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Abstract  BMPs are originally identified based on their ability to induce new bone 
in vivo and represent large members of the TGF-β superfamily of proteins. BMPs 
serve as inductive signals for cell migration, growth, and subsequently differentia-
tion in many organ developments during embryogenesis and are shown to modulate 
inflammation, angiogenesis, and immune responses and thus provide biological 
cues for adult tissue repair, protection, and regeneration. BMP-2- and BMP-7-
containing osteogenic devices have been approved for use as bone graft substitutes 
for spine fusion and long bone fractures. BMP-7 biology has been considered posi-
tively against parenchymal tissue fibrosis to improve function. In this chapter, I 
summarize the biology of BMPs to emphasize its (1) morphogenic role in skeletal 
tissue repair and regeneration; (2) modulatory role in curtailing inflammation, gov-
erning angiogenesis, suppressing apoptosis, and reducing fibrosis following immu-
nological and mechanical insults; (3) metabolic role in glucose, calcium, and 
phosphate and iron homeostasis; and (4) cytoprotective role to maintain skeletal and 
vascular integrity. The importance of BMP biology is further corroborated in rare 
genetic disorders (e.g., pulmonary arterial hypertension, hemochromatosis, fibro-
dysplasia ossificans progressiva, and osteogenesis imperfecta) and in cancer.
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signaling in skeletal rare disorders

1  �BMPs During Development

BMPs are potent chemoattractants (motogens) [1, 2], mitogens [3], and morpho-
gens [4, 5] which act across a concentration gradient during embryogenesis [6, 7]. 
BMPs recruit stem cells and determine the fate of the responding cells to undergo 
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condensation (proliferation) and subsequently trigger their differentiation by serv-
ing as an inductive signal at specific tissue compartment in order to promote mor-
phogenesis. During embryogenesis, in general, ectoderm expresses BMPs as 
secretary proteins, which bind to extracellular matrix (e.g., heparin sulfate proteo-
glycans and type IV collagen) and specific BMP antagonists and subsequently 
released as needed for mesoderm to respond. The cells that express BMPs also 
express BMP antagonists in order to establish a concentration gradient for ligand-
receptor binding to induce downstream signaling [7, 8]. For example, during 
embryogenesis, the ureteric bud synthesizes BMP-7 and nephrogenic mesenchyme 
response to it, which then undergo condensation and differentiation into S- and 
comma-shaped tubules that become a functional nephron [9, 10]. Likewise, BMP-2 
is required for cardiac mesoderm condensation and morphogenesis [11], while 
BMP-4 is responsible for lung epithelial morphogenesis [12]. Hence, the loss of 
function of BMP-2 and BMP-4 is embryonically lethal, and they die early at days 
11–14 of embryo due to impaired cardiac function, whereas the loss of BMP-7 
function results in death during birth due to the lack of functional kidney. The 
BMP signal-based tissue morphogenesis is so tightly controlled in space and time 
during embryogenesis, and thus the loss of a given BMP function at given tissue 
compartment can result in tissue malformation. Furthermore, BMP signaling cross 
talks with TGF-beta and activin signaling, the other members of TGF-beta super-
family proteins, as well as with Wnt and hedgehog signaling to govern tissue mor-
phogenesis [8, 13].

BMPs are responsible for endochondral bone formation during development, 
and the cellular events that are responsible for embryonic endochondral ossification 
can be recapitulated in postnatal life by implanting an osteogenic BMP with 
appropriate collagenous scaffold at subcutaneous sites to induce mesenchymal cell 
migration, proliferation, and differentiation to form the cartilage and bone [14–16]. 
The biological function of BMP is concentration-dependent, the lower amount is 
motogenic (chemotaxis), medium concentrations are mitogenic (proliferation), and 
higher concentrations are morphogenic (differentiation). The biological activities of 
BMPs with respect to chemotaxis, proliferation, and differentiation have been dem-
onstrated in  vitro using Boyden chamber, cell proliferation, and differentiation 
assays in cultures using a BMP and responding mesenchymal stem cells. The role 
of BMPs and its canonical downstream signaling with cross talk with Wnt signaling 
during embryonic skeletal and craniofacial development and osteo- and dentinogen-
esis are described in the chapter on “Embryonic Skeletogenesis and Craniofacial 
Development”.

2  �Structure and Function

BMPs are homodimers, and all have the hallmark of “7-cysteine domain” held by 
an inter-disulfide bridge at the fourth cysteine between two monomers and are 
highly conserved from fly to humans. BMPs are produced as a large precursor with 
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signal peptide, pro-domain, and mature “7-cystein TGF-beta domain.” They syn-
thesized as monomer with three intra-disulfide bridges and then undergo dimeriza-
tion in endoplasmic reticulum by forming inter-disulfide bridge at the fourth 
cysteine and processing at RXXR site before they are secreted into extracellular 
space [17, 18]. The secreted BMP protein is a dimer at the mature TGF-beta 
domain, which is biologically active, whereas pro-domain is not active but can 
interact with mature, processed dimer by non-covalent interactions. The mature 
protein loses its biological activity if inter-disulfide bridge is broken. The crystal 
structure reveals that the BMP dimer is aligned antiparallel with Finger 1 and 
Finger 2 and Heal region [19]. A cysteine knot with intra- and inter-disulfide bridges 
holds the dimer protein, and because of this, it is very stable, even against proteases 
like trypsin.

BMPs signal through ser-thr kinase receptors type I and type II. Although both 
type I and type II bind to the ligand and form a complex, type I receptor renders 
specificity and recruits intracellular kinases signaling SMAD-1/5/8 and subse-
quently triggers phosphorylation, which forms a complex with a co-smad-4 and 
translocates into the nucleus to switch on and off a set of genes responsible for 
tissue morphogenesis, repair, and regeneration [20]. ALK-2, ALK-3, and ALK-6 
are known BMP-specific type I receptors, and BMPRII, ActRII-A, and ActRII-B 
serve as type II receptors; BMPs employ a specific type I receptor and type II 
receptor depending on the cell type and type of cellular responses it triggers [21]. 
There are several BMP co-receptors that have been described to activate or inhibit 
BMP signaling to trigger specific cellular function and outcome [22]. These 
include the Dragon family of protein, hemojuvelin, receptor tyrosine kinases 
(RTKs) TrkC, TGF-β type III receptors, BAMBI, betaglycan, and endoglin. Two 
downstream inhibitors, smads 6 and 7, are identified to play a functional role as 
checkpoints by de-plugging the BMP downstream signaling to modulate the bio-
logical activity. BMP ligands can also trigger non-canonical downstream signal-
ing directly or indirectly that are SMAD independent, such as MAPK, ERK, NK, 
p38, PI3K, Akt, RANK and RANKL, as well as substantial cross talk with the 
Wnt, hedgehog, and VEGF signaling cascades. In addition, known BMP antago-
nists like noggin, chordin, follistatin, gremlin, sclerostin, and USAG-1 are shown 
to govern the availability of BMP ligand to its receptor by binding avidly at the 
extracellular space to render specificity and establish a concentration gradient 
[23]. For more details, refer to the chapter on “BMP and BMP Regulation: 
Structure and Function”.

3  �BMP: In Vitro and In Vivo Model Systems 
for Endochondral Bone Differentiation

The systems biology of BMP with respect to skeletal tissue morphogenesis has been 
well documented in  vivo [24]. The embryonic cellular events that culminate the 
formation of the new cartilage and bone can be recapitulated in post-fetal life by 
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implanting an osteogenic BMP (e.g., BMP-2, BMP-4, BMP-6, and BMP-7) with a 
carrier in the rat subcutaneous site and in diaphysis fracture, segmental defect, and 
lumbar spine fusion models. The presence of BMP is a must in the implant in order 
to attract sufficient amount of mesenchymal stem cells and induce proliferation and 
differentiation into the bone.

In Vitro Model Systems  Several in vitro cell cultures have been used to examine 
BMP-like activity. Primary cultures generated from the chick [25] and mouse limb 
bud [26], synovial tissue [27], periosteum [28], primary bovine articular chondro-
cytes [29], calvarial-derived primary osteoblasts [16], established rat osteosarcoma 
cell lines [30], C2C12 mouse myoblast cell line [31], and bone marrow-derived 
W-29 stromal cells [32] have been routinely employed. To examine for chondro-
genic and osteogenic responses, the early responsive genes like id-1, id-2, and id-3 
[33], differentiation determinants like sox-5 and sox-9 [34] for chondrocyte and 
osterix and Runs-2 for osteoblast [35, 36], markers of chondrocyte phenotype like 
type II collagen and cartilage-specific proteoglycan [37], and markers of osteoblast 
phenotype, alkaline phosphatase, and osteocalcin are routinely monitored [16]. 
Identification of BMP-responding elements in the promotor region of the BMP-
SMAD-dependent responding genes has allowed to engineer several established 
stable cell lines linking with luciferase enzyme to specifically qualify the biological 
activity of BMP from cell and tissue extracts and body fluids and for release assays 
for the recombinant BMP production [38]. Furthermore, pluripotent stem cells gen-
erated from patients from musculoskeletal disorder are being employed to drive 
chondrogenesis and osteogenesis in order to understand the loss or gain of function 
and to establish screens to select small molecules [39]. For more information, refer 
to the chapter “Novel In Vitro Assay Models to Study Osteogenesis and 
Chondrogenesis for Human Skeletal Disorders”.

In Vivo Model Systems  BMP alone when implanted with an appropriate collage-
nous matrix can induce new bone formation at ectopic or orthotopic sites. This 
serves as a prototype for tissue engineering [40]. BMP serves as signal and collagen 
serves as scaffold. The local implant site provides a microenvironment to recruit the 
responding cells, and they attach onto the collagenous scaffold in order to promote 
the differentiation into endochondral bone. This BMP-induced new bone formation 
is dose-dependent [16] up to certain doses based on a given substratum used; how-
ever, at a higher dose, BMP can trigger a more number of progenitors’ recruitment 
and proliferation, which results in hematoma and cyst-like condensation and delays 
the differentiation into the bone. This high-dose cyst phenomenon is observed both 
in ectopic and orthotopic sites.

The most important component in BMP-based osteogenic device is scaffold. The 
current BMP-based osteogenic device utilizes bovine-derived collagen alone or in 
combination with ceramics (hydroxyapatite and tricalcium phosphate), and because 
of ceramics and an animal-derived collagen, the device triggers initially inflamma-
tion and immune responses and promotes the expression of makers associated with 
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fibroblast phenotype. In order to overcome this unwanted fibrogenic biology, high 
doses of BMP-2 (12–40 mg) are employed in the current osteogenic device. In addi-
tion, because of low affinity to collagen/ceramics, BMPs are diffused out readily 
from the implant site and induce unwanted ossification at the distant sites. These 
unwanted safety issues were observed in the clinical studies for posterolateral fusion 
which has been ascribed to a high dose of BMP and animal-derived collagen.

As the cells are prerequisite for BMP to signal, a situation wherein the site is 
compromised due to nonunion as seen in tibial diaphysis where the responding cells 
are not readily available in sufficient quantity, Efforts are being attempted to implant 
autologous bone marrow with BMP-containing scaffold. Autologous bone marrow-
derived mesenchymal stem cells and periosteal-derived mesenchymal stem cells are 
also being considered for such BMP implants. It is likely that selecting autologous 
mesenchymal stem cells with specific cell surface markers that have high levels of 
BMP receptor expression at the cell surface may be beneficial to implant with a 
BMP and scaffold in certain rare indications like tibial nonunion, pseudo anthrosis 
and atypical fractures associated with long-term bisphosphonate or steroid use. The 
preferred components of bone tissue engineering are (1) BMP that lacks affinity for 
BMP antagonists as a signal, (2) autologous substratum (instead of animal-derived 
collagen), and (3) autologous responding cells, where they are short supplied. More 
details on this subject are discussed in the chapter “Towards Advanced Therapy 
Medicinal Products (ATMPs) Combining Bone Morphogenetic Proteins (BMP) 
and Cells for Bone Regeneration”.

4  �Role of BMPs in Cartilage Repair and Regeneration

The therapeutic engineering of tissue formation requires three biological compo-
nents: signaling molecules, responding cells, scaffold and permissive microenviron-
ment. Carticel® (autologous chondrocyte implantation, ACI), the first FDA-approved 
cell-based therapy for the articular cartilage repair, employs the autologous cells 
and the live periosteum as scaffold, two of the biological components required for 
tissue engineering [41]. Bone morphogenetic proteins (BMPs) are potent chondro-
genic morphogens and are capable of inducing differentiation of MSCs into cell 
lineage of hyaline cartilage and maintenance of the expression of markers associ-
ated with chondrocyte phenotype in vitro and in vivo [42, 43]. Several studies have 
demonstrated that BMPs when applied alone or in combination with appropriate 
scaffold onto chondral or osteochondral defects are capable of inducing new articu-
lar cartilage formation in vivo [44]. However, the newly formed chondrocytes fail to 
maintain the cellular morphology and expression of articular cartilage phenotype 
over time, thus leading to the degeneration of the repaired tissue in the preclinical 
studies. It is likely that providing BMPs continuously or at periodic intervals instead 
of a one-time application in the beginning as used to repair bone fractures may 
induce sustainable cartilage differentiation readily and maintain the regenerated 
cartilage to attain articularization (surface, mid- and deeper zone) and function over 
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time under mechanical loading [45, 46]. The combination of responding cells with 
an appropriate scaffold and providing BMP signaling in situ will have added advan-
tage in the enhancement of chondrocyte differentiation and maintenance of pheno-
typic expression in order to sustain function over long time. As BMP-2, BMP-4, 
BMP-6, and BMP-7 are more osteogenic and CDMP-1/GDF-5/BMP-14 and 
CDMP-2/GD-6/BMP-13 are more chondrogenic in vitro and in vivo model systems 
[42], it remains to be seen which BMP is likely to render an expected outcome in 
articular cartilage and intervertebral disk repair and regeneration in the human 
clinical trials.

The first human clinical trial for cartilage repair was conducted to evaluate 
BMP-7 to treat symptomatic knee OA with emphasis to reduce pain [47]. This was 
a double-blind, randomized, multicenter, placebo-controlled, single-dose escalation 
safety study that examined four doses 0 (placebo), 0.03, 0.1, 0.3, and 1.0 mg in 5 % 
lactose, injected intra-articularly, evaluated at 4, 8, 12, and 24  weeks. Patients 
receiving the BMP-7 injections at the midrange doses (0.1 and 0.3 mg) reported 
some symptomatic improvement, while high- and low-dose cohorts do not have the 
same. For more details, refer to the chapter “BMP Signaling in Articular Cartilage 
Repair and Regeneration: Potential Therapeutic Opportunity for Osteoarthritis”.

5  �Role of BMPs in Bone Repair and Regeneration

Several clinical trials have been conducted to assess the safety and efficacy of 
recombinant human BMP-containing devices for the treatment of acute diaphysis 
bone fractures and delayed union, tibial nonunion, and anterior lumbar interbody 
fusion (ALIF) and posterolateral lumbar fusion (PLF). Two BMP products, rhBMP2 
(InFUSE®) [48] and rhBMP-7 (OP-1® [49] and OP-1 Putty®) [50], are licensed 
under PMA and HDE for marketing and clinical application in the USA.

OP-1® Implant: The first human clinical study was performed to assess the effi-
cacy of recombinant human rhBMP-7 (OP-1®) for the treatment of tibial nonunion 
in a prospective, randomized, and controlled clinical trial [51]. The conclusion of 
this clinical study demonstrated that OP-1® Implant was a safe and effective treat-
ment modality for tibial nonunion and the outcome was comparable to the use of 
bone autograft but failed to achieve a statistical significance as the number of 
patients included in the study is not sufficient, and because of this, it has gotten only 
HDE approval in the USA.

OP-1 Putty®: It is an OP-1® Implant containing 230  mg of sterile carboxy-
methyl cellulose to provide putty-like property. The OP-1 Putty® device was evalu-
ated in the PLF clinical study to treat symptomatic single-level degenerative lumbar 
spondylolisthesis and spinal stenosis without instrumentation [52, 53]. Outcomes 
measured at 12 months of follow-up showed a promise but did not again meet a 
statistical difference. Therefore, OP-1 Putty® received again HDE approval for use 
as an alternative to autograft in compromised patients requiring revision posterolat-
eral (inter-transverse) lumbar spinal fusion.
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InFUSE® (rhBMP-2) was approved by FDA via premarketing approval (PMA) 
process, in conjunction with the LT-Cage Lumbar Tapered Fusion device for spinal 
fusion procedures via an anterior approach; the specific indication is for spinal 
fusion procedures in skeletally mature patients with degenerative disk disease 
(DDD) at one level from L2-S1 [54–56]. However, large clinical studies conducted 
using a high dose (40 mg/single-level fusion) of InFUSE® with compressive resis-
tant matrices bulking agents (Amplify™) did not result in a positive outcome; autol-
ogous ICBG was used as comparator [57, 58].

The FDA issued a public health notification regarding life-threatening complica-
tions associated with InFUSE® in cervical spine fusion used as off-label [59]. These 
complications were associated with swelling of the neck and throat tissue, which 
resulted in compression of the airway and/or neurological structures in the neck. 
Some reports described difficulty in swallowing, breathing, or speaking. Though 
fewer documented adverse events can be attributed to BMP, certain complications 
and safety issues are of concern. Adverse events that have been reported include but 
are not limited to inflammation, unwanted ectopic bone formation, infection, 
immune responses, vertebral osteolysis, and vertebral edema.

Regulatory agencies, clinical and patient communities, and payers are concerned 
with the off-label use of current BMP products. The concern is centered on whop-
ping dose of BMPs (e.g., hrBMP-2 applied 12–40 mg for single-level fusion) and 
the use of animal-sourced collagen (bovine type I collagen) and synthetic ceramics 
(hydroxyapatite and tricalcium phosphate) as substratum to deliver rhBMP-2 at the 
implant site [60]. Animal-sourced collagens and ceramics as carriers induce inflam-
matory cytokine release and immune reactions at the local implant sites. Lower 
doses of BMPs with appropriate biocompatible and bio-friendly autologous scaf-
fold may provide the optimal bone formation without provoking unwanted ectopic 
bone formation detailed in the chapter “Osteogrow: A Novel Bone Graft Substitute 
for Orthopedic Reconstruction.” Future BMP studies are directed to utilize BMPs 
that have little or no affinity to endogenous BMP antagonists [61] and delivered 
with an autologous substratum, which does not provoke inflammatory signals and 
immune responses. For more details, refer to the chapters “BMPs in Orthopedic 
Medicine: Promises and Challenges” and “Biology of Spine Fusion and Application 
of Osteobiologics in Spine Surgery”.

6  �BMPs in Dentin Repair and Regeneration

Although autograft is a gold standard in dental medicine, because of donor site-
associated mobility, BMP-containing bone graft substitutes (BGS) are preferred as it 
provides robust therapeutic benefit than osteoinductive (e.g., DBM) and osteoconduc-
tive (e.g., HA/TCP) biomaterials [62, 63]. The application of BMP-based BGS has its 
clinical utility in several dentin indications that include alveolar ridge and maxillary 
sinus augmentation, alveolar cleft and mandibular reconstruction, osteointegration 
following dentin implants, and periodontium repair. BMP-2- and BMP-7-containing 
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collagen implants and GDF-5-containing hyaluronic implants have been evaluated in 
dentin preclinical models and in the clinic for various dental indications [64–66]. 
Obtaining a robust bone formation to speed up the osteointegration for dental implants 
and avoiding ankyloses to regenerate periodontium with new cementum, ligaments 
containing sharpie fibers and regeneration of alveolar bone are unmet needs in dental 
medicine [67]. Application of a given BMP with an appropriate dose and acceptable 
autologous scaffold in a permissive microenvironment is lacking. The promises and 
challenges still remain in order to deliver BMP locally with a bio-scaffold that allows 
lesser inflammation and immune responses and thus allow dental tissue repair and 
regeneration in space and time. It is unlikely the same dose and same bio-scaffold will 
serve as therapeutic benefit for all the dental tissue repair and regeneration. For details 
refer to the chapter “BMPs in Dental Medicine: Promises and Challenges”.

7  �BMP-7 in Acute and Chronic Kidney Failure

Although BMP-7 is originally isolated from bone matrix, the predominant site for 
its synthesis is the kidney [68]. The loss-of-function studies revealed that it is abso-
lutely required for kidney development during embryogenesis [69] and it plays a 
functional role in the adult kidney and is responsible for vascular and skeletal integ-
rity and modulates calcium and phosphate homeostasis. In preclinical studies, 
BMP-7 has been shown to provide protection against acute kidney injury (AKI) 
[70], glomerulosclerosis, diabetic nephropathy, chronic kidney disease (CKD), 
renal osteodystrophy, lupus nephropathy, and Alport’s syndrome [71, 72]. BMP-7 is 
available in circulation, and its level correlates with renal function. The mechanism 
of action studies indicates that BMP-7 suppresses inflammation, improves renal 
blood flow, preserves tubular structure, reduces interstitial fibrosis, and governs cal-
cium and phosphate homeostasis and subsequently vascular calcification by improv-
ing disordered bone remodeling. As BMP-7 is a potent bone-inducing morphogenic 
protein and forms ectopic ossification at the injection sites, it is believed that 
enhancing its biology through mimetics and secretagogoues may provide a safe and 
viable therapy than administering BMP-7 protein systemically. More details can be 
found in the chapter “Bone Morphogenetic Protein-7 and Its Role in Acute Kidney 
Injury and Chronic Kidney Failure”.

8  �BMPs in Glucose Homeostasis

By employing a functional genomic approach, BMP-9, expressed in the liver, was 
first identified as a factor that regulates glucose homeostasis as it was shown to 
suppress hepatic glucose production to reduce insulin resistance and glycemia in 
diabetic mice [73]. In concurrence with the observation that the kidney is a major 
site for BMP-7 expression, it serves as autocrine survival factor for podocytes [74] 
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and maintains expression of structural proteins of the foot processes such as syn-
aptopodin and podocin. BMP-7 also inhibits the TGF-β1-activated signaling path-
way in mesangial cells and podocytes in vitro. In preclinical models of diabetic 
nephropathy, BMP-7 was shown to attenuate tubular pro-inflammatory responses 
by suppressing oxidative stress and multiple inflammatory signaling pathways in 
the mesangium and proximal tubular epithelium [75]. It is likely that BMP-7 may 
be useful in delaying diabetic glomerulosclerosis and reversing early podocyte 
injury. To support BMP-7 biology role in diabetics, a recent study indicates that 
removal of USAGA-1/Sostdc1, a BMP-7 antagonist, is able to enhance insulin 
secretion and glucose homeostasis by improving β-cell function under metabolic 
stress [76]. A metabolic approach of managing glucose homeostasis is through 
systemic energy homeostasis. Brown adipose tissue (BAT) is responsible for 
energy utilization by promoting thermogenesis [77]. Again BMP-7 has been shown 
to promote BAT differentiation and promote thermogenesis in  vitro and in  vivo 
suggesting a therapeutic role against obesity [78] and thus to improve glucose 
uptake and reduce insulin sensitivity. For details, refer to the chapter “Role of 
BMPs in Inflammation.”

9  �BMP-7 and Calcium and Phosphate Homeostasis

The kidney is the site for the production of active 1,25-dihydroxy vitamin D3 from 
its precursor 25-dihroxy vitamin D3, and the loss of renal function results in vitamin 
D deficiency (Rickets) which then leads to secondary parathyroidism. The second-
ary hyperparathyroidism occurs in CKD, which produces a high turnover osteodys-
trophy that is associated with peritrabecular fibrosis. In animal models of CKD, 
BMP-7 treatment was shown to eliminate peritrabecular fibrosis, increased “active” 
osteoblast number, osteoblast surface, mineralizing surface, and significant decrease 
in the eroded surface [79, 80]. Loss of renal function is also associated with hyper-
phosphatemia and elevated calcium x phosphate (Ca x P) product, leading to vascu-
lar stiffness, dysfunction, and calcification. Hyperphosphatemia has been a known 
predictor of cardiovascular death, particularly in hemodialysis patients. Vascular 
smooth muscle cells (VSMC) are very responsive to changes in elevated serum 
phosphate and undergo a loss of phenotypic expression and differentiate into cell 
types of the osteoblast lineage. Although phosphate is managed through binders, it 
is becoming increasingly important to improve vascular tone and elastic modulus of 
vessel in ESRD patients. Hyperphosphatemia induces the loss of phenotype in 
VSMCs and induces dedifferentiation into myofibroblast and subsequently their 
proliferation in culture. In CKD models of hyperphosphatemia, BMP-7 treatment 
reduces the loss of VSMC phenotype and vascular calcification [81]. The effect of 
BMP-7 on osteoblast differentiation also reduces the systemic phosphate level thus 
indirectly has a positive influence on reducing phosphate levels in circulation. In 
summary, application of BMP-7 biology agonists may likely reduce hyperphospha-
temia, secondary parathyroidism-associated osteodystrophy (osteitis fibrosa), and 
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the loss of VSMC phenotype, thus reducing vascular stiffness, dysfunction, and 
calcification, bone pain, and high fracture incidence in patients with loss of kidney 
function.

10  �BMPs in Iron Homeostasis

Currently, erythropoiesis-stimulating agents (ESA) like erythropoietin, EPO, or 
iron supplements have been used to manage anemia in CKD/ESRD patients. About 
1/3 of patients, however, do not respond to EPO. Oral dietary iron serves as an alter-
native but is not effective, and IV iron supplement provides some relief but does not 
overcome anemia successfully. High doses of EPO to manage anemia led to cardio-
vascular events, stroke, progression of cancer, and death, and because of this, the 
FDA issued black box warning on the EPO label. Patients nonresponsive to IV iron 
and EPO end up in iron overloading that associates with high levels of hepcidin in 
the blood.

Hepcidin is the iron regulatory hormone (25 amino acid peptides), and its expres-
sion is regulated tightly by circulating iron levels [82, 83]. Hepcidin is a ligand for 
ferroportin, an iron exporter [84]. Upon binding to ferroportin, hepcidin induces an 
internalization (endocytosis) and subsequently its degradation (proteolysis in lyso-
somes) [85]. Hepcidin inhibits the export of iron from enterocytes in the duodenum 
(obtained through dietary intake), reticular endothelial macrophages (recycled 
through senescent erythrocytes), and hepatocytes (stored intracellularly through fer-
ritin) into the plasma. High level of hepcidin results in “anemia,” and low level of 
hepcidin results in “hemochromatosis,” a rare hematological disorder.

BMP-6 has been shown to regulate the expression of hepcidin through its down-
stream smad-1/5/8-dependent pathway [86]. Hemojuvelin (HJV), a glycophospho-
lipid inositol (GPI)-anchored membrane protein, functions as a co-receptor for 
BMP-6 to enhance the effectiveness of BMP signaling-dependent SMAD pathway 
to stimulate hepcidin expression by acting on its promoter [87].

Inflammatory cytokine IL-6/JAK2/STAT3 pathway can also stimulate hepcidin 
expression; however, BMP-HJV-SMAD pathway-based functional SMAD binding 
is necessary for IL-6/JAK2/STAT3 pathway to effectively enhance hepcidin expres-
sion. BMP-6 (−/−) knockout mice showed reduced hepcidin levels in circulation 
and resemble “hemochromatosis” phenotype [88, 89]. A similar phenotype was 
also observed in HJV (−/−) mice [90]. Recently, three heterozygous missense 
mutations in BMP-6 were identified in patients with unexplained iron overload; 
these mutations lead to loss of signaling to SMAD proteins and reduced hepcidin 
production [91].

Inhibition of BMP-HJV-SMAD pathway is therefore a novel target to reduce the 
production of hepcidin in the liver. There are several ways one could approach, for 
example, the use of a drug that can antagonize BMP signaling (dorsomorphin) and 
the use of BMP antagonist proteins like gremlin, anti-BMP-6-neutralizing monoclonal 
antibody, Fc-soluble ActRII-A receptor, activin/BMP/GDF ligand trap, anti-
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hemojuvelin-neutralizing antibody, and Fc-soluble hemojuvelin, all of which may 
have some safety concerns, as they are not addressing the specific role of iron-sensing 
BMP-6 in regulating hepcidin expression with respect to iron homeostasis. For more 
details on the role of TGF-beta superfamily of proteins in iron homeostasis, refer to 
the chapter on “The Central Role of BMP Signaling in Regulating Iron Homeostasis”.

11  �BMPs’ Role in Rare Genetic Disorders

Pulmonary Arterial Hypertension (PAH)  PAH is a rare disease that occurs neo-
natal and young children due to poor vascular dilation and abnormal musculariza-
tion characterized by a progressive increase in pulmonary vascular resistance [92]. 
In older children and adults, abnormal vessel and enhanced muscularization occurs 
in the distal artery [93], all results in progressive intimal and medial thickening 
leading to occlusive changes and hence elevation in pulmonary arterial pressure 
[94]. An imbalance between vasodilators and vasoconstrictors has been linked to 
the onset of PAH [95]. Genetic studies showed a link to mutations in BMPRII 
among familial PAH (60 %) and idiopathic PAH (10 %–20 %) patients [96–98]. The 
mutations are spread along the ligand binding domain, kinase domain, and long 
cytoplasmic tail, all of which can affect negatively BMP-smad downstream signal-
ing. id, a BMP-responding gene, is paramount in governing endothelial and smooth 
muscle cell growth, perturbing id expression will have consequences [99]. That 
said, there are people who have BMPRII mutations who do not develop PAH [100]. 
This makes sense that BMPs do also engage the other type II receptors, ActRII-A 
and ActRII-B, for signaling, and likely in the absence of functional BMPRII, these 
receptors may compensate function in certain PAH patients. BMP-9 and TGF-beta 
utilize ALK-1, type I receptor, and endoglin, a co-receptor to mediate signaling in 
endothelial cells (ECs). Mutations in endoglin have also been linked to hereditary 
hemorrhagic telangiectasia which has been linked in some patients with PAH [101, 
102]. Overall, no doubt BMP signaling is paramount in governing normal growth of 
EC and SMC of the pulmonary artery, and perturbation of BMP-smad signaling 
may have detrimental effects for the onset of PAH. For more information, refer to 
the chapter on “BMP Signaling in Pulmonary Arterial Hypertension”.

Hereditary Hemochromatosis (HH)  HH is a genetic disorder of iron overload 
characterized by an excess iron entry into the bloodstream surpassing the require-
ments for erythropoiesis, resulting in tissue iron deposition and organ dysfunction 
[103]. As there is no regulated mechanism for the removal of excess iron from the 
body and the excess iron in patients with HH deposits in other tissues, most notably 
parenchymal cells of the liver, pancreas, heart, and pituitary gland generate reactive 
oxygen species leading to tissue damage and ultimately resulting in cirrhosis, 
diabetes, cardiomyopathy, hypogonadism, arthropathy, and increased skin pigmen-
tation that is characteristic of this disease. Mutations in hfe gene are identified as a 
causal for HH [104–106]. hfe is atypical major histocompatibility class-I-like 
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protein [107] that competes with transferrin for binding to transferrin receptor-1 as 
well as transferrin receptor-2 (TRF1/TRF2). Hence, mutations in TRF1 or TRF2 
can also result in HH. It is believed that TFR1 in the liver sequesters HFE and when 
serum levels increase, iron-saturated transferrin displaces hfe from TFF1; thereby, 
HFE can regulate hepcidin expression possibly by interacting with TRF2 [108, 
109]. The precise mechanism by which hfe regulates hepcidin expression is still 
unknown. The loss of function of hfe studies in mice showed impaired BMP down-
stream smad signaling and low level of hepcidin expression. This is further corrobo-
rated that BMP-6 (−/−) mice and HJV (−/−) mice both exhibit hemochromatosis 
phenotype and have low level of hepcidin in circulation. For more details, refer to 
the chapter on “The Central Role of BMP Signaling in Regulating Iron Homeostasis”.

Fibrodysplasia Ossificans Progressiva  Fibrodysplasia ossificans progressiva 
(FOP) is a rare genetic disorder characterized by progressive extra-skeletal (hetero-
topic) ossification [110]. Patients with FOP develop progressive heterotopic ossifi-
cation within soft connective tissues by recapitulating a developmental cascade of 
endochondral ossification in which cartilage forms initially at the lesion site and is 
subsequently replaced by the bone [111]. The effects of FOP are accelerated by 
inflammation and trauma, precluding surgical intervention, and there is an urgent 
need for an effective treatment. Linkage analysis has led to the identification of a 
recurrent heterozygous mutation (617G A; R206H) in the type I BMP receptor 
ALK-2 (ACVR1) [112, 113]. Additional FOP mutations have since been identified 
in both the GS and kinase domains of ALK-2 that differentially affect the age of 
onset of ossification, as well as the extent of skeletal malformation. Analyses of a 
subset of ALK-2 FOP mutants including L196P, R206H, and G356D suggest that 
FOP mutations are more weakly activating than constitutively active ALK-2, but 
show similar potential to induce osteogenic differentiation through reduced FKBP12 
binding to ALK-2 and increased Smad1/5/8 phosphorylation [114]. A recent study 
suggests that nonenzymatic scaffolding function provided by type II receptors is 
required for mutant ALK-2 to exert its function independent of a BMP ligand [115].

The FOP condition can be recapitulated in cultures using muscle cell lines trans-
fected with mutant ALK-2 and in animal models by transgenic overexpression of 
caALK-2 [116], a classic constitutively active ALK-2 receptor containing the artifi-
cial mutation Q207D and knock-in R206H mutation in mice [117]. Furthermore, 
pluripotent stem cells generated from FOP patients are also being pursued to screen 
for small molecules that could inhibit chondrocyte/osteoblast differentiation [118, 
119]. By using a dorsalization function assay in zebrafish, researchers in Harvard 
(MGH/Brigham) have identified a BMP inhibitor called dorsomorphin that led to 
the development of LDN compounds which tend to render a specificity to ALK-2 
kinase inhibition and functionally inhibit ALK-2 kinase activity in vitro and ectopic 
endochondral ossification in mutant ALK-2 FOP transgenic mouse model [120]. 
Based on ALK-2 crystal structure and kinase inhibition assay, researchers at Oxford 
have identified yet another BMP inhibitor specific to ALK-2 [121]. In addition to 
SM BMP inhibitors, researchers are looking at the possibility of intervening FOP 
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mutant ALK-2 activity using siRNA and/or antisense oligonucleotide. Attempts are 
also being made to inhibit the ectopic differentiation of endochondral ossification 
using retinoic acid receptor γ agonist [122], a potent stimulator of chondrocyte 
differentiation.

However, it remains to be established what are the cell types that are cued to 
manifest heterotopic ossification as a result of FOP-ALK-2 insult. Fascia/skeletal 
muscle-derived satellite cells/myoblasts, vascular endothelium-derived pericytes/
smooth muscle cells, blood-borne inflammatory cells, and endothelial-mesenchymal 
transition, all of these are contemplated as potential responding cell types. Still it 
remains elusive how the mechanical/inflammatory signals promote the FOP-ALK-2 
insult in  vivo. A recent study suggests that anti-activin antibody and ActRII-A/
ActRII-B trap are shown to provide therapeutic benefit against FOP mice [123]. For 
more details, refer to the chapter “BMP Signaling in Fibrodysplasia Ossificans 
Progressiva, a Rare Genetic Disorder of Heterotopic Ossification”.

Osteogenesis Imperfecta  Osteogenesis imperfecta (OI), also known as “brittle 
bone disease,” is a collagen-related disorder characterized by low bone mass, 
increased bone fragility, and decreased bone strength. Dominant osteogenesis 
imperfecta is caused by defects in the quantity or quality (structure) of type I procol-
lagen, which affects the bone at multiple levels, for example, matrix structure and 
mineralization. Recessive osteogenesis imperfecta is caused by deficiency of pro-
teins that interact with collagen process collagen and/or affect its posttranslational 
modification or folding, such as CRTAP, P3H1, and PPIB and Serpin H1 and 
FKBP10 [124]. The common features of dominant and/or recessive osteogenesis 
imperfecta are delayed collagen folding and increased endoplasmic reticulum stress 
effects in the bone and are likely to be the key to understanding its pathogenesis. 
Bisphosphonates are widely administered to individuals with osteogenesis imper-
fecta, with positive effects on bone mass and vertebral geometry, but cause a decline 
in bone material quality in time [125]. In its various types, OI occurs in ~1  in 
15,000 in the USA (~20,000–50,000) with mostly autosomal dominant inheritance 
(about 85 %) and lesser with autosomal recessive (15 %).

The clinical overlap in both dominant and recessive phenotypes of OI is compa-
rable. A recent study for the first time demonstrated an excessive TGF-β signaling 
as evidenced by an increased ratio of pSMAD2/SMAD2 proteins and higher in vivo 
SMAD2 reporter activity that corresponds with higher expression of TGF-beta tar-
get genes. It is suggested that an alteration in collagen posttranslational modifica-
tions results in a dysregulation of matrix-cell signaling contributing to phenotype 
manifestation [126, 127]. Furthermore, anti-TGF-beta antibody (1D11) treatment 
demonstrated that treatments restored bone volume, trabecular number, trabecular 
thickness, and reduced trabecular separation in the lumbar and femur of OI mice 
comparable to WT mice. Biomechanical testing of femurs showed mice treated with 
the 1D11 showed significant improvements in bone strength as well. Hence, altered 
TGF-β matrix-cell signaling is a primary mechanism in the pathogenesis of OI.
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As BMP downstream signaling counteracts TGF-β activity, it is likely that BMP 
biology may serve as therapeutic avenue for OI. To support this notion, recent study 
showed anti-sclerostin, a BMP antagonist, antibody also effectively restored OI phe-
notype in mice [128]. Genetic linkage studies found mutations in BMP-1 and collagen 
C-peptidase as a causal for OI in man [129]. BMP-1 is also responsible for processing 
certain BMP family proteins from pro-form into active and BMP antagonists like 
chordin [130]. Since BMPs have direct influence on the differentiation of both bone-
forming (osteoblast) and bone-resorbing (osteoclast) cells and the bone undergoes a 
high turnover in OI skeleton, BMP biology-based therapy could be administered 
intermittently in combination with antiresorptive agents like bisphosphonate.

12  �BMP in Oncology

The BMP signaling pathway involves many ligands, receptors, and antagonists 
extracellularly and downstream signaling smads-1/5/8 and co-smad-4 and inhibi-
tory smads-6/7 intracellularly, all of which are capable of impacting tumor growth 
and progression, both positively and negatively [131]. The effects of BMP on tumor 
growth are based on specific BMP, are dose- and context-dependent, and are associ-
ated with either increased or decreased survival. For example, in ovarian carcinoma, 
the MSCs that recruited at the tumor microenvironment exhibit a phenotype that 
expresses high levels of BMP-2, BMP-4, and BMP-6 [132]. On the contrary, in 
primary mammary tumor, BMP-7 expression is reduced which is accompanied by 
enhanced TGF-beta activity and EMT transition that leads to bone metastasis [133]. 
Aberrant expression of BMP ligands and their respective receptors and subsequently 
dysregulation of downstream signaling can influence growth inhibitory genes (e.g., 
id1-3) [134] and tumor suppressor genes (e.g., p53) [135, 136] and promote 
epithelial-mesenchymal transition [137], stromal cell proliferation [132], angiogen-
esis [138], inflammation, and immunosuppression to promote tumor growth and 
metastasis. Depending on the tumor cell type (carcinoma versus sarcoma) and stage 
(primary versus metastasis), BMPs can affect cancer growth and its progression and 
modulate responsiveness to endocrine and metabolic factors [139].

As an example, low expression of BMP-7 can shift a cell phenotype from 
androgen-dependent to androgen-independent activity in primary prostate tumor 
cells, and the loss of endogenous BMP-7 may encourage the prostate cancer cells to 
be more aggressive [133]. However, BMP-7 can be reexpressed once cancer cells 
metastasized in the bone suggesting when to consider BMP-based therapy for tar-
geting to curtail cancer growth [140, 141]. Likewise, not all BMPs are the same 
when it comes to angiogenesis; BMP-2, BMP-4, BMP-6, BMP-7, and GDF-5 are 
pro-angiogenic, while BMP-9 and BMP-10 are anti-angiogenic; thus, to inhibit 
angiogenesis, natural BMP antagonists like noggin can be used to target pro-
angiogenic BMPs, and recombinant BMP-9 and BMP-10 can be used to suppress 
angiogenesis [142, 143]. However, in certain cancers, the attenuation of BMP-9-
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induced ALK-1, a BMP type I receptor, signaling with neutralizing antibody and 
small molecule was able to inhibit endothelial cell sprouting [144–146]. PF- 
03446962, an antibody against ALK-1 (Pfizer), and dalantercept, a soluble chimeric 
protein (ALK1-Fc) which displays high-affinity binding with BMP-9 and BMP-10, 
have been shown as potent inhibitors for blocking the development of blood vessels 
[147, 148]. An endoglin antibody, also known as CD105, a co-receptor of BMP-9 
and TGF-β that mediates a transition of endothelial cells from quiescent to active 
status during angiogenesis through preferential phosphorylation of SMAD 1/5/8, 
has also exhibited anti-angiogenic potential [149, 150]. Overall, BMPs and their 
signaling pathways play critical roles in the development, progression, and metasta-
sis of various cancers in part by governing with their involvement in angiogenesis, 
inflammation, and immunosuppression and thus may serve as promising targets for 
therapeutic potential. Taken together, it remains to be seen that targeting one spe-
cific receptor with small molecule or an antibody or Fc conjugates could render the 
required outcome, as tumorigenesis is a result of a disturbed cascade of several 
biological events. For more details of the role of BMP signaling in mammary tumor 
growth and regulation, refer to the chapter on “Bone Morphogenetic Proteins in the 
Initiation and Progression of Breast Cancer”.

13  �Conclusion

BMPs are highly conserved from fly to man. The systems biology of BMP is a pre-
requisite for most of tissue induction during development and recapitulates it in 
adult tissue repair, regeneration, and homeostasis. The outcome of tissue induction/
responsiveness is dictated by the responding cell than by BMP signal. BMP governs 
its function through a concentration gradient and is context-dependent in a permis-
sive microenvironment. There are several BMPs, BMP antagonists, and receptors to 
govern its function as and when needed and to govern the inductive events in control 
fashion. Extracellular matrices and various BMP-specific antagonists that interact 
with BMP ligands add to that regulation. An aberrant expression in either ligand or 
receptor or antagonist can dictate unwanted cell growth and differentiation than 
required for normalcy. Thus far, BMP-based biologics have been approved for use 
only for local bone formation. There are several BMP-based therapeutics that are 
being evaluated in the clinic as drugs and/or biologics to improve tissue function 
against parenchymal fibrosis and to curtail angiogenesis in certain rare genetic dis-
orders like FOP and anemia. Overall, the systems biology of BMP is promising, but 
the challenges are abundant as it comes to applying safely to achieve the required 
outcome in the clinic.
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