 2 Z; d 2 N, we denote the space of all operator
functions

a.y; �/ WD OpC. p/.y; �/C g.y; �/

for arbitrary p.y; t; �; �/ 2 S�tr.� � R � R
nICk;Cm/ and g.y; �/ 2 R�;d

G .� �
R

qIw/.
Remark 3.10

(i) Observe that elements ofR�;d
G .��RqIw/ orR�;d.��RqIw/ can be composed

by functions in C1.�/.
(ii) For a.y; �/ 2 R�;d

G .� � R
qIw/ we have D˛y D

ˇ
�a.y; �/ 2 R��jˇj;d.� � R

qIw/
for every ˛; ˇ 2 N

q. Moreover for

a.y; �/ 2 R�;d.� � R
qI v0/; b.y; �/ 2 R�;e.� � R

qIw0/;

v0 WD .k0;mI j0; j2/; w0 WD .k; k0I j1; j0/; (34)

we have

D˛�a.y; �/D
˛
y b.y; �/ 2 R�C��j˛j;h

G .� �R
qI v0 ı w0/ (35)

for v0 ı w0 D .k;mI j1; j2/;
Observe that g.y; �/ 2 R�;d

G .� � R
qIw/ implies

g.y; �/ 2 S�cl.� �R
qIHs.RC;Ck/˚ C

j1 ;S.RC;Cm/˚ C
j2 / (36)

for every s 2 R; s > d � 1=2.
Proposition 3.11

(i) Let gl.y; �/ 2 R��l;d
G .� � R

qIw/; l 2 N, be an arbitrary sequence. Then there
is a g.y; �/ 2 R�;d

G .� � R
qIw/ such that

g.y; �/�
NX

lD0
gl.y; �/ 2 R��.NC1/;d

G .� � R
qIw/

for every N 2 N, and g.y; �/ is unique moduloR�1;d
G .� � R

qIw/.
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(i) For arbitrary al.y; �/ 2 R��l;d.� � R
qIw/; l 2 N, there exists an a.y; �/ 2

R�;d.� �R
qIw/ such that

a.y; �/�
NX

lD0
al.y; �/ 2 R��.NC1/;d.� � R

qIw/

for every N 2 N, and a.y; �/ is unique moduloR�1;d
G .� � R

qIw/.
With Green symbols we now associate so-called Green operators of order � and

type d, namely,

G D Op.g/; Op.g/u.y/ D
“

ei.y�y0/�g.y; �/u.y0/dy0μ�;

first for u 2 C1
0 .�;H

s.RC;Ck//˚ C1
0 .�;C

j1 /; then

Op.g/u 2 C1.�;Hs��.RC;Cm//˚ C1.�;Cj2 /:

Theorem 3.12 For every g.y; �/ 2 R�;d
G .��RqIw/, w D .k;mI j1; j2/, the operator

G D Op.g/ extends to a continuous operator

G W
Hs

comp.y/.� �RC;Ck/

˚
Hs

comp.�;C
j1 /

�!
Hs��

loc.y/.� �RC;Cm/

˚
Hs��

loc .�;C
j2 /

for every s 2 R; s > d � 1=2.
The symbolic structure of a Green operator G D Op.g/ allows us to define its

boundary symbol

�@.G/.y; �/ W Hs.RC;Ck/˚ C
j1 ! S.RC;Cm/˚ C

j2 (37)

for .y; �/ 2 T��n0, namely, as �@.G/.y; �/ D g.�/.y; �/, the homogeneousprincipal
component of g.y; �/. Alternatively we also write

�@.G/.y; �/ W Hs.RC;Ck/˚ C
j1 ! Hs��.RC;Cm/˚ C

j2

or

�@.G/.y; �/ W S.RC;Ck/˚ C
j1 ! S.RC;Cm/˚ C

j2 :

Now we pass to global Green operators on a smooth compact manifold X with
boundary Y. Let Y � Œ0; 1/ be a collar neighbourhood of Y and V 0 � Y a coordinate
neighbourhood, V WD V 0 � Œ0; 1/, and 	 W V ! � � RC a chart that restricts to a
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chart 	0 W V ! �. For our vector bundles E; F 2 Vect.X/ and J1;2 2 Vect.Y/ we
have trivializations

EjV Š � �RC �C
k; FjV Š � � RC �C

m; and J1;2jV0 Š � � C
j1;2 :

Green operators G can be interpreted as operators between sections in the
corresponding bundles over V and V 0, respectively, namely,

GV W C1
0 .V;EjV/˚ C1

0 .V
0; J1jV0/! C1.V;FjV/˚ C1.V 0; J2jV0/:

Let us write GV D .	�1/�Op.g/, where the push forward .	�1/� is an
abbreviation of diag...	�1/�; .	0/�1/�/ that also includes the cocycles of transition
maps of the involved bundles.

Let us fix a finite system of coordinate neighbourhoods fVjgjD1;:::;L, Vj D
V 0
j � Œ0; 1/, for an open covering fV 0

j gjD1;:::;L of Y by coordinate neighbourhoods.
Moreover, choose functions 'j �  j in C1

0 .Vj/ and set ' 0
j WD 'jjV0

j
,  0

j WD  jjV0
j
,

and assume that f' 0
jgjD1;:::;L is a partition of unity subordinate to fV 0

j gjD1;:::;L.
Definition 3.13 The space of B�;dG .XI v/, v D .E;FI J1; J2/, of Green operators of
order � and type d is defined to be the set of all operators

G WD
LX

jD0
diag.'j; '

0
j /.	

�1
j /�Op.gj/diag. j;  

0
j /C C

for arbitrary gj.y; �/ 2 R�;d
G .� � RCIw/, w D .k;mI j1; j2/, 1 � j � L, and C 2

B�1;d
G .XI v/. The space of upper left corners of elements in B�;dG .XI v/ will also be

denoted by B�;dG .XIE;F/.
The families of maps (37) have an invariant meaning as bundle morphisms

�@.G/ W ��
Y

0

@
E0 ˝ Hs.RC/

˚
J1

1

A �! ��
Y

0

@
F0 ˝ Hs��.RC/

˚
J2

1

A ; (38)

�Y W T�Y n 0 ! Y, s > d � 1=2 (alternatively, we may write S.RC/ instead of
Hs��.RC/ on the right of (38), or S.RC/ on both sides).

Let us now define the spaces of pseudo-differential BVPs for operators with
the transmission property at the boundary, also referred to as Boutet de Monvel’s
calculus.



66 B.-W. Schulze

Definition 3.14 The space B�;d.XI v/, � 2 Z, d 2 N, v D .E;FI J1; J2/, is defined
to be the set of operators of the form

A D


A 0
0 0

�
C G (39)

for arbitrary A 2 L�tr .XIE;F/, cf. notation (26), and G 2 B�;dG .XI v/, cf. Defini-
tion 3.13. The elements of B�;d.XI v/ are called pseudo-differential BVPs of order
� and type d. The space of upper left corners of elements in B�;d.XI v/ will also be
denoted by B�;d.XIE;F/.

For A 2 B�;d.XI v/ we set

�.A/ WD .� .A/; �@.A//;

where � .A/ WD � .A/, cf. formula (29), called the (homogeneous principal)
interior symbol of A of order �, and

�@.A/ WD


�@.A/ 0
0 0

�
C �@.G/;

called the (homogeneous principal) boundary symbol of A of order �.
The homogeneity of � .A/ is as usual, i.e., � .A/.x; �
/ D ��� .A/.x; 
/ for

all � 2 RC, .x; 
/ 2 T�X n 0. For �@.A/ we have

�@.A/.y; ��/ D ��diag.��; id/�@.A/.y; �/diag.��1
� ; id/ (40)

for all � 2 RC, .y; �/ 2 T�Y n 0.
Remark 3.15

(i) We have

B��1;d.XI v/ D fA 2 B�;d.XI v/ W �.A/ D 0g:

Setting �.B�;d.XI v// WD f�.A/ W A 2 B�;d.XI v/g there is an operator
convention

op W �.B�;d.XI v//! B�;d.XI v/

in form of a linear operator .non-canonical/ such that � ı op D id�.B�;d.XIv//.
The principal symbolic map

� W B�;d.XI v/! �.B�;d.XI v//
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gives rise to an exact sequence

0! B��1;d.XI v/! B�;d.XI v/ �! �.B�;d.XI v//! 0:

(ii) If we replace in .i/ B�;d.XI v/ by B�;dG .XI v/ and � by �@ then we obtain an
analogue of .i/ for Green operators.

Let B�;d.XIE;F/ and B�;dG .XIE;F/ denote the spaces of upper left corners of
B�;d.XI v/ and B�;dG .XI v/, respectively. By definition we have

B�;d.XIE;F/ D L�tr .XIE;F/C B�;dG .XIE;F/:

Observe that

B�;dG .XIE;F/ � L�1.intXIE;F/

and hence B�;d.XIE;F/ � L�cl.intXIE;F/.
Remark 3.16 A 2 B�;d.XIE;F/\ L�1.intXIE;F/ is equivalent to

A 2 B�;dG .XIE;F/:

Writing an A 2 B�;d.XI v/ in the form A D .Aij/i;jD1;2, we also call A21 a
trace and A12 a potential operator. For the lower right corner A22 we simply have
A22 2 L�cl.YI J1; J2/.
Proposition 3.17 Every G 2 B�;dG .XIE;F/ has a unique representation

G D G0 C
d�1X

jD0
Kj ı Tj

for a G0 2 B�;0G .XIE;F/, potential operators Kj 2 B��j�1=2;0.XI .0;FIE0; 0// and
trace operators Tj of the same form as in (32).

Theorem 3.18 An A 2 B�;d.XI v/ for v D .E;FI J1; J2/ induces a continuous
operator

A W
Hs.X;E/
˚

Hs.Y; J1/
�!

Hs��.X;F/
˚

Hs��.Y; J2/
(41)

for every s > d � 1=2.
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Remark 3.19 Under the conditions of Theorem 3.18 the operator (41) is compact
whenA 2 B��1;d.XI v/.

In fact, the compactness is a consequence of Theorem 3.18, applied for � � 1,
and the compactness of embeddings

Hs�.�C1/.X;F/˚Hs�.�C1/.Y; J2/ ,! Hs��.X;F/˚ Hs��.Y; J2/

Theorem 3.20 Let Aj 2 B��j;d.XI v/, j 2 N, be an arbitrary sequence. Then there
exists an asymptotic sum A 
 P1

jD0Aj in B�;d.XI v/, i.e., an A 2 B�;d.XI v/ such
that

A�
1X

jD0
Aj 2 B��.NC1/;d.XI v/

for every N 2 N, andA is uniquemod B�1;d.XI v/.
Theorem 3.21

(i) Let A 2 B�;d.XI v/ for v D .E0;FI J0; J2/, B 2 B�;e.XIw/ for w D
.E;E0I J1; J0/. Then AB 2 B�C�;h.XI v ı w/ for v ı w WD .E;FI J1; J2/ and
h WD max.� C d; e/, and we have

�.AB/ D �.A/�.B/

.with componentwise multiplication/. If A or B is Green then so is AB.
(ii) Let A 2 B0;0.XI v/ for v D .E;FI J1; J2/. Then for the adjoint .analogously

defined as (31)/ we have A� 2 B0;0.XI v�/ for v� D .F;EI J2; J1/, and

�.A�/ D �.A/�

.with componentwise adjoint, cf. also formula (33)/.

We now define Shapiro-Lopatinskii-ellipticity (also referred to as SL-ellipticity)
of boundary conditions for an operator in Boutet de Monvel’s calculus on a smooth
manifold X with boundary Y.

Definition 3.22 Let A 2 B�;d.XI v/, � 2 Z, d 2 N, v D .E;FI J1; J2/ for E; F 2
Vect.X/, J1; J2 2 Vect.Y/. The operatorA is called elliptic if

(i) A is � -elliptic, i.e.,

� .A/ W ��
X E! ��

X F (42)

for �X W T�X n 0! X is an isomorphism.
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(ii) A is �@-elliptic, i.e.,

�@.A/ W ��
Y

0

@
E0 ˝ Hs.RC/

˚
J1

1

A �! ��
Y

0

@
F0 ˝ Hs��.RC/

˚
J2

1

A (43)

for �Y W T�Y n 0! Y is an isomorphism for some s > maxf�; dg � 1=2.
Condition (ii) for some s D s0 > maxf�; dg � 1=2 is equivalent to this property

for all s > maxf�; dg � 1=2. This in turn is equivalent to the bijectivity of

�@.A/ W ��
Y

0

@
E0 ˝ S.RC/

˚
J1

1

A �! ��
Y

0

@
F0 ˝ S.RC/

˚
J2

1

A : (44)

Definition 3.23 Let A 2 B�;d.XI v/, v D .E;FI J1; J2/; then a P 2 B��;e.XI v�1/
for v�1 D .F;EI J2; J1/ and some e 2 N is called a parametrix of A, if

CL WD I � PA 2 B�1;dL.XI vL/; CR WD I �AP 2 B�1;dR.XI vR/

for certain dL; dR 2 N and vL WD .E;EI J1; J1/, vR WD .F;FI J2; J2/, where I
denotes the respective identity operators.

Theorem 3.24 Let A 2 B�;d.XI v/; v D .E;FI J1; J2/, be elliptic. Then there is a
parametrix B 2 B��;.d��/C.XI v�1/ for v�1 WD .F;EI J2; J1/, where

�.B/ D �.A/�1

with componentwise inverses, and CL WD 1�BA 2 B�1;dL.X; vL/, CR WD 1�AB 2
B�1;dR.X; vR/ for vL WD .E;EI J1; J1/, vR WD .F;FI J2; J2/, dL D maxf�; dg, dR D
.d � �/C .where �C WD maxf�; 0g/. More precisely, B may be found in such a way
that

CL W Hs.X;E/˚ Hs.Y; J1/! V ; CR W Hs��.X;F/˚ Hs��.Y; J2/!W

are projections for s > maxf�; dg � 1=2.
Theorem 3.25 Let X be compact. For an operatorA 2 B�;d.XI v/, where

v D .E;FI J1; J2/
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the following conditions are equivalent:

(i) A is elliptic.
(ii) The operator

A W Hs.X;E/˚ Hs.Y; J1/! Hs��.X;F/˚ Hs��.Y; J2/ (45)

is Fredholm for some s D s0 > maxf�; dg � 1=2.
Remark 3.26 Let X be compact andA 2 B�;d.XI v/ elliptic.
(i) The operatorA is Fredholm for all s > maxf�; dg � 1=2.
(ii) V WD kersA D fu 2 Hs.X;E/˚ Hs.Y; J1/ W Au D 0g is a finite-dimensional

subspace Hs.X;E/ ˚ Hs.Y; J1/ � C1.X;E/ ˚ C1.Y; J1/ independent of s,
and there is a finite-dimensionalW � C1.X;F/˚ C1.Y; J2/ independent of
s such that imsACW D Hs��.X;F/˚Hs��.Y; J2/ for every s; here ims A D
fAu W u 2 Hs.X;E/˚ Hs.Y; J1/g.

Theorem 3.27 Let X be compact, and assume that A 2 B�;d.XI v/ induces an
isomorphism (45) for some s D s0 > maxf�; dg�1=2. Then (45) is an isomorphism
for all s > maxf�; dg � 1=2, and we have A�1 2 B��;.��d/C.XI v�1/.

4 The Atiyah-Bott Obstruction and Boundary Symbols

Let us now discuss the question to what extent a � -elliptic operator on a smooth
(compact) manifold with boundary admits Shapiro-Lopatinskij elliptic boundary
conditions cf. also [15].

Theorem 4.1 Let A 2 B�;d.XIE;F/ be � - elliptic, cf. Definition 3.22. Then the
boundary symbol

�@.A/ W ��
Y .E

0 ˝ Hs.RC//! ��
Y .F

0 ˝ Hs��.RC// (46)

represents a family of Fredholm operators for every

s > maxf�; dg � 1=2;

parametrized by .y; �/ 2 T�Y n 0, and ker �@.A/.y; �/; coker �@.A/.y; �/ are
independent of s.

By virtue of (40) we have

�@.A/.y; ��/ D �����@.A/.y; �/��1
� (47)
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for all � 2 RC. It follows that

�@.A/



y;
�

j�j
�
W E0

y ˝Hs.RC/! F0
y ˝Hs��.RC/

is a family of Fredholm operators parametrised by .y; �/ 2 S�Y, the unit cosphere
bundle induced by T�Y n 0 (referring to the fixed Riemannian metric). This
corresponds to a standard situation of K-theory, discussed in abstract terms in [11,
Subsection 3.3.4]. The space S�Y is compact, and hence there is a K-theoretic index
element

indS�Y�@.A/ 2 K.S�Y/: (48)

Let

� W S�Y ! Y (49)

denote the canonical projection. Then the bundle pull back induces a homomor-
phism

�� W K.Y/! K.S�Y/:

The condition

indS�Y�@.A/ 2 ��K.Y/; (50)

is referred to as the Atiyah-Bott obstruction.
The following result was first established by Atiyah and Bott in [1] in the case

of differential operators, later on formulated for pseudo-differential operators with
the transmission property at the boundary by Boutet de Monvel [5], and an edge
analogue may be found in [21].

Let X be a smooth manifold with compact boundary Y, and E;F 2 Vect.Y/.

Theorem 4.2 A � -elliptic operator A in B�;d.XIE;F/ has a Shapiro-Lopatinskij
elliptic BVP A 2 B�;d.XI v/, v WD .E;FI J1; J2/, for certain J1; J2 2 Vect.Y/ .i.e.,
the upper left corner of A is of the form A C G, for some G 2 B�;dG .XIE;F/ and
�@.A/ is an isomorphism/ if and only if (50) holds.

Notation refers to [13]. The proof is based on the following auxiliary considera-
tions.

Remark 4.3 Let A 2 B�;d.XIE;F/ be � -elliptic, and consider the family of
Fredholm operators �@.A/.y; �/ W E0

y˝Hs.RC/! F0
y˝Hs��.RC/, s > maxf�; dg�

1=2. Then there exists a subbundle QW � ��F0 ˝ S.RC/ of finite fibre dimension
such that

QWy;� C im �@.A/.y; �/ D F0
y ˝Hs��.RC/

for all .y; �/ 2 S�Y.
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Proposition 4.4 Let A 2 B�;d.XIE;F/ be � -elliptic and let L1; L2 2 Vect.S�Y/
be such that

indS�Y�@.A/ D ŒL2� � ŒL1�: (51)

Then there exists an element G 2 B�;0G .XIE;F/ such that

kerS�Y�@.AC G/ Š L2; cokerS�Y�@.AC G/ Š L1: (52)

Proposition 4.5 Let A 2 B�;d.XIE;F/ be a � -elliptic operator. Then there exist
vector bundles J1; J2 2 Vect.Y/, L1; L2 2 Vect.T�Y n 0/, where Li is a subbundle
of ��

Y Ji; i D 1; 2, and an operator

A D


AC G K
T 0

�
(53)

in B�;d.XI v/ for v WD .E;FI J1; J2/ such that �@.A/ restricts to an isomorphism

��
Y E

0 ˝ Hs.RC/
˚
L1

�!
��
Y F

0 ˝ Hs��.RC/
˚
L2

(54)

for every s > maxf�; dg � 1=2.

5 Boundary Problems with Global Projection Conditions

Definition 5.1 Let Li D .Pi; Ji;Li/ 2 P.Y/ be projection data .cf. Definition 2.4),
Vi 2 Vect.X/; Ji 2 Vect.Y/; i D 1; 2, and set

v WD .V1;V2I J1; J2/; l WD .V1;V2IL1;L2/;
P2 WD diag.1;P2/; E1 WD diag.1;E1/: (55)

Then T �;d.XI l/ for � 2 Z, d 2 N, is defined to be the set of all operators

A WD P2 QAE1 (56)

for arbitrary QA 2 B�;d.XI v/. The elements of T �;d.XI l/ will be called boundary
value problems of order � and type d with global projection .boundary/ conditions.
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Moreover, set

T �1;d.XI l/ WD fP2 QCE1 W QC 2 B�1;d.XI v/g; (57)

and T 1;d.XI l/ DS�2Z T �;d.XI l/.
Remark 5.2 The system of spaces T �;d.XI l/ represents an extension of B�;d.XI v/.

In fact, the special case of operators in Boutet de Monvel’s calculus is attained by
the case Ji D Li and Pi D id the identity operators in L0cl.YI Ji/; i D 1; 2. The spaces
T �;d.XI l/may be regarded a Toeplitz analogue of Boutet de Monvel’s calculus, but
they are unifying both concepts. This point of view has been first introduced in [27].
Similarly as in connection with Definition 2.12 an operator (56) first represents a
continuous operator

A W
H1.X;V1/
˚

H1.Y;L1/
!

H1.X;V2/
˚

H1.Y;L2/
;

using the respective continuity of operators in B�;d.XI v/ and of the involved
embedding and projection operators.

Observe that the space (57) can be equivalently characterised as the set of allA 2
T 1;d.XI l/,A D P2 QAE1 for some QA 2 B�;d.XI v/ such thatP2 QAP1 2 B�1;d.XI v/;
then A D P2.P2 QAP1/E1. Moreover,

P2.P2 QAP1/E1 2 T �1;d.XI l/) P2 QAP1 2 B�1;d.XI v/:

Proposition 5.3 Given Vi 2 Vect.X/, Li 2 P.Y/, i D 1; 2, we have a canonical
isomorphism

T �;d.XI l/! fP2 QAP1 W QA 2 B�;d.XI v/g:

Remark 5.4 We have an identification

T �;d.XI l/ D B�;d.XI v/=
 :

Proposition 5.5 Every A 2 T �;d.XI l/ induces continuous operators

A W
Hs.X;V1/
˚

Hs.Y;L1/
!

Hs��.X;V2/
˚

Hs��.Y;L2/
; (58)

for every s 2 R, s > d � 1
2
.
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Let us now introduce the principal symbolic structure of T �;d.XI l/. In the
2 � 2 block matrix structure A D .Aij/i;jD1;2 of our operators we have A11 2
B�;d.XIV1;V2/ and the (homogeneous principal) symbol

� .A/ WD � .A11/ W ��
X V1 ! ��

XV2

as in (29). Occasionally we also call � .A/ the interior symbol ofA. Moreover, the
family of operators

�@.A/ WD


1 0

0 p2

�
�@. QA/



1 0

0 e1

�
W
��
Y V

0
1 ˝ Hs.RC/
˚
L1

!
��
Y V

0
2 ˝ Hs��.RC/
˚
L2

is called the (homogeneous principal) boundary symbol of A (recall that p2.y; �/ is
the homogeneousprincipal symbol of order zero of the projectionP2 2 L0cl.YI J2; J2/
while e1 W L1 ! ��

Y J1 is the canonical embedding). Similarly as in B�;d we set

�.A/ WD .� .A/; �@.A//:

Remark 5.6 Identifying an operatorA D P2 QAE1 2 T �;d.XI l/ with QQA WD P2 QAP1 2
B�;d.XI v/ .cf. Proposition 5.3/, relation �. QQA/ D 0 in the sense of B�;d is equivalent
to �.A/ D 0 in the sense of T �;d.

Theorem 5.7

(i) A 2 T �;d.XI l/ and �.A/ D 0 imply A 2 T ��1;d.XI l/ and the operator (58)
is compact for every s > d � 1=2.

(ii) A 2 T �;d.XI l0/, B 2 T �;e.XI l1/ implies AB 2 T �C�;h.XI l0 ı l1/ .when
the bundle and projection data in the middle fit together such that l0 ı l1
makes sense/, h D maxf� C d; eg, and we have �.AB/ D �.A/�.B/ with
componentwise multiplication.

(iii) A 2 T 0;0.XI l/ for l D .V1;V2IL1;L2/ implies A� 2 T 0;0.XI l�/ for l� D
.V2;V1IL�

2 ;L
�
1 /, with A� being defined by

.u;A�v/L2.X;V1/˚H0.Y;L1/ D .Au; v/L2.X;V2/˚H0.Y;L2/

for all u 2 L2.X;V1/ ˚ H0.Y;L1/, v 2 L2.X;V2/ ˚ H0.Y;L2/, and we
have �.A�/ D �.A/� with componentwise adjoint .cf. Theorem 3.21 and
Theorem 2.22/.
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Theorem 5.8 Let Aj 2 T ��j;d.XI l/, j 2 N, be an arbitrary sequence. Then there
exists an A 2 T �;d.XI l/ such that

A�
NX

jD0
Aj 2 T ��.NC1/;d.XI l/

for every N 2 N, andA is uniquemod T �1;d.XI l/.
Similarly as in the Toeplitz operator calculus on a closed manifold it will be

useful to form direct sums. Given A 2 T �;d.XI l/, B 2 T �;d.XIm/ for bundle and
projection data

l WD .V1;V2IL1;L2/; Li D .Pi; Ji;Li/ 2 P.Y/; i D 1; 2;
m WD .W1;W2IM1;M2/; Mi D .Qi;Gi;Mi/ 2 P.Y/; i D 1; 2;

we set

l˚m WD .V1 ˚W1;V2 ˚W2IL1 ˚M1;L2 ˚M2/:

Then for the direct sum of operators we obtain

A˚ B 2 T �;d.XI l˚m/

and

� .A˚ B/ D � .A/˚ � .B/; �@.A˚ B/ D �@.A/˚ �@.B/;

with obvious meaning of notation.
Let us study ellipticity in our Toeplitz calculus of boundary value problems.

Definition 5.9 An A 2 T �;d.XI l/ for l WD .V1;V2IL1;L2/; Li D .Pi; Ji;Li/ 2
P.Y/; i D 1; 2, is said to be elliptic if

(i) the interior symbol

� .A/ W ��
X V1 ! ��

X V2 (59)

is an isomorphism;
(ii) the boundary symbol

�@.A/ W
��
Y V

0
1 ˝ Hs.RC/
˚
L1

!
��
Y V

0
2 ˝Hs��.RC/
˚
L2

(60)

is an isomorphism for every s > maxf�; dg � 1=2.
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Remark 5.10 Similarly as in the B�;d-case the condition (ii) in Definition 5.9 is
equivalent to the bijectivity of

�@.A/ W
��
Y V

0
1 ˝ S.RC/
˚
L1

!
��
Y V

0
2 ˝ S.RC/
˚
L2

: (61)

Theorem 5.11 For every A 2 L�tr .XIV1;V2/ elliptic with respect to � .i.e., (59)
is an isomorphism/ there exist projection data L1;L2 2 P.Y/ and an element A 2
T �;0.XI l/ with A as the upper left corner, l WD .V1;V2IL1;L2/, which is elliptic in
the sense of Definition 5.9.

In fact, we can choose elements L1; L2 2 Vect.S�Y/ such that

indS�Y�@.A/ D ŒL2� � ŒL1�

holds in K.S�Y/. Then for the operator G 2 B�;dG .XIV1;V2/ of Proposition 4.4
applied in the proof of Proposition 4.5 we obtain an operator (53) that we now
denote by QA, and it suffices to set A WD P2 QAE1.

Theorem 5.12 For every � 2 Z;V 2 Vect.X/ there exists an elliptic R�V 2
B�;0.XIV;V/ which induces isomorphisms

R�V.�/ W Hs.X;V/! Hs��.X;V/

for all � 2 R
l; s 2 R.

Proposition 5.13 For every � 2 Z, V 2 Vect.X/ and L 2 P.Y/ there exists an
elliptic element R�

V;L 2 T �;0.XI l/ for l WD .V;VIL;L/ which induces a Fredholm
operator

R�

V;L W
Hs.X;V/
˚

Hs.Y;L/
!

Hs��.X;V/
˚

Hs��.Y;L/

for every s > maxf�; 0g � 1=2.
Remark 5.14 By virtue of ellipticity of R�V 2 B�;0.XIV;V/ the boundary symbol

�@.R
�
V/ W ��

Y V
0 ˝Hs.RC/! ��

Y V
0 ˝ Hs��.RC/

is an isomorphism for s > maxf�; 0g � 1=2. Thus indS�Y�@.R
�
V/ D 0.

Similarly as R�V we can form an operator S�V 2 B�;0.XIV;V/ the local symbol
of which close to Y is equal to r�C.�; �/ WD r��.�; �/ (the complex conjugate). This
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operator can chosen in such a way that

�@.S
�
V/ W ��

Y V
0 ˝ Hs.RC/! ��

Y V
0 ˝ Hs��.RC/

is surjective and kerS�Y�@.S
�
V/ D �Œ��

1 V
0�; thus

indS�Y�@.S
�
V/ D �Œ��V 0�; � W S�Y ! Y: (62)

Theorem 5.15 For every elliptic operator A 2 T �;d.XI l/, l WD .V1;V2IL1;L2/,
there exists an elliptic operatorB 2 T �;d.XIm/,m WD .V2;V1IM1;M2/, for certain
projection dataM1;M2 2 P.Y/ of the form Mi WD .Qi;C

N ;Mi/; i D 1; 2; for some
N 2 N, such that A ˚ B 2 B�;d.XI v/ for v D .V1 ˚ V2;V2 ˚ V1ICN ;CN/; is
Shapiro-Lopatinskii elliptic.

In fact, let A denote the upper left corner of A which belongs to B�;d.XIV1;V2/
and is � -elliptic, cf. Definition 3.22 (i). By assumption the boundary symbol

�@.A/ W ��V 0
1 ˝ Hs.RC/! ��V 0

2 ˝ Hs��.RC/;

� W S�Y ! Y; represents a family of Fredholm operators on S�Y for every s >
maxf�; dg � 1=2. The specific choice of s is not essential at this moment, but in
connection with reductions of orders below we assume s 2 N sufficiently large.
Choose any B 2 B�;d.XIV2;V1/ with the property

indS�Y�@.B/ D �indS�Y�@.A/:

A way to find such a B is as follows. First consider the case � D d D 0. Then we
can set B WD A�; cf. Theorem 3.21 (ii). In fact, we have A�A 2 B0;0.XIV1;V1/; and
�@.A�A/ D �@.A�/�@.A/; cf. Theorem 3.21 (i). From self-adjointness it follws that

indS�Y�@.A
�A/ D 0 D indS�Y�@.A

�/C indS�Y�@.A/:

Now for arbitrary �; d we write A D A� C G for A� 2 B�;0.XIV1;V2/; G 2
B�;gG .XIV1;V2/. We realise A� as a continuous operator

A� W Hs.X;V1/! Hs��.X;V1/

for some fixed s 2 N sufficiently large. Since �@.G/ is a family of compact operators,
we have indS�Y�@.A/ D indS�Y�@.A�/. Thus we may ignore d, i.e., assume d D 0.
Form the operator

A0 WD Rs��
V2

A�R
�s
V1 W L2.X;V1/! L2.X;V2/

for order reducing operators R�s
V1
;Rs��

V2
; obtained from Theorem 5.12 for the corre-

sponding choice of V . We have R�s
V1
2 B�s;0.XIV1;V1/;Rs��

V2
2 Bs��;0.XIV2;V2/;
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and isomorphisms

R�s
V1 W L2.X;V1/! Hs.X;V1/; Rs��

V2
W Hs��.X;V2/! L2.X;V2/:

Then A0 2 B0;0.XIV1;V2/ and

indS�Y�@.A0/ D indS�Y�@.A/ D ŒL2� � ŒL1�:

For the L2-adjoint A�
0 2 B0;0.XIV2;V1/ it follows that

indS�Y�@.A
�
0 / D ŒL1� � ŒL2�:

and indS�Y�@.B1/ D ŒL1� � ŒL2� for B1 WD R�sC�
V1

A�
0R

s
V2
2 B�;s.XIV2;V1/,

cf. Theorem 3.21 (i). The operator B1 can be written as B1 D B C G for a
B 2 B�;0.XIV2;V1/ and a G 2 B�;sG .XIV2;V1/. Then

indS�Y�@.B/ D ŒL1� � ŒL2�;

since �@.G1/ takes values in compact operators. There are bundles M2; M1 2
Vect.S�Y/ such that M1 ˚ L1 Š M2 ˚ L2 Š C

N . Since ŒM1�C ŒL1� D ŒCN �; ŒM2�C
ŒL2� D ŒCN � we obtain ŒL1�� ŒL2� D

�
ŒCN � � ŒM1�

� � �ŒCN � � ŒM2�
�
; i.e.,

indS�Y�@.B/ D ŒM2� � ŒM1�:

Applying Theorem 5.11 we find an elliptic operator B 2 T �;0.XIm/ for m WD
.V2;V1IM1;M2/, Mi WD .Qi;C

N ;Mi/; i D 1; 2; such that kerS�Y�@.B/ Š M2,
cokerS�Y�@.B/ Š M1. Taking for Q1 .Q2/ the complementary projection to P2 .P1/
it follows that A˚ B is elliptic in B�;d.XI v/ for v D .V1 ˚ V2;V2 ˚ V1ICN ;CN/.
The operator B is then as asserted.

Note that Grubb and Seeley [10] used a similar idea to embed an elliptic boundary
value problem with projection conditions into a standard one by using the adjoint
operator and the complementary projection.

Definition 5.16 Let A 2 T �;d.XI l/, l WD .V1;V2IL1;L2/, L1; L2 2 P.Y/. An
operator P 2 T ��;e.XI l�1/ for l�1 WD .V2;V1IL2;L1/ and some e 2 N is called a
parametrix of A, if the operators

CL WD I � PA and CR WD I �AP (63)

belong to T �1;dL.XImL/ and T �1;dR.XImR/, respectively, for

mL WD .V1;V1IL1;L1/; mR WD .V2;V2IL2;L2/;

and certain dL; dR 2 N.
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Theorem 5.17 Let A 2 T �;d.XI l/; � 2 Z; d 2 N, l WD .V1;V2IL1;L2/ for
V1; V2 2 Vect.X/, L1; L2 2 P.Y/.

(i) The operatorA is elliptic if and only if

A W
Hs.X;V1/
˚

Hs.Y;L1/
�!

Hs��.X;V2/
˚

Hs��.Y;L2/
(64)

is a Fredholm operator for an s D s0; s0 > maxf�; dg � 1=2.
(ii) If A is elliptic, (64) is Fredholm for all s > maxf�; dg � 1=2, and dimkerA

and dim cokerA are independent of s.
(iii) An elliptic operator A has a parametrix P 2 T ��;.d��/C.XI l�1/ in the sense

of Definition 5.16 for dL D maxf�; dg; dR D .d � �/C, and P can be chosen
in such a way that the remainders in (63) are projections

CL W Hs.X;V1/˚ Hs.Y;L1/! V1; CR W Hs��.X;V2/˚ Hs��.Y;L2/! V2

for all s > maxf�; dg � 1=2, for V1 D kerA � C1.X;V1/ ˚ H1.Y;L1/
and a finite-dimensional subspace V2 � C1.X;V2/ ˚ H1.Y;L2/ with the
property V2C imA D Hs��.X;V2/˚Hs��.Y;L2/, V2\ imA D f0g for every
s > maxf�; dg � 1=2.

In fact, let us first show that an elliptic operatorA 2 T �;d.XI l/ has a parametrix

P 2 T ��;.d��/C.XI l�1/:

We apply Theorem 5.15 to A and choose a complementary operator

B 2 T �;d.XIm/; m D .V2;V1IM1;M2/

such that QA WD A ˚ B 2 B�;d.XI v/ for v D .V1 ˚ V2;V2 ˚ V1ICN ;CN/ is SL-
elliptic. Then

A D diag .1;P2/ QA diag .1;E1/: (65)

From Theorem 3.24 we obtain a parametrix QP 2 B��;.d��/C.XI v�1/ for v�1 WD
.V2 ˚ V1;V1 ˚ V2ICN ;CN/; where �. QP/ D �. QA/�1. Let us set

P0 WD diag .1;P1/ QP diag .1;E2/ 2 T ��;.d��/C.XI l�1/;

where E2 W Hs��.Y;L2/ ! Hs��.Y; J2/ is the canonical embedding and P1 W
Hs.Y; J1/! Hs.Y;L1/ the projection involved in L1; cf. notation in Definition 5.9.
This yields

P0A D diag .1;P1/ QP diag .1;P2/ QA diag .1;E1/:
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Thus for CL WD I � P0A 2 T 0;h.XI vL/ diag .1;E1/ for vL D .V1;V1IL1;L1/; h D
max f�; dg we have �.CL/ D 0; i.e., CL 2 T �1;h.XI vL/; cf. Theorem 5.7
(i). Applying Theorem 5.8 we find an operator DL 2 T �1;h.XI vL/ such that
.I C DL/.I � CL/ D I mod T �1;h.XI vL/. We can define DL as an asymptotic
sum

P1
jD1 C

j
L. Thus .I C DL/P0A D I mod T �1;h.XI vL/; and hence PL WD

I C DLP0 2 T ��;.d��/C.XI l�1/ is a left parametrix of A. In a similar manner we
find a right parametrix. Thus we may take P WD PL.

The Fredholm property of (64) is a direct consequence of the compactness of
the remainders CL; CR in relation (63), cf. also Theorem 5.7. The second part of
(iii) is a consequence of general facts on elliptic operators that are always satisfied
when elliptic regularity holds in the respective scales of spaces, see, for instance,
[12, Subsection 1.2.7]. This confirms, in particular, assertion (ii).

It remains to verify that the Fredholm property of (64) for s D s0; s0 >

maxf�; dg � 1=2 entails ellipticity. We reduce order and type to 0 by means of
elliptic operators from Proposition 5.13, namely,

R�s0
V1;L1
W
L2.X;V1/
˚

H0.Y;L1/
!

Hs0 .X;V1/
˚

Hs0.Y;L1/
; Rs0��

V2;L2
W
Hs0��.X;V2/

˚
Hs0��.Y;L2/

!
L2.X;V2/
˚

H0.Y;L2/
(66)

which are both Fredholm. The composition

A0 WD Rs0��
V2;L2

AR�s0
V1;L1
W
L2.X;V1/
˚

H0.Y;L1/
!

L2.X;V2/
˚

H0.Y;L2/
(67)

is again a Fredholm operator. In addition it belongs to T 0;0.XI .V1;V2IL1;L2// (the
type in the upper left corner is necessarily 0 since it is acting in L2). It suffices to
show the ellipticity of A0. We now employ the fact that every L 2 P.Y/ admits
complementary projection data L? 2 P.Y/; cf. Proposition 2.5 (iii). In particular,
for L1 D .P1; J1; � .P1/J1/ we form L

?
1 D .1 � P1; J1; � .1 � P1/J1/. Then

L2.Y; J1/ D H0.Y;L1/ ˚ H0.Y;L?
1 /. We define an operator B WD I2ECI1 W

L2.X;V1/
˚

L2.Y; J1//
!

L2.X;V2/
˚

L2.Y; J2 ˚ J1/
where

I1 W
L2.X;V1/
˚

L2.Y; J1/
!

L2.X;V1/
˚

H0.Y;L1/
˚

H0.Y;L?
1 /

; I2 W

L2.X;V2/
˚

L2.Y; J2/
˚

L2.Y; J1/

!
L2.X;V2/
˚

L2.Y; J2 ˚ J1/
;
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are canonical identifications, and

C W

L2.X;V1/
˚

H0.Y;L1/
˚

H0.Y;L?
1 /

!

L2.X;V2/
˚

H0.Y;L2/
˚

H0.Y;L?
1 /

; E W

L2.X;V2/
˚

H0.Y;L2/
˚

H0.Y;L?
1 /

,!

L2.X;V2/
˚

L2.Y; J2/
˚

L2.Y; J1/

with E being a canonical embedding, and C WD diag .A0; idH0.Y;L?
1 /
/. We obviously

have dim kerB D dimkerA0 < 1. Moreover, kerB�B D kerB D im.B�B/?;
and B�B has closed range since C�C has. Therefore, B�B 2 B0;0.XI .V1;V1I J1; J1//
is a Fredholm operator and hence elliptic by Theorem 3.25. Therefore, both � .A0/

and �@.A0/ are injective. Analogous arguments for adjoint operators show that
� .A0/ and �@.A0/ are also surjective.

The operator algebra furnished by the spaces T �;d.XI l/ for

l WD .V1;V2IL1;L2/; Li D .Pi; Ji;Li/ 2 P.Y/; i D 1; 2;

contains the subalgebra of right lower corners, consisting of the spaces
T �.YIL1;L2/; studied in Sect. 2, cf. Definition 2.12. For the spaces T �;d.XI l/
it is not essential that � 2 Z. The principle of reducing a boundary value problem
(BVP) to the boundary by means of another BVP has been well-known since a very
long time, see, for instance, the monograph [11] and the bibliography there. Let us
illustrate this in the case of the Neumann problem on a smooth manifold X with
boundary Y using the Dirichlet problem. In this case the result is, that the potential
operatorK0 contained in the inverse t.� T0/�1 DW .P0 K0/ of the Dirichlet problem
(with T0 being the restriction of a function to the boundary) is composed from the
left with T1 the boundary operator of the Neumann problem. The result is T1K0
which is a first order classical elliptic pseudo-differential operator on the boundary.
In other words, we talk about the composition



�

T1

�
.P0 K0/ D



1 0

T1P0 T1K0

�
:

Clearly if we replace� by another elliptic operator A with the transmission property

at the boundary and if Ai WD


A
Ti

�
; i D 0; 1; are SL-elliptic BVPs for A; then for a

parametrix P0 DW .P0 K0/ of A0 we can form the composition

A1P0 D


A
T1

�
.P0 K0/ D



1 0

T1P0 T1K0

�
C CR; (68)

where CR is a compact remainder in Boutet de Monvel’s calculus. The operator
R WD T1K0 lives on the boundary Y and is elliptic. Equation (68) entails the
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Agranovich-Dynin formula for the Fredholm indices

indA1 � indA0 D indR: (69)

Note that from a parametrix P0 of A0 we get a parametrix P1 DW .P1 K1/ of A0

by a simple algebraic consideration, namely,

.P1 K1/ D .P0 � K0R
.�1/T1P0 K0R

.�1//; (70)

where R.�1/ means a parametrix of R which is obtained in a more elementary way
compared with the parametrix construction in Boutet de Monvel’s calculus.

Let us now consider elliptic operators

Ai D


A
Ti

�
2 T �;di.XI li/; i D 0; 1; Ai W Hs.X;V1/!

Hs��.X;V2/
˚

Hs��.Y;Li/

; (71)

for � > maxf�; dg � 1=2; li D .V1;V2IO;Li/; i D 0; 1; Li D .Qi; J;Li/ 2 P.Y/;
where O indicates the case where the fibre dimension of the bundle in the middle
is zero. For convenience we assume the trace operators to be of the same orders as
A. However, a simple reduction of order allows us to pass to arbitrary orders, cf.
Remark 2.25. By virtue of Theorem 5.17 (iii) the operators Ai have parametrices
Pi 2 T ��;.di��/C.XI l�1i / for l�1i D .V2;V1ILi;O/; i D 0; 1;

Pi DW .Pi Ki/; i D 0; 1:

Because of

A0P0 D diag .idHs��.X;V2/; idHs��.Y;L0//modT �1;.d��/C.XIV2;V2IL0;L0/

it follows that

A1P0 D


idHs��.XIV2/ 0

T1P0 T1K0

�
mod T �1;.d��/C.XIV2;V2IL0;L1/:

Since the latter operator is elliptic, also R WD T1K0 2 T 0.YIL0;L1/ is elliptic, now
in the Toeplitz calculus on the boundary, developed in Sect. 2. In particular,

R W Hs��.Y;L0/! Hs��.Y;L1/ (72)

is a Fredholm operator, and we have an analogue of the Agranovich-Dynin formula
(69). Moreover, knowing a parametrix P0 of A0 we can easily express a parametrix
P1 of A1 by applying the corresponding analogue of relation (70), here using a
parametrix R.�1/ 2 T 0.YIL1;L0/ of the operator R.
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Remark 5.18 Reductions of boundary conditions to the boundary in the Toeplitz
analogue of Boutet de Monvel’s calculus are possible also for 2 � 2 block
matrix operators, containing trace and potential operators at the same time. The
corresponding algebraic arguments are similar to those in [16, pages 252–254], and
there is then also an analogue of the Agranovich-Dynin formula, cf. also the final
part of Sect. 6 below.

6 The Edge Algebra with Global Projection Conditions

We now consider the edge algebra on a compact manifold M with edge Y. Recall
that a manifoldM with smooth edge Y can be regarded as a quotient space

M DM=
; (73)

where M is a smooth manifold with boundary @M; and @M in turn is an X-bundle
over Y; where N is a smooth closed manifold. Denoting by p W @M ! Y the
bundle projection, the equivalence relation 
 in (73) means that points m;m0 2 @M
are equivalent when p.m/ D p.m0/. A special case is a smooth manifold M with
boundary YI then N is of dimension 0; and we have a canonical identification
M D M.

The operator calculus on a manifold M with edge Y; called the edge algebra,
consists of 2 � 2 block matrices A with edge-degenerate pseudo-differential
operators, together with Mellin and Green operators in the upper left corners, and
entries representing trace and potential operators referring to the edge Y. This
calculus has been introduced in [20] and later on deepened in [21, 23], and other
monographs and articles, cf. [11, 12], and the respective biliographies.

To be more precise, the edge algebra is furnished by spaces

L�.M; gI v/ (74)

of operators

A W
Hs; .M;E/
˚

Hs.Y; J1/
�!

Hs��;��.M;F/
˚

Hs��.Y; J2/
; (75)

where g WD .;  � �;‚/ are weight data, v WD .E;FI J1; J2/ is the involved tuple
of vector bundles over M and Y; respectively, and Hs; .M;E/; etc., are weighted
Sobolev spaces (of distributional sections) of smoothness s on M n Y. By ‚ WD
.#; 0�; �1 < # < 0; we understand a weight interval which determines a strips on
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the left of weight lines

�.nC1/=2� and �.nC1/=2�.��/

for n WD dimN; �ˇ WD fw 2 C W Rew D ˇg in the complex w-plane of the Mellin
covariable, where asymptotic data of the involved Mellin and Green operators are
controlled. More details can be found in the above-mentioned monographs.

WritingM locally near a point y 2 Y as a wedge

NM ��;

where � � R
q open represents a chart on Y and NM WD .RC � N/=.f0g � N/

the local model cone with base N; then in stretched variables .r; x; y/ 2 N^ � �
for N^ WD RC � N the edge-degenerate pseudo-differential operators have local
amplitude functions

r��p.r; x; y; �; 
; �/ for p.r; x; y; �; 
; �/ WD Qp.r; x; y; r�; 
; r�/

for standard symbols

Qp.r; x; y; Q�; 
; Q�/ 2 S�cl.RC �† �� � R
1CnCq/;

where† � R
n corresponds to a chart on N.

Modulo lower order terms the operators in A 2 L�.M; gI v/ are determined by a
principal symbolic hierarchy

�.A/ WD .� .A/; �^.A//: (76)

Here

� .A/ W ��E! ��F; for � W T�.M n Y/! M n Y (77)

is the standard homogeneous principal symbol of order � of the upper left corner of
A and

�^.A/.y; �/ W
Ks; .N^/˝ Eŷ

˚
J1;y

�!
Ks��;��.N^/˝ Fŷ

˚
J2;y

; (78)

.y; �/ 2 T�Y n 0; where Eŷ ; etc., means the pull back of Ey to N^ � fyg for any
y 2 Y; and Ks; .N^/ are weighted Kegel Sobolev spaces over N^.

The symbolic structure (76) gives rise to a filtration of the spaces L�.M; gI v/.
Let ��.A/ WD �.A/; and set

L��1.M; gI v/ WD fA 2 L�.M; gI v/ W ��.A/ D 0g: (79)
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In (79) we have again a pair of principal symbols ���1.A/ WD .���1
 .A/; ���1

^ .A//.
Successively we then obtain

L��. jC1/.M; gI v/ WD fA 2 L��j.M; gI v/ W ���j.A/ D 0g

for every j 2 N. In other words we have spaces

L�.M; gI v/ for � � � 2 N; g D .;  � �;‚/: (80)

The spaces (80) have subspaces

L�M+G.M; gI v/ and L�G.M; gI v/ (81)

of smoothing Mellin plus Green and Green operators, respectively, cf. [23]. For
convenience in the definition of (81) we refer to the case of continuous asymptotics.

Similarly as in Boutet de Monvel’s calculus we have ellipticity with respect to
both components of (76). An A is called � -elliptic, if (77) is an isomorphism and
if in addition locally close to Y the homogeneous principal part Qp.�/.r; x; y; Q�; 
; Q�/
of Qp.r; x; y; Q�; 
; Q�/ of order � bijectively maps E.r;x;y/ to F.r;x;y/ up to r D 0.

Concerning the second component of (76) the operator A is called Shapiro-
Lopatinskii elliptic if it is � -elliptic and if (78) is a family of isomorphisms for
some s 2 R (which is then the case for all s). Shapiro-Lopatinskii ellipticity will
also be denoted by .� ; �^/-ellipticity.

Among the known results in this context we have the following theorem.

Theorem 6.1 A .� ; �^/-elliptic operator A 2 L�.M; gI v/, v WD .E;FI J1; J2/,
has a properly supported parametrix P 2 L��.M; g�1I v�1/. If M is compact the
following conditions are equivalent:

(i) A is .� ; �^/-elliptic,
(ii) The operator (75) is Fredholm for some s D s0 2 R.

Remark 6.2 Let A 2 L�.M; gIE;F/ be � -elliptic in the above-mentioned sense.
Then �^.A/.y; �/ is elliptic in the cone calculus for every fixed .y; �/ 2 T�Y n 0
which includes exit ellipticity at the conical exit r!1. Moreover, for every y 2 Y
there is a discrete set DA.y/ � C such that

�M�^.A/.y; z/ W Hs.N;E0/! Hs��.N;F0/

is an isomorphism, s 2 R; if and only if z 62 DA.y/. Here E0; F0 2 Vect.N/ are
bundles induced by E; F on stretched cones N^ � fyg for y 2 Y.

This observation gives us the following result.

Proposition 6.3 Let A 2 L�.M; gIE;F/ be � -elliptic. Then

�^.A/.y; �/ W Ks; .N^/˝ Eŷ ! Ks��;��.N^/˝ Fŷ ; (82)
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is a Fredholm operator for y 2 Y; � 6D 0; s 2 R; if and only if  2 R satisfies the
condition

� nC1
2 � \DA.y/ D ;: (83)

In the following we assume that our operator A 2 L�.M; gIE;F/ is � -elliptic
and satisfies the condition (83) for every y 2 Y. Because of the homogeneity

�^.A/.y; ��/ D �����^.A/.y; �/��1
�

we have

ind �^.A/.y; �/ D �^.A/.y; �=j�j/:

More precisely, the dimensions of ker�^.A/.y; �/ and coker�^.A/.y; �/ only
depend on �=j�j. Therefore, (82) may be regarded as a family of Fredholm operators
depending on the parameters .y; �/ 2 S�Y, the unit cosphere bundle of Y which is a
compact topological space. This gives rise to an index element

indS�Y�^.A/ 2 K.S�Y/:

The property

indS�Y�^.A/ 2 ��K.Y/; (84)

� W S�Y ! Y, is of analogous meaning for the edge calculus as the corresponding
condition in Theorem 4.2. If A satisfies relation (84) we say that the Atiyah-Bott
obstruction vanishes.

Theorem 6.4 Let A 2 L�.M; gIE;F/ be � -elliptic, and (83) be satisfied for some
 2 R and all y 2 Y, and denote the family of Fredholm operators (82) for the
moment by

�^.A/ .y; �/ W Ks; .N^/˝ Eŷ ! Ks��;��.N^/˝ Fŷ ;

.y; �/ 2 S�Y. Then if Q 2 R is another weight satisfying

� nC1
2 �Q \ DA.y/ D ;

for all y 2 Y, we have

indS�Y�^.A/ 2 ��K.Y/, indS�Y�^.A/Q 2 ��K.Y/:
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In addition if QA 2 L�.M; gIE;F/ satisfies QA D A mod L�MCG.M; gIE;F/ then

� nC1
2 � \ DQA.y/ D ;; � nC1

2 � \DA.y/ D ;

for some  2 R and all y 2 Y has the consequence

indS�Y�^. QA/ 2 ��K.Y/, indS�Y�^.A/ 2 ��K.Y/:

Theorem 6.5 Let A 2 L�.M; gIE;F/ be � -elliptic, and let

�^.A/.y; �/ W Ks; .N^/˝ E0
ŷ ! Ks��;��.N^/˝ F0

ŷ ; (85)

.y; �/ 2 S�Y; be a family of Fredholm operators. Choose L1;L2 2 Vect.T�Y n 0/
such that

indS�Y�^.A/ D ŒL2jS�Y � � ŒL1jS�Y �: (86)

Then there exists an element G 2 L�G.M; gIE;F/ such that

kerS�Y�^.AC G/ Š L2jS�Y ; cokerS�Y�^.AC G/ Š L1jS�Y : (87)

If J1; J2 2 Vect.Y/ are bundles such that Li are subbundles of ��
Y Ji for �Y W T�Y n

0! Y; i D 1; 2; there exists an A 2 L�.M; gI v/ for v D .E;FI J1; J2/ with AC G
as the upper left corner of A; such that �^.A/ induces an isomorphism

�^.A/ W
Ks; .N^/˝ ��

Y E
^

˚
L1

�!
Ks��;��.N^/˝ ��

Y F
^

˚
L2

: (88)

Proof Since (85) is Fredholm we find a potential symbol

k.�/.y; �/ W CN� ! Ks��;��.N^/˝ Fŷ

in the sense of an upper right corner of a Green symbol of order � with weight data
g; and for a suitable N�; such that

�
�^.A/.y; �/ k.�/.y; �/

�
W
Ks; .N^/˝ Eŷ

˚
C

N�

! Ks��;��.N^/˝ Fŷ

is surjective for all .y; �/ 2 S�Y. This holds for all s. Let

p2 W K0;��.N^/˝ ��F^ ! imS�Yk.�/
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be the orthogonal projection with respect to the scalar product in the fibres

K0;��.N^/˝ ��Fŷ :

Since its kernel is smooth p2 extends to Ks;��.N^/˝ ��F^ for every s. There are
subbundles

QL1; QL?
1 � K1; .N^/˝ ��E^; QL2; QL?

2 � K1;��.N^/˝ ��F^

such that QL1;2 Š L1;2; QL?
2 Š QL?

1 ; and

imS�Y
�
.1 � p2/�^.A/

� Š QL2 ˚ QL?
2 ; imS�Yk.�/ Š QL1 ˚ QL?

1 :

Let p1 W Ks; .N^/ ˝ ��E^ ! QL?
2 be induced by the corresponding orthogonal

projection for s D 0; moreover, � W QL?
2 ! QL?

1 any smooth isomorphism, and
� W QL?

1 ! Ks��;��.N^/˝��F0^ the canonical embedding. Set q WD � ı� ı p1; and
form

g1 WD �p2�^.A/C q W Ks; .N^/˝ ��E^ ! Ks;��.N^/˝ ��F^:

Then g1 can be regarded as the restriction of S� of the homogeneous principal
symbol g.�/ of a Green operator G 2 L�G.M; gIE;F/; and by construction we
have relation (87). In order to construct the operator A it suffices to define its
principal edge symbol �^.A/ WD .�^.A/ij/i;jD1;2 for �^.A/11 WD �^.ACG/. For the
remaining entries we choose arbitrary J1;2 2 Vect.Y/ such that L1;2 are subbundles
of��

Y J1;2. Similarly as in the standard calculus of pseudo-differentialBVPs, outlined
before, there is a potential symbol

�^.A/12 W ��
Y J1 ! Ks��;��.N^/˝ ��

Y F
^;

and a trace symbol

�^.A/21 W Ks; .N^/˝ ��
Y E

^ ! ��
Y J2;

such that, if we set �^.A/22 WD 0 the matrix �^.A/ induces an isomorphism (88).
ut

Let M be a compact manifold with edge Y.

Definition 6.6 Let Li WD .Pi; Ji;Li/ 2 P.Y/ be projection data, cf. Definition 2.4,
V1;V2 2 Vect.M/, i D 1; 2; and set

v WD .V1;V2I J1; J2/; l WD .V1;V2IL1;L2/:
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Then T �.M; gI l/; � 2 R; for g D .;  � �;‚/ or g D .;  � �/ is defined to be
the set of all operators

A WD P2 QAE1 (89)

for P2 WD diag.1;P2/, E1 WD diag.1;E1/, cf. formula (55), for arbitrary QA 2
L�.M; gI v/. The elements of T �.M; gI l/ will be called edge problems of order �
with global projection conditions. Moreover, set

T �1.M; gI l/ WD fP2 QCE1 W QC 2 L�1.M; gI l/g: (90)

Observe that the space (90) can be equivalently characterised as the set of all
A 2 T �.M; gI l/, A WD P2 QAE1 for some QA 2 L�.M; gI v/, such that P2 QAP1 2
L�1.M; gI v/; then A D P2.P2 QAP1/E1. Moreover,

P2.P2 QAP1/E1 2 T �1.M; gI l/) P2 QAP1 2 L�1.M; gI v/:

Theorem 6.7 Every A 2 T �.M; gI l/ induces continuous operators

A W
Hs; .M;V1/
˚

Hs.Y;L1/
�!

Hs��;��.M;V2/
˚

Hs��.Y;L2/
(91)

for every s 2 R.

Proof The proof is evident after the continuity of (104). ut
Remark 6.8

(i) Let L1;2 WD .P1;2; J1;2;L1;2/; QL1;2. QP1;2; QJ1;2; QL1;2/ 2 P.Y/; such that J1;2 are
subbundles of QJ1;2; and

QP1;2jHs.Y;J1;2/ D P1;2: (92)

Then we have a canonical isomorphism

T �.M; gI l/ Š T �.M; gI Ql/
for Ql WD .V1;V2I QL1; QL2/; l WD .V1;V2IL1;L2/

(ii) If L1;2 2 P.Y/ and QJ1;2 2 Vect.Y/ contain J1;2 as subbundles, we find
projections QP1;2 2 L0cl.YI QJ1;2; QJ1;2/ with the property (92).

Proposition 6.9 Given Vi 2 Vect.M/, i D 1; 2; we have a canonical isomorphism

T �.M; gI l/! fP2 QAP1 W QA 2 L�.M; gI v/g:

Proof The proof is analogous to that of Proposition 2.13, cf. also Proposition 5.3.
ut
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In other words we have an identification

T �.M; gI l/ D L�.M; gI v/=
 (93)

with the equivalence relation

QA 
 QB, P2 QAP1 D P2 QBP1: (94)

The space T �.M; gI l/ is equipped with the principal symbolic structure

�.A/ D .� .A/; �^.A//

with the interior and the edge symbolic component.WritingA D .Aij/i;jD1;2 we first
set � .A/ WD � .A11/, i.e.,

� .A/ W ��
MnYV1 ! ��

MnYV2

for �MnY W T�.M n Y/! M n Y.
The edge symbol of A, represented as A D P2 QAE1, is defined as

�^.A/ D diag.1; p2/�^. QA/diag.1; e1/;

�^.A/.y; �/ W
Ks; .N^/˝ V1̂;y

˚
L1;.y;�/

�!
Ks��;��.N^/˝ V2̂;y

˚
L2;.y;�/

; (95)

where p2.y; �/ is the homogeneous principal symbol of order zero of the projection
P2 2 L0cl.YI J2; J2/, and e1 W L1;.y;�/ ! .��

Y J1/.y;�/ is the canonical embedding.

Remark 6.10 Identifying an operator A D P2 QAE1 2 T �.M; gI l/ with QQA WD
P2 QAP1 2 L�.M; gI v/, cf. Proposition 6.9, then �. QQA/ D 0 in the sense of
L�.M; gI v/ is equivalent to �.A/ D 0 in the sense of T�.M; gI l/.

Analogously as (89) using (80) we define T�.M; gI l/ for g D .;  � �;‚/ or
g D .;  � �/, � � � 2 N,

T�.M; gI l/ WD fP2 QAE1 W QA 2 L�.M; gI v/g:

Remark 6.11 A 2 T �.M; gI l/ and �.A/ D 0 imply A 2 T ��1.M; gI l/, and the
operator (91) is compact for every s 2 R.

Theorem 6.12 Let Aj 2 T ��j.M; gI l/, j 2 N, be an arbitrary sequence, g WD
.;  � �; .�.k C 1/; 0�/ for a finite k; or g WD .;  � �/; and assume that the
asymptotic types involved in the Green operators are independent of j. Then there
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exists an A 2 T �.M; gI l/ such that

A�
NX

jD0
Aj 2 T ��.NC1/.M; gI l/

for every N 2 N, andA is uniquemod T �1.M; gI l/.
Proof The proof is analogous to the proof of Theorem 5.8. ut
Theorem 6.13

(i) A 2 T �.M; g0I l0/, B 2 T �.M; g1I l1/ for g0 D . � �;  � .� C �/;‚/,
g1 D .;  � �;‚/, or g0 D . � �;  � .� C �//, g1 D .;  � �/, implies
AB 2 T �C�.M; g0 ı g1I l0 ı l1/ .when the projection data in the middle fit
together such that l0 ı l1 makes sense/, and we have �.AB/ D �.A/�.B/ with
componentwise multiplication.

(ii) A 2 T �.M; gI l/ for g D .;  � �;‚/ or g D .;  � �/, and l D
.V1;V2IL1;L2/ implies A� 2 T �.M; g�I l�/ for l� D .V2;V1IL�

2 ;L
�
1 /, where

A� is the formal adjoint in the sense

.u;A�v/H0;0.M;V1/˚H0.Y;L1/ D .Au; v/H0;0.M;V2/˚H0.Y;L2/

for all u 2 H1;1.M;V1/˚H1.Y;L1/, v 2 H1;1.M;V2/˚ H1.Y;L2/, and
we have �.A�/ D �.A/� with componentwise formal adjoint.

Proof The proof is formally analogous to the proof of Theorem 5.7 when we take
into account the corresponding results from the edge calculus. ut
Remark 6.14 Similarly as in the Toeplitz algebras before we have a natural notion
of direct sum

T �.M; gI l/˚ T �.M; gIm/ D T �.M; gI l˚m/

where �.A˚ B/ D �.A/˚ �.B/ with the componentwise direct sum of symbols.

We now turn to ellipticity in the Toeplitz calculus of edge problems.

Definition 6.15 Let A 2 T �.M; gI l/ for g WD .;  � �;‚/ or g WD .;  � �/,
� 2 R; and l WD .V1;V2IL1;L2/, Vi 2 Vect.M/, Li D .Pi; Ji;Li/ 2 P.Y/, i D 1; 2.
The operator A is called elliptic if the upper left corner A 2 L�.M; gIV1;V2/ is
� -elliptic and if the edge symbol (95) is an isomorphism for every .y; �/ 2 T�Y n0
and some s D s0 2 R.
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Remark 6.16 The bijectivity of (95) for some s D s0 2 R is equivalent to the
bijectivity of (95) for every s 2 R. The latter property is equivalent to the bijectivity

�^.A/.y; �/ W
K1; I1.N^/˝ V1̂;y

˚
L1;.y;�/

�!
K1;��I1.N^/˝ V2̂;y

˚
L2;.y;�/

: (96)

Theorem 6.17

(i) For every � -elliptic A 2 L�.M; gIV1;V2/ such that

�^.A/.y; �/ W Ks; .N^/˝ V1̂;y ! Ks��;��.N^/˝ V2̂;y; (97)

.y; �/ 2 T�Y n 0; is a family of Fredholm operators with

indS�Y�^.A/ D ŒL2jS�Y � � ŒL1jS�Y �

for some L1;L2 2 Vect.T�Y n 0/ there exist a Green operator

G 2 L�G.M; gIV1;V2/;

projection data L1;L2 2 P.Y/; and an elliptic

A 2 T �.M; gI l/; l WD .V1;V2IL1;L2/

with AC G as the upper left corner, such that A is .� ; �^/-elliptic.
(ii) For A as in (i) and suitable projection data Li D .Pi; Ji;Li/ 2 P.Y/; i D 1; 2;

there exists an elliptic operatorA 2 T �.M; gI l/ containingA as the upper left
corner.

Proof (i) is a consequence of Theorem 6.5. For (ii) we choose J1;2 2 Vect.Y/ of
sufficiently large fibre dimension and a potential edge symbol

�^.K/ W ��
Y J1 ! ��

YKs��;��.N^/˝ V2̂

of �ı-homogeneity � such that

�
�^.A/ �^.K/

�
W ��

Y

0

@
Ks; .N^/˝ V1̂

˚
J1

1

A! Ks��;��.N^/˝ V2̂

is surjective; this is always possible, also when J1 is trivial and of sufficiently large
fibre dimension. Then

kerS�Y

�
�^.A/ �^.K/

�
DW L2
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has the property kerS�Y D ŒL2jS�Y � � Œ��J1�. This allows us to apply (i) for L1 WD
.id; J1; J1/. ut
Proposition 6.18 For every �;  2 R, g WD .;  � �;‚/; V 2 Vect.M/ and
L 2 P.Y/ there exists an elliptic element R�

V;L 2 T �.M; gI l/ for l WD .V;VIL;L/
which induces a Fredholm operator

R�

V;L W
Hs; .M;V/
˚

Hs.Y;L/
!

Hs��;��.M;V/
˚

Hs��.Y;L/

for every s 2 R.

Proof It suffices to set

R�

V;L WD diag.R�V ;R
�

L
/

where R�V is an order reducing operator from the edge calculus and R�
L

from
Remark 2.25. ut
Theorem 6.19 For every elliptic operator A 2 T �.M; gI l/; l D .V1;V2IL1;L2/;
there exists an elliptic operator B 2 T �.MI gIm/, m WD .V2;V1IM1;M2/; for
certain projection data M1;M2 2 P.Y/ of the form Mi WD .Qi;C

N ;Mi/; i D 1; 2;

for some N 2 N, such thatA˚B 2 L�.M; gI v/ for v D .V1˚V2;V2˚V1ICN ;CN/;

is .� ; �^/-elliptic.

Proof The operator A 2 L�.M; gIV1;V2/ in the upper left corner of A induces
continuous maps

A W Hs; .M;V1/! Hs��;��.M;V2/ (98)

for all s 2 R. This will be applied for s D  . We have order reducing isomorphisms

RV1 W H; .M;V1/! H0;0.M;V1/; R��
V2
W H��;��.M;V2/! H0;0.M;V2/;

belonging to L .M; .; 0;‚/IV1;V1/ and L��.M; . � �; 0;‚/IV2;V2/; respec-
tively. These operators are elliptic in the edge calculus. According to Theorem 6.13
(i) we can form

A0 WD R��
V2

A.RV1/
�1 2 L0.M; .0; 0;‚/IV1;V2/;

A0 W H0;0.M/ ! H0;0.M/. It follows that �.A0/ D �.R��
V2

/�.A/�..RV1 /
�1/.

Applying this for the �^-components we see that

indS�Y�^.A0/ D indS�Y�^.A/ D ŒL2jS�Y � � ŒL1jS�Y �: (99)
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There is an N such that the bundles Ji contained in Li; i D 1; 2; are subbundles
of C

N . Because of Remark 6.8 without loss of generality we assume L1;2 D
.P1;2;CN ;L1;2/. For complementary bundles L?

1;2 of L1;2 in C
N we have

ŒL2jS�Y � � ŒL1jS�Y � D ŒL?
1 jS�Y � � ŒL?

2 jS�Y �: (100)

For the adjoint of A0 we have A�
0 2 L0.M; .0; 0;‚/IV2;V1/; and relations (99),

(100) imply

indS�Y�^.A�
0 / D ŒL?

2 jS�Y � � ŒL?
1 jS�Y �:

By virtue of Theorem 6.5 we find a Green operator G0 2 L0.M; .0; 0;‚/IV2;V1/
such that

kerS�Y�^.A�
0 C G0/ Š L?

2 jS�Y ; cokerS�Y�^.A�
0 CG0/ Š L?

1 jS�Y :

For B WD .R��
V1

/�1.A�
0 C G0/R


V2
2 L�.M; gIV2;V1/ we also have

kerS�Y�^.B/ Š L?
2 jS�Y ; cokerS�Y�^.B/ Š L?

1 jS�Y :

Let us set M1;2 WD .P?
1;2;C

N ;L?
1;2/; where P?

1;2 are complementary projections to
P1;2. Because of Theorem 6.17 there is now an elliptic operator B 2 T �.M; gIm/
for m WD .V2;V1IM1;M2/ containing B as upper left corner. From the construction
it is then evident that A˚ B has the desired properties. ut
Definition 6.20 Let A 2 T �.M; gI l/ be as in Definition 6.15. Then a P 2
T ��.M; g�1I l�1/ for g�1 D . ��; ;‚/ or . ��; / and l�1 D .V2;V1IL2;L1/;
is called a parametrix of A, if

CL WD I � PA 2 T �1.M; gLI lL/; CR WD I �AP 2 T �1.M; gRI lR/ (101)

for gL D .; ;‚/ or gR D . ��;  ��;‚/ and similarly without‚; with I being
the respective identity operators, and lL WD .V1;V1IL1;L1/, lR WD .V2;V2IL2;L2/.
Theorem 6.21 Let A 2 T �.M; gI l/; � 2 R; l WD .V1;V2IL1;L2/ for V1; V2 2
Vect.M/, L1; L2 2 P.Y/.

(i) Let A be elliptic; then

A W
Hs; .M;V1/
˚

Hs.Y;L1/
�!

Hs��;��.X;V2/
˚

Hs��.Y;L2/
(102)

is a Fredholm operator for every s 2 R. Moreover, if (102) is Fredholm for
s D  then the operatorA is elliptic.
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(ii) If A is elliptic, (64) is Fredholm for all s 2 R; and dimkerA and dim cokerA
are independent of s.

(iii) An elliptic operatorA 2 T �.M; gI l/ has a parametrix P 2 T ��.M; g�1I l�1/
in the sense of Definition 5.16, and P can be chosen in such a way that the
remainders in (63) are projections

CL W Hs; .M;V1/˚ Hs.Y ;L1/! V1; CR W Hs��;s��.M;V2/˚ Hs��.Y ;L2/! V2

for all s 2 R, for V1 D kerA � H1; .M;V1/ ˚ H1.Y;L1/ and a finite-
dimensional subspace V2 � H1;��.M;V2/ ˚ H1.Y;L2/ with the property
V2 C imA D Hs��;��.M;V2/ ˚ Hs��.Y;L2/; V2 \ imA D f0g for every
s 2 R.

Proof The proof is formally analogous to that of Theorem 5.17. Let us nevertheless
carry out a few steps. We first show that an elliptic operator A 2 T �.M; gI l/ has a
parametrix

P 2 T ��.M; g�1I l�1/:

We apply Theorem 6.19 and choose a complementary operator

B 2 T �;d.M; gIm/; m D .V2;V1IM1;M2/

such that QA WD A ˚ B 2 L�.M; gI v/ for v D .V1 ˚ V2;V2 ˚ V1ICN ;CN/ is
.� ; �^/-elliptic. Then

A D diag .1;P2/ QA diag .1;E1/: (103)

From Theorem 6.1 we obtain a parametrix QP 2 L��.M; g�1I v�1/ for v�1 WD .V2˚
V1;V1 ˚ V2ICN ;CN/; where �. QP/ D �. QA/�1. Let us set

P0 WD diag .1;P1/ QP diag .1;E2/ 2 T ��.M; g�1I l�1/;

where E2 W Hs��.Y;L2/ ! Hs��.Y; J2/ is the canonical embedding and P1 W
Hs.Y; J1/! Hs.Y;L1/ the projection involved in L1. This yields

P0A D diag .1;P1/ QP diag .1;P2/ QA diag .1;E1/:

Thus for CL WD I � P0A 2 T 0.M; gLI vL/ diag .1;E1/ for vL D .V1;V1IL1;L1/;
we have �.CL/ D 0; i.e., CL 2 T �1.M; gLI vL/; cf. Remark 6.11. Applying
Theorem 6.12 we find an operator DL 2 T �1.M; gLI vL/ such that .I C DL/.I �
CL/ D I mod T �1.M; gLI vL/. We can define DL as an asymptotic sum

P1
jD1 C

j
L.

Thus .I C DL/P0A D I mod T �1.M; gLI vL/; and hence PL WD I C DLP0 2
T ��.M; gLI l�1/ is a left parametrix of A. In a similar manner we find a right
parametrix. Thus we may take P WD PL.
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The Fredholm property of (102) is a direct consequence of the compactness of
the remainders CL; CR in relation (101), cf. also Remark 6.11. The second part of
(iii) is a consequence of general facts on elliptic operators that are always satisfied
when elliptic regularity holds in the respective scales of spaces, see, for instance,
[12, Subsection 1.2.7]. This confirms, in particular, assertion (ii).

The proof that the Fredholm property of (102) for s D  entails ellipticity is of
the same structure as the last part of the proof of Theorem 5.17, left to the reader.

ut
Let us now consider elliptic operators

Ai D


A
Ti

�
2 T �.M; gI li/; i D 0; 1; Ai W Hs; .M;V1/!

Hs��;��.M;V2/
˚

Hs��.Y;Li/

;

(104)

for li D .V1;V2IO;Li/; i D 0; 1; Li D .Qi; J;Li/ 2 P.Y/; where O indicates the
case where the fibre dimension of the bundle in the middle is zero. For convenience
we assume the trace operators to be of the same orders as A. However, a simple
reduction of order allows us to pass to arbitrary orders, cf. Remark 2.25. By virtue
of Theorem 6.21 (iii) the operatorsAi have parametricesPi 2 T ��.M; g�1I l�1i / for
l�1i D .V2;V1ILi;O/; i D 0; 1;

Pi DW .Pi Ci/; i D 0; 1:

Because of

A0P0 D diag .idHs��.X;V2/; idHs��.Y;L0//modT �1.M; gLI .V2;V2IL0;L0//

for gL D . � �;  � �;‚/ it follows that

A1P0 D


idHs��.MIV2/ 0

T1P0 T1C0

�
mod T �1.M; gLI .V2;V2IL0;L1//:

Since the latter operator is elliptic, also R WD T1C0 2 T 0.YIL0;L1/ is elliptic, now
in the Toeplitz calculus on Y; developed in Sect. 2. In particular,

R W Hs��.Y;L0/! Hs��.Y;L1/ (105)

is a Fredholm operator, and we have an analogue of the Agranovich-Dynin formula
(69). Moreover, knowing a parametrix P0 of A0 we can easily express a parametrix
P1 of A1 by applying the corresponding analogue of relation (70), here using a
parametrix R.�1/ 2 T 0.YIL1;L0/ of the operator R.

Let us extend reducing of operators to the edge to elliptic operators in block
matrix form. For simplicity we assume orders to be zero; the general case can be
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achieved by reduction of orders to 0.

Ai D


A Ki

Ti Qi

�
2 T 0.M; gI li/; Ai W

H0; .M;V1/
˚

H0.Y;Ki/

!
H0; .M;V2/
˚

H0.Y;Li/

; i D 0; 1;

(106)

for li D .V1;V2IKi;Li/; i D 0; 1; Ki D .Pi; J;Ki/; Li D .Qi; J;Li/ 2 P.Y/; where
the upper left corner is the same for i D 1; 2. In order to achieve an analogue of the
Agranovich-Dynin formula for the Fredholm indices we pass to the operators

QA0 D
0

@
A K1 K0
T0 0 Q0
0 1 0

1

A W

H0; .M;V1/
˚

H0.Y;K1/

˚
H0.Y;K0/

!

H0; .M;V2/
˚

H0.Y;L0/
˚

H0.Y;K1/

; (107)

QA0 2 T �.M; gI li/; g D .; ;‚/; and

QA1 D
0

@
A K1 K0
T1 Q1 0
0 0 1

1

A W

H0; .M;V1/
˚

H0.Y;K1/

˚
H0.Y;K0/

!

H0; .M;V2/
˚

H0.Y;L1/
˚

H0.Y;K0/

; (108)

QA1 2 T 0.M; gI li/. If P0 D


P0 C0
B0 Q0

�
2 T 0.M; gI l�10 / is a parametrix of A0 which

exists by Theorem 6.21, we obtain a parametrix QP0 of QA0 in the form

QP0 D
0

@
P0 C0 �P0K1
0 0 1

B0 Q0 �B0K1

1

A : (109)

It follows that

QA1
QP0 D

0

@
1 0 0

T1P0 T1C0 �T1P0K1 C Q1
B0 Q0 �B0K1

1

A (110)
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mod T �1.M; gIn/ for n D .V2;V2IL0 ˚ K1;L1 ˚ K0/; where the lower right
corner

R D


T1C0 �T1P0K1 C Q1
Q0 �B0K1

�
W
H0.Y;L0/
˚

H0.Y;K1/

!
H0.Y;L1/
˚

H0.Y;K0/

(111)

is elliptic and belongs to T 0.YI r/ for r D .L0˚K1;L1˚K0/. The analogue of the
Agranovich-Dynin formula in this case is as follows.

Theorem 6.22 For every two elliptic operators (106) the reduction to the edge
(110) is elliptic, and we have

indA1 � indA0 D indR:

Proof The result is a consequence of indA1 � indA0 D indA1P0 D ind QA1
QP0 D

indR. ut

7 Operators Without the Transmission Property

In Sect. 3 we studied operators with the transmission property on a manifold X
with boundary. Those are the background of Boutet de Monvel’s calculus on X;
including ellipticity in the Shapiro-Lopatinskii or global projection sense. However,
if we replace (26) by

f QAjintX W QA 2 L�cl.2XI QE; QF/g (112)

then the transmission property is violated in general, see [32], and a priori it is by no
means clear how to organize a calculus of boundary value problems with ellipticity,
parametrices, etc. It will be more natural to start from

L�cl.XIE;F/smooth WD fA 2 L�cl.intXIE;F/ W
A D QAjintX C C; QA 2 L�cl.2XI QE; QF/;C 2 L�1.intXIE;F/g

(113)

rather than (112) and to single out suitable operator conventions which specify the
admitted spaces of smoothing operators. Such a program is voluminous, and we only
sketch a few ideas here. It turns out that different approaches lead to more or less
the same answers, namely, that essentially the arising operator theories are special
cases of the edge algebra. This already tells us that Shapiro-Lopatinskii or global
projection ellipticity in boundary value problems without the transmission property
are of a similar structure as corresponding ellipticities in the edge calculus, outlined
in Sect. 6. The compelling aspect lies in the fact that in the case of a manifold with
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smooth boundary, interpreted as a manifold with edge (which is just the boundary),
there is a rich variety of interesting subalgebras of the general edge algebra, and
analytic tools in such substructures reveal more explicit information than in the
general case, cf. [7]. One of the unexpected phenomena, first observed by Eskin
[8] on the half axis, is that Fourier based zero order pseudo-differential operators
which are realized in truncated form

rCOp.a/rC for a.t; �/ 2 S�cl.RC �R/ (114)

can be expressed in terms of Mellin operators with meromorphic symbols, modulo
some remainders which are under control. This structure has been deepened and
applied in the analysis on manifolds with conical singularities, see, for instance,
the monograph [22]. Moreover, truncations as in (112) give rise to operators in
the edge calculus. This is the main topic of a joint article [26] with Seiler. In that
sense we have Shapiro-Lopatinskii elliptic boundary problems inherited from the
edge algebra. Boundary problems in the global projection set-up have been studied
in another paper [27]. In this connection it turned out that it is also convenient
to produce substructures of the edge calculus on a manifold with boundary by
directly organizing edge quantizations via edge-degenerate symbols with some extra
properties close to the boundary.

In order to illustrate such properties we consider the case X WD RC��; � � R
q

open, q D dim @X. Then

L�cl.RC ��/smooth

D fOpr;y.a/C C W a.r; y; �; �/ 2 S�cl..RC ��/ � R
1Cq
�;� /;C 2 L�1.RC ��/g:

Theorem 7.1 Let us fix �;  2 R; and set g WD .;  ��; .�1; 0�/. Then for every
A 2 L�cl.XIE;F/smooth there exists a C 2 L�1.intXIE;F/ such that

A � C 2 L�.X; gIE;F/; (115)

cf. notation (74) for v D .E;F/.
Proof For simplicity we assume E D F D CI the arguments in the general case
are completely analogous. It suffices to consider the case A 2 L�cl.RC � �/smooth;

and we may assume A WD Opr;y.a/ for some a.r; y; �; �/ 2 S�cl.RC � � � R
1Cq
�;� /.

The dependence of the symbol a on y does not affect the arguments; so we assume
a.r; �; �/ 2 S�cl.RC � R

1Cq
�;� /. Let 	.�; �/ be an excision function, and write a as an

asymptotic expansion

a.r; �; �/ 

1X

jD0
	.�; �/a.��j/.r; �; �/
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in S�cl.RC �R1Cq
�;� / where a.��j/ is the homogeneous component of a of order �� j.

This allows us to write

a.��j/.r; �; �/ D r��.rja.��j/.r; r�; r�// for r > 0: (116)

The functions Qp.��j/.r; Q�; Q�/ WD rja.��j/.r; Q�; Q�/ are homogeneous in . Q�; Q�/ ¤ 0 and
smooth up to r D 0; and we can form an asymptotic expansion

Qp.r; Q�; Q�/ 

1X

jD0
	. Q�; Q�/Qp.��j/.r; Q�; Q�/

in S�cl.RC � R
1Cq
Q�;Q� /. We have

p.r; �; �/ WD Qp.r; r�; r�/ 2 S�cl.RC � R
1Cq
�;� /

and

a.r; �; �/ D r��p.r; �; �/ mod S�1.RC � R
1Cq
�;� /:

In fact, first we have

a.r; �; �/�
NX

jD0
	.�; �/a.��j/.r; �; �/ 2 S�.NC1/

cl .RC � R
1Cq
�;� /; (117)

and, similarly,

Qp.r; Q�; Q�/ �
NX

jD0
	. Q�; Q�/Qp.��j/.r; Q�; Q�/ 2 S�.NC1/.RC � R

1Cq
Q�;Q� /: (118)

This entails

r�� Qp.r; r�; r�/ � r��
NX

jD0
	.r�; r�/Qp.��j/.r; r�; r�/ 2 S�.NC1/.RC � R

1Cq
�;� /:

(119)

From (117) and (119) it follows that a.r; �; �/ � r�� Qp.r; r�; r�/ 2 S�.NC1/.RC �
R
1Cq
�;� / since

	.�; �/a.��j/.r; �; �/ � r��	.r�; r�/Qp.��j/.r; r�; r�/ 2 S�1.RC � R
1Cq
�;� /;

cf. relation (116). Thus we obtain

Opr;y.a/ D r��Opr;y. p/ modL�1.RC ��/: (120)
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From theMellin quantization of the edge calculus, cf. [23, Theorem3.2.7], it follows
that there is an Qh.r; z; Q�/ 2 C1.RC;M�

O.R
q
Q�// such that for h.r; z; �/ WD Qh.r; z; r�/

we have

Opr;y. p/.�/ D Opyop
ˇ
M.h/.�/ modL�1.RC ��/ (121)

for any real ˇ. We now obtain that f .�/ WD r��!opM.h/.�/!0 is an edge amplitude
function for any choice of cut-off functions !;!0 and that

r��!Opr;y. p/!0 D Opy. f / modL�1.RC ��/:

This gives us altogether a C 2 L�1.RC ��/ such that

!Opr;y.a/!
0 � C 2 L�.RC ��; g/:

Since Opr;y.a/ D !Opr;y.a/!
0 C .1 � !/Opr;y.a/.1 � !00/modL�1.RC ��/ for

cut-off functions !00 � ! � !0 we finally obtain Opr;y.a/ � C 2 L�.RC � �; g/
for a suitable C 2 L�1.RC ��/. ut
Remark 7.2 By definition we have L�cl.XIE;F/smooth � L�cl.intXIE;F/ and we first
interpret the operators A in that space as continuous operators

A W C1
0 .intX;E/! C1.intX;F/:

Because of Theorem 7.1 any choice of C represents an edge quantisation of A
depending on the weight  . According to the results of the edge calculus we
therefore have extensions as continuous operators

A � C W Hs; .X;E/! Hs��;��.X;F/

between weighted edge spaces for all s 2 R .when X is compact, cf. the formula
(75), otherwise between corresponding comp=loc-spaces/.

Relation (116) suggests to introduce the following space of edge-degenerate
symbols:

Definition 7.3 Let S�cl.RC � � � R
1Cq
�;� /smooth denote the set of all p.r; y; �; �/ 2

S�cl.RC �� � R
1Cq
�;� / which are of the form

p.r; y; �; �/ D Qp.r; y; r�; r�/ for some Qp.r; y; Q�; Q�/ 2 S�cl.RC �� � R
1Cq
Q�;Q� /

such that the homogeneous components Qp.��j/.r; y; Q�; Q�/; j 2 N; have the properties

Qp.��j/.r; y; Q�; Q�/ D rj QQp.��j/.r; y; Q�; Q�/
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and

QQp.��j/.r; y; Q�; Q�/ 2 S.��j/.RC �� � .R1Cq
Q�;Q� n f0g//:

Proposition 7.4 For every a.r; y; �; �/ 2 S�cl.RC �� � R
1Cq
�;� / there exists a

p.r; y; �; �/ 2 S�cl.RC �� � R
1Cq
�;� /smooth

satisfying the relation

a.r; y; �; �/ D r��p.r; y; �; �/ 2 S�1.RC �� � R
1Cq
�;� /: (122)

Conversely for every p.r; y; �; �/ 2 S�cl.RC � � � R
1Cq
�;� /smooth there exists an

a.r; y; �; �/ 2 S�cl.RC �� � R
1Cq
�;� / such that (122) holds.

Proof The first part of Proposition 7.4 is contained in the proof of Theorem 7.1.
However, the relation between r��p.r; y; �; �/ and a.r; y; �; �/ can be established
the other way around, using asymptotic summations in S�cl.RC �� � R

1Cq
�;� /. ut

Let

L�cl.RC��/smooth WDfOpr;y.b/C C W
b.r; y; �; �/ 2r��S�cl.RC���R1Cq

�;� /smooth;C2L�1.RC��/g:

By virtue of Propsition 7.4 every A 2 L�cl.RC ��/smooth has the form

A D Opr;y.a/C C (123)

for an a.r; y; �; �/ 2 S�cl.RC ���R
1Cq
�;� / and C2L�1.RC ��/. Operators of this

kind are interpreted as maps

A W C1
0 .RC ��/! C1.RC ��/:

Every A 2 L�cl.RC � �/smooth can be written as A D A0 C C for a properly
supported A0 2 L�cl.RC ��/smooth and a C 2 L�1.RC ��/.

An A 2 L�cl.RC ��/smooth is called elliptic if the symbol a.r; y; �; �/ 2 S�cl.RC �
��R1Cq

�;� / in the representation (123) is elliptic in the standard sense, more precisely,
a.�/.r; y; �; 
/ ¤ 0 for all .r; y; �; 
/ 2 RC �� � .R1Cq

�;� n f0g/.
Corollary 7.5 Let A 2 L�cl.RC � �/smooth; B 2 L�cl.RC � �/smooth; and let A or B
be properly supported. Then we have AB 2 A 2 L�C�

cl .RC ��/smooth. Moreover, an
elliptic A 2 L�cl.RC ��/smooth has a properly supported parametrix P 2 L��

cl .RC �
�/smooth; where AP� 1; PA � 1 2 L�1.RC ��/.
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It is now clear that in the case of a manifold X with boundary the edge calculus
contains substructures with upper left corners belonging to

L�cl.XIE;F/smooth (124)

modulo L�M+G.XI gIE;F/; where L�cl.XIE;F/smooth means a global analogue of the
above-mentioned L�cl.RC � �/smooth; taking into account also bundles E;F 2
Vect.X/. The remaining entries, especially those of trace and potential type, are
as in the general edge calculus. Summing up, on a manifold with boundary we have
a large variety of specific 2 � 2-block matrix algebras, representing BVPs, here for
operators without transmission property at the boundary.

8 Elliptic Complexes and Other New Challenges

In classical ellipticity it is natural not only to consider single operators but also
complexes

0! H0 ! � � � ! Hi ! HiC1 ! � � � ! HNC1 ! 0 (125)

of operators Ai W Hi ! HiC1. In simple cases those may be pseudo-differential
operators on a smooth closed manifold acting in standard Sobolev spaces of
distributional sections of vector bundles. It is also interesting to consider complexes
of BVPs on a smooth manifold with boundary, see [16, Section 3.2.3], concerning
complexes in Boutet deMonvel’s algebra, with (an analogue of) Shapiro-Lopatinskii
elliptic boundary conditions. In a recent paper [29] jointly with Seiler we studied
elliptic complexes of operators with the transmission property on a compact smooth
manifold X with boundary Y with global projection conditions. Similarly as in
[24] a new information is that every elliptic complex of differential operators of
order �, i.e., with an exact complex of principal symbols, admits global projection
conditions. Those turn it to a Fredholm complex

0!
H0
˚
H0
0

! � � � !
Hi

˚
H0

i

!
HiC1
˚

H0
iC1
! � � � !

HNC1
˚

H0
NC1
! 0 (126)

of 2 � 2 matrices

Ai W


Ai Ki

Ti Qi

�
2 T �;di.XI li/; (127)

cf. Definition 5.16, for li WD .Ei;EiC1ILi;LiC1/; Li; LiC1 2 P.Y/; cf. Defini-
tion 2.4, and spaces Hi D Hs�i�.X;Ei/; Ei 2 Vect.X/ and H0

i D Hs�i�.Y;Li/; Li 2
P.Y/; cf. formula (4). If an analogue of the Atiyah-Bott obstruction [1] vanishes
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then there exist Shapiro-Lopatinskii elliptic boundary conditions. The latter is the
case for the de-Rham complex; this has been known for a long time, see Dynin
[6], while there are interesting complexes such as the Dolbeault complex where the
Atiyah-Bott obstruction does not vanish.

The program of extending different kind of ellipticity both for complexes and for
the special case of single operators also makes sense onmanifolds with singularities,
e.g., of conical or edge type, cf. [19] for the case of cones with a smooth closed
base. For instance, it seems to be difficult to extend the approach of [24] to the case
of manifolds with non-smooth boundary, e.g., with conical or edge singularities.
Another difficulty is to establish a parameter-dependent variant of elliptic operators
with global projection conditions.

Ellipticity of operatorsA on a cornermanifoldM of singularity order k 2 N (with
k D 0 indicating smoothness, k D 1 conical or edge singularities) is connected with
a principal symbolic hierarchy

�.A/ D .�0.A/; : : : ; �k.A//;

cf. [25]. In this frameworkM has a stratification

s.M/ D .s0.M/; : : : ; sk.M//;

where the strata sj.M/; j D 1; : : : ; k�1; (and also sk.M/ when dim sk.M/ > 0) play
the role of higher edges. It is natural for the Fredholm property of operators to pose
along sj.M/ Shapiro-Lopatinkii or global projection conditions. The corresponding
operators furnish the entries of the block matrix operator A; together with the
interior operator A contained in the upper left corner. Their nature is expected to
depend on the behaviour of higher edge symbols, more precisely, on whether or
not higher analogues of the Atiyah-Bott obstruction vanish. Thus on a manifold
M of singularity order k we can expect a corresponding hierarchy of topological
obstructions for the existence of Shapiro-Lopatinskii elliptic edge conditions, while
in case of non-vanishing of those obstructions we have to expect global projection
conditions, in order that the corresponding block matrix operators A are Fredholm
and have parametrices in the respective operator algebras.

References

1. M.F. Atiyah, R. Bott, The index problem for manifolds with boundary, in Colloquium on
Differential Analysis (Tata Institute Bombay/Oxford University Press, Oxford, 1964), pp. 175–
186

2. M.F. Atiyah, V. Patodi, I.M. Singer, Spectral asymmetry and Riemannian geometry I, II, III.
Math. Proc. Camb. Philos. Soc. 77/78/79, 43–69/405–432/315–330 (1975/1976/1976)

3. M.S. Birman, M.Z. Solomjak, On the subspaces admitting a pseudodifferential projection.
Vestnik LGU 1, 18–25 (1982)



Ellipticity with Global Projection Conditions 105

4. B. Booss-Bavnbek, K. Wojciechowski, Elliptic Boundary Problems for Operators (Birkhäuser,
Boston/Basel/Berlin, 1993)

5. L. Boutet de Monvel, Boundary problems for pseudo-differential operators. Acta Math. 126,
11–51 (1971)

6. A. Dynin, Elliptic boundary problems for pseudo-differential complexes. Funct. Anal. Appl.
6(1), 75–76 (1972)

7. Ju.V. Egorov, B.-W. Schulze, Pseudo-differential Operators, Singularities, Applications. Oper-
ator Theory, Advances and Applications, vol. 93 (Birkhäuser Verlag, Basel, 1997)

8. G.I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations (Translation of
Nauka, Moskva, 1973). Mathematical Monographs, vol. 52. (American Mathematical Society,
Providence/Rhode Island, 1980)

9. G. Grubb, Functional Calculus of Pseudo-differential Boundary Problems, 2nd edn.
(Birkhäuser Verlag, Boston, 1996)

10. G. Grubb, R.T. Seeley, Weakly parametric pseudodifferential operators and Atiyah-Patodi-
Singer boundary problems. Invent. Math. 121, 481–529 (1995)

11. G. Harutjunjan, B.-W. Schulze, Elliptic Mixed, Transmission and Singular Crack Problems
(European Mathematical Society, Zürich, 2008)

12. D. Kapanadze, B.-W. Schulze, Crack Theory and Edge Singularities (Kluwer Academic,
Dordrecht, 2003)

13. Ya.A. Lopatinskij, On a method of reducing boundary problems for a system of differential
equations of elliptic type to regular equations. Ukraïn. Math. Zh. 5, 123–151 (1953)

14. V. Nazaikinskij, B.-W. Schulze, B.Ju. Sternin, V. Shatalov, Spectral boundary value problems
and elliptic equations on singular manifolds. Differ. Equ. (Engl. Transl.) 34(5), 696–710 (1998)

15. V. Nazaikinskij, A. Savin, B.-W. Schulze, B.Ju. Sternin, Elliptic Theory on Manifolds with
Nonisolated Singularities: IV. Obstructions to Elliptic Problems on Manifolds with Edges
(Preprint 2002/24, Institut für Mathematik, Potsdam, 2002)

16. S. Rempel, B.-W. Schulze, Index Theory of Elliptic Boundary Problems (Akademie-Verlag,
Berlin, 1982)

17. A. Savin, B. Sternin, Pseudodifferential Subspaces and Their Applications in Elliptic Theory.
Trends in Mathematics (Birkhäuser Verlag, Basel, 2006), pp. 247–289

18. A. Savin, B.-W. Schulze, B. Sternin, Elliptic operators in subspaces and the eta invariant.
K-theory 27(3), 253–272 (2002)

19. B.-W. Schulze, Elliptic complexes on manifold with conical singularities, in Seminar Analysis
of the Karl-Weierstrass-Institute 1986/1987. Teubner-Texte zur Mathematik, vol. 106 (BSB
Teubner, Leipzig, 1988), pp. 170–223

20. B.-W. Schulze, Pseudo-differential operators on manifolds with edges, in Symposium “Partial
Differential Equations, Holzhau 1988”. Teubner-Texte zur Mathematik, vol. 112 (BSB Teub-
ner, Leipzig, 1989), pp. 259–287

21. B.-W. Schulze, Pseudo-differential Operators on Manifolds with Singularities (North-Holland,
Amsterdam, 1991)

22. B.-W. Schulze, Pseudo-differential Boundary Value Problems, Conical Singularities, and
Asymptotics (Akademie Verlag, Berlin, 1994)

23. B.-W. Schulze, Boundary Value Problems and Singular Pseudo-differential Operators (Wiley,
Chichester, 1998)

24. B.-W. Schulze, An algebra of boundary value problems not requiring Shapiro-Lopatinskij
conditions. J. Funct. Anal. 179, 374–408 (2001)

25. B.-W. Schulze, The iterative structure of the corner calculus, in Pseudo-differential Operators:
Analysis, Application and Computations, ed. by L. Rodino et al. Operator Theory, Advances
and Applications, vol. 213 (Birkhäuser Verlag, Basel, 2011), pp. 79–103

26. B.-W. Schulze, J. Seiler, The edge algebra structure of boundary value problems. Ann. Glob.
Anal. Geom. 22, 197–265 (2002)

27. B.-W. Schulze, J. Seiler, Pseudodifferential boundary value problems with global projection
conditions. J. Funct. Anal. 206(2), 449–498 (2004)



106 B.-W. Schulze

28. B.-W. Schulze, J. Seiler, Edge operators with conditions of Toeplitz type. J. Inst. Math. Jussieu
5(1), 101–123 (2006)

29. B.-W. Schulze, J. Seiler, Elliptic complexes with generalized Atiyah-Patodi-Singer boundary
conditions. Preprint in arXiv:1510,02455 (math.AP), 09 Oct 2015

30. J. Seiler, Parameter-dependent pseudodifferential operators of Toeplitz type. Annali di Matem-
atica Pura ed Applicata 194(1), 145–165 (2015)

31. J. Seiler, Ellipticity in pseudodifferential algebras of Toeplitz type. J. Funct. Anal. 263(5),
1408–1434 (2012)

32. M.I. Vishik, G.I. Eskin, Convolution equations in bounded domains in spaces with weighted
norms. Mat. Sb. 69(1), 65–110 (1966)

33. K. Wojciechowski, A note on the space of pseudodifferential projections with the same
principal symbol. J. Oper. Theory 15, 207–216 (1986)



Multilinear Localization Operators Associated
to Quaternion Fourier Transforms

Guangsheng Ma and Jiman Zhao

Abstract In this article, we study the multilinear localization operator LF'; f
associated to quaternion Fourier transform(QFT). If F satisfies some conditions,
we prove this kind of multilinear operator is bounded on L2.R2IH/ � L2.R2IH/ �
L2.R2IH/. Further more, if we fix F and ', then LF'; f is a bilinear compact operator.

Keywords Multilinear • Localization operator • Quaternion Fourier transform
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1 Introduction

Localization operators have been studied in many different settings by Daubechies
[7], Cordero and Nicola [5], Cordero and Gröchenig [6], Boggiatto, Cordero and
Gröchenig [2], Janson and Peetre [14], Peng [18, 19], Peng and Wong [20],
Wong [23–25], and Zhao [26], etc. As a paracommutator, the localization operator
LF' has been studied by Janson, Peetre, Peng, Wong [14, 18–20]. And in [25], Wong
has proved if F is a suitable function, LF' is a Fourier multiplier. In the respect
of time-frequency analysis (see [11] for more details), each localization operator
LF'; f , as the windowed Fourier transform, is defined by a symbol function and
two window functions. If we fix F and  , LF'; f can be viewed as a bilinear
operator. In [9], Fernández, Galbis and Martínez considered multilinear multipliers
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associated to localization operators, and obtained the boundedness and compactness
of the multilinear localization operators. Inspired by [9], we define the localization
operator associated to quaternion Fourier transform, and study the boundedness and
compactness of it. Due to the lack of traditional commutative, proofs become more
complicated.

Firstly, let’s recall some related basic definitions and properties.

Quaternions As general notation (more details and some proofs of propositions in
this section can be found in [4, 10, 12]), if a is a quaternion, then a can be represented
as a D a0Ca1iCa2jCa3k, where i, j, k are basis elements, satisfied i2 D j2 D k2 D
�1, ij D k; jk D i; ki D j and anti-commutative, a0; a1; a2; a3 are real numbers. We
call a a pure quaternion when a0 D 0. We define jaj D p

a02 C a12 C a22 C a32

as the norm of a, and denote the conjugate number of a by Na. It’s easy to verify:
ab D NbNa, for any a, b in quaternion.
Quaternion-Valued Function Spaces The following spaces will be used in this
article:

Lp.R2IH/ D f f j k f .x/kp D .
Z

R2

.

3X

jD0
j fj.x/j2/

p
2 dx/1=p <1g;

where f= f0+f1i+f2j+f3k, f0; f1; f2; f3 are real-valued functions, 1 � p < 1.
Obviously, f 2 L2.R2IH/ if and only if f0 2 L2.R2/, f1 2 L2.R2/, f2 2 L2.R2/,
f3 2 L2.R2/. Further more, if f0; f1; f2; f3 are real-valued Schwartz functions, we call
f as quaternion-valued Schwartz function, denote by f 2 S.R2IH/.

L1.R2IH/ D f f j k f .x/k1 D inf
�.E/D0 sup

x2R2nE
.

3X

jD0
j fj.x/j2/ 12 <1g;

where E is a subset of R2, and �.E/ is the Lebesgue measure of E.

L1;1.R2 �R
2IH/ D f f j

Z

R2

jj f .�; x/jj1dx <1g:

Remark In the following, the domain of quaternion-valued function is defined on
R
2. In fact, almost all the following propositions can be established with the domain

in R1.

Although commutative law is not always right for general quaternions, such as
ei � ej ¤ eiCj, the following identity related to commutative law is still right:

Proposition 1.1 e�a � e�b D e�.aCb/ D e�b � e�a; where a, b are reals, � is an unit
pure quaternion, ea� D cosaC �sina.

Now, we will introduce some quaternionic version of inequalities (more details
can be found in [1, 4, 22]):
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Proposition 1.2 Cauchy inequality: If f ; g 2 L2.R2IH/, thenR
R2
j fgjdx � jj f jj2jjgjj2:

Young inequality: If f 2 L1.R2IH/, g 2 L2.R2IH/, then
jj f � gjj2 D jj

R
R2

f .t/g.x � t/dtjj2 � jj f jj1jjgjj2.
We also have the following inequality: If � is an unit pure quaternion, then

jea� � 1j D jcosaC �sina � 1j � j2sina
2
.sin

a

2
C �cosa

2
/j � jaj: (1)

In order to study Wigner transforms and localization operators, we first recall
some properties about quaternion Fourier transform. As well known, there are more
than one kind of quaternion Fourier transform, such as left-side QFT, two-side QFT,
their definitions can be found in [3, 13, 17, 21]. In this paper, we use right-side QFT.
The difference with traditional Fourier transform is that the element number i in the
exponent is replaced by an unit pure quaternion �. In this paper, we choose � D
iCjCkp

3
for its effect in RGB image processing, which corresponds to the luminance,

orgrayline, axis of the unit RGB color cube (which was introduced in [15]). By
calculation, 1, � D iCjCkp

3
, �0 D i�jp

2
, �00 D iCj�2kp

6
form a basis of quaternions, they

satisfy anti-commutative, such as ��0 D ��0�, �0�00 D ��00�0, and �2 D �02 D
�002 D �1.

Depending on the fixed�, for each quaternion-valued function f , it can be written
as: f .x/ D f0.x/C f1.x/�C f2.x/�0C f3.x/�00, where fi.x/ are real-valued functions,
i D 0; 1; 2; 3. Moreover, we define that fk D f0 C f1�; f? D f2�0 C f3�00, f can be
resolved into fk and f? (more details can be found in [15, p. 1943]). It’s clear that
for any quaternion f , f can be uniquely decomposed into these two parts.

Remark As mentioned above the parallel and perpendicular decomposition holds
for any unit pure quaternion �. So the results of this paper also hold for any unit
pure quaternion �.

Definition 1.3 Right-side quternion Fourier transform of f 2 S.R2/ is defined by
bf .x/ D R

R2
f .t/e�2��.x�t/dt

Using Proposition 1.1, we can get the Fourier inversion:

f .y/ D
Z

R2

bf .x/e2��.y�x/dx (2)

By direct calculation, we can get Propositions 1.4 and 1.5.

Proposition 1.4 bfk D Ofk, bf? D Of?
Proposition 1.5 f?e2��a D e�2��af?, bf?e2��a D e�2��abf?, where a 2 R.

Proposition 1.6 ([3]) bf � '.y/ Dbf .y/b'k.y/Cbf .�y/c'?.y/
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2 Quaternionic Multilinear Localization Operators

Like [9], in this section, we define quaternionic multilinear localization operators
and study the properties of their related Wigner transform. Each localization
operator LF'; f is depend on a symbol function F, an analysis window functions
', and a synthesis window  . Fixed F, it can be viewed as a multilinear operator
LF�;��.
Definition 2.1 Let f , ' 2 S.R2IH/, then the Wigner transform is defined by

V' f .x; !/ D
Z

R2

f .y/'.y � x/e�2��.!�y/dy:

Definition 2.2 Let ',  , f 2 S.R2IH/, F 2 S.R2 �R
2IH/, then the localization

operator is defined by

LF'; f .t/ D
“

R2�R2

F.x; !/V' f .x; !/e
�2��.!�t/ .t � x/dxd!:

Proposition 2.3 If '; f 2 S.R2IH/, the Wigner transform V' f .x; !/ can be

written as: V' f .x; !/ D
R
R2
bf .y/c'?.yC !/e�2��Œx�.yC!/�dy C R

R2
bf .y/b'k.y � !/

e2��Œx�.y�!/�dy:

Proof

V' f .x; !/ D
Z

R2

f .t/.'k.t � x/C '?.t � x//e�2��.!�t/dt

D V'k
f .x; !/C V'?

f .x; !/

By Proposition 1.1, (2) and Fubini theorem, we can write V'k
f .x; !/ as following:

V'k
f .x; !/ D

Z

R2

f .t/'k.t � x/e�2��.!�t/dt

D
Z

R2

bf .y/
Z

R2

e2��.!�t/'k.t � x/e�2��.y�t/dtdy

D
Z

R2

bf .y/
Z

R2

'k.t0/e�2��Œ.y�!/�t0 �dt0e2��Œx�.y�!/�dy

D
Z

R2

bf .y/b'k.y � !/e2��Œx�.y�!/�dy

(3)
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By Proposition 1.5, we can find the alternative expression of the V'?
f .x; !/:

V'?
f .x; !/ D

Z

R2

f .t/'?.t � x/e�2��.!�t/dt

D
Z

R2

bf .y/
Z

R2

e2��.!�t/'?.t � x/e�2��.y�t/dtdy

D
Z

R2

bf .y/
Z

R2

'?.t0/�2��Œ.!Cy/�t0�e�2��Œ.!Cy/�x�dt0dy

D
Z

R2

bf .y/c'?.yC !/e�2��Œx�.yC!/�dy (4)

Combine (3) and (4), we finish the proof. ut
In addition, f can be recovered from Wigner transform by the following:

Proposition 2.4 If .b'k.y/Cc'?.�y//e2��.y�x/ ¤ 0 for alomst every x, then

f .x/ DcV'.y;�x/Œ.b'k.y/Cc'?.�y//e�2��.y�x/��1;

where Œ.b'k.y/ C c'?.�y//e�2��.y�x/��1 represents the inverse number of Œ.b'k.y/ C
c'?.�y//e�2��.y�x/�.

Proof

bV' f .a; b/ D
Z

R2�R2�R2

f .t/'.t � x/e�2��.!�t/e�2��.a�xCb�!/dxdtdw

D
Z

R2

bf .aC w/b'k.a/e
�2��.b�!/d! C

Z

R2

bf .�a � w/c'?.�a/e�2��.b�!/d!

D
Z

R2

Œbf .aC w/b'k.a/Cbf .�a � w/c'?.�a/�e�2��.b�!/dw

D f .�b/.b'k.a/Cc'?.�a//e2��.a�b/

ut
Now, we prove the Fourier transform of localization operator can be written as

following:

Theorem 2.5 For any '; ;F; f 2 S.R2IH/, we have

2LF'; f .s/ D
“

R2�R2

.

Z

R2

F.x; !/bf .y/e�2��Œ.s�y/�x�dx/c k.s � !/b'k.y � !/dyd!

C
“

R2�R2

.

Z

R2

F.x; !/bf .y/e2��Œ.sCy/�x�dx/c ?.sC !/b'k.y � !/dyd!
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C
“

R2�R2

.

Z

R2

F.x; !/bf .y/e2��Œ.sCy/�x�dx/c k.s � !/c'?.yC !/dyd!

C
“

R2�R2

.

Z

R2

F.x; !/bf .y/e�2��Œ.s�y/�x�dx/c ?.�s� !/c'?.yC !/dyd!
(5)

Proof We decompose ',  as ' D 'k C '?,  D  k C  ?, so that

LF'; f .t/ D LF'k; k
f .t/C LF'k; ?

f .t/C LF'?; k
f .t/C LF'?; ?

f .t/:

Let us see how to deal with the four parts:

(i) LF'k; k
f .t/. By (3), Proposition 1.1 and Fubini theorem, we get

LF'; f .t/

D
“

R2�R2

F.x; !/.
Z

R2

bf .y/b'k.y � !/e2��Œx�.y�!/�dy/e2��.!�t/ k.t � x/dxd!

D
“

R2�R2�R2

F.x; !/bf .y/ k.t� x/e�2��Œ.t�x/�.y�!/�b'k.y � !/e2��.y�t/dydxd!;

by Fourier transform, we have

2LF'; f .s/ D
“

R2�R2�R2�R2

F.x; !/bf .y/ k.t � x/e�2��Œ.t�x/�.y�!/�b'k.y � !/

� e2��.y�t/e�2��.s�t/dydxd!dt:

It can be viewed as the Fourier transform of convolution of F.x; !/bf .y/ and
 k.x/e�2��.y�!/�x about x. Finally, we obtain that

2LF'; f .s/ D
“

R2�R2

.

Z

R2

F.x; !/bf .y/e�2��Œ.s�y/�x�dx/c k.s � !/b'k.y � !/d!dy:

(ii) LF'k; ?
f .t/: Similarly to (i) and combine with Proposition 1.6 we can get

2LF'; f .s/ D
“

R2�R2

.

Z

R2

F.x; !/bf .y/e2��Œ.sCy/�x�dx/c ?.sC !/b'k.y � !/d!dy:

(iii) LF'?; k
f .t/: Using Proposition 1.5 we have

2LF'; f .s/ D
“

R2�R2

.

Z

R2

F.x; !/bf .y/e2��Œ.sCy/�x�dx/c k.s � !/c'?.yC !/d!dy:
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(iv) LF'?; ?
f .t/: Combine with Propositions 1.5 and 1.6, we obtain that

2LF'; f .s/ D
“

R2�R2

.

Z

R2

F.x; !/bf .y/e�2��Œ.s�y/�x�dx/c ?.�s � !/c'?.yC !/d!dy:

In summary, we get (5). ut
By Theorem 2.5, like in the reference [9], we can prove the boundedness of

LF'; f .t/ if F satisfies some conditions. We denote

a.x; !/ D
Z

R2

F.y; !/e�2��.x�y/dy;

and a.x; !/ can also be viewed as partial Fourier transform of F about x.

Theorem 2.6 If F.x; !/ is an even function about x, then we have

Z

R2

F.x; !/bf .y/e�2��Œ.s�y/�x�dx D a.s� y; !/bf .y/

for any f 2 S.R2IH/.
Proof We have

Z

R2

F.x; !/bf .y/e�2��Œ.s�y/�x�dx D
Z

R2

F.x; !/bf .y/e�2��Œ.s�y/�x�dx

D
Z

R2

F.x; !/.bfk.y/C bf?.y//e�2��Œ.s�y/�x�dx

D
Z

R2

F.x; !/e�2��Œ.s�y/�x�bfk.y/dxC
Z

R2

F.x; !/e2��Œ.s�y/�x�bf?.y/dx

D a.s� y; !/bf .y/

ut
Remark In the case that F.x; !/ is an even function about x, we can obtain the
boundedness of LF'; f .t/. Indeed, combine with Theorem 2.6, (5) can be written
as:

2LF'; f .s/ D
“

R2�R2

a.s� y; !/bf .y/c k.s � !/b'k.y � !/dyd!

C
“

R2�R2

a.�s� y; !/bf .y/c ?.sC !/b'k.y � !/dyd!
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C
“

R2�R2

a.�s� y; !/bf .y/c k.s � !/c'?.yC !/dyd!

C
“

R2�R2

a.s� y; !/bf .y/c ?.�s � !/c'?.yC !/dyd!

Noting that right-side QFT, conjugate, opposition of independent variable all are

L2-norm preserving operations, for the first part of 2LF'; f .s/:

jj
“

R2�R2

a.s � y; !/bf .y/c k.s� !/b'k.y � !/dyd!jj2

� kbfk2kb'kk2jj
Z

R2

a.s� y; !/c k.s � !/d!jj2

� kakL1;1 kbf k2kb'kk2kc kk2
� kakL1;1 k fk2 k'k2 k k2 (6)

Similarily, each of other parts’ L2-norm is less than or equal to

kakL1;1 k fk2 k'k2 k k2 :

Now, we obtain the boundedness of LF'; f .t/. Due to the norm preserving of
QFT and S.R2IH/ is dense in L2.R2IH/, LF'; f which is defined in S.R2IH/ �
S.R2IH/ � S.R2IH/ can be extend to a multilinear boundedness operator on
L2.R2IH/ � L2.R2IH/ � L2.R2IH/:

If F isn’t an even function, we have a more general theorem about the bounded-
ness of LF'; f .t/:

Theorem 2.7 For fixed a 2 L1;1.R2�R2IH/, LF'; f can be extended as a bounded
multilinear operator on quaternion-valued function: LF W L2.R2IH/ � L2.R2IH/ �
L2.R2IH/! L2.R2IH/ LF W .';  ; f /! LF'; f where ',  , f 2 L2.R2IH/.
Proof In order to avoid technicalities, we first assume that ',  , f 2 S.R2IH/. We
decompose F into fk C f?. For example, in Theorem 2.5 (i):

LF'k; k
f .t/ D LF'k; k

fk.t/C LF'k; k
f?.t/

D
“

R2�R2

a.s� y; !/bfk.y/c k.s� !/b'k.y � !/dyd!

C
“

R2�R2

a.y� s; !/bf?c k.s� !/b'k.y � !/dyd!
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is resolved into two parts. Imitating above decomposition, formula (5) can be
resolved into eight similar parts. Like the norm estimate about (6), we can obtain
the boundedness of every parts. In summary, we have

jjLF'; f .t/jj2 � 8 kakL1;1 k fk2 k'k2 k k2
This theorem has been proved. ut

Like [16], we introduce the following results, And we will use them to prove the
compactness of multilinear localization.

Definition 2.8 Let K is a bounded subset of L2.R2IH/,
Z

R2

j f .xC y/� f .x/j2dx! 0 as y ! 0 uniformly for F in K: (7)

Z

jxj>R
j f .x/j2dx! 0 as R!1 uniformly for F in K: (8)

Property (7) is called L2-equicontinuous and property (8) is an uniform decay
property.

Combine the definition of quaternionic L2-norm and the Riesz-Tamarkin theorem
(see [8]), we obtain a criterion of quaternionic compact subset in L2.R2IH/:
Theorem 2.9 A bounded subset K of L2.R2IH/ is relatively compact if and only if
K has property (7) and property (8).

Proof For any f 2 K, we can uniquely decompose f D f0 C f1iC f2jC f3k, where
f0; f1; f2; f3 are real-valued functions. We denote f fmj f D f0C f1iC f2jC f3k; f 2 Kg
by Km, m= 0,1,2,3. In the complete metric space L2.R2IH/, a subset K is relatively
compact if and only if Km is relatively compact in L2.R2/, m D 0; 1; 2; 3. By Riesz-
Tamarkin theorem, Km are relatively compact if and only if Km have property (7)
and property (8). Noting that K0;K1;K2;K3 satisfy property (7) and property (8) if
and only if K satisfies property (7) and property (8). Hence, K is relatively compact
if and only if K has property (7) and property (8). ut

Like [16], the following theorem related to quaternion Fourier transform is still
right.

Theorem 2.10 Let K is a bounded subset of L2.R2IH/, and bf is the right-side
quaternion Fourier transform of f, bK={bf j f 2 K}. Then, K is compact if and only
if K and bK satisfy the property (8).
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Proof Due to Theorem 2.9, we just need to proveK satisfies property (7) if and only
if bK satisfies the property (8). Like [16, p. 253], combine with (1) and (2), we have

k f .xC y/� f .x/k2 D jj.e�.y�t/ � 1/bf .t/jj2

� .
Z

jtj�R
jyjjtjjbf .t/j2dtC 2

Z

jtj>R
jbf .t/j2dt/ 12 : (9)

For arbitrary " > 0, we can choose R so large enough that the second part in (9) is
less than "

2
, because bK satisfies the property (8). And if y is small enough, the first

part in (9) will less than "
2
. Hence, K satisfies property (7).

On the other hand, if K satisfies property (7), the proof is similar with in [16]. ut
If we fixed F, then  , LF'; f .t/ can be viewed as an operator act on F and '.

In order to prove it is compact bilinear operator, we can verify K D fg.t/jg.t/ D
LF'; f .t/;8jj'jj2 � 1; jj f jj2 � 1g and bK satisfy the property (8).

Lemma 2.11 We denote the function as QFT of F.x; !/ about ! by QF. G(x)
represents jj QF.x; �/jj1. If G.x/ 2 L2.R2;H/ and  2 L1.R2IH/, then the
bilinear operator can be extended to a boundedness operator: LF ;�� W L2.R2IH/ �
L2.R2IH/! L2.R2IH/
Proof We assume F and  are in S.R2IH/, if we write f D fk C f?, ' D 'k C '?

and  D  k C  ?:

LF'; f .t/

D
•

R2�R2�R2

F.x; !/.fk.y/C f?.y//.'k.y � x/C '?.y � x//e�2��.!�y/

� e2��.!�t/. k.t � x/C  ?.t � x//dydxd!;

LF'; f .t/ is decomposed into eight similar parts, we only prove one of the eight part
and omit the similar proofs for the rest parts. Combine with (3), Cauchy inequality
and Fubini theorem, the first part can be written as:

j
•

R2�R2�R2

F.x; !/bfk.y/ k.t � x/e�2��Œ.x�t/�!�x�y�b'k.y � !/dydxd!j

Dj
“

R2�R2

F.x; !/ k.t � x/e�2��Œ.x�t/�!�.e2��.x�y/
Z

R2

bfk.y/b'k.y � !/dy/dxd!j

�jj f jj2jj'jj2j
Z

R2

QF.x; x � t/ k.t � x/dxj

�jj f jj2jj'jj2jG � j kj.t/j
(10)
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due to Young inequality, jjLF'; f .t/jj2 is controlled by jj f jj2jj'jj2jjGjj2jj kjj1. ut
Theorem 2.12 If  2 L1.R2IH/, b 2 L1.R2IH/ and G.x/ 2 L2.R2/, then the
operator LF ;�� W L2.R2IH/�L2.R2IH/! L2.R2IH/ is a bilinear compact operator.
Proof We define K={g.t/jg.t/ D LF'; f .t/;8jj'jj2 � 1; jj f jj2 � 1 }. By
Lemma 2.11, we have:

.

Z

jtj>R
jg.t/j2/ 12 dt � 8jj f jj2jj'jj2.

Z

jtj>R
j.G �  /.t/j2dt/ 12 ! 0 as R!1

uniformly for g in K

Indeed, this convergence only depend on G,  and share no relation with g. So K
satisfies property (8). Similarly, we can prove that bK shares the same property (8)
with K by using Theorem 2.5. According to Theorem 2.9, K is relatively compact
subset of L2.R2IH/. Therefore LF ;�� is a compact bilinear operator. ut
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A Time-Frequency Relationship Between
the Langevin Equation and the Harmonic
Oscillator

Lorenzo Galleani

Abstract We derive a simple relationship between the Wigner distribution of the
Green’s function of the Langevin equation and of the harmonic oscillator. This
relationship shows that the Wigner distribution of the Green’s function of the
harmonic oscillator consists of the sum of two terms obtained by translating the
Wigner distribution of the Green’s function of the Langevin equation at the resonant
frequencies of the harmonic oscillator, plus an interference term. This result paves
the way for a simplification of the time-frequency representation of differential
equations, as well as for a better understanding and filtering of interference terms.

Keywords Time-frequency snalysis • Langevin equation • Harmonic oscillator

Mathematics Subject Classification (2000). Primary 60H10

1 Introduction

Consider the Langevin equation

dx.t/

dt
C ˇx.t/ D f .t/; (1)

where ˇ > 0, and the harmonic oscillator defined by the equation

d2x.t/

dt2
C 2�dx.t/

dt
C !20x.t/ D f .t/; (2)
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where we consider the underdamped case with 0 < � < !0. In the classic Langevin
equation, the forcing term f .t/ is a white Gaussian noise, and the equation describes
Brownian motion [1]. In this article, though, we consider f .t/ to be any deterministic
or stochastic forcing term, and we refer to the Langevin equation as the first-order
differential equation defined in Eq. (1). Equivalently, the term harmonic oscillator
represents typically any second-order differential equation of the form given in
Eq. (2), with a deterministic or a stochastic forcing term f .t/.

Both the Langevin equation and the harmonic oscillator are fundamental models
for the analysis and design of physical systems and devices. Aside from describing
Brownian motion, the Langevin equation is a first approximation for decaying
phenomena, as well as for signals obtained by low-pass filtering the forcing term
f .t/. The harmonic oscillator is instead the most fundamental resonant system.
When � < !0, it resonates in fact at the frequency value

!c D
q
!20 � �2, (3)

and at�!c. In this work, we obtain a simple connection between the time-frequency
spectrum of the harmonic oscillator and of the Langevin equation. Specifically, we
show that the Wigner distribution [2–4] of the Green’s function of the harmonic
oscillator is made by the sum of three terms. The first two terms are the Wigner
distributions of the Green’s function of the Langevin equation translated at the
resonant frequencies !c and �!c. The third is an interference term due to the
quadratic nature of the Wigner distribution, centered about the frequency ! D 0.
We note that the Green’s function is also referred to as the impulse response.

This connection is useful for several reasons. First, it clarifies the time-frequency
structure of the Green’s function of the harmonic oscillator. Second, it paves the way
for a simplification of the time-frequency representation of differential equations.
Currently, one of the major drawbacks of applying time-frequency analysis to
differential equations is the large size of the mathematical expressions involved,
caused by the nonlinear nature of the time-frequency distributions commonly used.
The extension of the result presented in this article to n-th order differential
equations can simplify dramatically their time-frequency representation, because
any solution can be written as the convolution of the Green’s function with the
forcing term, both in time [5] and in the Wigner distribution domain [2]. We are
currently working at this extension. Third, our result provides an explicit expression
for the interference terms of the Green’s function, useful for their characterization
and filtering. Much work has been done in time-frequency analysis to characterize
and mitigate the interference terms [6, 7], because their oscillatory nature mixes up
with the key time-frequency features of a signal, making them often very hard to
understand.

The article is organized as follows. First, in Sect. 2 we summarize the main
results. Second, in Sect. 3 we define the Green’s function and the Wigner distri-
bution, and we establish our notation. Third, in Sect. 4 we derive the connection
between the Green’s function of the Langevin equation and of the harmonic
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oscillator, we obtain the connection between their Wigner distributions, and we
check the obtained result by comparing it with that obtained by transforming the
harmonic oscillator to the time-frequency domain. Finally, in Sect. 5 we give more
details on the signal processing aspects of the Langevin equation and the harmonic
oscillator.

2 Summary of Results

For the Langevin equation (with ˇ replaced by �)

dx.t/

dt
C �x.t/ D f .t/; (4)

and the harmonic oscillator equation

d2x.t/

dt2
C 2�dx.t/

dt
C !20x.t/ D f .t/; (5)

the respective Green’s functions are defined by

x.t/ D
Z C1

�1
h1.t � t0/f .t0/dt0 Langevin equation (6)

x.t/ D
Z C1

�1
h2.t � t0/f .t0/dt0 Harmonic oscillator (7)

We show that

h2.t/ D 1

!c
h1.t/ sin!ct: (8)

The Wigner distribution is defined by [2–4]

Wx.t; !/ D 1

2�

Z C1

�1
x�.t � �=2/x.tC �=2/e�i�!d�; (9)

where the star sign indicates complex conjugation. For Eqs. (6) and (7), it is [2]

Wx.t; !/ D
Z C1

�1
Wh1 .t � t0; !/Wf .t

0; !/dt0 Langevin equation (10)

Wx.t; !/ D
Z C1

�1
Wh2 .t � t0; !/Wf .t

0; !/dt0 Harmonic oscillator (11)
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We show that, for the Langevin equation,

Wh1 .t; !/ D u.t/e�2�t sin 2!t
�!

; (12)

where u.t/ is the Heaviside step function defined as u.t/ D 1 for t 	 0, and u.t/ D 0
for t < 0, whereas for the harmonic oscillator the Wigner distributionWh2 .t; !/ can
be expressed in terms ofWh1 .t; !/, namely

Wh2 .t; !/ D
1

4!2c
Wh1 .t; ! � !c/C 1

4!2c
Wh1 .t; ! C !c/ � 1

2!2c
cos 2!ctWh1 .t; !/:

(13)

3 Definitions and Basic Properties

We give the main definitions for the Green’s function and the Wigner distribution.

3.1 Green’s Function

Consider the class of differential equations defined by

dnx.t/

dtn
C an�1

dn�1x.t/
dtn�1 : : :C a0x.t/ D f .t/; (14)

where a0; : : : ; an�1 are real constant coefficients. The Green’s function hn.t/ is
obtained as the solution of the equation when the forcing term is a Dirac delta
function [5, 8],

dnhn.t/

dtn
C an�1

dn�1hn.t/
dtn�1 : : :C a0hn.t/ D ı.t/: (15)

The notation hn.t/ denotes that the Green’s function refers to the equation of order
n. Equivalently, the Green’s function can be obtained by solving the homogeneous
equation

dnhn.t/

dtn
C an�1

dn�1hn.t/
dtn�1 : : :C a0hn.t/ D 0; (16)
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with the initial conditions

dkhn.t/

dtk

ˇ
ˇ
ˇ
ˇ
tD0
D 0, for k D 0; : : : ; n � 2 (17)

dn�1hn.t/
dtn�1

ˇ
ˇ
ˇ
ˇ
tD0
D 1 (18)

where

dkhn.t/

dtk
D hn.t/; for k D 0: (19)

The Green’s function is a fundamental tool in the study of differential equations and
in the analysis and design of physical systems, because any solution to Eq. (14) can
be written through the convolution integral [5]

x.t/ D
Z C1

�1
hn.t � t0/f .t0/dt0: (20)

3.2 Wigner Distribution

The Wigner distribution for deterministic signals is defined in Eq. (9), whereas,
when x.t/ is a random process, we use the Wigner spectrum [9–11], defined as

Wx.t; !/ D 1

2�

Z C1

�1
E

x�.t � �=2/x.tC �=2/� e�i�!d�; (21)

where E is the expected value. When

x.t/ D x1.t/C x2.t/; (22)

it follows that

Wx.t; !/ D Wx1 .t; !/CWx2 .t; !/C 2<fWx1;x2 .t; !/g; (23)

where the cross-Wigner distribution is defined as

Wx1;x2 .t; !/ D
1

2�

Z C1

�1
x�
1 .t � �=2/x2.tC �=2/e�i�!d�: (24)

The term of Eq. (23) depending on the cross-Wigner distribution is a consequence
of the quadratic nature of the Wigner distribution, and it is often referred to as
interference term.
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Moreover, when

y.t/ D ax.t/; (25)

it is

Wy.t; !/ D jaj2Wx.t; !/: (26)

Finally, when

y.t/ D x.t/ei!1 t; (27)

we have [2]

Wy.t; !/ D Wx.t; ! � !1/: (28)

4 Time-Frequency Connection Between the Langevin
Equation and the Harmonic Oscillator

We first derive a simple connection between the Green’s function of the Langevin
equation and of the harmonic oscillator, then we obtain its time-frequency represen-
tation.

4.1 Relationship Between the Green’s Functions in Time

From the initial condition problem of Eqs. (16), (17) and (18), the Green’s function
of the Langevin equation is obtained by solving

dh1.t/

dt
C �h1.t/ D 0; (29)

with the initial condition

h1.0/ D 1: (30)

The solution is straightforwardly obtained as

h1.t/ D u.t/e��t; (31)
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Similarly, the Green’s function for the harmonic oscillator is obtained by solving

d2h2.t/

dt2
C 2�dh2.t/

dt
C !20h2.t/ D 0; (32)

with the initial conditions

h2.0/ D 0; (33)

dh2.t/

dt

ˇ
ˇ
ˇ̌
tD0
D 1: (34)

The solution is [5]

h2.t/ D u.t/
�
Aei�1t C Bei�2t

�
; (35)

where the poles �1, �2 are given by

�1;2 D ��˙ i!c: (36)

The complex constants A and B are determined by using the initial conditions given
in Eqs. (33) and (34), obtaining

h2.t/ D u.t/e��t



1

2i!c
ei!ct � 1

2i!c
e�i!ct

�
: (37)

Trigonometric identities and Eq. (31) give

h2.t/ D 1

!c
h1.t/ sin!ct: (38)

Therefore, the Green’s function of the underdamped harmonic oscillator is a
frequency modulated version of the Green’s function of the Langevin equation.
As known from the properties of the Fourier transform, this frequency modulation
generates two replicas of the frequency spectrum of h1.t/ centered about the
frequencies !c and �!c.

4.2 Relationship Between the Green’s Functions
in the Time-Frequency Domain

By replacing Eq. (31), we rewrite Eq. (37) as

h2.t/ D 1

2i!c
h1.t/e

i!ct � 1

2i!c
h1.t/e

�i!ct: (39)
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We now set

h21.t/ D 1

2i!c
h1.t/e

i!ct; (40)

h22.t/ D � 1

2i!c
h1.t/e

�i!c t: (41)

Therefore

h2.t/ D h21.t/C h22.t/: (42)

From Eq. (23), it is

Wh2 .t; !/ D Wh21 .t; !/CWh22 .t; !/C 2<fWh21;h22 .t; !/g; (43)

where, by using Eqs. (25), (26), (27) and (28), we have

Wh21 .t; !/ D
1

4!2c
Wh1 .t; ! � !c/; (44)

Wh22 .t; !/ D
1

4!2c
Wh1 .t; ! C !c/; (45)

and, from Eq. (24), noting that h1.t/, h21.t/, and h22.t/ are real, we obtain

Wh21;h22 .t; !/ D
1

2�

Z C1

�1
h21.t � �=2/h22.tC �=2/e�i�!d�; (46)

D 1

2�

Z C1

�1
1

�2i!c
h1.t � �=2/e�i!c.t��=2/

�


� 1

2i!c

�
h1.tC �=2/e�i!c.tC�=2/e�i�!d� (47)

D � 1

4!2c
e�2i!ct 1

2�

Z C1

�1
h1.t � �=2/h1.tC �=2/e�i�!d�; (48)

D � 1

4!2c
e�2i!ctWh1 .t; !/: (49)

Replacing these results in Eq. (43) gives

Wh2 .t; !/ D
1

4!2c
Wh1 .t; ! � !c/C 1

4!2c
Wh1 .t; ! C !c/� 1

2!2c
cos 2!ctWh1 .t; !/;

(50)
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which represents the desired time-frequency relationship between the Wigner
representation of the Green’s functions of the Langevin equation and the harmonic
oscillator. The first two terms are obtained by translating the Wigner distribution
of the Green’s function of the Langevin equation at the resonant frequencies ˙!c,
whereas the third term is an interference term.

4.3 Explicit Expressions for the Green’s Functions
in the Time-Frequency Domain

We obtain the explicitWigner distributions of the Green’s functions for the Langevin
equation and the harmonic oscillator, and, to validate our results, we compare the
latter one with the solution obtained by transforming the differential equation to the
Wigner distribution domain.

By replacing h1.t/ in Eq. (9), we have

Wh1 .t; !/ D
1

2�

Z C1

�1
u.t � �=2/u.tC �=2/e��.t��=2/��.tC�=2/�i�!d�; (51)

D e�2�t 1
2�

Z C1

�1
u.t � �=2/u.tC �=2/e�i�!d�; (52)

D u.t/e�2�t 1
2�

Z 2t

�2t
e�i�!d�: (53)

Evaluating the integral gives the Wigner distribution of the Green’s function of the
Langevin equation

Wh1 .t; !/ D u.t/e�2�t sin 2!t
�!

: (54)

We note that for every given time t > 0, Wh1 .t; !/ is a sinc function centered about
! D 0. Substituting in Eq. (50), we obtain the Wigner distribution of the Green’s
function for the harmonic oscillator

Wh2.t; !/ D
1

2�!2c
u.t/e�2�t



sin 2.! � !c/t

2.! � !c/
C sin 2.! C !c/t

2.! C !c/
� cos 2!ct

sin 2!t

!

�
:

(55)

We verify this result by transforming the equation defining the Green’s function
of the harmonic oscillator to the Wigner distribution domain [12–15], and by
showing that its solution corresponds to Wh2 .t; !/. For convenience, we repeat the
Green’s function problem for the general class of differential equations defined
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in Eq. (14)

dnhn.t/

dtn
C an�1

dn�1hn.t/
dtn�1 : : :C a0hn.t/ D ı.t/: (56)

We factor this equation as

.D � �1/ � � � .D � �n/hn.t/ D ı.t/; (57)

whereD D d
dt and the poles �1,. . . , �n are the solutions of the characteristic equation

�n C an�1�n�1 : : :C a0 D 0: (58)

The equation for the Wigner distribution of hn.t/ is [13, 15]

1

4n

nY

mD1
.@t � pm.!//

�
@t � p�

m.!/
�
Whn.t; !/ D

1

2�
ı.t/; (59)

where @t D @
@t and the generic time-frequency pole pm.!/ is defined as [16]

pm.!/ D 2˛m C 2i.ˇm � !/; (60)

with ˛m and ˇm being the real and imaginary part of �m, respectively. The solution
of the equation for the Wigner distribution is [13]

Whn.t; !/ D
1

2�
4nu.t/

nX

mD1
e<f pmgt

�


Cm cos .=f pmgt/C Dm C Cm<fpmg

=f pmg sin .=fpmgt/
�
; (61)

where

Cm D 2<frmg; (62)

Dm D �2<frmp�
mg; (63)

rm D 1

. pm � p�
m/
Qn

kD1; k¤m. pm � pk/. pm � p�
k /
: (64)

For the harmonic oscillator it is n D 2, the time-frequency poles are

p1.!/ D �2�C 2i.!c � !/; (65)

p2.!/ D �2�� 2i.!c C !/; (66)
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and

C1 D C2 D 0; (67)

D1 D 1

16!!c
; (68)

D2 D � 1

16!!c
: (69)

By replacing these quantities in Eq. (61) we obtain

Wh2 .t; !/ D
1

2�

1

!!c
u.t/e�2�t



sin 2.! � !c/t

2.! � !c/
� sin 2.! C !c/t

2.! C !c/

�
: (70)

This equation is identical to Eq. (55) if we use the identity

cos 2!ct sin 2!t D 1

2
sin 2.!c C !/t C 1

2
sin 2.! � !c/t: (71)

5 Signal Processing Interpretation of the Langevin Equation
and the Harmonic Oscillator

The frequency representation of the Langevin equation is given by [5]

X.!/ D 1

ˇ C i!
F.!/; (72)

where we define the Fourier transform as

X.!/ D 1p
2�

Z C1

�1
x.t/e�i!tdt: (73)

The high frequencies of the spectrum F.!/ are filtered out (attenuated) by the
transfer function

H.!/ D 1

ˇ C i!
; (74)

whereas the low frequencies are allowed to pass. For such reason, in signal
processing the Langevin equation is referred to as a low-pass filter, and is used
in a variety of fields, such as, among the others, circuit theory [17], optimal
estimation [18], vibrations of structures [19], mechanical systems [20], and control
systems [21].
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The harmonic oscillator is instead the most fundamental resonant system,
because, when � < !0, it resonates at the frequency !c [5], and at the symmetric
negative frequency �!c. Resonances are fundamental tools in signal and system
theory, because they correspond to the peaks observed in the frequency spectrum,
and can hence be used for system design and identification. Similarly to the
Langevin equation, also the harmonic oscillator is widely applied in all of the fields
of science and engineering.

6 Conclusions

We have shown that a simple relationship exists between the time-frequency
representations of the Green’s functions of the Langevin equation and the harmonic
oscillator. Specifically, we have proved that the Wigner distribution of the Green’s
function of the harmonic oscillator is made by two frequency translated versions of
the Wigner distribution of the Green’s function of the Langevin equation, plus an
interference term due to the quadratic nature of the Wigner distribution. We have
also verified our result by comparing it with the result obtained by transforming
the differential equation governing the harmonic oscillator directly to the Wigner
distribution domain.

This result, if extended to n-th order differential equations, could simplify the
complexity of time-frequency representations of differential equations, often made
by a large number of terms due to the nonlinear nature of the quadratic time-
frequency distributions used. We are currently working at the extension of this
method to n-th order differential equations of the form given in Eq. (14). Our result
also provides a simple analytic expression for the interference terms arising in the
Green’s function, which can be useful for their characterization and filtering.
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Are There Quantum Operators and Wave
Functions in Standard Probability Theory

Leon Cohen

Abstract The methods of quantum probability theory are radically different from
standard probability as developed over the last 300 years. While the results of quan-
tum probability, such as expectation values, are the same as standard probability
theory, the methods used are strange, as they deal with operators and wave functions
and use strange rules of manipulation. We ask whether there are operators and wave
functions in standard probability theory. By generalizing a theorem of Khinchine on
characteristic functions, we show that indeed the strange probabilistic methods of
quantum mechanics follow from standard probability theory.

Keywords Probability theory • Operators • Quantum mechanics • Khinchine
theorem
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1 Introduction

Quantum mechanics is the most successful theory ever devised, by far. It explains
everything that we know about matter, atoms, stars, the universe, chemistry, and
indeed all physical phenomena that it has been applied to. Moreover, quantum
mechanics predicts bizarre phenomena, such as vacuum fluctuations, that have been
experimentally observed.

Quantum mechanics is a probability theory. While the probabilistic “results”
of quantum mechanics are of the same nature as standard probability theory, for
example expectation values and probability densities, the method of calculation is
radically different from standard probability theory. Quantum mechanics uses wave
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functions, operators, and methods which are seemingly totally foreign to standard
probability theory.

There have been numerous attempts to formulate quantum mechanics as a
standard probability theory. It is fair to say that these attempts have not succeeded.
We reverse the question and ask: Since quantum mechanics is certainly the most
successful probability theory ever devised, we ask whether standard probability
theory has the concepts of wave functions and operators. We emphasize that we
are not trying to formulate quantum mechanics as a standard probability theory;
quite the contrary, we are trying to see if standard probability theory contains the
ideas and methods of quantum probability theory and if it could be formulated in
quantum mechanical language [2, 3, 8].

Notation Operators will be denoted by bold-face letters and the corresponding
random variables by lower case letters. When it is not obvious what random variable
the characteristic function and corresponding probability density are referring to, we
use the notationMa.�/ and Pa.a/ where the subscript denotes the random variable.
All integrals go from �1 to 1 or the appropriate range of the variables. Also, it
is assumed that eigenfunctions are normalized to one for the discrete case and to a
delta function for the continuous case.

2 Characteristic Functions

For a probability density, P.x/, the characteristic function,M.�/; is the expectation
value of ei�x

M.�/ D hei�xi D
Z

ei�xP.x/ dx (1)

and from the characteristic function, one may obtain the probability density by
Fourier inversion,

P.x/ D 1

2�

Z
M.�/e�i�xd� (2)

The characteristic function is standard in probability theory for many reasons
[4, 7]. It is often easier to manipulate probabilistic results by using the characteristic
function compared to the probability density function itself. For example, the
moments, defined by

hxni D
Z

xnP.x/ dx (3)
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may be obtained from

hxni D 1

in
dn

d�n
M.�/

ˇ
ˇ
ˇ̌
�D0

(4)

Since differentiation is easier then integration, Eq. (4) is often easier to use than
Eq. (3) if indeed we know M.�/: Furthermore the characteristic function is very
useful for obtaining probability densities for new variables [5].

The characteristic function is generally complex, but not every complex function
is a characteristic function since it has to be derivable from a positive density
function. What are necessary and sufficient conditions for a function M.�/ to be
a characteristic function? Khinchine solved this problem [6]. A function, M.�/,
is a characteristic function if and only if there exists a function, g.x/; so that the
characteristic function is expressed in the following form [6, 7]

M.�/ D
Z

g�.x/g.xC �/dx (5)

If there is such a function, it should be normalized to one, which insures that the
corresponding density will integrate to one. While this theorem is fundamental
in probability theory, it appears that the significance and properties of the g.x/
functions have not been extensively studied. We will argue that they are the
“wave functions” of quantum mechanics, and that the generalization of Khinchine’s
theorem that we present in Sect. 3 leads to the concept of operators in standard
probability theory. We first present our idea for the Khinchine theorem as originally
given, Eq. (5), before we give the general result in the next section.

Rewrite Khinchine’s theorem in the following way

M.�/ D
Z

g�.x/e�
d
dx g.x/dx (6)

where in going from Eqs. (5)–(6) we have used the fact that e�
d
dx is the translation

operator in that for any function f .x/ [10]

e�
d
dx f .x/ Df .xC �/ (7)

We now insert i as indicated

M.�/ D
Z

g�.x/ei�.
1
i

d
dx /g.x/dx (8)

and write Eq. (6) as

M.�/ D
Z

g�.x/ei�p g.x/dx (9)
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where we have defined the operator, p; by

p D 1

i

d

dx
(10)

We now calculate the expectation value by way of Eq. (4). In anticipation of the
result we shall use the letter p for the random variables since it will turn out to be
momentum and the letter p is standard for momentum. In particular,

h pi D 1

i

d

d�
M.�/

ˇ
ˇ
ˇ̌
�D0

(11)

D 1

i

d

d�

Z
g�.x/ei�pg.x/dx

ˇ
ˇ
ˇ
ˇ
�D0

(12)

D
Z

g�.x/


1

i

@

@�

�
ei�pg.x/dx

ˇ̌
ˇ
ˇ
�D0

(13)

D
Z

g�.x/pei�pg.x/dx
ˇ
ˇ̌
ˇ
�D0

(14)

or

h pi D
Z

g�.x/p g.x/dx D
Z

g�.x/


1

i

d

dx

�
g.x/dx (15)

This is precisely how one calculates the average momentum in quantum mechanics
when the system has the “wave function” g.x/ [1, 9]. Therefore we argue that for
this case (momentum) the g’s of the Khinchine theorem are the wave functions of
quantum mechanics. Note that the g’s are generally complex functions and that the
operator p is self-adjoint, as indeed they should be. The reason for self-adjointness
will be discussed in Sect. 3

The Probability Density What is the probability density that corresponds to the
characteristic function given by Eq. (5)? Again, we use p for the random variable,
which is an ordinary variable, and should not be confused with the operator p:Using
Eq. (2) we have

P. p/ D 1

2�

Z
M.�/e�i�pd� (16)

D 1

2�

“
g�.x/ g.xC �/e�i�pd�dx (17)

Making a change of variables

x0 D xC � dx0 D d� (18)
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we have

P. p/ D 1

2�

“
g�.x/ g.x0/e�i.x0�x/pdx0dx (19)

D 1

2�


Z
g�.x/eixpdx

�
Z
g.x0/e�ix0pdx0

�
(20)

that is

P. p/ D 1

2�

ˇ
ˇ̌
ˇ

Z
g.x/e�ixpdx

ˇ
ˇ̌
ˇ

2

(21)

But this is precisely the probability density of “momentum” in quantum mechanics
[1, 9].

Comment Notice that the random variable p is continuous, ranging from �1
to1: That is indeed the case in quantum mechanics, and we say that momentum is
not quantized. How quantization for other physical quantities comes in will be clear
when we discuss general operators and general random variables in the next section.

3 Generalization of Khinchine’s Theorem

We now generalize Khinchine’s theorem to apply to arbitrary self adjoint operators.
Ma.�/ is a characteristic function if and only if for a self adjoint operator A there
exists the representation

Ma.�/ D
Z

g�.x/ei�Ag.x/dx (22)

We prove this in Appendix A, “Khinchine Theorem for Operators”. For the
expectation value we have, using Eq. (2), that

hai D 1

i

d

d�
Ma.�/

ˇ̌
ˇ
ˇ
�D0

(23)

D 1

i

d

d�

Z
g�.x/ei�A g.x/dx

ˇ
ˇ
ˇ̌
�D0

(24)

D
Z

g�.x/


1

i

@

@�

�
ei�A g.x/dx

ˇ
ˇ
ˇ
ˇ
�D0

(25)

D
Z

g�.x/Aei�A g.x/dx
ˇ
ˇ
ˇ
ˇ
�D0

(26)
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giving

hai D
Z

g�.x/A g.x/ dx (27)

This is precisely the standard manner of calculating expectation values in quantum
mechanics for a physical quantity associated with the self-adjoint operator A [1, 9].

3.1 Probability Density

We now discuss the probability density that corresponds to the characteristic
function given by Eq. (22). Substitute Eq. (22) into Eq. (2) to obtain

P.a/ D 1

2�

Z
Ma.�/e

�i�ad D 1

2�

“
g�.x/ei�A g.x/e�i�adx d� (28)

We evaluate Eq. (28) in Appendix B, “Probability Density”. Here we state the result.
There are two cases: namely, if we have discrete or continuous random variables.
This follows naturally, as we show in the Appendix “Probability Density”. In short,
it is the spectrum of the operatorA which determines whether the random variables
are discrete or continuous.Moreover the random variables are the eigenvalues of the
operator.

Continuous case If the spectrum of the operator has continuous eigenvalues we
write

Aua.x/ D aua.x/ (29)

where a and ua.x/ are the eigenvalues and corresponding eigenfunctions of the
operator A. The probability density as evaluated by way of Eq. (28) is given by

P.a/ D jc.a/j2 (30)

where

c.a/ D
Z

g.x/u�
a .x/dx (31)

Hence, the random variables are the a0s (the eigenvalues) and their range is the range
of the eigenvalues.

Discrete case If the spectrum of the operator is discrete, we write

Aun.x/ D anun.x/ (32)
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then the probability distribution is given by

P.a/ D
X

n

jcnj2ı.a � an/ (33)

where

cn D
Z

g.x/u�
n .x/dx (34)

Notice that the probability density is non-zero only when the random variable, a;
is one of the discrete eigenvalues. In this case we have quantization. We may write
Eq. (33) as

P.an/ D jcnj2 (35)

Discussion The probability densities derived above are called the Born rule. We
have derived them from the generalization of the Khinchine theorem, Eq. (22). Also,
we proved that the random variables are the eigenvalues of the operator A, which is
usually just assumed in quantum mechanics.

3.2 Two Ways of Calculating Expectation Values

We have shown, using Eq. (22) that one may calculate expectation values by

hai D
Z

g�.x/A g.x/ dx (36)

which is the standard quantum mechanical way. However in standard probability
theory we calculate expectation values by

hai D
X

(random variable) � (probability) (discrete case) (37)

for the discrete case, and by

hai D
Z

(random variable) � (probability) (continuous case) (38)

for the continuous case. Substituting Eqs. (30) and (35) we have

hai D
X

an

ˇ
ˇ
ˇ̌
Z

g.x/u�
n .x/dx

ˇ
ˇ
ˇ̌
2

(discrete case) (39)

hai D
Z

a

ˇ
ˇ
ˇ
ˇ

Z
g.x/u�

a .x/dx

ˇ
ˇ
ˇ
ˇ

2

da (continuous case) (40)
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It is well known in quantum mechanics that the two methods are the same, that is
that

Z
g�.x/A g.x/ dx D

X
an

ˇ̌
ˇ
ˇ

Z
g.x/u�

n .x/dx

ˇ̌
ˇ
ˇ

2

(discrete case) (41)

Z
g�.x/A g.x/ dx D

Z
a

ˇ
ˇ̌
ˇ

Z
g.x/u�

a .x/dx

ˇ
ˇ̌
ˇ

2

da (continuous case) (42)

In Appendix C, “Standard vs. QuantumManner of Calculating Expectation Values”
we show the equivalence for the sake of readers that may not be familiar with the
result.

4 Conclusion

We summarize the main results. We have generalized Khinchine’s theorem for a
self-adjoint operator A by showing that a function,Ma.�/; defined by

Ma.�/ D
Z

g�.x/ei�A g.x/dx (43)

is a proper characteristic function. From Eq. (43) we have shown that the usual rules
of quantum probabilities follow. In particular we have shown that:

1. The expected value is

hai D
Z

g�.x/A g.x/ dx (44)

2. The random variables are the eigenvalues of the operator A.
3. If the eigenvalues, a, are continuous, then the probability density associated with

the characteristic function is

P.a/ D
ˇ
ˇ̌
ˇ

Z
g.x/u�

a .x/dx

ˇ
ˇ̌
ˇ

2

(45)

where ua.x/ are the eigenfunctions.
4. If the eigenvalues, an, are discrete with corresponding eigenfunctions un.x/; the

probability density is given by

P.an/ D
ˇ
ˇ
ˇ
ˇ

Z
g.x/u�

n .x/dx

ˇ
ˇ
ˇ
ˇ

2

(46)
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The above items are exactly how one obtains the random variables and probabil-
ities in quantum mechanics. We have derived them from the characteristic function
defined by Eq. (43).

Acknowledgements The author thanks Dr. J. Ben-Benjamin for reading the manuscript and for
making a number of suggestions.

Appendix A: Khinchine Theorem for Operators

We prove that Ma.�/ is a characteristic function corresponding to the self-adjoint
operator, A; if and only if, there exists the representation

Ma.�/ D
Z

g�.x/ei�A g.x/dx (47)

for some function g.x/: First, we show that Ma.�/ produces a proper probability
density. Substituting Eq. (47) into Eq. (2) the probability density is then

P.a/ D 1

2�

Z
M.�/e�i�ad� D 1

2�

“
g�.x/ei�A g.x/e�i�adx d� (48)

We first consider the continuous case. Since the operator is self-adjoint, the
solution to the eigenvalue problem

Au˛.x/ D ˛u˛.x/ (49)

produces real eigenvalues, ˛; and complete and orthogonal eigenfunctions, u˛.x/

Z
u�̨.x/uˇ.x/dx D ı.˛ � ˇ/ (50)

Z
u�̨.x/u˛.x0/d˛ D ı.x � x0/ (51)

Since the eigenfunctions are complete and orthogonal, we can expand any
function as

g.x/ D
Z

u˛.x/c.˛/d˛ (52)

and inversely

c.˛/ D
Z

u�̨.x/ g.x/dx (53)
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Substituting Eq. (52) into Eq. (48) we have

P.a/ D 1

2�

ZZZZ
u�̌ .x/c�.ˇ/ei�Au˛.x/c.˛/e�i�adxdˇd˛d� (54)

Using the fact that

ei�Au˛.x/ D ei�˛u˛.x/ (55)

we have

P.a/ D 1

2�

ZZZZ
u�̌ .x/c�.ˇ/ei�˛u˛.x/c.˛/e�i�adxdˇd˛d� (56)

D
“

F�.ˇ/ı.a � ˛/ı.˛ � ˇ/F.˛/dˇd˛ (57)

The � integration gives

Z
ei�˛e�i�ad� D 2�ı.˛ � ˇ/ (58)

and using Eq. (50) we have

P.a/ D
“

c�.ˇ/ı.a � ˛/ı.˛ � ˇ/c.˛/dˇd˛ (59)

Therefore

P.a/ D jc.a/j2 (60)

Equation (60) shows that we have a manifestly positive density, and that it will be
normalized to one if the wave function is normalized to one because

Z
jc.a/j2 da D

Z
j g.x/j2 dx (61)

This proves the sufficiency of the form given by Eq. (47).
To prove the necessity, suppose we have the probability distribution P.˛/; and

hence the characteristic function is given by

M.�/ D
Z

ei�˛P.˛/ d˛ (62)
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We expand, not the probability distribution but the square root of P.˛/

p
P.˛/ D

Z
u˛.x/f .x/dx (63)

Since
p
P.˛/ is real we also have

p
P.˛/ D

Z
u�̨.x/f �.x/dx (64)

Therefore

M.�/ D
Z

ei�˛
p
P.˛/

p
P.˛/ d˛ (65)

D
•

u�̨.x0/f �.x0/ u˛.x/f .x/ei�˛dxd˛dx
0

(66)

D
•

u�̨.x0/f �.x0/
˚
ei�Au˛.x/

�
f .x/dxdx0d˛ (67)

D
“

f �.x0/
n
ei�Aı.x � x

0
/
o
f .x/dxdx0 (68)

or

Ma.�/ D
Z

f �.x/ei�Af .x/dx (69)

which is of the form given by Eq. (47).
A similar proof follows for the discrete case.

Appendix B: Probability Density

We now derive the probability density corresponding to Ma.�/; where

Ma.�/ D
Z

g�.x/ei�Ag.x/ d� (70)

Using Eq. (2) we have

Pa.a/ D 1

2�

“
g�.x/ei�Ag.x/e�i�adx d� (71)
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To evaluate Eq. (71) we consider two separate cases depending on whether the
spectrum of the operator A is continuous or discrete. For a discrete spectrum we
write

Aun.x/ D anun.x/ (72)

where the eigenfunctions satisfy completeness and orthogonality properties

Z
u�
n .x/uk.x/dx D ınk (73)

X

n

u�
n .x/un.x

0/ D ı.x � x0/ (74)

We expand the wave function as

g.x/ D
X

n

cnun.x/ (75)

with

cn D
Z

g.x/u�
n .x/dx (76)

Substituting Eq. (75) into Eq. (71) we have

P.a/ D 1

2�

“ X

n;m

c�
mu

�
m.x/e

i�Acnun.x/e
�i�adx d� (77)

Using

ei�Aun.x/ D ei�anun.x/ (78)

gives

P.a/ D 1

2�

“ X

n;m

c�
mu

�
m.x/e

i�ancnun.x/e
�i�adx d� (79)

D 1

2�

Z X

n;m

c�
mınm.x/e

i�ancne
�i�a d� (80)

D 1

2�

X

n

jcnj2
Z
ei�an�i�a d� (81)
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Therefore

P.a/ D
X

n

jcnj2ı.a � an/ (82)

Equation (82) shows that the an are the random variables with corresponding
probability jcnj2: This is exactly the quantum mechanical result. One can write
Eq. (82) as

P.an/ D jcnj2 (83)

Note: Since A is self-adjoint the eigenvalues are real, as they should be, since
they represent measurable quantities.

For the continuous case we write

Au˛.x/ D au˛.x/ (84)

and the eigenfunctions satisfy

Z
u�̨.x/uˇ.x/dx D ı.˛ � ˇ/ (85)

Z
u�̨.x/u˛.x0/d˛ D ı.x � x0/ (86)

Expand g.x/ as

g.x/ D
Z
c.˛/u˛.x/d˛ (87)

with

c.˛/ D
Z

g.x/u�̨.x/dx (88)

and substitute Eq. (87) into (71) to obtain

Pa.a/ D 1

2�

ZZZZ
c�.˛/u�̨.x/ei�Ac.ˇ/uˇ.x/e�i�adx d�d˛dˇ (89)

D 1

2�

ZZZZ
c�.˛/u�̨.x/ei�ˇc.ˇ/uˇ.x/e�i�adx d�d˛dˇ (90)

D
“

c�.˛/c.ˇ/ı.˛ � ˇ/ı.a � ˇ/d˛dˇ (91)
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which evaluates to

Pa.a/ D jc.a/j2 (92)

Appendix C: Standard vs. QuantumManner of Calculating
Expectation Values

We show Eq. (41) of the text, which we repeat here

Z
g�.x/A g.x/ dx D

X
an

ˇ̌
ˇ
ˇ

Z
g.x/u�

n .x/dx

ˇ̌
ˇ
ˇ

2

discrete case (93)

We expand g.x/

g.x/ D
X

cnun.x/ (94)

where

cn D
Z

g.x/u�
n .x/dx (95)

Starting with the left hand side of Eq. (93) we have

Z
g�.x/A g.x/ dx (96)

D
Z X

n;m

c�
mu

�
m.x/Acnun.x/ dx (97)

D
Z X

n;m

c�
mu

�
m.x/ancnun.x/ dx (98)

D
X

n;m

c�
mınmancn (99)

D
X

n

an

ˇ
ˇ
ˇ
ˇ

Z
g.x/u�

n .x/dx

ˇ
ˇ
ˇ
ˇ

2

(100)

which is Eq. (93). The proof for the continuous case, Eq. (42), follows an analogous
derivation.
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A Class of Non-Markovian Pseudo-differential
Operators of Lévy Type

Rémi Léandre

Abstract We give large deviation estimates for a convolution semigroup, which is
not Markovian and of Lévy type, of big order.

Keywords Pseudo-differential operator • Wentzel-Freidlin estimates
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1 Introduction

There are much more semigroups than semigroups which are represented by
stochastic processes. On the other hand, there are a lot of formulas in stochastic
analysis which are natural. The theory of pseudo-differential operators [1], [3–
7] allow to understand a lot of partial differential equations, including parabolic
equations. On the other hand we have imported in the theory of non-markovian
semigroups a lot of tools of stochastic analysis [12–26]. Stochastic analysis formulas
are valid for the whole process. Their interpretation for non-markovian semigroups
work only for the semigroup.

In [23] and [25], we have done with the classical normalization of semi-
classical analysis [4] Wentzel-Freidlin estimates [5] for fourth order differential
operators. Here we extend the method of [23] to the case of an integro-differential
operator of big order which generates a non-markovian convolution semi-group.
Normalisation are of Maslov type [4]. This paper presents a generalization of [26]
to the multidimensional case.
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2 A Class of Elliptic Pseudo-differential Operators

Let us recall some basis of the pseudo-differential calculus. Of is the Fourier
transform of f . Let L1 be an operator acting on C1

b .R
d/ by

L1f .x/ D
Z

Rd
a.x; 
/Of .
/ expŒ2p�1� < 
; x >�d
 (1)

We say that a.:; :/ is its symbol. If

j @
n

@xn
@m

@
m
a.x; 
/j � Cj
jr�m (2)

and if for j
j > C0

ja.x; 
/j 	 Cj
jr0

(3)

where r0 > 0, we say that L1 is an elliptic operator. Let us recall that our
thesis underline the relationship between pseudo-differential operators and Poisson
processes [11]. See the books [8–10]. We consider the operator:

Lf .x/ D .�1/lC1
Z

Rd
. f .xC y/� f .x/�

2lX

iD1

1

iŠ
< y˝i; f .i/.x/ >/

h.x; y/

jyj2lCdC˛ dy (4)

where h is a smooth function with bounded derivatives at each order and which is
equal to zero if jyj > C. We suppose that ˛ 2� � 1; 0Œ.
Theorem 2.1 If h.x; 0/ D 1, L is an elliptic pseudo-differential operator.

Proof Let us compute the symbol of L.

f .x/ D
Z

Rd

Of .
/ expŒp�1 < x; 
 >�d
 (5)

Therefore

Lf .x/ D
Z

Rd

h.x; y/

jyj2lCdC˛ dy

Z

Rd
.expŒ
p�1 < .xC y/; 
 >� �

2lX

iD0

.
p�1 < 
; y >/i

iŠ

expŒ
p�1 < x; 
 >�Of .
/d
 D

Z

Rd

Of .
/ expŒp�1 < x; 
 >�d
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Z

Rd
.expŒ
p�1 < y; 
 >� �

2lX

iD0

.
p�1 < 
; y >/i

iŠ
/

h.x; y/

jyj2lCdC˛ dy

D
Z

Rd

Of .
/H.x;p�1
/ expŒp�1 < x; 
 >�d
 (6)

H.x;
p�1
/ is obviously smooth and satisfy obviously to (2) due to the hypothesis

on h. Let us show (3).
We put yj
j D z. We get that

H.x;
p�1
/ D j
j2lC˛H1.x;

p�1
/ (7)

We introduce a smooth function from R
C into Œ0; 1� which is equal to 0 in a

neighborhood from 0 and to 1 in a neighborhood of1. We put 
1 D 


j
j . We get that

H1.x;
p�1
/ D H1

1.x;
p�1
/C H2

1.x;
p�1
/ (8)

where

H1
1.x;
p�1
/ D

Z

Rd
.expŒ
p�1 < .z; 
1 >� �

2lX

iD0

.
p�1 < 
1; z >/i

iŠ
/
h.x; z

j
j /h1.
jzj
j
j /

jzj2lCdC˛ dy (9)

We remark that

jH1
1.x;
p�1
/j � Cj
j�k (10)

for all k since h.x; y/ is bounded with all bounded derivatives and with compact
support in y. Let us give the details.

expŒ
p�1r� �

2lX

iD0

.
p�1r/i

iŠ
D
Z

0<s1<::<2lC1<r
expŒ
p�1s1�ds1::ds2lC1 (11)

Therefore

H1
1.x;
p�1
/ D

Z

RC

h1.
r

j
j /
dr

r2lC1C˛

Z

Sd

Z

0<s1<::<2lC1<r
expŒ
p�1s1 < �; 
1 >�h.x; r�j
j/ds1::ds2lC1

(12)
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where d� is the unit volume element in the unit sphere Sd of Rd. We put r1 D rj
j.
We get

H1
1.x;
p�1
/ D

Z

Sd
d�
Z

0<s1<::<s2lC1<
r1
j
j

Z

RC

expŒ
p�1s1 < �; 
1 >�

h.x; r1�/h1.r1/ds1::ds2lC1dr1
j
j2lC˛
r2lC1C˛1

D
Z

Sd
d�
Z

0<s1<::<s2lC1<r1

Z

RC

expŒ
p�1s1j
j < �; 
1 >�

h.x; r1�/h1.r1//ds1::ds2lC1dr1
j
j˛�1

r2lC1C˛1

(13)

We consider the primitive of the function

r1 !
Z

0<s1<::<s2lC1<r1

Z

RC

expŒ
p�1s1j
j < �; 
1 >�h.x; r1�/h1.r1//ds1::ds2lC1

(14)

They are given by iterated integrals of the same type but with longer lenght. We
integrate by parts and take derivatives in the function

r1 ! h1.r1/h.x; r1�/

r2lC1C˛1

(15)

Therefore the result. Let us study H2
1.x;
p�1
/. We have if the support of 1� h1

is small enough

ReH2
1.x;
p�1
/ 	

Z

1�jzj� C1
j
j

dz
jzj2lC1
jzj2lCdC˛ 	 Cj
j1�˛ (16)

ut

3 A Class of Non-Markovian Lévy Operators

Theorem 3.1 Let us suppose that h.x; y/ D h.y/ and that h.y/ D h.�y/ and that
h 	 0. Let us consider the operator

L.x/ D .�1/lC1
Z

Rd
. f .xC y/� f .x/�

lX

iD1

1

2iŠ
< y˝2i; f .2i/.x/ >/

h.y/

jyj2lCdC˛ dy

(17)
Then L is positive symmetric on L2.Rd/.
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Proof Let us suppose that f and g are with compact support. We have

< Lf ; g >D
Z

Rd�Rd
g.x/. f .xC y/� f .x/�

lX

iD1

1

2iŠ
< y˝2i; f .2i/.x/ >/

h.y/

jyj2lCdC˛ dxdy (18)

The symmetry arises by doing the change of variable y! �y since h.y/ D h.�y/.
Let us show that L is positive. We have

f .xC y/ � f .x/ D
2l�1X

iD1

1

iŠ
< y˝i; f .i/.x/ > C
Z

0<s1<::<s2l<1
< y˝2l; f .2l/.xC s1y/ > ds1::ds2l (19)

Due to the fact that h.y/ D h.�y/, we have only to look at the expression

Z

Rd�Rd
f .x/

Z

0<s1<::<s2l<1
< y˝2l; f .2l/.xC s1y/ > ds1::ds2ldxdy (20)

By integating by part in x, this expression is equal to

.�1/l
Z

Rd�Rd
< y˝l; f .l/.x/ >

Z

0<s1<::<s2l<1
< y˝l; f .l/.xC s1y/ > ds1::ds2ldxdy

(21)

By Cauchy-Schwartz inequality

Z

Rd
< y˝l; f .l/.x/ >< y˝l; f .l/.xC s1y/ > dx �

Z

Rd
< y˝l; f .l/.x/ >2 dx (22)

This shows that

.�1/lC1
Z

Rd�Rd
f .x/

Z

0<s1<::<s2l<1
< y˝2l; f .2l/.xC s1y/ � f .2l/.x/ > ds1::ds2ldxdy 	 0 (23)

We deduce the result. ut
By ellipticity, we get:

Theorem 3.2 If l C 1 is even L generates a contraction semigroup expŒ�tL� on
L2.Rd/ and which acts continuously on Cb.R

d/
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Let us consider an example (with the only difference that h has no compact
support!). We consider

Lf .x/ D .�1/lC1
Z

Rd
. f .xC y/� f .x/ �

lX

iD1

1

2iŠ
< y˝2i; f .2i/.x/ >/

1

jyj2lCdC˛ dy

(24)

His symbol is

H.
p�1
/ D

Z

Rd
.cos.< y; 
 >/ �

lX

iD0

.�1/i < 
; y >/2i
2iŠ

/
1

jyj2lCdC˛ dy (25)

We put y1 D yj
j and 
1 D 


j
j such that

H.
p�1
/ D A.
1/j
j2lC˛ (26)

where

A.
1/ D
Z

Rd
.cos.< y1; 
1 >/ �

lX

iD0

.�1/i < 
1; y1 >/2i
2iŠ

/
1

jy1j2lCdC˛ dy1 (27)

By rotational invariance A.
1/ does not depend of 
1. But the symbol of the standard
laplacian on R

d is j
j2. So L is a fractional power of L (See [18] for another
presentation).

4 The Action Functional

We consider the Hamiltonian

H.
/ D
Z

Rd
.expŒ< 
; y >� � 1 �

lX

iD1

< 
; y >2i

2iŠ
/

h.y/

jyjdC2lC˛ dy (28)

Theorem 4.1 H.
/ is a smooth convex function equals to 1 in 0.

Proof Since h is with compact support, H is clearly smooth with bounded deriva-
tives at each order. Moreover,

Fy.
/ D expŒ< y; 
 >�C expŒ� < y; 
 >� � 2
lX

iD0

< 
; y >2i

2iŠ
D 2

1X

iDlC1

< 
; y >2i

2iŠ

(29)
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Then the function 
 ! Fy.
/ is a sum of positive convex functions and his
therefore a positive convex function. But h.y/ D h.�y/. It follows that

H.
/ D
Z

E
Fy.
/

h.y/

jyjdC2lC˛ dy (30)

(for a convenient subset E of Rd) is a positive convex function since h is positive.
ut

Associate to it, we consider its Legendre transform:

L. p/ D sup

2Rd

.< 
; p > �H.
// (31)

If � is a finite energy function in R
d, we consider the action functional

S.�/ D
Z 1

0

L.
d�

dt
/dt (32)

According the theory of semi-classical analysis [5], we consider the symbol L�1
associated to the symbol ��1a.x; �
/. This leads to the operator

L�f .x/ D .�1/lC1 1
�

Z

Rd
. f .xC �y/ � f .x/�

lX

iD1

�2i

2iŠ
< y˝2i; f .2i/.x/ >/

h.y/

jyj2lCdC˛ dy

(33)

By elliptic theory L� generates a semigroup on L2 and even on Cb.R
d/ P�t . We

consider its absolute value jP�t j. We have

Theorem 4.2 (Wentzel-Freidlin estimates) Let O be the complement in Rd of the
interval of the cube of center x and radius ı. We have when �! 0

Lim�LogjP�1jŒ1O�.x/ � � inf
�.0/DxI�.1/2OS.�/ (34)

if lC 1 is even.

5 Proof of the Wentzel-Freidlin Estimates

Let us begin by some elementary remarks. We remark that

OLf D H.
p�1/Of (35)
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such that

OPtf D expŒ�tH.p�1/:� Of (36)

These elementary remarks (which are true a lot of convolution semigroups) will
allow us to adapt the proof of [5] and [26].

Theorem 5.1 For all ı > 0, all C there exist tı such that if t < tı

jP�t j.1O/.x/ � expŒ�C
�
� (37)

Proof We consider the semigroup

expŒ� < x; 


�
>�P�t ŒexpŒ<

x0; 

�

>� f .x0/�.x/ (38)

The symbol of its generator is

F�
 .

0/ D 1

�
H.�
p�1
 0 C 
/ (39)

This is the symbol of an elliptic operator which is positive if j
 0j is big. It generates
therefore a semi-group on Cb.R

d/ Q�;
t . We get the expansion

F�
 .

0/ D H.
/

�
C

H.1/.
/
p�1
 0 C �

Z

0<s1<s2<1
< 
 0˝2;H.2/.�s1

p�1
 0/ > C
/ds1ds2C

H.
/

�
C H.1/.

p�1
 0/C R�
.

0/ (40)

Therefore we get

O
Q�;
t f D expŒ� tH.
/

�
� expŒ�t.CH.1/.

p�1
 0/C R�
.

0//� Of (41)

The uniform norm of expŒ�t.CH.1/
p�1
 0 C R�
.


0// is bounded and the uniform

norm of its derivative is bounded by expŒCj
j�=�. Therefore the norm on Cb.R
d/ of

Q�;
t is bounded by expŒ�CtH.
/
�
� expŒCj
j�. Therefore

jP�t j.1O/.x/ � expŒ�CtH.
/
�

� expŒ
jı
j
�
� expŒCj
j� (42)

But H.
/ 	 Cj
j2 if 
 > 0 for some C. ut
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Remark In this inequality, the classical Davies gauge transform plays a fundamental
role [2] and replaces the role of exponential martingales of [5].

Proof When we have proved this lemma, the estimates follow closely the lines of
[5] and [26].

We cut the time interval Œ0; 1� is small intervals of length Œti; tiC1�. By the
semigroup property we use that

jP�1jŒ1O�.x/ � jP�t1 j::jP�1�tn
jŒ1O�.x/ (43)

In P�tiC1�ti , we distinguish if xti�1 and xti are far or not. If they are far, we use the
previous lemma. If they are close, we deduce a positive measures jW�j on polygonal
paths �t which joins xti to xtiC1

. By the previous lemma, it remains to estimate
jW�jŒ1O.�1/�. But jW�j is a positive measure, we have

jW�jŒ1O�.�1/� � jW�jŒexpŒS.�/
�
�Œ1O.�.1/� expŒ� inf

�.0/DxI�.1/2O
S.�/

�
� (44)

Therefore we have only to estimate jW�jŒexpŒ S.�/� �1O.�1/�. The sequel follows [5,
p. 152] and [26]. We can choose some pi in finite numbers such that if we put

L0. p/ D sup
i
.L. pi/C @

@p
L. pi/. p � pi// (45)

we have for all polygonal paths considereded for a small 	

L.
d�t
dt
/� L0.

d�t
dt
/ � 	 (46)

Let us put

S0.�/ D
Z 1

0

L0.
d�t
dt
/dt (47)

Since jW�j is a positive measure, we have only to estimate the quantity

jW�jŒexpŒS
0.�/
�

�1O.�1/� (48)

We remark that

expŒsup ai� �
X

expŒai� (49)

Moreover

L0. p/ D sup.< 
i; p > �H.
i// (50)
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where 
i D @
@pL. pi/. Therefore it is enough to show that

sup
x;j
j<C

jP�tı jŒexpŒ<



�
; .x0 � x/ > �tıH.
/��.x/ (51)

has a small blowing up when � ! 0. We do as in the previous lemma. We consider
the generator of the semigroup

f ! P�t ŒexpŒ<



�
; .x0 � x/ > �tH.
/� f �.x/ (52)

Its symbol is

1

�
H.�
p�1
 0 C 
/ � 1

�
H.
/ (53)

Its asymptotic expansion in � is

..H.1/.
p�1
 0/C R�
.


0/ (54)

The result follows as in the lemma. ut
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On the Solvability of Some Systems
of Integro-Differential Equations
with Anomalous Diffusion

Vitali Vougalter and Vitaly Volpert

Abstract The article deals with the existence of solutions of a system of integro-
differential equations in the case of anomalous diffusion with the Laplacian in a
fractional power. The proof of existence of solutions is based on a fixed point
technique. Solvability conditions for non Fredholm elliptic operators in unbounded
domains are used.

Keywords Integro-differential equations • Non Fredholm operators • Sobolev
spaces

Mathematics Subject Classification (2000). 35J05, 35P30, 47F05

1 Introduction

The present work is devoted to the existence of stationary solutions of the following
system of integro-differential equations

@um
@t
D �Dm



� @

2

@x2

�s

um C
Z 1

�1
Km.x � y/gm.u.y; t//dyC fm.x/; (1)

1 � m � N, appearing in cell population dynamics. The space variable x
here corresponds to the cell genotype, functions um.x; t/ describe the cell density
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distributions for various groups of cells as functions of their genotype and time,

u.x; t/ D .u1.x; t/; u2.x; t/; : : : ; uN.x; t//T :

The right side of this system of equations describes the evolution of cell densities
due to cell proliferation,mutations and cell influx or efflux. The anomalous diffusion
terms with positive coefficients Dm correspond to the change of genotype due
to small random mutations, and the nonlocal production terms describe large
mutations. Functions gm.u/ denote the rates of cell birth which depend on u (density
dependent proliferation), and the kernels Km.x�y/ express the proportions of newly
born cells changing their genotype from y to x. We assume that they depend on the
distance between the genotypes. The functions fm.x/ describe the influx or efflux of
cells for different genotypes.

The operator



� @

2

@x2

�s

in system (1) describes a particular case of anomalous

diffusion actively studied in the context of different applications in plasma physics
and turbulence [7, 16], surface diffusion [12, 14], semiconductors [15] and so on.
Anomalous diffusion can be understood as a random process of particle motion
characterized by the probability density distribution of jump length. The moments of
this density distribution are finite in the case of normal diffusion, but this is not the
case for superdiffusion. Asymptotic behavior at infinity of the probability density
function determines the value s of the power of the Laplacian [13]. The operator

� @

2

@x2

�s

is defined by means of the spectral calculus. In the present work we will

consider the case of 0 < s < 1=4. A similar problem in the case of the standard
Laplace operator in the diffusion term was studied recently in [28]. Note that the
restriction on the power s here comes from the solvability conditions of our problem.

Let us set all Dm D 1 and establish the existence of solutions of the system of
equations

�


� d2

dx2

�s

um C
Z 1

�1
Km.x � y/gm.u.y//dyC fm.x/ D 0; 0 < s <

1

4
; (2)

with 1 � m � N. Let us consider the case where the linear part of this operator
fails to satisfy the Fredholm property. As a consequence, conventional methods of
nonlinear analysis may not be applicable. We use solvability conditions for non
Fredholm operators along with the method of contraction mappings.

Consider the equation

��uC V.x/u � au D f ; (3)

where u 2 E D H2.Rd/ and f 2 F D L2.Rd/; d 2 N, a is a constant and the
scalar potential function V.x/ is either zero identically or converges to 0 at infinity.
For a 	 0, the essential spectrum of the operator A W E ! F corresponding to the
left side of problem (3) contains the origin. As a consequence, such operator fails
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to satisfy the Fredholm property. Its image is not closed, for d > 1 the dimension
of its kernel and the codimension of its image are not finite. The present work deals
with the studies of some properties of the operators of this kind. Note that elliptic
problems with non Fredholm operators were treated actively in recent years.

Approaches in weighted Sobolev and Hölder spaces were developed in [2–6].
The non Fredholm Schrödinger type operators were studied with the methods of
the spectral and the scattering theory in [17, 22, 24]. The Laplace operator with
drift from the point of view of non Fredholm operators was treated in [25] and
linearized Cahn-Hilliard problems in [20] and [26]. Nonlinear non Fredholm elliptic
problems were studied in [23] and [27]. Important applications to the theory of
reaction-diffusion equations were developed in [9, 10]. Non Fredholm operators
arise also when studying wave systems with an infinite number of localized traveling
waves (see [1]). In particular, when a D 0 the operator A is Fredholm in some
properly chosen weighted spaces (see [2–6]). However, the case of a ¤ 0 is
significantly different and the approach developed in these articles cannot be used.
Front propagation equations with anomalous diffusionwere studied largely in recent
years (see e.g. [18, 19]).

We set Km.x/ D "mKm.x/ with "m 	 0, such that

" WD max1�m�N"m

and suppose that the following assumption is satisfied.

Assumption 1.1 Let 1 � m � N and consider 0 < s <
1

4
. Let fm.x/ W R ! R be

nontrivial for some m. Let fm.x/ 2 L1.R/\ L2.R/ and



� d2

dx2

� 1
2�s

fm.x/ 2 L2.R/:

Assume also that Km.x/ W R! R, such that Km.x/ 2 L1.R/ and



� d2

dx2

� 1
2�s

Km.x/ 2 L2.R/:

Moreover,

K2 WD
NX

mD1
kKm.x/k2L1.R/ > 0
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and

Q2 WD
NX

mD1

�
��
�
�
�



� d2

dx2

� 1
2�s

Km.x/

�
��
�
�
�

2

L2.R/

> 0:

Let us choose the space dimension d D 1, which is related to the solvability
conditions for the linear Poisson type problem (34) stated in Lemma 4.1 below. We
use the Sobolev spaces for 0 < s � 1, namely

H2s.R/ WD
�
�.x/ W R! R j �.x/ 2 L2.R/;



� d2

dx2

�s

� 2 L2.R/

	

equipped with the norm

k�k2H2s.R/ WD k�k2L2.R/ C
�
��
�



� d2

dx2

�s

�

�
��
�

2

L2.R/

: (4)

For a vector function

u.x/ D .u1.x/; u2.x/; : : : ; uN.x//T

we will use the norm

kuk2H1.R;RN /
WD kuk2L2.R;RN /

C
NX

mD1

��
�
�
dum
dx

��
�
�

2

L2.R/

; (5)

where

kuk2L2.R;RN /
WD

NX

mD1
kumk2L2.R/:

By means of the standard Sobolev inequality in one dimension (see e.g. Section 8.5
of [11]) we have

k�kL1.R/ � 1p
2
k�kH1.R/: (6)

When all the nonnegative parameters "m vanish, we obtain the linear Poisson type
equations



� d2

dx2

�s

um D fm.x/; 1 � m � N: (7)
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By virtue of Lemma 4.1 below along with Assumption 1.1 each equation (7) has a
unique solution

u0;m.x/ 2 H2s.R/; 0 < s <
1

4
;

such that no orthogonality conditions are required. By means of Lemma 4.1, when
1
4
� s < 1, certain orthogonality relations (36) and (37) are necessary to be able to

solve problem (7) in H2s.R/. By means of Assumption 1.1, since



� d2

dx2

� 1
2

u0;m.x/ D


� d2

dx2

� 1
2�s

fm.x/ 2 L2.R/;

we get for the unique solution of linear problem (7) that u0;m.x/ 2 H1.R/, such that

u0.x/ WD .u0;1.x/; u0;2.x/; : : : ; u0;N.x//T 2 H1.R;RN/:

We seek the resulting solution of nonlinear system of equations (2) as

u.x/ D u0.x/C up.x/; (8)

where

up.x/ WD .up;1.x/; up;2.x/; : : : ; up;N.x//T :

Clearly, we arrive at the perturbative system of equations



� d2

dx2

�s

up;m D "m
Z 1

�1
Km.x � y/gm.u0.y/C up.y//dy; 0 < s <

1

4
; (9)

where 1 � m � N. Let us introduce a closed ball in the Sobolev space

B� WD fu.x/ 2 H1.R;RN/ j kukH1.R;RN / � �g; 0 < � � 1: (10)

We seek the solution of problem (9) as the fixed point of the auxiliary nonlinear
system of equations



� d2

dx2

�s

um D "m
Z 1

�1
Km.x � y/gm.u0.y/C v.y//dy; 0 < s <

1

4
; (11)
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with 1 � m � N in ball (10). For a given vector function v.y/ this is a system
of equations with respect to u.x/. The left side of (11) involves the non Fredholm
operator



� d2

dx2

�s

W H2s.R/! L2.R/:

Its essential spectrum fills the nonnegative semi-axis Œ0;C1/. Therefore, such
operator has no bounded inverse. The similar situation appeared in articles [23] and
[27] but as distinct from the present situation, the equations studied there required
orthogonality conditions. The fixed point technique was used in [21] to estimate
the perturbation to the standing solitary wave of the Nonlinear Schrödinger (NLS)
equation when either the external potential or the nonlinear term in the NLS were
perturbed but the Schrödinger operator involved in the nonlinear equation there had
the Fredholm property (see Assumption 1 of [21], also [8]). We define the closed
ball in the space of N dimensions as

I WD
�
z 2 R

N j jzj � 1p
2
.ku0kH1.R;RN / C 1/

	
(12)

along with the closed ball in the space of C2.I;RN/ functions, namely

DM WD fg.z/ WD .g1.z/; g2.z/; : : : ; gN.z// 2 C2.I;RN/ j kgkC2.I;RN / � Mg; (13)

whereM > 0. Here the norms

kgkC2.I;RN / WD
NX

mD1
kgmkC2.I/; (14)

kgmkC2.I/ WD kgmkC.I/ C
NX

nD1

�
�
�
�
@gm
@zn

�
�
�
�
C.I/

C
NX

n;lD1

�
�
�
�
@2gm
@zn@zl

�
�
�
�
C.I/

; (15)

where kgmkC.I/ WD maxz2Ijgm.z/j. Let us make the following assumption on the
nonlinear part of system (2).

Assumption 1.2 Let 1 � m � N. Assume that gm.z/ W RN ! R, such that gm.0/ D
0 and rgm.0/ D 0. It is also assumed that g.z/ 2 DM and it does not vanish
identically in the ball I.

Let us explain why we assume here that rgm.0/ D 0; 1 � m � N. If
@gm
@zk

< 0,

for 1 � k � N, then the essential spectrum of the corresponding linearized operator
is in the left-half plane. Such operator satisfies the Fredholm property, and the

standard methods of nonlinear analysis are applicable here. When
@gm
@zk
	 0, our
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operator fails to satisfy the Fredholm property and the goal is to establish the
existence of solutions in the situation when usual techniques are not applicable. The
approach developed in this work can be used when rgm.0/ D 0; 1 � m � N but

not for
@gm
@zk

> 0. Therefore we impose the appropriate condition on the nonlinear

terms.
We introduce the operator Tg, such that u D Tgv, where u is a solution of

system (11). Our first main proposition is as follows.

Theorem 1.3 Let Assumptions 1.1 and 1.2 hold. Then for every � 2 .0; 1� there
exists "� > 0, such that system (11) defines the map Tg W B� ! B�, which is a strict
contraction for all 0 < " < "�. The unique fixed point up.x/ of this map Tg is the
only solution of system (9) in B�.

Evidently, the resulting solution u.x/ of system (2) will be nontrivial because
the source terms fm.x/ are nontrivial for some 1 � m � N and all gm.0/ D 0 as
assumed. We make use of the following trivial lemma.

Lemma 1.4 For R 2 .0;C1/ consider the function

'.R/ WD ˛R1�4s C ˇ

R4s
; 0 < s <

1

4
; ˛; ˇ > 0:

It achieves the minimal value at R� WD 4ˇs

˛.1 � 4s/ , which is given by

'.R�/ D .1 � 4s/4s�1
.4s/4s

˛4sˇ1�4s:

Our second main result is about the continuity of the fixed point of the map Tg
which existence was proved in Theorem 1.3 above with respect to the nonlinear
vector function g.

Theorem 1.5 Let j D 1; 2, the assumptions of Theorem 1.3 hold, such that up;j.x/
is the unique fixed point of the map Tgj W B� ! B�, which is a strict contraction for
all 0 < " < "�

j and ı WD min."�
1 ; "

�
2 /. Then for all 0 < " < ı the inequality

kup;1 � up;2kH1.R;RN / � Ckg1 � g2kC2.I;RN / (16)

holds, where C > 0 is a constant.

We proceed to the proof of our first main proposition.
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2 The Existence of the Perturbed Solution
(Proof of Theorem 1.3)

We choose arbitrarily v.x/ 2 B� and designate the term involved in the integral
expression in the right side of system (11) as

Gm.x/ WD gm.u0.x/C v.x//; 1 � m � N:

Let us use the standard Fourier transform

b�.p/ WD 1p
2�

Z 1

�1
�.x/e�ipxdx: (17)

Obviously, we have the inequality

kb�.p/kL1.R/ � 1p
2�
k�.x/kL1.R/: (18)

Let us apply (17) to both sides of system (11) and obtain

bum.p/ D "m
p
2�
bKm.p/bGm.p/

jpj2s ; 1 � m � N:

Thus we express the norm as

kumk2L2.R/ D 2�"2m
Z 1

�1
jbKm.p/j2jbGm.p/j2

jpj4s dp; 1 � m � N: (19)

As distinct from articles [23] and [27] involving the standard Laplace operator in
the diffusion term, here we do not try to control the norm

��
�
�
�

bKm.p/

jpj2s
��
�
�
�
L1.R/

:

Instead, we estimate the right side of (19) using the analog of inequality (18) applied
to functionsKm and Gm with R > 0 as

2�"2m

"Z

jpj�R

jbKm.p/j2jbGm.p/j2
jpj4s dpC

Z

jpj>R
jbKm.p/j2jbGm.p/j2

jpj4s dp

#

�

� "2mkKmk2L1.R/
�
1

�
kGm.x/k2L1.R/

R1�4s

1 � 4s C
1

R4s
kGm.x/k2L2.R/

	
: (20)
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Using norm definition (5) along with the triangle inequality and due to the fact that
v.x/ 2 B�, we easily obtain

ku0 C vkL2.R;RN / � ku0kH1.R;RN / C 1:

Sobolev inequality (6) implies that

ju0 C vj � 1p
2
.ku0kH1.R;RN / C 1/:

Let the dot denote the scalar product of two vectors in RN . Formula

Gm.x/ D
Z 1

0

rgm.t.u0.x/C v.x///:.u0.x/C v.x//dt; 1 � m � N

with the ball I defined in (12) yields

jGm.x/j � supz2Ijrgm.z/jju0.x/C v.x/j � Mju0.x/C v.x/j:

Thus

kGm.x/kL2.R/ � Mku0 C vkL2.R;RN / � M.ku0kH1.R;RN / C 1/:

Apparently, for t 2 Œ0; 1� and 1 � m; j � N, we have

@gm
@zj

.t.u0.x/C v.x/// D
Z t

0

r @gm
@zj

.�.u0.x/C v.x///:.u0.x/C v.x//d�:

This implies

ˇ
ˇ̌
ˇ
@gm
@zj

.t.u0.x/C v.x///
ˇ
ˇ̌
ˇ � supz2I

ˇ
ˇ̌
ˇr
@gm
@zj

ˇ
ˇ̌
ˇ ju0.x/C v.x/j �

�
NX

nD1

�
�
�
�
@2gm
@zn@zj

�
�
�
�
C.I/

ju0.x/C v.x/j:

Therefore,

jGm.x/j � ju0.x/C v.x/j
NX

n;jD1

�
�
�
�
@2gm
@zn@zj

�
�
�
�
C.I/

ju0;j.x/C vj.x/j � Mju0.x/C v.x/j2:

Hence,

kGm.x/kL1.R/ � Mku0 C vk2L2.R;RN /
� M.ku0kH1.R;RN / C 1/2: (21)
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This enables us to obtain the upper bound for the right side of (20) as

"2mM
2kKmk2L1.R/.ku0kH1.R;RN / C 1/2

(
.ku0kH1.R;RN / C 1/2R1�4s

�.1 � 4s/ C 1

R4s

)

;

with R 2 .0;C1/. Lemma 1.4 gives us the minimal value of the expression above.
Thus,

kumk2L2.R/ � "2kKmk2L1.R/.ku0kH1.R;RN / C 1/2C8s M2

.1 � 4s/.4�s/4s ;

such that

kuk2L2.R;RN /
� "2K2.ku0kH1.R;RN / C 1/2C8s M2

.1 � 4s/.4�s/4s : (22)

Clearly, (11) yields



� d2

dx2

� 1
2

um.x/ D "m


� d2

dx2

� 1
2�s Z 1

�1
Km.x � y/Gm.y/dy; 1 � m � N:

By means of the analog of inequality (18) applied to function Gm along with (21)
we obtain

�
�
�
�
dum
dx

�
�
�
�

2

L2.R/

� "2mkGmk2L1.R/

�
�
�
�
�
�



� d2

dx2

� 1
2�s

Km

�
�
�
�
�
�

2

L2.R/

�

� "2M2.ku0kH1.R;RN / C 1/4
��
�
�
�
�



� d2

dx2

� 1
2�s

Km

��
�
�
�
�

2

L2.R/

;

such that

NX

mD1

�
��
�
dum
dx

�
��
�

2

L2.R/

� "2M2.ku0kH1.R;RN / C 1/4Q2: (23)

Therefore, by virtue of the definition of the norm (5) along with inequalities (22)
and (23) we derive the estimate from above for kukH1.R;RN / as

"M.ku0kH1.R;RN / C 1/2
"
K2.ku0kH1.R;RN / C 1/8s�2

.1 � 4s/.4�s/4s C Q2
# 1
2

� � (24)
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for all " > 0 sufficiently small. Hence, u.x/ 2 B� as well. If for a certain v.x/ 2 B�
there exist two solutions u1;2.x/ 2 B� of system (11), their difference w.x/ WD
u1.x/� u2.x/ 2 L2.R;RN/ solves



� d2

dx2

�s

wm D 0; 1 � m � N:

Because the operator



� d2

dx2

�s

considered on the whole real line does not possess

nontrivial square integrable zero modes, w.x/ vanishes a.e. on R. Thus, system (11)
defines a map Tg W B� ! B� for all " > 0 small enough. Our goal is to establish that
this map is a strict contraction. Let us choose arbitrarily v1;2.x/ 2 B�. The argument
above implies u1;2 WD Tgv1;2 2 B� as well. By means of (11) we have for 1 � m � N



� d2

dx2

�s

u1;m D "m
Z 1

�1
Km.x � y/gm.u0.y/C v1.y//dy; (25)



� d2

dx2

�s

u2;m D "m
Z 1

�1
Km.x � y/gm.u0.y/C v2.y//dy; (26)

0 < s <
1

4
. We introduce

G1;m.x/ WD gm.u0.x/C v1.x//; G2;m.x/ WD gm.u0.x/C v2.x//; 1 � m � N

and apply the standard Fourier transform (17) to both sides of systems (25) and (26).
This yields

bu1;m.p/ D "m
p
2�
bKm.p/bG1;m.p/
jpj2s ; bu2;m.p/ D "m

p
2�
bKm.p/bG2;m.p/
jpj2s :

Obviously,

ku1;m � u2;mk2L2.R/ D "2m2�
Z 1

�1
jbKm.p/j2jbG1;m.p/�bG2;m.p/j2

jpj4s dp:

Evidently, it can be estimated from above by virtue of inequality (18) by

"2kKmk2L1.R/
(
1

�
kG1;m.x/� G2;m.x/k2L1.R/

R1�4s

1 � 4s C
kG1;m.x/ �G2;m.x/k2L2.R/

R4s

)

;
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with R 2 .0;C1/. We will make use of the identity for 1 � m � N

G1;m.x/ �G2;m.x/ D
Z 1

0

rgm.u0.x/C tv1.x/C .1 � t/v2.x//:.v1.x/� v2.x//dt:

Clearly, for t 2 Œ0; 1�

kv2.x/C t.v1.x/� v2.x//kH1.R;RN / � tkv1.x/kH1.R;RN / C .1 � t/kv2.x/kH1.R;RN / �
� �;

such that v2.x/C t.v1.x/� v2.x// 2 B�. Hence,

jG1;m.x/� G2;m.x/j � supz2Ijrgm.z/jjv1.x/� v2.x/j � Mjv1.x/ � v2.x/j:

This yields

kG1;m.x/ �G2;m.x/kL2.R/ � Mkv1 � v2kL2.R;RN / � Mkv1 � v2kH1.R;RN /:

Evidently, for 1 � m; j � N, we can express
@gm
@zj

.u0.x/C tv1.x/C .1� t/v2.x// as

Z 1

0

r @gm
@zj

.�Œu0.x/C tv1.x/C .1 � t/v2.x/�/:Œu0.x/C tv1.x/C .1 � t/v2.x/�d�;

such that for t 2 Œ0; 1�
ˇ
ˇ̌
ˇ
@gm
@zj

.u0.x/C tv1.x/C .1 � t/v2.x//

ˇ
ˇ̌
ˇ �

�
NX

nD1

�
�
�
�
@2gm
@zn@zj

�
�
�
�
C.I/

.ju0.x/j C tjv1.x/j C .1 � t/jv2.x/j/:

We obtain the upper bound for G1;m.x/� G2;m.x/ in the absolute value as

Mjv1.x/ � v2.x/j


ju0.x/j C 1

2
jv1.x/j C 1

2
jv2.x/j

�
:

By means of the Schwarz inequality we arrive at the estimate from above for the
norm kG1;m.x/� G2;m.x/kL1.R/ as

Mkv1 � v2kL2.R;RN /



ku0kL2.R;RN / C

1

2
kv1kL2.R;RN / C

1

2
kv2kL2.R;RN /

�
�

� Mkv1 � v2kH1.R;RN /.ku0kH1.R;RN / C 1/:
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Thus we arrive at the upper bound for the norm ku1.x/ � u2.x/k2L2.R;RN /
given by

"2K2M2kv1 � v2k2H1.R;RN /

�
1

�
.ku0kH1.R;RN / C 1/2 R

1�4s

1 � 4s C
1

R4s

	
:

By means of Lemma 1.4 we minimize the expression above over R 2 .0;C1/ to
obtain the estimate from above for ku1.x/ � u2.x/k2L2.R;RN /

as

"2K2M2kv1 � v2k2H1.R;RN /

.ku0kH1.R;RN / C 1/8s
.1 � 4s/.4�s/4s : (27)

By virtue of formulas (25) and (26), for 1 � m � N we have



� d2

dx2

� 1
2

.u1;m � u2;m/ D "m


� d2

dx2

� 1
2�s Z 1

�1
Km.x � y/ŒG1;m.y/� G2;m.y/�dy:

Inequalities (18) and (2) yield

�
�
�
�
d

dx
.u1;m � u2;m/

�
�
�
�

2

L2.R/

� "2kG1;m � G2;mk2L1.R/

�
�
�
�
��



� d2

dx2

� 1
2�s

Km

�
�
�
�
��

2

L2.R/

�

� "2M2kv1 � v2k2H1.R;RN /
.ku0kH1.R;RN / C 1/2

��
�
�
�
�



� d2

dx2

� 1
2�s

Km

��
�
�
�
�

2

L2.R/

;

such that

NX

mD1

�
��
�
d

dx
.u1;m � u2;m/

�
��
�

2

L2.R/

� "2M2kv1 � v2k2H1.R;RN /
.ku0kH1.R;RN / C 1/2Q2:

(28)

By virtue of (27) and (28) the norm ku1 � u2kH1.R;RN / can be estimated from above
by the expression

"M.ku0kH1.R;RN / C 1/
(
K2.ku0kH1.R;RN / C 1/8s�2

.1� 4s/.4�s/4s C Q2
) 1

2

kv1 � v2kH1.R;RN /:

(29)

This yields that the map Tg W B� ! B� defined by system (11) is a strict contraction
for all values of " > 0 small enough. Its unique fixed point up.x/ is the only
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solution of system (9) in the ball B�. The resulting u.x/ 2 H1.R;RN/ given by (8)
is a solution of system (2). Note that by means of (24) up.x/ tends to zero in the
H1.R;RN/ norm as "! 0.

�
Then we turn our attention to the proof of the second main statement of our

article.

3 The Continuity of the Fixed Point of the Map Tg

(Proof of Theorem 1.5)

Obviously, for all 0 < " < ı we have

up;1 D Tg1up;1; up;2 D Tg2up;2:

Hence

up;1 � up;2 D Tg1up;1 � Tg1up;2 C Tg1up;2 � Tg2up;2:

Therefore,

kup;1 � up;2kH1.R;RN / � kTg1up;1 � Tg1up;2kH1.R;RN / C kTg1up;2 � Tg2up;2kH1.R;RN /:

Inequality (29) yields

kTg1up;1 � Tg1up;2kH1.R;RN / � "�kup;1 � up;2kH1.R;RN /;

with "� < 1 since the map Tg1 W B� ! B� under our assumptions is a strict
contraction. Here the positive constant

� WD M.ku0kH1.R;RN / C 1/
(
K2.ku0kH1.R;RN / C 1/8s�2

.1� 4s/.4�s/4s C Q2
) 1

2

:

Hence, we obtain

.1� "�/kup;1 � up;2kH1.R;RN / � kTg1up;2 � Tg2up;2kH1.R;RN /: (30)

Clearly, for our fixed point Tg2up;2 D up;2. Let us denote 
.x/ WD Tg1up;2. For 1 �
m � N, we arrive at



� d2

dx2

�s


m.x/ D "m
Z 1

�1
Km.x � y/g1;m.u0.y/C up;2.y//dy; (31)



� d2

dx2

�s

up;2;m.x/ D "m
Z 1

�1
Km.x � y/g2;m.u0.y/C up;2.y//dy; (32)
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where 0 < s <
1

4
. Let us designate here

G1;2;m.x/ WD g1;m.u0.x/C up;2.x//; G2;2;m.x/ WD g2;m.u0.x/C up;2.x//:

We apply the standard Fourier transform (17) to both sides of (31) and (32). This
yields

b
m.p/ D "m
p
2�
bKm.p/bG1;2;m.p/

jpj2s ; bup;2;m.p/ D "m
p
2�
bKm.p/bG2;2;m.p/

jpj2s :

Evidently,

k
m.x/ � up;2;m.x/k2L2.R/ D "2m2�
Z 1

�1
jbKm.p/j2jbG1;2;m.p/�bG2;2;m.p/j2

jpj4s dp:

Apparently, it can be bounded from above by means of (18) by

"2kKmk2L1.R/
�
1

�
kG1;2;m � G2;2;mk2L1.R/

R1�4s

1 � 4s C kG1;2;m � G2;2;mk2L2.R/
1

R4s

	
;

with R 2 .0;C1/. We use the formula

G1;2;m.x/ �G2;2;m.x/ D
Z 1

0

rŒg1;m � g2;m�.t.u0.x/C up;2.x///:.u0.x/C up;2.x//dt;

such that

jG1;2;m.x/� G2;2;m.x/j � kg1;m � g2;mkC2.I/ju0.x/C up;2.x/j:

Therefore,

kG1;2;m � G2;2;mkL2.R/ � kg1;m � g2;mkC2.I/ku0 C up;2kL2.R;RN / �
� kg1;m � g2;mkC2.I/.ku0kH1.R;RN / C 1/:

Let us apply another useful representation formula with 1 � j � N and t 2 Œ0; 1�,
namely

@

@zj
.g1;m � g2;m/.t.u0.x/C up;2.x/// D

D
Z t

0

r
�
@

@zj
.g1;m � g2;m/

�
.�.u0.x/C up;2.x///:.u0.x/C up;2.x//d�:
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Hence
ˇ
ˇ̌
ˇ
@

@zj
.g1;m � g2;m/.t.u0.x/C up;2.x///

ˇ
ˇ̌
ˇ �

�
NX

nD1

�
�
��
@2.g1;m � g2;m/

@zn@zj

�
�
��
C.I/

ju0.x/C up;2.x/j;

such that

jG1;2;m.x/ �G2;2;m.x/j � kg1;m � g2;mkC2.I/ju0.x/C up;2.x/j2:

Thus,

kG1;2;m � G2;2;mkL1.R/ � kg1;m � g2;mkC2.I/ku0 C up;2k2L2.R;RN /
�

� kg1;m � g2;mkC2.I/.ku0kH1.R;RN / C 1/2: (33)

This enables us to derive the upper bound for the norm k
.x/ � up;2.x/k2L2.R;RN /
as

"2K2.ku0kH1.R;RN / C 1/2kg1 � g2k2C2.I;RN /

"
.ku0kH1.R;RN / C 1/2R1�4s

�.1 � 4s/ C 1

R4s

#

:

This expression can be trivially minimized over R 2 .0;C1/ by virtue of
Lemma 1.4. We obtain the inequality

k
.x/ � up;2.x/k2L2.R;RN /
� "2K2.ku0kH1.R;RN / C 1/2C8s

kg1 � g2k2C2.I;RN /

.1 � 4s/.4�s/4s :

Formulas (31) and (32) with 1 � m � N yield



� d2

dx2

� 1
2


m.x/ D "m


� d2

dx2

� 1
2�s Z 1

�1
Km.x � y/G1;2;m.y/dy;



� d2

dx2

� 1
2

up;2;m.x/ D "m


� d2

dx2

� 1
2�s Z 1

�1
Km.x � y/G2;2;m.y/dy;
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such that by means of (18) and (33) the norm

��
�
�
d

dx

�

m.x/� up;2;m.x/

�
��
�
�

2

L2.R/

can be

estimated from above by

"2kG1;2;m � G2;2;mk2L1.R/

�
�
�
�
��



� d2

dx2

� 1
2�s

Km

�
�
�
�
��

2

L2.R/

�

� "2kg1 � g2k2C2.I;RN /
.ku0kH1.R;RN / C 1/4

�
�
�
�
�
�



� d2

dx2

� 1
2�s

Km

�
�
�
�
�
�

2

L2.R/

:

Then

NX

mD1

��
�
�
d

dx

�

m.x/ � up;2;m.x/

�
��
�
�

2

L2.R/

� "2kg1 � g2k2C2.I;RN /
.ku0kH1.R;RN / C 1/4Q2:

Therefore, we arrive at k
.x/ � up;2.x/kH1.R;RN / �

� "kg1 � g2kC2.I;RN /.ku0kH1.R;RN / C 1/2
"
K2.ku0kH1.R;RN / C 1/8s�2

.1 � 4s/.4�s/4s C Q2
# 1
2

:

By virtue of inequality (30), the norm kup;1 � up;2kH1.R;RN / can be bounded from
above by

"

1 � "� .ku0kH1.R;RN / C 1/2
"
K2.ku0kH1.R;RN / C 1/8s�2

.1 � 4s/.4�s/4s C Q2
# 1
2

kg1 � g2kC2.I;RN /;

which completes the proof of the theorem. �

4 Auxiliary Results

Below we state the solvability conditions proven easily in [29] by applying the
standard Fourier transform (17) to the linear Poisson type equation with a square
integrable right side



� d2

dx2

�s

� D f .x/; x 2 R; 0 < s < 1: (34)
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We denote the inner product as

. f .x/; g.x//L2.R/ WD
Z 1

�1
f .x/Ng.x/dx; (35)

with a slight abuse of notations when the functions involved in (35) are not square
integrable, like for instance the one involved in orthogonality condition (36) of
Lemma 1.4 below. Indeed, if f .x/ 2 L1.R/ and g.x/ is bounded, then the integral in
the right side of (35) makes sense. The left side of relation (37) is well defined as
well under the stated conditions. We have the following technical proposition.

Lemma 4.1 Let f .x/ W R! R and f .x/ 2 L2.R/.

1. When 0 < s < 1
4
and in addition f .x/ 2 L1.R/, equation (34) admits a unique

solution �.x/ 2 H2s.R/.
2. When 1

4
� s < 3

4
and additionally jxjf .x/ 2 L1.R/, problem (34) possesses a

unique solution �.x/ 2 H2s.R/ if and only if the orthogonality relation

. f .x/; 1/L2.R/ D 0 (36)

holds.
3. When 3

4
� s < 1 and in addition x2f .x/ 2 L1.R/, equation (34) has a unique

solution �.x/ 2 H2s.R/ if and only if orthogonality conditions (36) and

. f .x/; x/L2.R/ D 0 (37)

hold.

Note that for the lower values of the power of the negative second derivative

operator 0 < s <
1

4
under the conditions stated above no orthogonality relations are

required to solve the linear Poisson type equation (34) in H2s.R/.
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Visualizing Discrete Complex-Valued
Time-Frequency Representations

Yusong Yan and Hongmei Zhu

Abstract Time-frequency analysis techniques are effective in detecting local signal
structure and have been applied successfully in a wide range of fields. Different
time-frequency analysis transforms yield different time-frequency spectra. How-
ever, visualizing a complex-valued time-frequency spectrum is not a trivial task as
it requires graphing in a four-dimensional space: two coordinate variables time and
frequency and the real and imaginary parts of the spectrum. The most common
way to graph such a complex time-frequency spectrum is to plot the amplitude
or magnitude spectrum and the phase spectrum separately. Such visualization may
cause difficulty in understanding combined information of amplitude and phase in
time-frequency domain. In this paper, we propose a newway to visualize a complex-
valued time-frequency spectrum in one graph. In particular, we will describe
this technique in the context of the discrete generalized Stockwell transforms for
simplicity and practical usage. We show that the proposed visualization tool may
facilitate better understanding of local signal behavior and become a useful tool for
non-stationary signal analysis and processing applications.
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1 Introduction

Time-frequency analysis offers a variety of techniques that map a one-dimensional
temporal signal into a function of both time and frequency variables. Such a function
is called a time-frequency representation or spectrum describing the temporal vari-
ation of frequency content within the signal. Time-frequency analysis techniques
are effective in detecting local signal structure and have been applied successfully
in a wide range of fields including geophysics, speech recognition, music analysis,
oceanology and bio-medicine. Comprehensive reviews on the related theory and
applications can be found in [1–3].

Different time-frequency analysis transforms yield different time-frequency
spectra. Here we are interested in those whose spectra are complex-valued functions
of two real-valued variables time and frequency.Visualizing a complex-valued time-
frequency spectrum is not a trivial task as it requires graphing in a four-dimensional
space: two coordinate variables time and frequency and the real and imaginary parts
of the spectrum.

The most common way to graph such a complex time-frequency spectrum is
to plot the amplitude or magnitude spectrum and the phase spectrum separately.
Interpretation of amplitude spectrum or square of amplitude spectrum as an energy
distribution is visually straightforward and can reveal certain important local
frequency characteristics. In many published work in time-frequency analysis, only
the amplitude spectrum is investigatedwhile the phase spectrum is discarded.Mean-
while phase spectrum also provides a different and stable description on local signal
behaviors such as signal offset and image edge localization. Phase information
contributes significantly in many applications including speech recognition [4],
music analysis [5], and neuroscience [6, 7].

Though phase spectrum of a time-frequency representation is at least as impor-
tant as its amplitude spectrum, it has not been studied as extensively as the latter. It
is partially because it is more complicated to interpret the phase information due to
periodicity and non-linearity of phase spectrum.

Motivated by an interesting body of work on visualizing complex functions [8–
16], we propose a new way to picture a complex-valued time-frequency spectrum
in one graph by mapping amplitude spectrum to gray scale intensity and mapping
phase spectrum to hue on saturated color wheel. There are early uses of color to
visualize complex functions including complex Fourier spectrum of a given signal.
For example, Cowtan, whose work is related to X-ray crystallography, utilizes
jointly phase and amplitude representations to visualize “Fourier Duck” [9] and
“Fourier Cat” in his picture book of Fourier transforms [10]. However, it is not
yet well explored in complex-valued time-frequency spectra. Hence, in this paper,
we explore the use of Hue/Luminance scheme to visualize complex-valued time-
frequency spectrum. Note that we choose a linear brightness/luminance scheme
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with black for zero and white for the maximum amplitude to represent amplitude,
similar to that for complex numbers described by Farris [11]. It can provide us
a straight and simple interpretation of the amplitude while the luminance system
for domain coloring is repeated for every integer power of 2. Our phase coloring
scheme assembles phase plots [8]. It requires a one-dimensional color space instead
of a two-dimensional color space as needed by the domain coloring [14]. We will
show that the proposed visualization tool may facilitate better insight about local
signal behavior and become a useful tool for non-stationary signal analysis and
processing applications. In Sect. 3, we also theoretically investigate phase patterns
often appeared in the discrete complex time-frequency representation given by the
generalized discrete Stockwell transform (ST, [17–19]) in numerical calculation.
Understanding these patterns can help us properly interpreting the phase spectrum.
More examples are given in Sect. 4. Further discussions and conclusion are provided
in Sect. 5.

To carry out the discussion efficiently, we focus only on the discrete generalized
Stockwell transform [19]. Note that the technique and analysi are straightforwardly
applicable to the other commonly used complex value time-frequency techniques
that generalize the Fourier transforms, such as the short time Fourier transform
(STFT, [20]), Morlet wavelet transform [21] and the conventional ST. They are all
based on localized Fourier analysis; the STFT has a fixed time-frequency resolution
while the ST a frequency-dependent resolution in time-frequency domain. There is
only a phase difference between the ST and the Morlet wavelet transform [27]. They
can be expressed in a common generalized Stockwell framework [7, 22–31].

2 Visual Encoding of Amplitude and Phase Spectra

Mathematically the continuous ST of a given signal g.t/ is defined as:

S.�; v/ D
Z C1

�1
g.t/w�.v/.� � t; v/e�2� itvdt (1)

Here, � is frequency variable. The window function w�.�/.t; �/ is localized at
time � , where �.�/ controls the window width and is a function of the frequency
variable. When �.�/ is a constant, Eq. 1 gives the STFT; when �.�/ is inversely
proportional to the frequency variable, it is the original form of the ST [18]. Without
loss of generality, we replace the notation w�.�/.t; �/ with w.t; �/ to simplify our
notation. Note that choices of window functions can be infinite; some popular
ones are Gaussian, rectangular, Hanning and Hamming windows. Our theoretical
discussion is not limited to a particular window function; but we use Gaussian
window functions in all our numerical illustrations.
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We rewrite the complex valued time-frequency spectrum S.�; �/ as the following

S.�; �/ D jS.�; �/je�i�.�;�/ (2)

where jS.�; �/j is the amplitude spectrum and e�i�.�;�/ is the phase spectrum. The
Fourier spectrum G.�/ of the signal g.t/ can be easily recovered by integrating
S.�; �/ along time index � , i.e.,

G.�/ D
Z 1

�1
S.�; �/d�: (3)

which shows the absolutely referenced phase property.
Next we will visualize such a complex-valued time-frequency spectrum to

capture both amplitude and phase spectra in a single picture using a hue/luminance
scheme. It is a slightly different version of this visualization technique used to visual
complex Fourier spectrum [11] and complex functions [8]. Given a complex valued
time-frequency spectrum S.�; �/ D jS.�; �/jei�.�;�/, the essential idea of our visual
encoding is to map the amplitude spectrum jS.�; �/j to gray scale intensity (i.e.,
brightness) and the phase ei�.�;�/ to hue (i.e., color).

More specifically, we linearly map jS.�; �/j to a gray scale of Œ0; 1� with black 0
corresponding to jS.�; �/j D 0 and white 1 to maxjS.�; �/j as illustrated in Fig. 1a.
Note that if the amplitude varies over a wide range, c1log.c2jS.�; �/j C 1/ can be
considered in plotting. Here, values of the constants c1; c2 > 1 or c1; c2 < 1 can be
selected to adjust the intensity gradient in the display in order to magnify or suppress
subtle details, respectively.

The mapping between phase and hue is bijective. In fact, a phase value ei�.�;�/

can be calculated by

ei�.�;�/ D S.�; �/=jS.�; �/j D Re.ei�.�;�//C iIm.ei�.�;�// (4)

Fig. 1 Indicators of our reference coloring schemes. (a) Gray value indicator of magnitude time-
frequency spectrum jS.�; �/jwith black being 0 andwhite beingmaxjS.�; �/j; (b) Continuous color
gradient indicator of the phase time-frequency spectrum ei�.�;�/, the color of which is determined
by the color positioned at.Re.ei�.�;�//; Im.ei�.�;�/// on the color wheel; (c) Combined indicator of
gray value and hue encoded time-frequency spectrum S.�; �/ D jS.�; �/jei�.�;�/
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and is a point .Re.ei�.�;�//; Im.ei�.�;�/// on a unit circle. Figure 1b shows how ei�.�;�/

can be naturally represented by a color on the continuous color wheel circle. Note
that we plot the phase ei�.�;�/ instead of its argument �.�; �/. This is because
argument �.�; �/ is unique up to an additive number of 2� and restricted to an
interval, sayŒ0; 2�/. It causes a big value jump for an argument approaching0�. This
phenomenon does not exist when plotting the phase ei�.�;�/ that is a point rotating
along the color unit circle. This is because ei�.�;�/ does not distinguish between a
multiplication of 2� in its value and is continuous.

Figure 1c provides a reference for visualizing the combined effect of plotting the
intensity-encoded amplitude and color-encoded phase. For every point .�; �/ in the
time-frequency domain, we assign

1. a gray intensity value to jS.�; �/j;
2. a color positioned at.Re.ei�.�;�//; Im.ei�.�;�/// on the color wheel to ei�.�;�/.

This results in the visual encoded time-frequency spectrum in one graph.

3 Interpreting Color-Encoded Phase Spectrum for a Single
Complex Sinusoid

To properly understand the technique, we first examine the visual encoded time-
frequency spectrum for a complex sinusoid g.t/ D e2� if0t of a constant frequency f0.
To simplify the notation and discussions, we assume that the given discrete signal
gŒn� D g.n4t/ is infinitely sampled at a sampling interval 4t, where �1 < n <
C1, with loss of generality. If a given signal gŒn�, where n D 0; 1; : : : ;L � 1, is
finitely sampled, we can periodically extend the discrete signal to infinity.

Given a discrete signal gŒn�.�1 < n < C1/, its time-frequency spectrum is
calculated using the discrete ST [19].

SŒl;m� D
C1X

nD�1
gŒn� � e�2� i� nmN � wŒl � n;m� (5)

where the time index�1 < l < C1 and the frequency indexm D 0; 1; : : : ;N�1.
Note that N, the total number of uniformly sampled points in the frequency domain,
is usually determined by the number of points involved in the fast Fourier transform
(FFT) that is used to compute the time-frequency spectrum. The equivalent formula
of Eq. (5) in the Fourier domain is given by

SŒl;m� D FT�1.G. f C m/Wm. f // (6)
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where G. f / and Wm. f / are the Fourier transform of the signal and the window
function

G. f / D
C1X

nD�1
e�2� if �n � gŒn�

and

Wm. f / D
C1X

nD�1
e�2� if �n � wŒn;m�

respectively. When the signal is finite-length and the localization window is
Gaussian, Eq. (6) coincides with the conventional ST [17, 18].

SŒl;m� D
N�1X

nD0
GŒn;m� � e�2�n2=m2 � e2� inl=N (7)

Figure 2a shows an example of a complex sinusoid with f0 D 0:15Hz and
t 2 Œ0 s; 1023 s�. The sampling rate is 1Hz. Figure 2b is the amplitude jS.�; �/j
of the Stockwell spectrum with a Gaussian window, showing that one constant

Fig. 2 (a) An example of a complex sinusoid g.t/ with f0 D 0:15Hz and tŒ0 s; 1023 s�. The
sampling rate is 1Hz; (b) the amplitude jS.�; �/j of its time-frequency spectrum; (c) the color-
encoded phase ei�.�;�/ of its time-frequency spectrum; (d) the combined color and intensity encoded
time-frequency spectrum
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Fig. 3 The zoomed version of the visual encoded time-frequency spectrum for a complex sinusoid
g.t/ D e2� if0t of a constant frequency f0 D 0:15Hz, the phase of which exhibits three strong
patterns as pointed by the arrows in blue, red and green

frequency around 0:15Hz throughout the time. Figure 2c shows the color-encoded
phase ei�.�;�/ of the Stockwell spectrum. Figure 2d, the combination of Fig. 2b, c,
is the color and intensity encoded Stockwell spectrum, indicating how signal
energy distributes and how the argument evolves in the time-frequency domain
simultaneously.

The luminance mapping of the amplitude spectrum is easy to understand, but
the phase spectrum displayed using the proposed visualizing technique is hard to
interpret directly. In particular, as shown in Fig. 3, a zoomed-in version of Fig. 2d,
we can observe that the level curves (i.e. contours) of the phase spectrum exhibit
strong patterns: (1) diamond shapes in continuous color gradients (i.e. a smooth
color transition) occur at the two ends of the signal, i.e., at t = 0 and 1023 s,
(2) diamond shapes in discontinuous color gradients (i.e., a non-smooth color
transition) appear a number of times over time, and (3) color alternate patterns occur
at frequencies closed to the signal frequency f0 D 0:15Hz. We will explain these
phase phenomena theoretically in the rest of the section.

3.1 Hyperbolic Level Curves of the Phase Spectrum

For the discussion in the rest of the section, let SŒl;m� D jSŒl;m�jei�Œl;m� denote the
Stockwell spectrum of a discrete complex sinusoid gŒn� D e2� if0n calculated by (5),
where l 2 Z and m D 0; 1; ;N � 1.
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Lemma 3.1 The Stockwell spectrum satisfies

SŒl;m� D e2� il. f0�
m
N / �Wm. f0 � m

N
/ (8)

arg.SŒl;m�/ D �Œl;m� D 2�l. f0 � m

N
/C phase.Wm. f0 � m

N
// (9)

Here, arg.z/ and z� are the argument and the complex conjugate of a complex
number z, respectively.

Proof From Eq. (5), we compute

SŒl;m� D
C1X

nD�1
gŒn� � e�2� nm

N � wŒl � n;m�

D
C1X

nD�1
e2� if0n � e�2� nm

N � wŒl � n;m�

D
C1X

nD�1
e2� in. f0�

m
N / � wŒl � n;m�

D
C1X

nD�1
e2� i.l�n/. f0�m

N / � wŒn;m�

D e2� il. f0�
m
N /

C1X

nD�1
e�2� in. f0�m

N / � wŒn;m�

D e2� il. f0�
m
N / �Wm. f0 � m

N
/

Therefore, we can obtain the corresponding phase spectrum

arg.SŒl;m�/ D �Œl;m� D 2�l. f0�m

N
/Cphase.Wm. f0�m

N
//: ut

We now investigate the different patterns exhibited in phase of the Stockwell
spectrum of a single complex sinusoid. First, we define the level curves of the phase
spectrum as

Lc D
n
.l;

m

N
/jel�Œl;m� D c;where c is a complex constant

o
:
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The following lemma leads to prove that if the window function satisfies certain
conditions, then the hyperbolic shaped level curves of the phase occur at certain
time indexes that are integer multiples of the FFT length N used in the numerical
computations.

Lemma 3.2 (Level Curves of the Phase Spectrum) Index pairs .l; mN / 2 Lc in a
small neighborhood of .kN; f0/ for some integer k satisfy

.l � kN/. f0 � m

N
/C 1

2�
Arg.Wm. f0 � m

N
// D constant

where Arg.:/ is the principal argument defined in Œ0; 2�/.

Proof Given any time index l, there exist two integers l� where 0 � l� < N and
k 2 Z, such that l D l� C kN. Let .l; mN / 2 Lc be a point in a small neighborhood of
.kN; f0/. From Lemma 3.1, we have

Arg.SŒl;m�/

D
h
2�l. f0 � m

N
/C Arg.Wm. f0 � m

N
//
i
.modŒ0; 2��/

D
h
2�.l � kN C kN/. f0 � m

N
/C Arg.Wm. f0 � m

N
//
i
.modŒ0; 2��/

D
h
2�.l � kN/. f0 � m

N
/C 2�kNf0 � 2�kmC Arg.Wm. f0 � m

N
//
i
.modŒ0; 2��/

D constant

Since kNf0 is a constant and 2�mk is an integer multiple of 2� , we then have

Arg.SŒl;m�/

D
h
2�.l� kN/. f0 � m

N
/C Arg.Wm. f0 � m

N
//
i
.modŒ0; 2��/

D constant

Hence we proved that

.l�kN/. f0�m
N
/C 1

2�
Arg.Wm. f0�m

N
// D constant: ut

Theorem 3.3 (Hyperbolic Level Curves of the Phase Spectrum 1) If the
windows function wŒn;m� is conjugate symmetric, then the .l; mN / 2 Lc in a small
neighborhood of .kN; f0/ for some integer k satisfies

.l � kN/. f0 � m

N
/ D constant:
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Proof If the windows function wŒn;m� is a conjugated symmetry, then its Fourier
spectrum Wm. f / is a real-valued function. Hence the phase of Wm. f / becomes a
constant, i.e.

Arg.Wm. f0 � m

N
// D 0 or �

Therefore, from Lemma 3.2, the .l; mN / 2 Lc in a small neighborhood of .kN; f0/ for
some integer k satisfies

.l � kN/. f0 � m

N
/ D constant:

Namely, the level curves of the phase spectrum form rectangular hyperbola with
horizontal/vertical asymptotes centered at .kN; f0/. ut

Similarly, we can prove the following theorem.

Theorem 3.4 (Hyperbolic Level Curves of the Phase Spectrum 2) If the Fourier
Spectrum Wm.�/ of the window function wŒn;m� is positive, then the .l; mN / 2 Lc in a
small neighborhood of .kN; f0/ for some integer k satisfies

.l � kN/. f0 � m

N
/ D constant

Theorems 3.3 and 3.4 explain the hyperbolic curves occurred at the two ends of
the time-frequency phase spectrum, pointed by the blue arrows in Fig. 3. Note that
in this example, f0 D 0:15Hz and we used a 1024-point FFT which is the same as
the total signal length N=1024. And the window function used in the computation
is Gaussian. By Theorem 3.4, we can observe that the level curves of the phase
spectrum form rectangular hyperbola with horizontal/vertical asymptotes centered
at (0 s,0.15Hz) and (1023 s,0.15Hz).

Interestingly, one may also observe a number of hyperbolic-like curves with
discontinuous transition of colors occurring in the middle of the time axis, as
indicated by the red arrows in Fig. 3. We categorize those hyperbolic-like curves
as false or true hyperbolic-like curves with discontinuous color gradients.

The false hyperbolic-like curves are due to spatial aliasing caused by insufficient
display resolution. The spatial aliasing occurs especially at locations with a fast
color transition. A zoomed-in version of the phase spectrum as shown in Fig. 4 can
dissolve those false hyperbolic-like curves that appear at locations.

The true hyperbolic-like curves with discontinuous color gradients as indicated in
Fig. 4 exist in both original and zoomed-in versions of the phase spectrum. This can
be explained by the relation of the phase spectra with the high frequency-sampling
resolution and low frequency-sampling resolution. For instance, the true hyperbolic-
like curve at location (512 s, 0.15Hz) can be explained by the phase relation of the
time-frequency spectra SŒl;m� of size 1024-by-1024 and 1024-by-512.
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Fig. 4 The false hyperbolic-like curves with discontinuous color transition can be dissolved
by sufficient display resolution, while the true hyperbolic-like curve with discontinuous color
transition at location (512 s, 0.15Hz) can be explained by the phase relation of the time-frequency
spectra SŒl;m� of size 1024-by-1024 and 1024-by-512

We can also prove that the following theorem by similar calculations:

Theorem 3.5 Let SŒl;m� D jSŒl;m�jei�Œl;m� be the time-frequency spectrum of a
complex sinusoid gŒn� D e2� if0n calculated by (5), where l 2 Z and m D 0; 1; ;N�1:
If the Fourier spectrum of the window function wŒn;m� is positive, then the phase
of ST function at odd and even frequency sampling index is given as the following,
respectively:

arg.SŒl; 2m�/ D �f0NkC 2�. f0 � 2m
N
/ � .l� k

N

2
/ .even/

arg.SŒl; 2mC 1�/ D �f0Nk � k� C 2�. f0 � 2mC 1
N

/ � .l � k
N

2
/ .odd/

From Theorem 3.5, we can draw the following conclusions:

Remark 3.6 If we extract the ST coefficients only at even frequency-sampling
indexes to form a new time-frequency spectrum, we will observe a set of rectangular
hyperbola centered at position .kN

2
; f0/ with continuous color transition along the

color wheel. As illustrated in Fig. 5a, the time-frequency spectrum formed by
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Fig. 5 The time-frequency spectrum formed by extracting the coefficients at (a) even and (b) odd
frequency sampling indexes form a rectangular hyperbola centered at position (512, 0.15 Hz), as
pointed by the arrows

extracting the coefficients at even frequency sampling indexes has a rectangular
hyperbola centered at position (512, 0.15Hz)

Remark 3.7 If we extract the ST coefficients only at odd frequency-sampling
indexes to form a time-frequency spectrum, we will observe a set of rectangular
hyperbola centered at position .kN

2
; f0/ with continuous color transition along the

color wheel; As illustrated in Fig. 5b, the time-frequency spectrum formed by
extracting the coefficients at odd frequency sampling indexes has a rectangular
hyperbola centered at position (512, 0.15Hz)

Remark 3.8 More importantly, at the vertical lines l D N
2
k, the phase difference

of the ST coefficients at even and odd frequency-sampling indexes is k causing
that the colors assigned at 2m frequency-sampling indexes and 2mC 1 frequency-
sampling indexes are opposite on the color wheel. Therefore, hyperbolic-like curves
with discontinuous color transition occur at time indexes l D N

2
k, as pointed by the

middle arrow in Fig. 4.
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3.2 Rotations and Finite Difference of the Phase Spectrum

The following theorem provides an explicit formula for the finite difference (i.e., an
approximation to the derivative) with respect to time index of the time-frequency
phase spectrum of an analytic signal. This then helps us to explain the third
phenomena related to the color rotations of the phase spectrum along the unit color
circle.

Theorem 3.9 (Rotations and Finite Difference of the Phase Spectrum) Let 0 �
m0 < N be an integer such that m0

N � f0 <
m0C1
N . Then the phase of SŒl;m� with a

conjugated symmetric window function has the following properties:

(i) �l�Œl;m� D �ŒlC 1;m�� �Œl;m� D 2�. f0 � m
N /;

(ii) For any integer m 	 m0 C 1, the phase of SŒl;m� rotates clockwise as the time
index l increases ;

(iii) For any integer m � m0 C 1, the phase of SŒl;m� rotates counter-clockwise as
the time index l increases ;

(iv) If m0
N D f0, then the phase of SŒl;m� remains unchanged.

Proof

(i) From Lemma 3.1, we can obtain the phase

arg.SŒl;m�/ D �Œl;m� D 2�l. f0 � m

N
/C phase.Wm. f0 � m

N
//

Since the windows function wŒn;m� is a conjugated symmetry, then its Fourier
spectrumWm.�/ is a real-valued function. Hence, we have

�Œl;m� D 2�l. f0 � m

N
/C constant

Then the difference�l�Œl;m� D �ŒlC 1;m� � �Œl;m� D 2�. f0 � m
N /.

(ii) For any integer m 	 m0 C 1, we have f0 � m
N � f0 � m0C1

N < 0; therefore
�l�Œl;m� < 0, i.e., the phase of SŒl;m�will rotate clockwise with the increasing
of the time index l

(iii) For any integerm < m0, we have f0� m
N > f0� m0

N > 0; therefore�l�Œl;m� > 0,
i.e., the phase of SŒl;m�will rotate counter-clockwise with the increasing of the
time index l

(iv) For any integer f0 D m0
N , we have f0 � m=N D 0; therefore �l�Œl;m� D 0,

i.e., the phase does not vary over time and hence it is stationary with respect to
time. ut

As illustrated in the zoomed-in phase spectrum in Fig. 6, we can easily observe
the phase rotation from the colored spectrum. For instance, as the time index
increases, the color of the frequencies above f0 D 0:15Hz transits smoothly from
red, blue to green as the phase rotates clockwise along the unit color wheel, while
the color of the frequency below f0 D 0:15Hz transits smoothly from green, blue



194 Y. Yan and H. Zhu

Fig. 6 Near the ends of the time-frequency representation of a discrete signal, the color rotates
clockwise in the regions where frequency is above 0:15Hz, counterclockwise in the regions where
frequency is below 0:15Hz, and stays the same when the frequency is equal to 0:15Hz

to red as the phase rotates counter clockwise along the unit color wheel. The color
of the spectrum at frequency f0 D 0:15Hz stays orange during the whole duration,
indicating the location of the signal frequency in the time-frequency domain.

From the proof of Theorem 3.9, we see that

�l�Œl;m� D �ŒlC 1;m� � �Œl;m� D 2�. f0 � m

N
/

implying that�l�Œl;m� D 0 iff f0 � m
N D 0. In other words, as�l�Œl;m� approaches

to 0, the sample frequency m
N approaches to the signal frequency f0, i.e., the

stationary point of the time-frequency phase or the instantaneous frequency of a
signal [7, 27].

4 Examples on Non-stationary Signals

When analyzing signals for real world applications, a general signal can be
decomposed or approximated by a sum of simple complex exponential signals by
the Fourier analysis. Hence, the features of the phase spectrum that we discussed in
Sect. 3 can provide useful insights for interpolating the phase behavior of a general
signal.



Visualizing Discrete Complex-Valued Time-Frequency Representations 195

In this section, we provide the color-encoded time-frequency spectra of more
complicated synthetic signals such as mono-component non-stationary and/or
multi-component signals and real signals. Note that the sampling rate of synthetic
signals is 1Hz. In all the examples the time-frequency spectra are computed by
Eq. (5) using a 512-point FFTs.

4.1 Synthetic Signals

First, we consider a synthetic signal consisting of four components as shown in
Fig. 7a: one cosine wave of frequency 0.05Hz from [0 s, 511 s], two bursts of cosine
wave of frequency 0.4Hz for [161 s, 240 s] and [288 s, 367 s], one cosine wave of
frequency 0.2Hz from [512 s, 1023 s]. Figure 7b is its magnitude spectrum clearly
showing the temporal arrivals of different frequency components. Figure 7c is its
phase spectrum in which the stationary phase pinpoints the locations of different
frequencies contained in the signal. Figure 7d combines the gray-valued magnitude

Fig. 7 (a) A synthetic signal consisting of four components; (b) its magnitude spectrum, (c) its
phase spectrum, and (d) its combined gray-value and hue-encoded time-frequency spectrum
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Fig. 8 (a) A synthetic signal with a sinusoidal fluctuated instantaneous frequency; (b) its
magnitude spectrum, (c) its phase spectrum, and (d) its combined gray-value and hue-encoded
time-frequency spectrum

and the hue-encoded phase of the spectrum, which clearly shows what and when
different frequencies arrive in the signals.

The second synthetic signal is a mono-component signal whose instantaneous
frequency fluctuates like a cosine function:

h.t/ D cos.2�.0:2tC 6cos.2�t3=1024///

as shown in Fig. 8a. Figure 8b–d are the magnitude spectrum, the phase spectrum,
and the combined gray-value and hue-encoded time-frequency spectrum, respec-
tively. Again, the time-frequency spectrum is computed using a 512-point FFTs.

We construct a multi-component signal with two chirp signals:

h.t/ D cos.2�.40C t=7//t=1024/C cos.2�.1024=2:8� t=6/t=1024/

where t 2 Œ0; 1023� as shown in Fig. 9a. Figure 9b–d are the magnitude spectrum,
the phase spectrum, and the combined gray-value and hue-encoded time-frequency
spectrum, respectively. Note that the magnitude spectrum as shown in Fig. 9b
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Fig. 9 (a) A synthetic signal with two chirps; (b) its magnitude spectrum, (c) its phase spectrum,
and (d) its combined gray-value and hue-encoded time-frequency spectrum

exhibits obvious interference near the intersection of two chirps while the phase
spectrum as shown in Fig. 9c is less affected by interference. Hence, combining
both magnitude and phase information can assist us to interpret the actual temporal
variations of the different frequencies contained in a signal.

4.2 A Real Signal

A recording of bat sonar chirping was downloaded from SoundBible.com. The
sampling rate is 44.1 kHz and a short segment of the recording from 0.05 s to 0.13 s
was selected for illustration. Its time-frequency spectrum is calculated using the
infinite length time-frequency analysis as shown in (5) [19]. Due to its large data
size and the limitation of hardware, it is not practical to compute the entire spectrum
all at once. Hence the computation is done by segment-by-segmentwith a 512-point
FFT (Fig. 10).
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Fig. 10 (a) A bat sonar chirping signal; (b) its magnitude spectrum, (c) its phase spectrum, and
(d) its combined gray-value and hue-encoded time-frequency spectrum

5 Discussions and Conclusions

In this paper, we proposed to visualize the complex-valued discrete time-frequency
spectrum in one two-dimensional graph by encoding amplitude spectrum with gray
scale intensity and phase spectrum with the hue of color on a unit circle. We
theoretically investigated the patterns appeared in the ST-phase spectrum of an
analytic signal with a constant frequency f0. We proved that the level curves of
the phase spectrum form rectangular hyperbola with horizontal/vertical asymptotes
centered .kN; f0/ where N is the number of points used in the FFT. We also showed
that some hyperbolic alike level curves may be fake due to insufficient display
resolution, while some is real due to the k� phase difference of the ST coefficients
at even and odd frequency-sampling indexes.

Through studying the finite difference of the phase, we explained the color
rotations of the phase spectrum. In addition, Theorem 3.9 suggests that the
frequency indexes at which the phase spectrum attains its local minimums can be
used to estimate the instantaneous frequency .IF/ laws of a signal. Similarly, we
estimate the local group delay by

�m�Œl;m� D �Œl;mC 1�� �Œl;m� D �2�l
N
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Fig. 11 A synaptic signal of two crossing chirps with additive random noise and its combined
gray-value and hue-encoded time-frequency spectrum. The signal-to-noise ratio is (a) 40, (b) 20
and (c) 10, respectively

which is the dual of the IF. Normally the amplitude spectrum plays a dominant
role in the estimation of the IF laws. As we can see from the numerical examples,
phase spectrum can accurately estimate the time arrivals and locations of different
frequency component. Its performance is robust to spectrum interference and noise
compared to the performance of the amplitude spectrum.

In Fig. 11, we add (a) mild, (b)moderate and (c) high level of noise to the crossing
chirp signal in Fig. 9a. When the signal-to-noise ratio (SNR) is 40, no obvious
noise effect is observed in amplitude and phase spectra, as shown in Fig. 11a. When
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SNR D 20, the amplitude spectrumwas obviously distorted by noise while the phase
spectrum has no obvious distortion, as shown in Fig. 11b. When SNR D 10, effect
of noise to the amplitude spectrum is more significant than to the phase spectrum,
as shown in Fig. 11c. Therefore utilizing both spectrum and phase information can
be beneficial to accurate IF estimation.

Certainly we need to explore the advantages of visualizing color and gradient
encoded complex valued time-frequency spectrum in real world applications. In
this paper, we examined the full ST spectrum for accurate interpretation of the new
visualization method and easy understanding of the phase properties. However due
to the intensive computation, the full ST is not practical to use when dealing large
data size. Hence various discrete generalized ST transforms have been developed
for efficient computation [19–31]. Therefore, we will extend our study to the
generalized discrete ST transforms with any amount of information redundancy.
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The Reassigned Spectrogram of the Stockwell
Transform

Cheng Liu and Hongmei Zhu

Abstract In this paper, we introduce the reassigned spectrogram of Stockwell
transform by re-mapping the surface of the spectrogram of Stockwell transform
with the aim to improve its readability. We first define the channelized instanta-
neous frequency and the local group delay for the Stockwell transform. At any
given point in the time-frequency domain, the associated local group delay and
channelized instantaneous frequency provide a re-estimation of the time arrival
and instantaneous frequency of the signal component observed at that point.
The reassigned spectrogram of Stockwell transform therefore has signal energy
highly concentrated at the instantaneous frequency/group delay curves and greatly
increases the resolution and readability of the time-frequency structure of the
underlying signal. The instantaneous frequencies of signal components can then
be extracted by detecting the local energy peaks in the reassigned spectrogram of
Stockwell transform. The improvement of the reassigned spectrogram of Stockwell
transform over the conventional spectrogram of Stockwell transform is illustrated
using both synthetic and real signals.
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1 Introduction

The Stockwell transform or the S transform (ST) was proposed by Stockwell in
[1] as a time-frequency analysis method for describing non-stationary signals. Let
 2 L1.R/ \ L2.R/ be such that

R1
�1  .t/dt D 1, the ST of a signal x.t/ in L2.R/

with respect to the window function  .t0 is defined by

STx.t; f / D j f j
Z 1

�1
x.�/ .j f j.� � t//e�j2�� f d�; t 2 R; f 2 R=f0g; (1)

and at zero frequency f D 0, the ST is equal to the average of the signal, i.e.,

STx.t; 0/ D
Z 1

�1
x.�/d�: (2)

The ST can also be defined in the frequency domain, i.e.,

STx.t; f / D
Z 1

�1
X.˛ C f /‰



˛

j f j
�
e j2�˛td˛;

t 2 R; f 2 R=f0g; (3)

where X. f / and ‰. f / are the Fourier spectrum of the signal x and the window
function  , respectively. The discrete analog of Equation (3) is often used to
compute the ST by taking advantage of the efficiency of the fast Fourier transform
(FFT) algorithm. The original Stockwell transform was proposed with the Gaussian
window,  .t/ D 1p

2�
et
2=2. The Gaussian function is a commonly used window

function in analog signal processing, as it reaches the lower bound of the uncertainty
principle [2].

The ST was first derived as the “phase correction” of the continuous wavelet
transform [1] and thus it inherits the multi-scale resolution feature from the wavelet
transform. But unlike the wavelet transform, the ST has the absolutely referenced
phase information [3], i.e., the phase information at any time given by the ST is
always referenced to the Fourier phase of the signal at zero time. The ST can also be
interpreted as a modification of the short-time Fourier transform with a frequency-
dependent window width. Such interpretation makes the ST a well-received tool for
people in the time-frequency analysis community. As a hybrid of short-time Fourier
transform and wavelet transform, the ST therefore has quickly gained popularity
in the community of non-stationary signal processing: see papers [4–6] for its
underlying mathematics and papers [7–9] for its diverse applications.

The instantaneous frequency (IF) is another useful parameter to describe the
time-frequency structure of non-stationary signals [10]. The IF is usually defined
based on the Hilbert transform, and it provides a unique description of the time-
varying frequency characteristic of mono-component signals. However, the defini-
tion of IF often fails when the non-stationary signals have multiple components
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[11]. By representing the signal in the joint time-frequency domain, time-frequency
representations (TFRs) have been widely used to reveal the structure of multi-
component signals. For most of the TFRs, a tradeoff between the time and frequency
resolutions exists as a consequence of the Heisenberg uncertainty principle. The
spread energy in the time-frequency domain may mask the true time-frequency
structure of non-stationary signals, which will lead to an erroneous interpretation
of the IFs of the signals.

The reassignment method was proposed to enhance the energy concentration of
a TFR, which can be traced back to the modified moving window method proposed
by Kodera, Gendrin and Villedary [12] 30 years ago. By relocating the spread
energy of the spectrogram to the center of gravity in the energy distribution, the
developed reassigned spectrogram has the signal energy concentrated at the IF
curves in the time-frequency domain. Therefore, the IF of each component of a
multi-component signal can be revealed by detecting the local energy peaks in the
reassigned spectrogram. In 1995, Auger and Flandrin [13] generalized the method
of Kodera et al. to any bilinear time-frequency distributions of the Cohen’s class and
time-scaling representations [11]. Algorithms of reassigned representations have
been investigated in [14, 15], and their applications in processing the speech and
music signals can be found in [16, 17].

The reassignment method is a postprocessing technique applied on TFRs, and
thus its performance depends on the accomplishment of the underlying TFR. In
this paper, we extend the reassignment technique to the ST. In Sect. 2, definitions
of instantaneous frequency and group delay (GD) are first reviewed. With math-
ematical validations, the channelized instantaneous frequency (CIF) and the local
group delay (LGD) of ST are then proposed, which are used as the locations in the
time-frequency domain to reassign the spread signal energy in the spectrogram of
ST. The reassigned spectrogram of Stockwell transform is defined in Sect. 3, and
a practical discrete implementation is also provided. Numerical simulations have
been performed to demonstrate the performance of the reassigned spectrogram of
ST, which are discussed in Sect. 4. The conclusions are provided in Sect. 5.

2 The Channelized Instantaneous Frequency and Local
Group Delay of Stockwell Transform

2.1 Instantaneous Frequency and Group Delay

To accurately quantify the time-varying frequency characteristic of non-stationary
signals, the instantaneous frequency was proposed by extending the concept of
Fourier frequency [10]. For a mono-component signal, the IF is defined as

fi.t/ D 1

2�

d�.t/

dt
; (4)
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where �.t/ is the phase of the analytic signal s.t/, given by

s.t/ D x.t/C jHfx.t/g
D a.t/e j�.t/; (5)

whereH denotes the Hilbert transform [10].
The IF as a function of time provides a frequency measure at any time instant.

Alternatively, the time-frequency structure of a signal can be depicted as a function
of frequency, which gives rise to the definition of the group delay. The GD is
defined as the derivative of the phase of the frequency domain signal representation,
given by

tg. f / D � 1

2�

dˆ. f /

df
; (6)

whereˆ. f / is the phase of the Fourier transform S. f / of the analytic signal s.t/. For
signals with a large bandwidth-duration production value, the IF and the GD agree
to each other, which present the same curve in the time-frequency domain [12].

However, the IF and the GD defined by Equations (4) and (6) are only valid for
mono-component signals. To apply the definitions of IF and GD to multi-component
signals, decomposition of multi-component signals needs to obtained first. Accurate
estimation of IF and GD for multi-component signals is still a challenge. One
approach is to extend the definitions of the IF and GD from one-dimension to two-
dimensions through a joint time-frequency representation of a signal. This yields the
definitions of the channelized instantaneous frequency and the local group delay.
We have a number of successes using the Stockwell transform in biomedical and
industrial applications [7, 9, 18]. It is important to obtain well separated multiple
components of the signal in order to accurate estimate their frequencies related to
physiological activities or natural vibrations of objects. Hence, in this paper, we are
interested in deviations of the CIF and the LGD from the ST of a signal.

2.2 Channelized Instantaneous Frequency of the Stockwell
Transform

Similar to other time-frequency analysis techniques, the ST provides a two dimen-
sional description of signal characteristics. At any fixed frequency f0, the one
dimensional time domain function STx.t; f0/ is called a voice of the ST. To extend
the concept of the IF, we define the channelized instantaneous frequency to quantify
the local characteristic of each ST voice, which is given by

f .ST/i .t; f / D f C 1

2�

@�.ST/.t; f /

@t
; (7)

where �.ST/.t; f / is the phase of the ST.
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To illustrate the relation between the conventional IF of a mono-component
signal and the proposed CIF of the ST, an explicit approximation formula to the
CIF of the ST with a Gaussian window function was derived.

Theorem 2.1 Let the analytic signal s.t/ D a.t/e j�.t/ be such that the amplitude
a.t/ is slowly-varying, then the following approximation formula can be derived for

the ST with the Gaussian window function  .t/ D 1p
2�
e� t2

2 ,

STs.t; f / � a.ST/.t; f /e j�.ST/.t;f /; (8)

where

a.ST/.t; f / D
 

1C �00.t/2

f 4

!� 1
4

e
�

f 2

2 .�
0.t/�2�f /2

f 4C�00.t/2 a.t/; (9)

�.ST/.t; f / D �.t/ � 2�tf C 1

2
arctan



�00.t/
f 2

�
�

1
2
.�0.t/ � 2�f /2 �00.t/

f 4 C �00.t/2
:

(10)

Proof In Equation (1), expressing the signal s with its polar form given by (5) and
changing the variable u D � � t, we have

STs.t; f / D j f jp
2�

Z 1

�1
a.uC t/e� f 2u2

2 � e jŒ�.uCt/�2�.uCt/f �du:

Since the amplitude a.t/ is slowly-varying, we assume that a.u C t/ inside the
Gaussian window to be constant, which leads to the approximation

a.uC t/e� f 2u2

2 � a.t/e� f 2u2

2 :

Expanding the phase function �.u C t/ into a Taylor series at the time t, that is,
�.uC t/ D �.t/C �0.t/uC 1

2
�00.t/u2 C O.u3/ and neglecting the high order term

O.u3/, we have

STs.t; f / � j f jp
2�

Z 1

�1
a.t/e� f 2u2

2 � e jŒ�.t/C�0.t/uC 1
2 �

00.t/u2�2�.uCt/f �du

D j f jp
2�

a.t/e j.�.t/�2� tf /
Z 1

�1
e� f 2u2

2 � e j.�0.t/uC 1
2 �

00.t/u2�2�uf/du

D j f jp
2�

a.t/e j.�.t/�2� tf /
Z 1

�1
e

�



f 2

2 � 1
2 j�

00.t/

�
u2C. j�0.t/�j2� f /u

du
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D j f jp
2�

a.t/e j.�.t/�2� tf / �
s

�

f 2

2
� 1

2
j�00.t/

� e
1
2 . j�

0.t/�j2�f /2

f 2�j�00.t/

D a.t/e j.�.t/�2� tf /

vu
u
u
t
1C j�

00.t/
f 2

1C �00.t/2

f 4

� e�
1
2 .�

0.t/�2�f /2.f 2Cj�00.t//
f 4C�00.t/2

D a.t/e j.�.t/�2� tf /
 

1C �00.t/2

f 4

!� 1
4

� e j 12 arctan
�
�00.t/
f 2

�

�e�
f 2

2 .�
0.t/�2�f /2

f 4C�00.t/2 e
�j

1
2 .�

0.t/�2�f /2�00.t/

f 4C�00.t/2

D
 

1C �00.t/2

f 4

!� 1
4

e
�

f 2

2 .�
0.t/�2�f /2

f 4C�00.t/2 a.t/

�e
j

"

�.t/�2� tfC 1
2 arctan

�
�00.t/
f 2

�
�

1
2 .�

0.t/�2�f /2�00.t/

f 4C�00.t/2

#

D a.ST/.t; f /e j�.ST/.t;f /:

ut
Note that a general approximation formula was derived by Guo, Molahajloo and
Wong [19] for the ST with an arbitrary window function where the phase function
was expanded up to the first order. With the Gaussian localization window, we are
able to approximate the phase functions up to the second order. Theorem 2.1 enables
us to have a better understanding to the limitation of applying the ST-based CIF of
signals.

In general, the IF of a real signal does not change rapidly with respect to time,
which leads to an valid approximation �00.t/ � 0 in any short time period. When
�00.t/ D 0, the last two terms in Equation (10) vanish, which gives

�.ST/.t; f / � �.t/� 2�tf : (11)

This approximation indicates that the ST holds the absolutely referenced phase
information, i.e., the phase information given by the ST at any frequency refers
to the argument of the cosinusoid at zero time. Substitution of Equation (11) into
Equation (7) gives

f .ST/i .t; f / � 1

2�

d�.t/

dt
D fi.t/: (12)

Equation (12) indicates that the CIF of any given ST voice approximates the IF for
a mono-component signal.
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The approximated amplitude of the ST in Equation (9) also implies that the ST
has the spectral energy distributed around its IF laws. Assuming that the effect of
the second order derivative of the signal phase is negligible, a.ST/.t; f / reaches its
maximum at f D 1

2�
�0.t/, the IF of the signal. Since the ST is a linear transform,

multiple components of a signal are separated in the time-frequency domain by the
fact that the energy of each component is distributed around its own IF law.

2.3 Local Group Delay of the Stockwell Transform

On the other hand, the GD can also be extended as a local time measure with the
ST. By fixing the value of the time t D t0, a function of frequency is obtained from
the ST. The local group delay is then defined by the taking the partial derivative of
the phase with respect to the frequency,

t.ST/g .t; f / D � 1

2�

@ˆ.ST/.t; f /

@f
; (13)

where ˆ.ST/.t; f / is the phase of the ST along the frequency direction. An approx-
imation of this phase function can be computed for a mono-component signal
by using Equation (3) with the Fourier transform of the analytic signal S. f / D
A. f /e jˆ. f /. The approximation formula is given by the following theorem.

Theorem 2.2 Let the spectral representation of the signal S. f / D A. f /e jˆ. f / be
such that the amplitude A.t/ is slowly-varying. Then the following approximation
formula can be derived for the ST with the Gaussian window function  .t/ D
1p
2�
e� t2

2 ,

STs.t; f / � A.ST/.t; f /e jˆ.ST/.t;f /; (14)

where

A.ST/.t; f / D p2�


16�4

f 4
Cˆ00. f /2

�� 1
4

� e� 2�2 f 2.ˆ0. f /C2�t/2

16�4Cf 4ˆ00. f /2 A. f /;

(15)

ˆ.ST/.t; f / D ˆ. f /C 1

2
arctan



f 2ˆ00. f /
4�2

�
�

1
2
f 4 .ˆ0. f /C 2�t/2 ˆ00. f /
16�4 C f 4ˆ00. f /2

:

(16)
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Proof By replacing the signal X with its polar form in (3) and changing the variable
u D ˛ � f , we have

STs.t; f / D
Z 1

�1
A.uC f /e jˆ.uCf /e

� 2�2u2

f 2 e j2�utdu;

Since the amplitude A. f / is slowly-varying, we assume that A.u C f / inside
the Gaussian window to be constant, which leads to the approximation A.u C
f /e

� 2�2u2

f 2 � A. f /e
� 2�2u2

f 2 . Expanding the phase function ˆ.u C f / into a Taylor
series at the frequency f , that is ˆ.uC f / D ˆ. f /C ˆ0. f /uC 1

2
ˆ00. f /u2 C O.u3/

and neglecting the high order term O.u3/, we then have

STx.t; f / �
Z 1

�1
A. f /e

� 2�2u2

f 2 e j.ˆ. f /Cˆ0. f /uC 1
2ˆ

00. f /u2/e j2�utdu

D A. f /e jˆ. f /
Z 1

�1
e

� 2�2u2

f 2 e j.ˆ0. f /uC 1
2ˆ

00. f /u2C2�ut/du

D A. f /e jˆ. f /
Z 1

�1
e

�
�
2�2

f 2
� 1
2 jˆ

00. f /
�
u2C. jˆ0. f /Cj2� t/u

du

D A. f /e jˆ. f /

s
�

2�2

f 2
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ut
Similarly, by assuming that ˆ00. f / � 0, we then have another approximation of

the local phase given by the ST

ˆ.ST/.t; f / � ˆ. f /: (17)
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It follows that the LGD of the ST at any time instant gives the GD for a mono-
component signal, i.e.,

t.ST/g .t; f / � � 1

2�

dˆ. f /

df
D tg. f /: (18)

The approximated amplitude A.ST/.t; f / in Equation (15) also shows that the energy
of each signal component is distributed around its own GD law in the spectrogram
of the ST.

Equations (12) and (18) state that the CIF and the LGD defined by the ST can
be used to estimate the IF and the GD for a mono-component signal. As multiple
components of a signal can be separated in the time-frequency domain with the ST
[9], it is theoretically feasible to estimate the IF and the GD of each component by
taking the measures at different voices of the ST. However, in applications, such an
approach is impractical due to the following reasons. First, noise is usually presented
in real signals. In the time-frequency domain where the signal-to-noise ratio is low,
the signal information can be greatly distorted by noise and thus direct IF and GD
estimates from the CIF and the LGD fail. Second, for a multi-component signal,
the spread energy from different signal components may overlap and introduce the
misleading cross-terms. Equations (12) and (18) become invalid in the areas where
cross-terms appear. Third, a single voice of the ST may contain energy spread
from different components occurred at different time. In the situations mentioned
above, the CIF measure may provide mixed IF information from different signal
components, which will lead to an erroneous interpretation of the time-frequency
structure of the signals.

3 The Reassigned Spectrogram of Stockwell Transform

3.1 The Reassigned Spectrogram of Stockwell Transform

Instead of calculating the IF and the GD of a non-stationary signal directly using
their definitions, the reassignment method [13] was proposed to detect the IF from
another perspective. As most TFRs have the signal energy peaked around the IFs
of their components, it follows that the IF can be estimated by investigating the
locations of energy distributions in the time-frequency domain. However, the spread
signal energy in TFRs may mask the true locations of the IF. The reassignment
method intends to enhance energy localization of a TFR by reassigning the spread
energy to the centers of gravities.

At each point in the time-frequency domain, we can define a point

�
t.ST/g .t; f /; f .ST/i .t; f /

�
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from LGD and CIF of the ST, which is located on the IF/GD curves as indicated
by Equations (12) and (18). Thus, we can interpret them as the re-estimation of
the time arrival and the instantaneous frequency of the signal energy located at the

point .t; f / in the ST. In other words,
�
t.ST/g .t; f /; f .ST/i .t; f /

�
gives the information

of the time and the frequency of the signal component contributing to the spectral
energy jSTx.t; f /j2. By applying the reassignment technique, the value of the energy

jSTx.t; f /j2 at each point .t; f / is reassigned to the location
�
t.ST/g .t; f /; f .ST/i .t; f /

�
,

which is the essential idea of the reassigned spectrogram of Stockwell transform.

Definition 3.1 Let STs.t; f / be the Stockwell transform of the analytic signal
s.t/, and t.ST/g .t; f / and f .ST/i .t; f / be the local group delay and the channelized
instantaneous frequency of the ST, then the reassigned Stockwell spectrogram is
defined as

RSSs.t
0; f 0/

D
Z Z 1

�1
f 0jSTs.t; f /j2ı

�
t0 � t.ST/g .t; f /

�
ı
�
f 0 � f .ST/i .t; f /

� dtdf

f
;

(19)

where ı.t/ denotes the Dirac impulse.

The re-mapping of the energy jSTs.t; f /j2 from the location .t; f / to

�
t.ST/g .t; f /; f .ST/i .t; f /

�

is many-to-one in general. The measure dtdf
f is used in the reassignment equation

because the spectrogram of the ST belongs to the function space L2
�
R2;

dtdf
f

�
[6].

As the spread energy in the time-frequency domain has been reassigned to the IF/GD
curves, the IFs can be easily obtained by identifying the locations of the local energy
peaks in the reassigned spectrogram of ST.

Since the reassignment method is a postprocessing technique applied to the
TFR, its performance depends on t the accomplishment of the underlying TFR.
As an improved multi-scale time-frequency representation, the ST provides a more
accurate description of time-varying frequency characteristics of multi-component
signals by diminishing the mismatch between the window width and the local signal
characteristics. Therefore, the ST is a good candidate for the reassignment method.
The the reassigned spectrogram of ST provides high-resolution ridges in the time-
frequency domain that can be further used to extract the IFs.
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3.2 Implementation of Reassigned Spectrogram of Stockwell
Transform

Implementing the LGD and the CIF of the ST involves calculating the phase
derivative. This is often done by finite difference methods that require phase-
unwrapping the representation to resolve the discontinuities of the principle-value
representation of the argument function. To avoid phase ambiguities, we adopt the
cross-spectral method suggested by Nelson [15] in our implementation.

Given the computed ST, two intermediate cross-spectral surfaces are defined as

Cf .t; f ; �/ D STs
�
tC �

2
; f
�
ST�

s

�
t � �

2
; f
�
;

Lf .t; f ; �/ D STs
�
t; f C �

2

�
ST�

s

�
t; f � �

2

�

(20)

for small values of �. The spectrogram, the LGD and the CIF of ST are then
estimated by

jSTs.t; f /j2 � jCf .t; f ; �/j � jLf .t; f ; �/j; (21)

Ot.ST/g .t; f / � � 1

2��
argŒLf .t; f ; �/�; (22)

Of .ST/i .t; f / � f C 1

2��
argŒCf .t; f ; �/�: (23)

There is no need to phase unwrap the representation surface to resolve the
discontinuity problem.

Let sŒkT�; k D 0; 1; � � � ;N � 1 denote the discrete signal of s.t/, with a
time sampling interval T, the practical discrete implementation of the reassigned
spectrogram of ST is summarized as follows:

S1: Compute the discrete Fourier spectrum based on the FFT algorithm, SŒ n
NT � D

1
N

PN�1
kD0 sŒkT�e� j2�nk

N , where n D 0; 1; � � � ;N � 1.
S2: Calculate the Stockwell transform,STs.mT; 0/ D 1

N

PN�1
kD0 sŒ k

NT � for n D 0 and

STs.mT;
n
NT / D

PN�1
kD0 SŒ kCn

NT �e
� 2�2k2

n2 e
j2�km
N ; n 6D 0.

S3: Calculate the LGD and the CIF,
t.ST/g .mT; n

NT / D �NT
4�

argŒSTs.mT; nC1
NT / � STs.mT; n�1

NT /� and

f .ST/i .mT; n
NT / D n

NT C 1
4�T argŒSTs..mC 1/T; n

NT / � STs..m � 1/T; n
NT /�.

S4: For each point .mT; n
NT /, reassign the spectral energy jSTs.mT; n

NT /j2 to the

point Œt.ST/g .mT; n
NT /; f

.ST/
i .mT; n

NT /� such that the discrete reassigned spectro-
gram of Stockwell transform is obtained.
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This implementation requires computing the ST of the signal only once, which
is computationally efficient.

4 Numerical Results

In this section, we demonstrate the effectiveness of the reassigned spectrogram
of ST compared to the conventional ST using numerical simulations. First, we
consider a synthetical signal consisting of two components with different IF laws:
one component is a sine wave with frequency 50Hz, the other component has a
complex IF law, which is fi.t/ D 200 � 16� � cos.16�t/. The sample rate of this
synthetic signal is 1024. Figure 1b shows the spectrogram of ST for this signal. This
representation provides a rough picture of the time-frequency structure of the signal.
However, due to the spread signal energy in the time-frequency domain, the exact IF
of each signal component cannot be identified. The reassigned spectrogram of ST
of this same signal is given in Fig. 1c. As we can see, the reassigned spectrogram of
ST has the energy of each signal component highly concentrated at its IF. Thus, the
IF of each component can be revealed by detecting the locations of energy peaks.

The next examples are simulated dual-tone multi-frequency (DTMF) signals.
DTMF signaling is used in push-button telephones for tone dialing. A DTMF signal
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Fig. 1 (a) The real part, (b) the spectrogram of Stockwell transform and (c) the reassigned
spectrogram of Stockwell transform of a synthetic signal made up of two components with different
instantaneous frequency laws
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Fig. 2 Top: the real parts, Middle: the spectrograms of Stockwell transform, Bottom: the reas-
signed spectrograms of Stockwell transform of three simulated dual-tone multi-frequency signals
corresponding to the push-buttons 1, 2 and 3 of the telephone pad

consists of the sum of two sinusoids with frequencies taken from two mutually
exclusive groups. These frequencies were chosen to prevent any harmonics from
being incorrectly detected by the receiver as some other DTMF frequency. The
dialing tones of the push-buttons 1, 2 and 3 of the telephone pad have been
simulated with the sample rate 8000. These three tones share the same low frequency
component at 697Hz, but the high frequency components are distinct, which are
1209, 1366, and 1477Hz respectively. Results of the spectrogram of ST and the
reassigned spectrogram of ST are presented for each signal in Fig. 2. Due to the
energy spread along the frequency domain, the exact frequency of each signal
component cannot be directly identified from the spectrogram of ST. But, the
locations of the energy peaks in the reassigned spectrogram of ST clearly show
the frequency of each signal component for the DTMF signals. As a result, the
reassigned spectrogram of ST provides an approach to detect and recognize digital
tones.

We further apply the reassigned spectrogram of ST to a real audio signal to
illustrate its performance in applications. The signal example presented here is a
bat sonar signal [20] recorded by the research program RCP 445 supported by
CNRS. Sounds produced by bat in fact are ultrasoundwhich are inaudible for human
beings. The real part of this signal is displayed in Fig. 3a. The spectrogram of the
ST in Fig. 3b shows the basic time-frequency structure of this signal, which is non-
stationary and multi-component. However, the IF of each component embedded in
this bat signal cannot be easily identified because of the energy spread in the ST.
The reassigned spectrogram of ST of this bat sonar signal is presented in Fig. 3c.
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Fig. 3 (a) The real part, (b) the spectrogram of Stockwell transform, and (c) the reassigned
spectrogram of Stockwell transform of a bat sonar signal with the sampling rate 230.4 kHZ

As showed by the spectral energy peaks in the reassigned spectrogram of ST, we
can clearly identify two significant non-stationary chirp-like components contained
in the bat signal. The most significant one starts around time 2ms with frequency
lower than 10�104Hz and decreases to frequency around 4�104Hz and ends after
6ms. Another component has a higher frequency and shorter duration, which starts
around 3ms and ends after 6ms, and its frequency decreases from above 10 � 104
Hz to around 8 � 104Hz. Note that the identified higher frequency component by
the reassigned spectrogram of ST has been missed by many commonly used TFRs
due to the relatively low energy of this component.

5 Conclusions

In this paper, we propose the local group delay and channelized instantaneous
frequency of Stockwell transform, and prove that these two measurements closely
assemble the conventional definitions of the group delay and the instantaneous
frequency for a mono-component signal. We further applied the reassignment
method to the Stockwell transform to obtain a high-resolution time-frequency
representation of a signal. Due to its closeness to the traditional group delay and
instantaneous frequency and multi-resolution feature of the Stockwell transform,
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the reassigned spectrogram of Stockwell transform provides a good time-frequency
representation as a base to further estimate the instantaneous frequencies for non-
stationary and multi-component signals. Numerical simulations have shown the
effectiveness of the reassigned spectrogram of Stockwell transform and indicated
its great potential in applications.

Although the Stockwell transform provides an improved representation by its
frequency-dependent resolution characteristic, it does not assure that multiple signal
components can be always well separated in the time-frequency domain. As shown
in Fig. 2, the two components of dialing tones of push-buttons 1 and 2 are too
close such that some ringing effects are introduced in the spectrogram of the
ST. It follows that the performance of the reassignment method is affected. A
new variant of the Stockwell transform was recently proposed in [18], which
provides an adaptive multi-resolution time-frequency representation that can better
separate signal components in the time-frequency domain. We will further extend
the reassignment method to this adaptive Stockwell transform to more accurately
extract the instantaneous frequencies of multi-component signals and explore other
efficient means in estimating instantaneous frequency.
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Abstract Observed signals are usually recorded as linear mixtures of original
sources. Our purpose is to separate observed signals into original sources. To
analyse observed signals, it is important to use several wavelet functions having
different characteristics and compare their continuous wavelet transforms. The
notion of the continuous multiwavelet transform and its essentials are introduced.
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1 Blind Signal Separation

Assume several persons are talking in a cocktail party. One can focus one’s auditory
attention on a particular person and understand his or her talk. How one’s auditory
perception works? This is what we call cocktail party problem [8]. One of basic
questions for the cocktail party problem is how to build a machine to solve the
cocktail party problem in a satisfactory manner. This question corresponds to blind
signal separation or blind source separation (BSS) [9, 10, 17].

As the blind signal separation is an inverse problem, certain a priori knowledge
on the original sources is needed for this separation, and the original sources cannot
be uniquely estimated.

Besides methods based on independent component analysis [20] which is one
of the most powerful tools for blind signal separation, several methods based on
time-frequency [11, 12, 15, 28] analysis have been proposed. One of them is the
quotient signal estimation method which can estimate the unknown number of
sources [7, 21, 27, 29].

1.1 Blind Signal Separation of One-Dimensional Signals

Let us introduce our blind signal separation. Our purpose is to separate and to
estimate the original sources (talks by N persons, N is unknown) from the observed
signals (recorded talks with M microphones,M is known) as in Fig. 1. To estimate

Person 1

Person N
Sourse N

Sourse 1 Microphone 1

Microphone M

Observed signal 1

Observed signal M

Unknown Known

Fig. 1 Blind signal separation
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the number N of sources is one of the most difficult procedures in the blind signal
separation.

We will explain the blind signal separation of one-dimensional signals based on
[2–4]. Let fsk.t/gNkD1 be the original source signals and fxj.t/gMjD1 be the observed
signals. Assume that M 	 N and all of these signals are real-valued. Put

s.t/ D .s1.t/; : : : ; sN.t//T ; x.t/ D .x1.t/; : : : ; xM.t//T :

The spatial mixture problem of BSS assumes that the observed signals fxj.t/gMjD1 can
be represented as

xj.t/ D
NX

kD1
aj;ksk.t/; aj;k 2 R; (1)

for unknownmatrix A D .aj;k/ 2 R
M�N , which is called mixing matrix. Here, RM�N

denotes the set ofM�N matrices with real elements. We assume aj;k 2 RC WD fx 2
R j x > 0g, for the sake of simplicity.

1.2 Solving Blind Signal Separation

To explain the essential idea to solve the blind signal separation, let us assume that
we know the number N and the set of points ft`gN`D1 such that sk.t`/ D ık;`, for
`; k D 1; : : : ;N. Here ık;` denotes the Kronecker delta. Then, (1) implies

xj.t`/ D
NX

kD1
aj;ksk.t`/ D

NX

kD1
aj;kık;` D aj;`; (2)

which gives us an estimation of A D �xj.t`/
�
. Applying the Fourier transform to (1),

we have

bxj.!/ D
NX

kD1
aj;kbsk.!/: (3)

Again, assume we know the number N and the set of points f!`gN`D1 such that
bsk.!`/ D ık;`, for `; k D 1; : : : ;N. Then, we have

bxj.!`/ D
NX

kD1
aj;kbsk.!`/ D

NX

kD1
aj;kık;` D aj;`; (4)

which gives us another estimation of A D �bxj.!`/
�
.
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• Which is easy to find such a set of points, ft`gN`D1 or f!`gN`D1?
If one person is talking all the time, it is impossible to find ft`gN`D1. Even such
a situation, if their voices are different in frequency, it may be possible to find
f!`gN`D1.
• Moreover, if we use time-frequency information, finding a set of points
f.t`; !`/gN`D1 should be better.

1.3 A Simple Example of Time-Frequency Information

Let us demonstrate the above statement by a simple example. In Fig. 2, the original
sources fsj.t/gjD1;2;3;4 are shown in the top and their continuous wavelet transforms
[18] fSj.t; !/gjD1;2;3;4 are bottom, where the scale is transformed to frequency using
the fact that 1=a is in proportion to frequency !. The overlapping of transformed
source signals (bottom) in the time-frequency region are rather small comparing to
the overlapping of original source signals (top) in the time region.

2 Time-Frequency Analysis

2.1 Fundamental Unitary Operators and Their Properties

Let us define three fundamental unitary operators in time-frequency analysis.
Denote by Tb, the translation operator by b 2 R

n:

.Tbf /.x/ D f .x � b/;

byM! , the modulation operator by ! 2 R
n:

.M! f /.x/ D ei!�xf .x/;

by Da, the dilation operator by a 2 RC:

.Daf /.x/ D a�n=2 f .x=a/:

These three operators, Tb, M! , Da, are unitary on L2.Rn/, hence their adjoints are
given by their inverses:

T �
b D T�b; M�

! DM�!; D�
a D D1=a:
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Fig. 2 Original sources (top) and their time-frequency information (bottom)

Lemma 2.1 (Commutation Relation)

TyM
 D e�i
yM
Ty; M
Ty D ei
yTyM
 ;

TyD� D D�Ty=�; D�Ty D T�yD�;

M
D� D D�M�
 ; D�M
 DM
=�D�:
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Define the Fourier transform of a function f 2 L1.Rn/ and the inverse Fourier
transform of a function g 2 L1.Rn/ by

F. f /.
/ Dbf .
/ WD
Z

Rn
e�ix�
 f .x/ dx;

F�1.g/.x/ D Lg.x/ WD .2�/�n
Z

Rn
eix�
 g.
/ d
;

where i D p�1.
Lemma 2.2 (Commutation Relation with Fourier Transform)

F ŒTyf � DM�yF Œ f �; F ŒM! f � D T!F Œ f �; F ŒD�f � D D1=�F Œ f �:

As the dilation Da and the translation Tb are unitary, their composition TbDa is
also unitary and called time-scale operator.

Lemma 2.3 (Composition of Time-Scale Operators)

.TbDa/.TtDs/ D TatCbDas; b; t 2 R
n; a; s 2 RC:

2.2 Center and Width of a Window Function

To investigate properties of a given function f .x/, we often represent f .x/ as a
superposition of well-known functions gj.x/ or g.s; x/, s 2 �, such that f .x/ D
P

j ajgj.x/ or f .x/ D
Z

�

a.s/g.s; x/ ds. The Fourier inversion formula:

f .x/ D .2�/�n
Z

Rn
eix�
bf .
/ d


can be regarded as one of such representations. But the functions eix�
 are not
localized in space. Therefore, the windowed Fourier transform:

Vwf .b; !/ WD
˝
f .x/; eix�!w.x � b/

˛

Dh f ;M!Tbwi

was proposed to access the local information both in space and in frequency. Here,
we denote the canonical inner product of the Hilbert space L2.Rn/ by

h f ; gi D
Z

Rn
f .x/g.x/ dx:
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In fact, Parseval’s formula and the commutation relations FM! D T!F , FTb D
M�bF imply

h f ;M!Tbwi D .2�/�n hF f ;FM!Tbwi
D .2�/�n

D
bf ; T!M�bbw

E

D .2�/�ne�i!�b
D
bf ;M�bT!bw

E
:

Hence, Vwf .b; !/ can access the information on both areas localized by w.x� b/ in
space and bybw.
 � !/ in frequency.

For a function w 2 L2.Rn/, the center cw of w is defined by

cw D.cw;1; : : : ; cw;n/;

cw;j WD 1

jjwjj2
Z

Rn
xjjw.x/j2 dx; j D 1; : : : ; n;

and the width �w of w is defined by

�w WD.�w;1; : : : ; �w;n/;

�w;j WD 1

jjwjj

Z

Rn
.xj � cw;j/

2jw.x/j2 dx
�1=2

:

A function w 2 L2.Rn/ n f0g is called a window function if jxjw.x/ 2 L2.Rn/, for
which we can define cw and �w. Hereafter, we assume that both w and its Fourier
transformbw are window functions. The center of w (resp.bw) is denoted by x� (resp.

�), and .x�; 
�/ is also called the center of w.

2.3 Multi-dimensional Uncertainty Principle in Fourier
Analysis

As an analogue of the one dimensional uncertainty principle in Fourier analysis
[14], we have

�w;j�bw;j 	
1

2
; j D 1; : : : ; n;

which shows that the localization is a trade-off between w andbw. As a corollary, we
also have

j�wj j�bwj 	
n

2
;
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Fig. 3 The projection of the time-frequency window of w.x/ to the .xj; 
j/-plane

where j � j denotes the length of a vector. The rectangular parallelepiped defined by
nY

jD1
Œx�

j ��w;j; x
�
j C�w;j� � Œ
�

j ��bw;j ; 
�
j C�bw;j �

is called the time-frequency window of w.x/, whose projection to the .xj; 
j/-plane
is illustrated in Fig. 3.

3 Continuous Wavelet Transform

Wavelet analysis [19, 24] can be used as a tool for time-frequency analysis. The
continuous wavelet transform correlates a given function f 2 L2.Rn/ with a family
of waveforms TbDa . The function  2 L2.Rn/ is called a wavelet function. If the
wavelet function  is properly chosen so as to be concentrated in “time” x and in
“frequency” 
, the continuous wavelet transform of f can be regarded as a time-
frequency information of f . One advantage of the continuous wavelet transform is
the availability of variety of wavelet functions. Each wavelet function has its own
unique characteristics.
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Definition 3.1 The continuous wavelet transform of f 2 L2.Rn/ with respect to a
wavelet function  2 L2.Rn/ is defined by

.W f /.b; a/ WD h f ; TbDa i
D.2�/�n

D
bf ;M�bD1=ab 

E
; a 2 RC; b 2 R

n:

Theorem 3.2 (Inversion Formula) Assume  2 L2.Rn/ satisfies the following
admissibility condition: there exists a positive constant K such that

Z

RC

jb .a!/j2 da
a
D K; for almost all ! 2 Sn�1;

where Sn�1 is the unit sphere in R
n. Then,

f D 1

K

Z

Rn

Z

RC

.W f /.b; a/TbDa 
db da

anC1 ; f 2 L2.Rn/:

3.1 Time-Frequency Information of Continuous Wavelet
Transform

To clarify our problems, let us start with one dimensional continuous wavelet
transform.We use the wavelet toolbox in MATLAB. The wavelet toolbox provides a
data, named cuspamax, f for demonstrationwhich is illustrated in Fig. 4, the top-left.
Since .W f /.b; a/ is two-dimensional data, we need a visual method of displaying
the wavelet transform. Usually we use the intensity image, called scaleogram or
scalogram, of the absolute values j.W f /.b; a/j or the real part of .W f /.b; a/.
Since the frequency 
 is inversely proportional to the scale a, the time-scale plane
(scaleogram) can be regarded as the time-frequency plane by flipping upside down.

The bottom-left is the scaleogram j.W f /.b; a/j using Meyer wavelet  M . The
top-right and bottom-right are the scaleograms j.W f /.b; a/j using Daubechies 3
wavelet  D3 and Mexican hat wavelet  MH , respectively.

We can detect the position of the cusp from each scaleogram, but these three
scaleograms look different. Therefore, we should choose a proper wavelet function
for our purpose.

When we compare these three scaleograms, we have a problem. The time-
frequency windows of these three wavelets are different both in position and in
shape. By the following lemma, we can align the centers of time-frequencywindows
by translation and dilation (see Fig. 5).
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Fig. 4 The data cuspamax and its scaleograms

Fig. 5 Conceptual scheme of the time-frequency window (left) and center aligned time-frequency
windows (right) of the three wavelets
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Fig. 6 The time-frequency windows of w, M!Tbw, Daw

Lemma 3.3 Assume that both w and its Fourier transformbw are window functions.
Denote by x� and �w, the center and the width of w, and by 
� and �bw, the center
and the width ofbw, respectively. Then,

(i) M!Tbw and TbM!w, and their Fourier transforms are window functions, and
the time-frequency windows of M!Tbw and TbM!w are the same

Œx� C b ��w; x
� C bC�w� � Œ
� C ! ��bw ; 
� C ! C�bw �;

which is illustrated in Fig. 6 (left).
(ii) Daw and its Fourier transform are window functions, and the time-frequency

window of Daw is

Œax� � a�w; ax
� C a�w� � Œ
�=a��bw=a ; 
�=aC�bw=a �;

which is illustrated in Fig. 6 (right).

Lemma 3.4 Let  .x/ be a wavelet function of one variable x 2 R and .x�; 
�/ 2
R
2 be the center of  with 
� ¤ 0. For a given .x0; 
0/ 2 R

2 with 
0 ¤ 0, put

b0 D x0 � x�
�=
0; a0 D 
�=
0: (5)

Then, the center of Tb0Da0 is .x0; 
0/.

Proof By Lemma 3.3, the time-frequency window ofM0TbDaw is

Œax� C b � a�w; ax
� C bC a�w� � Œ
�=a��bw=a ; 
�=aC�bw=a �;

the center of which is .ax� C b; 
�=a/. Solving .ax� C b; 
�=a/ D .x0; 
0/ with
respect to .b; a/, we have (5). ut

Our aim is to align centers of time-frequency windows of several wavelet
functions. Let us fix the center .x0; 
0/ 2 R

2 with 
0 ¤ 0. For every wavelet function
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 of one variable x 2 R with the center .x�; 
�/ 2 R
2, where 
� ¤ 0, Tb0Da0 

is a wavelet function with the center .x0; 
0/ 2 R
2. As far as the scale parameter a

remains to be one dimensional, direct generalization to the multi-dimensional case
is difficult except the tensor product of one-dimensional wavelet functions.

Remark 3.1 By Lemma 2.3, the continuous wavelet transform .WTb0Da0 
f /.b; a/

with respect to Tb0Da0 can be represented as

.WTb0Da0 
f /.b; a/ D h f ; TbDaTb0Da0 i

D h f ; Tab0CbDaa0 i D .W f /.ab0 C b; aa0/;

which can be calculated by existing continuous wavelet transform programs for
.W f /.b; a/, such as the wavelet toolbox in MATLAB.

4 Time-Frequency Information for Blind Signal Separation

Let  p, p D 1; : : : ;L be real wavelet functions. Define the time-frequency
information of sk and xj with respect to the wavelet function  p by

Spk.t; !/ D W psk.t; cb p;1
=!/;

Xp
j .t; !/ D W pxj.t; cb p;1

=!/; ! 2 RC;

where cb p;1
is the center of b p. Note that the continuous wavelet transform of (1)

with respect to  p is

Xp
j .t; !/ D

NX

kD1
aj;k S

p
k.t; !/: (6)

Each continuous wavelet transform of (1) with respect to  p gives candidates for a
set of points explained in §1.2. We anticipate that the intersection of candidates
chosen by all the continuous wavelet transforms gives more precise estimation.
Figure 7 illustrates this idea with the MATLAB sample data cuspamax. In fact,
the intersection makes our estimations of N and A more precise. The details can be
found in [6].
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Fig. 7 Intersection of
candidates given by all the
continuous wavelet
transforms

5 Continuous Multiwavelet Transform

In this section, we present essentials of the continuous multiwavelet transform
according to [5] without proofs. We omit the design of multi-dimensional multi-
wavelets, which is given in [5, §4].

In practical applications, one of the main difficulties to perform such wavelet
analysis with several wavelet functions  p, p D 1; : : : ;P is their choice. Since
localization of TbDa 

p in the time space and localization of its Fourier transform
F.TbDa 

p/ in the frequency space are different in general, we need to choose
a space-scale parameter .b; a/ properly to access to information at a given time-
frequency point.

Definition 5.1 The continuous multiwavelet transform of f 2 L2.Rn/ with respect
to a multiwavelet function ‰ D . p/PpD1 2 L2.Rn/P, which is considered to be a
column vector, is defined by

.W‰f /.b; a/ WD
�
.W p f /.b; a/

�P

pD1; a 2 RC; b 2 R
n:

For an essentially bounded function m 2 L1.Rn/ called multiplier or mask,
define a Fourier multiplier operator m.D/ as a bounded linear operator on L2.Rn/
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such that

.m.D/f /.x/ D F�1�m.
/bf .
/
�
; f 2 L2.Rn/:

Here,

D D .D1; : : : ;Dn/; Dj D �i@=@xj:

The continuous wavelet transform has strong compatibility with Fourier multi-
plier operators defined by homogeneous multipliers. For m 2 L1.Rn/, we define
m.D/. p/PpD1 WD .m.D/ p/PpD1.

Proposition 5.2 ([5], Proposition 3) Let m 2 L1.Rn/ be positively homogeneous
of degree 0, that is, m.a
/ D m.
/ for a 2 RC. Then, for ‰ 2 L2.Rn/P, we have

m.D/W‰f D W‰m.D/f D Wm.D/‰f :

Here, m.D/W‰f means m.D/
�
.W‰f /.�; a/

�
, that is, m.D/ acts on the function

W‰f .x; a/ of x for each fixed a 2 RC.

We give an extended version with two multiwavelet functions ‰1 and ‰2 like in
[16, Chapt.10], although we will use the case when ‰1 D ‰2. Let us introduce the
condition .A‰1;‰2/ for ‰1;‰2 2 L2.Rn/P as follows:

Condition 5.3 (A‰1;‰2) There exists a constant M independent of 
 such that

Z

RC

jc‰1.a
/�c‰2.a
/j da
a
� M; a:e:
 2 R

n n f0g:

Denote by F� WD FT, the complex conjugate of the transpose of a vector F 2 C
P,

and by G�F, the inner product of F, G 2 C
P. For ‰1;‰2 2 L2.Rn/P satisfying

.A‰1;‰2/, define

C‰1;‰2.
/ WD
Z

RC

c‰1.a
/�c‰2.a
/
da

a
: (7)

Since C‰1;‰2.
/ is positively homogeneous of degree zero, C‰1;‰2 2 L1.Rn/. We
abbreviate the condition .A‰;‰/ as .A‰/ and also C‰.
/ D C‰;‰.
/ if ‰ satisfies
.A‰/. Note that if ‰1 and ‰2 satisfy .A‰1/ and .A‰2/, then they satisfy .A‰1;‰2/.
A multiwavelet function ‰ 2 L2.Rn/P is called an analyzing multiwavelet if ‰
satisfies .A‰/ and C‰.
/ is a nonzero constant independent of 
, which is called the
admissibility condition.
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The Riesz transforms, denoted by Rj, j D 1; : : : ; n, are the Fourier multiplier
operators�i Dj=jDj, that is,

Rjf .x/ D F�1


�i 
jj
j

bf .
/
�
:

The Riesz transforms Rjf , j D 1; : : : ; n of real-valued function f are also real-
valued.

It is easy to see the following Lemma 5.4.

Lemma 5.4 ([5], Lemma 4) Let a multiwavelet function ‰ satisfies the admissi-
bility condition.

(i) Each of the two multiwavelet functions

.R1‰I : : : IRn‰/ and .‰IR1‰I : : : IRn‰/

also satisfies the admissibility condition, where we use the conventional
notation of a semicolon to represent the termination of each row, namely,

.F1I : : : IFm/ D .FT
1 ; : : : ;F

T
m/

T:

(ii) If suppc p \ suppc p.��/ D ; for each p, then each of the three multiwavelet
functions <‰, =‰, and .<‰I =‰/ also satisfies the admissibility condition.
Here, < and = denote the real and imaginary parts, respectively.

We have the following orthogonality relation and inversion formula for the
multiwavelet transform.

Theorem 5.5 ([5], Theorem 5)

(i) If ‰1;‰2 2 L2.Rn/P satisfy .A‰1;‰2/, then for f ; g 2 L2.Rn/, we have

hC‰1;‰2.D/f ; gi D
Z

RC


Z

Rn
.W‰2g/.b; a/

�.W‰1 f /.b; a/ db

�
da

anC1 : (8)

(ii) If ‰ 2 L2.Rn/P satisfies .A‰/, then W‰ is a bounded linear operator from
L2.Rn/ to L2.Rn � RC; dbda=anC1/P.

(iii) If ‰1;‰2 2 L2.Rn/P satisfy .A‰1;‰2/ and C‰1;‰2 is a nonzero constant
independent of 
, then any function f 2 L2.Rn/ is reconstructed from its
multiwavelet transform by

f D 1

C‰1;‰2

Z

Rn�RC

.TbDa‰2/
T .W‰1 f /.b; a/

db da

anC1 : (9)
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In particular, if ‰ is an analysing multiwavelet, then we have the inversion formula

f D 1

C‰

Z

Rn�RC

.TbDa‰/
T .W‰f /.b; a/

db da

anC1 : (10)

The right-hand side of the above inversion formula

W�1
‰ F WD 1

C‰

Z

Rn�RC

.TbDa‰/
T F.b; a/

db da

anC1 2 L2.Rn/ (11)

is called the inverse multiwavelet transform of F 2 L2.Rn � RC; dbda=anC1/P.
The integrals in (9), (10) and (11) are interpreted in the weak sense as in [16,
Corollary 10.3].

For the discrete multiwavelet, for example see [22], the scaling functions are
important. In most cases, there are several scaling functions, each corresponds to
.2n � 1/ wavelet functions. On the other hand, in [24, §4.3], Mallat considered
a scaling function for continuous wavelet transform, which aggregates the part of
large a. We can also consider a multiscaling function ˆ as follows.

Theorem 5.6 ([5], Theorem 7) Suppose that ‰1;‰2 2 L2.Rn/P and ˆ1;ˆ2 2
L2.Rn/Q. Also suppose that there exists a constant M such that

Z 1

0

jc‰1.a
/�c‰2.a
/j da
a
C jĉ1.
/�ĉ2.
/j � M a.e. in Rn: (12)

Set

C‰1;‰2Iˆ1;ˆ2.
/ WD
Z 1

0

c‰1.a
/�c‰2.a
/
da

a
C ĉ1.
/�ĉ2.
/ 2 L1.Rn/: (13)

Then, we have the following.

(i) For f ; g 2 L2.Rn/ and a0 2 RC, we have

hC‰1;‰2Iˆ1;ˆ2 .a0D/f ; gi

D
Z a0

0


Z

Rn
.W‰2g/.b; a/

�.W‰1 f /.b; a/ db

�
da

anC1

C 1

an0

Z

Rn
.Wˆ2g/.b; a0/

�.Wˆ1 f /.b; a0/ db: (14)
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(ii) If C‰1;‰2Iˆ1;ˆ2 is a nonzero constant, then any function f 2 L2.Rn/ is
reconstructed by

f D 1

C‰1;‰2Iˆ1;ˆ2

� Z

Rn�.0;a0/
.TbDa‰2/

T .W‰1 f /.b; a/
db da

anC1

C 1

an0

Z

Rn
.TbDa0ˆ2/

T .Wˆ1 f /.b; a0/ db

	
: (15)

Remark 5.7 Let ‰1;‰2 2 L2.Rn/P satisfy that C‰1;‰2 is a constant. If ˆ1;ˆ2 2
L2.Rn/Q satisfies

ĉ
1.
/

�ĉ
2.
/ D

Z 1

1

c‰1.a
/�c‰2.a
/
da

a
; a.e. 
 2 R

n;

then C‰1;‰2Iˆ1;ˆ2 .
/ D C‰1;‰2 a.e. This enables us to construct ˆ’s from ‰’s.

6 Image Separation

The simplest strategy to apply the one-dimensional blind source separation method
to images is reshaping matrices as vectors using the line by line scan, and applying
the one-dimensional blind source separation method. However, this simplest strat-
egy does not use any two-dimensional information of images. Natural images have
pixels where there is a sharp contrast in intensity. The set of such pixels is called
edge. Discontinuities in natural images are generated by edges and most edges are
composed of piecewise continuous curves. In other words, edges of natural images
are essentially one-dimensional objects. By this reason, the intersection of edges of
original images is usually zero-dimensional object, which is mainly composed of
intersections of piecewise continuous curves. As is well known, two-dimensional
wavelet transform can extract edges and the extracted edges can be represented by
wavelet coefficients. Therefore, we work with edges using multiwavelets [1, 13, 22].
For more detail, please refer to [5, §6] and [23, 25, 26].

Let us present a numerical simulation for image separation. In this simulation,
we use the annular sector multiwavelets given in [5, §4] for time-scale informations.
Note that the time-frequency windows of multiwavelets< p and = p are the same
for each p. Density plots of annular sector multiwavelets < p and = p are shown
in the right column of Fig. 8.
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Fig. 8 One of annular sector multiwavelets

The mixing matrix A 2 R
3�3 is a random matrix uniformly distributed in

Œ0:2; 0:8� as follows:

A D
0

@
0:4776 0:4128 0:5193

0:2977 0:7899 0:7354

0:3235 0:5626 0:5734

1

A :

Since the condition number of A is cond.A/ D 880:6528, it implies that A is a good
matrix for inversion. Three 512 � 512 standard gray scale images: Mandril, Boat,
Building are used as the original source images s1, s2, s3 shown in the first row of
Fig. 9. Three mixed images x1, x2, x3 shown in the second row of Fig. 9 are produced
by (1) with the above mixing matrix A. By applying the source reduction method
proposed in [6, §4], we have our estimated images shown in the third row of Fig. 9.
The ordering of estimation images is an unavoidable ambiguity. The correct ordering
should be .s1; s2; s3/  ! .�2; �1; �3/. Our source reduction method sometimes
needs to apply the black & white conversion if necessary by human decision as in
the case the estimated boat image in Fig. 9. This black & white conversion is also
an unavoidable ambiguity.
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Fig. 9 Image separation
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Table 1 Various errors of the estimation

Original Estimated Max error [%] `1-error [%] `2-error [%] SNR [dB]

s1 �2 0.43688 0.35445 0.32128 49.8624

s2 �1 0.24901 0.18251 0.17515 55.1318

s3 �3 0.53606 0.4435 0.42354 47.4621

The performance of our estimation �1, �2, �3 are very accurate as shown in
Table 1.

Acknowledgements The author would like to thank the anonymous referees for their valuable
comments and useful suggestions to improve this paper.
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