
Chapter 15
Appendix F: The Mermin Theory
and the Generalized Oscillator Strength
Method

Dielectric formalism is the most used method for investigating the interaction of
swift electrons with solid targets. In this chapter the Mermin energy loss function-
generalized oscillator strength method (MELF-GOS method) is briefly described
within the framework of dielectric formalism [1–4].

15.1 The Mermin Theory

The Mermin dielectric function [1] is given by:

εM(q,ω) = 1 + (1 + i/ωτ )[ε0(q,ω + i/τ ) − 1]
1 + (i/ωτ )[ε0(q,ω + i/τ ) − 1]/[ε0(q, 0) − 1] , (15.1)

where q is the momentum, ω the frequency, τ the relaxation time, and ε0(q,ω) the
Lindhard dielectric constant [5]

ε0(q,ω) = 1 + 4π2q2

e2
B(q,ω) , (15.2)

B(q,ω) =
∫

dp
4π3

fp+q/2 − fp−q/2

ω − (εp+q/2 − εp−q/2)/�
. (15.3)

In these equations e is the electron charge, fp is the Fermi-Dirac distribution, and εp
the free electron energy.

Note that the Lindhard dielectric function [5] can be numerically calculated by
using Eqs. (15.2) and (15.3). The integration can also be carried out in closed form.
The result of the integration is the following [2, 3, 6]:
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ε0(q,ω) = 1 + χ2

z2
[ f1(u, z) + i f2(u, z)] , (15.4)

where u = ω/(qvF ), z = q/(2qF ), andχ2 = e2/(π � vF ) is ameasure of the electron
density [6]. In this equation, vF is the Fermi velocity of the valence electrons of the
target and qF = mvF/�. The functions f1(u, z) and f2(u, z) are given by

f1(u, z) = 1

2
+ 1

8z
[g(z − u) + g(z + u)] , (15.5)

f2(u, z) =

⎧⎪⎨
⎪⎩

π
2 u, z + u < 1
π
8z [1 − (z − u)2], |z − u| < 1 < z + u

0, |z − u| > 1 ,

(15.6)

where

g(x) = (1 − x2) ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ . (15.7)

15.2 The Mermin Energy Loss Function-Generalized
Oscillator Strength Method (MELF-GOS)

Let us now consider a superposition of free and bound oscillators. For any oscillator,
the energy loss function is given by the opposite of the imaginary part of the inverse
of the Mermin dielectric function:

Im

[ −1

εM(ωi , γi ; q,ω)
]

= εM2

ε2M1
+ ε2M2

, (15.8)

where

εM = εM1 + iεM2 (15.9)

and ωi and γi are, respectively, the frequency and the damping constant associated to
each specific oscillator. A linear combination of Mermin-type energy loss functions,
one per oscillator, allows to calculate the energy loss function (ELF) for q = 0, for
any specific material [2–4]:

Im

[ −1

ε(q = 0,ω)

]
=

∑
i

Ai Im

[ −1

εM(ωi , γi ; q = 0,ω)

]
. (15.10)
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In this equation, Ai , ωi , and γi are determined by looking for the best fit of the
available experimental optical ELF. Actually, as both Mermin and Drude-Lorentz
oscillators converge on the same values in the optical limit (i.e. for q = 0) [7]

Im

[ −1

ε(q = 0,ω)

]
=

∑
i

Ai Im

[ −1

εM(ωi , γi ; q = 0,ω)

]
=

∑
i

Ai Im

[ −1

εD(ωi , γi ; q = 0,ω)

]
, (15.11)

where the Drude-Lorentz functions Im
[

−1
εD(ωi ,γi ;q=0,ω)

]
are given by [8]

Im

[ −1

εD(ωi , γi ;q = 0,ω)

]
= γiω

(ω2
i − ω2)2 + (γiω)2

, (15.12)

the best fit can also be obtained using a linear combination of Drude-Lorentz func-
tions, instead of Mermin functions. Once the values of the best fit parameters have
been established (see, for example, Refs. [4, 9, 10]), the extension beyond the optical
domain (q �= 0) can be obtained by [2–4]

Im

[ −1

ε(q,ω)

]
=

∑
i

Ai Im

[ −1

εM(ωi , γi ;q,ω)
]
. (15.13)

Planes et al. [2], Abril et al. [3], and de Vera et al. [4] construct the ELF in the optical
limit including the contribution of the electrons from the outermost atomic inner
shells as follows:

Im

[ −1

ε(q = 0,ω)

]
=

⎧⎪⎪⎨
⎪⎪⎩

∑
i Ai Im

[
−1

εM (ωi ,γi ;q=0,ω)

]
ω < ωi,edge∑

i,sh Ai,shIm
[

−1
εM (ωi,sh ,γi,sh ;q=0,ω)

]
ω ≥ ωi,edge

(15.14)
where the first term represents the contribution of the outer electronswhile the second
one includes the electrons of the outermost atomic inner shells.

15.3 Summary

In this chapter, after a brief discussion about the Mermin theory [1], the Mermin
energy loss function-generalized oscillator strength method (MELF-GOS method),
in the framework of the dielectric formalism, was shortly described [2–4].
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