
Chapter 3
Scattering Mechanisms

This chapter is devoted to the main mechanisms of scattering (elastic, quasi-elastic,
and inelastic) that are relevant to the description of the interaction of electron beams
with solid targets.

Firstly the elastic scattering cross-section will be described, comparing the
screened Rutherford formula to the more accurate Mott cross-section [1]. The Mott
theory is based on the relativistic partial wave expansion method and the numerical
solution of the Dirac equation in a central field. The Mott cross-section is in better
agreement with the available experimental data when electron energy is smaller than
∼5–10 keV.

We will also briefly describe the Fröhlich theory [2], which describes the quasi-
elastic events occurring when electron energy is very low and the probability of
electron–phonon interaction becomes significant. We will discuss energy loss and
energy gain due to electron phonon-interactions, and see that electron energy gains
can be safely neglected, while electron energy losses are fractions of eV.

The Bethe–Bloch stopping power formula [3] and semi-empiric approaches [4, 5]
will be presented, along with the limits of these models for the calculation of energy
losses.

The Ritchie dielectric theory [6] will then be considered, which is used for the
accurate calculation of electron energy losses due to electron–plasmon interaction.

Polaronic effect will be also mentioned, as it is an important mechanism for
trapping very slow electrons in insulating materials [7].

A discussion about the inelastic mean free path will be provided that takes into
account all the inelastic scattering mechanisms introduced in this chapter.

Lastly, surface phenomena will be described along with numerical calculations
of surface and bulk plasmon loss spectra.

Many details about the most important theoretical models presented in this chapter
can be found in the Appendices.
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18 3 Scattering Mechanisms

3.1 Elastic Scattering

Electron-atom elastic scattering is the main responsible for the angle deflection of
electrons traveling in solid targets. For some reviews about the subject of elastic
scattering see, for example, Refs. [8–13].

Elastic scattering is not only the cause of the electron deflection: it also accounts
for electron energy-loss problems, for it contributes to change the angular distribution
of the inelastically scattered electrons [9, 10].

Since a nucleus is much more massive that an electron, the energy transfer is very
small and, typically, negligible in an electron–nucleus collision. The great majority
of elastic collisions regard the interaction of the incident electrons with the elec-
trostatic nuclear field in regions that are far from the center of mass of the nucleus
where, due to both the inverse square law and the shielding of the nucleus by the
atomic electrons, the potential is relatively weak. For this reason, many electrons are
elastically scattered through small angles.

Conservation of energy and momentum requires small transfers of energy between
the electrons and the nuclei that depend on the angle of scattering. Even if the electron
energy transfers are a very small fraction of eV, in many circumstances they cannot
be neglected. Furthermore it has to be noted that, despite this general rule, in a few
cases significant energy transfers are possible. Indeed, even if electron energy-losses
are typically very small and often irrelevant in electron–nucleus collisions, for the
very rare cases of head-on collisions, where the scattering angle is equal to 180◦, the
energy transfer can be, for the case of light elements, higher than the displacement
energy, namely the energy necessary to displace the atom from its lattice position. In
these cases, displacement damage and/or atom removal (sputtering) can be observed
[9, 10, 14].

The differential elastic scattering cross-section represents the probability per unit
solid angle that an electron be elastically scattered by an atom, and is given by the
square modulus of the complex scattering amplitude f , which is a function of the
scattering angle ϑ, of the incident electron energy E0, and of the (mean) atomic
number Z of the target. The angular distribution, once taken into account that the
Coulomb potential is screened by the atomic electrons, can be calculated either by
the use of the first Born approximation (screened Rutherford cross-section) or, in
order to obtain more accurate results – in particular for low-energy electrons –, by
solving the Schrödinger equation in a central field (partial wave expansion method,
PWEM).

Typically, for the case of the screened Rutherford formula obtained within the first
Born approximation, the screening of atomic electrons is described by the Wentzel
formula [15], which corresponds to a Yukawa exponential attenuation of the nuclear
potential as a function of the distance from the center of mass of the nucleus. The more
accurate partial wave expansion method requires a better description of the screening,
so that Dirac–Hartree–Fock–Slater methods are generally used for calculating the
screened nuclear potential in this case.
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A further improved approach for obtaining a very accurate calculation of the
differential elastic scattering cross-section, valid also for relativistic electrons, is the
so-called relativistic partial wave expansion method (RPWEM), – which is based
on the solution of the Dirac equation in a central field (Mott cross-section) – where
the sum of the squares of the moduli of two complex scattering amplitudes f and
g is required for the calculation of the elastic scattering probabilities [1]. Also in
this case, Dirac–Hartree–Fock–Slater methods are utilized to calculate the shielded
nuclear potential.

3.1.1 Mott Cross-Section Versus Screened Rutherford
Cross-Section

The relativistic partial wave expansion method (Mott theory) [1] permits to calculate
the differential elastic scattering cross-section as follows:

dσel

dΩ
=| f |2 + | g |2 , (3.1)

where f (ϑ) and g(ϑ) are the scattering amplitudes (direct and spin-flip, respectively).
For details about the Mott theory and the calculation of the scattering amplitudes f (ϑ)
and g(ϑ), see Chap. 11 and Refs. [11, 13]. Also see Refs. [12, 16–18] for several
applications.

Once the differential elastic scattering cross-section has been calculated, the total
elastic scattering cross-section σel and the first transport elastic scattering cross-
section σtr can be computed using the following equations:

σel =
∫

dσel

dΩ
dΩ , (3.2)

σtr =
∫

(1 − cos ϑ)
dσel

dΩ
dΩ . (3.3)

It can be interesting to investigate the high energy and low atomic number limits
of the Mott theory (corresponding to the first Born approximation). Along with
the assumption that the atomic potential can be written according to the Wentzel
formula [15]:

V (r) = − Z e2

r
exp

(
− r

a

)
, (3.4)

where r is the distance between the incident electron and the nucleus, Z the target
atomic number, e the electron charge, and a approximately represents the screening
of the nucleus by the orbital electrons, given by

http://dx.doi.org/10.1007/978-3-319-47492-2_11
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a = a0

Z1/3
, (3.5)

where a0 is the Bohr radius, the first Born approximation permits to write the differ-
ential elastic scattering cross-section in an analytic closed form. It is the so-called
screened Rutherford cross-section:

dσel

dΩ
= Z2e4

4E2

1

(1 − cos θ + α)2
, (3.6)

α = me4π2

h2

Z2/3

E
(3.7)

In these equations, m is the electron mass and h is the Planck constant.
The screened Rutherford formula has been largely used even if it is unable to

describe all the features corresponding to the elastic scattering as a function of the
scattering angle that one can observe when incident electron kinetic energies are
lower than ∼5–10 keV and the target atomic number is relatively high. In Figs. 3.1,
3.2, 3.3 and 3.4 the differential elastic scattering cross-section dσel/dΩ (DESCS)
– calculated with both the Mott and the Rutherford theories – are compared. The
presented data concern two different elements (Cu and Au) and two different energies
(1000 and 3000 eV). From the comparison clearly emerges that the Rutherford theory
approaches the Mott theory as the atomic number decreases and the primary energy
increases. Indeed, the Rutherford formula can be deduced assuming the first Born
approximation, which is valid when
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Fig. 3.1 Calculation of the differential elastic scattering cross-section of 1000 eV electrons scattered
by Cu as a function of the scattering angle. Solid line Relativistic partial wave expansion method
(Mott theory). Dashed line Screened Rutherford formula, Eq. (3.6)
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Fig. 3.2 Calculation of the differential elastic scattering cross-section of 1000 eV electrons scattered
by Au as a function of the scattering angle. Solid line Relativistic partial wave expansion method
(Mott theory). Dashed line Screened Rutherford formula, Eq. (3.6)
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Fig. 3.3 Calculation of the differential elastic scattering cross-section of 3000 eV electrons scattered
by Cu as a function of the scattering angle. Solid line Relativistic partial wave expansion method
(Mott theory). Dashed line Screened Rutherford formula, Eq. (3.6)

E � e2

2a0
Z2 . (3.8)

In other words, the higher the electron energy – in comparison with the atomic poten-
tial – the higher the accuracy of the Rutherford theory (see, in particular, Fig. 3.3).
Anyway, the Rutherford formula represents a decreasing function of the scatter-
ing angle, so that it should not be surprising that it cannot describe the features that
emerge as the electron energy is low and the atomic number is high (see, in particular,
Fig. 3.2).
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Fig. 3.4 Calculation of the differential elastic scattering cross-section of 3000 eV electrons scattered
by Au as a function of the scattering angle. Solid line Relativistic partial wave expansion method
(Mott theory). Dashed line Screened Rutherford formula, Eq. (3.6)

In Monte Carlo simulations, when the electron primary energy is higher than
10 keV, Rutherford cross-section is sometimes used – instead of the more accurate
Mott cross-section – mainly because it provides a very simple analytic way to calcu-
late both the cumulative probability of elastic scattering into an angular range from
0 to θ, Pel(θ, E), and the elastic scattering mean free path, λel. Even if not used by
the simulations presented in this book, where numerical calculations of Mott cross-
section will always be utilized (see Fig. 3.5, where Mott cross section is represented
for 1000 eV electrons in Al), it might be useful to see how Pel(θ, E) and λel can be
calculated in a completely analytic way taking advantage of the particular form of
the screened Rutherford formula. In the first Born approximation these quantities are
in fact given, respectively, by

Pel(θ, E) = (1 + α/2) (1 − cos θ)

1 + α − cos θ
, (3.9)

λel = α (2 + α) E2

N π e4 Z2
, (3.10)

where N is the number of atoms per unit volume in the target. The demonstration of
these equations is quite easy. Indeed

Pel(θ, E) =
= e4Z2

4σelE2

∫ θ

0

2π sin ϑ dϑ

(1 − cos ϑ + α)2
= πe4Z2

2σelE2

∫ 1−cos θ+α

α

du

u2
,
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Fig. 3.5 Differential elastic scattering cross-section of 1000 eV electrons scattered by Al as a
function of the scattering angle. Solid line Present calculations (Mott theory) [13]. Circles Salvat
and Mayol calculations (Mott theory) [19]

where

σel = e4Z2

4E2

∫ π

0

2π sin ϑ dϑ

(1 − cos ϑ + α)2
= πe4Z2

2E2

∫ 2+α

α

du

u2
.

Since

∫ 1−cos θ+α

α

du

u2
= 1 − cos θ

α(1 − cos θ + α)

and

∫ 2+α

α

du

u2
= 1

α(1 + α/2)
,

Equations (3.9) and (3.10) immediately follow.
Note that from the cumulative probability expressed by Eq. (3.9) it follows that

the scattering angle can be easily calculated from:

cos θ = 1 − 2α Pel(θ, E)

2 + α − 2Pel(θ, E)
. (3.11)

Due to the excellent agreement between experimental data and Mott cross-section
(see, for a comparison, Fig, 3.6), the most recent Monte Carlo codes (and also all
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Fig. 3.6 Differential elastic scattering cross-section of 1100 eV electrons scattered by Au as a
function of the scattering angle. Solid line Present calculations (Mott theory) [13]. Circles Reichert
experimental data [20]

the calculations presented in this book) use the Mott cross-section to describe the
differential elastic scattering cross-section – and the cumulative probability necessary
for sampling the scattering angle. Nevertheless, it is worth stressing that excellent
results can also be obtained using the simple screened Rutherford formula, Eq. (3.6),
provided that the kinetic primary energy of the incident electrons is higher than
10 keV [21].

3.2 Quasi-elastic Scattering

Due to thermal excitations, atoms in crystalline structures vibrate around their equi-
librium lattice sites. These vibrations are known as phonons. A mechanism of energy
loss (and energy gain as well) is represented by the interaction of the electrons with
the optical modes of the lattice vibrations. These transfers of small amounts of energy
among electrons and lattice vibrations are due to quasi-elastic processes known as
phonon creation (electron energy-loss) and phonon annihilation (electron energy-
gain) [2, 22]. Phonon energies do not exceed kBTD, where kB is the Boltzmann
constant and TD is the Debye temperature. As typically kBTD is not greater than
0.1 eV, the energy losses and gains due to electron–phonon interaction are usually
smaller than 0.1 eV, so that they are generally not resolved by conventional spec-
trometers [9]. These mechanisms of electron energy loss – and, with much smaller
probability, energy gain – are particularly relevant when the electron energy is low
(few eV) [7].
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3.2.1 Electron–Phonon Interaction

According to Fröhlich [2] and Llacer and Garwin [22], the inverse mean free path
for electron energy loss due to phonon creation can be written as

λ−1
phonon = 1

a0

ε0 − ε∞
ε0 ε∞

�ω

E

n(T ) + 1

2
ln

[
1 + √

1 − �ω/E

1 − √
1 − �ω/E

]
, (3.12)

where E is the energy of the incident electron, Wph = �ω the electron energy loss (in
the order of 0.1 eV), ε0 the static dielectric constant, ε∞ the high frequency dielectric
constant, a0 the Bohr radius and

n(T ) = 1

e�ω/kBT − 1
(3.13)

the occupation number. Notice that a similar equation can be written to describe elec-
tron energy gain (corresponding to phonon annihilation). The occurrence probability
of phonon annihilation is much lower than that of phonon creation. Electron energy
gain can thus be safely neglected for many practical purposes.

For further details about electron–phonon interaction and Fröhlich theory [2, 22]
see Chap. 12.

3.3 Inelastic Scattering

Let us consider now the inelastic scattering due to the interaction of the incident
electrons with the atomic electrons located around the nucleus (both the core and the
valence electrons). For an excellent review about this subject, see Ref. [9].

If the incident electron energy is high enough, it can excite an inner-shell electron
that can make a transition from its ground state to one of the unoccupied electron
states above the Fermi level. Due to energy conservation, the incident electron loses
an amount of energy equal to the difference between the state above the Fermi level
occupied by the excited atomic electron and its ground state; while the atom is left in
an ionized state. The following de-excitation of the target atom generates an excess
energy that can be released in one of two competitive ways: either generating an
X-ray photon (Energy dispersive spectroscopy, EDS, is based on this process) or by
the emission of another electron: this is the phenomenon on which Auger electron
spectroscopy, AES, is based.

Outer-shell inelastic scattering can occur according to two alternative processes.
In the first one, an outer-shell electron can suffer a single-electron excitation. A typical
example is constituted by inter-band and intra-band transitions. If the atomic elec-
tron excited in such a way is able to reach the surface with an energy higher than the
potential barrier between the vacuum level and the minimum of the conduction band,

http://dx.doi.org/10.1007/978-3-319-47492-2_12
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it can emerge from the solid as a secondary electron, the energy needed for this tran-
sition being provided by the fast incident electron. De-excitation can occur through
the emission of electromagnetic radiation in the visible region – corresponding to the
phenomenon known as cathode-luminescence – or through radiation-less processes
generating heat. Outer-shell electrons can also be excited in collective states corre-
sponding to the oscillation of the valence electrons denoted as plasma resonance.
It is generally described as the creation of quasi-particles known as plasmons, with
energies – characteristic of the material – that range, typically, in the interval from 5
to 30 eV. Plasmon decay generates secondary electrons and/or produces heat.

3.3.1 Stopping: Bethe–Bloch Formula

In the continuous-slowing-down approximation, energy losses are calculated by uti-
lizing the stopping power. Using a quantum mechanical treatment, Bethe [3] proposed
the following formula for the stopping power:

− dE

dz
= 2πe4N Z

E
ln

(
1.166E

I

)
, (3.14)

where I represents the mean ionization energy which, according to Berger and Seltzer
[23], can be approximated by the following simple formula:

I = (9.76 + 58.8 Z−1.19) Z . (3.15)

The Bethe–Bloch formula is valid for energies higher than ∼ I . It approaches zero as
E approaches I/1.166. When E becomes smaller than I/1.166, the stopping power
predicted by the Bethe–Bloch formula becomes negative. Therefore, the low-energy
stopping power requires a different approach (see the dielectric approach below).

3.3.2 Stopping: Semi-empiric Formulas

The stopping power can also be described using semi-empiric expressions, such as
the following;

− dE

dz
= KeN Z8/9

E2/3
, (3.16)

proposed in 1972 by Kanaya and Okayama (with Ke = 360 eV5/3 Å2) [5]. The latter
formula allows to analytically evaluate the maximum range of penetration R as a
function of the primary energy E0, where
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R =
∫ 0

E0

dE

dE/dz
= 3E5/3

0

5KeN Z8/9
∝ E1.67

0 . (3.17)

A similar empirical formula for the evaluation of the maximum range of penetration
of electrons in solid targets was proposed, for the first time in 1954, by Lane and
Zaffarano [4] who found that their range-energy experimental data (obtained by
investigating electron transmission in the energy range 0–40 keV by thin plastic and
metal films) fell within 15 % of the results obtained by the following simple equation:

E0 = 22.2R0.6 , (3.18)

where E0 was expressed in keV and R in mg/cm2. As a consequence, the Kanaya
and Okayama formula is consistent with the Lane and Zaffarano experimental obser-
vations, which are described as well by the relationship

R ∝ E1.67
0 . (3.19)

3.3.3 Dielectric Theory

In order to obtain a very accurate description of the electron energy loss processes,
of the stopping power, and of the inelastic mean free path, valid even when electron
energy is low, it is necessary to consider the response of the ensemble of conduction
electrons to the electromagnetic field generated by the electrons passing through the
solid: this response is described by a complex dielectric function. In Chap. 13 the
Ritchie theory [6, 24] is described: it demonstrates, in particular, that the energy loss
function, f (k,ω), necessary to calculate both the stopping power and the inelastic
mean free path, is the reciprocal of the imaginary part of the dielectric function

f (k,ω) = Im

[
1

ε(k,ω)

]
. (3.20)

In Eq. (3.20), �k represents the momentum transferred and �ω the electron energy
loss.

Once the energy loss function has been obtained, the differential inverse inelastic
mean free path can be calculated as [25]

dλ−1
inel

d�ω
= 1

π E a0

∫ k+

k−

dk

k
f (k,ω) , (3.21)

where

� k± = √
2m E ± √

2m (E − �ω) , (3.22)

http://dx.doi.org/10.1007/978-3-319-47492-2_13
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E is the electron energy, m the electron mass, and a0 the Bohr radius. The limits of
integration, expressed by Eq. (3.22), come from conservation laws (see Sect. 5.2.3).

In order to calculate the dielectric function, and hence the energy loss-function,
let us consider the electric displacement D [17, 18]. If P is the polarization density
of the material, and E the electric field, then

P = χε E , (3.23)

where

χε = ε − 1

4 π
(3.24)

and

D = E + 4 πP = (1 + 4 πχε)E = εE . (3.25)

If n is the density of the outer-shell electrons, i.e., the number of outer-shell electrons
per unit volume in the solid, and ξ the electron displacement due to the electric field,
then

P = e n ξ , (3.26)

so that

|E| = 4 π e n ξ

ε − 1
. (3.27)

Let us consider the classical model of electrons elastically bound, with elastic con-
stants kn = mω2

n and subject to a frictional damping effect, due to collisions,
described by a damping constant Γ . We have indicated here with m the electron
mass and with ωn the natural frequencies. The electron displacement satisfies the
equation [26]

m ξ̈ + βξ̇ + kn ξ = e E (3.28)

where β = mΓ . Assuming that ξ = ξ0 exp(iωt), a straightforward calculation
allows to conclude that

ε(0,ω) = 1 − ω2
p

ω2 − ω2
n − iΓ ω

, (3.29)

where ωp is the plasma frequency, given by

ω2
p = 4 π n e2

m
. (3.30)

http://dx.doi.org/10.1007/978-3-319-47492-2_5
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Let us now consider a superimposition of free and bound oscillators. In such a case
the dielectric function can be written as:

ε(0,ω) = 1 − ω2
p

∑
n

fn
ω2 − ω2

n − iΓnω
, (3.31)

where Γn are positive frictional damping coefficients and fn are the fractions of the
valence electrons bound with energies �ωn.

The extension of the dielectric function from the optical limit (corresponding to
k = 0) to k > 0 is obtained including, in the previous formula, an energy �ωk related
to the dispersion relation, so that

ε(k,ω) = 1 − ω2
p

∑
n

fn
ω2 − ω2

n − ω2
k − iΓnω

. (3.32)

In the determination of the dispersion relation, one has to take into account a con-
straint, known as the Bethe ridge. According to the Bethe ridge, as k → ∞, �ωk

should approach �
2k2/2m. Of course, an obvious way to obtain this result (the sim-

plest one, actually) is to assume that [25, 27],

�ωk = �
2k2

2m
. (3.33)

Another way of satisfying the constraint represented by the Bethe ridge is to use,
according to Ritchie [6] and to Richie and Howie [24], the following equation :

�
2 ω2

k = 3 �
2 v2

F k
2

5
+ �

4 k4

4m2
, (3.34)

where vF represents the velocity of Fermi.
Once the dielectric function is known, the loss function Im[1/ε(k,ω)] is given by

Im

[
1

ε(k,ω)

]
= − ε2

ε2
1 + ε2

2

, (3.35)

where

ε(k,ω) = ε1(k,ω) + iε2(k,ω) , (3.36)

The calculation of the energy loss function can be also performed through the direct
use of experimental optical data. In Figs. 3.7 and 3.8, the optical energy loss function
of polymethyl methacrylate and silicon dioxide are represented, respectively.

A quadratic extension into the energy- and momentum-transfer plane of the energy
loss function allows the extension of the dielectric function from the optical limit to
k > 0 [32–34].
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Fig. 3.7 Optical energy loss function for electrons in Polymethyl Methacrylate. For energies lower
than 72 eV we used the optical data of Ritsko et al. [28]. For higher energies the calculation of
the optical loss function was performed by using the Henke et al. atomic photo-absorption data
[29, 30]
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Fig. 3.8 Optical energy loss function for electrons in silicon dioxide (SiO2). For energies lower
than 33.6 eV we used the optical data of Buechner [31]. For higher energies the calculation of
the optical loss function was performed by using the Henke et al. atomic photo-absorption data
[29, 30]

Penn [32] and Ashley [33, 34] calculated the energy loss function by using optical
data and by extending as discussed above the dielectric function from the optical limit
to k > 0. According to Ashley [33, 34], the inverse inelastic mean free path λ−1

inel of
electrons penetrating solid targets can be calculated by:

λ−1
inel(E) = me2

2π�2E

∫ Wmax

0
Im

[
1

ε(0, w)

]
L

(w

E

)
dw , (3.37)



3.3 Inelastic Scattering 31

where E is the incident electron energy and Wmax = E/2 (as usual, we have indicated
with e the electron charge and with � the Planck constant h divided by 2π). According
to Ashley, in the dielectric function ε(k, w), the momentum transfer �k was set to
0 and the ε dependence on k was factorised through the function L(w/E). Ashley
[33] demonstrated that a good approximation of the function L(x) is given by:

L(x) = (1 − x) ln
4

x
− 7

4
x + x3/2 − 33

32
x2 . (3.38)

The calculation of the stopping power, −dE/dz, can be performed by using the
following equation [33]:

− dE

dz
= me2

π�2E

∫ Wmax

0
Im

[
1

ε(0, w)

]
S

(w

E

)
w dw , (3.39)

where

S(x) = ln
1.166

x
− 3

4
x − x

4
ln

4

x
+ 1

2
x3/2 − x2

16
ln

4

x
− 31

48
x2 . (3.40)

The inelastic mean free path and the stopping power for positrons may be calculated
in a similar way [34]:

(λ−1
inel)p = me2

2π�2E

∫ Wmax

0
Im

[
1

ε(0, w)

]
Lp

(w

E

)
dw , (3.41)

(
−dE

dz

)
p

= me2

2π�2E

∫ Wmax

0
Im

[
1

ε(0, w)

]
Sp

(w

E

)
w dw , (3.42)

where

Lp(x) = ln

(
1 − x/2 + √

1 − 2x

1 − x/2 − √
1 − 2x

)
(3.43)

and

Sp(x) = ln

(
1 − x + √

1 − 2x

1 − x − √
1 − 2x

)
. (3.44)

In Figs. 3.9 and 3.10 the stopping powers of electrons in PMMA and in SiO2 are,
respectively, shown. In Figs. 3.11 and 3.12 the inelastic mean free paths of electrons
in PMMA and in SiO2 are also, respectively, represented. The present calculations,
obtained using the Ashley theory that we just described. are compared with results
of other authors.
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Fig. 3.9 Stopping power of
electrons in PMMA. The
solid line represents the
present calculation, obtained
according to the Ashley
recipe [33]. The dashed line
provides the Ashley original
results [33]. Dotted line
describes the Tan et al.
computational results [35].
The different optical energy
loss functions used in the
three cases explain the
differences in the
calculations
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Fig. 3.10 Stopping power of
electrons in SiO2. The solid
line represents the present
calculation, obtained
according to the Ashley
recipe [33]. The dashed line
provides the Ashley and
Anderson data [36]. The
different optical energy loss
functions utilized in the two
cases explain the differences
in the calculations
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Once ε(0, w) is known, the electron differential inverse inelastic mean free path
dλ−1

inel(w, E)/dw can be calculated by using the following equation:

dλ−1
inel(w, E)

dw
= me2

2π�2E
Im

[
1

ε(0, w)

]
L

(w

E

)
. (3.45)

3.3.4 Sum of Drude Functions

Ritchie and Howie [24] have proposed to calculate the energy loss function as a linear
superimposition of Drude functions, as follows:
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Fig. 3.11 Inelastic mean free path of electrons in PMMA due to electron–electron interaction.
The solid line represents the present calculation, based on the Ashely model [33]. The dashed line
describes the original Ashley results [33]. The differences in the two calculations are due to the
different optical energy loss functions utilized

Fig. 3.12 Inelastic mean
free path of electrons in SiO2
due to electron–electron
interaction. The solid line
represents the present
calculation, based on the
Ashely model [33]. The
dashed line describes the
Ashley and Anderson data
[36]. The dotted line
provides the Tanuma, Powell
and Penn computational
results [37]. The differences
in the calculations are due to
the different optical energy
loss functions utilized
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Im
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1

ε(k,ω)

]
=

∑
n

An Γn �ω

[w2
n(k) − �2ω2]2 + �2ω2Γ 2

n

, (3.46)

where, according to Eq. (3.34),

wn(k) =
√

w2
n + 12EF

5

�2k2

2m
+

(
�2k2

2m

)2

, (3.47)
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Table 3.1 Parameters calculated by Garcia-Molina et al. [39] to fit the contribution to the optical
energy loss function of the outer electrons for five selected carbon allotropes (amorphous carbon,
glassy carbon, C60-fullerite, graphite, and diamond)

Target n wn (eV) Γn (eV) An (eV2)

Amorphous carbon 1 6.26 5.71 9.25

2 25.71 13.33 468.65

Glassy carbon 1 2.31 4.22 0.96

2 5.99 2.99 6.31

3 19.86 6.45 77.70

4 23.67 12.38 221.87

5 38.09 54.42 110.99

C60-fullerite 1 6.45 2.45 6.37

2 14.97 6.26 16.52

3 24.49 13.06 175.13

4 28.57 12.24 141.21

5 40.82 27.21 141.47

Graphite 1 2.58 1.36 0.18

2 6.99 1.77 7.38

3 21.77 8.16 73.93

4 28.03 6.80 466.69

5 38.09 68.03 103.30

Diamond 1 22.86 2.72 22.21

2 29.93 13.61 140.64

3 34.77 11.43 843.85

In these equations, EF is the Fermi energy, and wn, Γn, An are the excitation energies,
the damping constants, and the strengths, for k = 0 [38]. Garcia-Molina et al. [39]
provided, for example, the values of these parameters, calculated from the fit of
experimental optical data for five allotropic forms of carbon (amorphous carbon,
glassy carbon, C60-fullerite, graphite, and diamond). In Table 3.1 the Garcia-Molina
et al. parameters have been reported, for the reader’s convenience. The optical energy
loss functions so calculated for these five carbon allotrops are represented in Fig. 3.13.

In Fig. 3.14 the differential inverse inelastic mean free path for the considered
allotrops of carbon, calculated by [see Eqs. (3.20) and (3.21)]

dλ−1
inel

d�ω
= 1

πa0E

∫ k+

k−

dk

k
Im

[
1

ε(k,ω)

]
, (3.48)

where k− and k+ are given by Eq. (3.22), is represented as a function of the energy
loss w = �ω for incident electron energy E = 250 eV. The comparison with the
shapes of the curves representing the optical energy loss function of Fig. 3.13 clearly
shows the effect of the dispersion law, Eq. (3.34): the peaks broaden and become
more asymmetric (see the tail on their right side).
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Fig. 3.13 Optical energy loss function of selected allotropic forms of carbon (amorphous carbon,
glassy carbon, C60-fullerite, graphite, and diamond) as a function of the excitation energy, calculated
by sum of Drude–Lorentz functions, according to Ritchie and Howie [24], using the Garcia-Molina
et al. parameters [39]

0 20 40 60 80
0.000

0.001

0.002

0.003

0.004

0.005

0.006  Amorphous carbon
 Glassy carbon
 C60-fullerite
 Graphite
 Diamond

D
IIM

FP
 (e

V-1
-1
)

Energy transfer (eV)

Fig. 3.14 Differential inverse inelastic mean free path for electrons impinging upon several
allotropic forms of carbon (amorphous carbon, glassy carbon, C60-fullerite, graphite, and dia-
mond) as a function of the electron energy loss, calculated using Drude–Lorentz functions. The
incident electron energy is E = 250 eV

Figure 3.15 shows, for the five considered allotropic forms of carbon, the electron
inelastic mean free path, i.e. the reciprocal of

λ−1
inel =

∫ Wmax

Wmin

dλ−1
inel

dw
dw , (3.49)
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Fig. 3.15 Inelastic mean
free path for electrons
impinging upon several
allotropic forms of carbon
(amorphous carbon, glassy
carbon, C60-fullerite,
graphite, and diamond) as a
function of the electron
kinetic energy, calculated
using Drude–Lorentz
functions
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where, according to Ref. [38], Wmin is set to zero for conductors and to the energy
of the band gap for semiconductors and insulating materials. Wmax represents the
minimum between E − EPauli and (E + Wmin)/2. Note that, for metals, EPauli =
EF . Garcia-Molina et al., recently proposed the value EPauli = 4 eV for several
biomaterials [40]. In the same paper, Garcia-Molina et al. set Wmin to the energy
gap for the outer-shell electron excitations and to the inner-shell threshold energy
for the inner-shell electron excitations [40]. According to Emfietzoglou et al. [38],
the factor 1/2 in Wmax is due to the fact that electrons cannot be distinguished (with
the convention to consider the incident electron as the most energetic one after the
collision).

3.3.5 The Mermin Theory

A more accurate approach to the calculation of the ELF is based on the use of the
Mermin functions [41] instead of the Drude–Lorentz functions in the sum. This
method is the Mermin energy loss function-generalized oscillator strength (MELF-
GOS) method proposed by Abril et al. [42]. Details of the MELF-GOS method can
be found in Chap. 15. According to Abril et al. [42], a linear combination of Mermin-
type energy loss functions, one per oscillator, allows to calculate the electron ELF
for any given material. The procedure is very similar to the previous one. Unlike that,
Mermin functions are used instead of Drude–Lorenz functions. Please note that the
Mermin theory includes the dispersion law, and it is not necessary, as is the case for
the Drude–Lorentz approach, to introduce an approximate expression of it to extend
the ELF beyond the optical domain. The Mermin differential inverse inelastic mean
free path of electrons in PMMA is represented in Fig. 3.16, for kinetic energies of
the incident electrons ranging from 50 to 1000 eV.

http://dx.doi.org/10.1007/978-3-319-47492-2_15
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Fig. 3.16 Mermin differential inverse inelastic mean free path of electrons in PMMA as a function
of the energy loss for selected values of the incident electron kinetic energy E in the range 50–
1000 eV [46]. The calculations are based on the MELF-GOS method [42] (see Chap. 15 for details)

The inverse of the integral of every curve presented in Fig. 3.16 provides, for each
kinetic energy E , the inelastic mean free path.

According to de la Cruz and Yubero [43], the values of the inelastic mean free path
calculated using the Tanuma, Powell and Penn (TPP) empirical predictive formula
[44] are systematically higher than the corresponding values calculated within the
Mermin theory. For PMMA, according to our calculation, when E = 100 eV the
Mermin IMFP is equal to 6.3 Å while when E = 1000 eV it is equal to 27.6 Å.
According to TPP, the inelastic mean free path of PMMA is equal to 7.9 Å for
E = 100 eV and to 33.7 Å for E = 1000 eV [44]. Approaches based on the Drude–
Lorentz theory also provide values of the inelastic mean free path systematically
higher than those obtained using the Mermin theory. The inelastic mean free path
of PMMA calculated according to the Drude–Lorentz theory is equal to 10.1 Å for
E = 100 eV and to 33.5 Å for E = 1000 eV [45].

3.3.6 Exchange Effects

Exchange effects in the electron–electron interaction are due to the fact that scattered
electrons cannot be distinguished from ejected electrons. In order to take into account
the exchange effects, the differential inverse inelastic mean free path have to be
calculated as

dλ−1
inel

d�ω
= 1

πa0E

∫ k+

k−

dk

k
[1 + fex(k)] Im

[
1

ε(k,ω)

]
, (3.50)

http://dx.doi.org/10.1007/978-3-319-47492-2_15
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Fig. 3.17 Mermin inelastic mean free path of electrons in PMMA [48] calculated according to the
MELF-GOS method [42] (see Chap. 15 for details). Black line with exchange. Gray line without
exchange. Courtesy of P. de Vera, I. Abril, R. Garcia-Molina

where, according to the Born–Ochkur approximation [47],

fex(k) =
(

�k

mv

)4

−
(

�k

mv

)2

. (3.51)

In Eq. (3.51) m is the electron mass and v is the electron velocity.
The Mermin inelastic mean free path of electrons in PMMA, calculated including

the Born–Ochkur approximation in order to take into account the exchange effects
(black line) is compared, in Fig. 3.17, with the Mermin inelastic mean free path
of electrons in PMMA calculated without exchange effects (gray line) [48]. The
calculations are based on the MELF-GOS method [42].

3.3.7 Polaronic Effect

A low-energy electron moving in an insulating material induces a polarization
field that has a stabilizing effect on the moving electron. This phenomenon can
be described as the generation of a quasi-particle called polaron. The polaron has a
relevant effective mass and mainly consists of an electron (or a hole created in the
valence band) with its polarization cloud around it. According to Ganachaud and
Mokrani [7], the polaronic effect can be described assuming that the inverse inelastic
mean free path governing the phenomenon – that is proportional to the probability
for a low-energy electron to be trapped in the ionic lattice – is given by

http://dx.doi.org/10.1007/978-3-319-47492-2_15
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λ−1
pol = C e−γ E (3.52)

where C and γ are constants depending on the dielectric material. Thus the lower
the electron energy, the higher the probability for an electron to lose its energy and
to create a polaron. This approach implicitly assumes that, once has been generated
a polaron, the residual kinetic energy of the electron is negligible. Furthermore, it
is assumed that the electron stays trapped in the interaction site. This is quite a
rough approximation, as trapped electrons – due to phonon induced processes – can
actually hop from one trapping site to another. Anyway, it is often a sufficiently good
approximation for Monte Carlo simulation purposes, so that it will be used in this
book when we will deal with secondary electron emission from insulating materials.

3.4 Inelastic Mean Free Path

We have already discussed the fact that the main mechanism which determines the
inelastic scattering cross-section and the relative energy losses, for energies higher
than 50 eV, is the interaction of the incident electrons with the collective excitations of
the electron sea, known as plasmons. Such energy loss mechanisms can be described
by calculating the so-called energy loss function, i.e., the reciprocal of the imaginary
part of the dielectric function. The Ritchie theory [6, 24] can be used – starting from
the knowledge of the dependence of the dielectric function upon both the energy loss
and the momentum transfer – to calculate the differential inverse electron inelastic
mean free path and the electron inelastic mean free path. When the electron energy is
higher than 50 eV, both the electron inelastic mean free path and the electron stopping
power calculated within the dielectric formalism are in very good agreement with
the experiment (and with theoretical data obtained by other investigators).

When, on the other hand, the electron energy becomes lower than 50 eV, the
dielectric formalism alone is no longer able to accurately describe the energy loss
phenomena. In fact, as the electron energy decreases, the electron inelastic mean free
path calculated using only the electron–electron interaction increases indefinitely (see
Figs. 3.11 and 3.12), while the stopping power goes quickly to zero (see Figs. 3.9 and
3.10). This means that if only electron–electron interactions were active for inelastic
scattering, electrons with such a low energy would no longer interact inelastically
(i.e., losing energy) with the solid. As a consequence they would travel without any
change in their kinetic energy. For a semi-infinite target, this very long travel in the
solid would either continue forever or until the electron reaches the surface of the
material and is able to emerge.

As a matter of fact, we know that when the energy becomes lower than 20–30 eV
further mechanisms of energy loss becomes very important (electron–phonon and
electron–polaron interactions) so that the actual inelastic mean free path approaches
zero as the electron energy goes to zero.
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3.5 Surface Phenomena

Bulk and surface plasmon losses. The plasma frequency ωp is given, in the Drude
free electron theory, by Eq. (3.30) and represents the frequency of the volume collec-
tive excitations, which correspond to the propagation in the solid of bulk plasmons
with energy

Ep = �ωp . (3.53)

In the electron energy loss spectra, it is thus expected to observe a bulk plasmon peak
whose maximum is located at an energy Ep [given by Eq. (3.53)] from the elastic or
zero-loss peak.

Also, features related to surface plasmon excitations appear in spectra acquired
either in reflection mode from bulk targets or in transmission mode from very thin
samples or small particles [49]. Indeed, in the proximity of the surface, due to the
Maxwell’s equation boundary conditions, surface excitations modes (surface plas-
mons) take place with a resonance frequency slightly lower than the bulk resonance
frequency.

A rough evaluation of the energy of the surface plasmons can be performed – for a
free electron metal – through the following very simple considerations [9]. In general,
similarly to the volume plasmons propagating inside the solid, in the presence of an
interface between two different materials – which we indicate here with a and b –,
longitudinal waves travel as well along the interface. From continuity considerations
it follows that [9]

εa + εb = 0 , (3.54)

where we have indicated with εa the dielectric function on side a and with εb the
dielectric function on side b of the interface. Let us now consider the particular case
of a vacuum/metal interface and ignore, for the sake of simplicity, the damping, so
that Γ ≈ 0. Then, if a represents the vacuum, we have

εa = 1 , (3.55)

and

εb ≈ 1 − ω2
p

ω2
s

, (3.56)

where we have indicated with ωs the frequency of the longitudinal waves of charge
density traveling along the surface. Then we obtain, from Eq. (3.54)

2 − ω2
p

ω2
s

= 0.
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As a consequence, the surface plasmon energy Es = �ωs, i.e. the surface plasmon
peak position in the energy loss spectrum, is expected to be found at an energy

Es = Ep√
2

(3.57)

from the position of the elastic peak.

Chen and Kwei theory. Chen and Kwei [50] used the dielectric theory to show
that the differential inverse inelastic mean free path for electrons emerging from a
solid surface can be split up into two terms. The first one is the differential inverse
inelastic mean free path in an infinite medium. The second one is the so-called surface
term which is related to a surface layer extending on both sides of the vacuum-solid
interface. As a consequence, electrons can interact inelastically with the solid even
if outside, if they are close enough to the surface. Spectra of electrons originating
near to the surface are therefore influenced by these surface effects.

The original version of the Chen and Kwei theory concerned only outgoing pro-
jectiles [50]. It was generalized by Li et al. [51] for incoming projectiles. See Chap. 14
for details.

So the theory predicts different trends for the inverse inelastic mean free path
(IIMFP) for incoming and outgoing electrons when electrons are close to the surface:
in particular, the inverse inelastic mean free path of the incoming electrons is found
to slightly oscillate around the mean value, i.e., the bulk inverse inelastic mean free
path. This phenomenon is attributed to the behavior of the electrons passing through
the surface.

Using the Chen and Kwei theory, one can calculate the dependence on z of the
inverse inelastic mean free path, for any given electron kinetic energy. In Figs. 3.18
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Fig. 3.18 Inverse inelastic mean free path (IIMFP) electrons in Al as a function of the distance
from the surface (in the solid and in the vacuum) for several kinetic energies of both incoming and
outgoing electrons

http://dx.doi.org/10.1007/978-3-319-47492-2_14
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Fig. 3.19 Inverse inelastic mean free path (IIMFP) electrons in Si as a function of the distance
from the surface (in the solid and in the vacuum) for several kinetic energies of both incoming and
outgoing electrons
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Fig. 3.20 Comparison between the experimental (black line) and theoretical (gray line) electron
energy loss spectra for 1000 eV electrons impinging upon Al [52]. Calculated and experimental
spectra were normalized to a common height of the bulk plasmon peak after linear background
subtraction. Experimental data: courtesy of Lucia Calliari and Massimiliano Filippi

and 3.19 the inverse inelastic mean free path of Al and Si, respectively, are presented
as a function of the electron’s energy and depth (both outside and inside the solid).

The Chen and Kwei theory [50] and its generalization by Li et al. [51] have been
recently used for simulating the surface and bulk plasmon loss peaks in Al and Si [52].
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Fig. 3.21 Comparison between the experimental (black line) and theoretical (gray line) electron
energy loss spectra for 1000 eV electrons impinging upon Si [52]. Calculated and experimental
spectra were normalized to a common height of the bulk plasmon peak after linear background
subtraction. Experimental data: courtesy of Lucia Calliari and Massimiliano Filippi

The energy loss spectrum can be calculated under the assumption that experi-
mental spectra arise from electrons undergoing a single large angle elastic scattering
event (so-called V-type trajectories [53]). In Figs. 3.20 and 3.21, the present calcu-
lation based on the combination of the Chen and Kwei and Li et al. theory [50, 51]
with a single V-type trajectory modeling for Al and Si, are compared to experimental
data [52]. Calculated and experimental spectra are normalized to a common height
of the bulk plasmon peak.

3.6 Summary

In this chapter, elastic and inelastic scattering cross-sections were described. They
are the main ingredients of the Monte Carlo simulation.

In particular, the elastic scattering collisions can be calculated by the Mott cross-
section, the electron–plasmon inelastic scattering events by the Ritchie dielectric
theory, and electron–phonon energy losses by the Fröhlich theory. Polaronic effects
can be computed according to Ganachaud and Mokrani.

Chen and Kwei theory and its generalization due to Li et al. were also described.
These theories allow to deal with the surface phenomena, particularly important for
the investigation of reflection electron energy loss spectroscopy when the incident
electron energy is smaller than 2–3 keV.
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