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Preface to the Second Edition

This book describes all the scattering mechanisms (elastic and inelastic) of electrons
with the atoms of the target in a way in the simplest possible way. The use of
quantum mechanics mechanims is described in detail for the investigation of
interaction processes of electrons with matter. This book presents the strategies
of the Monte Carlo method and compares numerous results of the simulations and
the experimental data available in the literature. The new content of this extended
and updated second edition includes the derivation of the Rutherford formula,
details about the calculation of the phase shifts that are used in the relativistic partial
wave expansion method, and the description of the Mermin theory. The role of
secondary electrons in the proton cancer therapy is discussed as well in the chapter
devoted to applications: Monte Carlo results on the radial distribution of the energy
deposited in solids by secondary electrons generated by energetic proton beams are
presented in this context.

Povo Maurizio Dapor
August 2016
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Preface to the First Edition

In modern physics we are interested in systems with many degrees of freedom. Let
us consider, for example, the number of atoms in a solid, the number of electrons in
an atom, or the number of electrons of a beam interacting with many atoms and
electrons of a solid.

In many situations, these systems can be described by the calculations of definite
integrals of very high dimension. An example is the evaluation of the classical
partition function for a gas of many atoms at a temperature T. The Monte Carlo
method provides us with a very accurate way to calculate high-dimensional definite
integrals: It evaluates the integrand at a random sampling of abscissa.

The Monte Carlo method is also used for evaluating the many physical quantities
necessary for the study of the interactions of particle beams with solid targets. The
simulation of the involved physical processes, by random sampling, allows us for
the solution of many particle transport problems. Letting the particles carry out an
artificial, random walk—taking into account the effect of the single collisions—it is
possible to accurately evaluate the diffusion process.

This book is devoted to electron-beam interactions with solid targets. As a
researcher in this field, I am persuaded that a book on kV electron transport in solids
can be very useful. It is difficult, for the newcomer, to find this topic exhaustively
treated, and the beginner can be overwhelmed by the great number of published
papers.

The Monte Carlo simulation is the most powerful theoretical method for eval-
uating the physical quantities related to the interaction of electrons with a solid
target. A Monte Carlo simulation can be considered as an idealized experiment. The
simulation does not investigate the fundamental principles of the interaction. It is
necessary to know them—in particular the energy loss and angular deflection
phenomena—to produce a good simulation.

This book is complementary to many other texts dedicated to similar subjects
(including my book entitled Electron-Beam Interactions with Solids, published by
Springer-Verlag in 2003) for the following two aspects.
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1. I have, on the one hand, systematically minimized the mathematical contents
of the most difficult theoretical parts. Since the essential concept to be grasped is
the meaning of the various cross sections, the mathematical details, for the sake
of clarity, have been deliberately avoided. I have reduced the theoretical part to
the presentation of the energy loss and the angular deflections, providing simple
recipes to calculate the stopping power, the differential inverse inelastic mean
free path, and the differential elastic scattering cross section. This allowed me to
avoid an in-depth description of the quantum theory. Mathematical contents and
details can be found in the Appendices, in my previous book, and in many other
books dedicated to modern physics and quantum mechanics.

2. In the derivation and use of the simpler theoretical transport models, I have, on
the other hand, included many details. I think, indeed, that there is a need of a
basic physical picture in order to provide the beginner with a solid background
about electron transport in solids. This can be only achieved by a step-by-step
derivation of the analytical formulas.

Comparing available experimental data with simulation results is a fundamental
step in evaluating the quality of the Monte Carlo codes. Selected applications of the
Monte Carlo method to kV electron transport in solids are presented in the second
part of this book. This book compares computational simulations and experimental
data in order to offer a more global vision.

Povo Maurizio Dapor
October 2013
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Chapter 1
Electron Transport in Solids

The Monte Carlo (MC) method is used for evaluating the many physical quantities
necessary to the study of the interactions of particle-beams with solid targets. Stud-
ies of backscattered and secondary electrons are of great interest for many analytical
techniques. A better comprehension of the processes which occur before the emis-
sion of backscattered and secondary electrons would allow a more comprehensive
understanding of surface physics.

1.1 Motivation: Why Are Electrons Important

Electrons continuously interact with the matter around us. Plasma processing of
materials, electron lithography, electron microscopy and spectroscopies, plasma-wall
in fusion reactors, interaction of charged particles with the surfaces of space-crafts,
and hadron therapy represent only a few technological examples where electrons are
involved and play a role.

In fact, we use electron beams for our purposes, either on the front of production
of materials or on that of their characterization. Let us think of the many applications
such as processing of materials with plasma and of the local melting of materials
for joining large components. We use electron beams also in electron lithography,
an important technique utilized for the production of microelectronics devices. Let
us consider the importance of the beams of electrons in material characterization,
performed using techniques such as electron microscopy and all electron spectro-
scopies. Electrons interact with the surfaces of space-crafts. Plasma-wall interaction
in fusion reactors also involves electron-matter interaction. Electrons play a role also
in cancer proton therapy, where cascades of secondary electrons are produced. These
very low energy electrons are toxic for human body cells, since they produce damage
to the biomolecules due to ionizations/excitations and the resulting break of chemical
bonds. Also secondary electrons which have ultra-low energy – and which, for a long
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2 1 Electron Transport in Solids

time, were thought to be relatively harmless – are dangerous for biomolecules due to
the so-called dissociative electron attachment. And, of course, we want to minimize
the effects of irradiation on the healthy tissues near to the diseased cells.

In all the cases above, modeling the interaction of electrons with matter is very
important, as it can be used to provide a solid theoretical interpretation of experi-
mental evidence.

These are the reasons for which an accurate and detailed study of the interaction
mechanisms of electrons with matter is of paramount importance.

1.2 The Monte Carlo Method

The world is ruled by quantum mechanics. The investigation of the processes of
electron-matter interaction requires the use of quantum mechanics-based techniques.
And since, typically, the number of particles involved in these processes is huge, it
is crucial to use statistical approaches, such as those represented by the Monte Carlo
method. This method provides a very accurate description of many of the phenomena
that we can observe in nature when electrons interact with materials.

The Monte Carlo method is a numerical procedure which uses random numbers,
theory of probability, and statistics to evaluate multiple integrals.

Suppose we need to calculate the area of a closed surface. In order to do so, we can
surround the curve with a square of known side. Then we generate a large number of
random points inside the square. Whenever a random point falls within the surface,
we update a counter. When the number of points is very large, the ratio of those fallen
within the surface and the total number of generated points will approach the ratio
between the (unknown) area of the surface and the (known) area of the square.

It is very important to emphasize that, when the number of dimensions is high (as
it is when dealing with all statistical problems) the Monte Carlo method is the best
numerical procedure for the calculation of multiple integrals. Complicated problems
of physics involving very large numbers of particles can be addressed with the Monte
Carlo method: it can realize real numerical simulations of physical processes such
as the interaction of an electron beam with a solid.

The Monte Carlo method is used, in particular, for evaluating the many physical
quantities necessary to the study of the interactions of particle-beams with solid
targets. By letting the particles carry out an artificial, random walk – taking into
account the effect of the single collisions – it is possible to accurately evaluate the
diffusion process [1–4].

1.3 The Monte Carlo Ingredients

To work properly, the Monte Carlo method needs a set of input data describing the
interaction of the particle beam with the target. Such data specify the kind of mate-
rials and, of course, the kind of incident particles. The interactions of the particles
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impinging on the specimen with the target atoms can be described by the cross-
sections that describe different physical phenomena. In fact various kinds of inter-
action occur during the passage of the electrons through the material.

In particular we will investigate the elastic electron-atom processes, described by
the so-called elastic scattering cross-section. The elastic scattering cross-section can
be described by an equation known as the screened Rutherford cross-section formula.
This is an analytical expression valid when the energy of the incident electrons is
relatively high and the atomic numbers of the target atoms are relatively low, as it
was deduced within the so-called first Born approximation. But, since the case of
low energy electrons and high atomic numbers is not well described by such a simple
formula, in order to simulate the elastic scattering cross-section with a more general
formulation – valid for all energies and atomic numbers – a more complex approach
is necessary, which is known as the relativistic partial wave expansion method (Mott
cross-section [5]).

Concerning the inelastic scattering cross-section, we will use semi-empirical ana-
lytical formulas, when possible, and the so-called dielectric Ritchie’s theory [6] for
dealing with the more general cases.

When electron energy becomes relatively small (let us say, smaller than 20–30 eV,
depending on the investigated material) another very important mechanism of energy
loss (and energy gain) is related to the creation (and annihilation, respectively) of
phonons. For describing such a phenomenon, we will introduce the electron-phonon
cross-section utilizing the Fröhlich’s theory [7].

In the end, in many cases also trapping phenomena are important and need to
be considered in the simulations. They can be due to the polarization of materials
(insulators) induced by the passage of very slow electrons through them [8] and/or
also to defects in the materials. When dealing with insulating materials, trapping
phenomena are mainly due to the so called polaronic effect, i.e., to the creation of
quasi-particles constituted by slow electrons with the polarization field around them
[8]. In the case of metals and semiconductors, traps are mainly due to defects in the
materials (i.e., impurities, structural defects, grain boundaries etc.).

1.4 Electron-Beam Interactions with Solids

During their travel in the solid, the incident electrons lose energy and change direction
at each collision with the atoms bound in the solid. Because of the large difference
between the masses of the electron and the atomic nucleus, nuclear collisions deflect
electrons with very small kinetic energy transfers. This process is described by the
differential elastic scattering cross-section (which can be calculated by the so-called
relativistic partial wave expansion method, corresponding to the Mott cross-section
[5]). The Mott cross-section can be approximated with the screened Rutherford for-
mula: this is possible when the conditions corresponding to the first Born approxi-
mation are satisified, i.e., for high energy and for low atomic number of the target
atom. Additionally, excitation and ejection of atomic electrons, and excitation of
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plasmons, affect the energy dissipation. These processes only slightly affect the
direction of the incident electron in the solid, so that they can be described as inelas-
tic events. Plasmon excitations are ruled by the equations for the differential inverse
inelastic mean free path, calculated by the use of Ritchie’s dielectric theory [6]. The
Fröhlich theory [7] can be used for describing the quasi-elastic electron-phonon inter-
actions in insulating materials. Electron-phonon interactions are considered quasi-
elastic for the corresponding energy losses and gains are very small when compared
to the plasmon energy losses. When, in insulating materials, electron kinetic energies
considerably decreases, trapping phenomena due to the polaronic effect have to be
taken into account as well [8].

While for electron kinetic energies higher than 10 keV, MC simulations provide
excellent results by just using the Rutherford differential elastic scattering cross-
section (elastic scattering) and the Bethe-Bloch stopping power formula or semi-
empirical stopping power1 formulas (inelastic scattering), when the electron energies
become much smaller than 5 keV – and this is the case of secondary electron emission
– this approach fails [10]. There are many reasons, and the most important ones are
related to the three following facts:

(i) As the Rutherford formula is a result of the first Born approximation, it is a
high energy approximation.

(ii) Also the Bethe-Bloch formula is valid only for quite high energies; in particular,
the Bethe-Bloch stopping power does not provide the correct predictions when
the electron energy E becomes smaller than the mean ionization energy I. It
reaches a maximum and then approaches zero as E approaches I / 1.166. Below
I / 1.166, the predicted stopping power becomes negative. The use of semi-
empiric approaches can sometimes mitigate the problem. Actually, numerical
approaches based on the calculation of the dielectric function - as a function of
the energy loss and of the momentum transfer - are necessary to calculate low
energy inelastic processes.

(iii) The inclusion of the stopping power in the MC code corresponds to the use of
the so-called continuous-slowing-down approximation (CSDA). Such a way of
describing energy losses completely neglects that actually electrons lose their
energy in several inelastic collisions. Sometimes an electron can even lose all
its energy in a single collision. In other words, any realistic model of the elec-
tron trajectories should avoid the approximation of continuity in describing the
electron energy losses. CSDA can be used (and will be used, when possible,
in the present work as well) but only in cases where the details of the energy
loss mechanisms are not crucial for the accurate description of the process
under investigation. CSDA can be used, for example, for the calculation of the
backscattering coefficient. We will see that, in some specific cases, even the
calculation of the secondary electron yield can be performed using CSDA. On

1In this book we will use the expression stopping power instead of stopping force to indicate the
energy loss per unit distance of the electron in the solid. Even if consistent with the units, and
hence more accurate, the use in the literature of the expression stopping force, as observed by Peter
Sigmund [9], is only slowly appearing, after a hundred years of use of the term stopping power.
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the contrary, the description of the energy distributions of the emitted elec-
trons (both backscattered and secondary) have to be performed avoiding the
approximation of continuity in the energy loss processes and including energy
straggling (ES) – i.e., the statistical fluctuations of the energy loss due to the
different energy losses suffered by each electron travelling in the solid – in the
calculations.

A detailed approach able to accurately describe low energy elastic and inelastic
scattering and to appropriately take into account the energy straggling is required
for the description of secondary electron cascade. The whole cascade of secondary
electrons must be followed: indeed any truncation, or cut off, underestimates the
secondary electron emission yield. Also, as already discussed, for insulating mate-
rials the main mechanisms of energy loss cannot be limited to the electron-electron
interaction for, when the electron energy becomes very small (lower than 10–20 eV,
say), inelastic interactions with other particles or quasi-particles are responsible for
electron energy losses. In particular, at very low electron energy, trapping phenomena
due to electron-polaron interactions (polaronic effects) and electron-phonon interac-
tions are the main mechanisms of electron energy loss. For electron-phonon interac-
tion, even phonon annihilations and the corresponding energy gains should be taken
into account. Actually the energy gains are often neglected, for their probability of
occurence is very small: much smaller, in any case, than the probability of phonon
creation.

Summarizing, incident electrons are scattered and lose energy, due to the inter-
actions with the atoms of the specimen, so that the incident electrons direction and
kinetic energy are changed. It is usual to describe the collision events assuming that
they belong to three distinct kinds: elastic (scattering with atomic nuclei), quasi-
elastic (scattering with phonons) and inelastic (scattering with the atomic electrons
and trapping due to the polaronic effect).

1.5 Electron Energy-Loss Peaks

Electron energy-loss spectroscopy treats the primary process in which the incident
electron loses amounts of energy which characterize the target material (see, for
example, Refs. [6, 11–30]). An electron spectrum represents the number of electrons
as a function of the energy they have after interaction with a target. The spectrum
can be represented as a function of either the electron energy or of the electron
energy-loss. In this second case, the first peak on the left of the spectrum, centered
at zero energy-loss, is known as the zero-loss peak. Also known as the elastic peak,
it collects all the electrons which were transmitted – in transmission electron energy
loss spectroscopy (TEELS) – or backscattered – in reflection electron energy loss
spectroscopy (REELS) – without any measurable energy loss: it includes both the
electrons which did not suffer any energy loss and those which were transmitted
(TEELS) or backscattered (REELS) after one or more quasi-elastic collisions with
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phonons (for which the energy transferred is so small that, with conventional spec-
trometers, it cannot be experimentally resolved). In TEELS, elastic peak includes
also all the electrons which were not scattered at all, namely which were not deflected
during their travel inside the target and did not lose energy.

Actually, the energy of electrons of the elastic peak is slightly reduced. This is due
to the recoil energy transferred to the atoms of the specimen. Elastic peak electron
spectroscopy (EPES) is the technique devoted to the analysis of the line-shape of the
elastic peak [31, 32]. Since lighter elements show larger energy shifts, EPES can be
used to detect hydrogen in polymers and hydrogenated carbon-based materials [33–
40] measuring the energy difference between the position of the carbon elastic peak
and that of the hydrogen elastic peak: this difference between the energy positions
of the elastic peaks – for incident electron energy in the range 1000–2000 eV – is in
the neighborhood of 2–4 eV.

In the first 30–40 eV from the elastic peak a generally quite broad peak col-
lects all the electrons which suffered inelastic interaction with the outer-shell atomic
electrons. Typically it includes electrons which suffered energy loss due to inelas-
tic interaction with plasmons (plasmon-losses) and corresponding to inter-band and
intra-band transitions. If the sample is sufficiently thick (in TEELS) and in the case
of bulk targets (in REELS), the probability that an electron, before emerging from
the specimen, has suffered more than one inelastic collision with plasmons is not
negligible: such multiple electron-plasmon inelastic collisions are represented in the
spectrum by the presence of a set of equidistant peaks (the distance from each other
being given by the plasma energy). The relative intensities of these multiple inelastic
scattering peaks decrease as the energy loss increases, demonstrating that the prob-
ability of suffering one inelastic collision is greater than the probability of suffering
two inelastic collisions, which is in turn higher than the probability of suffering
three inelastic collisions, and so on. Of course, in transmission EELS, the number of
measurable plural scattering peaks is also a function of the thickness of the sample.
Plural scattering peaks at multiples of the plasma energy are clearly observable – in
the energy-loss region between the elastic peak and approximately 100–200 eV (i.e.,
in the energy spectrum, between 100–200 eV and the elastic peak) – when the film
thickness is greater than the electron inelastic mean free path. On the other hand,
when the film thickness is much smaller that the electron inelastic mean free path,
a strong elastic peak and only the first plasmon-loss peak can be observed in the
energy-loss region below 100–200 eV (i.e., above 100–200 eV from the elastic peak,
in the energy spectrum).

For higher energy-losses, edges (of relatively low intensity with respect to the
plasmon-losses), corresponding to inner-shell atomic electron excitations, can be
observed in the spectrum. These edges are followed by slow falls, as the energy-loss
increases. The energy position of these steps or, better, sharp rises, corresponds to
the ionization threshold. The energy-loss of each edge is an approximate measure of
the binding energy of the inner-shell energy level involved in the inelastic scattering
process.
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With an energy resolution better than 2 eV, it is possible to observe, in the low-
loss peaks and in the ionization threshold edges, detailed features related to the band
structure of the target and its crystalline characteristics. For example, in carbon,
plasmon peaks can be found at different energies in the spectrum, according to the
carbon structure. This is due to the different valence-electron densities of the different
allotropic forms of carbon, such as diamond, graphite, C60-fullerite, glassy carbon,
and amorphous carbon [26, 41].

For an excellent review about electron energy-loss spectra, see the Egerton book
[26].

1.6 Auger Electron peaks

Also Auger electron peaks can be observed in the spectrum: they are due to the
presence of doubly ionized atoms. Auger [42] and Meitner [43] noted the presence of
pairs of tracks – originating from the same point – in X-ray irradiated cloud chambers
filled with an inert gas. One of them had a variable length which depended on the
energy of the incident radiation. The other track had a fixed length. Auger suggested
the presence of doubly ionized atoms in the gas. Two years later, Wentzel made the
hypothesis of a two-step process. A primary ionization, in the Wentzel interpretation,
was followed by a decay process [44]. The incident radiation ionizes the system in the
inner shell S. The system can then decay according to two alternative mechanisms.
One is radiative: one electron drops out of an outer shell R into the inner shell S and
a photon is emitted. The other one is non-radiative: one electron drops out of an outer
shell R into the inner shell S, and the excess of energy is used to eject out of the shell
R′ another electron (the Auger electron). The two processes are competitive. In the
electron spectrum, Auger electron peaks – due to the non-radiative process – can be
recognized.

1.7 Secondary Electron Peak

Secondary electrons – produced by a cascade process – are those electrons extracted
from the atoms by inelastic electron-electron collisions. Actually not all the secondary
electrons generated in the solid emerge form the target. In order to emerge from
the surface, the secondary electrons generated in the solid must reach the surface
and satisfy given angular and energetic conditions. Of course, only the secondary
electrons which are able to emerge from the target are included in the spectrum.
Their energy distribution presents a pronounced peak in the region of the spectrum
below 50 eV. The secondary electron emission yield is conventionally measured by
integrating the area of the spectrum from 0 to 50 eV (including, in such a way, also
the tail of backscattered electron whose number, in this energy region is actually
negligible – unless the primary energy be very low as well).
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1.8 Characterization of Materials

Simulation of transport of electrons in materials has been demonstrated to be very
important for many applications. The determination of electron emission from solids
irradiated by a particle beam is of crucial importance, especially in connection with
the analytical techniques that utilize electrons to investigate chemical and composi-
tional properties of solids in the near surface layers.

Electron spectroscopies and microscopies, examining how electrons interact with
matter, represent fundamental tools to investigate electronic and optical properties
of matter. Electron spectroscopies and microscopies allow to study the chemical
composition, the electronic properties, and the crystalline structure of materials.
According to the energy of the incident electrons, a broad range of spectroscopic
techniques can be utilized: for example, low energy electron diffraction (LEED)
allows to investigate the crystalline structure of surfaces, Auger electron spectroscopy
(AES) permits to analyze the chemical composition of the surfaces of solids, electron
energy loss spectroscopy – both in transmission, when the spectrometer is combined
with transmission electron microscope, and in reflection – can be used to characterize
materials by comparing the shape of the plasmon-loss peaks and the fine-structure
features due to interband and intraband transitions with those of suitable standards,
elastic peak electron spectroscopy is an useful tool to detect the presence of hydrogen
in carbon-based materials.

The study of the properties of a material using electron probes requires the knowl-
edge of the physical processes corresponding to the interaction of the electrons with
the particular material under investigation. A typical AES peak of an atomic spec-
trum, for example, has a width in the range from 0.1 to 1.0 eV. In a solid, many
energy levels are involved which are very close in energy, so that broad peaks are
typically observed in AES spectra of solids. Their features also depend on the instru-
mental resolution. Another important characteristic of the spectra is related to the
shift in energy of the peaks due to chemical environment: indeed the core energy
levels of an atom are shifted when it is a part of a solid. This property is used to
characterize materials, as the shift can be determined theoretically or by comparison
with suitable standards. Even the changes in spectral intensities and the appearence
of secondary peaks can be used for analyzing unknown materials. Electron spectra
are used for self-supported thin film local thickness measurements, multilayer sur-
face thin film thickness evaluation, doping dose determination in semiconductors,
radiation damage investigations, and so on.

The backscattering electron coefficient can be used for non-destructive evaluation
of over-layer film thickness [45, 46], while the study of the energy distribution of
the backscattered electrons may be utilized for materials characterization through
the study of the shape of plasmon-loss peaks [47, 48].

Secondary electron investigation allows extraction of critical dimensions by mod-
eling the physics of secondary electron image formation [49–51]. It permits to inves-
tigate doping contrast in p-n junctions and to evaluate accurate nanometrology for
the most advanced CMOS processes [52, 53].
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1.9 Summary

Transport Monte Carlo simulation is a very useful mathematical tool for describing
many important processes relative to the interaction of electron beams with solid
targets. In particular, the backscattered and secondary electron emission from solid
materials can be investigated with the use of the Monte Carlo method.

Many applications of the Monte Carlo study of backscattered and secondary elec-
trons concern materials analysis and characterization. Among the many applications
of MC simulations to analysis and characterization, we can mention non-destructive
evaluation of over-layer film thickness [45, 46], materials characterization through
the study of the main features of the electron spectra and the shape of plasmon-loss
peaks [47], extraction of critical dimensions by modeling the physics of secondary
electron image formation [49–51], and doping contrast in p-n junctions for the eval-
uation of accurate nanometrology for the most advanced CMOS processes [52, 53].
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Chapter 2
Cross-Sections: Basic Aspects

In the electron microscopies and spectroscopies, electrons penetrate a material
experiencing many different scattering processes. For a realistic description of the
electron emission, it is necessary to know all the scattering mechanisms involved
[1, 2].

This chapter is devoted to the introduction of the concepts of cross-section and
stopping power. For an excellent review of the topics treated in this chapter, also see
Ref. [1]. The chosen approach is deliberately elementary, since the focus is on the
basic aspects of the penetration theory. Specific details will be provided in the next
chapters and in the Appendices.

From the macroscopic point of view, the cross-section represents the area of a
target that can be hit by a projectile, so that it depends on the geometrical properties
of both the target and the projectile. Let us consider, for example, a point bullet
impinging on a spherical target whose radius is r . The cross-section σ of the target
is, in such a case, simply given by σ = πr2.

In the microscopic world the concept has to be generalized in order to take into
account that the cross-section does not only depend on the projectile and on the target,
but also on their relative velocity and on the physical phenomena we are interested
in: examples are represented by the elastic scattering cross-section and the inelastic
scattering cross-section of electrons (projectiles) impinging on atoms (targets). The
elastic scattering cross-section describes the interactions in which the kinetic energy
of the incident particle (the electron) does not change and is as a consequence the
same before and after the interaction. The inelastic scattering cross-section, on the
other hand, describes the collisions corresponding to an energy transfer from the
incident particle (the electron) to the target (the atom): as a consequence, the kinetic
energy of the incident electron decreases due to the interaction so that the electron
slows down. As the cross-section is a function of the kinetic energy of the incident
electron, after every inelastic collision the cross-sections (both elastic and inelastic)
of the subsequent collision, if any, will be changed accordingly.

In real experiments, the investigators cannot measure the cross-section for a single
electron which hits a single atom. The typical experiment consists, instead, in the
collision of a great number of electrons, called the beam, with a medium constituted

© Springer International Publishing AG 2017
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by a configuration of many atoms and/or molecules (a gas, for example, or an amor-
phous or crystalline solid). The electrons constituting the beam have, in principle, all
the same initial energy (the primary energy) and do not interact with each other but
only with the atoms of the medium. Actually, in practical cases, the energies of the
electrons constituting the primary beam are distributed around the primary energy
which has to be considered their mean energy. Furthermore, the electrons of the beam
do not interact only with the target atoms (or molecules) but with each other as well.
Neglecting these interactions corresponds to investigating the so-called low current
beam approximation [1].

2.1 Cross-Section and Probability of Scattering

Let us indicate with σ the cross-section of the physical effect we are interested in
describing, and with J the density current, i.e., the number of electrons per unit area
and per unit time in the beam. Let us indicate, furthermore, with N the number of
target atoms per unit volume in the target and with S the area of the target where the
beam is spread. Let us assume that the beam spreading is homogeneous. If z is the
depth where the collisions occur, then the volume where the electrons interact with
the stopping medium is given by zS and, as a consequence, the number of collisions
per unit time can be calculated by NzSJ σ. As the product of S by J is the number
of electrons per unit time, the quantity

P = Nzσ (2.1)

represents the mean number of collisions per electron. In the hypothesis that the
target thickness z is very small (thin layers) or the density of the target atoms N is
very small (gas targets), so that P � 1, P represents the probability that an electron
suffers a collision while travelling in the medium.

In order to take into account that in the great majority of the experiments the
projectile undergoesmany collisions, let us associate to the trajectory of each particle
a cylindrical volume V = zσ and calculate the probability Pν to hit ν target particles
in this volume. If the positions of any two targets particle are not correlated like in
the case, for example, of an ideal gas, such a probability is given by the Poisson
distribution

Pν = (NV )ν

ν! exp(−NV ) = (Nzσ)ν

ν! exp(−Nzσ) , (2.2)

where ν = 0, 1, 2, 3, . . .
Let us firstly consider the single collision problem, ν = 1. The probability of

hitting precisely one particle in the volume zσ is given by

P1 = P(ν=1) = (Nzσ) exp(−Nzσ) , (2.3)
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so that, in the limit Nzσ � 1,

P1 ∼= P = Nzσ , (2.4)

which is the same result deduced above.
Also note that, in the same limit, the probability for no collision at all is given by

1 − P = 1 − Nzσ. This is the first order in Nzσ of the well known Lambert and
Beer’s absorption law:

P0 = P(ν=0) = exp(−Nzσ) . (2.5)

Note that, to the first order in Nzσ, the probability for double events is equal to zero.
As it is well known, one of the characteristics of the Poisson distribution is that

its expected value and variance are identical. In particular, the average value 〈ν〉 and
the variance 〈(ν − 〈ν〉)2〉, are given by

〈ν〉 = 〈(ν − 〈ν〉)2〉 = Nzσ , (2.6)

so that the relative fluctuation goes to zero as the reciprocal of the square root of
〈ν〉 = Nzσ: √

〈(ν − 〈ν〉)2〉
〈ν〉2 = 1√

ν
. (2.7)

2.2 Stopping Power and Inelastic Mean Free Path

Let us now consider the collisions with the stopping medium resulting in a kinetic
energy transfer from the projectile to the target atoms and/or molecules constituting
the target. Let us assume that the energy transfer Ti (i = 1, 2, ...) is small with
respect to the incident particle kinetic energy E . Let us also assume that νi is the
number of events corresponding to the energy loss Ti , so that the total energy ΔE
lost by an incident particle passing through a thin film of thickness Δz is given by∑

i νi Ti .
As the mean number of type i collisions, according to Eq. (2.6), is given by

〈νi 〉 = NΔzσi , where σi is the energy-loss cross-section, the energy loss is
given by

〈ΔE〉 = NΔz
∑
i

Tiσi . (2.8)

The stopping power is defined as

〈ΔE〉
Δz

= N
∑
i

Tiσi , (2.9)
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and the stopping cross-section S is given by

S =
∑
i

Ti σi , (2.10)

so that 〈ΔE〉
Δz

= NS . (2.11)

If the spectrum of the energy loss is continuous, instead of discrete, the stopping
cross-section assumes the form

S =
∫

T
dσinel

dT
dT , (2.12)

the stopping power is given by

〈ΔE〉
Δz

= N
∫

T
dσinel

dT
dT , (2.13)

and the total inelastic scattering cross-section σinel can be calculated by

σinel =
∫

dσinel

dT
dT , (2.14)

where dσinel/dT is the so-called differential inelastic scattering cross-section. Once
the total inelastic scattering cross-section σinel is known, the inelastic mean free path
λinel can be calculated by

λinel = 1

N σinel
. (2.15)

2.3 Range

While the inelastic mean free path is the average distance between two inelastic
collisions, the maximum range is the total path length of the projectile. It can be
easily estimated – using the simple approach we are describing in this section – in
all the cases in which the energy straggling, i.e., the statistical fluctuations in energy
loss, can be neglected. Indeed, in this case, the energy of the incident particle is a
decreasing function of the depth z calculated from the surface of the target, so that
E = E(z). As the stopping cross-section is a function of the incident particle energy,
S = S(E), the Eq. (2.11) assumes the form of the following differential equation

dE

dz
= −NS(E) , (2.16)
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where theminus sign has been introduced in order to take into account that, as already
stated, the projectile energy E(z) is a decreasing function of the depth z. Indicating
with E0 the initial energy of the projectiles (the so-called beam primary energy) the
maximum range R can be easily obtained by the integration [3, 4]:

R =
∫ R

0
dz =

∫ 0

E0

dE
dz

dE
, (2.17)

so that

R =
∫ E0

0

dE

N S(E)
. (2.18)

2.4 Energy Straggling

Actually the range calculated in such away can be different from the real one because
of the statistical fluctuations of the energy loss. The consequences of such a phenom-
enon, known as energy straggling, can be evaluated following a procedure similar to
the one used for introducing the stopping cross-section.

Let us firstly consider then, as before, the discrete case and calculate the variance
Ω2, or mean square fluctuation, in the energy loss ΔE , given by

Ω2 = 〈(ΔE − 〈ΔE〉)2〉 . (2.19)

Since
ΔE − 〈ΔE〉 =

∑
i

(νi − 〈νi 〉) Ti , (2.20)

we have, due to the statistical independence of the collisions and the properties of
the Poisson distribution,

Ω2 =
∑
i

〈(νi − 〈νi 〉)2〉 T 2
i =

∑
i

〈νi 〉 T 2
i . (2.21)

As a consequence, taking into account that 〈νi 〉 = NΔzσi , the energy straggling
can be expressed as

Ω2 = N Δz
∑
i

T 2
i σi = N Δz W (2.22)

where we have introduced the straggling parameter defined as

W =
∑
i

T 2
i σi . (2.23)
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If the spectrum of the energy loss is continuous, instead of discrete, the straggling
parameter assumes the form

W =
∫

T 2 dσinel

dT
dT . (2.24)

2.5 Summary

In this chapter, the elementary theory of electron penetration in solid targets has been
briefly described [1]. We have discussed the fundamental concepts of cross-section,
stopping power, maximum range of penetration, and energy straggling. Details of
specific applications and calculations of the scattering mechanisms along with the
main theoretical approaches, which describe the cross-sections relative to the inter-
action of the incident electrons with atomic nuclei, atomic electrons, plasmons,
phonons, and polarons, will be the subject of the next chapters.
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Chapter 3
Scattering Mechanisms

This chapter is devoted to the main mechanisms of scattering (elastic, quasi-elastic,
and inelastic) that are relevant to the description of the interaction of electron beams
with solid targets.

Firstly the elastic scattering cross-section will be described, comparing the
screened Rutherford formula to the more accurate Mott cross-section [1]. The Mott
theory is based on the relativistic partial wave expansion method and the numerical
solution of the Dirac equation in a central field. The Mott cross-section is in better
agreement with the available experimental data when electron energy is smaller than
∼5–10 keV.

We will also briefly describe the Fröhlich theory [2], which describes the quasi-
elastic events occurring when electron energy is very low and the probability of
electron–phonon interaction becomes significant. We will discuss energy loss and
energy gain due to electron phonon-interactions, and see that electron energy gains
can be safely neglected, while electron energy losses are fractions of eV.

The Bethe–Bloch stopping power formula [3] and semi-empiric approaches [4, 5]
will be presented, along with the limits of these models for the calculation of energy
losses.

The Ritchie dielectric theory [6] will then be considered, which is used for the
accurate calculation of electron energy losses due to electron–plasmon interaction.

Polaronic effect will be also mentioned, as it is an important mechanism for
trapping very slow electrons in insulating materials [7].

A discussion about the inelastic mean free path will be provided that takes into
account all the inelastic scattering mechanisms introduced in this chapter.

Lastly, surface phenomena will be described along with numerical calculations
of surface and bulk plasmon loss spectra.

Many details about the most important theoretical models presented in this chapter
can be found in the Appendices.

© Springer International Publishing AG 2017
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3.1 Elastic Scattering

Electron-atom elastic scattering is the main responsible for the angle deflection of
electrons traveling in solid targets. For some reviews about the subject of elastic
scattering see, for example, Refs. [8–13].

Elastic scattering is not only the cause of the electron deflection: it also accounts
for electron energy-loss problems, for it contributes to change the angular distribution
of the inelastically scattered electrons [9, 10].

Since a nucleus is much more massive that an electron, the energy transfer is very
small and, typically, negligible in an electron–nucleus collision. The great majority
of elastic collisions regard the interaction of the incident electrons with the elec-
trostatic nuclear field in regions that are far from the center of mass of the nucleus
where, due to both the inverse square law and the shielding of the nucleus by the
atomic electrons, the potential is relatively weak. For this reason, many electrons are
elastically scattered through small angles.

Conservation of energy and momentum requires small transfers of energy between
the electrons and the nuclei that depend on the angle of scattering. Even if the electron
energy transfers are a very small fraction of eV, in many circumstances they cannot
be neglected. Furthermore it has to be noted that, despite this general rule, in a few
cases significant energy transfers are possible. Indeed, even if electron energy-losses
are typically very small and often irrelevant in electron–nucleus collisions, for the
very rare cases of head-on collisions, where the scattering angle is equal to 180◦, the
energy transfer can be, for the case of light elements, higher than the displacement
energy, namely the energy necessary to displace the atom from its lattice position. In
these cases, displacement damage and/or atom removal (sputtering) can be observed
[9, 10, 14].

The differential elastic scattering cross-section represents the probability per unit
solid angle that an electron be elastically scattered by an atom, and is given by the
square modulus of the complex scattering amplitude f , which is a function of the
scattering angle ϑ, of the incident electron energy E0, and of the (mean) atomic
number Z of the target. The angular distribution, once taken into account that the
Coulomb potential is screened by the atomic electrons, can be calculated either by
the use of the first Born approximation (screened Rutherford cross-section) or, in
order to obtain more accurate results – in particular for low-energy electrons –, by
solving the Schrödinger equation in a central field (partial wave expansion method,
PWEM).

Typically, for the case of the screened Rutherford formula obtained within the first
Born approximation, the screening of atomic electrons is described by the Wentzel
formula [15], which corresponds to a Yukawa exponential attenuation of the nuclear
potential as a function of the distance from the center of mass of the nucleus. The more
accurate partial wave expansion method requires a better description of the screening,
so that Dirac–Hartree–Fock–Slater methods are generally used for calculating the
screened nuclear potential in this case.
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A further improved approach for obtaining a very accurate calculation of the
differential elastic scattering cross-section, valid also for relativistic electrons, is the
so-called relativistic partial wave expansion method (RPWEM), – which is based
on the solution of the Dirac equation in a central field (Mott cross-section) – where
the sum of the squares of the moduli of two complex scattering amplitudes f and
g is required for the calculation of the elastic scattering probabilities [1]. Also in
this case, Dirac–Hartree–Fock–Slater methods are utilized to calculate the shielded
nuclear potential.

3.1.1 Mott Cross-Section Versus Screened Rutherford
Cross-Section

The relativistic partial wave expansion method (Mott theory) [1] permits to calculate
the differential elastic scattering cross-section as follows:

dσel

dΩ
=| f |2 + | g |2 , (3.1)

where f (ϑ) and g(ϑ) are the scattering amplitudes (direct and spin-flip, respectively).
For details about the Mott theory and the calculation of the scattering amplitudes f (ϑ)
and g(ϑ), see Chap. 11 and Refs. [11, 13]. Also see Refs. [12, 16–18] for several
applications.

Once the differential elastic scattering cross-section has been calculated, the total
elastic scattering cross-section σel and the first transport elastic scattering cross-
section σtr can be computed using the following equations:

σel =
∫

dσel

dΩ
dΩ , (3.2)

σtr =
∫

(1 − cos ϑ)
dσel

dΩ
dΩ . (3.3)

It can be interesting to investigate the high energy and low atomic number limits
of the Mott theory (corresponding to the first Born approximation). Along with
the assumption that the atomic potential can be written according to the Wentzel
formula [15]:

V (r) = − Z e2

r
exp

(
− r

a

)
, (3.4)

where r is the distance between the incident electron and the nucleus, Z the target
atomic number, e the electron charge, and a approximately represents the screening
of the nucleus by the orbital electrons, given by

http://dx.doi.org/10.1007/978-3-319-47492-2_11
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a = a0

Z1/3
, (3.5)

where a0 is the Bohr radius, the first Born approximation permits to write the differ-
ential elastic scattering cross-section in an analytic closed form. It is the so-called
screened Rutherford cross-section:

dσel

dΩ
= Z2e4

4E2

1

(1 − cos θ + α)2
, (3.6)

α = me4π2

h2

Z2/3

E
(3.7)

In these equations, m is the electron mass and h is the Planck constant.
The screened Rutherford formula has been largely used even if it is unable to

describe all the features corresponding to the elastic scattering as a function of the
scattering angle that one can observe when incident electron kinetic energies are
lower than ∼5–10 keV and the target atomic number is relatively high. In Figs. 3.1,
3.2, 3.3 and 3.4 the differential elastic scattering cross-section dσel/dΩ (DESCS)
– calculated with both the Mott and the Rutherford theories – are compared. The
presented data concern two different elements (Cu and Au) and two different energies
(1000 and 3000 eV). From the comparison clearly emerges that the Rutherford theory
approaches the Mott theory as the atomic number decreases and the primary energy
increases. Indeed, the Rutherford formula can be deduced assuming the first Born
approximation, which is valid when
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Fig. 3.1 Calculation of the differential elastic scattering cross-section of 1000 eV electrons scattered
by Cu as a function of the scattering angle. Solid line Relativistic partial wave expansion method
(Mott theory). Dashed line Screened Rutherford formula, Eq. (3.6)
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Fig. 3.2 Calculation of the differential elastic scattering cross-section of 1000 eV electrons scattered
by Au as a function of the scattering angle. Solid line Relativistic partial wave expansion method
(Mott theory). Dashed line Screened Rutherford formula, Eq. (3.6)
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Fig. 3.3 Calculation of the differential elastic scattering cross-section of 3000 eV electrons scattered
by Cu as a function of the scattering angle. Solid line Relativistic partial wave expansion method
(Mott theory). Dashed line Screened Rutherford formula, Eq. (3.6)

E � e2

2a0
Z2 . (3.8)

In other words, the higher the electron energy – in comparison with the atomic poten-
tial – the higher the accuracy of the Rutherford theory (see, in particular, Fig. 3.3).
Anyway, the Rutherford formula represents a decreasing function of the scatter-
ing angle, so that it should not be surprising that it cannot describe the features that
emerge as the electron energy is low and the atomic number is high (see, in particular,
Fig. 3.2).
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Fig. 3.4 Calculation of the differential elastic scattering cross-section of 3000 eV electrons scattered
by Au as a function of the scattering angle. Solid line Relativistic partial wave expansion method
(Mott theory). Dashed line Screened Rutherford formula, Eq. (3.6)

In Monte Carlo simulations, when the electron primary energy is higher than
10 keV, Rutherford cross-section is sometimes used – instead of the more accurate
Mott cross-section – mainly because it provides a very simple analytic way to calcu-
late both the cumulative probability of elastic scattering into an angular range from
0 to θ, Pel(θ, E), and the elastic scattering mean free path, λel. Even if not used by
the simulations presented in this book, where numerical calculations of Mott cross-
section will always be utilized (see Fig. 3.5, where Mott cross section is represented
for 1000 eV electrons in Al), it might be useful to see how Pel(θ, E) and λel can be
calculated in a completely analytic way taking advantage of the particular form of
the screened Rutherford formula. In the first Born approximation these quantities are
in fact given, respectively, by

Pel(θ, E) = (1 + α/2) (1 − cos θ)

1 + α − cos θ
, (3.9)

λel = α (2 + α) E2

N π e4 Z2
, (3.10)

where N is the number of atoms per unit volume in the target. The demonstration of
these equations is quite easy. Indeed

Pel(θ, E) =
= e4Z2

4σelE2

∫ θ

0

2π sin ϑ dϑ

(1 − cos ϑ + α)2
= πe4Z2

2σelE2

∫ 1−cos θ+α

α

du

u2
,
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Fig. 3.5 Differential elastic scattering cross-section of 1000 eV electrons scattered by Al as a
function of the scattering angle. Solid line Present calculations (Mott theory) [13]. Circles Salvat
and Mayol calculations (Mott theory) [19]

where

σel = e4Z2

4E2

∫ π

0

2π sin ϑ dϑ

(1 − cos ϑ + α)2
= πe4Z2

2E2

∫ 2+α

α

du

u2
.

Since

∫ 1−cos θ+α

α

du

u2
= 1 − cos θ

α(1 − cos θ + α)

and

∫ 2+α

α

du

u2
= 1

α(1 + α/2)
,

Equations (3.9) and (3.10) immediately follow.
Note that from the cumulative probability expressed by Eq. (3.9) it follows that

the scattering angle can be easily calculated from:

cos θ = 1 − 2α Pel(θ, E)

2 + α − 2Pel(θ, E)
. (3.11)

Due to the excellent agreement between experimental data and Mott cross-section
(see, for a comparison, Fig, 3.6), the most recent Monte Carlo codes (and also all



24 3 Scattering Mechanisms

0 20 40 60 80 100 120 140 160 180
1E-3

0.01

0.1

1

10

D
ES

C
S 

(
/s

r)

Scattering angle (deg)

Fig. 3.6 Differential elastic scattering cross-section of 1100 eV electrons scattered by Au as a
function of the scattering angle. Solid line Present calculations (Mott theory) [13]. Circles Reichert
experimental data [20]

the calculations presented in this book) use the Mott cross-section to describe the
differential elastic scattering cross-section – and the cumulative probability necessary
for sampling the scattering angle. Nevertheless, it is worth stressing that excellent
results can also be obtained using the simple screened Rutherford formula, Eq. (3.6),
provided that the kinetic primary energy of the incident electrons is higher than
10 keV [21].

3.2 Quasi-elastic Scattering

Due to thermal excitations, atoms in crystalline structures vibrate around their equi-
librium lattice sites. These vibrations are known as phonons. A mechanism of energy
loss (and energy gain as well) is represented by the interaction of the electrons with
the optical modes of the lattice vibrations. These transfers of small amounts of energy
among electrons and lattice vibrations are due to quasi-elastic processes known as
phonon creation (electron energy-loss) and phonon annihilation (electron energy-
gain) [2, 22]. Phonon energies do not exceed kBTD, where kB is the Boltzmann
constant and TD is the Debye temperature. As typically kBTD is not greater than
0.1 eV, the energy losses and gains due to electron–phonon interaction are usually
smaller than 0.1 eV, so that they are generally not resolved by conventional spec-
trometers [9]. These mechanisms of electron energy loss – and, with much smaller
probability, energy gain – are particularly relevant when the electron energy is low
(few eV) [7].
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3.2.1 Electron–Phonon Interaction

According to Fröhlich [2] and Llacer and Garwin [22], the inverse mean free path
for electron energy loss due to phonon creation can be written as

λ−1
phonon = 1

a0

ε0 − ε∞
ε0 ε∞

�ω

E

n(T ) + 1

2
ln

[
1 + √

1 − �ω/E

1 − √
1 − �ω/E

]
, (3.12)

where E is the energy of the incident electron, Wph = �ω the electron energy loss (in
the order of 0.1 eV), ε0 the static dielectric constant, ε∞ the high frequency dielectric
constant, a0 the Bohr radius and

n(T ) = 1

e�ω/kBT − 1
(3.13)

the occupation number. Notice that a similar equation can be written to describe elec-
tron energy gain (corresponding to phonon annihilation). The occurrence probability
of phonon annihilation is much lower than that of phonon creation. Electron energy
gain can thus be safely neglected for many practical purposes.

For further details about electron–phonon interaction and Fröhlich theory [2, 22]
see Chap. 12.

3.3 Inelastic Scattering

Let us consider now the inelastic scattering due to the interaction of the incident
electrons with the atomic electrons located around the nucleus (both the core and the
valence electrons). For an excellent review about this subject, see Ref. [9].

If the incident electron energy is high enough, it can excite an inner-shell electron
that can make a transition from its ground state to one of the unoccupied electron
states above the Fermi level. Due to energy conservation, the incident electron loses
an amount of energy equal to the difference between the state above the Fermi level
occupied by the excited atomic electron and its ground state; while the atom is left in
an ionized state. The following de-excitation of the target atom generates an excess
energy that can be released in one of two competitive ways: either generating an
X-ray photon (Energy dispersive spectroscopy, EDS, is based on this process) or by
the emission of another electron: this is the phenomenon on which Auger electron
spectroscopy, AES, is based.

Outer-shell inelastic scattering can occur according to two alternative processes.
In the first one, an outer-shell electron can suffer a single-electron excitation. A typical
example is constituted by inter-band and intra-band transitions. If the atomic elec-
tron excited in such a way is able to reach the surface with an energy higher than the
potential barrier between the vacuum level and the minimum of the conduction band,

http://dx.doi.org/10.1007/978-3-319-47492-2_12
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it can emerge from the solid as a secondary electron, the energy needed for this tran-
sition being provided by the fast incident electron. De-excitation can occur through
the emission of electromagnetic radiation in the visible region – corresponding to the
phenomenon known as cathode-luminescence – or through radiation-less processes
generating heat. Outer-shell electrons can also be excited in collective states corre-
sponding to the oscillation of the valence electrons denoted as plasma resonance.
It is generally described as the creation of quasi-particles known as plasmons, with
energies – characteristic of the material – that range, typically, in the interval from 5
to 30 eV. Plasmon decay generates secondary electrons and/or produces heat.

3.3.1 Stopping: Bethe–Bloch Formula

In the continuous-slowing-down approximation, energy losses are calculated by uti-
lizing the stopping power. Using a quantum mechanical treatment, Bethe [3] proposed
the following formula for the stopping power:

− dE

dz
= 2πe4N Z

E
ln

(
1.166E

I

)
, (3.14)

where I represents the mean ionization energy which, according to Berger and Seltzer
[23], can be approximated by the following simple formula:

I = (9.76 + 58.8 Z−1.19) Z . (3.15)

The Bethe–Bloch formula is valid for energies higher than ∼ I . It approaches zero as
E approaches I/1.166. When E becomes smaller than I/1.166, the stopping power
predicted by the Bethe–Bloch formula becomes negative. Therefore, the low-energy
stopping power requires a different approach (see the dielectric approach below).

3.3.2 Stopping: Semi-empiric Formulas

The stopping power can also be described using semi-empiric expressions, such as
the following;

− dE

dz
= KeN Z8/9

E2/3
, (3.16)

proposed in 1972 by Kanaya and Okayama (with Ke = 360 eV5/3 Å2) [5]. The latter
formula allows to analytically evaluate the maximum range of penetration R as a
function of the primary energy E0, where



3.3 Inelastic Scattering 27

R =
∫ 0

E0

dE

dE/dz
= 3E5/3

0

5KeN Z8/9
∝ E1.67

0 . (3.17)

A similar empirical formula for the evaluation of the maximum range of penetration
of electrons in solid targets was proposed, for the first time in 1954, by Lane and
Zaffarano [4] who found that their range-energy experimental data (obtained by
investigating electron transmission in the energy range 0–40 keV by thin plastic and
metal films) fell within 15 % of the results obtained by the following simple equation:

E0 = 22.2R0.6 , (3.18)

where E0 was expressed in keV and R in mg/cm2. As a consequence, the Kanaya
and Okayama formula is consistent with the Lane and Zaffarano experimental obser-
vations, which are described as well by the relationship

R ∝ E1.67
0 . (3.19)

3.3.3 Dielectric Theory

In order to obtain a very accurate description of the electron energy loss processes,
of the stopping power, and of the inelastic mean free path, valid even when electron
energy is low, it is necessary to consider the response of the ensemble of conduction
electrons to the electromagnetic field generated by the electrons passing through the
solid: this response is described by a complex dielectric function. In Chap. 13 the
Ritchie theory [6, 24] is described: it demonstrates, in particular, that the energy loss
function, f (k,ω), necessary to calculate both the stopping power and the inelastic
mean free path, is the reciprocal of the imaginary part of the dielectric function

f (k,ω) = Im

[
1

ε(k,ω)

]
. (3.20)

In Eq. (3.20), �k represents the momentum transferred and �ω the electron energy
loss.

Once the energy loss function has been obtained, the differential inverse inelastic
mean free path can be calculated as [25]

dλ−1
inel

d�ω
= 1

π E a0

∫ k+

k−

dk

k
f (k,ω) , (3.21)

where

� k± = √
2m E ± √

2m (E − �ω) , (3.22)

http://dx.doi.org/10.1007/978-3-319-47492-2_13
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E is the electron energy, m the electron mass, and a0 the Bohr radius. The limits of
integration, expressed by Eq. (3.22), come from conservation laws (see Sect. 5.2.3).

In order to calculate the dielectric function, and hence the energy loss-function,
let us consider the electric displacement D [17, 18]. If P is the polarization density
of the material, and E the electric field, then

P = χε E , (3.23)

where

χε = ε − 1

4 π
(3.24)

and

D = E + 4 πP = (1 + 4 πχε)E = εE . (3.25)

If n is the density of the outer-shell electrons, i.e., the number of outer-shell electrons
per unit volume in the solid, and ξ the electron displacement due to the electric field,
then

P = e n ξ , (3.26)

so that

|E| = 4 π e n ξ

ε − 1
. (3.27)

Let us consider the classical model of electrons elastically bound, with elastic con-
stants kn = mω2

n and subject to a frictional damping effect, due to collisions,
described by a damping constant Γ . We have indicated here with m the electron
mass and with ωn the natural frequencies. The electron displacement satisfies the
equation [26]

m ξ̈ + βξ̇ + kn ξ = e E (3.28)

where β = mΓ . Assuming that ξ = ξ0 exp(iωt), a straightforward calculation
allows to conclude that

ε(0,ω) = 1 − ω2
p

ω2 − ω2
n − iΓ ω

, (3.29)

where ωp is the plasma frequency, given by

ω2
p = 4 π n e2

m
. (3.30)

http://dx.doi.org/10.1007/978-3-319-47492-2_5
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Let us now consider a superimposition of free and bound oscillators. In such a case
the dielectric function can be written as:

ε(0,ω) = 1 − ω2
p

∑
n

fn
ω2 − ω2

n − iΓnω
, (3.31)

where Γn are positive frictional damping coefficients and fn are the fractions of the
valence electrons bound with energies �ωn.

The extension of the dielectric function from the optical limit (corresponding to
k = 0) to k > 0 is obtained including, in the previous formula, an energy �ωk related
to the dispersion relation, so that

ε(k,ω) = 1 − ω2
p

∑
n

fn
ω2 − ω2

n − ω2
k − iΓnω

. (3.32)

In the determination of the dispersion relation, one has to take into account a con-
straint, known as the Bethe ridge. According to the Bethe ridge, as k → ∞, �ωk

should approach �
2k2/2m. Of course, an obvious way to obtain this result (the sim-

plest one, actually) is to assume that [25, 27],

�ωk = �
2k2

2m
. (3.33)

Another way of satisfying the constraint represented by the Bethe ridge is to use,
according to Ritchie [6] and to Richie and Howie [24], the following equation :

�
2 ω2

k = 3 �
2 v2

F k
2

5
+ �

4 k4

4m2
, (3.34)

where vF represents the velocity of Fermi.
Once the dielectric function is known, the loss function Im[1/ε(k,ω)] is given by

Im

[
1

ε(k,ω)

]
= − ε2

ε2
1 + ε2

2

, (3.35)

where

ε(k,ω) = ε1(k,ω) + iε2(k,ω) , (3.36)

The calculation of the energy loss function can be also performed through the direct
use of experimental optical data. In Figs. 3.7 and 3.8, the optical energy loss function
of polymethyl methacrylate and silicon dioxide are represented, respectively.

A quadratic extension into the energy- and momentum-transfer plane of the energy
loss function allows the extension of the dielectric function from the optical limit to
k > 0 [32–34].
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Fig. 3.7 Optical energy loss function for electrons in Polymethyl Methacrylate. For energies lower
than 72 eV we used the optical data of Ritsko et al. [28]. For higher energies the calculation of
the optical loss function was performed by using the Henke et al. atomic photo-absorption data
[29, 30]
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Fig. 3.8 Optical energy loss function for electrons in silicon dioxide (SiO2). For energies lower
than 33.6 eV we used the optical data of Buechner [31]. For higher energies the calculation of
the optical loss function was performed by using the Henke et al. atomic photo-absorption data
[29, 30]

Penn [32] and Ashley [33, 34] calculated the energy loss function by using optical
data and by extending as discussed above the dielectric function from the optical limit
to k > 0. According to Ashley [33, 34], the inverse inelastic mean free path λ−1

inel of
electrons penetrating solid targets can be calculated by:

λ−1
inel(E) = me2

2π�2E

∫ Wmax

0
Im

[
1

ε(0, w)

]
L

(w

E

)
dw , (3.37)
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where E is the incident electron energy and Wmax = E/2 (as usual, we have indicated
with e the electron charge and with � the Planck constant h divided by 2π). According
to Ashley, in the dielectric function ε(k, w), the momentum transfer �k was set to
0 and the ε dependence on k was factorised through the function L(w/E). Ashley
[33] demonstrated that a good approximation of the function L(x) is given by:

L(x) = (1 − x) ln
4

x
− 7

4
x + x3/2 − 33

32
x2 . (3.38)

The calculation of the stopping power, −dE/dz, can be performed by using the
following equation [33]:

− dE

dz
= me2

π�2E

∫ Wmax

0
Im

[
1

ε(0, w)

]
S

(w

E

)
w dw , (3.39)

where

S(x) = ln
1.166

x
− 3

4
x − x

4
ln

4

x
+ 1

2
x3/2 − x2

16
ln

4

x
− 31

48
x2 . (3.40)

The inelastic mean free path and the stopping power for positrons may be calculated
in a similar way [34]:

(λ−1
inel)p = me2

2π�2E

∫ Wmax

0
Im

[
1

ε(0, w)

]
Lp

(w

E

)
dw , (3.41)

(
−dE

dz

)
p

= me2

2π�2E

∫ Wmax

0
Im

[
1

ε(0, w)

]
Sp

(w

E

)
w dw , (3.42)

where

Lp(x) = ln

(
1 − x/2 + √

1 − 2x

1 − x/2 − √
1 − 2x

)
(3.43)

and

Sp(x) = ln

(
1 − x + √

1 − 2x

1 − x − √
1 − 2x

)
. (3.44)

In Figs. 3.9 and 3.10 the stopping powers of electrons in PMMA and in SiO2 are,
respectively, shown. In Figs. 3.11 and 3.12 the inelastic mean free paths of electrons
in PMMA and in SiO2 are also, respectively, represented. The present calculations,
obtained using the Ashley theory that we just described. are compared with results
of other authors.
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Fig. 3.9 Stopping power of
electrons in PMMA. The
solid line represents the
present calculation, obtained
according to the Ashley
recipe [33]. The dashed line
provides the Ashley original
results [33]. Dotted line
describes the Tan et al.
computational results [35].
The different optical energy
loss functions used in the
three cases explain the
differences in the
calculations
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Fig. 3.10 Stopping power of
electrons in SiO2. The solid
line represents the present
calculation, obtained
according to the Ashley
recipe [33]. The dashed line
provides the Ashley and
Anderson data [36]. The
different optical energy loss
functions utilized in the two
cases explain the differences
in the calculations
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Once ε(0, w) is known, the electron differential inverse inelastic mean free path
dλ−1

inel(w, E)/dw can be calculated by using the following equation:

dλ−1
inel(w, E)

dw
= me2

2π�2E
Im

[
1

ε(0, w)

]
L

(w

E

)
. (3.45)

3.3.4 Sum of Drude Functions

Ritchie and Howie [24] have proposed to calculate the energy loss function as a linear
superimposition of Drude functions, as follows:
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Fig. 3.11 Inelastic mean free path of electrons in PMMA due to electron–electron interaction.
The solid line represents the present calculation, based on the Ashely model [33]. The dashed line
describes the original Ashley results [33]. The differences in the two calculations are due to the
different optical energy loss functions utilized

Fig. 3.12 Inelastic mean
free path of electrons in SiO2
due to electron–electron
interaction. The solid line
represents the present
calculation, based on the
Ashely model [33]. The
dashed line describes the
Ashley and Anderson data
[36]. The dotted line
provides the Tanuma, Powell
and Penn computational
results [37]. The differences
in the calculations are due to
the different optical energy
loss functions utilized
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Im

[
1

ε(k,ω)

]
=

∑
n

An Γn �ω

[w2
n(k) − �2ω2]2 + �2ω2Γ 2

n

, (3.46)

where, according to Eq. (3.34),

wn(k) =
√

w2
n + 12EF

5

�2k2

2m
+

(
�2k2

2m

)2

, (3.47)
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Table 3.1 Parameters calculated by Garcia-Molina et al. [39] to fit the contribution to the optical
energy loss function of the outer electrons for five selected carbon allotropes (amorphous carbon,
glassy carbon, C60-fullerite, graphite, and diamond)

Target n wn (eV) Γn (eV) An (eV2)

Amorphous carbon 1 6.26 5.71 9.25

2 25.71 13.33 468.65

Glassy carbon 1 2.31 4.22 0.96

2 5.99 2.99 6.31

3 19.86 6.45 77.70

4 23.67 12.38 221.87

5 38.09 54.42 110.99

C60-fullerite 1 6.45 2.45 6.37

2 14.97 6.26 16.52

3 24.49 13.06 175.13

4 28.57 12.24 141.21

5 40.82 27.21 141.47

Graphite 1 2.58 1.36 0.18

2 6.99 1.77 7.38

3 21.77 8.16 73.93

4 28.03 6.80 466.69

5 38.09 68.03 103.30

Diamond 1 22.86 2.72 22.21

2 29.93 13.61 140.64

3 34.77 11.43 843.85

In these equations, EF is the Fermi energy, and wn, Γn, An are the excitation energies,
the damping constants, and the strengths, for k = 0 [38]. Garcia-Molina et al. [39]
provided, for example, the values of these parameters, calculated from the fit of
experimental optical data for five allotropic forms of carbon (amorphous carbon,
glassy carbon, C60-fullerite, graphite, and diamond). In Table 3.1 the Garcia-Molina
et al. parameters have been reported, for the reader’s convenience. The optical energy
loss functions so calculated for these five carbon allotrops are represented in Fig. 3.13.

In Fig. 3.14 the differential inverse inelastic mean free path for the considered
allotrops of carbon, calculated by [see Eqs. (3.20) and (3.21)]

dλ−1
inel

d�ω
= 1

πa0E

∫ k+

k−

dk

k
Im

[
1

ε(k,ω)

]
, (3.48)

where k− and k+ are given by Eq. (3.22), is represented as a function of the energy
loss w = �ω for incident electron energy E = 250 eV. The comparison with the
shapes of the curves representing the optical energy loss function of Fig. 3.13 clearly
shows the effect of the dispersion law, Eq. (3.34): the peaks broaden and become
more asymmetric (see the tail on their right side).
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Fig. 3.13 Optical energy loss function of selected allotropic forms of carbon (amorphous carbon,
glassy carbon, C60-fullerite, graphite, and diamond) as a function of the excitation energy, calculated
by sum of Drude–Lorentz functions, according to Ritchie and Howie [24], using the Garcia-Molina
et al. parameters [39]
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Fig. 3.14 Differential inverse inelastic mean free path for electrons impinging upon several
allotropic forms of carbon (amorphous carbon, glassy carbon, C60-fullerite, graphite, and dia-
mond) as a function of the electron energy loss, calculated using Drude–Lorentz functions. The
incident electron energy is E = 250 eV

Figure 3.15 shows, for the five considered allotropic forms of carbon, the electron
inelastic mean free path, i.e. the reciprocal of

λ−1
inel =

∫ Wmax

Wmin

dλ−1
inel

dw
dw , (3.49)
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Fig. 3.15 Inelastic mean
free path for electrons
impinging upon several
allotropic forms of carbon
(amorphous carbon, glassy
carbon, C60-fullerite,
graphite, and diamond) as a
function of the electron
kinetic energy, calculated
using Drude–Lorentz
functions
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where, according to Ref. [38], Wmin is set to zero for conductors and to the energy
of the band gap for semiconductors and insulating materials. Wmax represents the
minimum between E − EPauli and (E + Wmin)/2. Note that, for metals, EPauli =
EF . Garcia-Molina et al., recently proposed the value EPauli = 4 eV for several
biomaterials [40]. In the same paper, Garcia-Molina et al. set Wmin to the energy
gap for the outer-shell electron excitations and to the inner-shell threshold energy
for the inner-shell electron excitations [40]. According to Emfietzoglou et al. [38],
the factor 1/2 in Wmax is due to the fact that electrons cannot be distinguished (with
the convention to consider the incident electron as the most energetic one after the
collision).

3.3.5 The Mermin Theory

A more accurate approach to the calculation of the ELF is based on the use of the
Mermin functions [41] instead of the Drude–Lorentz functions in the sum. This
method is the Mermin energy loss function-generalized oscillator strength (MELF-
GOS) method proposed by Abril et al. [42]. Details of the MELF-GOS method can
be found in Chap. 15. According to Abril et al. [42], a linear combination of Mermin-
type energy loss functions, one per oscillator, allows to calculate the electron ELF
for any given material. The procedure is very similar to the previous one. Unlike that,
Mermin functions are used instead of Drude–Lorenz functions. Please note that the
Mermin theory includes the dispersion law, and it is not necessary, as is the case for
the Drude–Lorentz approach, to introduce an approximate expression of it to extend
the ELF beyond the optical domain. The Mermin differential inverse inelastic mean
free path of electrons in PMMA is represented in Fig. 3.16, for kinetic energies of
the incident electrons ranging from 50 to 1000 eV.

http://dx.doi.org/10.1007/978-3-319-47492-2_15
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Fig. 3.16 Mermin differential inverse inelastic mean free path of electrons in PMMA as a function
of the energy loss for selected values of the incident electron kinetic energy E in the range 50–
1000 eV [46]. The calculations are based on the MELF-GOS method [42] (see Chap. 15 for details)

The inverse of the integral of every curve presented in Fig. 3.16 provides, for each
kinetic energy E , the inelastic mean free path.

According to de la Cruz and Yubero [43], the values of the inelastic mean free path
calculated using the Tanuma, Powell and Penn (TPP) empirical predictive formula
[44] are systematically higher than the corresponding values calculated within the
Mermin theory. For PMMA, according to our calculation, when E = 100 eV the
Mermin IMFP is equal to 6.3 Å while when E = 1000 eV it is equal to 27.6 Å.
According to TPP, the inelastic mean free path of PMMA is equal to 7.9 Å for
E = 100 eV and to 33.7 Å for E = 1000 eV [44]. Approaches based on the Drude–
Lorentz theory also provide values of the inelastic mean free path systematically
higher than those obtained using the Mermin theory. The inelastic mean free path
of PMMA calculated according to the Drude–Lorentz theory is equal to 10.1 Å for
E = 100 eV and to 33.5 Å for E = 1000 eV [45].

3.3.6 Exchange Effects

Exchange effects in the electron–electron interaction are due to the fact that scattered
electrons cannot be distinguished from ejected electrons. In order to take into account
the exchange effects, the differential inverse inelastic mean free path have to be
calculated as

dλ−1
inel

d�ω
= 1

πa0E

∫ k+

k−

dk

k
[1 + fex(k)] Im

[
1

ε(k,ω)

]
, (3.50)

http://dx.doi.org/10.1007/978-3-319-47492-2_15
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Fig. 3.17 Mermin inelastic mean free path of electrons in PMMA [48] calculated according to the
MELF-GOS method [42] (see Chap. 15 for details). Black line with exchange. Gray line without
exchange. Courtesy of P. de Vera, I. Abril, R. Garcia-Molina

where, according to the Born–Ochkur approximation [47],

fex(k) =
(

�k

mv

)4

−
(

�k

mv

)2

. (3.51)

In Eq. (3.51) m is the electron mass and v is the electron velocity.
The Mermin inelastic mean free path of electrons in PMMA, calculated including

the Born–Ochkur approximation in order to take into account the exchange effects
(black line) is compared, in Fig. 3.17, with the Mermin inelastic mean free path
of electrons in PMMA calculated without exchange effects (gray line) [48]. The
calculations are based on the MELF-GOS method [42].

3.3.7 Polaronic Effect

A low-energy electron moving in an insulating material induces a polarization
field that has a stabilizing effect on the moving electron. This phenomenon can
be described as the generation of a quasi-particle called polaron. The polaron has a
relevant effective mass and mainly consists of an electron (or a hole created in the
valence band) with its polarization cloud around it. According to Ganachaud and
Mokrani [7], the polaronic effect can be described assuming that the inverse inelastic
mean free path governing the phenomenon – that is proportional to the probability
for a low-energy electron to be trapped in the ionic lattice – is given by

http://dx.doi.org/10.1007/978-3-319-47492-2_15
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λ−1
pol = C e−γ E (3.52)

where C and γ are constants depending on the dielectric material. Thus the lower
the electron energy, the higher the probability for an electron to lose its energy and
to create a polaron. This approach implicitly assumes that, once has been generated
a polaron, the residual kinetic energy of the electron is negligible. Furthermore, it
is assumed that the electron stays trapped in the interaction site. This is quite a
rough approximation, as trapped electrons – due to phonon induced processes – can
actually hop from one trapping site to another. Anyway, it is often a sufficiently good
approximation for Monte Carlo simulation purposes, so that it will be used in this
book when we will deal with secondary electron emission from insulating materials.

3.4 Inelastic Mean Free Path

We have already discussed the fact that the main mechanism which determines the
inelastic scattering cross-section and the relative energy losses, for energies higher
than 50 eV, is the interaction of the incident electrons with the collective excitations of
the electron sea, known as plasmons. Such energy loss mechanisms can be described
by calculating the so-called energy loss function, i.e., the reciprocal of the imaginary
part of the dielectric function. The Ritchie theory [6, 24] can be used – starting from
the knowledge of the dependence of the dielectric function upon both the energy loss
and the momentum transfer – to calculate the differential inverse electron inelastic
mean free path and the electron inelastic mean free path. When the electron energy is
higher than 50 eV, both the electron inelastic mean free path and the electron stopping
power calculated within the dielectric formalism are in very good agreement with
the experiment (and with theoretical data obtained by other investigators).

When, on the other hand, the electron energy becomes lower than 50 eV, the
dielectric formalism alone is no longer able to accurately describe the energy loss
phenomena. In fact, as the electron energy decreases, the electron inelastic mean free
path calculated using only the electron–electron interaction increases indefinitely (see
Figs. 3.11 and 3.12), while the stopping power goes quickly to zero (see Figs. 3.9 and
3.10). This means that if only electron–electron interactions were active for inelastic
scattering, electrons with such a low energy would no longer interact inelastically
(i.e., losing energy) with the solid. As a consequence they would travel without any
change in their kinetic energy. For a semi-infinite target, this very long travel in the
solid would either continue forever or until the electron reaches the surface of the
material and is able to emerge.

As a matter of fact, we know that when the energy becomes lower than 20–30 eV
further mechanisms of energy loss becomes very important (electron–phonon and
electron–polaron interactions) so that the actual inelastic mean free path approaches
zero as the electron energy goes to zero.
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3.5 Surface Phenomena

Bulk and surface plasmon losses. The plasma frequency ωp is given, in the Drude
free electron theory, by Eq. (3.30) and represents the frequency of the volume collec-
tive excitations, which correspond to the propagation in the solid of bulk plasmons
with energy

Ep = �ωp . (3.53)

In the electron energy loss spectra, it is thus expected to observe a bulk plasmon peak
whose maximum is located at an energy Ep [given by Eq. (3.53)] from the elastic or
zero-loss peak.

Also, features related to surface plasmon excitations appear in spectra acquired
either in reflection mode from bulk targets or in transmission mode from very thin
samples or small particles [49]. Indeed, in the proximity of the surface, due to the
Maxwell’s equation boundary conditions, surface excitations modes (surface plas-
mons) take place with a resonance frequency slightly lower than the bulk resonance
frequency.

A rough evaluation of the energy of the surface plasmons can be performed – for a
free electron metal – through the following very simple considerations [9]. In general,
similarly to the volume plasmons propagating inside the solid, in the presence of an
interface between two different materials – which we indicate here with a and b –,
longitudinal waves travel as well along the interface. From continuity considerations
it follows that [9]

εa + εb = 0 , (3.54)

where we have indicated with εa the dielectric function on side a and with εb the
dielectric function on side b of the interface. Let us now consider the particular case
of a vacuum/metal interface and ignore, for the sake of simplicity, the damping, so
that Γ ≈ 0. Then, if a represents the vacuum, we have

εa = 1 , (3.55)

and

εb ≈ 1 − ω2
p

ω2
s

, (3.56)

where we have indicated with ωs the frequency of the longitudinal waves of charge
density traveling along the surface. Then we obtain, from Eq. (3.54)

2 − ω2
p

ω2
s

= 0.
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As a consequence, the surface plasmon energy Es = �ωs, i.e. the surface plasmon
peak position in the energy loss spectrum, is expected to be found at an energy

Es = Ep√
2

(3.57)

from the position of the elastic peak.

Chen and Kwei theory. Chen and Kwei [50] used the dielectric theory to show
that the differential inverse inelastic mean free path for electrons emerging from a
solid surface can be split up into two terms. The first one is the differential inverse
inelastic mean free path in an infinite medium. The second one is the so-called surface
term which is related to a surface layer extending on both sides of the vacuum-solid
interface. As a consequence, electrons can interact inelastically with the solid even
if outside, if they are close enough to the surface. Spectra of electrons originating
near to the surface are therefore influenced by these surface effects.

The original version of the Chen and Kwei theory concerned only outgoing pro-
jectiles [50]. It was generalized by Li et al. [51] for incoming projectiles. See Chap. 14
for details.

So the theory predicts different trends for the inverse inelastic mean free path
(IIMFP) for incoming and outgoing electrons when electrons are close to the surface:
in particular, the inverse inelastic mean free path of the incoming electrons is found
to slightly oscillate around the mean value, i.e., the bulk inverse inelastic mean free
path. This phenomenon is attributed to the behavior of the electrons passing through
the surface.

Using the Chen and Kwei theory, one can calculate the dependence on z of the
inverse inelastic mean free path, for any given electron kinetic energy. In Figs. 3.18
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Fig. 3.18 Inverse inelastic mean free path (IIMFP) electrons in Al as a function of the distance
from the surface (in the solid and in the vacuum) for several kinetic energies of both incoming and
outgoing electrons
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Fig. 3.19 Inverse inelastic mean free path (IIMFP) electrons in Si as a function of the distance
from the surface (in the solid and in the vacuum) for several kinetic energies of both incoming and
outgoing electrons
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Fig. 3.20 Comparison between the experimental (black line) and theoretical (gray line) electron
energy loss spectra for 1000 eV electrons impinging upon Al [52]. Calculated and experimental
spectra were normalized to a common height of the bulk plasmon peak after linear background
subtraction. Experimental data: courtesy of Lucia Calliari and Massimiliano Filippi

and 3.19 the inverse inelastic mean free path of Al and Si, respectively, are presented
as a function of the electron’s energy and depth (both outside and inside the solid).

The Chen and Kwei theory [50] and its generalization by Li et al. [51] have been
recently used for simulating the surface and bulk plasmon loss peaks in Al and Si [52].
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Fig. 3.21 Comparison between the experimental (black line) and theoretical (gray line) electron
energy loss spectra for 1000 eV electrons impinging upon Si [52]. Calculated and experimental
spectra were normalized to a common height of the bulk plasmon peak after linear background
subtraction. Experimental data: courtesy of Lucia Calliari and Massimiliano Filippi

The energy loss spectrum can be calculated under the assumption that experi-
mental spectra arise from electrons undergoing a single large angle elastic scattering
event (so-called V-type trajectories [53]). In Figs. 3.20 and 3.21, the present calcu-
lation based on the combination of the Chen and Kwei and Li et al. theory [50, 51]
with a single V-type trajectory modeling for Al and Si, are compared to experimental
data [52]. Calculated and experimental spectra are normalized to a common height
of the bulk plasmon peak.

3.6 Summary

In this chapter, elastic and inelastic scattering cross-sections were described. They
are the main ingredients of the Monte Carlo simulation.

In particular, the elastic scattering collisions can be calculated by the Mott cross-
section, the electron–plasmon inelastic scattering events by the Ritchie dielectric
theory, and electron–phonon energy losses by the Fröhlich theory. Polaronic effects
can be computed according to Ganachaud and Mokrani.

Chen and Kwei theory and its generalization due to Li et al. were also described.
These theories allow to deal with the surface phenomena, particularly important for
the investigation of reflection electron energy loss spectroscopy when the incident
electron energy is smaller than 2–3 keV.
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Chapter 4
Random Numbers

As Monte Carlo is a statistical method, the accuracy of its results depends on the
number of simulated electron trajectories and on the pseudo-random number genera-
tor used to perform the simulations. We shall briefly summarize how pseudo-random
numbers can be generated. We shall describe, as well, how to calculate selected ran-
dom number distributions that are particularly relevant for the Monte Carlo method
purposes [1].

We are firstly interested in a generator of pseudo-random numbers uniformly
distributed in the range [0, 1]. Once it is given, we shall describe the way to generate
pseudo-random numbers uniformly distributed in a given interval; pseudo-random
numbers distributed according to the Poisson density of probability; and pseudo-
random numbers distributed according to the Gauss density of probability [2].

4.1 Generating Pseudo-random Numbers

The algorithm most frequently used for the generation of pseudo-random numbers
uniformly distributed in a given interval provides the entire sequence from a “seed”
number: starting with an initial number, known as the seed, the subsequent random
numbers are calculated using an equation that permits to obtain each random number
from the previous one. Every number of the sequence is computable knowing the
value of the last calculated random number [2, 3].

Let us suppose that μn is the nth pseudo-random number. Then the next random
number μn+1 is given by

μn+1 = (aμn + b)modm (4.1)

where a, b andm are three integer numbers. Choosing the values of the three “magic”
numbers a, b, and m in a proper way, sequences of random numbers corresponding
to the maximum period (which is equal to m) are obtained. In such a way, for every
initial seed μ0, all the integer numbers from 0 to m − 1 will be in the sequence.

© Springer International Publishing AG 2017
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Several proposals were provided for the three “magic” numbers a, b, and m.
Statistical tests have been used to establish the values of the three numbers a, b,
and m in order to appropriately approximate a sequence of integer random numbers
uniformly distributed in the interval from 0 to m − 1 [2]. A simple proposal is
the so-called “minimal standard” which corresponds to a = 16807, b = 0,m =
2147483647.

In order to obtain a sequence of real numbers uniformly distributed in the range
[0, 1], it is sufficient to divide by m all the numbers obtained by Eq. (4.1).

Pseudo-random number generators used today in the programming languages
such as C or C++ are more accurate than the minimal standard. They are based on
an approach similar to that expressed by Eq. (4.1) [2].

4.2 Testing Pseudo-random Number Generators

A classical test to check the quality and the uniformity of a pseudo-random number
generator consists in simulatingπ = 3.14 . . .Let us generate a statistically significant
number of pairs of random numbers in the range [−1, 1]. If the distribution of the
generated pseudo-random numbers approached a perfectly uniform distribution of
random numbers, then the fraction of generated points that lie within the unit circle
(i.e., the number of pairs in the circle divided by the total number of generated pairs)
should approach π/4. Using the random number generator “rand()” provided by the
C++ compiler “Dev-C++ 4.9.9.0”, we obtained for π the values 3.1411 ± 0.0005
with 107 pairs, 3.1415 ± 0.0001 with 108 pairs, and 3.1417 ± 0.0001 with 109 pairs.

4.3 Pseudo-random Numbers Distributed According
to a Given Probability Density

Let us indicate with ξ a randomvariable defined in the range [a, b] distributed accord-
ing to a given probability density p(s). If μ represents a random variable uniformly
distributed in the range [0, 1], then the values of ξ can be obtained by the use of the
equation: ∫ ξ

a
p(s) ds = μ . (4.2)

4.4 Pseudo-random Numbers Uniformly Distributed
in the Interval [a, b]

Starting from a distribution μ uniformly distributed in the range [0, 1], we can use
Eq. (4.2) to obtain a uniform distribution η in the interval [a, b]. The distribution η
corresponds to the probability density:
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pη(s) = 1

b − a
. (4.3)

η satisfies the equation:

μ =
∫ η

a
pη(s) ds =

∫ η

a

ds

b − a
. (4.4)

As a consequence,
η = a + μ(b − a) . (4.5)

The expected value of the distribution is given by:

〈η〉 = (a + b)/2 . (4.6)

4.5 Pseudo-random Numbers Distributed According
to the Poisson Density of Probability

Starting from a distributionμ uniformly distributed in the range [0, 1], we can use Eq.
(4.2) to obtain the Poisson distribution as well. It is a very important distribution for
theMonte Carlo simulations, as the stochastic process for multiple scattering follows
a Poisson-type law. The Poisson distribution is defined by the following probability
density:

pχ(s) = 1

λ
exp

(
− s

λ

)
, (4.7)

where λ is a constant.
A random variable χ distributed according to the Poisson law, and defined in the

interval [0,∞), is given by the solution of the equation:

μ =
∫ χ

0

1

λ
exp

(
− s

λ

)
ds , (4.8)

where μ is, as usual, a random variable uniformly distributed in the range [0, 1].
Then

χ = −λ ln(1 − μ) . (4.9)

Since the distribution of 1 − μ is equal to that of μ, we also have:

χ = −λ ln(μ) . (4.10)

The constant λ is the expected value of χ:

〈χ〉 = λ . (4.11)
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4.6 Pseudo-random Numbers Distributed According
to the Gauss Density of Probability

In order to describe the elastic peak, we have to calculate random variables with
Gaussian distribution. The sequences of random numbers distributed with Gaussian
density are calculated in this work by using the Box-Muller method [2].

Let us indicate with μ1 and μ2 two sequences of random numbers uniformly
distributed in the interval [0, 1]. Let us consider the transformation:

γ1 = √−2 ln μ1 cos 2πμ2 , (4.12)

γ2 = √−2 ln μ1 sin 2πμ2 . (4.13)

Algebraic manipulations permit to calculate μ1 and μ2,

μ1 = exp

[
−1

2
(γ2

1 + γ2
2)

]
, (4.14)

μ2 = 1

2π
arctan

γ2

γ1
. (4.15)

Let us now consider the Jacobian determinant J of the random variables μ1 and μ2

with respect to the random variables γ1 and γ2. Since

∂μ1

∂γ1
= −γ1 exp

[
−1

2
(γ2

1 + γ2
2)

]
, (4.16)

∂μ1

∂γ2
= −γ2 exp

[
−1

2
(γ2

1 + γ2
2)

]
, (4.17)

∂μ2

∂γ1
= − 1

2π

γ2

γ2
1 + γ2

2

, (4.18)

and
∂μ2

∂γ2
= 1

2π

γ1

γ2
1 + γ2

2

, (4.19)

the Jacobian determinant J is given by

J = ∂μ1

∂γ1

∂μ2

∂γ2
− ∂μ2

∂γ1

∂μ1

∂γ2
= −g(γ1)g(γ2) , (4.20)

where

g(γ) = exp(−γ2/2)√
2π

. (4.21)
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Thus the two random variables γ1 and γ2 are distributed according to the Gaussian
density.

4.7 Summary

We have described the algorithm most frequently used for the generation of pseudo-
random numbers uniformly distributed in a given interval. It provides the whole
sequence from a seed number. Starting with a given initial number, the algorithm
computes the subsequent pseudo-random numbers according to a simple rule. Know-
ing the value of the last calculated pseudo-random number, any other number in the
sequence can be easily computed. Once provided a generator of pseudo-random
numbers uniformly distributed on the range [0, 1], sequences of pseudo-random
numbers distributed according to given densities of probability can be obtained by
the use of specific algorithms. Several examples, useful for the purposes of transport
Monte Carlo, were provided in this chapter.
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Chapter 5
Monte Carlo Strategies

Monte Carlo is one of the most powerful theoretical methods for evaluating the
physical quantities related to the interaction of electrons with a solid target. A Monte
Carlo simulation can be considered as an idealized experiment. The simulation does
not investigate the fundamental principles of the interaction. It is necessary to have
a good knowledge of them – in particular of the energy loss and angular deflection
phenomena – to produce a good simulation. All the cross-sections and mean free paths
have to be previously accurately calculated: they are then used in the Monte Carlo
code in order to obtain the macroscopic characteristics of the interaction processes
by simulating a large number of single particle trajectories and then averaging them.
Due to the recent evolution in computer calculation capability, we are now able to
obtain statistically significant results in very short calculation times.

Two main strategies can be utilized in order to simulate electron transport in solid
targets. The first one, the so-called continuous-slowing-down approximation, is very
simple and assumes that electrons continuously lose energy as they travel inside
the solid, changing direction when elastic collisions occur. It is frequently used –
for it is a very fast procedure – when the description of the statistical fluctuations
of the energy loss due to the different energy losses suffered by each electron of
the penetrating beam and of the shower of secondary electron are not crucial for
simulating the desired quantities. This is the case, for example, for the calculation
of the backscattering coefficient or the depth distribution of the absorbed electrons.
If, instead, accurate descriptions of all the inelastic events which occur along the
electron path – i.e., of the statistical fluctuations of the energy loss – are needed to
study the investigated phenomena, a second strategy is required: a strategy where
energy straggling is properly taken into account simulating all the single energy
losses occurring along the electron trajectory (together with the description of the
elastic events in order to take into account the changes of direction). This is the case,
for example, for the calculation of the energy distribution of the electrons emitted by
the surface of the solid target.

In this chapter both these strategies will be briefly described, while the discus-
sion of specific features and details will be found in the chapters devoted to the
applications.

© Springer International Publishing AG 2017
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For both the descriptions we will adopt spherical coordinates (r, θ,φ) and assume
that a stream of monoenergetic electrons irradiates a solid target in the z direction. In
some of the applications presented in the next chapters, we will consider also angles
of incidence, with respect to the normal to the target surface, different from zero.

5.1 The Continuous-Slowing-Down Approximation

Let us firstly describe the Monte Carlo method based on the continuous-slowing-
down approximation. It requires the use of the stopping power – for calculating the
energy losses along the electron trajectories – while the electron angular deflections
are ruled by the Mott cross-section.

5.1.1 The Step-Length

The stochastic process for multiple scattering is assumed to follow a Poisson-type
law. The step-length Δs is then given by

Δs = −λel ln(μ1) , (5.1)

where μ1 is a random number uniformly distributed in the range [0, 1] and λel is the
elastic mean free path:

λel = 1

Nσel
. (5.2)

Here we have indicated with N the number of atoms per unit volume in the solid and
with σel the total elastic scattering cross-section, given by

σel(E) =
∫

dσel

dΩ
dΩ =

∫ π

0

dσel

dΩ
2 π sin ϑ dϑ . (5.3)

5.1.2 Interface Between Over-Layer and Substrate

For surface films, the interface between the over-layer and the substrate must be
properly taken into account. The change in the scattering probabilities per unit length
in passing from the film to the substrate and vice versa, have to be considered, so
that Eq. (5.1) has to be accordingly modified. Let us denote with p1 and p2 the
scattering probabilities per unit length for the two materials, where p1 refers to the
material in which the last elastic collision occurred and p2 to the other material and
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let us indicate with d the distance along the scattering direction between the initial
scattering and the interface. According to Horiguchi et al. [1] and Messina et al. [2],
if μ1 is a random number uniformly distributed in the range [0, 1], the step-length
Δs is given by,

Δs =
⎧⎨
⎩

(
1
p1

)
[− ln(1 − μ1)], 0 ≤ μ1 < 1 − exp(−p1d);

d +
(

1
p2

)
[− ln(1 − μ1) − p1d], 1 − exp(−p1d) ≤ μ1 ≤ 1.

(5.4)

5.1.3 The Polar Scattering Angle

The polar scattering angle θ resulting from an elastic collision is calculated assuming
that the probability of elastic scattering into an angular range from 0 to θ,

Pel(θ, E) = 2 π

σel

∫ θ

0

dσel

dΩ
sin ϑ dϑ , (5.5)

is a random number μ2 uniformly distributed in the range [0, 1]:

μ2 = Pel(θ, E) . (5.6)

In other words, the sampling of the elastic scattering is performed looking for the
angle of scattering corresponding to a random number uniformly distributed in the
range [0, 1] (see Fig. 5.1). The angle of scattering, for any given electron energy, is
calculated looking for the upper limit of integration in Eq. (5.5), once determined
that μ2 be equal to Pel(θ, E) (Eq. (5.6)).

5.1.4 Direction of the Electron After the Last Deflection

The azimuth angle φ can assume any value selected by a random number μ3 uniformly
distributed in the range [0, 2π].

Both the θ and φ angles refer to the last direction before the impact. The direction
θ

′
z in which the electron is moving after the last deflection, relative to the z direction,

is given by [3–5]

cos θ
′
z = cos θz cos θ − sin θz sin θ cos φ . (5.7)

In the last equation, θz is the angle relative to the z direction before the impact. The
step of trajectory along the z direction, Δz, is then obtained by
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Fig. 5.1 Sampling of the elastic scattering angle for electrons in silicon. Pel is the cumulative
probability for elastic scattering into an angular range from 0 to θ calculated numerically by solving
the Dirac equation in a central field, according to the relativistic partial wave expansion method
(Mott cross-section). Solid line: E = 500 eV; dashed line: E = 1000 eV; dotted line: E = 2000 eV

Δz = Δs cos θ
′
z . (5.8)

The new angle θ
′
z is the incident angle θz corresponding to the next path length.

5.1.5 Electron Position in Three Dimensional
Cartesian Coordinates

In order to describe, at each scattering point, the electron position in three dimensional
Cartesian coordinates (x, y, z), let us indicate with Δsn the length of nth step. Thus⎧⎨

⎩
xn+1 = xn + Δsn sin θn cos φn

yn+1 = yn + Δsn sin θn sin φn

zn+1 = zn + Δsn cos θn

(5.9)

where the following transformations

⎧⎨
⎩

cos θn = cos θn−1 cos θ − sin θn−1 sin θ cos φ
sin(φn − φn−1) = sin θ sin φ/ sin θn
cos(φn − φn−1) = (cos θ − cos θn−1 cos θn)/(sin θn−1 sin θn)

(5.10)

relate the angles in the coordinate system of the target with the angles in the coordinate
systems moving with the electron [5].
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5.1.6 The Energy Loss

The basic idea of the continuous-slowing-down approximation, is that electrons lose
energy with continuity while traveling in the solid: in order to calculate the energy
loss along the various segments of the electron trajectory we use the stopping power.

Monte Carlo codes typically approximate the energy loss ΔE along the segment
of trajectory Δz by the following equation

ΔE = (dE/dz)Δz , (5.11)

where −dE/dz is the electron stopping power. With this approach, statistical fluc-
tuations of the energy losses are completely neglected. As a consequence this kind
of Monte Carlo strategy should be avoided when detailed information about energy
loss mechanisms is required (for example when we need to calculate the energy
distribution of the emitted electrons).

5.1.7 End of the Trajectory and Number of Trajectories

Each electron is followed until its energy becomes lower than a given value or until
it emerges from the target surface. The selection of the cut off value of the energy
depends on the particular problem one is investigating. For the calculation of the
backscattering coefficient, for example, the electrons are followed until their energy
becomes smaller than 50 eV.

It should be noted that even the number of trajectories is a crucial quantity to
obtain statistically significant results and to improve the signal to noise ratio. In this
work the typical number of trajectories, used for the presented simulations based
on the continuous-slowing-down approximation strategy, ranges from 105 to 106,
depending on the particular problem investigated.

5.2 The Energy-Straggling Strategy

Let us now describe the Monte Carlo method based on the energy-straggling strategy.
It requires a detailed knowledge of all the energy loss mechanisms and probabilities
(electron-electron, electron-phonon, electron-polaron cross-sections) while the elec-
tron angular deflections are ruled, as for the case of the continuous-slowing-down
approximation, by the use of the Mott cross-section.
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5.2.1 The Step-Length

The Monte Carlo method based on the energy-straggling strategy requires an
approach different from that based on the continuous-slowing-down approximation.
Also in this case the stochastic process for multiple scattering is assumed to follow
a Poisson-type law. The step-length Δs is thus given by

Δs = −λ ln(μ1) , (5.12)

where μ1 is, as for the previous case, a random number uniformly distributed in the
range [0, 1]. Now λ is no longer the elastic mean free path. It is instead given by

λ = 1

N (σin + σel)
, (5.13)

where σin is the total inelastic scattering cross-sections (the sum of all the inelastic
and quasi-elastic scattering cross-sections), i.e.,

σin = σinel + σphonon + σpol (5.14)

and σel is the total elastic scattering cross-section (Mott cross-section). Therefore,

λ = 1

N (σinel + σphonon + σpol + σel)
, (5.15)

or, since Nσinel = 1/λinel, Nσphonon = 1/λphonon, Nσpol = 1/λpol, and Nσel =
1/λel,

1

λ
= 1

λinel
+ 1

λphonon
+ 1

λpol
+ 1

λel
. (5.16)

5.2.2 Elastic and Inelastic Scattering

Before each collision, a random number μ2 uniformly distributed in the range [0, 1]
is generated and compared with the probability of inelastic scattering, pin, given by

pin = σin

σin + σel
= λ

λin
, (5.17)

while that of elastic scattering is

pel = 1 − pin. (5.18)
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If the random number μ2 is less than or equal to pin, then the collision will be inelastic;
otherwise, it will be elastic.

If the collision is inelastic, a similar procedure is followed to establish which
kind of inelastic process will occur among the following ones: an electron-electron
(Ritchie [6]), a quasi-elastic electron-phonon (Fröhlich [7]), or an electron-polaron
(Ganachaud and Mokrani [8]) interaction.

If the collision is elastic, the polar scattering angle θ is calculated by generating
a random number μ3, uniformly distributed in the range [0, 1], representing the
probability of elastic scattering into an angular range from 0 to θ:

μ3 = Pel(θ, E) = 1

σel

∫ θ

0

dσel

dΩ
2π sin ϑ dϑ . (5.19)

In each electron-electron inelastic collision the function Pinel(W, E) that provides
the fraction of electrons losing energies less than or equal to W [9] (see Fig. 5.2
where the function Pinel(W, E) is represented for 1000 eV electrons impinging on
Si) is calculated: the energy loss W is obtained by generating a random number μ4

uniformly distributed in the range [0, 1], and imposing that μ4 is equal to Pinel(W, E):

μ4 = Pinel(W, E) = 1

σinel

∫ W

0

dσinel

dw
dw . (5.20)

Also a secondary electron is generated whose energy is equal to the energy lost
by the incident electron, W .

0 10 20 30 40 50
0.0

0.5

1.0

P in
el

W (eV)

Fig. 5.2 Sampling of the energy loss for electrons in silicon. Pinel is the cumulative probability for
inelastic collisions of electrons in Si (calculated according to the dielectric Ritchie theory) causing
energy losses less than or equal to W. The cumulative probability is here represented, as a function
of the energy loss W, for E = 1000 eV
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If an electron-lattice interaction occurs, with the creation of a phonon, the energy
lost by the electron is equal to the energy of the created phonon, Wph.

Lastly, if a polaron is generated, the following approximation was adopted in this
book: the electron ends its travel in the solid, as it is trapped where the interaction
has taken place.

5.2.3 Electron-Electron Collisions: Scattering Angle

Let us consider the collision between two electrons. Let us assume that one of them
is initially at rest. Let us indicate with p and E the initial momentum and energy,
respectively, of the incident electron, with p′ and E ′ the momentum and energy,
respectively, of the incident electron after the collision, and with q = p − p′ and
W = E − E ′ the momentum and energy, respectively, of the electron which was
initially at rest (the so-called secondary electron) after the collision. Let us indicate
with θ and θs , respectively, the polar scattering angles of the incident and of the
secondary electrons. Useful relationships between these quantities can be provided
using the so-called classical binary-collision model, which is sufficiently accurate
for many practical purposes. Due to conservation of momentum and energy,

sin θs = cos θ , (5.21)

where the polar scattering angle θ depends on the energy loss W = E − E ′ = ΔE
according to the equation

W

E
= ΔE

E
= sin2 θ . (5.22)

Let us firstly demonstrate Eq. (5.21). To do that, we have to prove that the momentum
of each of the two electrons in the final state is perpendicular to that of the other one.
Let us then introduce the angle β between p′ and q. From momentum conservation,

p = p′ + q , (5.23)

we obtain

p2 = p′2 + q2 + 2p′q cos β . (5.24)

From conservation of energy,

E = E ′ + ΔE , (5.25)
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it follows that

p2 = p′2 + q2 . (5.26)

The comparison between Eqs. (5.24) and (5.26) allows us to conclude, as antici-
pated, that

β = π

2
, (5.27)

which is equivalent to Eq. (5.21).
Let us now examine the consequences of the conservation laws on the dependence

of the scattering angle θ – the angle between the initial momentum p and the final
momentum p′ of the incident electron – on the electron energy loss. As

p − p′ = q , (5.28)

we obtain

q2 = p2 + p′2 − 2pp′ cos θ . (5.29)

Equation (5.29) has two important consequences. The first one is that, in the final
state, the absolute value of momentum q of the electron initially at rest, q, can assume
only values belonging to the finite interval [q−, q+] where

q± = √
2mE ± √

2m(E − ΔE) , (5.30)

as one can immediately see assuming that, in Eq. (5.29), θ = 0 (corresponding to
q−) and θ = π (corresponding to q+).

The second consequence of Eq. (5.29) is that it offers the possibility, when con-
servation of energy is considered as well, to obtain the relationship between the scat-
tering angle and the energy loss of the incident electron represented by Eq. (5.22).
Indeed, according to Eq. (5.26), q2 = p2 − p′2, so that, comparing this result with
that expressed by Eq. (5.29), we obtain

cos2 θ = p′2

p2
= E ′

E
, (5.31)

which is equivalent to Eq. (5.22).

5.2.4 Electron-Phonon Collisions: Scattering Angle

In the case of electron-phonon collision, the corresponding polar scattering angle
can be calculated according to Llacer and Garwin [10]. Details can also be found in
Chap. 12.

http://dx.doi.org/10.1007/978-3-319-47492-2_12
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Indicating with μ5 a new random number uniformly distributed in the range [0, 1],
the polar scattering angle corresponding to an electron-phonon collision can be cal-
culated as

cos θ = E + E ′

2
√
E E ′ (1 − Bμ5) + Bμ5 , (5.32)

where

B = E + E ′ + 2
√
E E ′

E + E ′ − 2
√
E E ′ . (5.33)

5.2.5 Direction of the Electron After the Last Deflection

Once the polar scattering angle has been calculated, the azimuth angle is obtained
by generating a random number μ6 uniformly distributed in the range [0, 2π]. The
direction θ

′
z in which the electron is moving after the last deflection, relative to the

z direction, is calculated by Eq. (5.7). The Eqs. (5.9) and (5.10) have to be used, on
the other hand, in order to describe, at each scattering point, the particle position in
three dimensional Cartesian coordinates.

5.2.6 The First Step

According to Ref. [5], electrons make the first step without any scattering at the
interface between the vacuum and the sample or, in other words, the energy losses
and angular deflections occur at the last point of each step-length.

5.2.7 Transmission Coefficient

When dealing with very slow electrons, another important question to be considered
is related to their capability to emerge from the surface of the solid [11].

In fact, the condition for an electron to emerge from the surface of a solid is not
always satisfied. The interface with the vacuum represents a potential barrier, and not
all the electrons that reach the surface can go beyond it. When the electrons reaching
the surface cannot emerge, they are specularly reflected back in the material. This
problem is particularly important when investigating secondary electron emission,
as secondary electrons typically have very low energy (lower than 50 eV), so that
they often cannot satisfy the condition to emerge.



5.2 The Energy-Straggling Strategy 63

When a very slow electron of energy E reaches the target surface, it can emerge
from the surface only if this condition is satisfied

E cos2 θ = χ , (5.34)

where θ is the angle of emergence with respect to the normal to the surface, mea-
sured inside the specimen, and χ is the so-called electron affinity, i.e. the potential
barrier represented by the difference between the vacuum level and the bottom of
the conduction band. Its value depends on the investigated material. For example,
the electron affinity of un-doped silicon is 4.05 eV [12].

In order to study the transmission coefficient of slow electrons through the poten-
tial barrier χ, let us consider two regions along the z direction, inside and outside
the solid, respectively. Let us further assume that the potential barrier χ is located at
z = 0.

The first region, inside the solid, corresponds to the following solution of the
Schrödinger equation:

ψ1 = A1 exp(i k1 z) + B1 exp(−i k1 z) , (5.35)

while the solution in the vacuum is given by:

ψ2 = A2 exp(i k2 z) . (5.36)

In these equations, A1, B1, and A2 are three constants while k1 and k2 are, respectively,
the electron wavenumbers in the solid and in the vacuum. They are given by

k1 =
√

2m E

�2
cos θ , (5.37)

k2 =
√

2m (E − χ)

�2
cos ϑ . (5.38)

Here θ and ϑ represent the angles of emergence of the secondary electrons – with
respect to the normal to the surface – measured, respectively, inside and outside the
material.

As the following conditions of continuity have to be satisfied

ψ1(0) = ψ2(0) , (5.39)

ψ′
1(0) = ψ′

2(0) , (5.40)
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we have
A1 + B1 = A2 , (5.41)

and

(A1 − B1) k1 = A2 k2 , (5.42)

so that the transmission coefficient T can be easily calculated to be

T = 1 −
∣∣∣∣ B1

A1

∣∣∣∣
2

= 4 k1 k2

(k1 + k2)2
. (5.43)

Taking into account the definition of electron wavenumbers given above, we obtain

T = 4
√

(1 − χ/E) cos2 ϑ/ cos2 θ[
1 + √

(1 − χ/E) cos2 ϑ/ cos2 θ
]2 (5.44)

Due to the conservation of the momentum parallel to the surface

E sin2 θ = (E − χ) sin2 ϑ . (5.45)

As a consequence

cos2 θ = (E − χ) cos2 ϑ + χ

E
, (5.46)

cos2 ϑ = E cos2 θ − χ

E − χ
. (5.47)

In conclusion, the transmission coefficient T is given, as a function of ϑ, by

T = 4
√

1 − χ/[(E − χ) cos2 ϑ + χ]{
1 + √

1 − χ/[(E − χ) cos2 ϑ + χ]
}2 , (5.48)

and, as a function of θ,

T = 4
√

1 − χ/(E cos2 θ)[
1 + √

1 − χ/(E cos2 θ)
]2 . (5.49)

Transmission Coefficient and Monte Carlo method. The transmission coefficient
is an important quantity for the Monte Carlo description of low energy electrons
emerging from the surface of a solid: the code generates a random number, μ7,
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uniformly distributed in the range [0, 1] and permits the electron to be emitted into
the vacuum if the condition

μ7 < T (5.50)

is satisfied. Those electrons which, once reached the surface, cannot satisfy the con-
dition to emerge, are specularly reflected back into the bulk of the specimen without
energy loss and can contribute to the generation of further secondary electrons.

5.2.8 Inelastic Scattering Linkage to the Distance
from the Surface

In order to describe the surface plasmon loss peaks that can be observed in reflection
electron energy loss spectroscopy when primary electron energy is smaller than
∼1000 eV, it is necessary to take into account that the inelastic scattering depends
on the distance from the surface (in the solid and in vacuum) and on the angle of
surface crossing (see Figs. 3.18 and 3.19). The consequence is that, in the Monte
Carlo simulation, the sampling of the energy loss previously discussed (see Fig. 5.2)
is no longer sufficient. If we wish to describe the surface phenomena, cumulative
probabilities for inelastic collisions of electrons have to be calculated not only as a
function of the energy loss W but also as a function of the distance from the surface.
Furthermore, since in the Chen and Kwei and Li et al. [13, 14] theory also the vacuum
(close to the surface) contributes to inelastic scattering, cumulative probabilities have
to be calculated in the vacuum as well [15, 16]. In Fig. 5.3 the cumulative probability
for inelastic collisions of electrons in Si is represented as a function of the energy
loss for few selected distances from the surface – in the case of incoming electrons
inside the solid. Note that, as z approaches ∞, the curves shown in Fig. 5.3 approach
the “bulk” curve in Fig. 5.2.

In order to include in the Monte Carlo code the information that the electron
inelastic mean free path explicitly depends on z, also the sampling procedure for
the electron length between the successive scattering events has to be accordingly
modified. Let us assume that the distribution function, pχ(s), has the form [17]:

pχ(s) = 1

λ(s)
exp

[
−

∫ s

0

ds ′

λ(s ′)

]
, (5.51)

For a comparison, see Eq. (4.7), valid when λ does not depend on the depth.
Since this equation is difficult to solve, according to Ding and Shimizu [17] the

following procedure can be followed to calculate z. The first step is to put z = zi,
where zi is the z component of the electron current position. If λmin represents the
minimum value of the mean free path (the inelastic one when the particle is in vacuum
and, when it is in the material, calculated taking also into account the elastic mean free
path), the second step involves the generation of two independent random numbers,

http://dx.doi.org/10.1007/978-3-319-47492-2_3
http://dx.doi.org/10.1007/978-3-319-47492-2_3
http://dx.doi.org/10.1007/978-3-319-47492-2_4
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Fig. 5.3 Sampling of the energy loss for electrons in silicon. Pinel is the cumulative probability
for inelastic collisions of electrons in Si (calculated according to the Chen and Kwei theory [13,
14]) causing energy losses less than or equal to W. The cumulative probability is represented as
a function of the energy loss for few selected distances from the surface in the case of incoming
electrons inside the solid. Similar curves can be calculated for incoming electrons outside the solid,
outgoing electrons inside the solid, and outgoing electrons outside the solid. E0 = 1000 eV

μ8 and μ9, uniformly distributed in the range [0, 1]. A new value of z is calculated
by the equation:

z = zi − cos θ λmin ln μ8 . (5.52)

If μ9 ≤ λmin/λ, then the new value of z is accepted; otherwise we put z = zi (i.e., z
is now considered as the new z component of the initial position), two new random
numbers μ8 and μ9 are generated, and a new value of z is calculated according to
Eq. (5.52).

Recent theoretical calculations and Monte Carlo results concerning surface and
bulk plasmon loss peaks show a very good agreement with the available experimental
data [17–27]. The agreement, in particular, between Monte Carlo simulated and
experimental data is very good even on an absolute scale [17, 25, 26].

5.2.9 End of the Trajectory and Number of Trajectories

As for the case of the continuous-slowing-down approximation, described in the
previous section, each electron is followed until its energy becomes lower than a
given agreed threshold or until it emerges from the target surface. If, for example,
we are studying the plasmon losses, the electrons can be followed until their energy
becomes smaller than E0 − 150 eV, as typically all the plasmon losses can be found
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in the energy ranges from E0 − 150 eV to E0 (where we have indicated with E0 the
primary energy expressed in eV). If, instead, we are facing the problem of simulating
the secondary electron energy distribution, the electrons must be followed until they
reach a very small minimum energy (virtually equal to 0, even if a few eV can in
some cases be considered acceptable.)

The number of trajectories is also a very important parameter. In this work, the
typical number of trajectories, using the energy-straggling strategy for simulating
spectra of energy distributions, ranges from 107 to 109.

5.3 Summary

In this chapter, the Monte Carlo method for the study of the transport of electrons in
solid targets has been briefly described. Its main features and characteristics have been
summarized, considering in particular two different strategies: one based on the so-
called continuous-slowing-down approximation, the other one on a scheme that takes
into account the energy straggling, i.e., the statistical fluctuations of the energy losses.
Electron-atom, electron-electron, electron-phonon, and electron-polaron interactions
have been considered with all the relating effects, both in term of energy losses and
scattering angles.
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Chapter 6
Backscattering Coefficient

The backscattered electron (BSE) emission coefficient is defined as the fraction of
electrons of the primary beam emerging from the surface of an electron-irradiated
target. Secondary electrons, generated in the solid by a cascade process of extrac-
tion of the atomic electrons, are not included in the definition of the backscattering
coefficient. The energy cut-off is typically 50 eV. In other words, in a typical SEM
experiment aimed at measuring the fraction of backscattered electrons, investigators
consider as backscattered all the electrons emerging from the surface of the target
with energies higher than the cut-off energy (50 eV), while all the electrons emerging
with energies lower than this conventional cut-off are considered as secondary. Of
course, secondary electrons with energy higher than any predefined cut-off energy
and backscattered electrons with energy lower than such a cut-off also exist. If the
primary energy of the incident electron beam is not too low (higher than ≈200–
300 eV), the introduction of the 50 eV energy cut-off is generally considered as a
good approximation, and it will be therefore adopted in this chapter. This choice
is particularly useful, as we are interested in comparing the Monte Carlo results to
experimental data that can be found in the literature, where the 50 eV energy cut-off
approximation has been widely (always, actually) used.

6.1 Electrons Backscattered from Bulk Targets

When an electron beam impinges upon a solid target, some electrons of the primary
beam are backscattered and re-emerge from the surface. We already know that the
backscattering coefficient is defined as the fraction of the electrons of the incident
beam which emerge from the surface with energy higher than 50 eV. This definition
is very convenient and useful from the experimental point of view; it is also quite
accurate, as the fraction of secondary electrons (i.e., the electrons extracted from the
atoms of the target and able to reach the surface and emerge) with energy higher
than 50 eV is negligible for any practical purpose, as is the fraction of backscattered
electrons emerging with energy lower than 50 eV.

© Springer International Publishing AG 2017
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The backscattering coefficient of electrons in bulk targets has been studied both
experimentally and theoretically. Many data, both experimental and theoretical, are
available for energies higher than 5–10 keV [1, 2]. The case of energies lower than 5
keV has been investigated too, but not many experimental data are available. Further-
more, not all the authors agree about the behavior of the low energy backscattering
coefficient; in particular there are very few data concerning the case in which the
electron energy approaches 0. Some investigators have suggested, on the basis of
experimental evidences, that the absorption coefficient should approach 0 and the
backscattering coefficient should approach 1, as the energy approaches 0 [3, 4].

6.1.1 The Backscattering Coefficient of C and Al Calculated
by Using the Dielectric Theory (Ashley Stopping Power)

If we cannot confirm that the backscattering coefficient reaches 1 as the energy
approaches 0, the simulated data concerning C and Al show a general trend of the
backscattering coefficient as a function of the primary energy that is consistent with
this hypothesis. We have actually observed that, as the energy decreases from 10 keV
to 250 eV, the simulations show that the backscattering coefficient of both C and Al
increases.

In Fig. 6.1 we show the trend of the backscattering coefficient as a function of the
electron beam primary energy for electrons impinging upon bulk targets of C and
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Fig. 6.1 Monte Carlo simulation of the trend of the backscattering coefficient η as a function of the
electron beam primary energy E0 for electrons impinging upon bulk targets of C (empty circles) and
Al (filled circles). The stopping power was taken from Ashley [5] (dielectric theory). Boxes Bishop
experimental data for C [6]. Diamonds Bishop experimental data for Al [6]. Triangles Hunger and
Kükler experimental data for C [7]
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Al as calculated by our Monte Carlo code. For the simulations presented here, the
continuous-slowing-down approximation was adopted, and we calculated the stop-
ping power by using the Ashley’s recipe [5] (within the Ritchie dielectric theoretical
scheme [8]). As everywhere in this book, the elastic scattering cross-section was
calculated using the relativistic partial wave expansion method (Mott theory) [9].
The experimental data of Bishop [6] and Hunger and Kükler [7] are also presented
in Fig. 6.1 for evaluating the accuracy of the Monte Carlo simulation.

In the case of both the examined elements, the backscattering coefficient increases
as the energy decreases towards 250 eV.

6.1.2 The Backscattering Coefficient of Si, Cu, and Au
Calculated by Using the Dielectric Theory (Tanuma
et al. Stopping Power)

In Tables6.1, 6.2, and 6.3 our Monte Carlo simulated data (for the backscattering
coefficient of Si, Cu, and Au, respectively) are compared with the available experi-
mental data (taken from Joy’s database [10]). TheMonte Carlo results were obtained
using the stopping power taken from Tanuma et al. [11] (whithin the Ritchie dielec-
tric theory [8]) for describing the inelastic processes, and the Mott theory [9] for
describing the elastic scattering.

From these tables, one can observe that the backscattering coefficient is a decreas-
ing function of the primary energy with the exception of gold, which presents an
increasing trend as the energy increases in the range 1000–2000 eV. It is worth noting
that the issue of the behavior of the backscattering coefficient at low primary energy
is quite controversial. The reasons for the discrepancies between Monte Carlo and
experimental data concerning the backscattering coefficient of low primary energy
electrons, are not completely clear and deserve further investigations [16, 17]. Also,

Table 6.1 Backscattering coefficient of Si as a function of the electron primary kinetic energy. The
elastic scattering cross-section was calculated using theMott theory [9]. Continuous-slowing-down
approximation was used; the stopping power was taken from Tanuma et al. [11] (dielectric theory).
Comparison between the present Monte Carlo simulated results and the available experimental data
(taken from Joy’s database [10])

Energy (eV) Monte Carlo Bronstein and Fraiman [12] Reimer and Tolkamp [13]

1000 0.224 0.228 0.235

2000 0.185 0.204 –

3000 0.171 0.192 0.212

4000 0.169 0.189 –

5000 0.162 – 0.206
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Table 6.2 Backscattering coefficient of Cu as a function of the electron primary kinetic energy. The
elastic scattering cross-section was calculated using theMott theory [9]. Continuous-slowing-down
approximation was used; the stopping power was taken from Tanuma et al. [11] (dielectric theory).
Comparison between the present Monte Carlo simulated results and the available experimental data
(taken from Joy’s database [10])

Energy (eV) Monte Carlo Bronstein and
Fraiman [12]

Koshikawa and
Shimizu [14]

Reimer and
Tolkamp [13]

1000 0.401 0.381 0.430 –

2000 0.346 0.379 0.406 –

3000 0.329 0.361 0.406 0.311

4000 0.317 0.340 – –

5000 0.314 – 0.398 0.311

Table 6.3 Backscattering coefficient of Au as a function of the electron primary kinetic energy. The
elastic scattering cross-section was calculated using theMott theory [9]. Continuous-slowing-down
approximation was used; the stopping power was taken from Tanuma et al. [11] (dielectric theory).
Comparison between the present Monte Carlo simulated results and the available experimental data
(taken from Joy’s database [10])

Energy(eV) Monte Carlo Bronstein and
Fraiman [12]

Reimer and
Tolkamp [13]

Böngeler et al.
[15]

1000 0.441 0.419 – –

2000 0.456 0.450 – 0.373

3000 0.452 0.464 0.415 0.414

4000 0.449 0.461 – 0.443

5000 0.446 – 0.448 0.459

not all the experiments agree about the behavior of the low-energy backscattering
coefficient in the range 1–3 keV [10].

6.2 Electrons Backscattered from One Layer Deposited
on Semi-infinite Substrates

It is well known that over-layer films affect the electron backscattering coefficient
of bulk targets. The experimental data available in the literature for backscattering
coefficient are rather sparse and, sometimes, difficulties arise in their interpretation
due to the lack of knowledge of the thickness, uniformity, and nature of the surface
layers. In particular, a quantitative treatment of the effect of surface films deposited
on bulk targets and a systematic comparison with experimental data are not available
at the time being. The main ingredient of the present approach is the evaluation
of the backscattered electron emission coefficient — that results from the interplay
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between average atomic number and interaction volume— as compared to the actual
thickness of the over-layer [18–21].

6.2.1 Carbon Overlayers (Ashley Stopping Power)

Let’s start with the study of the low energy backscattering coefficient for the special
case of layers of carbon deposited on aluminum [18].

Carbon films are deposited on various substrates (polymers, polyester fabrics,
polyester yarns, metal alloys) both for experimental and technological motivations.
There are a lot of technological uses of carbon films, as carbon characteristics are
very useful in many fields. Carbon films deposited on polymeric substrates can be
used to replace the metallic coatings on plastic materials used for food packaging.
Carbon films are also widely employed in medical devices. Biomedical investiga-
tors have demonstrated that permanent thin films of pure carbon show an excellent
haemo/biocompatibility: they are used, in particular, as coating for the stainless steel
stents to be implanted in coronary arteries.

When investigating the behavior of the backscattering coefficient as a function of
the primary energy for various film thicknesses, the appearance, for carbon film thick-
nesses exceeding ∼100 Åon aluminum, of relative minima can be observed. These
features are presented in Fig. 6.2 for a carbon film 400 Å -thick and in Fig. 6.3 for a
carbon film 800 Å -thick. The backscattering coefficient reaches a relative minimum
and then increases up to the aluminum backscattering coefficient. It then follows the
decreasing trend typical of the backscattering coefficient of aluminum. An interest-
ing characteristic of the relative minima is that their position shifts towards higher
energies as the film thickness increases. This is quite reasonable because one expects
that, in some way, the backscattering coefficient of the system should approach the
behavior of the backscattering coefficient of aluminum for very thin carbon films and
should approach the energy dependence of the backscattering coefficient of carbon
for thick carbon films. So, as the film thickness increases, the positions of the relative
minima shift towards higher energies while the peaks broaden.

The linear best fit of the behaviour of the Monte Carlo simulated position of
the relative minimum Emin (in eV) of the backscattering curve as a function of the
film thickness t (in Å)—for C thin films deposited on an Al substrates in the range
100–1000 Å–is given by Emin = m t + q, where m = (2.9 ± 0.1) eV/Å and
q = (900 ± 90) eV [22].
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Fig. 6.2 Triangles: Monte Carlo simulation of the electron backscattering coefficient η for a car-
bon film 400 Å thick as a function of the beam primary energy E0. Empty circles Monte Carlo
backscattering coefficient of pure C. Filled circles Monte Carlo backscattering coefficient of pure
Al. The stopping power was taken from Ashley [5] (dielectric theory)
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Fig. 6.3 Triangles: Monte Carlo simulation of the electron backscattering coefficient η for a car-
bon film 800 Å thick as a function of the beam primary energy E0. Empty circles Monte Carlo
backscattering coefficient of pure C. Filled circles Monte Carlo backscattering coefficient of pure
Al. The stopping power was taken from Ashley [5] (dielectric theory)
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6.2.2 Gold Overlayers (Kanaya and Okayama
Stopping Power)

The behavior described above has been observed both numerically [18–22] and
experimentally [20, 21] also for other materials. In all the cases, the backscattering
coefficient of the system ranges from the value of the backscattering coefficient of the
overlayer (for very low primary energy) to the value of the backscattering coefficient
of the substrate (for very high primary energy). In the case of gold deposited on
silicon, the backscattering coefficient reaches a relativemaximum and then decreases
to the silicon backscattering coefficient. In general, the backscattering coefficient
of any system should resemble the behavior of the backscattering coefficient of
the substrate for very thin films and approach the behavior of the backscattering
coefficient of the material constituting the overlayer for thick films. So, as the film
thickness increases, the position of the relativemaximum (orminimum, depending on
the constituting materials of overlayer and substrate) shifts towards higher energies
while the peaks broaden [18, 19, 21, 22].

Figures6.4 and 6.5 display the data points for the experimental backscattering
coefficient and the relevant Monte Carlo results for two samples of gold layers
deposited on silicon [21]. The nominal thickness of the gold films were, respectively,
250 and 500Å. Data were normalized by dividing the curves by their respective max-
ima. The experimental and the Monte Carlo approaches provide similar results.

Similarly to the case of carbon on aluminum,Monte Carlo simulations predict that
the energy position of the maximum, Emax, linearly depends on the gold overlayer
thickness. The linear best fit of Emax as a function of the Au film thickness for
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Fig. 6.4 Comparison between normalized experimental and present Monte Carlo backscattering
coefficient as a function of the primary electron energy of an Au thin film deposited on a Si
substrate [21]. Empty symbols experiment. Filled symbolsMonte Carlo. The Au overlayer nominal
thickness is 250 Å. Stopping power was calculated by using the Kanaya and Okayama semi-empiric
formula [23]. Layer deposition: courtesy of Michele Crivellari. Experimental data: courtesy of
Nicola Bazzanella and Antonio Miotello
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Fig. 6.5 Comparison between normalized experimental and present Monte Carlo backscattering
coefficient as a function of the primary electron energy of an Au thin film deposited on a Si
substrate [21]. Empty symbols experiment. Filled symbolsMonte Carlo. The Au overlayer nominal
thickness is 500 Å. Stopping power was calculated by using the Kanaya and Okayama semi-empiric
formula [23]. Layer deposition: courtesy of Michele Crivellari. Experimental data: courtesy of
Nicola Bazzanella and Antonio Miotello
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Fig. 6.6 Linear best fit ofMonteCarlo simulated Emax (in eV) as a function of thefilm thickness t (in
Å) for Au thin films deposited on a Si substrates in the range 250 Å-2000 Å [21]. Emax = m t + q,
where m = 5.8 eV/Å (standard error=0.4 eV/Å) and q = 3456 eV (standard error=373 eV) [21]

Au/Si systems is presented in Fig. 6.6 demonstrating that the Monte Carlo method
makes it possible to evaluate the overlayer film thicknesswith nearly 20%uncertainty
(estimated from the statistical fluctuations in the energy maximum) [21].

In view of the non-destructiveness, the proposed approach is definitely adding
new potentiality to SEM-based experimental methods.
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6.3 Electrons Backscattered from Two Layers Deposited
on Semi-infinite Substrates

We are now interested in the calculation of the backscattering coefficient from two
layers of different materials and thicknesses deposited on semi-infinite substrates. In
particular, we will examine the backscattering from Cu/Au/Si and C/Au/Si systems.

In Fig. 6.7, Monte Carlo electron backscattering coefficient of Cu/Au/Si samples
is represented. TheMonte Carlo simulation code considers the Si substrate as a semi-
infinite bulk, while the thickness of the intermediate Au layer is set at 500 Å. The
behavior of η as a function of the primary energy, in the 1000–25000 eV range, is
represented for different values of the Cu first layer thickness, in the 250–1000 Å
range. Stopping power is calculated using the dielectric response theory.

Figure6.8 shows the same quantities, obtained with the same conditions and
calculated with the Monte Carlo code based on the Kanaya and Okayama semi-
empiric formula.

The general trends obtained with the two codes are in good qualitative agreement:
both codes predict that the general structure of the curves presents a minimum and
a maximum. Furthermore both the minimum and the maximum shift towards higher
primary energies as theCufirst layer thickness increases. Thus, this behavior is typical
of the particular combination of the selected materials and of their thicknesses.

In order to further investigate and better understand the effects of layer thickness,
in Figs. 6.9 and 6.10 the Monte Carlo backscattering coefficients, obtained with the
dielectric response and the semi-empiric approach, respectively, have been repre-
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Fig. 6.7 Present Monte Carlo simulation of electron backscattering coefficient η of Cu/Au/Si
samples. The Si substrate is semi-infinite, while the thickness of the intermediate Au layer is 500 Å.
The behavior of η as a function of the primary energy is represented for different values of the Cu
first layer thickness. Stopping power is calculated using the dielectric response theory
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Fig. 6.8 Present Monte Carlo simulation of electron backscattering coefficient η of Cu/Au/Si
samples. The Si substrate is semi-infinite, while the thickness of the intermediate Au layer is 500 Å.
The behavior of η as a function of the primary energy is represented for different values of the Cu
first layer thickness. Stopping power is calculated using the Kanaya and Okayama semi-empiric
formula
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Fig. 6.9 Present Monte Carlo simulation of electron backscattering coefficient η of Cu/Au/Si
samples. The Si substrate is semi-infinite, while the thickness of the first Cu layer is 500 Å. The
behavior of η as a function of the primary energy is represented for different values of the Au
intermediate layer thickness. Stopping power is calculated using the dielectric response theory

sented for the case in which the thickness of the first Cu layer is fixed (500 Å) while
the intermediate Au film thickness ranges in the 250–1000 Å interval. Also in this
case, the general behaviors obtained with the two approaches are in good qualita-
tive agreement. The characteristic features present a trend different with respect to
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Fig. 6.10 Present Monte Carlo simulation of electron backscattering coefficient η of Cu/Au/Si
samples. The Si substrate is semi-infinite, while the thickness of the first Cu layer is 500 Å. The
behavior of η as a function of the primary energy is represented for different values of the Au
intermediate layer thickness. Stopping power is calculated using the Kanaya and Okayama semi-
empiric formula

Fig. 6.11 Present Monte
Carlo simulation of electron
backscattering coefficient η
of C/Au/Si samples. The Si
substrate is semi-infinite, the
thickness of the first C layer
is 500 Å, and that of the
intermediate Au layer is
250 Å. Backscattering
coefficients η obtained using
the dielectric response theory
(filled symbols) and the
semi-empiric Kanaya and
Okayama approach (empty
symbols), respectively, for
calculating the stopping
power, are compared
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the previous one: while the position of the maximum shifts toward higher primary
energies as the intermediate film thickness increases, the position of the minimum
remains practically unchanged.

In order to study the agreement between the two codes, Figs. 6.11, 6.12 and 6.13
compare the calculation of the backscattering coefficients for various combinations of
materials and thicknesses, obtained using the two Monte Carlo programs. The codes
give practically indistinguishable results for the cases corresponding to the C/Au/Si
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Fig. 6.12 Present Monte
Carlo simulation of electron
backscattering coefficient η
of Al/Au/Si samples. The Si
substrate is semi-infinite, the
thickness of the first Al layer
is 500 Å, and that of the
intermediate Au layer is
500 Å. Backscattering
coefficients η obtained using
the dielectric response theory
(filled symbols) and the
semi-empiric Kanaya and
Okayama approach (empty
symbols), respectively, for
calculating the stopping
power, are compared
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Fig. 6.13 Present Monte
Carlo simulation of electron
backscattering coefficient η
of Cu/Au/Si samples. The Si
substrate is semi-infinite, the
thickness of the first Cu layer
is 250 Å, and that of the
intermediate Au layer is
500 Å. Backscattering
coefficients η obtained using
the dielectric response theory
(filled symbols) and the
semi-empiric Kanaya and
Okayama approach (empty
symbols), respectively, for
calculating the stopping
power, are compared
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combination, while some difference can be observed, for the lowest energies, in the
case of the Cu/Au/Si combinations.

6.4 A Comparative Study of Electron and Positron
Backscattering Coefficients and Depth Distributions

To conclude this chapter, we will compare the Monte Carlo simulations of the
backscattering coefficients and the depth distributions of electrons and positrons.
Just to provide an example, we will consider the case of penetration of electrons and
positrons in silicon dioxide. The presented results were obtained using the Ashley
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theory for calculating the stopping power and the Mott cross-section for the compu-
tation of the differential elastic scattering cross-section [24].

The differences in the inelastic and elastic scattering cross-sections of low energy
electrons and positrons, discussed in Chap.3 and in Chap.11, explain the results
presented in Fig. 6.14. The depth profiles of electrons and positrons are different
even for the highest energy examined (10 keV), for each particle reduces its energy
during its travel in the solid, reaching the low values corresponding to significant
differences in the cross-sections and stopping powers of electrons and positrons.

Indicatingwith R(E0) themaximumpenetration range, for any given energy E0, R
can be easily determined by the curves in Fig. 6.14. From the presented depth profiles
it is clear that the maximum penetration range in silicon dioxide is approximately
the same for electrons and positrons, in the examined primary energy range.

For each primary energy E0, the integration of the function P(z) from z = 0 to
z = R gives the absorption coefficient 1 − η(E0), where we indicated with η(E0)
the backscattering coefficient. As the primary energy increases, the differences in
the depth distributions of electrons and positrons grow smaller. While the maximum
ranges of electrons and positrons are similar, the backscattering coefficients present
very different trends (see Fig. 6.15). The positron backscattering coefficient does not
depend on the primary energy and is always smaller than the electron backscattering
coefficient. Instead, the electron backscattering coefficient is a decreasing function
of the primary energy.
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Fig. 6.14 Monte Carlo simulation of the depth profiles P(z) of electrons (empty symbols) and
positrons (filled symbols) in SiO2 as a function of the depth inside the solid measured from the
surface, z. E0 is the primary energies of the particles. 3 keV (squares), 5 keV (circles) and 10 keV
(triangles)

http://dx.doi.org/10.1007/978-3-319-47492-2_3
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Fig. 6.15 Monte Carlo
simulation of the
backscattering coefficient η
of electrons (filled symbols)
and positrons (empty
symbols) in SiO2 as a
function of the primary
energy E0
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6.5 Summary

In this chapter, the Monte Carlo method was used for evaluating the backscatter-
ing coefficient of electrons (and positrons) impinging upon bulks and overlayers.
In particular, for the case of surface films, it was calculated as a function of the
thicknesses of the layers, their nature, and the electron primary energy. The code
used in this chapter, utilizes the Mott cross-section for elastic scattering calculation
and the continuous-slowing-down approximation for energy loss simulation. For the
calculation of the stopping power, the Ritchie dielectric response theory [8] and the
analytic semi-empirical formula proposed by Kanaya and Okayama [23] were used.
Electron backscattering coefficients from several different combinations of layers
and substrates were simulated. The main features of the backscattering coefficient
as a function of the electron primary energy, which are represented by minima and
maxima whose positions in energy depend on the particular combination of materi-
als and thicknesses, are reproduced in similar ways using the two different stopping
powers. The last section of this chapter presented a comparative study of electron
and positron depth distributions and backscattering coefficients.
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Chapter 7
Secondary Electron Yield

Electron beams impinging upon solid targets induce the emission of secondary elec-
trons (SE). These are the electrons extracted from the atoms in the solid due to the
inelastic electron-atom interaction with electrons of the incident beam or with the
other secondary electrons travelling in the solid. Some secondary electrons, after a
number of elastic and inelastic interactions with the atoms in the solid, reach the solid
surface satisfying the conditions to emerge from it. Aswe already know, the spectrum
of the secondary electrons is contaminated by a contribution of the backscattered pri-
mary electrons. As this contamination can be safely neglected in the great majority
of the practical situations that investigators encounter in the laboratory experiments,
this effect is usually ignored, at least as a first approximation.

In this chapter the attention will be focused on the purely secondary electrons.
The process of secondary-electron emission can be divided into two phenomena.
The first one concerns the generation of secondary electrons as a consequence of the
interaction between the incident electron beam and electrons bound in the solid. The
second one is represented by the cascade, where the secondary electrons diffusing
in the solid extract new secondary electrons generating a shower of electrons. As
each secondary electron loses energy while traveling in the solid, the whole process
proceeds until the energy of the secondary electron is no more sufficient to extract
further secondary electrons or until it reaches the surface with enough energy to
emerge. The number of the emitted secondary electrons divided by the number of
the incident electrons is called secondary electron emission yield. The secondary
electron emission yield is measured as the integral of the secondary electron energy
distribution over the energy range from 0 to 50eV. Secondary electron emission plays
a fundamental role in scanning electron microscope imaging.

© Springer International Publishing AG 2017
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7.1 Secondary Electron Emission

In this chapter, secondary electron emission from polymethyl methacrylate (PMMA)
and aluminum oxide (Al2O3) will be modeled quantitatively using the Monte Carlo
code. This chapter is aimed at comparing, with the available experimental data,
the results of the computational approaches described in the chapter devoted to the
main features of the transport Monte Carlo modeling, i.e., the scheme based on the
energy-straggling (ES) strategy and the method based on the continuous-slowing-
downapproximation (CSDA). In thisway, itwill be possible to understand the validity
limits of the methods and to face the question of the CPU time costs in evaluating
which approach is more convenient in the different circumstances. We will learn,
on the one hand, that the use of the simple continuous-slowing-down approximation
for the calculation of the secondary electron yield allows getting an agreement with
the experiment similar to the one we can obtain with the more accurate (but CPU
time-consuming) energy-straggling strategy. If, on the other hand, energy distribution
of the secondary electrons is required, energy-straggling strategy becomes the only
choice.

Secondary-electron emission involves very complex phenomena and a numerical
treatment requires the detailed knowledge of the main interactions of the electrons
with the solid target.

The most important processes that occur in the target are related to the production
of individual electron transitions from the valence to the conduction band, to plasmon
generation and to the elastic collisions with the screened potentials of the ions in the
solids. If its energy is high enough, the electron can be subject to inelastic collisions
with inner-shell electrons so that ionization occurs. Secondary electrons of very
low energy also interact losing (and gaining) energy with phonons. In insulating
materials, they can be trapped in the solid (polaronic effect). Each secondary electron
can produce further secondary electrons during its travel inside the solid and, in order
to obtain quantitative results, following the whole cascade is the best choice [1–3].

7.2 Monte Carlo Approaches to the Study
of Secondary Electron Emission

The Monte Carlo calculation of the secondary electron emission yield can be per-
formed either by taking into account all the details of the many mechanisms of the
electron energy loss [1, 3–5] or by assuming a continuous-slowing-down approxi-
mation [6–8]. The use of the first approach has stronger physical basis but, due to the
detailed description of all the collisions in the secondary electron cascade, it is a very
time consuming scheme. The continuous-slowing-down approximation represents
instead an approach that saves a lot of CPU time although its physical foundation is
more questionable.
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We report about the MC simulations of the secondary electron emission from
PMMAandAl2O3 obtainedwith the two approaches. These simulations demonstrate
that, if we just calculate the yield as a function of the primary energy, the two Monte
Carlo schemes give equivalent results for any practical purposes.

The secondary electron yields calculated by means of the two approaches are
very close. What is more, the twoMC schemes give results in satisfactory agreement
with the experiment. This means that, for the calculation of the secondary electron
yield, the continuous-slowing-down approximation should be preferred, being much
faster (more than ten times) than the more detailed scheme. If, on the other hand,
secondary electron energy distributions are required, the continuous-slowing-down
approximation cannot be used – for it is not able describe in a realistic way all the
energy loss processes – and the detailed scheme becomes mandatory, even if, as far
as CPU is concerned, it is much more time consuming [9, 10].

7.3 Specific MC Methodologies for SE Studies

7.3.1 Continuous-Slowing-Down Approximation
(CSDA Scheme)

In the case of CSDA, as we know, the step length is calculated according to the
equation Δs = −λel ln μ – where μ is a random number uniformly distributed in
the range [0, 1] – while the energy loss ΔE along the segment of trajectory Δs is
approximated by the equation ΔE = (dE/ds)Δs. Compared to the description we
gave in the chapter devoted to the Monte Carlo method, the secondary electron yield
calculation using CSDA requires a few more pieces of information.

The secondary electron yield is calculated, according to Dionne [11], Lin and
Joy [6], Yasuda et al. [7], and Walker et al. [8] assuming that (i) the number dn of
secondary electrons generated along each step length ds, corresponding to the energy
loss dE, is given by

dn = 1

εs

dE

ds
ds = dE

εs
(7.1)

where εs is the effective energy necessary to generate a single secondary electron
and (ii) the probability P(z) that a secondary electron generated at depth z will reach
the surface and emerge from it follows the exponential decay law

P(z) = e−z/λs , (7.2)

where λs is the effective escape depth. Thus the secondary electron emission yield is
given by

δ =
∫

P(z) dn = 1

εs

∫
e−z/λs dE . (7.3)
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7.3.2 Energy-Straggling (ES Scheme)

We have described in a previous chapter the details of the energy straggling strategy,
so that we shall just deal with here the features of the scheme specific for the study of
secondary electron emission. For further information about the adopted simulation
methods, also see Ganachaud and Mokrani [1], Dapor et al. [5], and Dapor [9, 10].

If μ is a random number uniformly distributed in the interval [0, 1], every step
lengthΔs of each electron traveling in the solid is calculated by adopting the Poisson
statistics, so that Δs = −λ ln μ. In this equation, λ is the electron mean free path
including all the scattering mechanisms involved. Its reciprocal, i.e., the so-called
inverse inelastic mean free path, can be expressed as the sum total of all the inverse
mean free paths of the interactions of the electrons with the target: in particular it is
necessary to take into account the inverse mean free path relative to the elastic inter-
actions among the incident electrons and the screened atomic nuclei, λ−1

el , the one
relative to the inelastic interactions among the incident electrons and the atomic ones,
λ−1
inel, the one relative to the electron-phonon interactions, λ

−1
phonon, and the one relative

to the electron-polaron interaction, λ−1
pol, so that λ

−1 = λ−1
el + λ−1

inel + λ−1
phonon + λ−1

pol.
If the collision is inelastic, the energy loss is calculated according to the specific
inelastic scattering cross-section (electron-electron, electron-phonon, or electron-
polaron). If the collision is elastic, the scattering angle is calculated according to the
Mott cross-section. It should be noted that electron deflection mainly depends on
the elastic scattering cross-section but even electron-electron inelastic interactions
and electron-phonon quasi-elastic interactions are responsible for electron change of
direction. The present Monte Carlo scheme takes into account the entire cascade of
secondary electrons [2, 4, 5, 9, 10, 12–14]. The initial position of a secondary elec-
tron due to Fermi sea excitation is assumed to be at the site of the inelastic collision. In
the calculations presented in this chapter, the polar and azimuth angles of secondary
electrons are calculated, according to Shimizu and Ding Ze-Jun [15], assuming a
random direction of the secondary electrons. This hypothesis of random direction
of the generated secondary electrons implies that slow secondary electrons should
be generated with spherical symmetry [15]. As this assumption violates momentum
conservation rules – within the classical binary-collision model – in the next chapter
a study will be provided which compares with experimental data the results obtained
adopting spherical symmetry with those obtained applying momentum conservation
within the classical binary-collision model. This study demonstrates that the deter-
mination of the energy distribution of the secondary electrons emitted by solid targets
as well as the secondary emission yield are in better agreement with the experiment
assuming that slow secondary electrons are generated with spherical symmetry [4].
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7.4 Secondary Electron Yield: PMMA and Al2O3

The MC schemes described above, i.e., the energy straggling and the continuous-
slowing-down approximation methods, account for the main interactions occurring
to the secondary electrons along their travel in insulating targets [1]. In the following
paragraphs, results obtained with the two schemes will be presented and comparison
with the available experimental data will be provided.

7.4.1 Secondary Electron Emission Yield as a Function
of the Energy

Experimental evidences show that, as the primary energy increases, the secondary
electron emission yield increases until a maximum is reached. Then the yield
decreases as the primary energy increases. It is quite easy to provide a simple qual-
itative explanation for this behavior: at very low primary energy, few secondary
electrons are generated and, as the primary energy increases, so does the number of
secondary electrons emerging from the surface. The average depth at which the sec-
ondary electrons escaping from the surface are generated also increases as the primary
energy increases. When the energy becomes higher than a threshold which varies
based on the target, the average depth of secondary electron generation becomes
so deep that just a small amount of the generated secondary electrons are able to
reach the surface satisfying the condition necessary to emerge from the sample and
to be detected. We will show that both the MC schemes (ES and CSDA) confirm this
behavior providing consistent quantitative explanations for it.

7.4.2 Comparison Between ES Scheme and Experiment

Even if the physicalmeaningof the parameters usedby theESMCcode and appearing
in the laws describing the interactions is clear – so that they are, at least in principle,
measurable – in practice they can be determined only through an analysis of their
influence on the simulated results and a comparison to the available experimental
data.

The values of the parameters for PMMAwere determined through such an analysis
and Figs. 7.1 and 7.2, show the comparison with the available experimental data of
the simulated results obtained using the detailed Monte Carlo scheme based on the
energy-straggling strategy (ES scheme). We found out, for PMMA, the best fit with
the following parameters values: χ = 4.68eV, Wph = 0.1eV, C = 0.01 Å−1, and
γ = 0.15eV−1. It should be noted that, performing a similar analysis, Ganachaud and
Mokrani found out, for amorphous Al2O3, the following values of the parameters:
χ = 0.5eV,Wph = 0.1eV,C = 0.1 Å−1, and γ = 0.25eV−1 [1]. It should be noted as
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Fig. 7.1 Comparison between present Monte Carlo calculations and experimental data of Poly-
methyl Methacrylate (PMMA) secondary electron yield δ as a function of the primary electron
energy. Squares represent Monte Carlo calculations based on the energy-straggling strategy and
obtained with χ = 4.68eV, Wph = 0.1eV, C = 0.01 Å−1, and γ = 0.15eV−1. The Monte Carlo
data were obtained integrating the curves of energy distribution including all the electrons emerging
with energy from 0 to the 50eV. Experimental data: from Ref. [7, 16] (circles)
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Fig. 7.2 Comparison between present Monte Carlo calculations and experimental data of Poly-
methyl Methacrylate (PMMA) total electron yield σ (secondary electron yield σ+ backscattering
coefficient η) as a function of the primary electron energy. Squares represent Monte Carlo calcula-
tions based on the energy-straggling strategy and obtained with χ = 4.68eV, Wph = 0.1eV, C =
0.01 Å−1, and γ = 0.15eV−1. TheMonte Carlo data were obtained integrating the curves of energy
distribution including all the electrons emerging with energy from 0 to the E0. Experimental data:
from Ref. [17] (circles) and from Refs. [18, 19] (triangles)
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Fig. 7.3 Comparison
between present Monte
Carlo calculations and
experimental data of Al2O3
secondary electron yield as a
function of the primary
electron energy. Squares
represent Monte Carlo
calculations based on the
continuous-slowing-down
approximation and obtained
with λs = 15.0 Å and
εs = 6.0eV. Circles are the
Dawson experimental data
[20]
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well that the yield strongly depends on all these parameters. While both the electron
affinity, χ, and the electron energy loss due to phonon creation, Wph, are quantities
that have been measured for many materials and whose values can be found in the
scientific literature, less information is available concerning the two parameters C
and γ (relative to the electron-polaron interaction).

7.4.3 Comparison Between CSDA Scheme and Experiment

TheMonte Carlo code based on the CSDA scheme, also depends on two parameters:
the effective escape depth, λs, and the effective energy necessary to generate a single
secondary electron, εs.

The comparison of the results of the CSDA code with the available experimental
data about Al2O3 [20] are shown in Fig. 7.3.

The values of the physical parameters used by the MC code based on the CSDA
(i.e. the effective escape depth, λs, and the effective energy necessary to generate a
single secondary electron, εs) for Al2O3 – in reasonable agreement with other physics
reference data [1, 6] – are λs = 15.0Å and εs = 6.0eV.

The calculated value of the statistical distribution χ2
s , considered to quantitatively

evaluate the agreement between the CSDA Monte Carlo simulated data of Al2O3

(obtained using the parameters given above, i.e. λs = 15.0Å and εs = 6.0eV) and
the examined experimental data is 0.905. The number ν of degrees of freedom is 11.
The lower critical values of the χ2

s distribution for ν = 11 is 3.053, and the proba-
bility p of exceeding this critical value is 0.99. As the calculated χ2

s is significantly
smaller than the critical one, this means that, in the hypothesis that the Monte Carlo
data approximate the experimental ones (the so-called null hypothesis), there is a
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probability greater than 99% that the observed discrepancies are due to statistical
fluctuations. Similar results were also obtained when comparing the experimental
results to the ES Monte Carlo simulated data.

7.4.4 CPU Time

The computation time needed for the ES code is much higher than the one for the
CSDA code. For a typical simulation (1keV electrons impinging upon PMMA),
the CSDA scheme is more than ten times faster than the ES one. The reason for
this great difference in CPU time is related to the secondary electron cascade. The
ES MC strategy requires that the entire cascade be followed. The CSDA MC code,
instead, is able to establish the number of secondary electrons produced at each step
of every primary electron trajectory. Note that a further advantage of the CSDAMC
strategy is the reduced number of parameters (only two against the four quantities
required by the energy-straggling strategy).

Of course the ESMC code is based on a stronger physical background and allows
one to calculate other important properties such as the secondary electron energy
distribution and the lateral, angular, and depth distributions which are not accessible
using the CSDA approximation (see next chapter).

In practical terms, the advantage in using the CSDA code with respect to just
performing an empirical fit to the experimental data is related, of course, to other
predictive capabilities of theMonte Carlo simulations. If it is true that, at themoment,
the CSDAmodel requires a fit to existing data or to the results of the detailed simula-
tion to calculate its free parameters, one should take into account that if the parameters
were known for a large number of materials, they could be used for investigating
many problems, different from the one we have used to find out the values of the
parameters; such as, for example, the dependence of the secondary electron yield
on the angle of incidence for any given primary energy, or the secondary electron
emission from unsupported thin films (on both sides of the film), or the secondary
electron emission yield from thin films deposited on different materials, and so on.
Of course, all these possibilities are not accessible to a simple empirical fit to the
experimental data.

In conclusion, the very fast CSDA MC code can be used for the calculation of
the secondary electron yield. If secondary electron energy, lateral, and depth distri-
butions, or detailed descriptions of the physics involved in the process are required,
the ES MC strategy should be preferred, even if it requires much longer CPU time.

7.5 Summary

In this chapter the transport Monte Carlo method has been applied to the evaluation
of the secondary electron emission from insulating materials (PMMA and Al2O3).
The code has been validated by comparing the secondary electron yield obtained by
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using Monte Carlo simulation with the available experimental data. In particular, an
analysis of the results of two different approaches (energy-straggling scheme and
continuous-slowing-down approximation scheme) for the determination of the yield
of the secondary electrons emitted by insulating targets was presented. We have
demonstrated that the two approaches give similar results concerning the secondary
electron emission yield as a function of the electron primary energy. Furthermore
the simulated results are in good agreement with the available experimental data. On
the contrary, the evaluation of the secondary electron energy distribution requires the
energy-straggling scheme in order to accurately take into account all the details of
the energy loss mechanisms (see next chapter).
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Chapter 8
Electron Energy Distributions

As we know, the study of the electronic and optical properties of the matter is para-
mount for our comprehension of physical and chemical processes which occur in
nanoclusters and solids [1]. Radiation damage, investigation of chemical composi-
tion, and electronic structure study, represent a few examples of the role played
by the electron-matter interaction mechanisms. Electron spectroscopy and elec-
tron microscopy are fundamental tools to examine how electrons interact with the
matter [2].

Electron spectroscopy includes a wide range of techniques. Low energy reflection
electron energy loss spectroscopy andAuger electron spectroscopy, in particular, uses
electron beams to analyze the surface of materials.

Both reflection electron energy loss spectroscopy andAuger electron spectroscopy
are applications of the scattering theory [3]. They are based on scattering processes
in which the initial state consists of electrons impinging upon solid-state targets,
and final states are characterized by few non-interacting fragments. The analysis
of the energy distribution of the fragments constitutes the main feature of these
spectroscopies, as it provides insight about the properties of the examined system.

The spectrum, i.e., the plot of the intensity of the emitted electrons as a function of
either the kinetic energy or the energy loss, represents a fingerprint of the investigated
material [4–6].

8.1 Monte Carlo Simulation of the Spectrum

The numerical results we are going to present were obtained with a detailed model-
ing which takes into account all the described mechanisms of energy loss (electron-
electron, electron-plasmon, electron-phonon, electron-polaron) and applies the Mott
cross-section to deal with the elastic scattering events. Furthermore, the entire cas-
cade of secondary electrons is followed. The whole Monte Carlo spectrum repre-
senting the energy distribution of electrons emerging from a PMMA sample due to
a 200 eV electron beam irradiation is presented in Fig. 8.1 [6]. Similar spectra have
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Fig. 8.1 MC calculation (ES scheme) of the spectrum representing the energy distribution of
electrons emerging from a PMMA sample due to a 200 eV electron beam irradiation. Panel a:
entire spectrum including the secondary electron peak (at low energy) and the elastic peak at
200 eV. Panel b: zoomed-in image of the spectrum including the plasmon peak and the elastic peak.
The elastic peak, or zero loss peak, whose maximum can be found at the energy of the primary
beam, represents the electrons which suffered only elastic scattering collisions. The plasmon peak
represents the electrons of the primary electron beam that emerge from the surface after having
suffered a single inelastic collision with a plasmon. Multiple collisions with plasmons are also
present in the spectrum. The secondary electrons energy distribution presents a pronounced peak
in the very low energy region of the spectrum, typically below 50 eV [6]

been observed for metals as well [4, 5]. For the purposes of present calculation, the
target is considered as semi-infinite. It should be noted that the case of thin films
requires special attention, in particular when the samples are thinner than the mean
free path.
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Many electrons of the primary electron beam can be backscattered, after having
interacted with the atoms and electrons in the target. In a fraction of them the original
kinetic energy remains unchanged, having suffered only elastic scattering collisions
with the atoms of the target. We already know that these electrons constitute the
so-called elastic peak, or zero-loss peak, whose maximum is located at the energy of
the primary beam. In the simulation presented in Fig. 8.1 it is the narrow peak you
can see at 200 eV.

The plasmon peak in Fig. 8.1, at ≈178 eV (≈ 22 eV from the elastic peak),
represents the electrons of the primary electron beam that emerge from the surface
after having suffered a single inelastic collision with a plasmon. Multiple collisions
with plasmons are also present in the spectrum, although of very low intensity. A peak
corresponding to a double inelastic scattering with plasmons at ≈156 eV (≈44 eV
from the elastic peak) is scarcely visible in panel b of Fig. 8.1.

Electron-phonon energy losses are also present, but they are not visible in Fig. 8.1,
for (i) their intensities are much lower than those of the elastic peak and (ii) they are
very close to the much more intense elastic peak whose width is, on the other hand,
rather wide (of the order of 1 eV): thus they are not resolved.

The spectrum includes also Auger electron peaks, due to the presence of dou-
bly ionized atoms. They are not visible on this scale. An Auger peak (the oxygen
K-LL Auger peak of the SiO2 spectrum) with its background, obtained with an
ab-initio method included in the present Monte Carlo code, will be shown below
together with a comparison with experimental data.

Finally, as we already know, the secondary electrons produced by a cascade
process are those electrons which have been extracted from the atoms by inelas-
tic electron-electron collisions and manage to emerge from the target surface. Their
Monte Carlo energy distribution presents a pronounced peak in the very low energy
region of the spectrum, typically below 50 eV, and it is clearly visible in the simu-
lated spectrum in Fig. 8.1. The secondary electron energy distributions of selected
materials will be presented as well.

8.2 Plasmon Losses and Electron Energy Loss Spectroscopy

In order to briefly discuss themain features of plasmon losses, a numerical simulation
concerning Graphite will be first presented. In this particular case, use has beenmade
of experimental data taken from the literature to calculate the dielectric function and,
hence, the energy loss function [7–11]. Note that similar semi-empiric approaches to
the calculation of the plasmon losses can be used for other materials as well. In fact,
experimental data concerning the energy loss function can be found in the literature
for many materials. The case of SiO2, for example, can be similarly treated using the
experimental data in Refs. [7, 8, 12].
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8.2.1 Plasmon Losses in Graphite

Let us consider the graphite electron energy-loss spectrum. It includes the zero-loss
peak, the π and π + σ plasmon loss peaks, due to inelastic scattering by outer shell
electrons, and additional peaks at multiples of the π + σ plasmon energy, due to
multiple scattering. π plasmon peak is at around 7 eV while the first, the second, and
the third π + σ plasmon loss peaks are located around 27, 54, and 81 eV respectively.

Graphite is an anisotropic crystal. It is an uniaxial crystal with layered structure,
so that the dielectric function is a tensor with only two different diagonal elements,
one perpendicular and the other one parallel to the c-axis.

In Fig. 8.2 a comparison of the Monte Carlo results with experimental data for
500 eV electrons incident on graphite is presented [13].

The Monte Carlo results we present here were obtained using the graphite dielec-
tric functions (parallel and perpendicular to the c-axis) taken from experimental data:
for energies lower than 40 eV we used the data presented in Refs. [9–11] while, for
energies higher than 40 eV, we used the optical data by Henke et al. [7, 8].
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Fig. 8.2 Comparison between the experimental (black line) and Monte Carlo simulated (gray line)
line-shape for the π (panel a) and the π + σ (panel b) plasmon peaks [13]. The primary electron
energy is 500 eV. The plasmon loss peaks are normalized to a common height after subtracting a
linear background. The optical data were taken from Henke et al. [7, 8], while the data presented
in Refs. [9–11] were utilized for energies lower than 40 eV. The Monte Carlo code was based on
the ES scheme. Experimental data: courtesy of Lucia Calliari and Massimiliano Filippi
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8.2.2 Plasmon Losses in Silicon Dioxide

Let us now consider the Monte Carlo simulation of the SiO2 electron energy-loss
spectrum (see Fig. 8.3) when incident electron energy is given by E0 = 2000 eV.
Dielectric function used in this simulation was taken by Buechner experimental data
for energies lower than 33.6 eV [12] and obtained by the Henke et al. optical data
for higher energies [7, 8].

The Monte Carlo simulated spectrum presents two plasmon loss peaks at≈23 eV
and at ≈46 eV corresponding to the single inelastic scattering and to the double
inelastic scattering, respectively [14].

The main peak and its shoulders in the present calculations can be interpreted
as interband transitions from the valence bands and the conduction band. The main
plasmon loss at ≈23 eV and the shoulder located at ≈19 eV are attributed to excita-
tions of the bonding bands, while the shoulders located at ≈15 eV and ≈13 eV are
due to excitations of a nonbonding band [15].

In Fig. 8.3 an energy range is also shown, located between the main energy loss
peak and the elastic peak, in which no backscattered electrons can be observed.
Indeed, as the target is an insulator, electrons cannot transfer to the atomic electrons
energies smaller than the value of the energy gap EG between the valence and the
conduction bands. As a consequence, no electrons of the primary beam with energy
between E0 − EG and E0 (energy losses between 0 and EG) can emerge from the
target surface [14].
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Fig. 8.3 Experimental (black line) and Monte Carlo simulated (gray line) energy-loss spectrum of
2000 eV electrons incident on SiO2 [14]. The experimental andMonte Carlo spectra are normalized
to a common area of the elastic peak. The optical data were taken from Henke et al. [7, 8], while
the Buechner experimental energy loss function [12] was utilized for energies lower than 40 eV.
The Monte Carlo code was based on the ES scheme. Experimental data: courtesy of Lucia Calliari
and Massimiliano Filippi
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8.3 Energy Losses of Auger Electrons

The presentMonte Carlo code can be used tomodel the energy losses occurring in the
Auger electrons during their travel in the solid – before emerging from the surface.
In this context, the Monte Carlo code can be used to calculate the changes caused
to the original electron energy distribution by energy losses suffered by the Auger
electron on its way out of the solid. The original electron distribution was calculated
using ab initio calculations of non-radiative decay spectra obtained by the program
suite SURface PhotoelectRon and Inner Shell Electron Spectroscopy (SURPRISES).
The physics of SURPRISES can be found in Refs. [16–18]. It is a program which
performs ab initio calculations of photoionization and non-radiative decay spectra
in nanoclusters and solid state systems.

The comparison between simulated and experimental Auger spectra requires to
properly take into account the changes caused, to the Auger electron energy distrib-
ution, by the energy losses which the Auger electrons suffer along their travel in the
solid toward the surface. Do to that, we use previously calculated ab initio Auger
probability distribution as a source of electrons suffering inelastic processes. The
theoretical Auger spectrum previously calculated using ab initio calculations was
adopted to describe the initial energy distribution of the escaping electrons.

Auger electron generation is calculated assuming a constant depth distribution
whose thickness, according to Ref. [19], was set to 40 Å. A plot of the calculation
compared to the original experimental data – i.e., the experimental data presented
without any deconvolution of energy losses – is given in Fig. 8.4. The original theo-
retical spectrum (ab initio calculation) is also provided.
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Fig. 8.4 OK-LLAuger spectrum inSiO2.Comparison between the quantummechanical theoretical
data (dotted line), theMonte Carlo results (gray continuous line), and the original experimental data
(black continuous line) [16]. Quantum mechanical theoretical data: courtesy of Stefano Simonucci
and Simone Taioli. Experimental data: courtesy of Lucia Calliari and Massimiliano Filippi
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One can see that the Monte Carlo energy loss calculation increases and broadens
the Auger probability. The large broadening of the K-L1L23 peak after the Monte
Carlo treatment is due to the main plasmon of SiO2 whose distance from the zero
loss peak (≈23 eV: see Fig. 8.3) is the same as the distance between the K-L23L23

and K-L1L23 features in the Auger spectrum.
A satisfactory agreement between the experiment and the combination of the ab

initio calculation with the Monte Carlo simulation can be found: in particular a good
accordance can be recognized in the energy position, in the relative intensities of the
peaks, and in the background contribution over the entire investigated energy range.

8.4 Elastic Peak Electron Spectroscopy (EPES)

The analysis of the line-shape of the elastic peak is known as elastic peak electron
spectroscopy (EPES) [20, 21]. The energy of electrons of the elastic peak is reduced
by the energy transferred to the atoms of the target (the so-called recoil energy).
Since the lightest elements present the largest energy shifts, EPES is, among electron
spectroscopies, the only one able to detect hydrogen in polymers and hydrogenated
carbon-based materials [22–29]. Hydrogen detection is obtained by measuring the
energy difference between the position of the carbon (or the carbon + oxygen)
elastic peak and that of the hydrogen elastic peak: this difference between the energy
positions of the elastic peaks – for incident electron energy in the range 1000–2000 eV
– is in the range from≈2 to≈4 eV, and increases as the kinetic energy of the incident
electrons increases. The reason is that the mean recoil energy ER for an atom of mass
mA is given by
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Fig. 8.5 Monte Carlo simulation of EPES for PMMA, showing the C+O (left) and the H (right)
elastic peaks. E0 = 1500 eV
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Fig. 8.6 Monte Carlo simulation of EPES for PMMA, showing the C+O (left) and the H (right)
elastic peaks. E0 = 2000 eV

ER = 4m

mA
E0 sin2

ϑ

2
. (8.1)

Monte Carlo simulated PMMAelastic peak electron spectra are presented in Figs. 8.5
(E0 = 1500 eV) and 8.6 (E0 = 2000 eV). The H elastic peak position is shifted in
energy with respect to the C+O elastic peak, the difference in energy being an
increasing function of the primary energy E0.

8.5 Secondary Electron Spectrum

Another important feature of the electron energy spectrum is represented by the
secondary-electron emission distribution, i.e., the energy distribution of those elec-
trons that, once extracted from the atoms by inelastic collisions and having travelled
in the solid, reach the surfacewith the energy sufficient to emerge. The energy distrib-
ution of the secondary electrons is confined in the low energy region of the spectrum,
typically well below 50 eV. A very pronounced peak characterizes it, which is due
to a cascade process in which every secondary electron generates, along its trajec-
tory, further secondary electrons, so that a kind of shower of secondary electrons is
created.

The first question is whether secondary electrons due to Fermi sea excitations are
generated with spherical symmetry – violating in such a case momentum conserva-
tion – or if they are emitted conserving the momentum, as prescribed by the classical
binary-collision theory (see Sect. 5.2.3). Since the energy distributions resulting from

http://dx.doi.org/10.1007/978-3-319-47492-2_5
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these two processes are different, two versions of theMonte Carlo code were consid-
ered. One of the two versions adopts spherical symmetry for the angular distribution
of the secondary electron emission at the site of generation, while the other one
is based on momentum conservation. The results of the two Monte Carlo codes
are compared to experimental data, in order to decide which one better describes
the phenomena. We will show that the hypothesis of spherical symmetry provides
results in better agreement with the experimental evidences than that of momentum
conservation. This is in agreement with the suggestion given by Shimizu and Ding
Ze Jun [30] to use spherical symmetry in the Monte Carlo simulation of secondary
electron generation.

8.5.1 Initial Polar and Azimuth Angle of the SEs

The initial polar angle θs and the initial azimuth angle φs of each secondary electron
can be calculated in two different ways. In the first one, based on the hypothesis
that the secondary electrons emerge with spherical symmetry, their initial polar and
azimuth angles are randomly determined as [30]

θs = π μ1 , (8.2)

φs = 2 π μ2 (8.3)

where μ1 and μ2 are random numbers uniformly distributed in the range [0, 1]. Even
if such an approach violatesmomentum conservation and it is therefore questionable,
Shimizu and Ding observed that, as slow secondary electrons are actually generated
with spherical symmetry, it should be used and preferred when Fermi sea excitations
are involved in the process of generation of secondary electrons [30]. Please note
that we adopted spherical symmetry also in the Monte Carlo calculations devoted to
the study of secondary electron yields (see previous chapter).

MCSS is the name attributed, in the present context, to the Monte Carlo code
based on this method.

A second code is proposed inwhichmomentum conservation is taken into account
by using the classical binary-collision model so that, if θ and φ are, respectively, the
polar and azimuth angle of the incident electron, then [30]

sin θs = cos θ , (8.4)

φs = π + φ . (8.5)



104 8 Electron Energy Distributions

We will indicate, in the present context, with MCMC the Monte Carlo code corre-
sponding to this second approach. The results of the MCSS and MCMC codes will
be compared with theoretical and experimental data [31].

8.5.2 Comparison with Theoretical and Experimental Data

Secondary Electron Energy Distribution of Silicon and Copper. We present, in
Fig. 8.7 and in Fig. 8.8, the energy distributions of the secondary electrons emitted
by silicon and copper targets, respectively. The energy of the primary electron beam
is E0 = 1000 eV for silicon, while it is E0 = 300 eV for copper. The Monte Carlo
calculations obtained with the two different methods described above (MCSS and
MCMC) are compared with the Amelio theoretical and experimental results [32].

Using the theory of Amelio for the comparison, the MCSS scheme gives results
that show a much better agreement than the MCMC code. Indeed, in the range of
primary energies examined and for both the materials considered, it is clear that,
using theMCSS code, the position of the maxima and the general trend of the energy
distributions are in excellent agreement with the Amelio data. On the other hand, the
use of the MCMC code generates electron energy distributions that are in not such
a good agreement with the Amelio data: the position of the maxima are shifted to
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Fig. 8.7 Energy distribution of the secondary electrons emitted by a silicon target. The zero of
the energy scale is located at the vacuum level. The present Monte Carlo calculations (gray lines)
[31] are compared with the Amelio theoretical results (black lines) [32]. Data are normalized to a
common maximum. The initial electron energy is 1000 eV. The zero of the energy scale is located
at the vacuum level. The primary electron beam is normal to the surface. Electrons are accepted
over an angular range from 0◦ to 90◦ integrated around the full 360◦ azimuth. Panel a: MCSS code.
Panel b: MCMC code (see details in the text)
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Fig. 8.8 Energy distribution of the secondary electrons emitted by a copper target. The present
Monte Carlo calculations (gray lines) [31] are compared with the Amelio theoretical results (black
lines) [32]. Data are normalized to a common maximum. The initial electron energy is 300 eV. The
zero of the energy scale is located at the vacuum level. Electrons are accepted over an angular range
from 0◦ to 90◦ integrated around the full 360◦ azimuth. The primary electron beam is normal to the
surface. Panel a: MCSS code. Panel b: MCMC code (see details in the text)

higher energies and the shapes of the distributions are quite different from theAmelio
energy distributions. It should be noted that experimental data concerning secondary
electron energy distributions were reported by Amelio as well. In Table8.1 and in
Table8.2 the main features regarding the energy distributions [i.e., the most probable
energy (MPE) and the full width at half maximum (FWHM)] obtained with MCSS
and MCMC are compared with the experimental data reported by Amelio.

The agreement of the MCSS results with the Amelio [32] data (and the disagree-
ment between the MCMC and experimental results) can be attributed to the isotropy
of the low-energy secondary electron emission due to: (i) post-collisional effects
and consequent random energy and momentum transfer among secondary electrons;
(ii) interactions with the conduction electrons, just after secondary electrons are
emitted.

Table 8.1 Monte Carlo most probable energy (MPE) and full width at half maximum (FWHM) of
secondary electron energy distributions obtained with two different schemes (MCSS and MCMC:
see details in the text). The experimental data were reported by Amelio [32]. Calculations and
measurements were carried out on bulks of Si irradiated by streams of electrons in the+z direction.
The primary energy of the incident electron beam was 1000 eV

Si (1000 eV) MCSS MCMC Experiment

MPE (eV) 1.8 2.8 1.7

FWHM (eV) 5.3 8.5 5.0
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Table 8.2 Monte Carlo most probable energy (MPE) and full width at half maximum (FWHM) of
secondary electron energy distributions obtained with two different schemes (MCSS and MCMC:
see details in the text). The experimental data were reported by Amelio [32]. Calculations and
measurements were carried out on bulks of Cu irradiated by streams of electrons in the+z direction.
The primary energy of the incident electron beam was 300 eV

Cu (300 eV) MCSS MCMC Experiment

MPE (eV) 2.8 3.5 2.8

FWHM (eV) 9.2 12 10

In conclusion, the results of the present investigation suggest that slow secondary
electrons should be generated, in MC codes, with spherical symmetry in order to get
agreement with experimental and theoretical data.

SecondaryElectronEnergyDistributionofPolymethylMethacrylate. TheMonte
Carlo energy distribution of the electrons emerging from Polymethyl Methacrylate
irradiated by an electron beam with primary energy E0 = 1000 eV is presented in
Fig. 8.9 [33]. The spectrum is simulated assuming that the primary electron beam is
normal to the surface. The zero of the energy is located at the vacuum level. In the
same figure, a comparison of the Monte Carlo simulated spectrum to the Joy et al.
experimental electron energy distribution [34] is shown. The same conditions of the
experiment are used for the simulation, i.e. acceptance angles in the range from 36◦ to
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Fig. 8.9 Energy distribution of the secondary electrons emitted by a PMMA target. The present
Monte Carlo calculations (gray line) [33] are compared with the Joy et al. experimental data (black
line) [34]. Data are normalized to a common maximum. The initial electron energy is 1000 eV. The
zero of the energy scale is located at the vacuum level. The primary electron beam is normal to the
surface. Electrons are accepted, according to the Joy et al. experimental conditions, over an angular
range from 36◦ to 48◦ integrated around the full 360◦ azimuth
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48◦ integrated around the full 360◦ azimuth (Cylindrical Mirror Analyzer geometry).
The Monte Carlo calculation describes very well the initial increase of the spectrum,
the energy position of themaximum, and the full width at half maximum. The present
Monte Carlo simulation is not able, on the other hand, to describe the fine structure
of the peak, in particular the observed shoulder on the left of the maximum.

8.6 Summary

In this chapter, reflection electron energy loss spectra, Auger electron spectra, elastic
peak electron spectra, and secondary electron energy spectra and were simulated
by the Monte Carlo method. The results of the simulation of the spectra were com-
pared with the available experimental data. The agreement between experiment and
simulation was discussed.
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Chapter 9
Applications

In this chapter we will discuss some important applications of the Monte Carlo
method in nanometrology. We will describe, in particular, (1) the line-scan calcula-
tions of resist materials with given geometrical cross-sections deposited on silicon
substrates; and (2) the energy selective SEM for image contrast in silicon p-n junc-
tions.

9.1 Linewidth Measurement in Critical
Dimension SEM

A very important application of the MC calculations of the secondary electron yield
is related to nanometrology and linewidth measurement in critical dimension SEM
[1–5]. In Refs. [1, 6] this problem has been recently investigated using an approach
based on the energy-straggling strategy, described earlier in this work, and on the
detailed description of all the main mechanisms of scattering (elastic electron-atom,
quasi-elastic electron-phonon, and inelastic electron-plasmon and electron-polaron
interactions) [7–9]. The corresponding energy straggling Monte Carlo module has
been then included in the PENELOPE code [10–12].

9.1.1 Nanometrology and Linewidth Measurement
in CD SEM

In order to provide metrics for the CMOS technologies, critical dimension mea-
surements with sub-nanometer uncertainty have to be performed, in particular for
the linewidth measurement of photoresist lines (PMMA lines, for example) used
in electron beam lithography. The physics of image formation in scanning electron
microscopy have to be understood and modeled. Monte Carlo simulation of the

© Springer International Publishing AG 2017
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Fig. 9.1 Dielectric material
(e.g. PMMA) with
trapezoidal cross-section on
silicon substrate. Linescans
are acquired perpendicularly
to the structures

generation and transport of secondary electrons – produced by low primary energy
electrons – is today the most accurate method for obtaining information about image
formation in scanning electron microscopy.

Typical structures of interest for CMOS technologies are dielectric lines (e.g.
PMMA lines) on silicon substrates with trapezoidal cross-section (see Fig. 9.1). In
SEM measurements with sub-nanometer uncertainty, the critical dimensions to be
investigated are the bottom line width, the top line width, the slope of the rising edge,
and the slope of the falling edge.

9.1.2 Lateral and Depth Distributions

The lateral and depth resolutions of secondary electron imaging are related to the
diffusion of the secondary electrons in the solid. It seems therefore important, before
proceeding, to investigate the extent of lateral and depth distributions of the emerg-
ing electrons. Figure 9.2 shows the lateral distribution of the secondary electrons

Fig. 9.2 Monte Carlo
simulation of the lateral
distribution dN/dx of the
secondary electrons
emerging from PMMA [6].
The electron primary energy
E0 is 1000 eV
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Fig. 9.3 Monte Carlo
simulation of the depth
distribution dN/dz of the
sites where the secondary
electrons that were able to
emerge from the PMMA
sample surface have been
generated [6]. The electron
primary energy E0 is
1000 eV
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emerging from PMMA, for a primary energy of 1000 eV, adopting a delta-shaped
beam spot. Figure 9.3 presents, for the same energy, the depth distribution of the
sites where the secondary electrons that were able to emerge from the sample sur-
face have originated. Both Figs. 9.2 and 9.3 provide a general idea of the lateral and
depth resolution of secondary electron emission. In agreement with the theoretical
model, the lateral and depth distributions of emerging secondary electrons have an
extent smaller than ∼50 Å.

9.1.3 Linescan of a Silicon Step

Where the surface is flat, the secondary electron emission yield corresponds to that
of normal incidence. Approaching the step on the negative x positions, a shadowing
effect is observed that is due to the interception of the trajectories of the emerging
secondary electrons by the step and, at the bottom edge of the step, the signal reaches
its minimum value. The signal maximum is observed at top edge of the step. An
intermediate level within the transition is observed in Fig. 9.4, according the behavior
of the secondary electron yield as a function of angle of incidence.

9.1.4 Linescan of PMMA Lines on a Silicon Substrate

Figure 9.5 shows linescans obtained by simulating three adjacent PMMA lines on
a silicon substrate. Additional geometry shadowing effects due to the neighbouring
lines can be observed in the internal edge signals.
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Fig. 9.4 Monte Carlo simulation of a linescan from a silicon step with side wall angle equal to
10◦ and incident electron energy equal to 700 eV. The shape of the signal is determined by the
angle of incidence of the primary electrons, their energy, positions of incidence, and geometry. The
simulation has been performed by means of a pencil beam. Courtesy of Mauro Ciappa and Emre
Ilgüsatiroglu, ETH, Zurich

Fig. 9.5 Monte Carlo
simulation of a linescan from
PMMA lines (height: 200 Å ,
bottom width: 160 Å , top
width: 125 Å , side wall
angle: 5◦) on a Si substrate
scanned with a pencil-like
electron beam at 500 eV.
Courtesy of Mauro Ciappa
and Emre Ilgüsatiroglu,
ETH, Zurich
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9.2 Application to Energy Selective Scanning
Electron Microscopy

Monte Carlo simulations of secondary electron energy distribution and yield have
important applications in the design and characterization of semiconductor devices,
particularly in the investigation of the distribution of dopant atom concentrations at
the nanometer scale. This application is known as two-dimensional dopant mapping.
Two-dimensional dopant mapping based on the secondary electron emission is a
technique which allows a fast investigation of dopant distributions in semiconductors.
The dopant contrast can be explained by taking into account the electron affinity in
Monte Carlo simulations to calculate the secondary electron emission from doped
silicon [13].
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9.2.1 Doping Contrast

A reliable method for mapping quantitatively the distribution of dopant atom concen-
trations at the nanometre scale is the use of secondary-electron contrast in the SEM
[14–20]. Secondary-electron yield changes across a p-n junction [21]. The p-type
region emits more secondary electrons than n-type region. As a consequence, the
p-type is brighter in the SEM image.

The contrast Cpn can be calculated by

Cpn = 200
Ip − In
Ip + In

, (9.1)

where Ip and In represent the secondary electron emission yields of the p-type and
n-type regions, respectively.

Increasing the electron affinity reduces the intensity of the lower end of the sec-
ondary electron emission spectrum, as electrons approaching the surface from the
bulk meet an increased potential barrier. The integral of secondary electron emission
spectrum provides the secondary-electron emission yield, so that the latter decreases
as the electron affinity increases. Since the Fermi levels equilibrate at the p-n junc-
tion, the p-type region has lower electron affinity than the n-type region. Thus the
p-type region emits more secondary electrons than the n-type region, as confirmed
by the Monte Carlo simulation.

Actually, in a p-n junction, it is the difference in the electron affinities – the so-
called built-in potential eVbi – rather than the absolute values of the electron affinities,
what determines the contrast. The bulk built-in potential can be easily calculated for
a simple p-n junction. In the case of full ionisation, it is given by [22]:

eVbi = kB T ln
NaNd

N 2
i

, (9.2)

where kB is the Boltzmann constant, T is the absolute temperature, and Na, Nd,
and Ni are, respectively, the acceptor dopant carrier concentration, the donor dopant
carrier concentration, and the intrinsic carrier concentration. Equation (9.2) allows
to calculate the built-in potential if the doping levels of n- and p- regions in contact
are known.

The value of the electron affinity of pure (un-doped) Si was reported to be 4.05 eV
[23]. The Monte Carlo calculations were performed with χ = 3.75 eV for the p-type
sample and χ = 4.35 eV for the n-type sample, and for an electron energy E0 =
1000 eV. Using a specimen with doping levels of p and n consistent with these values
of the electron affinities, and the same electron energy, a contrast ofCpn = (16 ± 3) %
was reported by Elliott et al. [20]. The Monte Carlo simulated contrast is Cpn = (17
± 3) % [13], in reasonable agreement with the Elliott et al. experimental observation.
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9.2.2 Energy Selective Scanning Electron Microscopy

Rodenburg et al. [24] experimentally demonstrated that the image contrast in p-n
junctions, obtained considering only the low energy electrons, is significantly higher
than the one obtained under standard conditions (where secondary electrons of all
energies contribute to the formation of the image). As a consequence, selecting
secondary electrons in a given (low) energy window, instead of permitting to all the
secondary electrons to form the image, allows more accurate quantification of the
contrast.

It is well known that the built-in potential is smaller close to the surface – with
respect to the value that one can calculate using Eq. (9.2) – due to surface band bend-
ing [25]. Thus secondary electrons emitted from the surface region, where surface
band bending reduces the built-in potential, will not see the full built-in voltage of the
bulk. For a pure silicon specimen, our Monte Carlo simulated spectra are presented
in Fig. 9.6. The maximum of the distribution of the secondary electrons that are gen-
erated at a depth of 1 Å is located at ≈10 eV. We can observe that the distribution of
the secondary electrons generated within a depth of up to 20 Å presents a maximum
located at an energy ≈2 eV. Thus, secondary electrons leaving the material with lower
kinetic energy were generated deeper in the specimen than those with higher energy.
Our Monte Carlo results, relative to Si, are similar to those published by other authors
relative to Cu [26] and to SiO2 [27]. According to the experimental observations, the
larger the Vbi , the higher the contrast. Since the high energy electrons are generated
close to the surface, where the built-in potential is smaller, selecting secondary elec-
trons of low energy increases the dopant contrast: this is in perfect agreement with
the experimental observations provided by Rodenburg et al. [24].
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Fig. 9.6 Monte Carlo calculated contributions of secondary electron originating from different
depths to secondary electron spectrum in Si [24]
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9.3 Proton Cancer Therapy

The ionization yield of ion tracks in polymers and bio-molecular systems reaches a
maximum, known as the Bragg peak, close to the end of the ion trajectory. Many
electrons are generated along the path of MeV protons in the materials. They produce
a cascade of further ionizations and, consequently, a shower of secondary electrons.
These very low energy secondary electrons can produce damage in the biomolecules
by dissociative electron attachment. By following in detail the motion of all the
secondary electrons, we can find the radial distribution of the energy they deposit in
the material along the proton track.

9.3.1 Proton Track Simulation and Bragg Peak

Interaction of energetic ions with matter is present in many aspects of our daily
lifes. Cosmic radiation contains an enormous amount of projectiles [28]. 99 % of
primary cosmic rays are atomic nuclei and about 1 % are electrons. 90 % of the atomic
nuclei are hydrogen nuclei (protons), 9 % alpha particles, and 1 % nuclei of heavier
elements. They produce showers of secondary particles that penetrate the atmosphere
and can reach the surface of the Earth. Many of these particles can also reach delicate
microelectronic devices present in spatial missions, as well as the crew of manned
spatial missions. Besides these potential hazards, energetic projectiles properly used
can be employed to characterize and modify the properties of materials. Also, swift
ion beams represent a useful tool in radiotherapy [29–37]; in particular, ion-beam
cancer therapy is based on the characteristic pattern of the energy deposited by ion
beams in condensed targets. The depth-dose profile presents a sharp and narrow
maximum, called Bragg’s peak, at the end of the particle trajectory, close to the ions
maximum range. This particular feature of the energy deposition pattern of ion beams
is exploited to maximize the damage in the tumor regions minimizing the effects of
the irradiation on the healthy tissues near the diseased cells [38].

9.3.2 Damage in the Biomolecules by Dissociative
Electron Attachment

From the modeling point of view, the interaction of charged particles with condensed
matter represents a very tricky and complicated multi-scale problem. In particular,
hadron therapy concerns biological materials: the relevant bio-physical processes
are very complex, as they involve reactions of nuclear fragmentation, secondary
electron emission, damages to the cells, and repair mechanisms of macromolecules
(e.g. DNA, proteins, etc.), among other things.
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It is known that a relevant part of the biological damage is due to secondary
electrons. In particular, very small energy secondary electrons play an important role
in determining the damage. The secondary electrons of very small energy play an
important role in causing the damage, which they infringe by the dissociative electron
attachment in the nascent stages of DNA radiolysis within cells [39, 40].

9.3.3 Simulation of Electron Transport and Further
Generation

The first step for the buildup of the radial energy deposition profile is the generation
of secondary electrons by the primary energetic ion. The motion of the swift protons
through the target is accounted for in detail by means of the SEICS code (Simulation
of Energetic Ions and Clusters through Solids), which has been described elsewhere
[41, 42]. By combining molecular dynamics and Monte Carlo techniques, the SEICS
code incorporates the electronic energy loss of the projectile (including stochastic
fluctuations), multiple Coulomb scattering and elastic energy loss, electron charge
exchange processes, as well as the nuclear fragmentation reactions induced by the
incoming projectile. The energy distribution of the electrons generated by each proton
are obtained from the corresponding cross-sections evaluated according to a recently
developed semi-empirical model [43].

Due to the interaction with the target atoms (electrons and nuclei), the projectile
energy degrades as it moves along the target. Therefore the proton beam has an energy
distribution that broadens as it reaches deeper regions in the target. As the ionization
cross section is a function of the projectile energy, the energy spectra of the electrons
generated along the proton track are obtained by convoluting the energy distribution
of the primary proton beam at each depth (obtained with the SEICS code) with the
differential ionization cross section with respect to the electron ejection energy.

As a consequence of the energy delivered by a swift proton along its path, electrons
are emitted due to ionization of the target atoms. These electrons move away from
the region where they originated experiencing elastic and inelastic scattering with
the target constituents, generating secondary electrons. These, in turn, produce new
ionizations, which result in an avalanche of electrons [44, 45].

9.3.4 Radial Distribution of the Energy Deposited in PMMA
by Secondary Electrons Generated by Energetic Proton
Beams

The energy distributions of the electrons generated by each proton were evaluated
according to a semi-empirical model described in Ref. [43]. Their cumulative proba-
bilities were used to calculate the initial energy of each electron. Then the secondary
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Fig. 9.7 Deposited energy density at a given radial distance away from a 3 MeV proton track in
PMMA by the secondary electrons. Gray line Monte Carlo data. Black line Udalagama et al. data
[46]. The initial energy distribution of the secondary electrons generated by the proton impact with
the PMMA target atoms was calculated according to a semi-empirical model described in Ref. [43]
and kindly provided by the authors

electron avalanche was followed in order to calculate the energy density radially
deposited in the PMMA target along the proton track. The Monte Carlo simulated
energy density radially deposited by the secondary electrons for a 3 MeV proton beam
impinging on PMMA is presented in Fig. 9.7, where the Udalagama et al. results are
also shown for a comparison.

9.4 Summary

In this chapter we described some applications of the Monte Carlo method in
nanometrology, doping contrast and proton therapy.

In particular, some fundamental aspects related to a possible use of the Monte
Carlo code for line width measurements by secondary electron imaging at very
low primary beam energy were discussed. In order to extract information about
critical dimensions for accurate nanometrology in CMOS processes, we described
Monte Carlo investigation of the physics of image formation in scanning electron
microscopy [6].

Furthermore, Monte Carlo simulation demonstrated that secondary electrons leav-
ing the material with lower kinetic energy are generated deeper in the specimen
compared to those with higher energy. As a consequence, as the built-in potential
is smaller close to the surface, selecting low energy secondary electrons – instead
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of permitting all the secondary electrons to form the image – enhances contrast,
thus improving the quality of the measurement of two dimensional dopant atom
distributions [24].

Starting from a realistic description of the energy and angular distribution of the
electrons ejected by protons moving through PMMA [43], the simulation of the
emission of secondary electrons was used to calculate electron-energy deposition
(due to the entire cascade of the generated electrons) around the ion track, for different
depths in the target.
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Chapter 10
Appendix A: The First Born Approximation
and the Rutherford Cross-Section

The Rutherford formula describes the non-relativistic problem of electron–atom elas-
tic scattering. It can be deduced by solving the Schrödinger equation in the first Born
approximation [1].

10.1 The Elastic Scattering Cross-Section

The solid angle dΩ depends on the scattering angles [θ, θ + dθ] and the azimuthal
angles [φ, φ+dφ]. The differential elastic scattering cross-section dσ/dΩ is defined
as the ratio between the flux of particles per unit of time emerging in the solid angle
dΩ (divided by dΩ) and the incident flux.

The flux of particles per unit time emerging after the collision in the solid angle
dΩ depends on the component jr of the current density in the outgoing direction
from the centre of the atomic nucleus. The number of electrons emerging in the solid
angle dΩ per unit time is given by jrr2 dΩ (note that r2 dΩ is the cross-sectional
area normal to the radius).

Let us consider a beam of incident electrons in the direction z normalised to one
particle per unit of volume. Let K = mv/� be the electron momentum in the z
direction, where v is the electron velocity, m the electron mass and � the Planck
constant divided by 2π. This beam can be represented by the plane wave exp(i K z).

Since the incident beam has been normalised to one particle per unit of volume,
then the electron velocity v is the incident flux. As a consequence,

I (θ,φ) ≡ dσ

dΩ
= jr r2 dΩ

v dΩ
= jr r2

v
. (10.1)

At a large distance from the atomic nucleus, the potential V (r) is negligible and
the scattered particles can be described by a spherical wave, i.e. a function which is
proportional to exp(i Kr)/r . If f (θ,φ) is the constant of proportionality (scattering
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amplitude), then the wave function Ψ (r) of the whole scattering process (i.e. of the
incident and the scattered electrons) satisfies the boundary conditions

Ψ (r) ∼
r→∞

exp(i K z) + f (θ,φ)
exp(i Kr)

r
. (10.2)

The electron position probability density P is given by |Ψ |2 = Ψ ∗Ψ , and the current
density j(r, t) is

j(r, t) = i�

2m
[(∇Ψ ∗)Ψ − Ψ ∗(∇Ψ )] . (10.3)

Let us now calculate the radial component of the current density j , jr :

jr = i�

2m

{
f (θ,φ)

exp(i Kr)

r

∂

∂r

[
f ∗(θ,φ)

exp(−i Kr)

r

]

− f ∗(θ,φ)
exp(−i Kr)

r

∂

∂r

[
f (θ,φ)

exp(i Kr)

r

]}

= v| f (θ,φ)|2
r2

. (10.4)

Comparing this equation with (10.1), we can see that the differential elastic scattering
cross-section is the square of the modulus of f (θ,φ):

I (θ,φ) = dσ

dΩ
= | f (θ,φ)|2 . (10.5)

10.2 The First Born Approximation

The first Born approximation is a high-energy approximation. If E is the incident
electron energy, e the electron charge, a0 the Bohr radius and Z the target atomic
number, the first Born approximation is quite accurate if

E � e2

2a0
Z2 . (10.6)

10.3 Integral-Equation Approach

Let us now introduce the Green function and the integral-equation approach. Starting
from the Schrödinger equation,
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(∇2 + K 2)Ψ (r) = 2m

�2
V (r)Ψ (r) , (10.7)

with the boundary condition expressed by (10.2), it is possible to show that this is a
problem equivalent to the following integral equation:

Ψ (r) = exp(i K z) + 2m

�2

∫
d3r ′g(r, r ′)V (r ′)Ψ (r ′) , (10.8)

in which

g(r, r ′) = −exp(i K |r − r ′|)
4π|r − r ′| (10.9)

is the Green function of the operator ∇2 + K 2. As is known, this operator satisfies
the equation

(∇2 + K 2)g(r, r ′) = δ(r − r ′) , (10.10)

where δ(r − r ′) is the Dirac delta function.
Let us apply the operator ∇2 + K 2 to the function Ψ (r) defined by the integral

Eq. (10.8):

(∇2 + K 2)Ψ (r) = (∇2 + K 2) exp(i K z)

+ 2m

�2

∫
d3r ′(∇2 + K 2)g(r, r ′)V (r ′)Ψ (r ′) . (10.11)

The application of the operator ∇2 to the plane wave exp(i K z) gives

∇2 exp(i K z) = ∂2

∂z2
exp(i K z) = −K 2 exp(i K z) (10.12)

and, as a consequence, we can write

(∇2 + K 2) exp(i K z) = 0 . (10.13)

Therefore,

(∇2 + K 2)Ψ (r) = 2m

�2

∫
d3r ′(∇2 + K 2)g(r, r ′)V (r ′)Ψ (r ′)

= 2m

�2

∫
d3r ′δ(r − r ′)V (r ′)Ψ (r ′)

= 2m

�2
V (r)Ψ (r) . (10.14)
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For the boundary conditions, we have

|r − r ′| =
√
r2 − 2r · r ′ + r ′2

= r

√
1 − 2r̂ · r ′

r
+ r ′2

r2

∼ r

(
1 − r̂ · r ′

r
+ O

(
1

r2

))
. (10.15)

Note that in the last equation,

r̂ = r
r

. (10.16)

Let us introduce K, the wave number in the direction of the outgoing unit vector r̂ ,

K ≡ K r̂ . (10.17)

So the Green function for the operator ∇2+K 2, expressed by (10.9), has the following
asymptotic behaviour:

g(r, r ′) ∼
r→∞

− exp(i Kr − iK · r ′)
4πr

. (10.18)

Let us now introduce the asymptotic behaviour of the Green function (10.18) into
the integral Eq. (10.8):

Ψ (r) ∼
r→∞

exp(i K z) − 2m

�2

∫
d3r ′ exp(i Kr − iK · r ′)

4πr
V (r ′)Ψ (r ′) . (10.19)

From the equation

∫
d3r ′ exp(i Kr − iK · r ′)

4πr
V (r ′)Ψ (r ′)

= exp(i Kr)

r

∫
d3r ′ exp(−iK · r ′)

4π
V (r ′)Ψ (r ′) , (10.20)

we can conclude that, if the scattering amplitude is given by

f (θ,φ) = − m

2π�2

∫
d3r exp(−iK · r) V (r)Ψ (r) , (10.21)
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then the boundary conditions are satisfied. In (10.21), K is the wave number of the
scattered particles, and Ψ (r) is the scattering wave function.

Let us suppose that the ratio between the electron kinetic energy and the atomic
potential energy is high enough to make the scattering weak and Ψ (r) not very
different from the incident plane wave exp(i K z). This is the assumption which is
the basis of the first Born approximation, i.e.

Ψ (r) = exp(i K z) = exp(iK · r) . (10.22)

Utilising the first Born approximation, expressed by (10.22), the previous Eq. (10.21)
becomes

f (θ,φ) = − m

2π�2

∫
d3r exp(−iK · r) V (r) exp(iK · r) . (10.23)

If we use �q to indicate the momentum lost by the incident electron,

�q = �(K − K) , (10.24)

for fast particles we can write that

f (θ,φ) = − m

2π�2

∫
d3r exp(iq · r) V (r) . (10.25)

As we are interested in a central potential, then

V (r) = V (r) , (10.26)

and as a result,

f (θ,φ) = f (θ)

= − m

2π�2

∫ 2π

0
dφ

∫ π

0
sin θ dθ

∫ ∞

0
r2 dr exp(iqr cos θ) V (r) . (10.27)

We carry out the integrations over φ and over θ and obtain

f (θ) = − 2m

�2q

∫ ∞

0
sin(qr) V (r) r dr . (10.28)
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10.4 The Rutherford Formula

Let us calculate the differential elastic scattering cross-sections in the first Born
approximation for a screened Coulomb potential, such as a Wentzel-like potential
[2],

V (r) = − Ze2

r
exp

(
− r

a

)
. (10.29)

The exponential factor here represents a rough approximation of the screening of the
nucleus by the orbital electrons, while the a parameter is

a = a0

Z1/3
, (10.30)

where a0 = �
2/me2 is the Bohr radius.

Let us calculate the scattering amplitude:

f (θ) = 2m

�2

Ze2

q

∫ ∞

0
sin(qr) exp

(
− r

a

)
dr . (10.31)

As the equation ∫ ∞

0
sin(qr) exp

(
− r

a

)
dr = q

q2 + (1/a)2
(10.32)

holds, we can conclude that

dσ

dΩ
= | f (θ)|2 = 4m2

�4

Z2e4

[q2 + (1/a)2]2
. (10.33)

On the other hand, |K | = |K| and q = K − K, and, as a consequence

q2 = (K − K) · (K − K)

= K 2 + K2 − 2KK cos θ

= 2K 2(1 − cos θ) , (10.34)

where θ is the scattering angle.
The electron kinetic energy is given by

E = �
2K 2

2m
, (10.35)
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so that the differential elastic scattering cross-section for the collision of an electron
beam with a Wentzel-like atomic potential is given in the first Born approximation
by

dσ

dΩ
= Z2e4

4E2

1

(1 − cos θ + α)2
. (10.36)

In the last equation, α is the screening parameter, given by

α = 1

2K 2a2
= me4π2

h2

Z2/3

E
. (10.37)

The well-known classical Rutherford formula,

dσ

dΩ
= Z2e4

4E2

1

(1 − cos θ)2
, (10.38)

can be obtained by imposing α = 0 in (10.36).
The total elastic scattering cross-section can be obtained from

σel =
∫

dσ

dΩ
dΩ . (10.39)

For a Wentzel-like potential, the total elastic scattering cross-section can be easily
calculated as follows:

σel = Z2e4

4E2

∫ 2π

0
dφ

∫ π

0
sin ϑ dϑ

1

(1 − cos ϑ + α)2

= πZ2e4

E2

1

α(2 + α)
. (10.40)

If α → 0 and, as a consequence, the differential elastic scattering cross-section is
given by the classical Rutherford formula, the total elastic scattering cross-section
diverges, reflecting the long-range nature of the pure Coulomb potential.

The elastic mean free path is the reciprocal of the total elastic scattering cross-
section divided by the number N of atoms per unit of volume in the target:

λel = 1

Nσel
= α(2 + α)E2

Nπe4Z2
. (10.41)
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10.5 Summary

In this chapter we have deduced the Rutherford formula by solving the Schrödinger
equation in a central field in the first Born approximation.
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Chapter 11
Appendix B: The Mott Theory

The original version of the Mott theory (also known as the relativistic partial wave
expansion method, RPWEM) can be found in Ref. [1]. Also see Refs. [2–4] for
details and applications.

According to Mott, the elastic scattering process can be described by calculating
the so-called phase shifts. If we indicate with r the radial coordinate, since the large-r
asymptotic behavior of the radial wave function is known, the phase shifts can be
computed by solving the Dirac equation for a central electrostatic field up to a large
radius where the atomic potential can be neglected.

11.1 The Dirac Equation in a Central Potential

In order to appropriately treat the quantum-relativistic scattering theory, we need to
know the form assumed by the Dirac equation for an electron in the presence of a
central electrostatic field described by a central potential eϕ(r) = V (r). The natural
units � = c = 1 are used here and in the following section, as they are particularly
convenient for the quantum-relativistic equations.

Let us first introduce the operator K defined by

K ≡ β(1 + σ · L) , (11.1)

where L is the electron orbital angular momentum. For an electron in a central
electrostatic field, it is possible to show that

2
dL
dt

= −dσ

dt
. (11.2)
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As a consequence, the total angular momentum, defined as J = L + (1/2)σ, is a
constant of the motion. On the other hand,

J2 − L2 = σ · L + 3

4
, (11.3)

so we can conclude that
K = β(J2 − L2 + 1/4) . (11.4)

K commutes with H and is, as a consequence, a constant of the motion.
Let us now define the radial-momentum operator pr , where

pr ≡ −i
1

r

∂

∂r
r = r · p − i

r
, (11.5)

and introduce the radial component αr of the α operator, where

αr = α · r
r

; (11.6)

this obeys the relation
α2
r = 1 . (11.7)

For any pair of vectors a and b, the following equations hold:

(σ · a)(σ · b) = a · b + iσ · a × b (11.8)

and
(α · a)(α · b) = (σ · a)(σ · b) . (11.9)

As a consequence,
(α · r)(α · p) = rpr + iβK . (11.10)

This last equation is equivalent to

(α · p) = αr

(
pr + iβK

r

)
. (11.11)

As a result, the Dirac equation with the Hamiltonian

H = αr

(
pr + iβK

r

)
+ βm + V (r) (11.12)

can be rewritten as the following:
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[
αr

(
pr + iβK

r

)
+ βm + V (r)

]
φ = Eφ . (11.13)

The operators β, K, L2 and Jz are mutually commutative. In the following, X indi-
cates an eigenvector common to those operators, so that

βX = X , (11.14)

KX = −kX , (11.15)

L2X = l(l + 1)X , (11.16)

JzX = m jX . (11.17)

Introducing the function Y , where

Y = −αrX , (11.18)

we can observe that it has the following properties:

X = −αrY , (11.19)

KY = −kY , (11.20)

βY = αrβX = −Y . (11.21)

Let us now consider the following linear combination of X and Y:

φ = F(r)Y + iG(r)X , (11.22)

which is an eigenvector common to H , K and Jz and thus the spinor we are looking
for.

Our objective is to determine the functions F(r) and G(r). The eigenvalues of
L2 are ( j ± 1/2)( j ± 1/2 + 1). As K = β(J2 − L2 + 1/4), the eigenvalues of K
for the case j = l + 1/2 (spin up) are therefore given by

k = −
(
j + 1

2

)
= −(l + 1) . (11.23)

In the other case, where j = l − 1/2 (spin down), the eigenvalues of K are

k =
(
j + 1

2

)
= l . (11.24)
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We are now able to find the equations corresponding to the radial behaviour of
the functions F and G. In order to do this, let us consider the Dirac equation (11.13)
and observe the following:

αr pr F(r)Y = i

[
dF(r)

dr
+ F(r)

r

]
X , (11.25)

iαr prG(r)X = −
[
dG(r)

dr
+ G(r)

r

]
Y , (11.26)

iαrβK
r

F(r)Y = − i

r
F(r)kX , (11.27)

iαrβK
r

iG(r)X = −1

r
G(r)kY , (11.28)

βmF(r)Y = −mF(r)Y , (11.29)

βmiG(r)X = imG(r)X . (11.30)

Hence, since X and Y belong to different eigenvalues of β and are, consequently,
linearly independent, the fundamental equations of the theory of the elastic scattering
of electrons (and positrons) by atoms are

[E + m − V (r)]F(r) + dG(r)

dr
+ 1 + k

r
G(r) = 0 , (11.31)

− [E − m − V (r)]G(r) + dF(r)

dr
+ 1 − k

r
F(r) = 0 . (11.32)

11.2 Relativistic Partial Wave Expansion Method

The fundamental equation of relativistic quantum mechanics is the Dirac equation.
The wave function, as is well known, is a four-component spinor, and the asymptotic
forms of the four components of the scattered wave are

Ψi ∼
r→∞

ai exp(i K z) + bi (θ,φ)
exp(i Kr)

r
. (11.33)

The differential elastic scattering cross-section is given by
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dσ

dΩ
= |b1|2 + |b2|2 + |b3|2 + |b4|2

|a1|2 + |a2|2 + |a3|2 + |a4|2

= |b1|2 + |b2|2 + c|b1|2 + c|b2|2
|a1|2 + |a2|2 + c|a1|2 + c|a2|2

= |b1|2 + |b2|2
|a1|2 + |a2|2 , (11.34)

where c is a constant of proportionality which takes into account the fact that the ai
and the bi coefficients are not all independent. Indeed, asymptotically the scattered
wave is made up of plane waves proceeding, from the centre, in various directions;
the coefficients of the solutions for a plane wave are not all independent.

If the spin is parallel to the direction of incidence (spin up), a1 = 1, a2 = 0,
b1 = f +(θ,φ), b2 = g+(θ,φ), where f + and g+ are two scattering amplitudes.

The asymptotic behaviour is described by the following equations:

Ψ1 ∼
r→∞

exp(i K z) + f +(θ,φ)
exp(i Kr)

r
, (11.35)

Ψ2 ∼
r→∞

g+(θ,φ)
exp(i Kr)

r
. (11.36)

The case of spin antiparallel to the direction of incidence (spin down) corresponds
to a1 = 0, a2 = 1, b1 = g−(θ,φ), b2 = f −(θ,φ). The asymptotic behaviour is
now given by

Ψ1 ∼
r→∞

g−(θ,φ)
exp(i Kr)

r
, (11.37)

Ψ2 ∼
r→∞

exp(i K z) + f −(θ,φ)
exp(i Kr)

r
. (11.38)

The Dirac equations for an electron in a central field are given by the following (see
previous section):

[E + m − V (r)]F±
l (r) + dG±

l (r)

dr
+ 1 + k

r
G±

l (r) = 0 , (11.39)

− [E − m − V (r)]G±
l (r) + dF±

l (r)

dr
+ 1 − k

r
F±
l (r) = 0 . (11.40)

The superscript “+” refers to the electrons with spin up (k = −(l + 1)) while “−”
refers to electrons with spin down (k = l). Once the new variables
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μ(r) ≡ E + m − V (r) , (11.41)

ν(r) ≡ E − m − V (r) , (11.42)

μ′ = dμ

dr
(11.43)

have been introduced, the Dirac equations become

F±
l (r) = − 1

μ

(
dG±

l

dr
+ 1 + k

r
G±

l

)
(11.44)

and

dF±
l

dr
= μ′

μ2

(
dG±

l

dr
+ 1 + k

r
G±

l

)

− 1

μ

(
d2G±

l

dr2
+ 1 + k

r

dG±
l

dr
− 1 + k

r2
G±

l

)
. (11.45)

Therefore, after simple algebraic manipulations, we obtain the following:

d2G±
l

dr2
+

(
2

r
− μ′

μ

)
dG±

l

dr
+

(
μν − k(k + 1)

r2
− 1 + k

r

μ′

μ

)
G±

l = 0 . (11.46)

Let us now introduce the function G±
l , where

G±
l ≡ r

μ1/2
G±

l . (11.47)

Upon observing that
K 2 = E2 − m2 , (11.48)

it is possible to see that
μν = K 2 − 2EV + V 2 . (11.49)

We conclude that, once the function U±
l (r) has been defined, i.e.

−U±
l (r) = −2EV + V 2 − k

r

μ′

μ
+ 1

2

μ′′

μ
− 3

4

μ′2

μ2
, (11.50)

the following equation holds:

[
d2

dr2
− k(k + 1)

r2
+ K 2 −U±

l (r)

]
G±
l = 0 . (11.51)
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For large values of r , G±
l is essentially sinusoidal. Indeed, when r is large enough,

V (r) is negligible,U±
l is almost constant and the solution of the equation is therefore

a linear combination of the regular and irregular spherical Bessel functions multiplied
by Kr . Taking account of the fact that G±

l = (r/μ1/2)G±
l , we can therefore conclude

that
G±

l ∼
r→∞

jl(Kr) cos η±
l − nl(Kr) sin η±

l . (11.52)

Here η±
l are constants to be determined. Taking into account the asymptotic behaviour

of the Bessel functions,

jl(Kr) ∼
r→∞

1

Kr
sin

(
Kr − lπ

2

)
, (11.53)

nl(Kr) ∼
r→∞

− 1

Kr
cos

(
Kr − lπ

2

)
, (11.54)

we can conclude that

G±
l ∼

r→∞

1

Kr
sin

(
Kr − lπ

2

)
cos η±

l + 1

Kr
cos

(
Kr − lπ

2

)
sin η±

l . (11.55)

Therefore,

G+
l ∼

r→∞

1

Kr
sin

(
Kr − lπ

2
+ η+

l

)
, (11.56)

and

G−
l ∼

r→∞

1

Kr
sin

(
Kr − lπ

2
+ η−

l

)
. (11.57)

The phase shifts η±
l represent the effect of the potential V (r) on the phases of the

scattered waves.
Before proceeding, we need to demonstrate the following equation:

exp(i Kr cos θ) =
∞∑
l=0

(2l + 1)i l jl(Kr)Pl(cos θ) , (11.58)

where Pl(cos θ) are the Legendre polynomials and jl(Kr) the spherical Bessel func-
tions. In order to demonstrate this, let us first observe that a plane wave describing a
free particle with the z axis in the direction of K may be expressed as an expansion
in a series of Legendre polynomials Pl(cos θ):
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exp(i K z) = exp(i Kr cos θ) =
∞∑
l=0

cl jl(Kr)Pl(cos θ) . (11.59)

Let us define the two new variables s ≡ Kr and t ≡ cos θ, to have

exp(ist) =
∑
l

cl jl(s)Pl(t) . (11.60)

Differentiating with respect to s,

i t exp(ist) =
∑
l

i tcl jl(s)Pl(t) =
∑
l

cl
d jl(s)

ds
Pl(t) . (11.61)

Recalling the properties of the Legendre polynomials, we have:

Pl(t) = (l + 1)Pl+1(t) + l Pl−1(t)

t (2l + 1)
. (11.62)

Therefore,

i t exp(ist) =
∑
l

i tcl jl(s)
(l + 1)Pl+1(t) + l Pl−1(t)

t (2l + 1)

=
∑
l

i Pl(t)

[
l

2l − 1
cl−1 jl−1(s) + l + 1

2l + 3
cl+1 jl+1(s)

]
. (11.63)

On the other hand, it is well known that

d jl(s)

ds
= l

2l + 1
jl−1(s) − l + 1

2l + 1
jl+1(s) , (11.64)

and as a consequence,

i t exp(ist) =
∑
l

cl Pl(t)

[
l

2l + 1
jl−1(s) − l + 1

2l + 1
jl+1(s)

]
. (11.65)

Consequently, from (11.63) and (11.65), the following is obtained:

∑
l

Pl(t)

[
jl−1(s)l

(
cl

2l + 1
− icl−1

2l − 1

)

− jl+1(s)(l + 1)

(
cl

2l + 1
+ icl+1

2l + 3

)]
= 0 . (11.66)
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The Legendre polynomials Pl(t) are linearly independent (orthonormal), and there-
fore

jl−1(s) l

(
cl

2l + 1
− icl−1

2l − 1

)

= jl+1(s) (l + 1)

(
cl

2l + 1
+ icl+1

2l + 3

)
. (11.67)

Every value of s satisfies the last equation if and only if

1

2l + 1
cl = i

2l − 1
cl−1 . (11.68)

In order to obtain an explicit expression for cl we need to know the value of the first
coefficient of the set, i.e. c0. Imposing r = 0 in (11.59), we obtain

exp(0) = 1 =
∑
l

cl jl(0)Pl(cos θ) . (11.69)

Since jl(0) = 0 for any l �= 0, while j0(0) = 1 and P0(cos θ) = 1, we may conclude
that c0 = 1. The recursive repetition of the relation (11.68) allows us to obtain the
values of the coefficients,

cl = (2l + 1)i l , (11.70)

and the expansion of the plane wave in Legendre polynomials,

exp(i Kr cos θ) = exp(i K z) =
∞∑
l=0

(2l + 1)i l jl(Kr)Pl(cos θ) . (11.71)

Let us remind the reader that we are looking for functions Ψ1 and Ψ2 which
satisfy the asymptotic conditions. So, we must begin by expanding them in spherical
harmonics:

Ψ1 =
∞∑
l=0

[AlG
+
l + BlG

−
l ]Pl(cos θ) , (11.72)

Ψ2 =
∞∑
l=1

[ClG
+
l + DlG

−
l ]P1

l (cos θ) exp(iφ) . (11.73)

The coefficients Al , Bl , Cl and Dl can be determined by considering the asymptotic
behaviours of the functions involved. Let us begin with the function Ψ1 and observe
that
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Ψ1 − exp(i K z) =
∞∑
l=0

[AlG
+
l + BlG

−
l − (2l + 1)i l jl(Kr)]Pl(cos θ) .

(11.74)

As

Ψ1 − exp(i K z) ∼
r→∞

exp(i Kr)

r
f +(θ,φ) , (11.75)

the following occurs:

1

Kr

∞∑
l=0

[
Al sin

(
Kr − lπ

2
+ η+

l

)
+ Bl sin

(
Kr − lπ

2
+ η−

l

)

−(2l + 1)i l sin

(
Kr − lπ

2

)]
Pl(cos θ)

= exp(i Kr)

r
f +(θ,φ) . (11.76)

As a consequence,

exp(i Kr)

2i Kr

∞∑
l=0

exp

(
−i

lπ

2

)

×[Al exp(iη+
l ) + Bl exp(iη−

l ) − (2l + 1)i l ]Pl(cos θ)

−exp(−i Kr)

2i Kr

∞∑
l=0

exp

(
i
lπ

2

)

×[Al exp(−iη+
l ) + Bl exp(−iη−

l ) − (2l + 1)i l ]Pl(cos θ)

= exp(i Kr)

r
f +(θ,φ) . (11.77)

The asymptotic conditions are satisfied if

Al exp(−iη+
l ) + Bl exp(−iη−

l ) = (2l + 1)i l . (11.78)

With the choices
Al = li l exp(iη+

l ) , (11.79)

Bl = (l + 1)i l exp(iη−
l ) , (11.80)

(11.78) is satisfied.
Proceeding in a similar way for the Ψ2 function, we can therefore choose

Cl = i l exp(iη+
l ) , (11.81)
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Dl = −i l exp(iη−
l ) . (11.82)

In conclusion, for electrons with spins parallel to the direction of incidence, we
have

Ψ1 =
∞∑
l=0

[(l + 1) exp(iη−
l )G−

l + l exp(iη+
l )G+

l ]i l Pl(cos θ) , (11.83)

Ψ2 =
∞∑
l=1

[exp(iη+
l )G+

l − exp(iη−
l )G−

l ]i l P1
l (cos θ) exp(iφ) , (11.84)

and, by using (11.77),

f +(θ,φ) = f +(θ)

= 1

2i K

∞∑
l=0

{(l + 1)[exp(2iη−
l ) − 1]

+l[exp(2iη+
l ) − 1]}Pl(cos θ) , (11.85)

g+(θ,φ) = 1

2i K

∞∑
l=1

[exp(2iη+
l ) − exp(2iη−

l )]P1
l (cos θ) exp(iφ) . (11.86)

For electrons with spins antiparallel to the direction of incidence (spin down), where
we indicate the scattering amplitudes by f − and g−, we can see that

f −(θ,φ) = f +(θ,φ) (11.87)

and
g−(θ,φ) = −g+(θ,φ) exp(−2iφ) . (11.88)

It is therefore convenient to define the functions

f (θ) =
∞∑
l=0

Al Pl(cos θ) , (11.89)

g(θ) =
∞∑
l=0

Bl P
1
l (cos θ) , (11.90)

where

Al = 1

2i K
{(l + 1)[exp(2iη−

l ) − 1] + l[exp(2iη+
l ) − 1]} , (11.91)
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Bl = 1

2i K
{exp(2iη+

l ) − exp(2iη−
l )} . (11.92)

With this notation, we have
f + = f − = f , (11.93)

g+ = g exp(iφ) (11.94)

and
g− = −g exp(−iφ) . (11.95)

For an arbitrary spin direction, the electron incident plane wave will be given by
Ψ1 = A exp(i K z) and Ψ2 = B exp(i K z), and as a consequence a1 = A, a2 = B.
Furthermore,

b1 = A f + + Bg− = A f − Bg exp(−iφ) , (11.96)

b2 = Ag+ + B f − = B f + Ag exp(iφ) . (11.97)

Consequently,

dσ

dΩ

= (| f |2 + |g|2)
{

1 + i S(θ)

[
AB∗ exp(iφ) − A∗B exp(−iφ)

|A|2 + |B|2
]}

, (11.98)

where S(θ) is the Sherman function, defined by

S(θ) = i
f g∗ − f ∗g
| f |2 + |g|2 . (11.99)

Note that

i
AB∗ exp(iφ) − A∗B exp(−iφ)

|A|2 + |B|2 = ξ†(σ2 cos φ − σ1 sin φ)ξ , (11.100)

where σ1, σ2 and σ3 are the Pauli matrices and ξ is the two-component spinor

ξ =
(
A/

√|A|2 + |B|2
B/

√|A|2 + |B|2
)

, (11.101)

ξ† =
(

A∗√|A|2 + |B|2
B∗√|A|2 + |B|2

)
. (11.102)

As the z axis has been chosen along the incidence direction, the unit vector perpen-
dicular to the plane of scattering is given by
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n̂ = (− sin φ, cos φ, 0) , (11.103)

so we can write
ξ†(σ2 cos φ − σ1 sin φ)ξ = P · n̂ , (11.104)

where P is the initial polarisation vector of the electron beam. The differential elastic
scattering cross-section can then be recast as follows:

dσ

dΩ
= (| f |2 + |g|2)[1 + S(θ)P · n̂] . (11.105)

Note that, if the beam is completely unpolarised, then P = 0 and

dσ

dΩ
= | f |2 + |g|2 . (11.106)

The total elastic scattering cross-section (σel) and the transport cross-section (σtr )
are defined by

σel = 2π

∫ π

0

dσ

dΩ
sin θ dθ , (11.107)

σtr = 2π

∫ π

0
(1 − cos θ)

dσ

dΩ
sin θ dθ , (11.108)

which can be easily calculated by numerical integration.
Note that by assigning

η−
l = η+

l = ηl (11.109)

in the previous equations, we can obtain the non-relativistic results. Indeed,

Al = 1

2i K
{(l + 1)[exp(2iηl) − 1] + l[exp(2iηl) − 1]}

= 1

2i K
(2l + 1)[exp(2iηl) − 1] , (11.110)

Bl = 0 , (11.111)

so that

f (θ) = 1

2i K

∞∑
l=0

(2l + 1)[exp(2iηl) − 1]Pl(cos θ)

= 1

K

∞∑
l=0

(2l + 1) exp(iηl) sin ηl Pl(cos θ) , (11.112)

g(θ) = 0 (11.113)
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and
dσ

dΩ
= | f |2 . (11.114)

11.3 Phase Shift Calculations

In order to proceed, it is useful to perform the following transformation [5]:

F±
l (r) = a±

l (r)
sin φ±

l (r)

r
, (11.115)

G±
l (r) = a±

l (r)
cos φ±

l (r)

r
. (11.116)

After simple algebraic manipulations, (11.39) and (11.40) become

[E + m − V (r)] tan φ±
l (r) + 1

a±
l (r)

da±
l (r)

dr

− tan φ±
l (r)

dφ±
l (r)

dr
+ k

r
= 0 , (11.117)

−[E − m − V (r)] cot φ±
l (r) + 1

a±
l (r)

da±
l (r)

dr

+ cot φ±
l (r)

dφ±
l (r)

dr
− k

r
= 0 , (11.118)

and therefore

dφ±
l (r)

dr
= k

r
sin 2φ±

l (r) − m cos 2φ±
l (r) + E − V (r) , (11.119)

1

a±
l (r)

da±
l (r)

dr
= −k

r
cos 2φ±

l (r) − m sin 2φ±
l (r) . (11.120)

For 0 < r < �/mc, the spherical symmetric electrostatic potential experienced by
a point charge at distance r from the nucleus, V (r), may be approximated by the
following:

V (r) ∼
r→0

− Z0 + Z1r + Z2r2 + Z3r3

r
. (11.121)
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Expressing the electrostatic potential as the product of the potential of a bare nucleus
multiplied by a screening function ξ(r) having the analytical form

ξ(r) =
p∑

i=1

Ai exp(−αi r) , (11.122)

p∑
i=1

Ai = 1 , (11.123)

we can easily evaluate Z0, Z1, Z2 and Z3:

Z0 = Ze2
∑
i

Ai = Ze2 , (11.124)

Z1 = −Z0

p∑
i=1

αi Ai , (11.125)

Z2 = Z0

2

p∑
i=1

α2
i Ai , (11.126)

Z3 = − Z0

6

p∑
i=1

α3
i Ai . (11.127)

Let us expand φ±
l as a power series

φ±
l (r) = φ±

l0 + φ±
l1r + φ±

l2r
2 + φ±

l3r
3 + . . . . (11.128)

As we can see see, after simple algebraic manipulations, the relationships between
the coefficients of this expansion and Z0, Z1, Z2 and Z3 are the following [6]:

sin 2φ±
l0 = − Z0

k
, (11.129)

φ±
l1 = E + Z1 − m cos 2φ±

l0

1 − −2k cos 2φ±
l0

, (11.130)

φ±
l2 = 2φ±

l1 sin 2φ±
l0(m − kφ±

l1) + Z2

2 − 2k cos 2φ±
l0

, (11.131)
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φ±
l3 = 2φ±

l2 sin 2φ±
l0(m − 2kφ±

l1) + 2φ±2
l1 cos 2φ±

l0[m − (2/3)kφ±
l1] + Z3

3 − 2k cos 2φ±
l0

,

(11.132)

with the extra conditions

0 ≤ 2φ±
l0 ≤ 1

2
π (11.133)

if k < 0, and

π ≤ 2φ±
l0 ≤ 3

2
π (11.134)

if k > 0.
Let us now calculate the phase shifts, examining (11.116):

G ′±
l = a′±

l cos φ±
l (r)

r
− a±

l

r
sin φ±

l (r)φ′±
l (r) − a±

l cos φ±
l (r)

r2
, (11.135)

so that
G ′±

l

G±
l

= a′±
l

a±
l

− φ′±
l (r) tan φ±

l (r) − 1

r
, (11.136)

or
G ′±

l

G±
l

= −(E + m − V ) tan φ±
l (r) − 1 + k

r
. (11.137)

Let us observe that the asymptotic form of the solution in the regions corresponding
to large values of r for which V (r) ≈ 0 is (see (11.52))

G±
l = jl(Kr) cos η±

l − nl(Kr) sin η±
l , (11.138)

where K 2 = E2 − m2, η±
l are the lth phase shifts, and jl and nl are respectively the

regular and irregular spherical Bessel functions. Therefore,

G ′±
l

G±
l

= K j ′l (Kr) cos η±
l − Kn′

l(Kr) sin η±
l

jl(Kr) cos η±
l − nl(Kr) sin η±

l

. (11.139)

Taking into account the properties of the Bessel functions

j ′l (x) = l

x
jl(x) − jl+1(x) , (11.140)

n′
l(x) = l

x
nl(x) − nl+1(x) , (11.141)

we can conclude that
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tan η±
l = (l/r) jl(Kr) − K jl+1(Kr) − jl(Kr)(G ′±

l /G±
l )

(l/r)nl(Kr) − Knl+1(Kr) − nl(Kr)(G ′±
l /G±

l )
. (11.142)

Let us define
φ̃±
l = lim

r→∞ φ±
l (r) . (11.143)

For large values of r , (11.137) becomes

G ′±
l

G±
l

= −(E + m) tan φ̃±
l − 1 + k

r
, (11.144)

and therefore

tan η±
l = K jl+1(Kr) − jl(Kr)[(E + m) tan φ̃±

l + (1 + l + k)/r ]
Knl+1(Kr) − nl(Kr)[(E + m) tan φ̃±

l + (1 + l + k)/r ] .

(11.145)

Using this last equation, we can calculate the phase shifts of the scattered wave and,
therefore, the functions f (θ), g(θ) and the differential elastic scattering cross-section.

The Mott theory predicts that it is given by

dσel

dΩ
=| f (ϑ) |2 + | g(ϑ) |2 . (11.146)

It should be noted that, in molecular solids, the differential elastic scattering
cross-section can be approximated as the sum total of the atomic differential elastic
scattering cross-sections of the atoms in the molecule.

11.4 Analytic Approximation of the Mott Cross-Section

Taking advantage of the simple closed form of the equations deduced starting by the
Rutherford cross-section, it is sometimes possible to look for an approximation where
similar equations are used for the Mott cross-section [8, 9]. For low atomic number
elements and for some oxides, the Mott differential elastic scattering cross-section
can be roughly approximated by the following equation:

dσel

dΩ
= Φ

(1 − cos θ + Ψ )2
, (11.147)

where the unknown parameters Φ and Ψ are calculated with the aim to get the best fit
of the total and the first transport elastic scattering cross-section previously calculated
using the RPWEM. With
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Φ = Z2e2

4E2
(11.148)

and

Ψ = me4π2Z2/3

h2E
(11.149)

Eq. (11.147) becomes the screened Rutherford formula.
Once we know the total elastic scattering cross-section and of the transport elastic

scattering cross-section previously calculated using the Mott theory we can now
calculate Φ and Ψ in order to approximate the Mott theory [8]. From Eq. (3.2), it
follows that:

σel = 4πΦ

Ψ (Ψ + 2)
. (11.150)

As a consequence the differential elastic scattering cross-section can be rewritten as:

dσel

dΩ
= σel

4 π

Ψ (Ψ + 2)

(1 − cos θ + Ψ )2
(11.151)

Using Eqs. (3.3) and (11.151) it is possible to obtain the ratio � between the transport
and the total elastic scattering cross-sections:

� ≡ σtr

σel
= Ψ

[
Ψ + 2

2
ln

(
Ψ + 2

Ψ

)
− 1

]
. (11.152)

Once the values of the total and transport elastic scattering cross-sections have been
numerically calculated using the RPWEM, the ratio � is determined as a function of
electron kinetic energy E . In such a way it is possible to get the screening parameter
Ψ as a function of E (using a bisection algorithm).

11.5 The Atomic Potential

To calculate the atomic potential, the self-consistent Dirac-Hartree-Fock-Slater field
should be used. In order to reduce the computer calculation time, the analytic approx-
imation proposed by Salvat et al. [7] for the Dirac-Hartre-Fock-Slater field can be
utilized instead. The Salvat et al. atomic potential is a superposition of Yukawa’s
potentials based on a number of parameters which have been determined by look-
ingfor the best fit of the numericallyi in the calculated self-consistent Dirac-Hartree-

http://dx.doi.org/10.1007/978-3-319-47492-2_3
http://dx.doi.org/10.1007/978-3-319-47492-2_3
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Fock-Slater fields. The atomic potential is expressed by a pure Coulomb potential
multiplied by a function ψ(r) approximating the screening of the nucleus by the
orbital electrons. The Salvat et al. screening function is given by:

ψ(r) =
3∑

i=1

Ai exp(−αi r) , (11.153)

where Ai and αi are parameters whose values can be found in Ref. [7] for all the
elements of the periodic table.

11.6 Electron Exchange

As electrons are identical particles, exchange effects have to be taken into account,
since it can occur that the incident electron is captured by an atom and a new electron
is emitted. Exchange effects are well described by adding, to the atomic potential
described above, the Furness and McCarthy exchange potential [10]:

Vex = 1

2
(E − V ) − 1

2
[(E − V )2 + 4πρe2

�
2/m]1/2 . (11.154)

In this equation, E is the electron energy, V the electrostatic potential, ρ the atomic
electron density (obtained by Poisson’s equation), and e the electron charge.

11.7 Solid-State Effects

For atoms bound in solids, the outer orbitals are modified, so that solid-state effects
should be introduced. In the so-called muffin-tin model, the potential of every atom
in the solid is changed by the nearest-neighbor atoms. If we assume that the nearest-
neighbor atoms are located at distances equal to 2rws , where rws is the radius of the
Wigner-Seitz sphere [11], then the potential can be calculated, for r ≤ rws , as follows

Vsolid(r ≤ rws) = V (r) + V (2rws − r) − 2V (rws) . (11.155)

It is equal to zero outside the Wigner-Seitz sphere, i.e.,

Vsolid(r ≥ rws) = 0 . (11.156)

The term 2V (rws) was introduced in Eq. (11.155) to shift the energy scale so that
Vsolid(r = rws) = 0. According to Salvat and Mayol, it also has to be subtracted
from the kinetic energy of the incident electrons [12].
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11.8 Positron Differential Elastic Scattering Cross-Section

The electron differential elastic scattering cross-section shows diffraction-like struc-
tures. It is a typical quantum-mechanical phenomenon due to the interaction of the
incident electron with the atomic electron cloud. On the contrary, the positron elas-
tic scattering cross-section is a decreasing and monotonic Rutherford-like function
[13, 14]. This is due to the different sign of the electric charges of electrons and
positrons. Positrons are rejected by the atomic nucleus: as a consequence, they do
not penetrate the atomic electron cloud as deeply as electrons do. Since electrons
penetrate deeper into the core of atomic electrons, they draw closer to the nucleus
than positron dos. Thus, electrons can loop around the nucleus once or more times
and electron outgoing wave – a superposition of the incoming and of the scattered
wave – exhibits interference effects also in the backward direction. This is just a semi-
classical description that qualitatively explains the reason why the atomic electron
cloud influences electrons more than positrons during elastic scattering.

11.9 Summary

The Mott theory [1] (also known as the relativistic partial wave expansion method,
RPWEM) was described in this chapter. It allows to calculate the electron elastic
scattering cross section. Electron exchange and solid state effects were also intro-
duced. Differences among elastic scattering cross sections of electrons and positrons
were discussed.
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Chapter 12
Appendix C: The Fröhlich Theory

The original version of the Fröhlich theory can be found in Ref. [1]. Also see Ref.
[2] for further details. In his theory of the electron-phonon interaction, Fröhlich [1]
considered, in particular, the interaction of free electrons with the longitudinal optical
mode lattice vibrations. The interaction was described considering both phonon cre-
ation and phonon annihilation, corresponding to electron energy loss and to electrons
energy gain, respectively. As the phonon generation probability is much higher than
the phonon absorption probability, the latter is often neglected in Monte Carlo simu-
lations. Furthermore, since, according to Ganachaud and Mokrani [3], the dispersion
relation of the longitudinal phonons can be neglected in the optical branch, one can
use a single phonon frequency. As a matter of fact, the Fröhlich theory adopts a single
value of the frequency for all momenta, corresponding to a flat longitudinal optical
branch. This approximation is quite reasonable and experimentally confirmed (see,
for example, Fujii et al. [4] for the ionic crystal AgBr). In semiconductors the longi-
tudinal optical branch is flat as well, as demonstrated both experimentally (see, for
example, Nilsson and Neil for Ge [5] and Si [6]) and theoretically (see, for example,
Gianozzi et al. for Si, Ge, GaAs, AlAs, GaSb, and AlSb [7]).

12.1 Electrons in Lattice Fields. Interaction Hamiltonian

According to Fröhlich [1], an electron traveling in a dielectric material polarizes
the medium and the polarization reacts on the charged particle. Let us indicate with
P(r) the electric polarization. The only source of the displacement vector, D(r) =
E(r) + 4πP(r), are the free charges. If rel represents the position of a single free
electron, then

∇ · D = − 4π e δ(r − rel), (12.1)
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M. Dapor, Transport of Energetic Electrons in Solids,
Springer Tracts in Modern Physics 257, DOI 10.1007/978-3-319-47492-2_12

149



150 12 Appendix C: The Fröhlich Theory

where e is the electron charge. The electric polarization can be written as

P(r) = Puv(r) + P ir(r), (12.2)

where Puv(r) and P ir(r) are the polarizations corresponding, respectively, to the
ultraviolet (atomic polarizability) and the infrared (displacement polarizability) opti-
cal absorptions [8]. They satisfy the harmonic oscillator equations

d2Puv(r)
dt2

+ ω2
uv Puv(r) = D(r, rel)

δ
, (12.3)

d2P ir(r)
dt2

+ ω2 P ir(r) = D(r, rel)

γ
. (12.4)

In these equations, ωuv (atomic deformation) and ω (atomic displacement) are the
angular frequencies for ultraviolet and infrared optical absorption, respectively, and
δ and γ are constants that are related to the dielectric function.

To determine these constants, let us firstly consider the static case and indicate
with ε0 the static dielectric constant. Since

D(r) = ε0 E(r), (12.5)

then

4πP(r) =
[

1 − 1

ε0

]
D(r). (12.6)

Furthermore, let us assume that the high frequency dielectric constant ε∞ is deter-
mined in the hypothesis that the angular frequency ω∞ of the external field is low
compared with the atomic excitation frequencies ωuv and high compared with the
lattice vibrational frequencies ω [8]. Then P ir ≈ 0, d2Puv/dt2 � ω2

uvPuv(r), and
D(r) = ε∞ E(r), where ε∞ is the high frequency dielectric constant (ε1/2

∞ is the
refraction index). As a consequence, Puv(r) can be approximated assuming that it
has the value corresponding to a static field of the same strength [1]

4πPuv(r) =
[

1 − 1

ε∞

]
D(r) (12.7)

so that

4πP ir(r) =
[

1

ε∞
− 1

ε0

]
D(r) (12.8)
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Since, in the static case, d2Puv/dt2 = 0 and d2P ir/dt2 = 0,

Puv(r) = D(r)
δ ω2

uv

, (12.9)

P ir(r) = D(r)
γ ω2

, (12.10)

and hence we obtain
1

δ
= ω2

uv

4 π

(
1 − 1

ε∞

)
. (12.11)

1

γ
= ω2

4 π

(
1

ε∞
− 1

ε0

)
. (12.12)

In order to describe a slow electron interacting with an ionic lattice field, Fröhlich
considered the infrared contribution to the polarization and introduced the complex
field B(r) such that

B(r) =
√

γ ω

2 �

(
P ir(r) + i

ω

dP ir(r)
dt

)
. (12.13)

The phonon annihilation operators aq are defined by the equation

B(r) =
∑
q

q
q
aq

exp(iq · r)√
V

, (12.14)

where B(r) is subject to a boundary condition over a cube of volume V . As a
consequence

(
P ir(r) + i

ω

dP ir(r)
dt

)
=

√
2 �

γ ω V

∑
q

q
q
aq exp(iq · r). (12.15)

Taking the Hermitian adjoint we obtain

(
P ir(r) − i

ω

dP ir(r)
dt

)
=

√
2 �

γ ω V

∑
q

q
q
a†
q exp(−iq · r), (12.16)

so that

P ir(r) =
√

�

2 γ ω V

∑
q

q̂ [aq exp(iq · r) + a†
q exp(−iq · r)], (12.17)
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where

q̂ = q
q

(12.18)

and

qi = 2 π

L
ni, (12.19)

with ni = 0,±1,±2, . . . and L = V 1/3. The quantities a†
q represent the phonon

creation operators.
In order to write the interaction Hamiltonian, Hinter, let’s observe that the dis-

placement vector D is the external field that determines the crystal polarization.
Since D = 0 in the absence of free charges, the potential φir is given by

− 4πP ir = E = −∇ φir, (12.20)

so that

Hinter = e φir =

4 π i

√
� e2

2 γ ω V

∑
q

1

q
[a†

q exp(−iq · r) − aq exp(iq · r)], (12.21)

with q �= 0.

12.2 Electron-Phonon Scattering Cross-Section

If we indicate with ω the angular frequency of the longitudinal optical vibrations
of the lattice, then the average number of phonons at temperature T is given by the
occupation function

n(T ) = 1

exp (� ω/kBT ) − 1
, (12.22)

where kB is the Boltzmann constant. Fröhlich theory [1] uses the perturbation
approach, assuming that the electron-lattice coupling is weak. If the electron energy,
measured with respect to the bottom of the conduction band, is given by

Ek = �
2 k2

2m∗ , (12.23)
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where m∗ is the electron effective mass and k the electron wavenumber, then the
unperturbed electron wavefunction can be written as

| k〉 = exp (i k · r)
V 1/2

, (12.24)

where, as above, we have indicated with V a cubic volume containing the electron.
We know that, according to Fröhlich [1], the interaction Hamiltonian is given by
Eq. (12.21)

Hinter = 4 π i

√
e2 �

2 γ ω V

∑
q

1

q
[a†

q exp (−i q · r) − aq exp (i q · r)],

where q �= 0 is the phonon wavenumber, a†
q and aq are, respectively, the operators of

creation and annihilation of phonons, and γ is related to the static dielectric constant
ε0 and to the high frequency dielectric constant ε∞ by the Eq. (12.12)

1

γ
= ω2

4 π

(
1

ε∞
− 1

ε0

)
.

In order to calculate the transition rate Wkk ′ from the state | k〉 to the state | k′〉,
Llacer and Garwin [2] used the standard result of the perturbation theory. In the
case of phonon annihilation, corresponding to an electron energy gain, once should
consider the frequency

β = Ek′ − Ek − � ω

2 �
, (12.25)

while, for phonon creation (electron energy loss), the frequency to be considered is
the following

β = Ek′ − Ek + � ω

2 �
. (12.26)

The rate is given by

Wkk′ = |Mkk′ |2
�2

∂

∂t

(
sin2 βt

β2

)
(12.27)

where M ′
kk is the matrix element for the transition from the state k to the state k′.

They can be calculated by using the interaction Hamiltonian, Eq. (12.21), taking into
account the properties of the creation and annihilation operators,

aq |n〉 = √
n |n − 1〉, (12.28)

a†
q |n〉 = √

n + 1 |n + 1〉, (12.29)
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and utilizing the condition of orthonormality satisfied by the set of vectors |n(T )〉,

〈n|n〉 = 1, (12.30)

〈n|n + m〉 = 0. (12.31)

where m is any integer �= 0.
For the case of annihilation of a phonon of wavenumber q (electron energy gain),

k′ = k + q and

Mkk′ = 4 π i

√
e2 �

2 γ ω V

√
n(T )

q
, (12.32)

while, in the case of the creation of a phonon of wavenumber q (electron energy
loss), k′ = k − q and

Mkk′ = − 4 π i

√
e2 �

2 γ ω V

√
n(T ) + 1

q
. (12.33)

The total scattering rate from a state k to all the available states k′ can be obtained
by integrating over q. Let us first perform the integration for the case of phonon
annihilation:

W−
k =∫ qmax

qmin

dq
∫ 2 π

0
dφ

∫ π

0

16 π2 e2

2 � γ ω V

n(T )

q2

∂

∂ t

sin2 β t

β2

V

8 π3
q2 sin α dα.

(12.34)

Note that α represents in this context the angle between the direction of k and that
of q, while we shall use the symbol θ to indicate the angle between k and k′. As

k ′2 = k2 + q2 − 2 k q cos α, (12.35)

some simple algebraic manipulations allow as to to see that

β = �

4m∗ q2 − �

2m∗ k q cos α − ω

2
, (12.36)

so that

sin α dα = 2m∗

�

1

k q
dβ. (12.37)
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As a consequence

W−
k =

∫ qmax

qmin

dq
∫ βmax

βmin

4m∗ e2 n(T )

�2 γ ω

1

k q

∂

∂ t

sin2 β t

β2
dβ, (12.38)

where

βmin = �

4m∗ q2 − �

2m∗ k q − ω

2
, (12.39)

and

βmax = �

4m∗ q2 + �

2m∗ k q − ω

2
, (12.40)

Now

∫ βmax

βmin

∂

∂ t

sin2 β t

β2
dβ =

∫ βmax

βmin

sin 2 β t

β
dβ =

=
∫ βmax

βmin

sin( 2 β t)

(2 β t)
2 t dβ =

∫ 2 βmax t

2 βmin t

sin x

x
dx =

=
∫ 2 βmax t

0

sin x

x
dx −

∫ 2 βmin t

0

sin x

x
dx .

In order to carry out the calculation, we need to know the limits of integration,
qmin and qmax. They can be obtained by using the law of conservation of energy,
E ′

k = Ek + � ω, which corresponds to β = 0.
Since cos α can take all the values between −1 and +1, the limits of integration

satisfy the following equations

q2 + 2 k q − k2
� ω

Ek
= 0, (12.41)

q2 − 2 k q − k2
� ω

Ek
= 0, (12.42)

so that, as q is positive,

qmin = k

(√
1 + � ω

Ek
− 1

)
, (12.43)

qmax = k

(√
1 + � ω

Ek
+ 1

)
. (12.44)
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Inserting these limits of integration in the definition of βmin and βmax, we see that
βmin ≤ 0 and βmax ≥ 0. Therefore,

lim
t→∞

∫ βmax

βmin

∂

∂ t

sin2 β t

β2
dβ =

= lim
t→∞

(∫ 2 βmax t

0

sin x

x
dx −

∫ 2 βmin t

0

sin x

x
dx

)
=

=
∫ +∞

0

sin x

x
dx −

∫ −∞

0

sin x

x
dx =

= si(+∞) − si(−∞) = π

2
−

(
− π

2

)
= π,

so that

W−
k =

∫ qmax

qmin

4 πm∗ e2 n(T )

�2 γ ω

1

k q
dq. (12.45)

As a consequence, we conclude that the total scattering rate for the phonon annihi-
lation (electron energy gain) is given by

W−
k = 4 π e2 m∗ n(T )

�2 γ ω k
ln

(√
1 + � ω/Ek + 1√
1 + � ω/Ek − 1

)
. (12.46)

The case of phonon creation (electron energy loss) is similar. Remember that, in
this case, we have to use

√
n(T ) + 1 instead of

√
n(T ) in the matrix element of the

transition of electron in state k to k′. Furthermore, in this case,

β = 1

2 �
[Ek′ − (Ek + � ω)] = �

4m∗ q2 − �

2m∗ k q cos α + ω

2
, (12.47)

so that

qmin = k

(
1 −

√
1 − � ω

Ek

)
, (12.48)

qmax = k

(
1 +

√
1 − � ω

Ek

)
. (12.49)

Therefore,

W+
k = 4 π e2 m∗ [n(T ) + 1]

�2 γ ω k
ln

(
1 + √

1 − � ω/Ek

1 − √
1 − � ω/Ek

)
. (12.50)
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Concerning the angular distribution of the scattering, let us consider the angle θ
between k and k′, so that

q2 = k2 + k ′2 − 2 k k ′ cos θ (12.51)

and, hence,

q dq = k k ′ sin θ dθ. (12.52)

The probability of scattering between θ and θ + dθ can be calculated by considering
the integrand of Eq. (12.45):

A
dq

k q
= A

q dq

k q2
= A

k k ′ sin θ dθ

k (k2 + k ′2 − 2 k k ′ cos θ)
=

= A
k ′ sin θ dθ

k2 + k ′2 − 2 k k ′ cos θ
,

where, for phonon annihilation,

A = 4 π e2 m∗ n(T )
�2 γ ω

. (12.53)

Similar considerations hold for phonon creation, so that we conclude that the angular
distribution is proportional, in both cases, to

dη = E1/2
k′ sin θ dθ

Ek + Ek′ − 2 (Ek E ′
k)

1/2 cos θ
(12.54)

After an electron-phonon collision, the new angle θ′ is obtained inverting this distri-
bution. Indicating with μ the cumulative probability, we have

μ =
∫ θ′

0 dη∫ π

0 dη
=

=
∫ θ′

0

E1/2
k′ sin θ dθ

Ek + Ek′ − 2 (Ek E ′
k)

1/2 cos θ
/

/

∫ π

0

E1/2
k′ sin θ dθ

Ek + Ek′ − 2 (Ek E ′
k)

1/2 cos θ
,

(12.55)

and, as a consequence,

cos θ′ = Ek + Ek′

2
√
Ek Ek′

(1 − Bμ) + Bμ, (12.56)
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B = Ek + Ek′ + 2
√
Ek Ek′

Ek + Ek′ − 2
√
Ek Ek′

. (12.57)

The relationship between the mean free path λphonon and the total scattering rate from
a state k to all the other available states k′ is

λphonon =
(

1

v

dP

dt

)−1

, (12.58)

where v is the electron velocity before the electron-phonon collision

v = � k

m∗ (12.59)

and

dP

dt
= W−

k + W+
k . (12.60)

The electron-phonon mean free path can then be written as

λphonon = � k/m∗

W−
k + W+

k

=
√

2 Ek/m∗

W−
k + W+

k

, (12.61)

and, as a consequence,

λ
−1
phonon = 1

a0

[
ε0 − ε∞
ε0 ε∞

]
� ω

Ek

1

2
×

×
{
[n(T ) + 1] ln

[
1 + √

1 − � ω/Ek

1 − √
1 − � ω/Ek

]
+

+ n(T ) ln

[ √
1 + � ω/Ek + 1√
1 + � ω/Ek − 1

]}
,

(12.62)

where we have assumed that the electron effective mass m∗ is equal to that of a free
electron, m∗ = m.

The probability of phonon creation is much higher than that of phonon annihilation
[2, 3, 9], so that one can safely ignore the electron energy gain due to the phonon
annihilation. As a consequence we can write

λphonon = � k/m∗

W+
k

, (12.63)
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so that, indicating with E = Ek the energy of the incident electron and with
Wph = �ω the energy of the created phonon (and assuming that m∗ = m) we
conclude that the inverse inelastic mean free path for electron energy loss due to
phonon creation can be written as [2]

λ
−1
phonon =

= 1

a0

ε0 − ε∞
ε0 ε∞

Wph

E

n(T ) + 1

2
ln

[
1 + √

1 − Wph/E

1 − √
1 − Wph/E

]
.

(12.64)

This equation was used in the Monte Carlo simulations of secondary electron emis-
sion from insulating materials presented in this book [3, 9, 10].

12.3 Summary

The Fröhlich theory [1, 2] concerning the interaction of free electrons with the lon-
gitudinal optical mode lattice vibrations, was described in this chapter. Both phonon
creation and phonon annihilation, corresponding to electron energy loss and to elec-
trons energy gain respectively, are described by the theory.
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Chapter 13
Appendix D: The Ritchie Theory

The Ritchie theory describes the relationship between the dielectric function and the
electron energy loss in a solid. It allows to calculate the differential inverse inelastic
mean free path, the elastic mean free path, and the stopping power. The original
version of the Ritchie theory can be found in Ref. [1]. Also see Refs. [2–6] for
further details.

13.1 Energy Loss and Dielectric Function

The response of the ensemble of conduction electrons to the electromagnetic distur-
bance due to electrons passing through a solid and losing energy in it, is described
by a complex dielectric function ε(k,ω), where k is the wave vector and ω is the
frequency of the electromagnetic field. If, at time t, the electron position is r and
its speed is v, then, indicating with e the electron charge, the electron that passes
through the solid can be represented by a charge distribution given by

ρ(r, t) = −e δ(r − vt) . (13.1)

The electric potential ϕ generated in the medium can be calculated as1

ε(k,ω)∇2ϕ(r, t) = −4π ρ(r, t) . (13.2)

In the Fourier space we have

ϕ(k,ω) = − 8π2e

ε(k,ω)
δ(k · v + ω)

k2
. (13.3)

1The vector potential is zero due to the chosen gauge.
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In fact, on the one hand,

ϕ(r, t) = 1

(2π)4

∫
d3k

∫ +∞

−∞
dω exp[i(k · r + ω t)] ϕ(k,ω) , (13.4)

so that

∇2 ϕ(r, t) = − 1

(2π)4

∫
d3k

∫ +∞

−∞
dω exp[i(k · r + ω t)] k2 ϕ(k,ω) , (13.5)

and, on the other hand,

ρ(k,ω) =
∫

d3r
∫ +∞

−∞
dt exp[−i(k · r + ω t)] ρ(r, t) =

=
∫

d3r
∫ +∞

−∞
dt exp[−i(k · r + ω t)] [−e δ(r − vt)] =

= −2πe
1

2π

∫ +∞

−∞
dt exp[−i(k · v + ω)t] =

= −2πe δ(k · v + ω) , (13.6)

so that

ρ(r, t) = 1

(2π)4

∫
d3k

∫ +∞

−∞
dω exp[i(k · r + ω t)] [− 2πe δ(k · v + ω)] . (13.7)

Then, using Eqs. (13.2), (13.5), and (13.7), we obtain

ε(k,ω) k2 ϕ(k,ω) = −8π2 e δ(k · v + ω)) , (13.8)

which is equivalent to Eq. (13.3).
We are interested in calculating the energy loss −dE of an electron due to its

interaction with the electric field E generated by the electrons passing through the
solid. Let us indicate with F z the z component of the electric force, so that

− dE = F · dr = Fz dz . (13.9)

It should be noted that here and in the following equations, the electric force (and
the electric field E = F/e) are considered at r = v t. Since

Ez dz = dz

dt
dt Ez = dr

dt
· E dt = v · E

v
dz (13.10)
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the energy loss −dE per unit path length dz, −dE/dz, is given by

− dE

dz
= e

v
v · E . (13.11)

Since
E = −∇ ϕ(r, t) (13.12)

and ϕ(k,ω) is the Fourier transform of ϕ(r, t) [see Eq. (13.4)], then

E =
= −∇

{
1

(2 π)4

∫
d3 k

∫ +∞

−∞
dω exp[i(k · r + ω t)] ϕ(k,ω)

}
. (13.13)

As a consequence

−dE

dz
=

= Re

{
− 8π2e2

(2π)4v
×

×
∫

d3k
∫ +∞

−∞
dω(−∇) exp[i(k · r + ω t)] · v δ(k · v + ω)

k2 ε(k,ω)

∣∣∣∣
r= v t

}
=

= Re

{
− 8π2e2

(2π)4v
×

×
∫

d3k
∫ +∞

−∞
dω(−ik) · v exp[i(k · r + ω t)] δ(k · v + ω)

k2 ε(k,ω)

∣∣∣∣
r= v t

}
=

= Re

{
i8π2e2

16π4v
×

×
∫

d3k
∫ +∞

−∞
dω(k · v) exp[i(k · r + ω t)] δ(k · v + ω)

k2 ε(k,ω)

∣∣∣∣
r= v t

}
.

(13.14)

Taking into account (i) that the electric field has to be calculated at r = v t and (ii)
of the presence in the integrand of the δ(k · v + ω) distribution, we have
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−dE

dz
=

= Re

{
i e2

2 π2 v
×

×
∫

d3k
∫ +∞

−∞
dω k · v exp[i(k · v t + ω t)] δ(k · v + ω)

k2 ε(k,ω)

}
=

= Re

{
i e2

2 π2 v
×

×
∫

d3k
∫ +∞

−∞
dω k · v exp[i(−ω t + ω t)] δ(k · v + ω)

k2 ε(k,ω)

}
=

= Re

{
i e2

2 π2 v
×

×
∫

d3k
∫ +∞

−∞
dω (−ω) exp[i(−ω t + ω t)] δ(k · v + ω)

k2 ε(k,ω)

}
=

= Re

{ −i e2

2 π2 v

∫
d3k

∫ +∞

−∞
dω ω

δ(k · v + ω)

k2 ε(k,ω)

}
. (13.15)

Since

Re

{
i
∫ +∞

−∞
dω ω

δ(k · v + ω)

ε(k,ω)

}
=

= 2 Re

{
i
∫ +∞

0
dω ω

δ(k · v + ω)

ε(k,ω)

}
,

we conclude that2

− dE

dz
= e2

π2 v

∫
d3k

∫ ∞

0
dω ω Im

[
1

ε(k,ω)

]
δ(k · v + ω)

k2
, (13.16)

or

− dE

dz
=

∫ ∞

0
dω ω τ (v,ω) , (13.17)

where

τ (v,ω) = e2

π2 v

∫
d3k Im

[
1

ε(k,ω)

]
δ(k · v + ω)

k2
(13.18)

2Note that, for any complex number z, Re(i z) = − Im(z).
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is the probability of an energy loss ω per unit distance traveled by a non-relativistic
electron of velocity v [1].

13.2 Homogeneous and Isotropic Solids

Let us assume now that the solid is homogeneous and isotropic, and ε is a scalar
depending only on the magnitude of k and not on its direction

ε(k,ω) = ε(k,ω) (13.19)

so that

τ (v,ω) =
= e2

π2 v

∫ 2π

0
dφ

∫ π

0
dθ

∫ k+

k−
dk k2 sin θ ×

× Im

[
1

ε(k,ω)

]
δ(k v cos θ + ω)

k2
=

= 2 e2

π v

∫ π

0
dθ

∫ k+

k−
dk sin θ Im

[
1

ε(k,ω)

]
δ(k v cos θ + ω) (13.20)

where
� k± = √

2mE ± √
2m (E − � ω) . (13.21)

andE = m v2 / 2. These limits of integration come from conservation of momentum
(see Sect. 5.2.3).

Let us introduce the new variable ω′ defined as

ω′ = −k v cos θ , (13.22)

so that
dω′ = k v sin θ dθ (13.23)

and, hence,

τ (v,ω) = 2 e2

π v

∫ k v

−k v
d ω′

∫ k+

k−

dk

k v
Im

[
1

ε(k,ω)

]
δ(−ω′ + ω) (13.24)

= 2m e2

πm v2

∫ k+

k−

dk

k
Im

[
1

ε(k,ω)

]
.
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We thus can write that

τ (E,ω) = m e2

π E

∫ k+

k−

dk

k
Im

[
1

ε(k,ω)

]
, (13.25)

Indicating with W = �ω the energy loss and with Wmax the maximum energy loss,
the inverse electron inelastic mean free path, λ−1

inel, can be calculated as

λ−1
inel =

= m e2

π �2 E

∫ Wmax

0
d�ω

∫ k+

k−

dk

k
Im

[
1

ε(k,ω)

]
=

= 1

π a0 E

∫ Wmax

0
d�ω

∫ k+

k−

dk

k
Im

[
1

ε(k,ω)

]
. (13.26)

13.3 Summary

The Ritchie theory [1] was described. It allows to establish the relationship between
electron energy loss and dielectric function, and to calculate the differential inverse
inelastic mean free path, the inelastic means free path, and the stopping power.
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Chapter 14
Appendix E: The Chen and Kwei
and the Li et al. Theory

Theoriginal version of theChen andKwei theory canbe found inRef. [1] for outgoing
projectiles. It was generalized by Li et al. [2] for incoming projectiles. Below, the
Chen and Kwei and the Li et al. formulas are rewritten in terms of angular variables,
according to Ref. [3].

14.1 Outgoing and Incoming Electrons

Let us consider the component qx and qy of the momentum transfer parallel to the
surface. For outgoing electrons,

qx = mv

�
(θ cosφ cosα + θE sinα) , (14.1)

while, for incoming electrons,

qx = mv

�
(θ cosφ cosα − θE sinα) . (14.2)

For both outgoing and incoming electrons we have

qy = mv

�
θ sin φ . (14.3)

In these equations, α is the angle of the electron trajectory with respect to the normal
to the target surface, θ and φ indicate the polar and azimuth angles, and

θE = � ω

2 E
, (14.4)

where E is the electron energy and � ω the energy loss.
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14.2 Probability of Inelastic Scattering

If z is the coordinate along the normal to the surface target, the probability for inelastic
scattering (the differential inverse inelastic mean free path, DIIMFP) is given by:

Poutside(z,α) = 1

2π2a0E

∫ θcutoff

0

θ dθ

θ2 + θ2E

∫ 2π

0
dφ f (z, θ,φ,α) (14.5)

in the vacuum, and

Pinside(z,α) = 1

2π2a0E

∫ θcutoff

0

θ dθ

θ2 + θ2E

∫ 2π

0
dφ g(z, θ,φ,α) (14.6)

inside the material. The cutoff angle is taken to be the Bethe ridge angle [4]

θcutoff =
√

�ω

E
. (14.7)

It should be noted that in the Chen and Kwei approach, [1] there is no proper limit
for the high-momentum cutoff, while there exists a maximum angle, known as the
Bethe ridge angle, only up to which electron excitation is allowed [5].

For outgoing electrons, functions f (z, θ,φ,α) and g(z, θ,φ,α) can be written
as:

f (z, θ,φ,α) = Im

(
2

ε + 1

)
h(z, θ,φ,α) [p(z, θ,φ,α) − h(z, θ,φ,α)] , (14.8)

g(z, θ,φ,α) = Im

(
2

ε + 1

)
h2(z, θ,φ,α) + Im

(
1

ε

)
[1− h2(z, θ,φ,α)] .

(14.9)

For incoming electrons, the same functions f (z, θ,φ,α) and g(z, θ,φ,α) are given
by:

f (z, θ,φ,α) = Im

(
2

ε + 1

)
h2(z, θ,φ,α) , (14.10)

g(z, θ,φ,α) = Im

(
2

ε + 1

)
h(z, θ,φ,α) [p(z, θ,φ,α) − h(z, θ,φ,α)] +

+ Im

(
1

ε

)
[1− h(z, θ,φ,α)p(z, θ,φ,α) + h2(z, θ,φ,α)] . (14.11)
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Functions h(z, θ,φ,α) and p(z, θ,φ,α) are, in turn, given by:

h(z, θ,φ,α) = exp

[(
−|z|mv

�

)√
(θ cosφ cosα + θE sinα)2 + θ2 sin2 φ

]
,

(14.12)

p(z, θ,φ,α) = 2 cos
[(

|z|mv

�

)
(θE cosα − θ cosφ sinα)

]
, (14.13)

for outgoing electrons and by:

h(z, θ,φ,α) = exp

[(
−|z|mv

�

)√
(θ cosφ cosα − θE sinα)2 + θ2 sin2 φ

]
,

(14.14)

p(z, θ,φ,α) = 2 cos
[(

|z|mv

�

)
(θE cosα + θ cosφ sinα)

]
, (14.15)

for incoming electrons.
Finally, ε(ω) is the dielectric function. For the case of silicon, it can be calculated

as:

ε(ω) = 1 − ω2
p

ω2 − ω2
g − iΓ ω

, (14.16)

where �ω is the electron energy loss, �ωg is the average excitation energy for valence
electrons, �Γ is the damping constant, and �ωp is the plasmon energy.

14.3 Summary

TheChen andKwei theory for outgoing electrons [1], and its generalization proposed
by Li et al. [2] for incoming projectiles, were described and rewritten in terms of
angular variables, according to Ref. [3].
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Chapter 15
Appendix F: The Mermin Theory
and the Generalized Oscillator Strength
Method

Dielectric formalism is the most used method for investigating the interaction of
swift electrons with solid targets. In this chapter the Mermin energy loss function-
generalized oscillator strength method (MELF-GOS method) is briefly described
within the framework of dielectric formalism [1–4].

15.1 The Mermin Theory

The Mermin dielectric function [1] is given by:

εM(q,ω) = 1 + (1 + i/ωτ )[ε0(q,ω + i/τ ) − 1]
1 + (i/ωτ )[ε0(q,ω + i/τ ) − 1]/[ε0(q, 0) − 1] , (15.1)

where q is the momentum, ω the frequency, τ the relaxation time, and ε0(q,ω) the
Lindhard dielectric constant [5]

ε0(q,ω) = 1 + 4π2q2

e2
B(q,ω) , (15.2)

B(q,ω) =
∫

dp
4π3

fp+q/2 − fp−q/2

ω − (εp+q/2 − εp−q/2)/�
. (15.3)

In these equations e is the electron charge, fp is the Fermi-Dirac distribution, and εp
the free electron energy.

Note that the Lindhard dielectric function [5] can be numerically calculated by
using Eqs. (15.2) and (15.3). The integration can also be carried out in closed form.
The result of the integration is the following [2, 3, 6]:
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ε0(q,ω) = 1 + χ2

z2
[ f1(u, z) + i f2(u, z)] , (15.4)

where u = ω/(qvF ), z = q/(2qF ), andχ2 = e2/(π � vF ) is ameasure of the electron
density [6]. In this equation, vF is the Fermi velocity of the valence electrons of the
target and qF = mvF/�. The functions f1(u, z) and f2(u, z) are given by

f1(u, z) = 1

2
+ 1

8z
[g(z − u) + g(z + u)] , (15.5)

f2(u, z) =

⎧⎪⎨
⎪⎩

π
2 u, z + u < 1
π
8z [1 − (z − u)2], |z − u| < 1 < z + u

0, |z − u| > 1 ,

(15.6)

where

g(x) = (1 − x2) ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ . (15.7)

15.2 The Mermin Energy Loss Function-Generalized
Oscillator Strength Method (MELF-GOS)

Let us now consider a superposition of free and bound oscillators. For any oscillator,
the energy loss function is given by the opposite of the imaginary part of the inverse
of the Mermin dielectric function:

Im

[ −1

εM(ωi , γi ; q,ω)
]

= εM2

ε2M1
+ ε2M2

, (15.8)

where

εM = εM1 + iεM2 (15.9)

and ωi and γi are, respectively, the frequency and the damping constant associated to
each specific oscillator. A linear combination of Mermin-type energy loss functions,
one per oscillator, allows to calculate the energy loss function (ELF) for q = 0, for
any specific material [2–4]:

Im

[ −1

ε(q = 0,ω)

]
=

∑
i

Ai Im

[ −1

εM(ωi , γi ; q = 0,ω)

]
. (15.10)
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In this equation, Ai , ωi , and γi are determined by looking for the best fit of the
available experimental optical ELF. Actually, as both Mermin and Drude-Lorentz
oscillators converge on the same values in the optical limit (i.e. for q = 0) [7]

Im

[ −1

ε(q = 0,ω)

]
=

∑
i

Ai Im

[ −1

εM(ωi , γi ; q = 0,ω)

]
=

∑
i

Ai Im

[ −1

εD(ωi , γi ; q = 0,ω)

]
, (15.11)

where the Drude-Lorentz functions Im
[

−1
εD(ωi ,γi ;q=0,ω)

]
are given by [8]

Im

[ −1

εD(ωi , γi ;q = 0,ω)

]
= γiω

(ω2
i − ω2)2 + (γiω)2

, (15.12)

the best fit can also be obtained using a linear combination of Drude-Lorentz func-
tions, instead of Mermin functions. Once the values of the best fit parameters have
been established (see, for example, Refs. [4, 9, 10]), the extension beyond the optical
domain (q �= 0) can be obtained by [2–4]

Im

[ −1

ε(q,ω)

]
=

∑
i

Ai Im

[ −1

εM(ωi , γi ;q,ω)
]
. (15.13)

Planes et al. [2], Abril et al. [3], and de Vera et al. [4] construct the ELF in the optical
limit including the contribution of the electrons from the outermost atomic inner
shells as follows:

Im

[ −1

ε(q = 0,ω)

]
=

⎧⎪⎪⎨
⎪⎪⎩

∑
i Ai Im

[
−1

εM (ωi ,γi ;q=0,ω)

]
ω < ωi,edge∑

i,sh Ai,shIm
[

−1
εM (ωi,sh ,γi,sh ;q=0,ω)

]
ω ≥ ωi,edge

(15.14)
where the first term represents the contribution of the outer electronswhile the second
one includes the electrons of the outermost atomic inner shells.

15.3 Summary

In this chapter, after a brief discussion about the Mermin theory [1], the Mermin
energy loss function-generalized oscillator strength method (MELF-GOS method),
in the framework of the dielectric formalism, was shortly described [2–4].
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Chapter 16
Appendix G: The Kramers–Kronig Relations
and the Sum Rules

In this chapter, the response of a material to applied electromagnetic radiations is dis-
cussed [1–3]. In particular, the complex dielectric function is the response function
of the medium corresponding to the electric polarization induced by an applied elec-
tric field. Similarly, the complex conductivity describes the electric current induced
in response to an applied electric field. In general, the system response to a given
stimulus is ruled by the complex analysis and, in particular, by the so-called Kramers–
Kronig relations. A consequence of the Kramers–Kronig analysis is constituted by
the sum rules which must be satisfied by several optical parameters.

16.1 Linear Response to External Perturbations

Polarization P(t) of a material at time t depends on the electric field E(t) applied to
the material from t ′ = −∞ to t ′ = t , according to the following equation:

P(t) =
∫ t

−∞
G(t − t ′)E(t ′) dt ′, (16.1)

where G(t) is a real Green function of real variable [1]. Assuming that

E(t) = E0 exp[−iωt], (16.2)

it is thus easy to see that

P(t) = E
∫ ∞

0
G(τ ) exp[iωτ ] dτ . (16.3)
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As a consequence, the electric susceptibility χ(ω) can be written as

χ(ω) =
∫ ∞

0
G(τ ) exp[iωτ ]dτ . (16.4)

Since

εE = E + 4πP = E + 4πχE = (1 + 4πχ)E, (16.5)

we conclude that the dielectric function ε(ω) is given by

ε(ω) = 1 + 4πχ(ω) = 1 + 4π

∫ ∞

0
G(τ ) exp[iωτ ]dτ . (16.6)

Thus,

ε∗(ω) = 1 + 4π

∫ ∞

0
G(τ ) exp[−iωτ ]dτ =

= ε(−ω) = ε1(−ω) + iε2(−ω). (16.7)

Since

ε∗(ω) = [ε1(ω) + iε2(ω)]∗ = ε1(ω) − iε2(ω), (16.8)

we have demonstrated that the real part of the dielectric function is even

ε1(ω) = ε1(−ω), (16.9)

while its imaginary part is odd

ε2(ω) = −ε2(−ω). (16.10)

16.2 The Kramers–Kronig Relations

Using the Cauchy’s residue theorem we obtain

P
∫ ∞

−∞
χ(ω)

ω − ωT
= iπχ(ωT ), (16.11)

and, as a consequence, keeping in mind that

χ(ω) = ε(ω) − 1

4π
(16.12)
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ε(ω) = 1 + 1

iπ
P

∫ ∞

−∞
ε(ω′) − 1

ω′ − ω
dω′. (16.13)

Therefore, the real and the imaginary parts of the dielectric function can be expressed
as follows

ε1(ω) = 1 + 1

π
P

∫ ∞

−∞
ε2(ω

′)
ω′ − ω

dω′, (16.14)

ε2(ω) = − 1

π
P

∫ ∞

−∞
ε1(ω

′) − 1

ω′ − ω
dω′, (16.15)

or, after straightforward algebraic manipulations,

ε1(ω) = 1 + 2

π
P

∫ ∞

0

ω′ ε2(ω
′)

ω′2 − ω2
dω′, (16.16)

ε2(ω) = − 2 ω

π
P

∫ ∞

0

ε1(ω
′) − 1

ω′2 − ω2
dω′. (16.17)

These are the Kramers–Kronig relations relating the real and imaginary parts of the
dielectric function.

16.3 Sum Rules

Physical arguments can be used to establish some sum rules that, taking into account
the Kramers–Kronig relations, must be satisfied. Let us consider, for example, the
simple case of high frequency electric field interacting with a metal.

On the one hand, indicating as usual with ωp the plasma frequency, according to
the Drude model about the optical properties of metals we can write

ε1(ω) = 1 − ω2
p

ω2
. (16.18)

On the other hand, according to the Kramers–Kronig theory and taking into account
the high frequency hypothesis as well, we obtain

ε1(ω) = 1 − 2

πω2
P

∫ ∞

0
ω′ε2(ω

′) dω′. (16.19)
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Combining these two equations, we obtain the following sum rule that the imaginary
part of the dielectric function must satisfy:

∫ ∞

0
ω ε2(ω) dω = π

2
ω2

p. (16.20)

It is well known from the electromagnetic theory that the following relationship
exists between the complex dielectric function ε and the conductivity σ of a metal:

ε = 1 + i
4π

ω
σ. (16.21)

Simple algebraic manipulation allows us to express the real and imaginary parts of
the complex conductivity, σ1 and σ2, respectively, as follows

σ1 = ω

4π
ε2, (16.22)

σ2 = ω

4 π
(1 − ε1). (16.23)

Thus, the real part of the complex conductivity must satisfy the sum rule

∫ ∞

0
σ1 dω = ω2

p

8
. (16.24)

16.4 Summary

In this chapter, we discussed the system response to a given stimulus. In particular
we deduced the Kramers–Kronig relations. We also described the sum rules which
must be satisfied by the imaginary part of the complex dielectric function and by the
real part of the complex conductivity of a metal.
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Chapter 17
Appendix H: From the Electron Energy Loss
Spectrum to the Dielectric Function

The ELF in the optical limit can be obtained by means of a transformation of the
experimental transmitted electron energy loss spectrum (EELS). Such a transforma-
tion can be applied to the EELS after erasing the elastic peak and multiple scattering
in order to deal with the single-scattering spectrum S(W ).

17.1 From the Single-Scattering Spectrum to the Energy
Loss Function

The relationship between the single-scattering spectrum S(W ) and the ELF,

Im
[

−1
ε(q=0,W )

]
, is given by [1–3]

S(W ) = I0t

πa0mv2
Im

[ −1

ε(q = 0,W )

]
ln

[
1+

(
β

θW

)2
]

(17.1)

where I0 is the zero-loss density, t is the sample thickness, a0 is the Bohr radius,
m is the electron mass, v is the incident electron velocity, β is the collection semi-
angle, θW = W 2

γmv2
is a characteristic scattering angle for energy loss W , and γ is the

relativistic factor.
After collecting the transmitted electron energy loss spectrum and applying to it

the so called Fourier-Log transformation –for erasing the elastic peak and multiple
scattering [1]–, the transformation described by Eq. (17.1) allows to obtain the ELF.
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17.2 Summary

We described a method for calculating the ELF in the optical limit using the experi-
mental transmitted electron energy loss spectrum.
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