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Abstract Bone morphogenetic proteins (BMPs) are originally identified with their 
ability to induce heterotopic ossification. Several decades of studies have demon-
strated that BMPs have pleiotropic functions in numbers of tissues for many differ-
ent aspects. This review focuses on the effects of BMP signaling on skeletogenesis 
and craniofacial development. We will summarize recent progresses on in  vitro 
studies, animal models, and human genetics to uncover highly context-dependent 
functions of BMP signaling, including unexpected outcomes, and the mechanisms 
of how BMP signaling regulates bone mass. We will also summarize reported find-
ings about BMP signaling-related genes identified as causes of human diseases in 
skeletal system such as chondrodysplasia, facial cleft, and craniosynostosis.
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1  Introduction

Bone morphogenetic proteins (BMPs) were discovered and named in 1965 by 
Marshall Urist, who initially identified the ability of a then unknown factor in the 
bone to induce ectopic bones in muscle [204]. In the past 50 years, the osteogenic 
function of BMPs has been extensively examined [188]. The US Food and Drug 
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Administration (FDA) has approved BMP2 and BMP7 for clinical use in long bone 
open fractures, nonunion fractures, and spinal fusion. Therefore, the exogenous role 
of BMPs in the bone is well known in orthopedics. However, it is crucial to under-
stand endogenous or physiological roles of BMPs during skeletogenesis and bone 
remodeling.

BMP signaling plays important roles in a variety of cell types in the skeleton 
including osteoblasts, chondrocytes, and osteoclasts. The osteogenic function of 
BMPs and BMP signaling has been further investigated over the last decade using 
gene-targeting technology in animals. This chapter focuses on the physiological 
roles of BMP signaling on bone formation, bone resorption, and bone mass control, 
specifically via its action on osteoblasts or chondrocytes by reviewing mouse 
genetic studies of skeletal development and bone remodeling. This chapter also 
focuses on roles of BMP during craniofacial development including formation of 
calvaria and mandible.

2  Embryonic Skeletogenesis

2.1   Developmental Stages of Ossification

One of the key components derived from the paraxial mesoderm is the bone. The 
skeleton which includes the bone is generated from three distinct lineages: (1) the 
somites which generate the axial skeleton, (2) the lateral plate mesoderm which 
generates the limb skeleton, and (3) the cranial neural crest which generates the 
branchial and craniofacial bones and cartilage. The skeleton in mammals is formed 
through two distinct processes during embryogenesis: intramembranous ossifica-
tion and endochondral ossification [51, 110]. Both processes involve the transfor-
mation of a preexisting mesenchymal tissue into the bone tissue as they are called 
“bone formation” or “osteogenesis.” The intramembranous ossification is a direct 
conversion of mesenchymal tissue into the bone, which primarily occurs in flat 
bones including the skull, the mandible, and the clavicle. On the other hand, endo-
chondral ossification, which occurs in long bones, is an indirect conversion of mes-
enchymal tissue into the bone; i.e., the mesenchymal tissue differentiates into 
cartilage and this cartilage is later replaced by the bone.

2.2   BMP and Osteogenesis

At cellular levels, the in vivo physiological process of “osteogenesis” or “bone for-
mation” can be described as two distinct processes: (1) intramembranous ossification 
through osteoblastogenesis that is direct differentiation of mesenchymal cells into 
bone cells (i.e., osteoblasts) and (2) the endochondral ossification, which includes an 
initial chondrogenesis that is differentiation from mesenchymal cells into cartilage 
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cells (i.e., chondrocytes) followed by the apoptosis of chondrocyte secondary differ-
entiation from osteoblast precursor to osteoblasts via osteogenesis. Therefore, “osteo-
genesis” encompasses osteoblastogenesis and chondrogenesis. The key molecules of 
BMP pathway involved in osteogenesis are listed (Table 1). Note that BMPRIA is a 
potent receptor of BMP2 and BMP4 [66], as is ACVRI for BMP7 [136].

In mice, BMP2 is expressed in a variety of sites including the developing limb 
buds [134], mesenchymal derivatives of which undergo endochondral ossification. 
The osteogenic (i.e., anabolic) roles of BMPs have been extensively examined over 
50 years, and human recombinant BMP2, BMP4, BMP6, and BMP7 proteins have 
been vigorously used for mammalian cells to induce their differentiation in culture. 
To induce chondrogenesis or osteogenesis, primary cells or pluripotent mesenchy-
mal cell lines such as C3H10T1/C3H10T2 [43], C2C12 [99], ATDC5 [186], N1511 
[90], MC3T3 [13], and ST2 [219] have been treated with BMPs. In these cells, 
BMPs directly activate Sox9 and Cbfa1, transcriptional master genes required for 
chondrogenesis and osteoblastogenesis, respectively [114, 160, 232], to secondarily 
induce expression of chondrogenic (i.e., aggrecan, ColII, ColIX, ColX, etc.) or 
osteogenic (i.e., ALP, osteocalcin, BSP, Col1, etc.) markers. Based on the accumu-
lated evidence of anabolic actions of BMPs, BMP2 and BMP7 have been approved 
by the US FDA for clinical application [56, 62]. It is noted that average circulating 
serum levels of BMPs are around 300~600 pg/ml [102, 206] while a typical dosage 
range of BMPs in culture experiments is 0~300 ng/ml. Also expression levels of 
BMPs by primary osteoblasts and pluripotent mesenchymal cell lines are quite low 
demonstrating a significant discrepancy between levels of BMPs found in tissues 
and those used for pharmacological experiments.

In addition to BMP signaling, the impacts of Wnt signaling on skeletogenesis 
and bone formation have been investigated for a decade [16, 57, 63, 64, 109]. The 
relationship of BMP signal with Wnt signal in the skeletal system is of interest. In 
vitro experiments using pluripotent mesenchymal cell lines or primary osteoblasts 
to test the interaction between BMP and Wnt signaling in osteoblasts have yielded 
both synergistic and antagonistic results: C2C12 cells and primary osteoblasts 
induce Wnt3a expression and stabilize Wnt/β-catenin signaling upon BMP2 treat-
ment [7, 33, 141]. Alternatively, C3H10T1/2 cells treated with Wnt3a induce BMP4 
expression [215]. These facts suggest the presence of a positive autocrine loop 

Table 1 The key molecules 
in BMPs’ signaling cascade 
regarding osteogenesis

Function Key molecules

Antagonists Noggin, Chordin, Gremlin
Ligands BMP2, BMP4, BMP6, BMP7
Type I receptors BMPRIA/ALK3, ACVRI/ALK2, 

BMPRIB/ALK6
Type II receptors BMPRII, ActRIIA, ActRIIB
R-Smad Smad1, Smad5, Smad8
Co-Smad Smad4
I-Smad Smad6, Smad7
Non-Smad pathways p38 MAPK, TAK1
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between BMP and Wnt signaling pathways [33, 171]. In contrast, primary osteo-
blasts show increased Wnt canonical signaling when BMP signaling is inhibited 
upon treatment with Dorsomorphin, an inhibitor for BMP type I receptors [92]. 
Wnt3a treatment represses BMP2-dependent Id1 expression in C2C12 cells [152]. 
Similarly, treatment of cultured skull bone with a BMP antagonist Noggin increases 
Wnt canonical signaling [95]. Moreover, one study investigated intracellular cross 
talk between BMP and Wnt pathways using uncommitted bone marrow stromal 
cells [127]. Dishevelled homolog 1 (Dvl1) is a cytoplasmic protein known to act as 
a signaling molecule for Wnt pathway. This study found that BMP2 antagonizes 
Wnt3a-induced proliferation and Wnt/β-catenin activation through an interaction 
between Smad1 and Dvl1. Another intracellular interaction via Pten/Akt pathway 
has been reported in hair follicle stem/progenitor cells [234]; however, this pathway 
is less likely functional in osteoblasts [68]. Taken together, these facts suggest that 
both positive and negative feedback loops are present between the two signaling 
pathways, BMP and Wnt, in a context-dependent manner.

2.3   Functional Studies in Animal Models

As detailed in Chap. 4, the BMP family members are involved with early patterning 
of the mouse embryo. Conventional knockout mice for the key genes (i.e., BMP2, 
BMP4, and BMP7 and their receptors BMPRIA and ACVRI) are lethal, and, thus, 
it is not possible to investigate bone development and remodeling using these mouse 
models [49, 61, 132, 143, 146, 216, 233]. To avoid the embryonic lethality, a strat-
egy of conditional knockout mice using a Cre-loxP system has been employed.

Both osteoblasts and chondrocytes are derived from mesenchymal cells and are 
responsible for the bone and cartilage, respectively. Recent animal studies have 
been designed to investigate the physiologic function of BMP signaling in these 
different cell types (mesenchymal cells, chondrocytes, and osteoblasts) indepen-
dently (Table 2). Interestingly, BMP signaling both in chondrocytes and mesenchy-
mal cells positively controls bone size and mass while negatively controls the same 
in osteoblasts. Accumulated evidence has revealed similarities between mesenchy-
mal cells and chondrocytes and differences between these cells and osteoblasts 
regarding how BMP signaling affects their behavior (i.e., bone size).

2.3.1  BMP and Osteoblasts

An osteoblast-specific conditional deletion of Bmpr1a using the Og2-Cre mouse 
line, in which Cre recombination is restricted in differentiated osteoblasts under the 
osteocalcin promoter, was first reported in 2004 [145]. The co-Smad, Smad4, was 
also conditionally deleted in osteoblasts using another Og2-Cre mouse line [197]. 
Interestingly, these two studies demonstrated that the response of osteoblasts after 
loss of BMP signaling is age dependent; trabecular bone volume is lower in young 
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mutant mice but higher in aged mutant mice. In addition, the activity of osteoclasts 
is reduced in aged osteoblast-specific Bmpr1a-deficient mice, which may have led 
to the complex skeletal phenotype [145, 197]. These facts suggest that BMP signal-
ing in differentiated osteoblasts controls the balance between bone formation by 
osteoblasts and resorption by osteoclasts, thereby affecting the final outcome of the 
amount of bone mass in an age-dependent manner. Increased bone mass in Bmpr1a- 
deficient mice appeared to be challenging to the general concept of BMPs as osteo-
genic inducers.

Table 2 Mouse studies of BMP signaling in different cell type

Promoter to 
drive transgene 
or Cre

BMP 
signal Stage

Bone 
mass Ref.

Chondrocyte

Bmpr1a cKO Gdf5-Cre Down E12.5–E16.5, 
7w, 9M

Reduced [176]

Double knockout of 
Bmpr1a and Bmpr1b

Col2-Cre Down E12.5–E16.5 Reduced [227]

Bmp4 overexpression Col11a2 Up E18.5 Increased [202]
Noggin overexpression Col11a2 Down E18.5 Reduced [202]
Double cKO of Smad1 
and Smad5

Col2-Cre Down E12.5–
newborn

Reduced [172]

Bmpr1a cKO Aggrecan- 
CreER

Down 2, 4, 8, 20w Reduced [86]

Acvr1 cKO Col11a2-Cre Slightly 
down

E17.5, P0 Not 
reported

[174]

Mesenchymal cell

Double cKO of Bmp2 
and Bmp4

Prx1-Cre Down E10.5–
newborn, 3w

Reduced [11]

Bmp2 cKO Prx1-Cre Down 5M Reduced [201]
Bmpr2 cKO Prx1-Cre Normala 2 M Increased [130]
Osteoblast

Bmpr1a cKO Ogl2-Cre Down 3M
10M

Reduced
Increased

[145]

Smad4 cKO Ogl2-Cre Down 3~12w
11M

Reduced
Increased

[197]

Bmp4 overexpression 2.3 kb Col1 Up E18.5 Reduced [158]
Noggin overexpression 2.3 kb Col1 Down E17.5, 3w Increased [158]
Bmpr1a cKO 3.2 kb 

Col1-CreER
Down E18.5, 3w, 5M Increased [92, 94, 

95]
Acvr1 cKO 3.2 kb 

Col1-CreER
Down E18.5, 3w, 

5M
Increased [91]

Osteoclast

Bmpr1a cKO Ctsk-Cre Down 8w Increased [157]
Osteocyte

Bmpr1a cKO Dmp1-Cre Down 1M, 2M, 4M Increased [93, 124]
aActivin signal is increased while BMP signal is unchanged
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Comprehensive functions of BMP signaling in skeletogenesis have been further 
investigated and led to a new paradigm that alternation of Wnt signal by BMP is 
the key modulator of skeletal development. The loss of function of BMP signaling 
via BMPRIA in osteoblasts upregulates Wnt canonical signaling during embryonic 
and postnatal bone development, suggesting a negative regulation of Wnt signaling 
by BMP [92, 95]. These studies show that the upregulation of Wnt signaling is at 
least in part mediated by suppression of Wnt inhibitors including Sost/sclerostin 
and Dkk1 because both Sost/sclerostin and Dkk1 are direct targets of BMP signal-
ing (Fig. 1). In addition, Sost expression was severely downregulated in Bmpr1a- 
deficient bones as assessed by microarray analysis [92, 95]. Interestingly, both 
Smad-dependent and Smad-independent pathways appear to contribute to Dkk1 
expression, whereas Sost/sclerostin requires only Smad-dependent signaling, sug-
gesting differential regulation of these genes by BMP signaling via BMPRIA [92]. 
BMP and Wnt signaling regulate the development and remodeling of many tissues 
and interact synergistically or antagonistically in a context- and age-dependent 
manner in vivo [17, 77]. Lastly, the role of BMPR1A in osteocytes was recently 
investigated by conditional disruption of Bmpr1a using Dmp1-Cre mouse line 
from two independent groups [93, 124]. The resulting mutant mice demonstrated 
an increased bone mass concomitant with accelerated cell proliferation and SOST 
reduction [93, 124]. It is interesting that the increased bone phenotype was much 
stronger in the osteocyte-specific condition (i.e. Dmp1Cre:Bmpr1a mice)  compared 

Fig. 1 A proposed model of the relationship between the BMP signaling via BMPRIA and the 
canonical Wnt signaling in osteoblasts. Both Dkk1 and Sost/sclerostin are downstream targets of 
the BMP signaling. The BMP signaling upregulates Sost expression primarily through the Smad- 
dependent signaling while it upregulates Dkk1 expression through both the Smad and non-Smad 
signaling pathways (p38 MAPK). As DKK1 and SOST/sclerostin act as Wnt signaling inhibitors, 
BMP signaling in osteoblasts, in turn, inhibits osteogenesis and decreases bone mass. DKK1 and 
Sost/sclerostin play an important role in regulating bone mass and mechanical strength as down-
stream effectors of BMPR1A signaling in bone by taking balances between BMP signaling and 
Wnt signaling
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with osteoblast-specific condition (i.e. Col1Cre:Bmpr1a mice). In addition, similar 
to the Col1Cre:Bmpr1a mice, Wnt signal is activated while RANKL is suppressed 
in the Dmp1Cre:Bmpr1a mice [93]. This fact is very intriguing because recent 
reports show osteocytes as a primary source of RANKL production [153, 219] and 
therefore BMPR1A can be a key molecule in osteocytes by regulating RANKL 
production.

Similarly, the loss of function of BMP signaling in osteoblasts via ACVR1, 
another type I receptor, results in increased bone mass [91]. In this mouse model, 
upregulation of Wnt canonical signaling is observed concomitant with reduction in 
Dkk1 and Sost expression during embryonic and postnatal bone development [91]. 
Because the resulting Acvr1 mutant mice show similar bone phenotypes to those 
found in Bmpr1a mutant mice, despite structural and functional similarities between 
two receptors, the other does not compensate loss of one receptor.

Sost/sclerostin was originally reported as a member of the BMP antagonist DAN 
family [111, 214]. Although DAN family members modulate both BMP and Wnt 
signaling in Xenopus [19, 79, 167], recent studies suggest a primary role of Sost/
sclerostin in Wnt signaling in mouse and humans: Sost/sclerostin is not a BMP 
antagonist [207] but rather a Wnt inhibitor [208] that binds the Wnt co-receptors 
low-density lipoprotein receptor-related proteins 5 and 6 (LRP5 and LRP6) [123, 
183]. It is known that both DKK1 and Sost/sclerostin inhibit Wnt/β-catenin signal-
ing by binding to co-receptors. As both Dkk1 and Sost/sclerostin are secreted 
proteins expressed by osteoblasts, their role in regulating bone mass has been inves-
tigated using human and mouse genetic approaches. Although conventional knock-
outs of Dkk1 die in utero from defective head induction and limb formation [151], 
mice heterozygous for Dkk1 (Dkk1+/− mice) exhibit a high bone mass (HBM) phe-
notype [150], while overexpression of Dkk1 in osteoblasts causes osteopenia [118]. 
In addition, increased DKK1 expression in bone marrow has also been associated 
with lytic bone lesions in patients with multiple myeloma [199].

Similar to Dkk1+/− mice, conventional knockouts of Sost are viable and exhibit 
increased bone mass [122]. In humans, the loss of function and hypomorphic muta-
tions in SOST cause sclerosteosis [9, 30] and van Buchem disease [10, 191], respec-
tively, with a high bone mass (HBM) phenotype. These mutants share the HBM 
phenotypes with other gain of function of LRP5 mutation effects, due to defect in 
Dkk1-mediated regulation of LRP5 in humans [26, 125, 209] and overexpression of 
Lrp5 in mice [6]. In contrast, the loss of function of LRP5 leads to OPPG with low 
bone mass [59], which is similar to the bone phenotype of mice overexpressing Sost 
[214]. In addition, recent genome-wide SNP-based analyses identified a significant 
association between bone mineral density and the SOST gene locus [76, 194, 226]. 
Consistent with these observations, conditional knockouts of Bmpr1a, which show 
reductions in expressions of Dkk1 and Sost, show an HBM phenotype [92–95]. 
Furthermore, increased expression of Dkk1 and Sost in osteoblasts by constitutive 
activation of BMPRIA signaling is associated with a partial rescue of the bone phe-
notype of Bmpr1a-deficient mice [92]. These facts support the interpretation that 
Dkk1 and Sost/sclerostin act physiologically as inhibitors of Wnt canonical signal-
ing and therefore as negative regulators of bone mass.
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2.3.2  BMP and Chondrocytes

When BMP signaling was enhanced by overexpression of Bmp4 in chondrocytes 
using a chondrocyte-specific Cre mouse line, the mutant mice demonstrated an 
increase in bone mass [202]. By contrast, when the BMP signaling was attenuated 
by overexpression of Noggin, an antagonist for BMPs (BMP2, BMP4, BMP5, 
BMP6, and BMP7) [236], in chondrocytes, the mutant mice showed a decrease in 
bone mass [202]. Similarly, the loss of function of BMP signaling via BMPRIA in 
chondrocytes, which is a potent receptor for BMP2 and BMP4, demonstrated 
impairment of articular cartilage and growth plate cartilage, resulting in decreased 
bone size [86, 176, 227]. Mice deficient for Bmpr1a or Bmpr1b in chondrocytes can 
form intact cartilage during skeletal development, while double mutant embryos 
deficient for both Bmpr1a and Bmpr1b exhibit a severe defect in cartilage (i.e., 
chondrodysplasia) around embryonic day 12.5 (E12.5) to E16.5 [227]. These facts 
suggest a possible functional compensation mechanism between BMPR1A and 
BMPR1B in chondrocytes during early cartilage development in growth plates 
[227]. Mice deficient in Acvr1 in chondrocytes using a Col2-Cre-driven conditional 
deletion are viable but exhibit defects in the development of cranial and axial struc-
tures [174]. The mutant mice exhibit shortened cranial base, and cervical vertebrae 
are hypoplastic. Unlike compound mutant mice for Bmpr1a and Bmpr1b, com-
pound mutant mice for Avcr1 and Bmpr1b can develop cartilage primordia and sub-
sequent bones through endochondral ossification [174], suggesting that BMP 
signaling through ACVR1 plays a relatively minor role compared with other type 1 
receptors during chondrogenesis.

Recent study using aggrecan CreERT2-Cre mice to conditionally disrupt Bmpr1a 
in chondrocytes demonstrated a severe reduction in bone length and bone mass in 
the mutant femur at the age of 1  month [86], indicating a more distinct role of 
BMPR1A in chondrocytes postnatally which is not redundant with other receptors. 
Note that cell proliferation assessed by BrdU incorporation was strikingly reduced 
in the mutant mice at 2 weeks of age, which may reduce the size of cartilaginous 
foundation during the process of endochondral bone formation, leading finally to 
reduced bone length and mass. Taken together, these facts strongly demonstrate that 
BMP signal in chondrocytes plays a positive and potent role in regulating bone mass.

2.3.3  BMP and Mesenchymal Cells

Similar to chondrocytes, BMP signaling in mesenchymal cells contributes to an 
increase in bone mass (Table 2). A mesenchymal cell-specific Cre mouse line, 
Prx1- Cre, is used for these studies since Cre is active in mesenchymal cells as 
early as E9.5 in this line [128]. The simultaneous disruption of Bmp2 and Bmp4 in 
mesenchymal cells resulted in impairment of osteogenesis with reduced bone size 
[11]. Disruption of Bmp2 in mesenchymal cells impaired the initiation of fracture 
healing, presumably due to a defect in endochondral bone formation after a bone 
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fracture, in which chondrocytes derived from mesenchymal cells play an impor-
tant role [201]. These facts demonstrate the necessity of BMP signaling in mesen-
chymal cells for proper bone mass during development and remodeling. Recently, 
the role of type 2 receptor, BMPRII, in the skeleton was investigated using the 
Prx1-Cre mouse line. The resulting mutant mice are expectedly normal probably 
due to the compensation mechanism by other type 2 receptors, ACVR2A and 
ACVR2B, suggesting BMPRII is not required for endochondral ossification in the 
limb [54]. The same group further investigated the mutant mice and found 
increased bone mass at 2 months after birth [130]. While BMP signal is unchanged, 
activin signal is impaired in mutant mice, leading to increased osteoblast activity. 
This study raises the possibility that type 2 receptor segregation and/or competi-
tion could be a generalized mechanism by which BMP and activin signaling 
interact.

2.3.4  BMP and Osteoclasts

A putative coupling theory in bone metabolism states that in general, bone anabo-
lism is locally induced by bone catabolism [71]. Osteoblasts control bone resorp-
tion by expressing RANK ligand (RANKL) and its decoy receptor, osteoprotegerin 
(OPG) [112, 187]. BMPs induce osteoclastogenesis via the RANKL-OPG path-
way in an osteoblast-dependent manner. Exogenous treatment of BMP2 in vitro 
induces osteoclastogenesis by upregulating RANKL while treatment with BMP 
antagonist Noggin blocks osteoclastogenesis [1, 80, 159, 163]. In vivo studies 
using genetically engineered mutant mice demonstrated similar results (Table 2). 
Gain of function of BMP signaling by Bmp4 overexpression in osteoblasts results 
in an increase of osteoclastogenesis and reduced bone mass [158]. In contrast, the 
loss of function of BMP signaling by disruption of Bmpr1a or Noggin overexpres-
sion results in reduction of osteoclastogenesis, leading to an increase of bone mass 
[145, 158] due to a decrease in the RANKL-OPG ratio [94, 95]. Taken together, 
these facts indicate that BMP signal has an indirect positive role in osteoclast func-
tion through osteoblast as a secondary effect. In a nonhuman primate bone defect 
model, treatment with BMP2 increases the size of the defect in association with 
increased osteoclast number and bone resorption, which is followed by bone for-
mation [182].

In addition, it is also possible that BMPs directly control osteoclasts since Bmp2 
and its receptor Bmpr1a both are expressed in osteoclasts [55, 98]. When BMP sig-
naling through BMPR1A is conditionally ablated in osteoclasts using a cathepsin 
K promoter (CtsK) to drive Cre, bone mass increased in association with reduced 
osteoclast number in the bone as expected [157] (Table 2). Interestingly, both 
bone formation rate and osteoblast number assessed by bone histomorphometric 
analysis are greater in the mutant mice compared to their control littermates. This 
evidence suggests a possibility that BMPR1A signaling in osteoclasts negatively 
regulates osteoblast function though its downstream target genes within osteoclasts. 
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Several recent reports have emerged revealing factors secreted by osteoclasts 
such as sphingosine- 1-phosphate regulate osteogenesis [164]. It is an interest-
ing future direction how BMP signaling involves osteoclast-mediated osteoblast 
differentiation.

2.3.5  BMP and Other Cell Types in Skeletal System

Angiogenesis is another necessary step in new bone formation in skeletal devel-
opment as well as in bone remodeling after fracture [31, 97]. Both BMP2 and 
BMP7 are known to induce angiogenesis by associating with other growth factors 
such as VEGF (vascular endothelial growth factor), bFGF (basic fibroblast growth 
factor), and TGF-β1 [40]. Overexpression of BMP9  in muscle induces hetero-
topic bone formation similar to BMP2 [34, 166]. As BMP9 is abundantly 
expressed in endothelial cells that are a primary cell type for angiogenesis [38], it 
is possible that BMP signaling in endothelial cells synergizes anabolic bone for-
mation. The mechanism and origin of precursor cells for heterotopic bone forma-
tion, which is pathologically observed in fibrodysplasia ossificans progressiva 
(FOP) patients, is under investigation [96, 129, 229]. Taken together, the fact that 
BMPs implanted subcutaneously induce ectopic bone and increase bone mass 
[204] is likely due to the primary effects of BMP signaling on cells that are posi-
tive regulators for bone mass, including mesenchymal cells, chondrocytes, and 
endothelial cells (Table 3).

The current application of BMP therapy via systemic and local treatment can 
affect multiple cell types simultaneously in bone tissue including mesenchymal 
cells, chondrocytes, osteocytes, osteoblasts, osteoclasts, and endothelial cells, 
because typically a BMP2-soaked collagen sponge is applied around bone defects 
in orthopedic surgeries and the BMP2 diffuses to other tissues around the bone. 
Thus, it is important to evaluate the effects of BMPs on more than just osteoblasts. 
In addition to these cell types, we recently investigated the effects of high-dose 
BMP2 on periosteum and found that high concentration of BMP2 can reduce cell 
proliferation and increase apoptosis via DKK1 and SOST by inhibiting Wnt activity 
in human primary periosteal cells [102]. Interestingly, a lower concentration of 
BMP2 (i.e., 50–200 ng/ml) shows a trend of decreased caspase activity which is 

Table 3 A variety of cell types possibly affected by BMP therapy in the bone

Cell types that can increase bone mass Cell types that can reduce bone mass

Mesenchymal cells Osteoclasts
Chondrocytes Osteoblasts・osteocytesa

Osteoblasts・osteocytes Periosteal cells
Endothelial cells

aNote that both osteoblast and osteocyte may have an indirect effect on bone mass through osteo-
clast activation via RANKL
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opposite to the effect of higher concentrations of BMP2 (500–2000  ng/ml) that 
shows an increased caspase activity, suggesting a “biphasic nature” of BMP2 
depending on its concentration. Note that BMP2 belongs to the TGF-beta superfam-
ily and TGF-beta also has biphasic effects in a concentration-dependent manner 
with distinct molecular mechanisms [218]. This study is clinically significant 
because BMP2 is generally applied around the periosteum in orthopedic surgeries 
for fracture repair and spinal fusion and, therefore, it is important to delineate the 
effects of the BMP2 concentration on human periosteum-derived cells. In addition, 
the BMP2 concentration of clinical applications is extremely high (i.e., 1.5 mg/ml 
[InFUSE Bone Graft/LT-CAGE Lumbar Tapered Fusion Device. Summary of safety 
and effective data premarket approval application P000058, 2002, US Food and 
Drug Administration, Sliver Spring, MD, http://www.accessdata.fda.gov/scripts/
cdrh/cfdocs/cftopic/pma/pma.cfm?num=P000058]), compared with the BMP2 con-
centration of cell basis studies (i.e., 0~300 ng/ml) as described before. It is possible 
that the negative role of BMP2 on cell proliferation leads to a reduction in bone 
mass because the cell proliferation is an initial phase prior to the cell differentiation 
phase that is required for new bone formation (Table 3).

The potential effects of BMP signal on mesenchymal cells, chondrocytes, and 
osteoblasts have been discussed. It is possible that chondrocytes or mesenchymal 
cells increase bone mass by responding to BMPs while osteoblasts or osteocytes 
reduce net bone mass (Fig. 2). This possibility supports a physiological role of 
BMPs in endogenous bone formation and remodeling, while the current view that 
BMPs enhances bone formation reflects a pharmacological role. Apparently, BMP 
signal has a different function depending on each context (i.e., endogenous vs. 
exogenous, low dose vs. high dose, chondrocyte vs. osteoblast).

Fig. 2 Possible effects of BMP signal induced by BMPs on mesenchymal cells, chondrocytes, 
osteoblasts, and osteocytes. Based on the recent progresses shown in Tables 2 and 3, it is possible 
that BMP signaling in chondrocytes or mesenchymal cells can function to increase cell prolifera-
tion, bone size, mass, density, and mechanical strength while BMP signaling in osteoblasts or 
osteocytes may have opposite outcomes through regulating balance between bone formation and 
resorption
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2.4   BMP and Bone-Related Diseases

Studies of human mutations also suggest the importance of BMP signaling for 
skeletogenesis and bone-related diseases such as chondrodysplasia and fibrodyspla-
sia ossificans progressiva [185, 198]. Mutations in genes involving BMP signaling 
associated with skeletal abnormalities in humans are summarized in Table 4 
[5, 8–10, 30, 37, 41, 42, 115, 116, 168, 191, 225]. While the association of each 
molecule with its skeletal abnormality is known (Table 4), precise molecular mech-
anisms including tissue source and cell type responsible for the pathogenesis are 
still under investigation.

3  Craniofacial Development

3.1   Head Induction

Soon after implantation and before gastrulation, one group of cells formed at the 
distal tip of the visceral endoderm moves along one direction to form the anterior 
visceral endoderm (AVE). The AVE acts as a signaling center to instruct underneath 
epiblast (embryonic ectoderm) to form the future head [103, 193]. Nodal signaling 
plays a critical role for migration of the AVE [44, 222]. BMP signaling mediated by 
BMPR1A is critical to orient migration of the AVE [147, 221]. Similarly, BMPR1A 
signaling in epiblast regulates functions in the AVE for head induction [39]. The 
loss of Bmp4 and Bmp2 affect normal head formation; however, usage of different 

Table 4 Skeletal abnormalities associated with the molecules in BMP signaling

Gene Disease Ref.

BMP2 regulatory element Brachydactyly type A2 [37]
BMP4 Poly/syndactyly [8]
CDMP1/GDF5 Acromesomelic chondrodysplasia [198]

Brachydactyly type A1 [41]
Brachydactyly type C [168]

GDF6 Hemi-vertebrae, polydactyly, Klippel–Feil, rib 
malformation, spondylothoracic dysostosis

[5]

GDF3 Scoliosis, Klippel–Feil, vertebral fusion [225]
SOST Sclerosteosis [9, 30]

Van Buchem disease [10, 191]
BMPR1B Brachydactyly type A2 [116]

Acromesomelic chondrodysplasia [42]
ALK2 Fibrodysplasia ossificans progressiva [185]
NOGGIN Brachydactyly type B [115]
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receptors in this context is not fully understood [32, 216, 233]. These facts suggest 
that BMP signaling is critical for induction of the head structure around the gastru-
lation stage and causes of some of craniofacial abnormalities may be traced back to 
such early stages.

3.2   Facial Development and Abnormalities

Fetuses (by the end of 5 weeks for humans and at 10.5 days of mice) develop the 
frontonasal prominence (FNP) [154] (Fig. 3). Neural crest cells (NCCs) formed at 
the dorsal ectodermal midline in vertebrate embryos migrate laterally and ventrally 
on all axial levels [24]. Cranial neural crest cells (CNCCs) migrate into the FNP and 
branchial arches and differentiate to most of the facial tissues. The FNP further 
splits into four processes, a pair of the medial nasal process and a pair of the lateral 
nasal processes [195, 200] (Fig. 3). The maxillary and mandibular processes are 
derived from first branchial arch. The face is formed by fusion of these primordial 
structures, namely, four processes developed from the FNP and the paired maxillary 
and mandibular processes. Fusion of the two medial nasal processes at the midline 
provides the continuity of the nose, the middle upper lip, and the primary palate. 
Fusion of the medial nasal and maxillary prominences provides the continuity of 
the upper lip and jaw.

Fig. 3 Facial development and fusion of facial processes. During early facial development, pairs 
of the medial nasal processes and the lateral nasal processes are developed from the frontonasal 
prominences. Pairs of the maxillary process and the mandibular processes are developed from the 
first and second pharyngeal arches, respectively. Failure of the fusion of these processes causes 
facial clefts as detailed in the text. BMPs and related molecules play a critical role in the fusion 
process
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3.2.1  BMP and Cleft Lip

Failure of fusions of any processes will develop facial cleft. For examples, failure of 
fusion between the medial nasal and the maxillary processes results in uni- or bilat-
eral cleft lip and that between the lateral nasal and the maxillary processes results in 
oblique facial cleft. The fusion of these processes is critical for formation of the lip 
and the alveolar ridge in the primary palate. Following closure of the primary palate, 
closure of the secondary palate takes place by elevation of the palatal shelves. In 
some cases, these facial clefts occur alone (cleft lip without cleft palate), while other 
cases, these clefts accompany cleft palate (cleft lip with cleft palate) [45]. Studies in 
human genetics and animal models reveal several genes involved in development of 
cleft lips such as mutations in MSX1, tumor protein 63 (TP63), interferon regulatory 
factor 6 (IRF6), and fibroblast growth factor receptor 1 (FGFR1) [27, 28, 45]. Since 
MSX1 is one of the established downstream targets of BMP signaling, involvement 
of BMP signaling during fusion process for lip formation has been speculated. 
Disruption of Bmpr1a in a dental epithelial-specific manner using Nestin-Cre results 
in bilateral cleft lip in association with increased apoptosis in the medial nasal pro-
cesses [126] (Fig. 3).

3.2.2  BMP, Facial Cleft, and Midline Structure

Craniofacial syndromes that include median facial cleft are believed to be caused by 
dysplasia of the frontonasal prominence [181]. When the fusion between left and 
right medial nasal processes fails, that likely results in midface clefting [23]. In 
humans, it is reported that mutations in aristaless-related homeobox transcription 
factor 3 and 4 (Alx3 and Alx4) are identified in frontonasal dysplasia patients (FND 
OMIM ID, 136760; FND2 OMIM ID, 613451) [22, 203, 205]. FND is character-
ized by hypertelorism, severely depressed nasal bridge and ridge, and bifid nasal tip. 
In the mouse, similar phenotypes are seen in Alx3/Alx4 or Alx1/Alx4 compound 
mutant mice [23, 169]. A significant increase of apoptosis is detected in the out-
growing frontonasal prominence at E10, which is proposed to be the underlying 
cause of the subsequent nasal cleft [23]. Potential involvement of BMP signaling in 
FND is poorly understood. However, it is reported that a gain-of-function mutation 
in Msx2 causes midface clefting [217]. Neural crest-specific expression of caBm-
pr1a results in short nasal septum due to increased cell death [67] (Fig. 3). The 
amount of Hedgehog signaling is known to be strongly associated with alterations 
in midline facial structures [29, 231]. Since BMP signaling and Hedgehog signaling 
regulate each other in highly context-dependent manner, it is possible to speculate 
that BMP signaling may also play a critical role in midline development and failure 
of precise control of signaling activity may result in medial facial cleft and FND.

There are several evidences indicating that increased BMP signaling leads to a 
reduction or loss of the midline structure. Noggin mutant mice develop a microform 
of holoprosencephaly (HPE) [113]. The fact that compound mutations of Noggin 
and Chordin results in variable forms of HPE [104] suggests that levels of BMP 
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signaling are associated with severity of HPE. It is reported that BMP ligands inter-
act with NODAL, another TGF-beta superfamily ligand, and it is possible that 
increased availability of BMP ligands because of the loss of their binding antago-
nists (Noggin and Chordin) secondarily influences NODAL signaling activity that 
plays a critical role in head formation soon after gastrulation [223, 224]. Alternatively, 
but not exclusively, it is also possible to speculate that increased BMP signaling 
activity may suppress Hedgehog activity. In tooth development, BMP signaling has 
been shown to negatively regulate Hedgehog signaling activity [117]. It is reported 
that disruption of Shh in mice results in holoprosencephaly and cyclopia [35] and 
mutations in SHH in human are associated with holoprosencephaly [20, 175, 190]. 
Thus, there exists a possibility of cross talk with increased BMP signaling activity 
suppressing Hedgehog signaling leading to midline hypoplasia.

3.2.3  BMP and Cleft Palate

During palatogenesis, first a pair of palatal shelves is formed downward around 7 
weeks of gestation in humans and E11.5 in mice with interposition of the tongue. 
Fetal growth allows downward movement of the tongue to reorient palatal shelves 
to medial direction around 8 weeks in human and E13–14 in mice. These shelves 
grow, come closer, and then fuse to separate the oral and nasal cavity by 9 weeks in 
human and E15.5 in mice [45, 107] (Fig. 4). Thus, failure of fetal growth, movement 
of tongue reorientation of the palatal shelves, and/or growth of the palatal shelves 
may result in cleft palate. The final step of palatogenesis is dissolution of the medial 
edge epithelium (MEE) likely due to the cell death of this population. Persistence of 
the MEE results in submucosal cleft, i.e., the soft tissue has fused, while underlying 
palatal bone and muscle layer remain unfused.

Fig. 4 Development of the palatal shelf and formation of the secondary palate. During mid- 
gestation, a pair of palatal shelves are formed from the mandibular processes and grow down-
wards. Along with the growth of the mandibular, the position of the tongue lowers allowing the 
shelves elevate. The elevated shelves further grow to reach each other and then fuse together to 
form the secondary palate. The primary palate is formed anterior to the secondary palate as a 
derivative of the medial nasal process and the frontonasal prominence
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Mice homozygous for Tgfß3 null mutation develop cleft palate demonstrating for 
the first time that TGFß superfamily signaling plays a critical role in palatogenesis 
[89]. Tissue-specific inactivation of Tgfbr1, a type 1 receptor for TGFß, using Wnt1- 
Cre or K14-Cre also results in cleft palate [46, 47]. Involvement of BMP signaling 
in palatogenesis was initially suggested in a retinoic acid-induced cleft palate model 
[74, 131], where pathogenesis coincided with downregulation of BMP ligands such 
as Bmp2, Bmp3, Bmp4, Bmp5, and Bmp7. Msx1-null mice also develop cleft palate 
[180]. Msx1 is expressed in mesenchymal tissues in anterior palatal shelves, and the 
loss of Msx1 results in downregulation of Bmp4 [4, 235]. Detailed analyses suggest 
that in the palatal shelves, BMP4 induces Shh expression that in turn induces Bmp2 
expression that positively regulates cell proliferation [4].

Neural crest-specific disruption of Acvr1, one of the type 1 receptors for BMPs, 
results in cleft palate along with multiple craniofacial defects including a hypomorphic 
mandible [48]. Neural crest-specific disruption of Bmpr1a results in mid- gestation 
lethality due to cardiac malfunctions [156, 192]. When the said cardiac malfunction is 
compensated by administration of isoproterenol, a beta-adrenergic agonist, the mutant 
embryos can survive until term and develop reduced projection of facial structures 
[148] and cleft palate [119]. In addition to the cleft lip mentioned above, deletion of 
Bmpr1a using Nestin-Cre resulted in cleft palate [126]. However, deletion of Bmpr1a 
in a neural crest-specific manner using Wnt1-Cre resulted in anterior clefting only 
[119], suggesting that BMP signaling mediated by ACVR1 and BMPR1A positively 
regulates proliferation of the cells in the anterior palatal shelve mesenchyme.

A BMP antagonist Noggin is highly expressed in the palatal shelf epithelium 
[138]. Disruption of Noggin results in cleft palate [70] suggesting that increased 
BMP signaling activity also affect normal palatogenesis. In the anterior regions of 
the secondary palate, the loss of Noggin results in upregulation of Bmp2 expression 
leading to an increase of cell proliferation. In the posterior regions of the secondary 
palate, in contrast, the loss of Noggin induces ectopic expression of Tgfß3 that 
coincides to ectopic fusion of palatal shelves to epithelia of the oral cavity and 
tongue [70]. Expression of a constitutively active form of Bmpr1a in the oral epithe-
lium also leads to the similar phenotype [70]. Taken together, these facts suggest 
that suppression of BMP signaling is critical to prevent premature or ectopic fusions 
of palatal shelves to maintain structural integrity within the oral cavity. In contrast, 
expression of a constitutively active form of Acvr1 in the oral epithelium using K14- 
Cre results in submucosal cleft in association with a reduced cell death in the MEE 
[155]. These results might suggest that BMP signaling mediated by different recep-
tors plays distinct roles during palatogenesis. Further investigation is required to 
address this exciting hypothesis.

3.3   Calvarial Vault and Cranial Base

Mammalian craniofacial skeleton consists of a little more than 20 bones. Bones com-
prising the cranial vault are generated through intramembranous ossification. In con-
trast, bones in cranial base are generated through endochondral ossification. The 
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majority of cranial bones and cartilage residing in the anterior part of the head are 
derived from cranial neural crest cells (CNCCs), whereas the posterior part of ele-
ments is from paraxial mesoderm [137, 144, 177, 189, 212]. BMP signaling compo-
nents are highly expressed in the migrating cranial neural crest cells and later in the 
cranial cartilage and bone [135]. These reports suggest that BMP signaling regulates 
skeletal development by organizing neural crest cell proliferation and cell death [36]. 
Both CNCC-derived and paraxial mesoderm-derived osteoprogenitor cells undergo 
intramembranous ossification to generate corresponding skull elements. Interestingly, 
osteoblasts from neural crest-derived bones show a higher level of activation of FGF 
signaling pathways compared with osteoblasts from paraxial mesoderm-derived 
bones [121, 170]. Osteoblasts from neural crest-derived bones also show lower apop-
totic response when stimulated by TGFß signaling [120]. Regenerative ability of 
skull defects in the frontal bone is higher than that in parietal bones [18]. Taken 
together, these results suggest that neural crest-derived bones are more proliferative 
and less apoptotic than paraxial-derived bones due to enhanced signaling of FGF, 
BMP, and Wnt signaling pathways with a reduction in the TGF-beta pathway [184].

Sutures are a fibrous connective tissue found between bones in the cranial vault 
and cranial base. Sutures are critical growth sites in the skull. Mesenchymal cells 
proliferate and differentiate into osteoblasts that deposit collagen fibers and miner-
als to the bony plates to increase their size. Genetic studies in mice demonstrate that 
nasal and metopic sutures, which connect nasal bones and frontal bones, are of 
neural crest origin [83]. Coronal sutures are of mesodermal origin and are formed 
between the neural crest-derived frontal bones and the mesoderm-derived parietal 
bones. The sagittal suture is formed between the two mesoderm-derived parietal 
bones and is of neural crest origin. Since sutures are critical for growth of the skull, 
premature fusion of sutures results in cessation of skull growth at the site of fusion 
causing a pathological condition called craniosynostosis resulting in increased 
intracranial pressure and skull deformity [144, 149, 173].

3.3.1  BMP and Skull Formation

BMP signaling alters the homeobox Msx genes which are important for normal 
skull development [15, 21, 140]. A conventional gain-of-function mutation in Msx2 
results in skeletal defects such as mandibular hypoplasia and aplasia of interparietal 
bone [217]. BMP signaling plays crucial roles in regulation of cranial suture mor-
phogenesis [101]. BMP signaling components such as Bmp2, Bmp4, Msx1, and 
Msx2 are expressed in sagittal suture during its development [101]. Local applica-
tion of BMP4 protein into mouse calvarial explants induces expression of Msx 
genes and obliteration of the mid-sutural space [101], which is probably through a 
BMP-responsive element located proximal to the Mxs2 promoter [12]. Both Msx1 
and Msx2 mutant mice develop persistent calvarial foramina [78, 179, 180]. 
Compound heterozygous mutant mice for Msx1 and Msx2 lack formation of the 
frontal and parietal bones [78]. These results suggest that BMP signaling plays a 
critical role through expression of Msx1 and Msx2 on osteoblast differentiation for 
normal skull vault formation.
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3.3.2  BMP and Suture Formation

Fibroblast growth factor (FGF) family is known to play critical role during facial 
development and cranial vault formation [65, 142, 144]. Gain-of-function mutations 
in FGF signaling are known to cause some types of craniosynostosis [162, 213]. For 
example, two missense mutations (S252W and P253R) have been found in the IgII- 
LgIII linker region of FGFR2 and are associated with Apert syndrome [149, 162]. 
Gain-of-function mutations in MSX2 also result in Boston-type craniosynostosis in 
human (OMIM ID: 604757) by inducing premature fusion in cranial sutures [82]. 
Noggin is present in postnatal sutures, and its expression is under negative regula-
tion of FGF signaling. Fgf gain-of-function mutations in syndromic forms of cra-
niosynostosis might inappropriately reduce Noggin expression such that the suture 
loses its patency [211]. Direct involvement of BMP signaling in skull deformity and 
craniosynostosis was recently demonstrated. Enhanced BMP signaling through 
constitutively active form of Bmpr1a (caBmpr1a) in neural crest cells results in 
craniosynostosis through premature fusion of the anterior frontal suture in mice [95, 
105]. Increased BMP signaling in neural crest cells also leads to craniofacial skel-
etal defects. Constitutive activation of Bmpr1a in neural crest cell linage using 
P0-Cre or Wnt1-Cre leads to increased level of cell death in skeletal primordia. 
These mutant mice exhibited bone and cartilage defects of nasomaxillary complex 
such as nasal bone and nasal septum [60, 67, 105].

In contrasting to neural crest-specific augmentation of BMP signaling activity, 
osteoblast-specific augmentation of BMPR1A signaling does not cause overt skull 
deformity [105]. Increased apoptosis is found in the skull vault in this animal model, 
and the skull deformity is rescued by prevention of cell death by inhibition of p53 
together suggesting that augmented BMP signaling increases p53-dependent cell 
death resulting in depletion of osteogenic progenitor cells leading to premature 
suture fusion [67, 105]. This is an interesting finding since it is believed that prema-
ture fusion of cranial sutures is a result of increased bone formation within the cra-
nial suture [52].

In the craniosynostosis mouse model caused by neural crest-specific augmentation 
of BMPR1A signaling, it is shown that only a small increase in BMP signaling (50 %) 
is enough to result in skull deformity and craniosynostosis [105]. It is reasonable to 
speculate that several folds of changes in BMP signaling may result in early embry-
onic lethality [53, 75]. Recent genome-wide association studies find single-nucleo-
tide polymorphisms (SNPs) located in proximity to BMP-related genes that are 
associated with skull morphology such as sagittal suture craniosynostosis [88]. Direct 
connection between mutations in BMP-related genes and human skull deformity has 
not been demonstrated; however, gain-of-function mutation in MSX2, a known down-
stream target gene of BMP signaling, results in Boston-type craniosynostosis as men-
tioned earlier [82]. Suture mesenchymal cells isolated from craniosynostosis patients 
show mutations in glypican-1 and glypican-3 (GPC1 and GPC3) that negatively 
regulate BMP signaling [50]. It is possible to speculate that SNIPs found in proximity 
of BMP2 may alter enhancer activity to increase BMP signaling in the sagittal suture 
[88]. Taken together, these circumstantial evidences imply that some human cases 
may be caused by augmented BMP signaling in suture mesenchymal cells.
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3.3.3  BMP and Cranial Base

Unlike calvarial vault, bones in the calvarial base (ethmoid, presphenoid, and basi-
sphenoid) are formed through endochondral ossification. Very little is known about 
involvement of BMP signaling in the calvarial base. Cartilage structures called syn-
chondrosis connect between the bones in the skull base. The ethmoid bone and the 
basisphenoid bone are articulated to the frontal and the basioccipital bones, respec-
tively, through synchondrosis. Bmp2, 3, 4, 5, and 6 are expressed in cranial base 
with a temporally dynamic manner [100]. Development of growth plates in syn-
chondrosis are tightly regulated by SHH and FGF signaling like the ones in long 
bones [139, 228]. Expression of inhibitor of differentiation 2 (Id2) is regulated in 
part by BMP-Smad signaling. The mutant mice for Id2 are born without overt 
abnormalities; however, they show a narrower hypertrophic zone in the synchondro-
sis postnatally [178].

3.4   Mandibular Development and Temporomandibular Joint 
Formation

The mandible that forms the lower jaw is unique among bones in the body because 
it is formed through both intramembranous ossification and endochondral ossifica-
tion [161] (Fig. 5). The body (or base) of the mandible and the ramus undergo 

Fig. 5 Mandibular development. A pair of mandibular condensation occurs along with Meckel’s 
cartilage that forms the body of mandibular. Another pair of condensation forms posteriorly to give 
rise ramus of mandibular that eventually fused with the body of the mandibular. Secondary carti-
lage is developed at the tip of the condylar process and participates formation of the temporoman-
dibular joint

 Embryonic Skeletogenesis and Craniofacial Development



58

intramembranous ossification; however, processes from these bones such as con-
dyle, coronoid, and symphysis undergo endochondral ossification. The body of the 
mandible forms along with the Meckel’s cartilage; however, cells in the Meckel’s 
cartilage do not contribute the body. The body and the ramus form separately then 
fused together [45]. Cartilage is formed between 10 and 14 weeks in the human 
fetus at the head of condyle, coronoid, and symphysis. These cartilages are called 
as secondary cartilage since the cartilage primordia for endochondral ossification 
are formed at 5  weeks. The endochondral bone growth driven by the condylar 
cartilage is the most significant contributor to mandibular growth. The condylar 
process articulates to the temporal bone to form the temporomandibular joint (TMJ) 
[72, 73].

3.4.1  BMP and Mandible

Bmp2 and Bmp7 are expressed at early stages of the developing Meckel’s cartilage, 
while Noggin expression persists and is continuous [210]. Noggin-deficient mice 
that result in increased pSmad1/pSmad5/pSmad9 develop a significantly thicker 
Meckel’s cartilage that is later ossified instead of degenerating [210]. In contrast, 
the growth of Meckel’s cartilage is reduced in Bmp7-deficient mice [108]. This 
animal model develops small mandible (micrognathia) leading to cleft palate since 
the palatal shelves can fuse when whole upper jaws are cultured in vitro [108, 237]. 
Similar skeletal defects are observed when Tak1, a downstream component critical 
for non-Smad signaling pathway, is disrupted in a neural crest-specific manner and 
the cleft palate phenotype is rescued when the whole upper jaws are cultured [230]. 
These suggest that compromised BMP signaling during mandibular development 
may be one of the causes of the Pierre Robin syndrome [196].

Neural crest-specific disruption of both Bmp2 and Bmp4 using Wnt1-Cre results 
in mandibular and cranial bone defects in mice [25]. Subsequent analyses demon-
strate that BMP signaling is required for self-renewal of cranial neural crest cells, 
and thus the loss of BMP signaling results in micrognathia and enlarged frontal 
fontanelle phenotype [25]. Similar skeletal phenotypes are reported in neural crest- 
specific mutant mice for Acvr1 [48]. In contrast, overexpression of Bmp4 in neural 
crest cells leads to syngnathia, a rare human bony birth defect manifested by a bony 
connection between maxilla and mandible [69].

3.4.2  BMP and the Temporomandibular Joint

The temporomandibular joint (TMJ) forms between the condyle process and the 
temporal bone in the calvarial vault and plays a critical role in jaw movement during 
chewing and articulating sound while speaking. The secondary cartilage found in 
the TMJ is different from primary cartilages by the fact that cells in the prechondro-
blastic layer produce type 1 collagens rather than type 2 collagens [73]. Cells in the 
prechondroblastic layer are dual potent, i.e., they can differentiate into either 
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cartilage or bone depending on their mechanical environment [58, 133]. Direct 
transformation of chondrocytes in condylar cartilage into osteoblasts is recently 
demonstrated in vivo using a lineage tracing technique [87]. Genes affecting growth 
and differentiation of primary cartilages such as Sox9, Shh, and Pthrp play impor-
tant roles in normal TMJ development [72, 84]. Neural crest-specific disruption of 
Bmpr1a results in malformation of TMJ including failure of articular disc separa-
tion from a hypoplastic condyle [60]. Similarly, cartilage-specific removal of 
Bmpr1a also develops chondrodysplastic phenotypes in TMJ, and mandibular con-
dyle growth is significantly compromised [85]. In the global Bmp7 mutant mice, the 
secondary cartilage does not form at the anterior end of the mandible (symphysis) 
[106]. In this animal model, condylar cartilage however seems to be developed sug-
gesting that requirement of BMP signaling activity in the secondary cartilage may 
be different depending on anatomical sites.

4  Perspective and Conclusions

The current review elucidates how BMP signal has multifaceted functions in differ-
ent cell types, ages, and anatomical sites of bones. Knowledge gained from studies 
on genetically altered animal models and human genetics demonstrates that func-
tions of BMP signaling are highly context dependent and that alterations of BMP 
signaling in one tissue type secondarily affect behavior of other tissues. It is note-
worthy that levels of BMP2 or BMP7 clinically used for fracture healing are very 
high compared with endogenous levels of BMPs. The functions of BMPs that we 
have learned from clinical applications may be better applied to understand patho-
genesis of genetically induced and trauma-induced heterotopic ossifications [2, 3, 
165, 185]. It is now an established concept that both bone mass and bone quality 
such as collagen cross-linking and mineral crystallinity are important factors con-
tributing to biomechanical properties of bones [14, 81]. How BMP signaling influ-
ences bone quality in addition to bone mass in a physiological condition is an 
interesting future direction.
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