Samuel Kounev - Jeffrey 0. Kephart
Aleksandar Milenkoski - Xiaoyun Zhu
Editors

Self-Aware
Computing
Systems

N Springer



Self-Aware Computing Systems



Samuel Kounev - Jeffrey O. Kephart
Aleksandar Milenkoski - Xiaoyun Zhu
Editors

Self-Aware
Computing Systems

@ Springer



Editors

Samuel Kounev Xiaoyun Zhu
University of Wiirzburg VMWare Inc.
Wiirzburg Santa Clara, CA
Germany USA
Jeffrey O. Kephart and
Thomas J. Watson Research Center
Hawthorne, NY Futurewei Technologies, Inc.
USA Santa Clara, CA
USA

Aleksandar Milenkoski
University of Wiirzburg
Wiirzburg
Germany

ISBN 978-3-319-47472-4 ISBN 978-3-319-47474-8  (eBook)
DOI 10.1007/978-3-319-47474-8

Library of Congress Control Number: 2016954693

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

Background

During the past several years, many different research communities have explored
the aspects of self-awareness in computing systems, each from their own per-
spective. To the artificial intelligence community, the natural unit of self-awareness
is the software agent; to those who study the autonomic computing, it is the
autonomic element. One can identify at least a dozen other research communities
for which the self-awareness of a computing system is a central issue. However, the
underlying commonalities in these notions of self-awareness are often obscured by
the differences in the nomenclature and the lack of precise definitions.

Recently, there have been efforts to put a spotlight on the topic of self-awareness
in the computing systems and treat it as a worthwhile object of study in its own
right. Examples include the SElf-awarE Computing (SEEC)' project at MIT and
University of Chicago, the ASCENS? and EPiCS® FP7 EU Projects, and the
FOCAS FET Coordination Action.* There have also been efforts to assemble the
researchers with a common interest in self-adaptive systems and to publish com-
pendia of works on the topic—a notable example being the SEAMS Dagstuhl
seminars and workshop series. However, such collections have tended to group
contributions either by community or by theme, leaving the reader without a single
clear unifying definition of self-aware computing that applies broadly across mul-
tiple domains.

In an effort to establish a clear definition and understanding of self-aware
computing, we organized a Dagstuhl seminar’ entitled “Model-driven Algorithms
and Architectures for Self-Aware Computing Systems,” which was held in the week

'http://hdl.handle.net/1721.1/67020.
Zhttp://www.ascens-ist.eu/.
3http://cordis.europa.eu/project/rcn/95042_en.html.
4http://www.focas.eu/.
Shttp://www.dagstuhl.de/15041.
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of January 18-23, 2015. The seminar brought together researchers from several
different communities to discuss the past and future trends in self-aware computing
and encourage the active collaborations and cross-fertilization among related
research efforts. Special attention was paid to achieve the diversity along several
dimensions, including the field of study, age, and gender, with stronger-than-usual
participation from industry. Over 40 participants presented brief perspectives on
self-awareness from their respective fields, interleaved with long periods of dis-
cussion aimed at developing a cross-disciplinary understanding of self-awareness.
A key outcome from one such discussion was a consensus definition of the term
“self-aware computing system” that was both broad enough to cover the interdis-
ciplinary research landscape and precise enough to distinguish the aspects of those
disciplines that are relevant to self-awareness from those that are not. Roughly
speaking, we say that computing systems are self-aware if they possess the capa-
bility to learn and exploit the models of themselves and the environment in which
they are situated so as to act in accordance with the high-level goals.

Seeking to capitalize on the considerable positive energy and momentum created
by the seminar, many of the participants agreed to contribute to a book on
self-aware computing systems. Rather than following the usual formula of orga-
nizing the seminar presentations into a book, we decided to write the book com-
pletely from scratch and to organize the writing effort in such a way that the
chapters would be well-integrated and cross-referenced, and based upon the col-
laborative efforts and perspectives of authors from multiple disciplines.

Given this ambition and approach, writing this book proved to be an enormous
undertaking, and one that overachieved on our desire to foster fruitful and ongoing
collaborations among researchers who might never have worked together had they
not met at Dagstuhl. Discussions regarding the purpose and structure of this book
began during the seminar and continued online for several weeks afterward. Once
we reached a tentative agreement about which chapters should be written, and by
whom, the authors of each chapter convened numerous times, working individually
and collectively across many institutions (both academic and industrial) and time
zones to write the initial drafts. About six months after the Dagstuhl seminar,
a checkpoint workshop was held at the International Conference on Autonomic
Computing 2015 in Grenoble to review the progress of the book and to make some
midcourse corrections regarding the content and organization. Some additional
authors were recruited to fill the perceived gaps in content and expertise. During the
ensuing months, drafts of each chapter were circulated and reviewed to ensure the
quality and coherency across chapters (i.e., adequate cross-referencing).

This book is the result of those efforts. Here, professionals, researchers, lecturers,
and students will find formal and informal definitions and taxonomies of self-aware
computing systems, explanations of how self-aware computing relates to many
existing subfields of computer science and software engineering, descriptions of
architectures and algorithms for self-aware systems, benefits and pitfalls of
self-awareness, reviews of many of the latest relevant research efforts across a wide
array of disciplines, and a set of open research challenges. Our hope is that this
book will help establish the self-aware computing as a worthy subject of study in its
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own right, and inspire the research and development on self-aware computing
systems for years to come.

Content

The chapters of this book are organized into five parts: Introduction, System
Architectures, Methods and Algorithms, Applications and Case Studies, and
Outlook—each of which is now described in further detail.

The four chapters of Part I constitute an introduction that defines self-aware
computing systems from multiple perspectives and establishes a formal definition, a
taxonomy, and a set of reference scenarios that help to unify the remaining chapters
of this book. First, in Chap. 1, we propose a formal definition of self-aware com-
puting systems expressed in terms of models, learning, and reasoning. This defi-
nition represents a carefully considered consensus among experts from multiple
diverse fields who were brought together for the Dagstuhl seminar. Not only does it
serve as a motif for the other chapters of this book, but also we hope that the
research community will find in this definition a useful and unifying distillation of
ideas that contribute to the notion of self-aware computing as a field of study in its
own right. The formal definition of self-aware computing systems is supplemented
by some positioning of self-aware computing relative to other fields. Chapter 2
elaborates this theme further, relating in greater detail how self-aware computing
systems have been described in a dozen fields of study, including control theory,
artificial intelligence, autonomic computing, organic computing, and cloud com-
puting. Examining the similarities and the contrasts among these multiple per-
spectives on self-awareness not only improves one’s understanding of the formal
definition, but also helps to justify the need for one in the first place. Chapter 3
supplements the formal definition of self-aware computing systems with a theo-
retical framework that serves as a taxonomy for self-aware computing systems—
another motif that recurs frequently throughout the remainder of this book. Finally,
Chap. 4 introduces a set of reference scenarios that illustrate how self-aware
computing systems differ from their non-self-aware counterparts. The scenarios,
which are used and built upon in subsequent chapters of this book, have been
chosen to cover a broad range of application areas and to span to the fullest possible
extent the taxonomy established in Chap. 3. The simplest, least complex point on
this scale is a self-aware sorting algorithm, which nonetheless affords some inter-
esting explorations of self-awareness at design time and run time. The self-aware
data center scenario allows us to explore multiple interacting self-aware compo-
nents representing multiple interests, and several medium- to large-scale
cyber-physical systems’ scenarios (including smart homes, smart grids, and smart
transportation systems) allow us to explore the issues of cooperation, competition,
and heterogeneity.

Part II of this book consists of four chapters that explore the architectures for
self-aware computing systems. First, Chap. 5 introduces generic concepts and
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notations that allow one to describe and compare a wide range of self-aware system
architectures in terms of elements and relationships among those elements. Based
upon UML (Unified Modeling Language), these architectural concepts follow
explicitly from the self-aware computing definition and taxonomy introduced in
Part I of this book. Moreover, the smart home reference scenario introduced in
Chap. 4 serves as a running illustration of how the notation can be used to describe
the architecture of a self-aware system. Subsequent chapters in Part II build upon
the foundation laid in Chap. 5. Specifically, Chap. 6 delves into architectures for
individual (isolated) self-aware systems, while Chap. 7 treats architectures for
collectives in which multiple self-aware systems interact with one another. Both
of these chapters explore several points in the self-aware systems taxonomy
established in Chap. 3. In Chap. 6, special consideration is given to pre-reflective,
reflective, and meta-reflective self-aware system architectures, while in Chap. 7, the
major emphasis is placed upon the various types of relationships and organisational
patterns that may exist among the interacting self-aware systems that make up the
collective, as well as the relationship between the individual and collective
self-awareness. The final chapter of Part II, Chap. 8, reviews the present state of
reference architectures, architectural frameworks, and languages for self-aware
systems and compares them with the ideas presented in the previous chapters of
Part II. It also lays out a set of open challenges for self-aware system architectures.

Part III contains seven chapters that focus on the methods and algorithms for
self-aware computing systems. The first three chapters treat issues pertaining to
system design, such as modeling, synthesis, and verification. First, Chap. 9 dis-
cusses the nature, origin, scope, and purpose of self-modeling and its critical role in
supporting system self-awareness. An interesting insight is that while models of a
system may certainly be imbedded within that system at design time, a system can
be much more flexible and adaptive if it possesses the capability to create and
modify models of itself at run time—and endowing systems with the ability to learn
both the structure and the parameters of such models is an interesting design
challenge in itself. Chapter 10 offers a set of strategies for retrofitting self-awareness
into legacy non-self-aware systems, and Chap. 11 discusses the synthesis and
verification of self-aware computing systems. The next two chapters of Part III
discuss a key run-time issue: adaptation. Chapter 12 explores how adaptation arises
from an interplay among learning, reasoning, and acting in individual self-aware
systems, while Chap. 13 explores how collective interactions among adaptive
self-aware entities may lead to disastrous or beneficial emergent behaviors, and
offers a number of possible diagnoses and remedies for undesirable behavior. The
final two chapters of Part III discuss a variety of approaches for characterizing and
measuring the self-awareness. Chapter 14 defines the metrics and benchmarks for
the self-aware computing systems, while Chap. 15 discusses the problem of
assessing self-awareness from a more general and philosophical perspective.

Part IV contains ten chapters on the applications and case studies in various
domains, and the degree to which self-aware computing approaches have been
adopted within those domains. The first seven chapters focus on the aspects of
self-awareness in the context of cloud computing. Chapters 16 and 17 discuss using
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and learning models to support the performance management in data centers, while
Chap. 18 treats online workload forecasting, which can be viewed as learning
models of the environment in which the performance management system is situ-
ated. Chapter 19 reviews the state of virtual machine (VM) management in data
centers, which (as also explained in the data center reference scenario section of
Chap. 4) falls short of self-awareness for several reasons. One reason is that VM
management systems tend to address lower-level metrics rather than adopting the
application perspective—a shortcoming that is addressed in Chap. 20, which
explores self-awareness of cloud applications. This is followed by two chapters that
explore the self-awareness and security in cloud-based systems. Chapter 21
explores the software architectures for self-protection, while Chap. 22 discusses the
benchmarks for intrusion detection systems. The final three chapters of Part IV
extend the applications and use cases beyond the domain of data centers. Chapter
23 discusses the self-aware networks. Chapter 24 discusses the cyber-physical
systems, with a special emphasis on run-time architectural models that may well
apply broadly, beyond this specific application domain. Both Chaps. 21 and 24 can
serve as practical complements to the more general and theoretical treatment of
architecture in Part II. In the final chapter of Part IV, Chap. 25, we expand our
horizons quite literally by discussing the vital role that self-aware computing plays
in the control of autonomous spacecraft.

The final section of this book, Part V, consists of a single chapter on open
challenges and future research directions for self-aware computing systems.

Intended Readership

This book is intended to serve two audiences. First, it may be used as a handbook
for professionals and researchers who work in the areas related to self-aware
computing. Second, it may be used as an advanced textbook for lecturers and
students of postgraduate courses on any of the many subjects that relate to
self-aware computing, such as advanced software engineering, autonomic com-
puting, self-adaptive systems, data center resource management, and any of the
other fields mentioned in Chap. 2. The reader is assumed to be generally acquainted
with the principles and practices of computer science or software and systems
engineering, but no specific expertise in any subfield of computer science is
required. For the most part, each chapter is self-contained, and plenty of references
are provided for those who wish to pursue the topic more deeply.

Wiirzburg, Germany Samuel Kounev
Hawthorne, NY, USA Jeffrey O. Kephart
Wiirzburg, Germany Aleksandar Milenkoski
Santa Clara, CA, USA Xiaoyun Zhu

January 2017
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Chapter 1
The Notion of Self-aware Computing

Samuel Kounev, Peter Lewis, Kirstie L. Bellman, Nelly Bencomo,
Javier Camara, Ada Diaconescu, Lukas Esterle, Kurt Geihs, Holger Giese,
Sebastian Gotz, Paola Inverardi, Jeffrey O. Kephart and Andrea Zisman

Abstract We define the notion of “self-aware computing” and the relationship of this
term to related terms such as autonomic computing, self-management, and similar.
The need for a new definition, driven by trends that are only partially addressed by
existing areas of research, is motivated. The semantics of the provided definition
are discussed in detail examining the selected wording and explaining its meaning
to avoid misleading interpretations. This chapter also provides an overview of the
existing usage of the term self-aware computing, respectively self-awareness, in
related past projects and initiatives.
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4 S. Kounev et al.

1.1 Introduction

There have been a number of research projects and initiatives in computer science
and engineering that have explicitly engaged with the notion of self-awareness in
computing. Some examples include the SElf-awarE Computing (SEEC) project at
MIT and University of Chicago, the ASCENS and EPiCS FP7 EU Projects, the
FOCAS FET Coordination Action, and the SEAMS Dagstuhl Seminars and work-
shop series. Relevant work can be found in several different areas and communities
including autonomic computing, machine learning and artificial intelligence, multi-
agent systems, self-organizing and self-adaptive systems, situation- and context-
aware systems, reflective computing, model-predictive control, as well as work from
the models @run-time community. Recent reviews of relevant work [21, 29, 32] have
grouped contributions either by community or by thematically and have found that
the terms themselves often lack precise definitions.

This book adopts the notion of self-aware computing as defined by the Dagstuhl
Seminar 15041 “Model-driven Algorithms and Architectures for Self-Aware Com-
puting Systems”' held on January 18-23, 2015. The seminar brought together
researchers from the respective communities to discuss the past and future trends
in self-aware computing and encourage active collaborations and cross-fertilization
between related research efforts. An important first step in this direction was the
formulation of a new definition of the term “self-aware computing system” integrat-
ing the different ways in which this term is used in the interdisciplinary research
landscape. In this chapter, we introduce this new broader notion of “self-aware
computing” and provide an overview of previous projects and initiatives that have
explicitly used this term in the past. By providing a common language, we aim
to foster interaction and collaboration between the respective research communi-
ties, raising the awareness about related research efforts and synergies that can be
exploited to advance the state of the art.
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1.2 Definition of Self-aware Computing

Definition 1.1 Self-aware computing systems are computing systems that:

1. learn models capturing knowledge about themselves and their environment
(such as their structure, design, state, possible actions, and runtime behavior)
on an ongoing basis and

2. reason using the models (e.g., predict, analyze, consider, and plan) enabling
them to act based on their knowledge and reasoning (e.g., explore, explain,
report, suggest, self-adapt, or impact their environment)

in accordance with higher-level goals, which may also be subject to change.

It is assumed that a self-aware system is built by an entity with some higher-level
goals in mind. This entity may be a human (e.g., a developer) or a set of humans
(e.g., a developer team), but it does not necessarily have to be. The entity that built
the system may also be another computing system, at a higher level, that generates
a new system for a given purpose (e.g., in the form of executable code or models).

The major distinctive characteristics of a self-aware computing system are as
follows: (i) it must have the capability to learn models on an ongoing basis, capturing
knowledge relevant to the purpose for which it is built, and (ii) it must be able to use
the models to reason about this knowledge and act accordingly. Both the learning
and reasoning parts are driven by the system’s goals, which may be established by
the entity that built the system, by the end user of the system, or by a combination
of the two. The goals are referred to as higher-level goals to emphasize that they are
at a higher level of abstraction than the system itself and they are not under its direct
control. Note that the system itself may generate its own goals (at lower levels) as
part of its learning and model-based reasoning processes.

It is assumed that the learned models capture knowledge about the system and its
environment. We note that for some systems, the boundary between what is consid-
ered “knowledge about the system itself” and what is considered “knowledge about
the environment” is somewhat blurred. Therefore, we do not require a strict sepa-
ration of the learned models with respect to whether they capture knowledge about
the self or knowledge about the environment in which the self operates. However,
it is expected that both the amount and scope of the acquired knowledge should be
driven by the higher-level goals and what information could possibly be of use to
achieving them.

The term “model” is used here in a general sense and refers to any abstraction of the
system and its environment that captures some knowledge and may be used for rea-
soning with respect to the system goals. In his general model theory, Stachowiak [33]
identifies the following three features as essential for models: (i) mapping: a model
is always a model of some original (which can be a model itself), (ii) reduction: a
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model always abstracts from the original by reflecting only a subset of its attributes,
and (iii) pragmatic: a model only replaces the original for a certain purpose. We
note that “purpose” in this context is understood as potential purpose or a general
utility, allowing for exploratory behavior. Usually, we further distinguish descriptive
models, which capture the originals as they are, from prescriptive models, which
describe envisioned futures (planned originals). Descriptive models, in our context,
describe a given system aspect that may be relevant with respect to the system’s
higher-level goals. We further distinguish predictive models that support more com-
plex reasoning such as predicting the system behavior under given conditions or
predicting the impact of a considered possible adaptation action. We note that the
descriptive, prescriptive, and predictive model categories are not strictly mutually
exclusive as both descriptive and prescriptive models can also be used for predictive
analysis and therefore can be predictive models as well.

Some examples of different types of models capturing various aspects that may
be relevant in a given scenario include:

e adescriptive model capturing the system’s resource landscape and software archi-
tecture and their performance-relevant parameters,

e a descriptive model describing the system’s possible adaptation actions (degrees
of freedom at runtime),

e a prescriptive model describing how to act in a given situation (e.g., after a com-
ponent failure),

e a descriptive model describing the system’s goals and policies (e.g., service-level
agreements),

e a predictive statistical regression model capturing the influence of user workloads
on the system resource consumption and energy efficiency,

e a predictive stochastic model allowing to predict the system performance for a
given user workload and resource allocation, and

e a control theory model used to guide the system behavior.

We stress that the term “learn” does imply that some information based on which
models are derived is obtained at system runtime, while also additional static infor-
mation built into the system at design time can be employed as well. Typically, a
combination of both would be expected; for example, a system may be built with
integrated skeleton models whose parameters are estimated using monitoring data
collected at runtime. The model learning is expected to happen on an ongoing basis
during operation, meaning that models should be continuously refined and calibrated
in order to better fulfill the purpose for which they are used.

Taken together, the learning and reasoning are expected to enable model-based
analysis at runtime that goes beyond applying simple rules or heuristics explicitly
programmed at system design time. Depending on the considered type of system and
its respective goals, different types of model-based reasoning may be relevant. For
example, in the context of an IT system that has been designed to guarantee certain
performance requirements, the following types of reasoning may be relevant:
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predict the load of an IT system (e.g., number of users or requests sent per unit of

time) in a future time horizon,

e predict the system performance (e.g., response time) for a given workload and
resource allocation (e.g., number of servers),

e predict the expected impact of a given system adaptation action (e.g., adding or
removing system resources) on the end-to-end system performance,

e determine how much resources need to be added to ensure that performance
requirements are satisfied under an increasing system workload, and

e estimate the system’s energy consumption at runtime and compare it to other

system configurations (e.g., with respect to voltage and frequency) in order to

select an optimal configuration.

An example of reasoning in the context of a cyber-physical system for traffic man-
agement may be to analyze the traffic situation in order to provide a recommendation
which routes to take for a given target destination. Another example, in the context of
medical implants, is a system that monitors concentrations of substances in the body
to determine if release of medication is needed in case these substances are not at the
right level. Further, a system monitors signals in the body (those before an epileptic
attack) in order to issue a warning signal/alarm in case patterns are identified that
match the pattern of an attack.

To clarify our intentions, we compare the terms learning, reasoning, and acting,
employed in our definition, with the weaker alternative terms observing and reacting.
While observing is a critical prerequisite for learning, learning clearly goes beyond
only observing by accumulating knowledge about the subject of observation over
time and manifesting this knowledge in reflective models. Also, reacting can be the
result of reasoning and acting; however, a system that only reacts, but does not reason,
does not have the capability to consider the current situation and its options before
it takes any action. Therefore, according to our definition, a self-aware computing
system is expected not only to observe and react, but also to learn, reason, and act.

By stressing the role of model learning and model-based reasoning, driven by
higher-level goals, we distinguish the term self-aware computing from related terms
such as autonomic computing or self-adaptive systems. Although, in most cases, it
would be expected that the system uses the learned models to reason and self-adapt
to changes in the environment, we note that self-adaptation (often referred to as
self-expression in this context) is not strictly required. In this way, we accommodate
cases where all adaptation actions must be supervised and authorized by an entity
outside the system, such as the entity that built the system or a human system user. For
example, in mission-critical cognitive computing applications, systems may provide
recommendations on how to act; however, the final decision on what specific action
to take is often made by a human operator.
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1.3 Previous Initiatives in Self-aware Computing

As mentioned earlier, there have been a number of research projects and initiatives
that have explicitly engaged with the notion of self-awareness in computing. Here,
we provide an overview of some of the most significant efforts, perspectives, and key
contributions. In the next chapter, we discuss previous work in self-aware computing
in more detail, contextualizing the perspectives taken in this book.

1.3.1 Self-awareness in Artificial Intelligence

Self-awareness has long been of interest in the artificial intelligence (AI) commu-
nity. In particular, studies have focused on higher levels of self-awareness such as
meta-self-awareness: a system’s awareness of its own self-awareness. This concept
overlaps significantly with meta-cognition, defined by Metcalfe and Shimamura [22]
as knowing about knowing. Integration of Al technologies into the systems that, as a
result of the integration, exhibit self-awareness of this meta-cognitive form has been
on DARPA’s research agenda for some time [27]. Indeed, architectural issues in
building such integrated systems which then exhibit self-awareness were the subject
of a DARPA workshop [4] in 2004.

One example of the consideration of self-awareness in the artificial intelligence
community is the algorithm selection problem, where a system can reason about
its own reasoning; that is, it possesses meta-cognition and can select an appropriate
reasoning method according to its situation [8]. In autonomous robotics, it has been
argued that self-awareness is not only beneficial, but also essential for safety and
robot ethics [29].

Furthermore, self-awareness is not only a property that can be observed at an
individual level, but also something that can arise in a collective intelligence context.
For example, a group of robots with simple behavioral rules and local interactions
may arrive at an emergent awareness of the properties of the group, including its
history and interactions with the world, though this awareness is distributed across
the individual units [23].

1.3.2 Engineering Self-aware Systems

While meta-cognition or meta-self-awareness is concerned with higher reasoning
abilities and is of particular interest in artificial intelligence, efforts exist at a more
fundamental level to engineer systems that explicitly consider knowledge about them-
selves. Agarwal et al. [1, 2] put forward a case for a paradigm shift in system design
practice. The idea here is to move from a procedural design methodology wherein
the behavior of the computing system is preprogrammed or considered beforehand
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(i.e., at design time), toward a self-aware system where this is not required and the
system adapts to its context at runtime. One aim is to avoid or reduce the need to con-
sider the availability of resources and various other constraints beforehand, instead
intelligently trading-off available resources for performance at runtime.

For example, the programming effort required to build a system to satisfy carefully
considered specifications could be reduced if there are resources at hand for the
system to use in an automated manner in order to optimize its own behavior, such
that it achieves a goal given the current constraints. A self-aware computer is thus
given a goal, and it automatically works to achieve the goal, for example with the
minimal amount of energy or other resources. In order to facilitate the engineering
of such systems, Hoffman et al. have developed a general and extensible framework
for self-aware computing [14], which integrates both control theory and machine
learning methods.

Self-awareness has also been proposed as a way to tackle the increasing com-
plexity and dynamics associated with modern service-based IT systems. Huber et
al. [19] proposes that self-aware software services, which have built-in models of
their own architecture and dynamic aspects of the system’s interactions with its
environment, can improve the utilization of resources, while continuing to satisfy
quality-of-service requirements. Further, Kounev et al. [18] highlight self-reflection,
self-prediction, and self-adaptation as key characteristics of self-aware service-based
systems and propose that methodologies for the systematic engineering of self-aware
systems are needed.

Importantly, for a system to be self-aware, it is not required to be highly com-
plex; indeed, the scalability of the concept means that self-awareness has also been
considered in much simpler systems. An example of this is the so-called cognitive
radio devices [11], which monitor and control their own capabilities and also com-
municate with other radio devices to monitor theirs. This enables them to improve
the efficiency of communication by negotiating changes in parameter settings [34].
We will explore a wide range of self-awareness concepts in the following chapter,
where both minimal examples such as this and more “full-stack” self-aware systems
will be compared.

In order to design self-aware systems, various enabling technologies have been
proposed in the form of application heartbeats [13, 31], for establishing a standard
way of setting application goals and evaluating the performance of the system while
trying to achieve the goals and the use of heuristic and machine learning techniques
for adaptation and decision making on the part of the system. An example of the
latter is the use of reinforcement learning in order to optimize a scheduling policy
for system components to gain access to the critical section within applications [10].

1.3.3 Self-awareness in Pervasive Computing

The pervasive computing community is also interested in self-awareness, due to the
typically mobile characteristics of agents, whose context continuously changes. As
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such, they need to synthesize knowledge based on their own state and environment,
in order to adapt to changes. Often, monitoring and adaptation are studied in the
context of human—computer interaction, since the interest is on how such systems
self-adapt in order to be useful to humans in different situations (e.g., “going for a
run”). Ye et al. [35] discuss issues and challenges involved in assimilating sensor
data from a myriad of sources in order for pervasive computing systems to identify
situations that human users may be in. They show a shift in techniques over time
from logic-based ones toward those that are learning-based, as the sensor data have
become more complex, erroneous, and uncertain, with sensors becoming ever more
pervasive. The learning of mappings between sensor data and the situation, given
the current model building techniques, poses challenges such as the lack of training
data, which can lead to low performing models. This has been tackled by considering
unsupervised learning [5, 12] and Web mining [28], allowing for extracting com-
monsense knowledge. Another line of research within pervasive computing concerns
constructing simulation models of contexts, for applications to be tested in [15].

1.3.4 Systems with Decentralized Self-awareness

Self-awareness research is not limited to an entity or system in itself being able
to monitor and reason about itself, but also describes emergent phenomena [23] in
collective systems. In natural systems such as ant colonies and the immune system,
the awareness of the global state is distributed across the elementary units that make
up the system (e.g., ants and their trails) and is statistical in nature. This helps the
system stay robust at the global level in the face of disturbances. In essence, the
system as a whole is aware enough of itself to understand when the globally stable
state gets disturbed and engages the elementary units to collect information locally,
which builds up in a statistical fashion, helping the elementary units use this statistical
information to get the system back into the globally stable state. Mitchell proposed
[23] that such systems can provide guidelines for designing artificial intelligence
systems with decentralized architectures, for example robotic swarms, which exhibit
apparent self-awareness.

One example of where such a system has been developed is within the SWARM-
BOTS project [24]. One of the objectives of the SWARM-BOTS project was the
design and implementation of a novel mobile robot, called an s-bot. While s-bots’
individual capabilities within an environment are physically limited (much like indi-
vidual insects in the natural world), through local communication they are able to
self-assemble [9] into larger structures, known as swarm-bots, which are capable of
achieving goals not reachable by individual s-bots. Examples of such goals might
include navigation over challenging terrain or the transportation of large objects;
in all cases, these tasks cannot be solved without the coordinated movements of
individual s-bots.

In this context, it is important to consider the relationship between the individ-
ual systems’ self-awareness, the self-awareness of neighboring systems, and the
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self-awareness of the collective as a whole. Zambonelli et al. [36] discuss some of
the issues involved here, considering the aspects of self-awareness relating to the
ability of the components to recognize situations and changes in situations (both
internal and external) in a collective system. This self-awareness is then used to
drive self-expression, including adaptation to the new situation. Importantly, this
self-expression also occurs at the level of the collective.

Other research challenges within the area of self-assembly, or structural self-
organization, include better understanding of how system structures, rather than
individual behaviors, can be adapted over time with respect to the system’s distributed
sense of self-concept [17].

1.3.5 Computational Self-awareness

Lewis et al. [20] propose that human self-awareness can serve as a source of inspira-
tion for a new notion of computational self-awareness and associated self-expression,
behavior based on self-awareness. These comprise various capabilities, encapsu-
lated as different “levels” of self-awareness, based on cognitive psychologist Ulric
Neisser’s [25] broad set of levels of human self-awareness. The intention is to explic-
itly account for a full spectrum of existing and future systems, including simple
systems which sense and learn about themselves, as well as what might typically
be considered highly advanced artificial intelligence. The levels of computational
self-awareness provide one axis on which to compare how self-aware a computing
system is. Lewis et al. argue that increased self-awareness (in terms of the levels) can
improve a system’s ability to manage complex trade-offs in changing conditions.

They introduce a general framework for the description of the self-awareness prop-
erties of computing systems, which includes a reference architecture and a series of
derived architectural patterns. These can be used by engineers to determine whether,
how, and to what extent to build self-awareness capabilities into a system. The frame-
work proposed by Lewis et al. has been used to consider the self-awareness properties
of such diverse systems as distributed smart cameras [30], heterogeneous reconfig-
urable multi-core systems [3], and fault tolerance in avionic systems [26].

Lewis et al.’s notion of computational self-awareness [20] intentionally includes
many existing and prior systems, which have not been previously described as self-
aware. Nevertheless, these systems use capabilities, which fulfill some self-awareness
aspect, often due to their benefit in a complex environment.

1.4 A Concept of a Self-aware Learning and Reasoning
Loop

In autonomic computing, the system behavior is typically represented as a control
loop. To structure the principle of operation exhibited by autonomic managers, [16]
defined a reference architecture based on a control loop, typically referred to as the
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Fig. 1.1 MAPE-K autonomic control loop [16]

MAPE-K loop. This reference architecture has the advantage that it offers a clear
way to identify and classify areas of particular focus, and thus, it is used by many
researchers to communicate the architectural concepts of autonomic systems.

In the following, we contrast the MAPE-K loop used in autonomic computing to
the concept of self-aware computing as defined above. To this end, we first briefly
describe the MAPE-K loop. The acronym MAPE-K reflects the five main constituent
phases of autonomic loops, i.e., MONITOR, ANALYZE, PLAN, EXECUTE, and KNOWL-
EDGE, as depicted in Fig. 1.1. Basically, the MONITOR phase collects information
from the sensors provided by the managed artifacts and its context. The ANALYZE
phase uses the data of the MONITOR phase to assess the situation and determine
any anomalies or problems. The PLAN phase generates an adaptation plan to solve a
detected problem. The EXECUTE phase finally applies the generated adaptation plan
on the actual system. A cross-cutting aspect shared among all phases of the loop
is the KNOWLEDGE about the system and its context, capturing aspects such as the
software architecture, execution environment, and hardware infrastructure on which
the system is running.

The software engineering community uses a similar feedback loop concept, distin-
guishing the four phases COLLECT, ANALYZE, DECIDE, and ACT [7]. Conceptually,
the behavior of these phases is similar to the phases in the MAPE-K loop; how-
ever, this concept does not explicitly consider the KNOWLEDGE part. More details
about the use of feedback loops in self-adaptive systems, such as the use of multiple,
multi-level, positive, or negative feedback loops, are given by [6].

Although the notion of self-aware computing, as defined in this book, has some
common aspects with the concept of a feedback loop, such as MAPE-K, there are
some important differences. While the MONITOR and ANALYZE phases of MAPE-K
imply that information is gathered and analyzed continually at runtime, this does
not necessarily imply that the acquired information is abstracted and used to learn
models on an ongoing basis during operation. Similarly, while taken together, the
ANALYZE and PLAN phases can be compared to the model-based learning and rea-
soning processes in self-aware computing, the latter requires that the type of analysis
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Fig. 1.2 Self-aware learning and reasoning loop: LRA-M loop

conducted at runtime based on the learned models goes beyond applying simple
rules or heuristics explicitly programmed at system design time. Finally, the EXE-
CUTE phase in MAPE-K implies that the system self-adapts at runtime. In contrast,
as mentioned earlier, self-adaptation (or self-expression) is not strictly required in
self-aware computing. A self-aware computing system may provide recommenda-
tions on how to act; however, the final decision on what specific action to take may
be left to a human operator, for example, as typical for many cognitive computing
applications.

Figure 1.2 illustrates our concept of a model-based learning and reasoning loop
(LRA-M loop) capturing the main activities in a self-aware computing system. The
figure shows the self and its interfaces to the environment in which it is operating.
The activities within the self are driven by its goals and its observations collected as
empirical data about relevant aspects of the system and its environment, its users, and
so on. The empirical data are used as a basis for the ongoing LEARNING process, as
part of which observations are abstracted into models capturing potentially relevant
aspects of the system and its environment (such as their structure, design, state, possi-
ble actions, and runtime behavior). The learned models form the system’s knowledge
base (corresponding to the KNOWLEDGE part in the MAPE-K loop), which provides
the basis for the system’s REASONING process. The reasoning process may trigger
ACTIONS affecting both the behavior of the system itself (self-adaptation) and pos-
sibly impacting the environment. The actions may also affect the system’s learning
and reasoning activities themselves, for example, by focusing the learning process on
selected aspects or observations. We note here that although we explicitly distinguish
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the learning process from the reasoning process, it is not strictly required that in a
self-aware computing system, these processes are separated, since in many cases the
two activities may be interwoven.

1.5 Conclusion

The two major distinctive characteristics of a self-aware computing system are as
follows: (i) it must have the capability to learn models on an ongoing basis, capturing
knowledge relevant to the purpose for which it is built, and (ii) it must be able to use the
models to reason about this knowledge and act accordingly. The term “model” refers
to any abstraction of the system and its environment that captures some knowledge
and may be used for reasoning with respect to the system’s goals. Both the learning
and reasoning parts are driven by the system’s goals, which may be established by the
entity that built the system, by the end user of the system, or by a combination of the
two. Taken together, the learning and reasoning are expected to enable model-based
analysis at runtime that goes beyond applying simple rules or heuristics explicitly
programmed at system design time. As discussed in this introductory chapter, the
notion of “self-aware computing” is strongly related to existing notions such as
autonomic computing, self-management, and similar. The novelty of the term is that
it explicitly stresses model learning and reasoning as ongoing processes built into a
system’s design. Thus, the role of models capturing static and dynamic knowledge
about the system, as well as the use of model-driven algorithms and architectures as
a basis for reasoning, is central to the vision of self-aware computing systems.
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in different research areas, such as artificial intelligence, organic computing, or auto-
nomic and self-adaptive systems. This chapter provides an overview of strongly
related concepts and areas of study from the perspective of self-aware computing
systems.

2.1 Introduction

The notion of self-aware computing encompasses different aspects which have
already been the subject of study in different research areas of computer science.
In fact, systems that feature one or several desirable characteristics in a self-aware
computing system, such as being able to learn models about itself and its environment,
reasoning, planning, or providing explanations, are already a reality. The construc-
tion of such systems has been made possible thanks to the research efforts carried
out in areas such as artificial intelligence, autonomic computing, self-adaptive and
self-organizing systems, or cognitive computing. As it happens, many of these disci-
plines will foreseeably be strongly intertwined with research in the area of self-aware
computing, making it stand on the proverbial shoulders of giants.

This chapter presents an overview of concepts and research areas strongly related
to self-aware computing. Every section presents a different area of research and
explores its relation to self-aware computing systems. Note that there are disciplines
that cannot be considered as fully within the scope of computer science (e.g., cyber-
netics) in which engineers employ ideas that are well aligned with the areas for which
we provide an overview in this chapter. However, those areas are not discussed in
this chapter due to space limitations.

This chapter starts with an overview of different related forms of control in
Sect.2.2. Next, Sect.2.3 lays down the foundation for the rest of the chapter by
presenting an overview of one of the existing perspectives on artificial intelligence
that resonates most closely with self-aware computing systems.

After the introduction of the basics, Sect. 2.4 presents an overview of autonomic
computing, which enables the construction of systems able to manage themselves
in accordance with a set of high-level objectives specified by administrators or sys-
tem users. Section2.5 describes organic computing, which deals with the study of
systems that dynamically adapt to changing conditions and exhibit a number of
self-* properties, as well as context awareness. Next, Sect.2.6 introduces service-
based systems and cloud computing, including concepts such as location-transparent
computation and autonomous services as agents. Section2.7 provides an overview
of self-organizing systems, which are able to organize themselves according to the
laws of the environment within which they execute. Then, Sect. 2.8 introduces self-
adaptive systems, which are strongly related to autonomic systems and able to adjust
their own behavior in response to its perception of the environment and the system.

Section2.9 introduces reflective computing and the notion of computational
reflection as the system’s ability to reason about its own resources, capabilities, and
limitations in the context of its current operational environment. Next, Sect.2.10
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introduces models at run-time, that is, abstract self-representations of a system
focused on a given aspect that may include its structure, behavior, or goals. This
section also explores the relation between models at run-time and the concept of com-
putational reflection presented in Sect.2.9. Section2.11 presents situation-aware and
context-aware systems, in which the emphasis is made on building human—-machine
systems that observe, evaluate, and act within diverse situations that include a com-
prehensive set of factors that correspond to people, location, and events, as well as
other environmental factors. Section2.12 presents symbiotic cognitive computing,
which are multi-agent systems that comprise both human and software agents that
collectively perform cognitive tasks such as decision-making better than human or
software agents can by themselves. Then, Sect.2.13 covers auto-tuning, which deals
with the automation of performance tuning, mostly for scientific applications.

After presenting an overview of different related areas and concepts, Sect.2.14
provides a constructive definition of self-aware computing system that makes some
considerations concerning the different factors influencing feasibility, capabilities,
and ultimately determine under which conditions it is possible to actually develop a
self-aware computing system, and how.

2.2 Control

In control theory, several advanced forms of control and adaptive control have been
developed that involve learning, reasoning, and acting as well as models employed
online as outlined for self-aware computing systems as introduced in Chap. 1. To
compare self-aware computing systems with adaptive control architectures applied
to software, we look at first into model reference adaptive controllers (MRACs) and
model identification adaptive controllers (MIACs) in the following.

In case of model reference adaptive controllers (MRACs) [33, 37], a reference
model defining desired closed-loop performance is employed to steer the adaptation.
Consequently, the scheme is comparable to a prediction model of what is wanted
that is used to steer the adaptation of the controller. However, as we have a prediction
model of the plant only but not of the controller there is no process like learning
involved, as the reference model is given at design time. The reference model is
more a form of a given (high level) goal that is employed to steer the adjustments.

The model identification adaptive controller (MIAC) [37] scheme performs some
form of system identification while the system is running, which can be compared
to learning a model and then reasoning about the learned model to determine how
to adjust the controller. However, we learn only a model only of the plant and not of
the controller and therefore, if the plant is the context, we have context awareness
only, and if the plant is a part of the system, we have self-awareness. As both cases
are required for self-awareness according to Chap. 1, employing the MIAC scheme
only leads to a self-aware computing system if the software and the environment are
somehow subject to system identification.
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Model-predictive control (MPC) [72] uses a model of the plant and a finite hori-
zon for the predictions of the future output. The predicted outputs are employed to
compute optimal set points (steady-state optimization). The optimal set points are
then employed to calculate required control inputs to achieve the set points. When
self-aware computing systems are compared with model-predictive control, architec-
tures using a predictive model to plan the impact of future control actions such that
the given criteria are optimized (according to goals) can be mapped to the reasoning
and action. MPC can also be combined with system identification (cf. [40]) similar
to MIAC as thus also a learning component is possible. However, MPC employing
system identification learns a model only of the plant and not of the controller and
therefore, if the plant is the context, we have context awareness only, and if the plant
is a part of the system, we have self-awareness. As a link in the case of MIAC,
both cases are required for self-awareness according to Chap. 1, employing the MPC
with system identification scheme only leads to a self-aware computing system if the
software and the environment are somehow subject to system identification.

Overall we can conclude that if the software and the environment are somehow
subject to system identification, the system identification in control theory is com-
parable to the learning of self-aware computing systems. Also the MPC scheme of
control theory can be seen as a special case of reasoning and acting (adapting) of
self-aware computing systems. Finally, reference models in the MRAC scheme of
control theory are a special case of static goals as considered by self-aware comput-
ing systems. Consequently, it can be argued that also self-aware computing systems
in case they adapt the software behavior like less advanced forms of self-adaptive
systems can likely largely benefit from the achievements of control theory. However,
as also for the less advanced forms of self-adaptive systems principles and solutions
of control can only be applied to software systems in restricted cases and the transfer
of applicable control theory results to self-aware computing systems is still in its
infancy.

2.3 Artificial Intelligence

There are many different perspectives on artificial intelligence, but the one that res-
onates most closely with self-aware systems is that adopted by Russell and Norvig
in their book “Artificial Intelligence: A Modern Approach” [69], according to which
artificial intelligence is fundamentally about designing and building rational agents.
Wooldridge and Jennings [85] further define an agent as a software-based computer
system that enjoys the following properties:

1. autonomy: agents operate without the direct intervention of humans or others and
have some kind of control over their actions and internal state;

2. social ability: agents interact with other agents (and possibly humans) via some
kind of agent-communication language;
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3. reactivity: agents perceive their environment and respond in a timely fashion to
changes that occur in it; and

4. proactiveness: agents do not simply act in response to their environment, and they
are able to exhibit goal-directed behavior by taking initiative.

By emphasizing social ability as an essential property of agents, Wooldridge and
Jennings suggest that agents typically exist in environments in which other agents are
present, and that they interact with one another via some sort of agent-communication
language, thereby forming multi-agent systems.

Self-aware computing systems as defined in this chapter possess the characteristics
of autonomy, social ability, reactivity, and proactivity and can therefore be understood
as types of agents or multi-agent systems that achieve these characteristics via the
specific approach of learning models and using those models to determine how best
to satisfy their goals.

2.3.1 Overview of Agents and Multi-agent Systems

A software agent can be defined, very generally, as a software entity that can accom-
plish tasks on behalf of its user, by acting within its environment [60]. In [69], agents
are also referred to as rational entities, meaning that they would take the best pos-
sible action, considering available information and capabilities, to approach their
objectives: “For each percept sequence, a rational agent should select an action that
is expected to maximize its performance measure, given evidence provided by the
percept sequence and whatever built-in knowledge the agent has.”

A wide variety of agent types, with more specific abilities and characteristics, has
been defined within this vast area to address the particularities of different domains,
based on different approaches. An extensive review of all agent types would be well
beyond the scope of this chapter. We merely aim to highlight here the most relevant
types that would help us compare multi-agent systems with self-aware computing.

We consider several dimensions of comparison, whereby agents can be either
deliberative or reactive; mobile or static; and feature various combinations of key
characteristics, such as autonomy, learning, and social interaction. In the context of
self-aware computing, we are mainly concerned with aspects of autonomy, reasoning,
learning, and social abilities. Hence, we will focus on discussing these next.

A deliberative agent is the “one that possesses an explicitly represented, symbolic
model of the world, and in which decisions (e.g., about what actions to perform) are
made via symbolic reasoning” [85]. Conversely, reactive agents reach their objectives
by implementing a stimulus-response (or reflex) behavior, merely reacting to changes
in their environment with corresponding actions. Hence, they do not posses symbolic
representations or reasoning capabilities [15].

Russel and Norvig [69] refine this agent typology further, defining goal-oriented
and utility-based agents. These correspond to deliberative agents that pursue goals
in a binary manner—either achieving the goal or not achieving it—or in a more



22 J. Camara et al.

modulated manner—where goal achievement can be equated to various degrees of
utility. Russel and Norvig also refine reflex-based agents into basic and model-based
reflex agents, which are reactive agents with or without internal state, respectively.

An agent’s autonomy refers to its capability to operate without requiring human
intervention, in order to achieve its objectives, or goals, on behalf of its user. In the
context of deliberative agents, proactiveness is also considered as a key agent feature,
related to its autonomy. It implies that the agent will be “taking the initiative” for
reaching its goals, rather than simply reacting passively to its environment [85]. Of
course, deliberative agents can also react to environmental changes.

An agent’s learning ability allows it to adapt its behavior—e.g., via changes
in its knowledge and reasoning, or in its reflexes—based on interactions with its
environment, in order to increase its performance over time. Finally, an agent’s
social ability refers to its capability to interact with other agents, via some well-
defined communication language.

A multi-agent system (MAS) consists of multiple agents that are engaged in some
sort of interaction in order to accomplish one or several tasks, or goals. MAS is
typically employed to address complicated computing problems via a divide-and-
conquer technique—i.e., dividing the problem among a set of (specialized) agents,
which interact to compose partial results into a global solution. In the case of deliber-
ative agents, this implies that knowledge representation, acquisition, and reasoning
processes are also distributed among the agents.

2.3.2 Comparison with Self-aware Computing

Since the concept of agent has been used rather broadly across various applications
and domains, it has become an umbrella term for a wide variety of computing entities
that feature highly different capabilities and characteristics. Therefore, it is quite
difficult to provide an exact comparison of multi-agent systems with self-aware
computing systems, not at least since these later can also feature different kinds and
levels of self-awareness (Chap. 3). Considering these reasons, we only attempt here
to provide a general comparison, highlighting the main differences in focus between
the two concepts.

The concept of a self-aware computing system (as defined in Chap. 1) is mostly
compatible with that of a deliberative agent, which features autonomy, learning,
and social abilities—i.e., a “smart agent” in [60]. Indeed, like deliberative agents,
self-aware computing systems can possess models of the world that are explicitly
represented and on which they can reason in order to achieve higher-level goals (rep-
resenting the user). In addition to an agent’s world models, self-aware systems must
also possess models of themselves and must reason on these to perform actions—e.g.,
self-adaptation to ensure system autonomy in a changing environment; explaining
and reporting their current states (and their probable causes) to users, or to other
systems; or suggesting means of rectifying undesirable or suboptimal states. Conse-
quently, the learning capabilities of self-aware systems must apply to both models
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representing their environments and themselves. Here, self-aware systems focus on
the particular problem of agent autonomy, within a changing environment and/or in
the presence of internal faults, rather than on problem-solving in general, as is the
case for multi-agent systems.

Like social agents, self-aware computing systems may also interact with other
systems, either by direct communication or by indirect influence within a shared
environment. The systems that such a self-aware system interacts with may feature
various levels of self-awareness, or may be non-self-aware. In case of direct commu-
nications, a self-aware system’s interactions can be equated to agent communications
(and hence represent social skills). A specific feature of self-aware computing sys-
tems consists in the extent to which they can be, or become, self-aware of the other
systems that they interact with—e.g., acquiring and maintaining models of them.
This can also be the case in some agent-oriented approaches, like with game the-
oretical agents, yet here the agents’ awareness of each other is typically provided
at design time, then potentially refined during run-time. Another interesting feature
here consists in the lack of assumptions on the other systems’ self-aware capabilities
(i.e., heterogeneity of self-awareness levels across a collective of systems). Again,
this can be the case in some multi-agent systems—such as some game theoretical
cases—yet the agent’s self-awareness levels are typically predefined, depending on
their roles.

2.4 Autonomic Computing

The autonomic computing initiative [35] was spurred by a concern that rapid growth
in the complexity of IT systems would outstrip the ability of IT administrators to
cope with that complexity. The proposed solution was for the system to take upon
itself a large portion of the management burden. Just as the autonomic nervous system
governs our pulse, our respiration, and the dilation of our pupils, freeing our conscious
brain to attend to higher-level cognitive functions, the goal of autonomic computing
is to create computing systems that manage themselves in accordance with high-
level objectives from administrators or system users. While initially conceived as a
paradigm for the future of IT management, over the course of time the principles,
objectives, and techniques of autonomic computing have come to be applied more
broadly, extending to physical systems such as data centers (and data center robots),
the Internet of things, and smart homes.

An early paper that outlined the vision and research challenges of autonomic
computing [41] laid out an architecture in which autonomic behavior was exhib-
ited at two levels. Autonomic elements (such as databases, Web servers, or physical
servers) were envisioned to use a combination of monitoring, analysis, planning,
and execution driven by knowledge (often referred to as the MAPE-K architecture
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or MAPE-K loop) to accomplish their own individual goals.! System-level auto-
nomic behavior was to be driven by system-level goals and accomplished through
well-designed interactions among multiple interacting autonomic elements whose
individual goals might be designed to support the desired system-level behavior.
The vision did not specify how the goals of autonomic elements might be derived
from system-level goals, nor did it specify how to design the interactions among the
autonomic elements; these were cited as difficult and important research challenges.

Comparing the definition and vision of autonomic computing systems to that of
self-aware computing reveals several similarities and a few distinctions. Employing
Knowledge to support the Monitoring, Analysis, Planning, and Execution functions
matches very closely the second clause of the self-aware computing definition, which
states that self-aware systems “reason using ... models ... enabling them to act.” Con-
tained within the Knowledge component of an autonomic element are one or more
models that the Analysis component can use to anticipate the likely consequence of
an action or a plan (a sequence of actions) that it is contemplating. The objective of
the Planning component is to move the autonomic element (or perhaps the autonomic
system in general) from its current state (as assessed by the Monitoring component)
to a state that it is deemed more desirable according to the high-level goals, which
are also held within the Knowledge component. One common approach to using
models and high-level goals to drive the behavior of autonomic elements and sys-
tems is utility functions. The state space is described in terms of attributes that the
administrator deems important (e.g., response time and power consumption), a utility
value is ascribed to each possible state, and the system selects an action that would
(according to models) lead to a state with the highest achievable utility value, given
the current resource of other constraints. Finally, regardless of the means by which
analysis and planning are accomplished, the autonomic element Executes the action
or plan deemed most desirable by the Planning component, the state of the auto-
nomic element (or the autonomic system) evolves (either in reaction to the action(s)
or an external change such as an increase in workload), and the MAPE-K process
continues. The execution step is the one point at which the autonomic computing
definition may differ from the reasoning clause of the self-aware computing defini-
tion. Autonomic computing requires execution, while self-aware computing permits
execution but does not require it. Nonetheless, in practice the field of autonomic
computing embraces work in which the system recommends an action, but allows a
human to judge whether or not to take it, viewing this as an important and necessary
evolutionary step toward full-fledged autonomic computing, not just as a matter of
making incremental technological progress, but also as a means for building user
trust.

n actuality, MAPE-K was not strictly an architecture (it was more of a statement about required
functionality than it was a statement about how those functions were to be woven together) nor was
it necessarily a loop, as the various components might typically be operating in parallel at all times
and not running in a strict order.
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The first clause of the self-aware computing definition concerns learning. Learning
has always been viewed as an important aspect of autonomic computing, and a
preferred means by which models are created, but autonomic computing does not
strictly require that an element or a system learn to be regarded as autonomic.

To summarize, while autonomic computing was initially proposed as an IT man-
agement solution, the current understanding of the term is much broader, and it
overlaps strongly with the definition of self-aware computing systems. The main dif-
ferences are that autonomic systems are not strictly required to learn, and self-aware
systems are not strictly required to act.

2.5 Organic Computing

An organic computing (OC) system is “a technical system which adapts dynami-
cally to the current conditions of its environment. It will be self-organizing, self-
configuring, self-healing, self-protecting, self-explaining, and context-aware” [58].

From its inception, OC started with a strong industry pull (including Daimler-
Crysler, Siemens, and Bosch) because of the shared belief across several industries
that we can no longer adequately design very large-scale, complex systems; complex
systems need to help us by designing parts of themselves and by managing parts of
themselves.

As part of this was the strong recognition by OC that complex systems have
emergence. That is, they have unplanned and unexpected side effects and emergent
properties at different levels because of the interactions among large numbers of
components under different operational conditions. The OC attitude is “How can we
take advantage of the fact that complex systems have emergence?” How can systems
use emergence as a source of controlled variation? How can we shape emergence to
go in desired directions?

Hence, from its inception, OC emphasized the importance of having systems that
could not only observe and adapt to the changing and demanding external world,
but also could observe and adapt their own goals, plans, resources, and behaviors
as necessary to correctly map to new contexts and requirements. Moreover, in OC
approaches, one will take advantage of this self-awareness to adapt to not only chang-
ing conditions and requirements, but even to new, emergent properties in the system
and its environment.

Although OC has different approaches to meeting the challenges of creating self-
adaptive and self-aware systems, the observer/controller architecture is an especially
important contribution to mention here because of its clear relationship and similarity
to several of the architectures in this book (see more in Chaps. 6 and 8). An early
description of the observer/controller architecture is depicted in Fig.2.1.

A key emphasis in OC is that complex systems need to have self-control and self-
adaptation abilities while always retaining important human-in-the-loop capabilities
so that humans can suitably monitor and control when necessary the results of inter-
acting and relatively autonomous computing systems. Hence, the observer/controller
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architecture is comprised of two top-level concepts: the organic system and a human
user, where the organic system adheres to the basic input/compute/output principle
of computing. The human user is seen as imposing goals and constraints at times
on the organic system, while reviewing the system status based on the OC system’s
self-reporting capabilities and whatever special human interfaces to system instru-
mentation have been added.

The organic system is further decomposed into three major components: the sys-
tem under observation and control (SuOC), the observer, and the controller. All
human interaction is relayed by the controller. Notably, the input/compute/output
principle is realized by the SuOC. Observer and controller impose a feedback loop
onto the SuOC, where the first observes the SuOC and reports to the controller, which
in turn controls the SuOC.

An important characteristic of the SuOC in organic computing is that it is com-
prised of agents, i.e., autonomous entities. In other words, the SuOC is already a
set of self-organizing systems. The observer and controller enhance this system to
achieve controlled self-organization.

As can be seen by this very brief description, there can be multiple observer—
controller layers in a given system. Furthermore, different kinds of self-awareness
capabilities, as discussed in the rest of this book, can contribute at many points in this
architecture; they will certainly occur in the observational and reasoning capabilities
of the observer, as well as potentially in the adaptive behaviors directed by the
controller.
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2.6 Service-Based Systems and Cloud Computing

In this section, we first introduce some basic concepts related to service-oriented
computing, followed by an overview of the area of cloud computing, emphasiz-
ing concepts relevant to self-aware computing systems, such as location-transparent
computation and the notion of autonomous services as agents.

2.6.1 Service-Based Systems

Service-oriented computing (SOC) and service-oriented architecture (SOA) are now
largely accepted as well-founded reference paradigm and reference architecture for
Internet computing [62]. Under SOC, networked devices and their hosted applica-
tions are abstracted as autonomous loosely coupled services that, while playing the
roles of service providers, consumers (aka clients), and registries, they also interact
by following the service-oriented interaction pattern (see Fig.2.2).

According to this pattern, a service has to define an interface publishable on
the Internet, researchable, and callable independently from a particular language or
platform. In order to obtain these requirements, a SOA application has to define roles
(not all required) as shown in Fig.2.2.

e Service Consumer: the entity that uses the service; it can be an application module
or another service;

e Service Provider: the entity that provides the service and exposes the interface;

e Service Contract: defines the format for the request of a service and the related
response;

e Service Registry: Directory on the Internet that contains the services.

Despite the remarkable progress of the SOC paradigm and supporting technolo-
gies in the last ten years, substantial challenges have been set through the evolution of
the Internet. Over the years, the Internet has become the most important networking
infrastructure, enabling all to create, contribute, share, use, and integrate informa-
tion and extract knowledge. As a result, the Internet is changing at a fast pace and
is called to evolve into the Future Internet, i.e., a federation of self-aware services

Fig. 2.2 Service-oriented N
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and networks that provide built-in and integrated capabilities such as service sup-
port, contextualization, mobility, security, reliability, robustness, and self-* abilities
of communication resources and services [28, 38].

In this wide spectrum, a SBS can be meaningfully seen as a composition of service
providers and consumers that interact by providing/requiring functionalities to/from
each other. A SBS is often opportunistically built for the purpose of achieving a
given goal. The goal typically expresses functional and non-functional high-level
requirements that the resulting composition has to fulfill. The former class captures
the qualitative behavior of a SBS, its functional specification. The latter defines the
SBS’s quantitative attributes such as performance, reliability, and security.

From a software engineering perspective, goal changes are always done to meet
the new requirements; e.g., users and involved business organizations may change
their functional needs and non-functional preferences. Moreover, it can be that the
services currently involved in the composition no longer perform as expected. On
the practical side, the source of this type of run-time changes can be, e.g., changing
conditions of the network through which services communicate, degrading com-
putational resources of the execution environments where services are deployed,
upgrading the version of the middleware on top of which services run, and remote
service substitution.

The knowledge that service consumers have depend on the contract (often
expressed by means of service behavioral models) exposed by the service providers
they want to interact with (interface only, interface plus interaction protocol, inter-
face plus interaction protocol plus non-functional attributes, etc.). As a consequence,
also the kind of reasoning that enables a SBS to act based on its knowledge depends
on the kind of models and notations used to describe service contracts.

Last but not least, since a SBS can be seen as a composition of services, the
way the system can act to enable self-awareness is constrained by the structure and
behavior of the adopted composition means. In particular, two forms of composition
to build SBSs can be distinguished, one centralized, i.e., service orchestration, and
one distributed, i.e., service choreography [5].

2.6.2 Cloud Computing

Cloud computing refers to the on-demand delivery of IT resources and applica-
tions via the Internet, possibly with a pay-as-you-go pricing. By referring to the
NIST definition of cloud computing [53], “cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or service-
provider interaction.” In other words, cloud computing is essentially about moving
services, computation, and data off-site to a location-transparent entity. Cloud com-
puting distinguishes three service models, as described below:
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e Software as a Service (SaaS): WAN-enabled application services (e.g., Google
Apps, Salesforce.com, and WebEx). The capability provided to the consumer is to
use the providers’ applications running on a cloud infrastructure. The applications
are accessible from various client devices through either a client interface, such as
a Web browser (e.g., Web-based email), or a program interface.

e Platform as a Service (PaaS): Foundational elements to develop new applications
(e.g., Coghead and Google Application Engine). The capability provided to the
consumer is to deploy onto the cloud infrastructure consumer-created or acquired
applications created using programming languages, libraries, services, and tools
supported by the provider.

e Infrastructure as a Service (IaaS): Providing computational and storage infrastruc-
ture in a centralized, location-transparent service (e.g., Amazon). The capability
provided to the consumer is to provision processing, storage, networks, and other
fundamental computing resources, where the consumer is able to deploy and run
arbitrary software, which can include operating systems and applications.

Some of the main characteristics of cloud computing are concerned with (i) elasticity,
in which it requires on-demand capabilities of resources; (ii) broad network access, in
which access to the cloud can be done using any computer-based device; (c) resource
pooling, in which data can be used and added in the cloud at any time; (d) measured
services, in which consumers only pay for the resources they use from the cloud;
(e) energy efficiency, in which the energy consumption of cloud data centers are
optimized; and (f) virtualization, in which the infrastructure is divided and seen as
separated logic components.

The above characteristics of cloud computing require a degree of self-awareness
of the technology. For example, it is necessary for the system to be aware of the need
of new resources and to be able to free the not-used resources at a certain moment
of time. However, it is not possible to say that cloud computing technologies have
the necessary level of self-awareness, as per the definition given in Chap. 1.

2.6.3 Comparison with Self-aware Computing

Since the vision of Weiser [81] was published almost 25 years ago, pervasive systems
have almost become reality. Computers have become ubiquitous and are available
in areas nobody would have expected them 20 years ago such as cars, parks, or
even pot plants at home. Nevertheless, these computers are often far from being
self-aware. In many cases, these computers act as simple sensors merely storing the
sensed environment on a local memory or transmit it to a central server. The two
main points in the self-aware computing definition are often not fulfilled. Pervasive
systems only in some cases learn about their environment but they only rarely reason
about this knowledge.

Nevertheless, there are novel areas of research within the pervasive computing
community, such as the smart environment community. Here the devices try to learn
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behavioral patterns about the user in order to anticipate certain actions, requirements,
or desires of the user. This anticipation is often founded on predefined rules and only
allows very limited flexibility with respect to defining new goals for the individual
device or the entire system. Furthermore, the interplay between the individual devices
and the impact of their actions on each other is often hardwired within the individual
devices. This limits the capabilities to include new devices during run-time without
explicit setup of the system. While implementing individual autonomous computing
agents within the different devices and using a service-based approach introduce
higher flexibility and robustness to the pervasive system, the higher, system-wide
goals are still not considered when actions of the individual devices are performed.

2.7 Self-organizing Systems

As their name suggests, self-organizing systems are systems that are able to organize
themselves adaptively and without external control. Organization is at the core of this
definition and generally comprises the relations, interconnections, conditionality or
dependencies between the system’s components, or variables. Hence, organization
relates heavily to the system’s structure, defining its main components and their
interrelations.

In the remainder of this section, we first present a general overview of self-
organizing systems, followed by a discussion of cross-pollination opportunities with
self-aware computing.

2.7.1 Overview of Self-organizing Systems

From a general perspective, if a system (or general “machine” [4]) is viewed as a
set of states S, with a set of inputs / and a function f that maps /xS into S—i.e.,
determining the system’s future state based on the current state and inputs—then the
system’s organization represents the manner in which its variables are interrelated
via the mapping function f. A self-organizing system here implies that the system
is able to change its own mapping function. This raises some controversies around
the system’s boundary definition, since it implies the extension of the initial system
with a controller that monitors and updates its organization [4].

However, most often, self-organization is understood as a dynamic adaptive and
autonomous process that results from the inherent behavior of each system compo-
nent and of the “laws” of the environment within which they execute [4, 20]; and
which results in a progressive increase in system structure [84]. Examples of nat-
ural self-organization include the spontaneous assembly of protons, neutrons, and
electrons into atoms; of different atoms into organic molecules; and the evolution
of living organisms adapted to their environments. Examples in artificial systems
include the adaptive formation of ad hoc mobile networks, of robot swarms, and of
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component- and service-based software system assemblies. Ashby prefers referring
to this type of self-organization as the “spontaneous generation of organization.”

This is also the typical understanding of self-organization in the computing sys-
tems domain, notably in research communities such as the self-adaptive and self-
organizing (SASO) systems—as reflected for instance in the proceeding series of the
International Conference on SASO Systems.? Here, self-organization is interesting
because of the advantageous properties that it features in general (e.g., resilience
and adaptability to a wide range of environmental changes; robustness in the face
of internal failures; and scalability with the number of components and adaptation
frequency). In the SASO community, self-organization is also seen as a bottom-up
alternative to achieving self-adaptation, which was originally designed as top—down.

The main challenge here is: How to design self-organizing systems that also
meet desirable goals? Indeed, in natural systems, most instances of self-organization
have no other obvious purpose than their own existence and survival within their
environment. In more “interesting” cases (from a goal-oriented system perspective),
different organisms self-organize into more-or-less temporary formations in order to
achieve via collective action a common goal that none of them could have achieved
individually (e.g., swarms, flocks, herds, teams, and societies). Yet, when building
artificial systems, determining which component behaviors and interaction laws will
lead to the self-organization of systems that meet the designer’s goals within targeted
environments is a difficult task, subject to active research. These challenges differ
from those highlighted by self-aware computing, where the research focus is placed
on the system’s knowledge acquisition and the way in which usage of this knowledge
can serve the system’s achievement of goals.

2.7.2 Cross-pollination Opportunities with Self-aware
Computing

In self-organizing systems, any knowledge available is decentralized and distributed
across the participating system components, or agents. An exception may occur if
global knowledge were encoded within the environment shared by the system’s com-
ponents. This aspect will be interesting to study within the context of decentralized
(or self-organized) self-aware systems.

Conversely, it will be interesting to explore how self-awareness could help a
system’s components self-organize in order to achieve a shared goal. Here, the hard-
coded elementary behaviors and “laws” of the environment that fuel self-organization
could be adapted dynamically by the system components, as they become aware of
their shared goals (e.g., already the case in social organizations). Also, components
that become aware of their own characteristics (e.g., range of behaviors and properties
they can exhibit), of the characteristics of other components, and of the key theoretical
principles of self-organization (still to be produced by the corresponding research

2SASO history in 2016: http://sas02016.informatik.uni-augsburg.de/history.html.
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fields) may be better able to select the components with which they connect in order
to have a better chance of achieving their goals.

2.8 Self-adaptive Systems

In the self-adaptive software community, self-* properties are organized into levels
where self-adaptiveness is at the top (or general level), while self-awareness is con-
sidered only a primitive level like context awareness and the typical autonomic com-
puting like self-* properties such as self-configuring, self-healing, self-optimizing, or
self-protecting are considered major level properties in between the other two levels
(cf. [70]). Furthermore, in the self-adaptive software community most approaches
emphasis an architectural perspective (cf. [70]) where besides the control of para-
meters changes of the architecture may matter.

In the rest of this section, we first present a general overview of self-adaptive
systems, followed by a discussion of anticipatory self-adaptive systems, which are
those that exhibit a specific set of characteristics which are strongly related to self-
aware computing systems, such as the ability to predict, or self-adapt proactively.

2.8.1 Overview of Basic Self-adaptive Systems

Like in autonomic computing for self-adaptive systems, control loops are often con-
sidered one of the core objects of the design efforts [16, 74] and it is advocated that in
order to achieve real self-management capabilities besides a direct layer for change
management also a goal management is required (cf. reference architecture [44]).
However, besides some specific approaches that emphasize architectural models or
goals in contrast to the notion for self-aware computing systems of Definition 1.1 for
the basic efforts for self-adaptive systems hold that neither the learning of models
nor the capability to reason based on this models to realize the adaptation loop has
been emphasized so far.

In a series of Dagstuhl seminars, the community has identified mainly model-
ing dimensions, requirements, engineering through feedback loops, assurances, the
design space, processes, decentralized control, and practical run-time verification
and validation as the main issues that have to be addressed (see two research road
maps [18, 21]. However, again neither the employed knowledge nor the capability to
reason based on this knowledge as advocated by the notion for self-aware computing
systems of Definition 1.1 plays a prominent role.

The notion for self-aware computing systems of Definition 1.1 is overlapping
with the notion of self-adaptive software as it also covers systems where no self-
adaptation happens. As advocated in [31], the limitation to only fully automatic
adaptation is probably too limited and instead, it would be better to also consider
related manual activities such as change management and their coordination with
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automated adaptation steps. Therefore, to include also mixed forms where people
supervise the adaptation or the self-awareness helps with manual adaptation in the
notion for self-aware computing systems of Definition 1.1 seems somehow beneficial
to better cover the real needs and the real design options.

For the subset of self-aware computing systems that realize some self-adaptation
behavior, however, we can conclude that they describe a subset of the self-adaptive
software, where in addition to the existence of the feedback loop we also learn
models capturing knowledge and reason about these models allowing them to act
according to internal and external conditions in accordance with higher-level goals.
While several suggestions go in a similar direction as Definition 1.1 (cf. [44]), the
community will likely benefit from the suggested notion for self-aware computing
systems of Definition 1.1 that clearly separate lower-level solutions without explicit
knowledge capturing and reasoning from approaches that have these capabilities
based on learning models and reasoning based on the models.

2.8.2 Anticipatory Self-adaptive Systems

What distinguishes a self-adaptive system from any other system is its ability to
adjust its behavior in response to its perception of the environment and the system
itself [18]. Self-adaptive systems typically operate employing a knowledge base
that can incorporate an explicit representation of the system’s structure, goals, and
assumptions about its environment. However, there is an ample variation in the level
of detail in which the different elements of this knowledge base are described, as
well as in the reasoning capabilities that different approaches exhibit [70].

The characteristics of early proposals to self-adaptation [32, 44] tend to be far from
the traits of self-aware computing systems listed in Definition 1.1. These approaches
tend to be reactive and adapt in response to the changes without anticipating future
changes or reasoning about the long-term outcome of adaptation (e.g., a system
may adapt to a transient change, only to adapt again and go back to its original
configuration moments later). Moreover, these proposals tend to be rather limited
in terms of learning capabilities. In contrast, recent approaches to self-adaptation
[17, 19, 34] are better aligned with the description of self-aware computing sys-
tem given in Chap. 1. The general trend among these proposals is a paradigm shift
from reactive to proactive adaption, incorporating the ability to learn, predict, and
systematically exploit knowledge to improve the operation of the system.

These approaches fit well into the category of anticipatory self-adaptive system,
defined as “able to anticipate to the extent possible, its needs and behaviors and those
of its context, and able to manage itself proactively” [63]. Based on this definition, we
can identify the main criteria that anticipatory self-adaptive systems should ideally
satisfy:

1. Predictive. The system can likely determine ahead of time if a condition that
requires adaptation will take place. Predictions can be exploited to avoid unnec-
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essary adaptations or improve the overall choice of adaptation (e.g., by factoring
in information about future resource availability or workload and other environ-
ment conditions into the decision-making process [19, 55]). Predictions can also
help to enforce safety properties when reachability of a potential safety violation
from the current state of the system is detected [48].

. Proactive. The system can enact adaptation before a deviation from its functional-

ity or qualities takes place. A representative proactive approach to self-adaptation
in cyber-security is Moving Target Defense (MTD) [86]. MTD assumes that a
system that remains static with the same configuration over long periods of time
gives potential attackers time for reconnaissance and exploitation of system weak-
nesses. Hence, the idea behind MTD is adapting to change the configuration of
the system periodically, thus reducing the chance of an attacker of finding and
exploiting a weakness. Another example of proactivity is latency-aware proactive
self-adaptation (PLA) [55], which anticipates changes in environment conditions
and triggers adaptations with enough lead time to deal with them in a timely fash-
ion, based on information about the execution time required to complete adapta-
tions and achieve their effects in the controlled system (i.e., their latency). In the
area of service-based systems, PROSA [34] is an approach that carries out tests
at run-time to detect potential problems before they happen in real transactions,
triggering adaptations when tests fail.

. Learning. The system can generate and incorporate new knowledge (typically

derived from observations of the system and its environment at run-time), and
use it to improve subsequent adaptions. Simple forms of learning can also be found
in reactive approaches. To select adaptations, Rainbow [32] employs information
about the actual outcome of past adaptations to derive probabilities that represent
the likelihood of possible outcomes of future adaptations. Proactive approaches
can employ more sophisticated learning techniques to leverage its prediction
capabilities (e.g., employing Bayesian learning to estimate the future behavior of
the environment [17, 27]).

Table 2.1 categorizes some anticipatory approaches to self-adaptation. It is worth

noticing that although a proactive self-adaptive system can benefit significantly from
predictions, proactive approaches are not necessarily predictive. One example is
MTPD. In the simplest form of MTD, the system’s configuration is changed proac-
tively with a fixed frequency, without any reasoning involving a model of the envi-

Table 2.1 Anticipatory Approach Learning Predictive | Proactive
self-adaptation approaches
KAMI [27] v v v
QoSMOS [17] v v v
Cheng et al. [19] v v
PLA [55] v v
Li et al. [48] v v
PROSA [34] v
MTD [86] v
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ronment or predictions about its future behavior. Moreover, we can observe that in
terms of learning, anticipatory self-adaptive approaches are still far from the ideal
of self-aware computing systems. In particular, learning capabilities are employed
only in approaches that involve relatively simple adaptations (e.g., parameter opti-
mization [17, 27]), but not combined with adaptations that entail complex changes
to a system’s architecture.

2.9 Reflective Computing

In 1987, Maes [51] defined and implemented “computational reflection” as “the
process of reasoning about and/or acting upon oneself.” Computational reflection is
an engineered system’s ability to reason about its own resources, capabilities, and
limitations in the context of its current operational environment. Reflection capa-
bilities can range from simple, straightforward adjustments of another program’s
parameters or behaviors (e.g., altering the step size on a numerical process or the
application of rules governing which models are used at different stages in a design
process) to sophisticated analyses of the system’s own reasoning, planning, and deci-
sion processes (e.g., noticing when one’s approach to a problem is not working and
revising a plan).

Reflection processes must include more than the sensing of data, monitoring of
an event, or perception of a pattern; they must also have some type of capability
to reason about this information and to act upon this reasoning. However, although
reflection is more than monitoring, it does not imply that the system is “conscious.”
Many animals demonstrate self-awareness; not only do they sense their environment,
but they are also able to reason about their capabilities within that environment. For
example, when a startled lizard scurries into a crevice, rarely does it try to fit into a
hole that is too small for its body. If it is injured or tired, it changes the distance that
it attempts to run or leap. This adaptive behavior reveals the ability of the animal
system to somehow take into account the current constraints of the environment and
its own body within that environment [9, 10].

In order to bring out the ways in which the self-awareness processes and architec-
tures enhance and further develop reflective architectures, we will quickly overview
one approach to implementing computational reflection and the building of reflec-
tion processes in a robotic-car example (also see Chap. 9 for additional discussion of
self-modeling issues in this test bed).

The Wrappings’ approach uses both explicit meta-knowledge and recursively
applied algorithms to recruit and configure resources dynamically to “problems
posed” to the system by users, external systems, or the system’s own internal
processing. The problem manager (PM) algorithms use the Wrappings to chore-
ograph seven major functions: discover, select, assemble, integrate, adapt, explain,
and evaluate. “Discover” programs (or as called in the Wrappings, “resources’) iden-
tify new resources that can be inserted into the system for a problem. “Selection”
resources decide which resource(s) should be applied to this problem in this context.
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“Assembly” is syntactic integration and these resources help set up selected resources
so that they can pass information or share services. “Integration” is semantic, includ-
ing constraints on when and why resources should be assembled. “Adaptation”
resources help to adjust or set up a resource for different operational conditions.
“Explanation” resources are more than a simple event history because they provide
information on why and what was not selected. “Evaluate” includes the impact or
effectiveness of the given use of this resource in the current problem. The meta-
knowledge for a Wrapping is always for the USE of a resource within a particular
context and for a specific posed problem. It includes assumptions and constraints, the
required services and input, the resulting services and output, and the best practices
for using this resource in this situation.

The Wrappings’ “problem-posing” has many benefits, including separating prob-
lems from solution methods and keeping an explicit, analyzable trace of what prob-
lems were used to evoke and configure resources. Because all of the resources are
wrapped, even the resources that support the Wrappings® processing, the system is
computationally reflective—it can reason about the use of all of its resources [12].

Wrappings [45, 46] provide an implementation strategy for computational reflec-
tion that provides control over the level of self-awareness available in the system
and the levels of self-awareness to be used at any given time. The mechanism that
allows this flexibility is the Problem-Posing Programming Paradigm, which strictly
and completely separates the information service requests (the problems) from the
information service providers (the resources) and reconnects problems in context
with resources using explicit interpretable rules collected into Wrappings’ Knowl-
edge Bases. Moreover, the processes that perform the connection (called PMs, or
problem managers) are also resources and are also Wrapped, so they can be swapped
out as easily as any other resources. We emphasize that the designers have control
over the level of detail of decomposition of the processes in the system, and of the
rules by which resources are used for particular problems. There is no inherent limit
on that level of detail (some implementations go down to the individual hardware
instruction, but most go to the typical software component/module level). More detail
on the implementation architecture is given in Chap. 8.

The flexibility of the Wrappings’ approach provides multiple entry points for the
reflective processes. A reflective resource has the general form: Given a goal, purpose,
or function, a reflective process uses the sources of information to do some action,
decision or to create data that is used by other processes. The goal or function for that
reflective process could be built in during design time or assigned dynamically to that
reflective process by other programs. It may be in continual use or it may be recruited
or evoked only when certain resources are active or conditions exist. The sources of
information can be, e.g., data sets, sensor output, or monitors. The reasoning process
for reflection can be done with an algorithm, decision process, rulebase, cognitive
model, or planner. The resulting actions are myriad, but include sending messages,
setting program or context parameters, recruiting new components, initiating new
processes, or instigating a replan or undo process.

Although the Wrappings’ approach and reflective architectures approach briefly
outlined here have proven its value for resource management and dynamic inte-
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gration among large numbers of resources, the original approach was in practice
limited to largely the management and adaptation of single large distributed sys-
tems. Although, the benefits of reflection were clear for interactions among systems
(e.g., the self-knowledge could be made available to other systems for coordina-
tion [11] and external viewpoints by other systems could help a system identify its
own problems or state and learn better [8, 47], in fact, the new work in self-aware
systems as seen in this volume will help greatly by expanding new ideas for how
collections of self-aware systems could interact and organize.

2.10 Models@run.time and Reflection

A model at run-time (models@run.time) [14] is defined as an abstract self-
representation of a system that is focused on a given aspect of the running system.
Such aspects include its structure, behavior, and goals. The run-time model exists in
tandem with the given system during the actual execution time of that system. As in
the case of traditional model-driven engineering (MDE) [30], a self-representation of
the system in the form of run-time models can also be used as the basis for software
synthesis, but in this case the generation can be done at run-time [57, 82].

Before describing the role of models@run.time in the area of self-aware com-
puting, it is useful to briefly introduce the relationship between models @run.time
and reflection (the topic reflection is more extensively covered in Sect.2.9) and other
aspects. Computational reflection focuses on the representations of an underlying
system that are both self-representations and causally connected [14]. The causally
connected representations of aspects of the system are constantly mirroring the run-
ning system and its current state and behavior. Causal connection implies that if the
system changes, the self-representations of the system (i.e., the models) should also
change, and vice versa.

Even if closely related, models @run.time and reflection are not the same. Reflec-
tion deals with models that are linked to the computation model and therefore tend
to be focused on the solution space and in many cases at a rather low level of
abstraction. The research area models @run.time deals with models that are defined
at a much higher level of abstraction. Further, run-time models more frequently
relate to the problem space. Examples of applications using run-time models are
self-adaptation [57] or generation of mediators to support interoperability [12].

Traditionally, the structure of a run-time model has been conceived at design
time (e.g., architecture models [57]). However, they can also be learned at run-time.
In [12], the authors show how using learning methods the required knowledge of the
context and environment can be captured and distilled to be formulated and made
explicitly available as a run-time model and therefore support reasoning. Another
example of techniques to be used to learn run-time models are shown in [87].

Models @run.time are at the core of self-aware systems. They are relevant to sup-
port self-awareness as defined in Chap. 1. (i) The run-time models correspond to
the learned models which capture knowledge about the system itself and their envi-


http://dx.doi.org/10.1007/978-3-319-47474-8_1

38 J. Camara et al.

ronment. Specifically, the run-time models support learning to capture the needed
knowledge about the system itself (e.g., its own goals and requirements [71, 82]) or
its perception of the environment [77, 87]. (ii) The run-time models when consulted
should provide up-to-date information about the system and therefore support rea-
soning (e.g., predict, analyze, and plan) enabling the system to act based on their
knowledge. As the run-time model is causally connected, actions taken based on the
reasoning can be made at the model level rather than at the system level [56].

We argue that the definition of self-awareness requires a self-representation (i.e.,
run-time model) of the subject of awareness. For example, if the system is aware
of its own architecture the system would need a representation of its architecture
(a architecture run-time model). Other examples are awareness of its own require-
ments or any other aspect about itself. If the object of the awareness is part of the
environment of the system (i.e., it is outside the system), it should be considered a
self-representation as well as the representation includes the perspective of the sys-
tem. Two different systems will usually have different representations (or models)
of their perception of the same object of awareness.

2.11 Situation-Aware Systems and Context Awareness

Situation awareness (SA) is an ongoing body of research with many conferences,
workshops, and papers which develops theory and applications in building human—
machine systems that observe, evaluate, and act within diverse situations. Here we
are using the term “situation” in the technical sense [6, 23, 50] where a situation
includes at least the elements of the situation, e.g., objects, events, people, systems,
and environmental factors, and their current states, e.g., locations and actions.

Fracker [29] described SA as the combining of new information with existing
information for the purpose of developing a “composite picture of the situation
along with the projections of future status and subsequent decisions as to appropriate
courses of action to take.” Dominguez et al. [23] added to this view an emphasis on
the “continuous extraction of environmental information” with the explicit feedback
loop that would use the developed perceptions and understanding to direct the next
collection of data.

Credited with seminal work in this field, Endsley [24] argues that “it is important to
distinguish the term situation awareness, as a state of knowledge, from the processes
used to achieve that state. These processes, which may vary widely among individuals
and contexts, will be referred to as situational assessment or the process of achieving,
acquiring, or maintaining SA.” Thus, in brief, situation awareness is viewed as “a
state of knowledge,” and situational assessment as “the processes” used to achieve
that knowledge. Endsley’s model illustrates three stages or steps of SA formation:
perception, comprehension, and projection. Perception is considered Level 1 of a
SA system. “The first step in achieving SA is to perceive the status, attributes, and
dynamics of the relevant elements in the environment. Thus, Level 1 SA, the most
basic level of SA, involves the processes of monitoring, cue detection, and simple
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recognition, which lead to an awareness of multiple situational elements (objects,
events, people, systems, and environmental factors) and their current states (locations,
conditions, modes, and actions).”

By this framework, Level 2in a SA is comprehension and is a synthesis of the
Level 1 SA elements through the “processes of pattern recognition, interpretation,
and evaluation. Level 2 SA requires integrating this information to understand how
it will impact upon the individual’s goals and objectives. This includes developing a
comprehensive picture of the world, or of that portion of the world of concern to the
individual.” The highest level of SA, Level 3, is “projection” or the ability to predict
the future actions of elements in the environment. “Level 3 SA is achieved through
knowledge of the status and dynamics of the elements and comprehension of the
situation (Levels 1 and 2 SA), and then extrapolating this information forward in time
to determine how it will affect future states of the operational environment” [24]. With
SA, one does not guarantee successful decision-making, but does provide some of the
necessary inputs, it is argued, for successful decision-making with cue recognition,
situation assessment, and prediction. As in self-aware systems, goals play a key
role in SA. Both multiple goals, the fact of competing goals, and goal prioritization
are emphasized in SA. However, it appears that for most SA systems these goals
are “given” to it and predesigned, whereas in self-awareness (as shown in Chap. 3)
although there are certainly goals given to a self-aware system, it is also expected
that the self-aware system will alter and adapt even high-level goals and possibly
generate low-level goals.

Many researchers have discussed the limitations of the current SA approaches,
noting especially that the most widely cited models of SA lack support from the
cognitive sciences (Banbury and Tremblay, [6]) and that there is also important
mathematical and logical work to be done in defining these terms computationally
(M. Kokar, [59]). In terms of self-awareness processes, we would say that SA has
not yet incorporated the same sophistication (e.g., in learning, model-building) to
its internal models that it applies to its external models of the situation. That is, as
clearly seen from SA research, although SA certainly includes cognitive processes
such as “mental models,” attention, and decision-making, there has historically in
SA been less of an emphasis on any reflection processes or self-models as used in
this volume. Although models are emphasized for use by the cognitive/intelligent
processes for situation awareness, these models are not explicit models of the system
itself, its reasoning and learning capabilities, or its limitations, but rather focus on
the objects and the situations to be perceived. It appears from Endsley and other
SA-leading researchers that they are making some assumptions about what is useful
in terms of their class of problems. While in self-aware systems, we are recogniz-
ing the need for both short-term and longer-term processes, it appears that SA is
focused more on immediate and fast responses, proceeding from pattern recogni-
tion of key factors in the environment—"“The speed of operations in activities such
as sports, driving, flying, and air traffic control practically prohibits such conscious
deliberation in the majority of cases, but rather reserves it for the exceptions.” From
Endsley [26], it would appear that SA views some of the cognitive processes that
build models as largely “backward focused,” forming reasons for past events, while
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situation awareness is typically forward looking, projecting what is likely to happen
in order to inform effective decision processes. In self-awareness, we see the ben-
efits for learning, understanding, and model-building processes as leading to more
adaptive behavior in the long-term certainly, and even leading to better behavior at
run-time in accordance with the real-time requirements.

Related to SA is the area of research called “sensemaking.” Klein, Moon, and
Hoffman [43] distinguish between situation awareness and sensemaking as follows:
“Situation awareness” is about the knowledge state that is achieved—either knowl-
edge of current data elements, or inferences drawn from these data, or predictions
that can be made using these inferences (Endsley, [24]). In contrast, sensemaking
is about the process of achieving these kinds of outcomes, the strategies, and the
barriers encountered (p. 71). Hence, sensemaking is viewed more as “a motivated,
continuous effort to understand connections (which can be among people, places, and
events) in order to anticipate their trajectories and act effectively” (Klein et al. [43],
p. 71) rather than the state of knowledge underlying situation awareness. Although
Endsley [26] points out that sensemaking is actually considering a subset of the
processes used to maintain situation awareness, as noted above it is unclear how
such longer-term processes such as understanding, self-awareness and self-aware
models, and “sensemaking” fit into the current concepts of SA.

There has been an emphasis on SA on comparing the models of experts and
novices, noting how the available data in a complex environment can overwhelm the
novice’s ability to efficiently process those data (Endsley, [25]) and how “experts”
in contrast often have very efficient ways to notice and integrate a large amount of
data. Interestingly, although this result is in line with the experience in early Artificial
Intelligence with building “expert systems,” the focus of many SA studies appeared
to be on cues in the environment to activate these mental models rather than internal
knowledge bases or rulesets that could become the basis for self-models [73].

In the future, it will be interesting for the field of self-awareness to pull from
SA some very interesting research that they have been developing on how teams of
situationally aware human and robotic agents best work together. Team SA is defined
as “the degree to which every team member possesses the SA required for his or her
responsibilities” (Endsley [26], p. 39). The success or failure of a team depends on
the success or failure of each of its team members. If any one of the team members
has poor SA, it can lead to a critical error in performance that can undermine the
success of the entire team. By this definition, each team member needs to have a high
level of SA on those factors that are relevant for his or her job. It is not sufficient for
one member of the team to be aware of critical information if the team member who
needs that information is not aware.

Shared situation awareness can be defined as “the degree to which team members
possess the same SA on shared SA requirements” (Endsley and Jones [25], p. 47).
As implied by this definition, there are information requirements that are relevant
to multiple team members. A major part of teamwork involves the area where these
SA requirements overlap—the shared SA requirements that exist as a function of the
essential interdependency of the team members. In a poorly functioning team, two
or more members may have different assessments on these shared SA requirements
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and thus behave in an uncoordinated or even counter-productive fashion. Yet in a
smoothly functioning team, each team member shares a common understanding of
what is happening on those SA elements that are common.

2.12 Symbiotic Cognitive Computing

Symbiotic cognitive systems (SCS) [42] are multi-agent systems comprising both
human and software agents that collectively perform cognitive tasks such as decision-
making better than humans or software agents can by themselves. A driving principle
of symbiotic cognitive systems is that humans and intelligent agents each have their
respective cognitive strengths and weaknesses. The goal is not to surpass humans
at challenging intellectual tasks such as chess or Jeopardy!, but rather to create
agents that both support and rely upon humans in accomplishing cognitive tasks.
This philosophy traces its lineage back to the vision espoused by Licklider in his
essay on Man-Computer Symbiosis [49] and is today experiencing a revival among
researchers in academia and industry who are pursuing aspects of the symbiotic
cognitive systems research agenda from a variety of perspectives. One realm in which
the principles and technologies of SCS are being applied is robotics, exemplified in
the work of Rosenthal, Veloso and colleagues at Carnegie Mellon University on
the Co-Bot [66, 68]. One also finds aspects of symbiotic cognitive computing in
cognitive assistants such as Apple’s Siri and IPsoft’s Amelia (designed for help
desks and related applications), and in the cognitive boardroom being developed by
IBM Research [42], in which a multi-agent system interacts with humans via speech
and gesture to provide seamless access to information and support for high-stakes
decision-making.

One aspect of the challenge of creating SCS is that of developing algorithms (and
the agents in which they are embodied) that are at least as competent as humans at
the cognitive task for which they are designed. This task is made somewhat easier by
focussing efforts on those aspects of cognition for which human biases, irrationality,
and other deficiencies are well documented [3, 39, 78], and for which machines seem
inherently better suited. A second general class of challenges for symbiotic systems is
related to making human—agent interactions as seamless as possible. These include:

e Developing multi-modal forms of interaction that combine speech, gesture, touch,
facial expression, and perhaps other manifestations of emotion [75];

e Learning mental models of other agents and humans, including their intent, to
form a basis for adapting behavior so as to improve the speed and likelihood of
accomplishing a task that the collective is trying to solve [68, 79]; and

e Storing, maintaining, and retrieving mental models of the environment, the task,
and the other agents and human participants in the task to provide a shared context
that can be used for communication among humans and agents [52, 67].

Kephart [42] discussed correspondences between autonomic computing systems
and symbiotic computing systems, including the need for a means by which humans
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can effectively communicate objectives to the system and the fact that the natural
architecture for both is a multi-agent system, and hence, issues of inter-agent com-
munication and interaction are very important. Moreover, self-management in all of
its usual forms (self-optimization, self-healing, self-configuration, etc.) is essential
for cognitive applications and the cognitive services from which they are built. A
key difference is that, in SCS, humans are not just regarded as providers of high-
level goals, but are expected to collaborate deeply with symbiotic cognitive systems,
interacting with them constantly.

Given the strong overlap between autonomic computing systems and self-aware
systems (detailed in Sect.2.4), there is also a strong relationship between SCS and
self-aware computing systems. A three-way comparison among AC, SCS, and self-
aware systems is instructive. Like self-aware computing systems, but unlike auto-
nomic computing systems, SCS do not require that agents take action. The reason
that some software agents within an SCS may be self-aware without being auto-
nomic is that they are not expected to perform all cognitive tasks by themselves, but
instead to work collaboratively with humans. As a result, they may propose actions
to humans, who can then use their judgment to decide whether or not to follow the
agent’s recommendations. Another connection between SCS systems and self-aware
computing systems is that, while it is not a strict requirement, SCS are expected to
learn models of intent and likely behavior by other participants (including both soft-
ware agents and humans). In the case of SCS, there is a slight twist—the models may
be used not just to manage resources wisely according to fixed goals, but the goal
itself (the intent of the human users of the system) may not be revealed fully at the
outset, so behavior models may be used to predict future goals and actions—thereby
enabling the system to configure itself appropriately in anticipation of what it may
be asked to do.

2.13 Auto-tuning

Auto-tuning covers techniques from high-performance computing (HPC), which
automate the process of performance tuning for scientific applications (e.g., weather
forecasts and genome expression analysis). Various approaches have been developed
throughout the past decades [13, 54, 61, 64, 65, 76, 80, 83].

The motivation for auto-tuning in HPC is the problem that the frequency of new
hardware increases, but the required time to manually tune high-performance code
for this new hardware remains unchanged. Hence, approaches to automate the per-
formance tuning for new hardware are needed.

The common way of performance tuning in HPC relies on source code transfor-
mations. Thus, the goal of auto-tuning approaches is to find those source code trans-
formations, which improve performance. A basic prerequisite of most auto-tuning
approaches is the existence of a kernel library. Such a library contains kernel (i.e.,
core) algorithms, which are used by scientific applications. Auto-tuning is applied to
those kernel libraries instead of the applications themselves. This adheres to the stan-
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dard principles in HPC, where manually optimized kernel libraries are commonly
used. The application of auto-tuning enhances these libraries with code transforma-
tions, which adjust the libraries’ algorithms to the given hardware architecture.

In general, there is a distinction between static and dynamic approaches, depend-
ing on when decision-making takes place. This is either at compilation time, denoting
static auto-tuning, or at run-time, denoting dynamic auto-tuning.

Auto-tuning approaches are closely related to self-adaptive systems (SAS) in that
they realize feedback loops. For example, the CADA loop [22] is realized in the
following way: (1) Information about the available hardware is collected; (2) this
information is analyzed with respect to its effect on the kernel algorithms; (3) a
decision selecting code transformations improving (or optimizing) the performance
of the kernel algorithms is made; and (4) the code transformations are applied (act).

Thus, auto-tuning can be seen as a special kind of SAS, which operates on source
code level with a restricted focus on scientific applications (i.e., HPC). Notably,
approaches of the SAS community usually realize the feedback loop on higher
levels of abstraction. Commonly, the elements of variation are components, fea-
tures, or classes, whereas auto-tuning works on source code statements. Auto-tuning
approaches mainly apply techniques known from compiler optimization like loop
unrolling to identify code variants that optimally utilize the underlying hardware
(e.g., by not exceeding the number of available registers or available memory).

2.14 Constructive Definition

According to our definition, self-aware systems are complex systems that while in
operation might need to access and analyze pieces of information about themselves
and about the execution environment. In large part, this information is made avail-
able/created and managed during the various phases of development, e.g., design,
architectural structure, code structure, execution machine structure, and deployment
information. Thus, it is recognized nowadays that developing self-* systems requires
some activities that traditionally occur at development time to be moved to run-
time [2, 7, 36]. Activities here refer to the usual development process activities
extended with execution monitoring activities. Responsibilities for these activities
shift from developers to the system itself, the self-part, causing the traditional bound-
ary between development time and run-time to blur. If a system needs to adapt in
order to better respond to an increased and unexpected load of service requests, it
might decide to change its configuration, e.g., by substituting one of its components
by a more efficient one. In practice, this means being able to detect the situation by
monitoring and analyzing the execution environment and its own behavior and also
to carry on reconfiguration activities at run-time in a correct and time-efficient way.

The discriminating factor for deciding whether an activity has to be performed at
development time or at run-time is cost. Cost can be explained in terms of resources
needed to take responsibility of the activity and its achievement. Resources can be
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software and hardware capabilities ultimately resulting in time or memory costs that
need to be affordable with respect to the system goal and operational requirements.

Service-oriented and cloud computing paradigms permit reconsidering offline
activities in a new perspective making it possible for a self-aware system to rely
on heavy loaded system infrastructure for self-* system attributes, thus in practice
mitigating the traditional cost-driven dichotomy between compile time and run-time.

This consideration leads us to consider also a constructive definition of self-aware
computing systems that stresses the fact that the question is not only whether it is
possible to make a system or portions of the system self-aware, but also whether
it is economically reasonable/sustainable. This requires to focus on the amount of
resources, software and hardware, that may be needed in order to support the self-
awareness degrees of a system. The cost factor thus becomes the self-enabling factor
that may influence design and architectural choices, and coding and execution choices
as well as monitoring and analysis system capabilities, and may ultimately determine
whether in the given conditions it is actually possible to develop, and how, a self-
aware system. This also impacts the complexity of the techniques used to achieve
self-awareness that may be more or less advanced depending on whether they are
economically justified and sustainable.

So the extent to which a self-aware computing system is able to learn knowledge
about itself and/or its environment and reason and adapt to internal and external
changes is heavily dependent on development choices (design, architecture, pro-
gramming languages, coding techniques), and deployment constraints (deployment
infrastructure and resource availability). This requires quantitative reasoning capa-
bilities at the process definition level as suggested in [2]. Depending on the system
lifetime, these development choices may also be rediscussed; what could have been
too costly at a certain stage of maturity of the system and of the technology may
become convenient and affordable at a later stage of maturity. This suggests the
architecture of the system to be flexible enough to easily accommodate evolutions
of system with respect to its self-aware degrees.

2.15 Summary

The area of self-aware computing systems is still incipient, but promising concerning
the construction of systems that are required to learn models on an ongoing basis
and use them to reason about aspects related to the purpose for which the systems
themselves were built.

Self-aware computing systems pose new opportunities and challenges for the
research and engineering communities, some of which are related to prior experience
in different disciplines.

This chapter has reviewed different concepts and research areas strongly related
to self-aware computing. Different sections have explored topics such as Al, auto-
nomic computing, self-organizing systems, or cognitive computing, among others,
as well as their relation to self-aware computing systems and potential opportunities
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for cross-pollination. Moreover, the landscape outlined in this chapter provided the
basis for a constructive definition of self-aware computing system, as well as for
some considerations concerning the different factors that influence the feasibility
and the capabilities of a self-aware computing system. These considerations serve
as a starting point to investigate important questions related to the conditions under
which it is possible to actually develop a self-aware computing system, and in what
way.
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Chapter 3

Towards a Framework for the Levels
and Aspects of Self-aware Computing
Systems

Peter Lewis, Kirstie L. Bellman, Christopher Landauer, Lukas Esterle,
Kyrre Glette, Ada Diaconescu and Holger Giese

Abstract Increased self-awareness in computing systems can be beneficial in sev-
eral respects, including a greater capacity to adapt, to build potential for future
adaptation in unknown environments, and to explain their behaviour to humans and
other systems. When attempting to endow computing systems with a form of self-
awareness, it is important to have a clear understanding of what that form looks like.
This chapter therefore first introduces the general concept of self-awareness and its
various facets. Second, we provide an overview of the range of efforts to interpret the
concept of self-awareness in computing. Third, we provide a structured conceptual
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framework that organizes this variety of different forms of self-awareness. This pro-
vides a broad set of concepts and a language that can be used to describe and reason
about self-aware computing systems.

3.1 Introduction

In this book, we are aiming to implement the self-awareness capabilities, that is to say,
capabilities resembling and inspired by human self-awareness, in computing systems.
This chapter, and indeed this book as a whole, is based on the idea that increased self-
awareness in computing systems can be beneficial in several respects. These benefits
are centred around systems’ increased capacity to adapt, build potential for future
adaptation in unknown environments, and explain their behaviour. Such capacity is
derived from their ability to learn about themselves, including aspects such as their
state, their goals and progress towards them, their behaviour and interactions with
other systems, their environment, their perspective, and their evolution over time.

But increased self-awareness will also come at a cost, whether it be in terms of
more processing power, increased storage, or the need for further data gathering and
communication. In designing self-aware systems, we must have the concepts and
tools readily available to be able to reason about the benefits and costs increased
self-awareness will bring in its various forms. And in realising self-aware computing
systems, the systems themselves will also require concepts and tools to enable them
to perform meta-reasoning about the benefits and costs of their own self-awareness.

The ability of self-aware computing systems to reflect on their their own self-
awareness properties and behaviour, termed meta-self-awareness, leads to the ability
to model and reason about changing trade-offs during the system’s lifetime. Meta-
self-awareness enables advanced adaptation and explanatory behaviour at multiple
levels within a system, including why it has spent resources on self-awareness related
activities.

An important distinction to make from the outset is that in the process of doing
this, we are not aiming to explain human self-awareness or consciousness. There are
those (e.g., [57]) who build intelligent systems with the primary aim of developing
a better understanding of human minds and human self-awareness. Instead, we aim
to learn and gain inspiration from self-awareness in order to build better computa-
tional systems, following the tradition of a range of efforts in computer science that
have sought inspiration elsewhere, such as bio-inspired computing, socially inspired
computing, and economics-inspired computing. In order to be clear, and in line with
a previous work [34], we refer to the forms of self-awareness implemented in a
computing system as computational self-awareness.

As highlighted by many (e.g., as reviewed Lewis et al. [35]), self-awareness is
not a binary property; it makes little sense to characterize a system (biological or
computational) as either being self-aware or not. Indeed, the term self-awareness
encompasses a broad range of related processes and capabilities, which include
various types of explicit self-knowledge, an understanding of the subjectivity and
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Ecological self

Interpersonal self

Extended self

Private self

Conceptual self

Fig.3.1 Lewisetal.’s [34]levels of computational self-awareness (right) describe various different
aspects of self-knowledge and are derived from those by Neisser [44] (left). These are discussed in
Sects.3.2.1.4 and 3.2.2.2

context of that knowledge, and processes for its acquisition. Some of these aspects
concern situated knowledge acquisition processes (e.g., subjectively context-aware
learning, reasoning, and acting), while others are related to the architecture of these
learning processes, and how they reflect on and are influenced by each other. In much
of the self-awareness literature, particularly in psychology (e.g., [42]), these varieties
of self-awareness are characterized as levels of self-awareness. Recent work on self-
aware computing [34] has borrowed from this, developing the notion of levels of
computational self-awareness. Lewis et al.’s levels of computational self-awareness
are illustrated in Fig.3.1.

Our aims in this chapter are as follows. First, we review these treatments of self-
awareness and computational self-awareness in the existing literature. Second, we
extend initial characterisations of different levels and aspects of computational self-
awareness, in order to provide a broad set of concepts and language that can be used
to describe and reason about self-aware computing systems. Third, we organize these
concepts into a coherent framework that provides a set of related considerations for
designers of computing systems who are interested in incorporating self-awareness
concepts into their systems. Fourth and finally, we position the definition of self-
aware computing systems proposed in Chap. 1 in the context of existing work in
self-aware computing. The framework developed in this chapter is then explored in
a variety of contexts, throughout the rest of the book.

3.1.1 Why Consider Types of Self-awareness in Computing
Systems?

As described above, in this chapter, our aim is to characterize various levels of self-
awareness as they might pertain to current and future computing systems. However,
first we motivate the need to do this.
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As a starting point, since we are claiming that endowing computing systems with
increased self-awareness can have benefits, it is clearly important to begin to at least
sketch, if not define, what we mean by this. It should stand as obvious that one should
not begin implementing a form of computational self-awareness in a system, unless
one has a clear understanding of what that form looks like. Based on the multifarious
nature of self-awareness briefly discussed above, and elaborated on later in this
chapter, we argue that an explicit understanding of the sort of self-awareness targeted
is necessary. Indeed, as outlined in recent work on how to translate self-awareness to
the engineering domain and apply it in specific scenarios, Lewis et al. [34] highlight
the importance of beginning with an understanding of the plethora of different forms
self-awareness may take, and the wide range of methods and approaches that can
be used to implement self-awareness to different extents, as needed. Chen et al.’s
handbook [12] for engineering self-aware computing systems in particular describes
a structured process for determining and evaluating the inclusion (or not) of various
levels of self-awareness in a system’s architecture, and approaches to realising them.

Pragmatically, this is important since as part of the engineering design process,
one would want to understand the role and benefits of different levels and aspects
of self-awareness, along with different approaches and mechanisms for realising
them, before implementing. This supports the ability to choose the most effective
methods and the desired level of self-awareness for a given application, its context,
and requirements.

We expect that in working with self-aware computing systems, one will often be
in situations where there are a number of agents or components within the system that
possess self-awareness capabilities, and potentially of different types. Understand-
ing different approaches and levels of self-awareness, and how they interact, will
help developers to institute the appropriate communication mechanisms, supporting
interfaces and desirable policies among these different entities, for a given purpose.
By considering forms of computational self-awareness at an abstract level, our aim
is that generic interfaces and communication mechanisms between levels of self-
awareness may be specified. If this is achieved, then self-awareness capabilities may
be able to be provided in reusable “context-free” ways, to enable the development and
evolution of arbitrarily complex architectures appropriate to varying applications.

In this chapter, we organize this plethora of different approaches into a structured
conceptual framework, based around levels of self-awareness. In doing so, we aim
to eventually create a foundation for strategies that consider forms of self-awareness
included and excluded by our definition in Chap. 1. This will support the engineering
process by enabling the automation of design decisions relating to self-awareness,
thereby not only supporting the efforts of engineers, but also of systems themselves,
that reason about their own self-awareness.

Our aim is therefore to make progress towards understanding how different appli-
cation and environmental requirements map to the need to implement different levels
of self-awareness (or not), in different ways. Such an understanding should incor-
porate explicit knowledge of the trade-offs implicit in implementing higher levels
of self-awareness including meta-self-awareness. This type of self-knowledge, and
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techniques by which a system can acquire it itself, will then enable strategies by
which transitions between levels of self-awareness in evolving systems may occur.

We would also like to make clear to the reader that in laying out the conceptual
framework that we do in this chapter, we are not claiming to provide a definitive
characterisation; indeed, we believe it cannot be so, and this framework is one more
step along the road to mapping out important considerations in self-aware comput-
ing. Therefore, we aim at developing a conceptualisation of relevant and important
aspects, and in doing so provide a tool by which engineers and systems may structure
their thoughts, considerations, arguments, and decisions. We target the provision of
a range of concepts, with an eye to helping the researchers adopt the notions most
suitable to their needs and bring out the issues they need to consider as they per-
tain to self-awareness concerns. As suggested above, we fully expect many systems
to ignore some of the aspects presented here, but to do so based on a sound under-
standing that the costs outweigh the potential benefit in that case. To interpret the
framework as a comprehensive list of requirements would be incorrect. Instead, engi-
neers may use the concepts presented to orient themselves, and to ask questions about
what the benefits of different kinds of self-awareness would be, and what the costs
are of implementing them.

3.1.2 Summary of This Chapter

In summary, this chapter:

e Introduces and briefly discusses the general concept of self-awareness and its
various aspects, thereby providing context for the explorations in the rest of the
book.

e Briefly surveys the state of the art in interpreting the concept of self-awareness in
computing, putting this book in its wider context.

e Discusses the similarities and differences in the computational self-awareness
approaches taken so far, with a particular focus on the scope of the approach,
with respect to notions of self-awareness.

e Presents a conceptual framework for describing and comparing various levels and
aspects of self-awareness, which may be desirable or present in computing systems,
including their potential benefits and costs.

3.2 Fundamentals, Inspiration, and Interpretations
in Computing

In this book, we are interested in taking inspiration from self-awareness across natural
systems, in order to design the future computing systems that are better able to
learn, reason, and ultimately adapt and explain themselves. Some of the mechanisms



56 P. Lewis et al.

used to achieve the self-awareness in computing systems will also be inspired by
naturally occurring ones; others will not. We expect the benefits of self-awareness in
computing systems will be most apparent when systems inhabit a world characterized
by unfolding situations, particularly when changes are unforeseen at design time. In
this section, we first ask the fundamental question: what is self-awareness? In other
words, what inspiration can we gain, by looking at self-awareness in biological and
social systems? Second, we expand on Chap. 2, describing the efforts in computer
science and engineering that have directly and explicitly attempted to translate the
concepts from self-awareness in natural systems to the computing domain.

3.2.1 What Is Self-awareness?

Self-awareness is a concept long studied in philosophy, and personal and social psy-
chology. One recent example is a work by Morin [42], which defines self-awareness
as “the capacity to become the object of one’s own attention.” Many modern the-
ories of human self-awareness stem from work of psychologists since the 1960s,
and trace their roots back to notions proposed at the closing of the nineteenth cen-
tury. Smith [6] and Tawney [58] wrote on the self, but perhaps the most influential
was James’s [27] distinction between the me self and the I self. James’s me self
describes the parts of a person that are objects within the world. By contrast, the 7
self is to James not the objects experienced, but the experiencer. The me self is now
often referred to in psychology literature as the explicit or objective self, or as the
self-as-object. Conversely, the implicit or subjective self, sometimes also referred
to as the self-as-subject, is the self which is the subject of experiences. While we
will present a more comprehensive review of work that explores self-awareness in a
computational context later in this section, it is helpful to highlight a few links here
as motivation, as we introduce the foundational concepts. For example, as argued
by some who have considered computational forms of self-awareness (e.g., Lewis
et al. [34]), both self-as-subject and self-as-object are important concepts to include
in a consideration of how computing systems may be made more self-aware.

3.2.1.1 Reflective Self-awareness

We have found that many researchers who are unfamiliar with the notion of self-
awareness find that the explicit self, or self-as-object lends itself to a reasonably
intuitive interpretation in a computational setting. This form of self-awareness is
concerned with things that “belong” to the system itself, objects that comprise the
me self. These can be learnt about and modeled, becoming concepts in the system’s
knowledge. This process is often referred to as reflection, and when language is used
as the modeling tool, reflection can also be referred to as self-reference [45]. The
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aspects of the self in explicit reflective self-awareness are things that can therefore be
recognized, monitored, modeled, and reasoned about, including in relation to other
objects in the world.

In addition to self-as-object, we may also consider an individual that is aware of
its own thinking and experiencing of the world, i.e., its self-as-subject. This is also a
form of reflection, in which a system has the capability to monitor and conceptualize
its own (mental) processes. For example, I may be aware of how much I have been
thinking about my parents recently, or in a computational setting, a system may be
aware of the algorithm being used to perform a particular interaction with the world.
In this way, aspects such as the algorithm’s efficiency, memory usage, or time-to-
completion can be modeled, and the algorithm be replaced with an alternative version,
if required.

This form of self-awareness is powerful, since it permits recursion: the processes
of which the system is aware may be its own self-awareness processes. This is the
form of self-awareness discussed in much of the literature on meta-reasoning or
meta-cognition, which overlap significantly with, and rely on the notion of meta-
self-awareness introduced in this chapter.

3.2.1.2 Pre-reflective Self-awareness

The notion of self-as-subject also draws attention to the idea that a system making
observations and taking actions in its environment can be thought of as the subject of
those experiences and that, despite any similarity to other systems, those experiences
are unique to that system. Observations (through sensors, for example) are necessarily
from that system’s own point of view, and as such are not only influenced, but
determined by factors such as their sensing apparatus, their situation within the world,
and their own state. This explicit acknowledgement of the perspective from which
(self-)knowledge exists is a core theme running through self-awareness literature,
highlighted for example by Metzinger [39], and by Newen and Vogeley [46], and
acknowledges a pre-reflective component in self-awareness.

The assumption that subjectivity is associated with a system’s experience of its
world underlies the elicitation of reflections of both self-as-subject and self-as-object.
We might call this subjectively known self the self-as-experienced. In practical terms,
this provides one of the key differences between context-aware systems (e.g., [10,
15]) and self-aware systems. The former typically assumes a ground-truth-based
environmental context, which holds as true for all entities. Systems can learn more or
less complete and accurate models of the context, which are then used to inform things
such as actions. In a self-aware system, by contrast, it is explicitly acknowledged
that systems will have different experiences of a shared environment (which includes
themselves), since they observe things from different perspectives, using different
apparatus.

This form of self-awareness is not reflection but is pre-reflective. It underlies an
individual’s ability to develop a reflective self-awareness, in either self-as-object
or self-as-subject form. Indeed, the presence of this implicit subjectivity does not
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require that any reflection takes place afterwards: self-awareness may simply stop at
this pre-reflective stage.

3.2.1.3 Notions of Self and Collectivity

While self-awareness is most commonly and perhaps most intuitively thought of as
a property of a single “mind”, self-awareness can also be a property of a collective
system. What, in any case, is the self that possesses the self-awareness?

In recent years, we have come to develop an understanding of the role of col-
lectivity and emergence in complex systems. Rather than require the existence of a
CPU-like entity within the brain, interactions between many distributed components
can give rise to a range of complex mind-like entities, which have no single cen-
tral physical presence. Mitchell [41] provides some excellent examples of apparent
self-awareness in collective systems, highlighting the absence of a single controlling
mind-like thing in each case. In addition to the human brain, she explores the human
immune system and ant colonies, where self-awareness appears at the level of the
collective, even though this property may not be present at the level of the individual
components.

Mitchell describes this form of collective self-awareness as one in which infor-
mation about the global state of the system is distributed throughout the components,
and builds up statistically, in a bottom-up manner, through interactions. Despite its
distributed nature, this information feeds back to enable the control of the system’s
lower level components. The right information ends up where it needs to be, and the
system achieves a form of parallelized self-awareness, implemented across decen-
tralized hardware. Furthermore, when viewed from the outside, the entire system
appears to have a sense of its own state that is both “coherent and useful” [41].

When we talk of self-aware computing systems, we may therefore be referring to
several different types of self. Firstly, it should by now be clear that self-awareness
may be a property of an autonomous agent, which is capable of obtaining and rep-
resenting knowledge concerning itself and its experiences. Indeed, much of the lit-
erature on autonomous and intelligent agents is concerned with techniques for agent
learning, knowledge acquisition and representation, and architectures to support
these capabilities. Secondly, according to this notion of collective self-awareness,
self-awareness may be present at the level of a collective system. The boundary of a
self-aware entity, indeed the “self”, is therefore not limited to encapsulating a single
agent with a central knowledge-gathering and decision-making process.

3.2.1.4 Notions of Levels of Self-awareness
In Sect.3.2.1, we established a distinction in levels of self-awareness between

pre-reflective and reflective self-awarenesses, and within reflective self-awareness,
between reflections on the self-as-subject and self-as-object. Morin [42] dives fur-
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ther into a stratified explanation of self-awareness, reviewing various sets of more
fine-grained levels of self-awareness in the psychology literature.

Of these, Neisser’s [44] have received the most attention to date in computational
treatments of self-awareness. His five levels range from basic awareness of envi-
ronmental stimuli through awareness of interactions and time, up to awareness of
one’s own thoughts and one’s own self as a concept. Unusually, among the sets of
levels presented in psychology, Neisser’s model also includes “lower-level” aspects
of implicit self-awareness.

Rochat takes a developmental angle on the question of levels of self-awareness,
asking how self-awareness competences develop in human children. His experiments
take inspiration from and extend the well-known classical “test” for self-awareness,
the mirror test [19]. While the mirror test is flawed as a method for establishing
the presence of some supposed binary notion of self-awareness [21],' Rochat makes
good use of observations of the behaviour of children in front of a mirror, to draw
more general conclusions.

Newen and Vogeley [46] argue that sets of levels such as those discussed so far,
while helpful, are based upon a more fundamental set of self-awareness forms. They
draw attention to different levels of complexity associated with human self-awareness
or self-consciousness, derived from developmental and linguistic psychology. They
argue that there are at least five of these levels, describing increasingly complex
forms of first-person representations, from nonconceptual representations, through
conceptual, sentential, meta, and iterative meta-representations.

While there are important differences in both emphasis and content in different sets
of self-awareness levels, there are also key themes. Acknowledging this, Morin [42]
attempts an integration of these and other sets of levels, into broad themes reflective
of the overarching levels presented earlier. Morin labels these consciousness, self-
awareness and meta-self-awareness.

3.2.1.5 Agency, Ownership and Models of a Minimal Self

It is hopefully clear by now that when considering the self-awareness properties of
an individual, rather than thinking of self-awareness as a binary property that can be
present or not, there is a wide range of notions to consider. It is then reasonable to
ask what is the minimal requirement for self-awareness?

Examples of such explorations include Gallagher’s [ 18] minimal self and Dennetts
narrative self. These highlight that even in systems without agency, we can begin to
consider the self-awareness question.

In practice, for the design of self-aware computing systems, either strong single-
entity-based or emergent approaches to providing a unity and consistency of self

!As discussed earlier, the binary notion of self-awareness is in any case a mischaracterisation.
Further, Haikonen [21] showed that very little sophistication can enable a computational system to
“pass the test”.
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could be beneficial, though we believe that at this early stage in research into self-
aware computing, it is important not to limit subsequent thinking to either one.

A synthesising role for self-awareness able to integrate implicit and explicit
sources of (self-)knowledge now comes into play. In general, a system may (a)
intend to take actions and fail to realize them, (b) intend to take actions and realize
them, or (c) not intend to take actions, and involuntarily take them. Self-awareness
levels that include models of causality (i.e., forms of interaction awareness) should
account for these different cases, as the distinctions between them will be as relevant
for computers as they are for humans.

3.2.2 Interpretations and Applications

While self-awareness has been studied extensively in natural systems, including in
psychology, philosophy, and sociology, it has also more recently been explicitly
considered in computational systems. Lewis et al. [35] provided an early survey
on self-awareness and its application in computing systems. Recent books [37, 51,
62] also provide excellent overviews of a range of work incorporating the self-
awareness concepts into computer science and engineering, and a recent special
issue of Computer [59] highlights the state of the art in various self-awareness-
related efforts.

In this book, Chap. 2 gave an introduction to the broad range of efforts in comput-
ing which relate to self-awareness. In this section, however, we expand on Chap. 2,
focussing on efforts in computer science and engineering which directly and explic-
itly attempt to translate concepts from self-awareness in natural systems to comput-
ing. This is not a full survey; however, we aim to provide an overview of how some
of the key areas where self-awareness has been explicitly interpreted and applied in
computer science and engineering.

3.2.2.1 Self-awareness and Meta-cognition

Some of the earliest literature that began to explicitly address self-awareness in
computing, emerged around 2004. A DARPA workshop on “Self-Aware Computer
Systems” [4] drew together contributions from a range of researchers, many of whom
provided position papers proposing key challenges to move beyond the initial stages
of understanding about what self-aware computing might come to mean.

Other works to follow soon after would consider those aspects of self-awareness
that form part of a meta-cognitive loop [5], where the key challenges are associ-
ated with knowledge representation and logical reasoning to provide self-awareness.
Schubert [56], in expectation that self-awareness will “push the Al envelope”, pro-
poses requirements for both knowledge representation and reasoning to support
explicit self-awareness. Meanwhile, Cox [14] highlights that such a feedback loop is
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inherent to self-awareness, arguing that being aware of oneself is not merely about
possessing information. He argues that self-awareness includes the ability to use that
information in order to generate goals that may in turn lead to the information being
modified. Both Schubert [56] and Cox [13] argue that a key expected benefit of self-
awareness is the possibility of resultant self-explanation, the ability of a system to
draw on its self-awareness in order to explain or justify itself to an external entity
such as a human. It is easy to see how in the face of ever more complex black box Al,
e.g., as provided by many machine learning techniques, comprehensibility would be
facilitated by this approach.

Providing helpful intuition, Cox also suggests [14] that meta-cognition is similar
to the algorithm selection problem, wherein the task is to choose the most efficient
algorithm from a set of possibilities. This notion of an ability to select one’s own
method of collection and processing of information, according to goals which may
themselves be modified by the individual, has much in common with the conceptual
self described by Neisser and discussed in Sect.3.2.1.4. Cox further considers the
differences between cognition and meta-cognition and argues, in line with Maes [38],
that a meta-cognitive system is one whose domain is itself. Such a meta-cognitive
system can therefore reason about its knowledge, beliefs, and own reasoning process,
as opposed to merely using knowledge about itself.

3.2.2.2 Computational Self-awareness

Lewis et al. [34] and Faniyi et al. [17] provide an attempt at characterising the self-
awareness in computational systems, in a framework inspired by and translated from
psychology. They propose the notion of computational self-awareness, arguing that
human self-awareness can serve as a source of inspiration for equivalent concepts
in computing. They describe a taxonomy of forms of computational self-awareness,
based on (i) notions of public versus private self-awareness, (i) levels of compu-
tational self-awareness, and (iii) collectivity in and emergence of self-awareness.
Their levels of computational self-awareness [17, 34] are inspired by Neisser’s lev-
els for humans, introduced in Sect.3.2.1.4 above, but translated appropriately for
describing the capabilities of computer systems. By translating the concepts such
as this to the computing domain, it is argued that designers are then able to adopt
a common language in considering the various self-awareness capabilities that their
systems may or may not possess. While “full-stack” computational self-awareness
may often be beneficial, with several processes responsible for one or more levels of
self-awareness, there are also cases where a more minimal approach is appropriate.

In a recent book, Lewis et al. [37] present their framework for computational
self-awareness more fully. The book further describes a set of derived architectural
patterns and a collection of engineering case studies, where explicit consideration of
the patterns has been beneficial.

Several engineering efforts have built on Lewis et al.’s [34] conceptual framework
and reference architecture for computational self-awareness, including notably as
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part of the EU-funded EPiCS Project.? In one line of work, self-awareness has been
used to improve user experience in interactive music systems [49]. As demonstrated
through case studies in rhythm [47], chord progression [48], and the sharing of solos
around a music group [11], self-awareness enables musical devices to provide varying
degrees of control to the user, based on their behaviour and preferences at run-time.

Meanwhile, a work on heterogeneous multi-core nodes [3] illustrates how self-
awareness can support the dynamic vertical function migration between the hardware
and software at run-time. At the network level, an FPGA-based self-aware network
node architecture [28] supports the autonomous configuration of dynamic network
protocol stacks, reducing the communication overhead in terms of sent packets,
when compared to static stacks. Incorporating the self-awareness in smart camera
networks [16, 36] has facilitated the move from static design-time network calibra-
tion to run-time management of the network, enabling adaptation to changing and
unforeseen deployment conditions. These systems share the characteristics of being
large, decentralized, dynamic, uncertain, and heterogeneous and have benefited from
the explicit consideration of self-awareness properties and additional online learning
compared to “classic” designs.

3.2.2.3 Reflective Architectures

While many of the examples discussed in the self-aware computing literature include
algorithms inspired by the biological systems (e.g., evolutionary algorithms, rein-
forcement learning, neural networks), approaches to implementing architectures for
reflection have also been based on inspiration from biology. Indeed, such systems
have many characteristics that support their rich reflective processing [7, 9, 42, 50].
The multilayered architectures of biological systems and the biological style of using
both opposing processes and the combination of global and local processing for con-
trol lead to two main results in terms of reflection: First, there are a variety of direct
and indirect sources of information and control available for reflection and adapta-
tion. Second, these direct and indirect control points can be used as “entry points” for
monitoring (instrumentation) and reasoning about the data collected and adjusting
effects (reflective processes). Bellman, Landauer and colleagues have explored this
over several years (e.g., [9, 32, 33]).

The Wrappings approach is one way to implement computational reflection
and self-modeling systems. In continuous development since 1988, the Wrappings
approach grew out of work in conceptual design environments for space systems
which had hundreds of models and computational components [8].

Zhttp://www.epics-project.eu/.
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3.2.24 Self-awareness in Computer Engineering

While meta-cognition, supported by meta-self-awareness, is concerned with higher
order reasoning abilities and of particular interest to the artificial intelligence com-
munity, at a more practical level, efforts exist to engineer systems which explicitly
consider knowledge about themselves. Project Angstrom [1, 2] is one such effort,
where Agarwal and others propose a new way of approaching the system design. The
core idea is to move from a procedural design methodology wherein the behaviour
of the computing system is pre-programmed or considered at design time, towards
a self-aware system where the system adapts to its context at run time. As a result,
many decisions can be delayed from design time at the expense of providing the
system with the possibility of taking these decisions during run-time. For example,
this avoids the need to consider what resources will be available to the system once
it is operational. Instead, the system discovers resources and makes decisions about
how to allocate them during its operation.

The intention is that this will lead to reduced programming effort, since if a
system can automatically discover how to meet its goals at run-time, based on what
it finds available, then designers are no longer required to determine how to satisfy
resource constraints themselves. In describing this vision, Agarwal [2] proposes five
properties that self-aware computers should possess:

Introspective: they can observe and optimize their own behaviour,

Adaptive: they can adapt to changing needs of applications running on them,
Self-healing: they can take corrective action if faults appear whilst monitoring
resources,

Goal-oriented: they attempt to meet user application goals,

Approximate: they can automatically choose the level of precision needed for a
task to be accomplished.

More recently, Hoffman [23], Santambrogio [54], and others have extended Agar-
wal’s work, developing systems that, based on an Observe-Decide-Act (ODA) loop,
seek to automatically adapt to meet high-level goals online. The monitoring aspects
of self-awareness are facilitated by technology called application heartbeats [24].
The aim is to define a general method for monitoring the behaviour of an application
against high-level goals. Typically, machine learning techniques are then used to
adapt, in order to continue satisfying the goals [25, 40].

3.2.2.5 Self-awareness in Complex IT Systems

With a focus on the engineering of IT systems and services, Kounev [31] proposes
self-awareness as an extension to the autonomic computing architecture, in which
systems possess built-in self-models. Such models include aspects such as the sys-
tem’s own architecture, and its interactions with its environment, enabling these
things to be reasoned about at run-time. Kounev et al. further argue [30] that self-
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reflection (awareness of hardware and software infrastructure, execution environ-
ment, and operational goals), self-prediction (the ability to predict the effects of
environmental changes and of actions) and self-adaptation are key characteristics of
self-aware systems. Self-awareness itself is then considered from a fundamentally
pragmatic perspective, as concerning the nature of (self-)models required for more
effective predictive and adaptive behaviour. In taking this approach in software and
systems engineering, it is argued that quality of service requirements can be met
despite changes in the environment. A challenge is highlighted around the need for
systematic engineering methodologies for self-aware systems.

3.2.2.6 Self-awareness in Collective Systems

Zambonelli et al. [63] consider the self-awareness properties of collective systems
they term ensembles. An example of such an ensemble is a robot swarm. In their work,
Zambonelli et al. consider self-awareness to be the ability to recognize the situations
of their current operational context that require self-adaptive actions. Hence, self-
awareness is here closely tied to knowledge supporting the need for resulting actions.
In particular, they envisage the utility of self-awareness to be targeted towards radical
run-time modification of structure, at both the individual and ensemble level. In order
to reason about this, they highlight that self-awareness is not only concerned with
what is currently happening (in terms of oneself and the state of the world), but also
what could happen. This includes what the individual or collective could become by
adapting, how the world could change, or how these things may affect each other.
Hence, the notions of time awareness, as will be discussed in Sect. 3.3.2, are impor-
tant, motivating the development of models that have a predictive or anticipatory
power, and those that capture causality in complex collective systems.

This line of research was pursued in the EU-funded ASCENS? project, primarily
through the application of formal methods to reason about the knowledge encapsu-
lated in ensemble-based systems. In particular, the general ensemble model (GEM),
is proposed [26], as a common integrated system model for describing components
and their interactions in mathematical terms. A recent book [62] discusses progress
made during the ASCENS project.

Lewis et al. [34] also explicitly discuss systems with collective self-awareness.
Building on Mitchell [41], they describe components “within a collective that inter-
actwith each other locally as part of a bigger system”, which “might not individually
possess knowledge about the system as a whole. Although global knowledge is dis-
tributed, each system within the collective can work with other systems, giving rise
to the collective itself obtaining a sense of its own state and thus being self-aware at
one or more of the five self-awareness levels.”

3http://ascens-ist.eu/.
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3.2.2.77 Systems with Minimal Self-awareness

One example of where self-awareness has been applied in a small somewhat sim-
ple system is in cognitive radio, where devices control their own capabilities and
communicate with other devices to monitor theirs. This enables them to improve
the efficiency of communication by negotiating changes in parameter settings [60].
Another area where a comparatively simple self-awareness loop is used to great prac-
tical effect, is in cognitive packet networks (CPNs) [52]. Here, nodes on a network are
able to monitor the effect of choosing different routes through the network, enabling
them learn during run-time to adapt the route between a source and a destination
on an ongoing basis. The approach is able to naturally deal with changing quality
of service requirements of different nodes and has been demonstrated to be highly
resilient to denial of service attacks [20].

3.2.2.8 Self-awareness in Robotics

In robotics, research is also concerned with replicating forms of self-awareness
that appear to be human, such as the robot, Nico [22], which learns about its own
body, deliberately attempting to mimic an infant. Meanwhile at the collective level,
Schmickl et al. [55] showed that a group of robots with simple behavioural rules
and local interactions may achieve collective awareness of a global state, distributed
across the individual units.

Winfield has highlighted a crucial role for self-awareness in future robotics. He
proposes [61] that many robots operating in the world should possess internal self-
models, arguing that such models are essential for safe and ethical robot behaviour.
The key idea is that by constructing and evaluating a model of the robot and its sur-
roundings, unsafe and unethical outcomes can be avoided. A consequence evaluator
predicts the future events through the use of self-models, and as a result moderates
the actual robot controller.

3.2.2.9 Self-awareness Elsewhere and in Future Systems

In this section, we have provided an overview of the major research efforts over
the last decade or so, in self-aware computing. However, there are many other areas
of computer science and engineering research, where self-awareness is mentioned.
Two notable ones are autonomic computing [29] and organic computing [43]. Both
of these visions have spawned rich literatures, and self-awareness is frequently men-
tioned as a desirable property. However, in neither case has the notion been further
developed. Similarly, in the self-adaptive software community, the so-called self-*
properties are organized in levels where self-adaptiveness is emphasized as being the
most general level, and self-awareness and context-awareness are considered only as
primitive levels [53]. Here too, concepts of self-awareness have not been explicitly
explored.
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Finally, it is clear that there are many computer systems available today, and
dating way back before the previous decade, that exhibit the sorts of self-awareness
capabilities that we describe in this chapter. These systems, along with autonomic and
organic ones, also have the potential to offer crucial insights into the computational
self-awareness. In the vast majority of cases, however, there has simply not yet been
any explicit engagement with self-awareness concepts. In the report on the 2004
DARPA workshop on self-aware computing, Amir et al. noted [4] that there were
even then already systems in existence that exhibited what they called “features of
self-aware computer systems.” On the evidence presented in this and the previous
chapters, we agree. It is our hope that by providing a principled and clear conceptual
framework for the description of different self-awareness types, it will become easier
for others to engage in discussing and reasoning about the self-awareness properties
of their own systems, and how they might be extended.

3.3 A Conceptual Framework

In this section, we present an inclusive conceptual framework for describing com-
putational self-awareness. Taking inspiration from the varieties of self-awareness
present in human and animal systems, we outline a structured set of technical con-
cepts, which describe the types of capabilities that self-aware computing systems
might possess, and how they might be present in such systems. As such, capabilities
described using our framework might form building blocks for self-aware system
architectures, which will be elaborated on in Chaps.6 and 7. We also provide axes
on which computational self-awareness may vary, and may indeed be quantitatively
or qualitatively compared, in anticipation of Chap. 15, where this topic is revisited.

The framework described here is inspired by, and builds on, the conceptual frame-
work presented by Lewis et al. [34]. In building on that prior work, we highlight two
important differences. First, this framework takes a more inclusive and extensible
approach, where levels of self-awareness are not directly mapped to psychological
levels (as was done with Neisser’s levels by Lewis et al.), and thus may be adapted to
suit a particular application context. Second, we include an explicit treatment of the
concepts of pre-reflective, reflective and meta-reflective self-awareness processes,
and how they relate to one another. In this section, we do not however yet discuss
techniques or approaches to realising the concepts introduced, except by means of
illustrative example. Therefore, our framework aims to serve as a sort of space of
possible conceptual requirements of a computationally self-aware system.

Our proposed framework is based on the following high-level concepts:

e Levels of self-awareness,
e Aspects of reflective self-awareness, and
e The domain of self-awareness.

These are elaborated upon below, and can together be used to characterize the
form of self-awareness processes that a system might possess. In general, self-aware
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computing systems will possess many such processes, which interact, for example
in reflective relationships, and by acting on one another. We distinguish three over-
arching levels of self-awareness: pre-reflective, reflective, and meta-reflective. We
then characterize various aspects of reflective models, which may be present in a
self-aware system. These include time, interactions, identity, goals, etc. The domain
of self-awareness includes the span of self-awareness (that is the subject of the self-
awareness, i.e., who is self-aware in this case), as well as the scope of self-awareness
(the objects of the systems sensing and reflection).

3.3.1 Overarching Levels of Self-awareness

As discussed in Sect. 3.1, an important concept in self-awareness is the existence
of different levels of self-awareness. These range from basic subjective awareness
of stimuli, from both the system itself and its environment, through an awareness
of how knowledge can represent concepts such as social interaction, causality, and
time, up to an awareness of one’s own thoughts. Advanced organisms engage in
meta-self-awareness [42], an awareness that they themselves are self-aware. Meta-
self-awareness may also take many forms, including awareness of self-awareness
processes, awareness of reflective knowledge, and iterative meta-reflection on meta-
self-aware processes and meta-representational knowledge [46]. Computational self-
aware systems will also similarly vary a great deal in their complexity, and levels of
computational self-awareness are also needed to express this variety.

Taking a coarse grained view, we can distinguish three overarching levels of
self-awareness: pre-reflective self-awareness, reflective self-awareness, and meta-
reflective self-awareness. These are elaborated upon below.

3.3.1.1 Pre-reflective Self-awareness

Pre-reflective self-awareness is the subjective awareness a system has from its sensory
input - its ability to perceive and make observations. This includes environmental
stimuli, internal stimuli from the system itself, the sensing of carrying out an action,
receiving signals from the outside world, etc. This level aligns with Lewis et al.’s [34]
stimulus awareness, based on Neissers ecological self, and describes the presence of
subjective knowledge being obtained by the system before (or perhaps without) any
reflective modeling of this knowledge takes place.

At this level, the system has no knowledge of historical data, and no models
of interaction or causality. In terms of actions possible by a system with only pre-
reflective self-awareness, these are limited to stimulus-action rules, since any rea-
soning (if one can still call it that) is limited to that based on perception, rather
than any pre-existing internal models (since none exist). As such the system is able
to adapt only to immediate observations. Indeed, at this level, the system has no
conceptualisation of its experiences, it merely senses for itself, and possibly acts.
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Pre-reflective self-awareness describes the minimal form of computational self-
awareness. While in computing systems, it describes nothing beyond a typical system
able to interact with its environment, it is a prerequisite for all later forms of self-
awareness. A system cannot learn a reflective model, conceptualize its experiences,
reason, and act based on them, if there is no experience present in the first place,
represented in the system. From a pragmatic point of view, the inclusion of pre-
reflective self-awareness in our taxonomy of computational self-awareness, invokes
an important question: for a given application, is pre-reflective self-awareness suffi-
cient to achieve the desired behavior? Or, are reflective models (and possibly more)
also needed? Thus, the explicit consideration of pre-reflective self-awareness enables
the engineers to justify the use of more advanced forms of self-awareness for their
systems.

Pre-reflective self-awareness is however more than simply data: it is data that has
been sensed, that has come from somewhere according to the ability of the system to
obtain it (e.g., through physical sensors). Therefore, this level of self-awareness also
implicitly includes the notion of subjectivity. Two different systems with different
sensors are in different locations would sense the same phenomenon differently,
and thus end up with different data. In formalising any notion of pre-reflective self-
awareness, it is crucial to include the subjective source of the data itself. In turn,
this means that this “meta”-data, if we should indeed call it that, can be used in the
reflective processes, elsewhere in the system. Ultimately, this may lead to radically
different outcomes in terms of knowledge or action.

3.3.1.2 Reflective Self-awareness

Reflective self-awareness is the process of producing a conceptualisation (i.e., a
model) of a one’s knowledge and experiences. In the first instance, the reflective
model will be of a pre-reflective self-aware experience, i.e., a reflective model of a
sensory input, observation etc., as described in Sect.3.3.1.1. In other words, as the
system goes through life, experiencing its environment through its sensors, reflective
self-awareness processes build models of the empirical and subjective data gathered
by these sensors, as well as (potentially) models of the subjectivity with which they
were obtained. We call the specific observation (or pre-reflective representation of
a phenomenon) captured by the modeling process the object of the reflective self-
awareness process.

As with human self-awareness, such models or conceptualisations can also capture
various different aspects of an experience (of an object). For example, a reflective
self-awareness process may build a model that conceptualizes an experience over
time. Alternatively, it may build a model that conceptualizes the causality present in
an experience, for example, based on modeling how the experienced environment
responded to an action. In general, there are many such aspects to reflective self-
awareness; these will be discussed in Sect. 3.3.2. In our framework, we may therefore
describe a reflective self-awareness process according to its aspect(s) and object.
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3.3.1.3 Meta-Self-Awareness

Meta-reflective self-awareness, or meta-self-awareness is essentially reflective self-
awareness where the object of the reflection is a reflective self-awareness process.
Hence, we may describe the meta-reflective processes in the same ways that we
describe the reflective processes (since they are a subset of them). It is impor-
tant to note, however, that there are at least two high level classes of object that
a meta-reflective process could be concerned with: the underlying process that forms
the object of the meta-reflection (e.g., a learning process), and/or the output of the
underlying process, (i.e., the models produced by the process being reflected upon).
In practice, both are likely to be valuable, and indeed integrating reflection upon both
process and output will provide the necessary knowledge to be able to reason about
how the two relate to each other. As an example, a meta-reflective process could model
the behavior (e.g., memory usage) of another learning process, while also judging
the fidelity of its learnt models. Thus, the meta-reflective process has the ability to
reason about when it might be advantageous to switch to a different learning method
that better balances this trade-off. In general, there are many types of processes that
could be learnt and reasoned about, such as reasoning processes, decision processes,
problem-solving approaches, and other meta-reflective processes.

There is a strong link between this level and the meta-cognition or meta-reasoning
literature discussed in Sect. 3.2.2.1. Indeed, our distinction above echoes Cox’s [14]
and Maes’s [38] arguments that the difference between cognition and meta-cognition
is that a meta-cognitive system is one whose domain is itself. Hence, a meta-cognitive
system can reason about its knowledge, beliefs, and reasoning processes, as opposed
to merely using knowledge about itself as sensed.

In practical terms, our experience with meta-reflection has so far focussed these
types of meta-self-awareness processes on resource management, trade-off manage-
ment, and integration in complex systems. However, while meta-reflection is certainly
useful in these regards, we expect there to be additional areas where meta-reflection
can help. Examples might include in building higher-order models of causality, or
in reflecting on the self-awareness of others in a social system, or on the emergent
collective self-awareness of a group of which the individual is a part. However, there
will be many additional challenges when we move beyond our current emphasis on
resource and trade-off management, and system integration. One challenge is that
part of the reason for meta-self-awareness is to gain a perspective on the overall
goals for the whole system (much like the role of a central nervous system). One new
type of role for this meta-self-awareness would be to decide what type of decision
processes should be in control when there are several alternatives possible, or indeed
simultaneously running in the system. This type of meta-self-aware reasoning would
have to deal with the role of attention in addition to run-time trade-offs. This brings
up more new challenges in terms of what actions and what types of information will
be needed for such processes and also how to become increasingly liberated from a
particular domain and set of experiences to something that begins to look more like
general intelligence. This of course greatly changes the nature of the self-models and
the models of the situation.
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For the avoidance of doubt, it is worth emphasising that given that the object
of a meta-reflective process is a reflective process, and meta-reflective processes
are themselves reflective processes, then this permits the iterative meta-reflection.
This layering permits arbitrarily complex internal reasoning about the behavior of
different self-awareness processes with respect to their aspects, goals, expectations,
conceptualisation, etc., and also with respect to the systems continuing pre-reflective
perceptions (i.e., empirical data taken from observations in the world).

3.3.2 Aspects of Reflective and Meta-reflective Self-awareness

We have so far introduced three overarching levels of self-awareness: pre-reflective,
reflective and meta-reflective self-awareness. We further discussed that (meta-)
reflective processes, those that build conceptual models of their objects, might capture
different aspects of the object, or the experience of the object, in their modeling. In
this section, we discuss some of these aspects of reflective self-awareness processes,
and how they may combine and build upon each other to form complex self-aware
behavior.

In much of the psychological literature, the aspects discussed here are often
described as part of a more fine-grained set of /evels of self-awareness. In this chapter,
we have restricted the term “levels” to refer to capabilities and processes that build
upon each other, for example as discussed in Sect.3.3.1. As this section highlights,
reflective self-awareness processes in a system can and typically will comprise a rich
variety of learning, reasoning and acting behaviors, each of which models or focuses
on a particular aspect of self-awareness. We now proceed to describe those aspects
of reflective self-awareness that we at present identify as important to self-aware
computing systems.

3.3.2.1 Identity Awareness

Identity awareness in a reflective process concerns the modeling of experiences such
that they contribute towards a conceptualisation of a coherent identity, possibly over
time. This describes the ability to recognize and model the identity of entities, such
as other systems, objects in the world, and humans. Without identity awareness,
experiences form isolated stimuli, as part of a noisy “soup” of an environment.
Identities as modeled may be unique, such as the identities of specific other systems
with which to interact (e.g., through unique IDs, such as MAC addresses or DOIs), or
simply by affixing one’s own label to an encountered object to track it over time (e.g.,
the third client I saw join the network). Alternatively, identities may be modeled at
the level of roles (e.g., a web server, a small robot in my environment). Ultimately, the
level of expressiveness and uniqueness required of identities in a reflective model will
depend on the application requirements and context. Finally, identity awareness also
extends to oneself. Neisser’s highest level of self-awareness, the self-concept [44],
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concerns the conceptualisation of the whole self as a unified entity within the world.
An awareness of the identity of oneself (or one of its many identities) is a prerequisite
for self-concept. Extending this notion of self-identity to the external sphere, identity
awareness also includes the concepts such as one’s own role(s) within a wider system.

3.3.2.2 State Awareness

State awareness builds upon the knowledge captured in any and all other aspects
of self-awareness, by providing the ability to model and recognize the identity of
states of oneself, the world or other entities within it. For example, a system may
have a variety of knowledge present in its various conceptual models, associated
with various other aspects. With the addition of state awareness, the system would
then be able to use this knowledge to characterize the state of the world. Examples
might include “winter,” “in low power mode,” or “waiting for a reply,” although
there is no requirement for states to have intuitive names or meanings outside of the
individual itself. Indeed, unsupervised learning presents a promising technique for
the realisation of state awareness, since experiences might be clustered to identify
particular emergent states.

3.3.2.3 Time Awareness

Time awareness describes the aspect of reflective models that are concerned with
historical knowledge, or knowledge of potential future phenomena. In its simplest
form, this may include knowledge of past or potential future basic stimuli. Tempo-
ral aspects of models may of course be expressed in a wide range of ways, from
precise associations (e.g., timestamping) to ordinal relationship information (e.g., x
happened before y). When combined with other conceptual aspects, awareness of
the temporal nature of these may be also be modeled. Examples of these may include
historic interactions, future states or previous identities.

3.3.2.4 Interaction Awareness

In interaction awareness, run-time models are used to take into account patterns of
interactions between entities. There are various sub-aspects here, which build on each
other. Most obviously, the system must be able to recognize that some actions form
part of interactions, such that they are in some way causally connected. An example
of this includes message passing, such as is used in a communications protocol,
where one message may be a response to another, rather than an isolated action.
There may be, in simple interaction awareness, simply a model of the flow of actions
over time (e.g., action b typically occurs after action a), or there may be additional
semantics associated with the actions or the combination of them (e.g., actions b is
aresponse and action a is a query).
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As a prerequisite to the above form of interaction awareness, there must be some
form of identity awareness, at least insofar that the system can identify messages,
as apart from the general noise in the environment. It may also be important to be
able to identify individuals as those engaged in an interaction, if not in terms of their
unique identity, then perhaps in terms of role.

Interaction awareness can also build upon state awareness, since models may
encapsulate knowledge of causality such as “when action a is taken in state s, this
leads to state ¢.” Markovian approaches may be effective choices for modeling state-
based interaction awareness.

Finally, the interactions need not be external. Causality of internal processes may
also be modeled in meta-reflective processes. For example, a system might model
the behavior of one of its own decision-making processes, when other parts of the
system are either operational or not. In the former case, the system may learn a model
of how decision-making degrades (due to more stringent resource constraints), when
load elsewhere is high. Such models of internal causality may then be used to provide
adaptive internal re-architecting, or perhaps more effective scheduling of tasks.

3.3.2.5 Behavior Awareness

In behavior awareness, run-time models represent the internal behavior of the system
or behavior of external entities. Behavior here is taken to mean an action, or more
normally a group of actions, taken by an individual. Models of behavior may, at
the simplest end of the spectrum, comprise a representation of an observed action.
More useful forms of behavior awareness, however, will link these representations
together, over time, and with awareness of states. For behavior awareness to be
particularly meaningful, it would usually be coupled with some identity awareness,
i.e., knowledge of the identities of individuals or roles carrying out the behavior,
or subject to it. Behavior awareness can apply also to oneself, by modeling either
ones externally facing behavior in the world or one’s own internally facing behavior.
Behavior awareness can be applied in a meta-reflective context, where models are
built that describe self-awareness processes in terms of their behavior.

3.3.2.6 Appearance Awareness

In human self-awareness, one’s public self, the image an individual presents to the
world, is often considered important. This may also be true of computational systems,
for example where the environment or individuals within it might respond differently
depending on the appearance of the individual to which they are responding. Thus,
appearance awareness is concerned with how the individual appears, or may appear,
to others in the environment. At one end of the spectrum, this might simply concern
an awareness of physical properties (i.e., a robot may be aware of its height, or if it is
dirty). At the other end, a system may learn models of how it presents itself, including
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its own knowledge and self-awareness. In this way, appearance awareness is linked
to notions such as self-explanation, acknowledging that a system’s explanation or
justification for its actions form part of the way it presents itself, and may go on to
have subsequent implications for how the environment responds to it. The reflective
processes that deal with the aspect of appearance awareness are able to explicitly
learn and reason about these factors.

3.3.2.7 Goal Awareness

Goal awareness, in a general sense, includes the ability to conceptualize the internal
factors that drive the behavior, such as a system’s goals, objectives, and constraints.
In some cases, goals will be explicitly available and formally specified. Note that this
is not the same as a goal being implicitly present in the system, due to the advance
decisions of designers. Goal awareness implies the presence of goal knowledge at
run-time, in such a way that it may be reasoned about at run-time. Further, this
presence of explicit goal knowledge at run-time permits the acknowledgement of
and adaptation to changes in goals, either internally generated, or due to external
forces (e.g., a user’s changing needs).

Not all goals will be expressed in this way. In some cases, goals will be implicit
in the environment or need to be derived from higher-level more abstract goals (e.g.,
the goal to replenish energy may be derived from a higher-level goal to survive).
In other cases, goals will take the form of motivations: impulses and drives that are
not tied to formally specified objectives or goal states. In these cases, goals may be
less obvious, and only intentions or even actions will be observable. Thus, learning
will need to be employed to model those goals implicitly in the architecture of the
system.

Note that the goal awareness may apply to oneself or to others. In the latter case,
a system may possess a model of another system’s goals, or those of a human or
organisation. Further, the goal awareness may be combined with other aspects, such
as time awareness, where models of how goals change over time might be one benefit.

3.3.2.8 Belief Awareness

Belief awareness is concerned with, in general, things believed to be true by a system
and differs from expectation awareness since beliefs do not, in general, need to cap-
ture the notion of time. In this way, belief awareness provides a generic mechanism
for reflecting on other aspects of self-awareness, in both oneself and in others, with
degrees of uncertainty. In simpler cases, belief awareness models will capture the
knowledge that the system itself believes something in terms of one of the afore-
mentioned aspects to be the case (e.g., I believe that I have an expectation that an
apple will fall when thrown into the air). This may appear superfluous; however,
the added benefit here is that belief awareness provides a generic mechanism for
arbitrary meta-reflection on one’s own awareness. A belief awareness process may
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be added to reflect on any other process, to express knowledge of the level of belief
associated with the model. In terms of arbitrary reflective architectures, processes
that are concerned only with belief awareness allow us to add models of uncertainty,
as well as sources of knowledge and uncertainty, in arbitrary arrangements.

Belief awareness also applies in the public sphere, since awareness of others’
beliefs may also be modeled. This provides the necessary machinery for iterative
meta-representational self-awareness, for example cases such as system x believing
that system y believes system z to be aware of system x’s origin.

3.3.2.9 Expectation Awareness

Expectation awareness combines belief awareness and time awareness, to form mod-
els that express what the system or others believe about how the world will unfold
over time. This includes, for example, awareness of how the laws of physics act on
objects over time. For example, the idea that “when I throw an apple in the air in front
of me, I expect that I will see it come down” can be modeled as a belief over the state
of an observation of an object over time. A further example is that of knowledge of
social conventions (e.g., when a person greets me, he expects me to respond with a
greeting within a short time window). In this way, expectations in fact can form part
of a requirements model (requirements awareness might be seen as a sub-aspect of
expectation awareness), where the expectations are those of a user, client machine,
or interaction partner in a collective system.

At the meta level, this may be used to model the requirements or expectations over
other aspects. A system may, for example, be watching two individuals engaged in a
conversation. In this case, a model may capture the expectations over the sequence
of messages being passed in the interaction (see interaction awareness, above): there
may be a model that the response b is expected after query a. Subsequent reasoning
may concern the implications of this expectation being broken and appropriate actions
that may be triggered.

3.3.2.10 Applicability and Extensibility

In the above characterisation, we have presented the aspects of reflective self-
awareness that we anticipate will be most relevant to self-aware computing systems.
However, as in psychology, we expect that various different set of aspects will be
used, as appropriate for the particular context or system design process. Therefore,
the above list should not be considered our proposal for a complete list, but instead
as a starting point for further consideration as to the aspects captured in reflective
and meta-reflective self-awareness.



3 Towards a Framework for the Levels and Aspects of Self-aware Computing Systems 75

3.3.3 Domain of Self-awareness

In this section, we are concerned with two important questions when considering a
self-aware computing system: what is it that is self-aware, and of what is it aware?
By now it should be clear that in a given self-aware computing system, there are
various entities that are involved, or potentially involved, in a particular aspect of
self-awareness that is present. These entities exist at various levels of abstraction and
aggregation, and include the system that is aware, the parts of that system that are
involved in providing the awareness, and the things it is aware of. Without limiting
this collection of entities, we refer to them together as the domain of self-awareness.
In this section, we define various concepts, chief among them are the span and
scope of self-awareness, that comprise the domain. These provide a helpful basis for
discussions that rely on these notions, in the rest of the book.

3.3.3.1 Scope of Self-awareness

In reflective self-awareness, we are primarily concerned with a relationship between
the subject of the awareness, that is, the entity doing the reflecting, and the object
of the awareness, that is, the entity being reflected upon. A self-aware system will
be aware of a broad range of objects over its lifetime. These include, for example,
externally sensed things, the system’s sensing apparatus, internal reflective processes,
a sense of self-concept, and indeed these things at different points in time, and in
other individuals. Collectively, we call the objects of self-awareness that system’s
scope of self-awareness. The scope comprises all the entities observed, or able to be
observed, by the system.

3.3.3.2 Span of Self-awareness

In general terms, we refer to the extent of the entity that has the awareness, the
entity at which the knowledge is available, as the span of self-awareness. We must
refine the concept of span somewhat; however, since it is not sufficient to base the
definition of span on the notion of an entity that is doing the reflecting. This is too
ambiguous to be particularly helpful. In general, reflecting on a particular entity will
be carried out by one or more reflective self-awareness processes within a system,
and candidates for being the span in this case could be any one of these processes,
all of them combined, or the system of which they are part. Coming back to the
discussion of what constitutes a self (as begun in Sect.3.2.1), we may accept that all
of these interpretations are potentially valid answers to the question: what is doing
the reflecting?
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3.3.3.3 Complexities in Span and Scope

As an example, consider a system that processes sensor data and passes messages
to other neighbouring systems. In the system, a number of self-awareness processes
reflect on different aspects of what the system’s sensors observe. One process that
captures a time-awareness aspect may, through its learning, become aware of a pat-
tern in what is being observed, corresponding, albeit noisily, to the time of day. A
second self-awareness process does not reflect on time aspects of the observation,
but instead provides some interaction awareness. This process develops a model of
potential cause and effect, as it becomes aware of a certain type of incoming messages
triggering a shift in sensor readings. A third self-awareness process observes outgo-
ing and incoming messages, reflects on the correlations between these, and becomes
aware that the type of incoming messages noticed by the second process is received
shortly after the system sends a reset signal to its neighbouring systems. It observes
that the reset signal is generated once per hour. Finally, a meta-self-awareness process
reflects on the knowledge obtained by the second and third self-awareness processes,
and is therefore able to develop an awareness that hourly reset messages precede a
change in sensor readings.

There are now two different and coexisting models that explain the shifts in sen-
sor readings observed by the system. The first, provided by the first self-awareness
process, correlates shifts with regular time intervals. The second, provided by the
meta-self-awareness process, through its reflection on the knowledge acquired by
the second and third processes, associates the timing of the shifts with the system’s
own reset messages.

It is reasonable to ask at this stage, what is the system aware of, in terms of how
its environment changes, and its effect on those changes?

This small example serves to illustrate that the span of reflective self-awareness,
the entity doing the reflecting, is both several things at once, and specific to the
particular reflective self-awareness aspect, and role of that self-awareness process
within the wider system.

3.3.3.4 Hierarchical Reflection View of Span and Scope

If we take a view of self-awareness, only as it arises from hierarchical subject-object
views of reflection, then we can consider that there might be several different spans
at work here, each with their own different (but overlapping) scope:

e A span comprising reflective process 1, which has the system’s observations
through its sensors, some aspects of the entities observed, and the time of day,
as its scope.

e A span comprising reflective process 2, which similarly has the system’s observa-
tions through its sensors, some (partially different) aspects of the entities observed,
and incoming messages as its scope.

e A span comprising reflective process 3, which has the observation of system’s
incoming and outgoing messages as its scope.
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If we, however, consider a span comprising the meta-self-aware process, then
the scope includes the models and learning contained within processes 2 and 3.
However, in doing so, the span must be expanded to also include those processes,
since without them being part of the entity doing the reflecting, there would be no
possibility for the sensor observations or messages to be part of the scope of the
meta-self-aware process—and they clearly are. Hence, our fourth option is a span
comprising self-awareness processes 2 and 3 and the meta-self-aware process.

In this case, we see an overlap between both the span and the scope of the same self-
awareness phenomenon. Even in this simple example, as the self-awareness processes
are broken down into individual reflective processes, the system, as defined here by
the span, is aware of (as defined by its scope) part of its own self-awareness. This is
in addition to its awareness of the external things being observed by the sensors.

3.3.3.5 Collectivity in Span and Scope

The one potential span missing from the above discussion, which is perhaps more
intuitive, is to consider the system-as-a-whole (as comprising the three reflective,
one meta-reflective process and pre-reflective observing apparatus) as a single span.
It would follow that the associated scope of such a span consists of everything that
is known to it.

Since in the example system there is no single reflective process that has a whole-
system view, we must instead return to the notion of collectivity in self-awareness, as
firstdiscussed in Sect. 3.2.1.3. The unity of the system in the example, which provides
us with the intuition of such a system-as-a-whole span, arises from considering the
system as a “well-defined” entity within its broader environment. This is in much
the same way that we often consider a human, a dog, a smart phone, or a daffodil
as a single system, even though there is no omniscient component within them. Of
course, this does not come without the requirement for someone, another observer
perhaps, to do the “well defining”.

One way of reasoning about such a well-defined entity is based on behavior. In
our example system, and coming back to the fact that there are now two different and
coexisting models describing what is occurring, we can of course allow for either or
both to trigger observable behaviors. In such a case, we may observe a behavior that
suggests that the system has a coherent view integrating both models, even though
none is present. Is the “system-as-a-whole” then aware of both models? From this
external behaviorist observer, it is the case, and this is clearly sufficient for behavior
to be generated based on both hypotheses.

This collective span can indeed be a highly useful concept, when concerned with
the actions driven by self-awareness. It requires us to accept that a span may not
be bound only by the presence of subject-object relations in a reflective hierarchy,
but can be enabled through collectivity. In this case, this collectivity arose from a
unity of behavior, as observed. A final point to make on the unity of behavior and its
reliance on being observed is that there is no requirement for the observer to be an
entity apart from the system itself. Indeed, most humans have a sense of their own
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self, which according to this discussion is of the collective type. This arises from that
person’s own self-awareness and not (directly at least) the awareness of others.

3.3.3.6 Types of Self-awareness Objects and Scopes

We have indicated above that a system’s span, which is the subject of self-awareness,
is aware, according to some descriptions based on its levels and aspects, of a variety of
objects, collectively termed the system’s scope. The systems reflective processes (part
of the span) produce various conceptualisations, or models, of internal and/or external
entities (part of the scope), which in turn may feature pre-reflective, reflective, or
meta-reflective self-awareness.

In general, the object of a reflective self-awareness process is the answer to the
question what is the thing the system is paying attention to? A reflective process
produces a conceptualisation (i.e., a model) of any pre-reflective or reflective self-
awareness. Let us first consider the initial case, where the object is a sensed experi-
ence, i.e., an observation. As with model characteristics, the list of possible object
types cannot be exhaustive and will to a large degree be domain dependent. However,
we provide here a suggested list of important types of objects.

Let us therefore take a look at some of the main fypes of objects that a system
can be aware of. From these, we can also define corresponding scope types. The
list of possible object types cannot be exhaustive, and will, to a large degree, be
domain-specific. However, we provide here a suggested list of important types of
objects.

Generally, we consider that a system and its environment consist of various entities
(or resources) and that the system can be (self-)aware of the existence and various
characteristics of these entities. Such characteristics would notably include:

e Property characteristics: include both the parameters that define an entity’s char-
acteristics or state, and the actual values of those parameters at different times.
Also this includes potential states and their characteristics;

e Observability capabilities: specify the measures that can be taken from an entity,
given the available sensing apparatus. These may additionally provide a more
detailed description, including recommended observation frequencies, expected
resource overheads, and accuracy of measurements;

e Action capabilities: specify the actions that are being or can be performed on
an entity; these may additionally provide a more detailed description, including
the expected effects within various contexts, quality parameters, and necessary
resources;

e Interconnections among objects: represent any kind of relation between objects
of any of the types listed above, including links among computing entities (e.g.,
system architecture); dependencies between state characteristics; and conflicts
among action capabilities. At higher levels of abstraction, this may include groups,
organizations, or sets of and relations between objects.
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We may, as such, derive several types of a system’s self-awareness scopes. An
action scope includes all entities that the system may act upon. These will typically
include not only internal entities, but also external entities (if we consider communi-
cations with other systems as some sort of actions). We may also find useful the notion
of influence scope to refer to entities upon which the system may only act indirectly
(e.g., via direct communication or indirect effects via a shared environment). The
self-awareness scope includes all “entities” the system can observe, either directly
(e.g., through sensors) or indirectly (e.g., through acquired knowledge obtained from
elsewhere). The entities in the scope may include both internal and external entities.

Crucially for all but the simplest of self-aware systems, the entities that are the
objects of reflection can themselves be self-awareness processes, including their own
acquired knowledge. These observed processes may operate over different scopes
and at different resolutions and self-awareness levels, than the reflecting process. We
may now use the terminology of the domain of self-awareness to establish that when
the scope of self-awareness includes (at least partially) the span of self-awareness,
we have meta-self-awareness. Namely, by virtue of its role and connectivity within
the concert of self-awareness processes, the subject of a reflective self-aware process
is a meta-self-awareness process. In general, we envisage that self-aware systems
will have many such meta-self-awareness processes, operating over different objects
and with respect to different aspects (goals, interactions, time, etc.). Furthermore,
it is likely that reflecting on these further still, meta-meta-self-awareness processes
will provide the system with knowledge about the role and impact of operating such
an array of self-awareness processes. There are many architectural alternatives for
structuring reflection relationships in a self-aware system, as will be explored in
Part II of this book. At one extreme however, we may consider a particular type of
overarching meta-self-awareness process, able to reflect on the entire system and its
self-awareness, providing the system with a complete self-concept.

3.3.3.7 Overlapping Spans and Scopes

In summary, we refer to the subject(s) of reflective self-awareness as the span, com-
prising all entities that contribute to the formation of self-awareness, and to the
object(s) of self-awareness as the scope, comprising all the entities observed by the
subject’s self-awareness. We refer to the domain of self-awareness as the combination
of subjects (span) and objects (scope).

Finally, in practice in many self-aware systems, we find and expect that the span
and scope will not be distinct from each other. As in the above example, there may
be substantial overlap, through meta-self-awareness. For a fully meta-self-aware
system, where every reflective process was itself reflected upon by the system, then
the scope necessarily includes the span.
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3.3.4 Putting It All Together

In summary, we have in this section sketched a conceptual framework for describ-
ing and comparing qualitative aspects of self-awareness in computing systems. Our
framework is based on three tenets:

e Levels of self-awareness,
e Aspects of reflective self-awareness,
e The domain of self-awareness.

Using the intersection of all three tenets, we may produce descriptions of the
specific self-awareness of a system. For example, we might construct a sentence as
follows: Peter (span) is aware of Ada’s (scope) goal (aspect) to reduce the power usage
(object). Further, Ada (span) is aware of her own reasoning (meta-self-awareness)
about what to do (act) about it.

3.4 Self-awareness and Goals

The notion of domain can also be associated with goal definitions. Typically, the goal
domain of a self-aware computing system would be included in its self-awareness
domain. Exceptions would represent cases where the system achieved its goal without
being aware of it and without making use of any of its reflective self-awareness
capabilities for this purpose.

A goal’s span identifies the entity or entities that are responsible for achieving
the goal, from the perspective of the entity that requested the goal. For instance, if a
system is required, by an external entity, to achieve a goal, then that system represents
the goals span. If a collective of systems is required to achieve a goal, then the entire
collective of systems represents the goal’s span.

We can also relate a span and scope to the goals of a self-aware computing system
where the span refers to the group of entities that is responsible for achieving the
goals, while the scope is the group of entities the goal refers to in its specification of
what has to be achieved.

Usually, we would expect that if self-awareness is employed to realize a goal the
span of the self-awareness must be a subset of the span of the goal (as otherwise the
self-awareness would include entities that do not share the related goal and therefore
will also not contribute to it) and that the scope of the self-awareness must include
the scope of the goal (as otherwise the span is not able to judge whether the goal has
been achieved for the scope of the goal).

A goal’s scope represents the set of resources over which the constraints defined
by the goal should be attained. The goal’s achievement can then be evaluated by
taking measures from the resources in the goal’s scope.
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As indicated above, if a system is aware of a goal that it must achieve, then the
goal’s domain will impact the systems self-awareness domain which is necessary for
achieving the goal.

Of course, the considerations discussed here do not apply to cases where the
system reaches a goal without being aware of that goal (i.e., lack of goal awareness).

Let us now take a closer look at way in which a goals scope impacts the different
types of objects in the targeted systems self-awareness scope, provided that the system
is goal-aware. Here, the targeted system is the goals span.

Firstly, the systems self-awareness scope must include the resources (including
potentially other systems) upon which the system can act to achieve its goal. These
are part of the system’s action-awareness scope.

Secondly, the systems’ self-awareness scope must include the aspects of the envi-
ronment (or context) that are relevant to the reasoning process involved in achieving
the goal. These aspects are part of the systems context-awareness scope. For instance,
the system must be aware of the outside temperature in order to decide whether or
not to open the window shutters for achieving an inside temperature.

Thirdly, in some cases, it may be helpful if the system’s self-awareness scope
included the resources upon which the system could not act directly but could influ-
ence by indirect means. These would be part of the system’s interaction awareness.
For instance, if the smart home aimed to achieve a power prosumption goal—e.g.,
not consume more than the local production—then the smart home might try to ask a
local producer to produce more (rather than asking its own devices to consume less).

3.5 Challenges

In this chapter, we began by reviewing what is understood by self-awareness, both as it
pertains to humans, and to computers. We provided a brief overview of relevant work
in psychology and computing, on the topic of self-awareness. The main contribution
of this chapter is a new conceptual framework for computational self-awareness,
extending a characterisation by Lewis et al. [34], in order to (i) provide inclusion and
extensibility, (ii) distinguish between reflective levels of self-awareness and aspects
of reflective modeling, and (iii) introduce the notion of the domain of self-awareness,
in terms of span and scope. In doing so, we provided the language to engage with
a broad set of concepts that can be used to describe and reason about self-aware
computing systems. The characterisations presented here are concerned with how
they might pertain to both current and future computing systems.

There are many challenges that need to be tackled in further developing the notion
and practicalities of self-aware computing.

Firstly, the formalisation of the framework sketched in this chapter would provide
engineers with the ability to make use of more rigorously processes for the production
of self-aware computing systems. Further, such a formalisation could be used by self-
aware systems themselves, in order to better reason about their own self-awareness
capabilities in a principled and comprehensible way.
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Secondly, though we have described a wide range of capabilities, which rely
heavily on learning, modeling, instrumentation, and more, we have not here touched
on methods or techniques for implementing such capabilities. Some of these are
addressed in the later chapters in this book, but there is as yet no fundamental under-
standing of the linkage between algorithms and self-awareness levels, or if new
algorithms are needed in some cases. Such a linkage would again prove valuable to
designers of self-aware systems.

Thirdly, how might we structure self-awareness processes with respect to each
other, such that the right sort of learning and reasoning is operating on the right
internal and external objects (including self-awareness processes themselves)? In
other words, what should architectures for self-aware systems look like? Further,
how might and should such structures change over time, as the needs of the system
change, or more is learnt about the system, its environment, and about what is needed
to be learnt?

Finally, there is no assumption that at any given moment, all forms of self-
awareness are being used for the same problem or context. Systems may engage
multiple parallel self-awareness processes in related or unrelated tasks. How should
we organize and manage this? Both architectures and meta-management processes
must acknowledge that attention is a limited resource, reflective of the limited com-
putational power, memory, and time for running self-awareness processes on real sys-
tems. Another way of phrasing this challenge is to consider how a system itself should
decide how to engage and disengage different self-awareness processes dynamically,
as relevant or beneficial, given its experience of a changing world.
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manages itself. The second focuses on self-aware multiagent applications running in
a data center environment, allowing issues of collective behavior in cooperative and
competitive self-aware systems to come to the fore. The third focuses on a cyber-
physical system. It allows us to explore many of the same issues of system-level
self-awareness that appear in the second scenario, but in a different context and at a
potentially even larger (potentially planetary) scale, when there is no one clear global
objective.

4.1 Introduction

This chapter introduces three reference scenarios for which self-awareness plays an
important role. The reference scenarios are intended to cover a broad set of charac-
teristics and issues that one may encounter in self-aware systems, and to represent a
range of domains and a variety of scales and levels of complexity. They constitute a
starting point that will be elaborated further in other chapters, as needed.

The remainder of the chapter is organized as follows. In Sect. 4.2, we explain the
criteria that led us to choose this particular set of reference scenarios, including a
set of research questions that we wished to expose, and a set of dimensions that we
wished to explore.

The first scenario, presented in Sect. 4.3, focuses on an adaptive sorting algorithm
and exemplifies how a self-aware individual system element may adapt to changes
in the data on which it operates, the environment in which it executes, or the require-
ments or performance criteria to which it manages itself.

The second scenario (Sect.4.4) features applications running in a data center
environment. It brings to the fore issues of coordination, cooperation, and competition
that arise within self-aware applications composed of multiple interacting self-aware
elements or components. Moreover, it raises issues of competition and conflict that
may arise among multiple self-aware applications, and between those applications
and a self-aware entity that represents the interests of the data center owner.

The third scenario (Sect.4.5) focuses on a cyber-physical system. It allows us
to study issues of system-level self-awareness similar to those of Sect.4.4, but in
a different context and at a potentially even larger (potentially planetary) scale, at
which there is no one clear global objective. This scenario is built up incrementally
in increasing levels of scale and complexity, thereby highlighting different levels of
self-awareness. The chapter concludes with a brief summary (Sect.4.6).
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4.2 Rationale

The purpose of this section is to explain some of the considerations that led to our
choice of reference scenarios, including a set of research questions and dimensions
that we wished to explore.

Among the key research questions regarding self-aware systems that we wish our
reference scenarios to support are as follows:

e How can self-awareness help a computing system achieve its goals?

e What is the relationship between a system’s properties and the type and degree of
self-awareness that is most appropriate or beneficial for it?

e What are the costs or drawbacks of self-awareness, and what is its overall net
benefit?

e How do different instances of self-awareness operating at different levels of a
system interact with or otherwise affect one another, and what is the impact of
these interactions upon overall system behavior and performance?

Among the key dimensions of self-awareness that we wished to explore through
the reference scenarios were as follows:

e Goal complexity. For any given self-aware entity, does its goal concern a single
attribute (such as a thermostat that just manages temperature), or is it a multiat-
tribute (as in the data center scenario), where an application owner might strive
to optimize multiple application performance criteria (involving response time,
throughput, and downtime) while minimizing resource usage (so as to reduce
payments due to the data center owner)?

e Goal alignment. For self-aware systems that comprise more than one self-aware
entity, to what degree do the objectives of the constituent entities align with one
another? This is related to whether or not the individual entities are operating
explicitly on behalf of one authority, or several.

— The adaptive sorter scenario represents a simple one-component system with a

single purpose.

— The data center scenario exemplifies a multiplicity of individual goals held

among the end users, the application owners, and the data center owner.

— The various cyber-physical scenarios cover a range of cases, including:
appliances that have their own individual objectives but may have some con-
sideration for global house-wide objectives built into them;
smart homes that each seek to minimize cost and maximize power consump-
tion by their owners, potentially creating resource contention and possibly
resource shortages; and
shuttles that are designed to be highly cooperative with one another.

e Heterogeneity. Self-aware systems may tend toward homogeneity or heterogene-
ity in terms of technology and protocols as well as behavior, strategies, self-
management capabilities, self-awareness level, degree to which they have adapted
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effectively to the environment in which they are situated, and timing characteris-
tics [20, 21].

4.3 Adaptive Sorting

What might it mean for software to be adaptive and self-aware? To answer this ques-
tion, we start by considering as an example the std: : sort algorithm included in
the C++ Standard Template Library (STL). In its current form, the STL sorting algo-
rithm is neither adaptive nor self-aware. However, there are two important reasons
why one might want to endow it with adaptability and self-awareness: coping with
the plethora of different hardware architectures on which the algorithm might run
and coping with the wide variety of input data characteristics.

First, consider the influence of the hardware architectural features such as cache
size, cache line size, and the number of registers on the nature of the optimal sort-
ing algorithm and parameters. In the version of 1ibstdc++ included with GCC
4.3, merge sort was used until the list was smaller than 15 elements, below which
insertion sort was used. This choice was established empirically as best for problems
of a certain size and type on architectures that were common when the library was
originally written. By 2009, architectures had evolved to the point where a higher
cutoff was found to be more effective [1]. !

Second, consider the influence of data set characteristics such as size and distrib-
ution (e.g., standard deviation) upon the optimal sorting algorithm and parameters.
Experiments reveal that data sets with small standard deviations favor the quicksort
algorithm, while for larger standard deviations the CC-radix sort [17, 29] is the best
choice. When the number of keys is increased, the best algorithms for small standard
deviation values are multiway merge sort, while CC-radix is best for larger input
sizes and higher standard deviation [22].

Recently, researchers have begun to experiment with generating sorting algo-
rithms dynamically, based on the observations of the performance and the execution
platform and fine-grained performance tuning [1, 4]. This automatic tuning is usually
done through an empirical search [18, 19, 26] that identifies the algorithm (among a
set of potential ones) that performs best on the specific deployment machine. Code
that dynamically adapts to the characteristics of the input has a significant advantage
over other types of optimization [22].

Having established why it is advantageous for a sorter to be capable of adapting to
its environment (i.e., the hardware architecture and the data upon which it operates),
we now imagine what an adaptive, self-aware sorter might be like.

! Another notable example where hard-coded parameters have evolved over time to accommodate
changes in architecture is the discrete Fourier transform [4, 9].
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4.3.1 Scenario

An adaptive, self-aware sorter should sense the environment and the input data to be
sorted and adapt its behavior accordingly. These requirements have both design-time
and run-time implications.

First, consider the design of a self-aware sorter. The designer must anticipate
that the sorter could be instantiated in a variety of different environments, including
different hardware architectures, or different amounts of compute resources such as
CPU, memory, and I/O. The designer must also anticipate that at run-time the user of
the sorting algorithm could express goals and constraints in terms of a variety of dif-
ferent high-level attributes, including latency, throughput, and energy consumption
and that the data set could vary widely in terms of size or other characteristics that
might affect sorting efficiency. The designer must then incorporate her knowledge
or expectations into the design of the self-aware sorter. The design must include:

1. means for sensing certain aspects of the environment (e.g., the identity of the
operating system, available compute resources, or the data set size);

2. means for controlling certain aspects of the sorter’s behavior (e.g., the type of
sorting algorithm used, or the amount of memory allocated);

3. means for sensing certain attributes of the self-aware sorter’s behavior that might
possibly be of interest to the user;

4. knowledge of which environmental aspects and algorithmic behavior attributes
can be sensed, and which algorithmic parameters can be controlled;

5. models (or partial models, or hints about the likely functional form of mod-
els whose details could be learned at run-time) that capture the dependency of
behavioral attributes upon environmental conditions;

6. means for capturing user goals and constraints; and

7. means for using models to optimize control parameters with respect to user goals
and constraints

The design goals, run-time expectations (and the ranges into which the user goals
fall), and models or model hints should be expressed in a form that can be used
by formal verification methods to confirm that the sorter is correct and satisfies the
designer’s goals and objectives (which include coping with the widest possible set
of conditions and user expectations).

Now consider the self-aware sorter at run-time. When instantiated within a spe-
cific environment, the self-aware sorter senses the hardware and resources of that
environment, assesses the data set that it is being asked to sort, and receives informa-
tion about the user’s goals and constraints with regard to latency, throughput, energy
consumption, or other attributes of interest. For example, the user might wish the
sorter to minimize CPU and memory usage while maintaining a compute time of no
more than 5 s. Given the initial model provided by the designer, its understanding of
the environment in which it is situated, its own state and capabilities, and the user’s
objectives, the self-aware sorter then uses its optimization capability to determine
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the best sorting algorithm and associated parameters to use, and perform the sort
accordingly.

In a more advanced variant of the scenario, the self-aware sorter dynamically
searches for new sorting algorithms not contained within its original code base that
are more optimal given the current circumstances. Such algorithms might exist in the
form of libraries that could be dynamically linked into the code, or a Web service.
In order to determine that these new algorithms are likely to be better than any
currently used by the sorter, new algorithms should be accompanied by models that
predict their likely performance. Such models might be packaged with the algorithms
themselves, for example, or provided by a trusted third party that conducts extensive
experiments on the algorithms in order to learn models for them.

In an orthogonal variant, models relating environmental conditions and algorith-
mic parameters to high-level performance criteria might be learned dynamically as
the sorter is applied to various data sets over time. If the designer has already pro-
vided a model, the model learning might take the form of Bayesian updates to the
original model. If the designer has instead provided hints about relevant variables
and/or some expectations about the structure of the model, these could be used as
a framework or constraint in which the learning would take place. In any case, the
learning could be performed by the sorter itself, or it could be done by third parties
that do the learning and then make the resultant models available.

Preferably, the design specification should be accessible by the instantiated self-
aware sorter. If for some reason the assumptions under which the design was per-
formed and verified are violated, an alert could be created and sent to the designer
or the verification algorithm. Upon learning that the original assumptions are vio-
lated, the designer would have a chance to redesign the algorithm, or the verification
algorithm could be launched automatically and signal the designer if the run-time
conditions are such that the algorithm is not sound (or optimal). Moreover, other
properties can be taken into account, like software health [28].

4.3.2 Key Questions

e How feasible is it for the designer of a self-aware software component to build in
the required sensors, controls, models, and self-regulation mechanisms? Must we
invent a new generation of software design tools to help with this task?

e What type of information could a self-aware software component capture at run-
time that would support improvements in the design of the next generation of
that software? What are the methods by which such information captured from
multiple run-time instances of self-aware sorters be integrated into the redesign?

e Is it possible to remove the human designer from the loop, such that the redesign
step becomes a type of run-time adaptation? How would this work?
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4.4 Data Center Resource Management

As a second reference scenario, we consider self-awareness in the context of a data
center. This is an interesting case because data centers involve management of thou-
sands of applications and are therefore several orders of magnitude beyond the self-
aware sorter in terms of scale and complexity. Moreover, in this case, there are many
different stakeholders instead of just one:

e the data center owner, who operates the physical infrastructure, consisting of a
large number of physical (and, increasingly, virtual) machines plus network and
other computational resources required to run applications. The data center owner
seeks to honor its service-level agreements with the application owners while
minimizing the costs of building and maintaining the data center.

e multiple application owners, who purchase compute resources from the data center
owner and use those resources to deploy, run, and manage applications that provide
services to the end users. They seek to honor their SLAs with the end users while
minimizing what they pay to the data center owner for the use of the physical
infrastructure; and

e myriad end users, who use the applications provided by the application owners
and are concerned only with their own perceived service quality. Web users typi-
cally tolerate a waiting time between 2 and 4 s [25], depending upon the type of
application (e.g., interactive Web page vs. mail delivery service). There is some
price elasticity; that is, the end users may be willing to pay more for better service.

The data center owner, application owners, and the end users may come from
different organizations (e.g., in a public cloud) and the usage of the service and the
infrastructure may be connected with certain fees. The expectations regarding the
quality of service and the fees are defined through service-level agreements (SLAs)
between the data center owner and the application owners, as well as SLAs between
application owners and their end users.

The need for data centers and the applications that run in them to be adaptive is
well-recognized. Many applications are subject to strong time-varying workloads that
can (during the so-called flash crowds) reach peaks five times more intense than the
average workload [5], causing the resource requirements to increase accordingly [27].
Moreover, unexpected hardware failures occur frequently in data centers [14, 24].

Virtualization is akey technology that has been introduced to enable more dynamic
management of resources and applications in data centers. Virtualization flexibly
allocates computing, storage, and network resources to applications running in data
centers. Data center owners benefit because they can consolidate independent appli-
cations onto the same physical hardware, thereby reducing the physical resource
and electrical power required to support a given number of applications. Virtualiza-
tion allows a data center owner to overcommit physical resources; that is, they can
allow the allocated virtual machine (VM) resource reservations to exceed the current
physical resource capacity, on the assumption that not all virtual machines require
the resources at the same time [2, 15]. Application owners benefit because they
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can dynamically acquire additional computational resources whenever their appli-
cation workload increases and release those resources back to the data center when
it decreases—which is much more efficient and cost-effective than the traditional
method of requesting enough dedicated physical resource to satisfy the maximum
anticipated demand.

Virtualization enables efficiency and cost-effectiveness for both data center own-
ers and application owners, resulting in savings that can be passed on to the end
users. In practice, however, it is challenging to manage virtualization in such a way
that objectives are met fairly and efficiently as workloads fluctuate, and goals shift.

One factor that contributes to this challenge is that modern virtualization and
middleware platforms provide a wide range of adaptable parameters, such as where
virtual machines are placed on physical hosts, the number of VM instances, the size
of each VM (e.g., number of virtual CPUs), the scheduling priorities for a VM (e.g.,
CPU reservations, limits, and shares), and the platform configuration (e.g., thread
pools and cache size).

Another factor is that it is difficult to know how changes to the parameters will
affect the behavior of the system and its impact on the various stakeholders. Typical
cloud management solutions of today (such as Amazon EC2,? or CloudStack?) use
autoscaling techniques to add or remove resources from an application when low-
level metrics such as CPU utilization cross a given threshold—a very rough proxy
for the metrics of actual interest to the application owners and end users, such as
application performance and robustness. These VM management solutions are not
only unaware of the high-level goals of the stakeholders, but also they would not
know how to manage those goals because they lack models that map from VM
management parameters to application-level metrics.

A final factor is that today’s VM management systems do not take into account
the multiple conflicting goals of the various stakeholders in a principled way. Indeed,
the interests of the data center owner and the application owners are often completely
at odds with one another; for example, data center owners wish to minimize costs
by minimizing use of power and physical resources, while application owners want
the higher performance that results from maximizing power and physical resources.
Consequently, VM management systems are unlikely to realize trade-offs that are
understandable or fair. For example, some modern virtualization techniques attempt
to optimize resource allocation at the data center level. The VMware Distributed
Resource Scheduler (DRS) [13] balances and distributes the load between physical
hosts in a data center by migrating virtual machines. The Distributed Power Man-
agement (DPM) controller [13] automatically consolidates VMs if physical hosts are
underutilized, placing freed up hosts in standby mode to save energy and rebooting
when necessary. While an effort is made to minimize the likelihood that an applica-
tion will be starved for resource while waiting for a reboot, these controllers do not
consider application-performance requirements explicitly.

Zhttp://aws.amazon.com/en/ec2/.
3http://cloudstack.apache.org/.
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4.4.1 Scenario

Here, we exemplify how self-awareness could enable more effective use of virtual-
ization from the perspective of the two stakeholders who have the ability to control
resources: the application owner and the data center owner.

A hypothetical self-aware controller operating on behalf of the application owner
[31] wishes to use an appropriate amount of resource, such that the fees it pays to
the data center owner for the use of physical or virtual compute resources are no
more than they need to be to satisfy the demand from their end users. To do this,
an application controller could take two types of actions. First, it requests virtual
computational resources r from the data center owner (at some cost), and second,
it sets the values of the parameters under its control ¢(r) to allocate and control the
virtual resource r. The virtual resource might, for example, be a week of time on
a virtual machine with a CPU capacity of 5 - 10° cycles per second, with 8GB of
memory and 80GB of SSD storage.

The application controller’s goal is to maximize its revenue from the end-user
SLAs, w(V), where V represents the values of the attributes appearing in the SLA.
The end-user SLAs would be based upon the application-level metrics, such as aver-
age response time (or 95 % response time percentiles), latency, and might include
penalties for service disruption. Additional application-level attributes might include
elasticity [16] (i.e., the ability to rapidly increase or decrease the allocated resource
in response to demand from the end users) and resource stability (guarantees that
fluctuations in the compute resource provided to the application will be minimized).*

The self-aware controller has a self-model V(e(r), A) that expresses how its
performance-attribute values depend upon the control settings and the workload
. Some methods by which such a model might be learned are discussed in Chap. 12.
The self-aware controller then optimizes over all control settings to identify ¢*(r),
the setting for which 7*(r) = 7 (V(c*(r), 1)) is greatest.

The self-aware controller uses the above procedure to compute 7*(r) for all
possible values of r. Then, it performs a second optimization over all values of r to
determine the value r* that optimizes the net profit 7*(r) — y (r) (the revenue from
the end-user SLAs minus the payment to the data center owner for the resources r). It
requests compute resources r* from the data center owner, and then, when it receives
them it allocates and controls those resources according to the optimal control values
c*. Since the model contains a workload-dependent term, it and any optimizations
based upon it must be continually updated as the workload fluctuates.

A hypothetical self-aware controller operating on behalf of the data center owner
could employ a similar approach involving self-models coupled with optimization,
balancing its need to satisfy SLAs that it has in place with each of the application
owners against its desire to minimize its own costs for physical infrastructure and

“The data center owner might minimize such fluctuations by using traditional performance isolation
techniques such as physically isolating the compute resources. In contrast to current practice, in
which SLAs explicitly mention physical isolation, in our opinion the SLA should be expressed
solely in terms of a service guarantee and not in terms of how that guarantee is implemented.
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power. Specifically, the data center controller can select a set of control parameters
¢ that (according to a self-model r(c)) is expected to produce an amount of virtual
resource r. Additionally, the choice of control parameters ¢ implies an increase p(c)
in the amount of physical resource and power that must be provisioned in order to
realize those control parameters. When an application controller requests an amount
of virtual resource r’, the data center controller’s task is then to find the ¢* that
minimizes the effective amortized cost for physical resources and power p(p(c)),
subject to the constraint that r(¢) = r’. The data center will then receive a profit of
y (r') — p(p(c*)) from that application owner.

This scenario is somewhat naive in that it assumes that resource and control
settings are instantaneously responsive. This is not true in general; for example, it
can take seconds, or even minutes, to allocate new VMs to an existing application,
particularly if a physical server needs to be powered on. In a more sophisticated
variant of the above scenario, the self-aware application controller would take into
account these time lags and compute its resource request proactively by anticipating
that more resource is likely to be needed soon. Reinforcement-learning approaches
have proven effective in such cases [30].

In yet another variant of the scenario, the agreement between the application
owner and the data center owner would be based upon SLAs describing the virtual
resource r provided to the application controller, rather than directly in terms of the
resource itself. The attributes appearing in such an SLA would include traditional
resource-level metrics such as CPU cycles, memory allocation, and bandwidth, but
it would also include metrics describing service disruptions (e.g., downtime) as well
as bonuses and/or penalties incurred when the provided resource is more or less than
a specified target amount.

In another variant, the data center controller enforces an overall constraint on the
amount of physical infrastructure and power consumed across all applications. This
necessitates significant changes to the interaction between the data center owner and
the application owners. Since the application owners do not decide unilaterally how
much resource they will receive, a negotiation process would now be required.

4.4.2 Key Questions

e Which methods are most efficient and effective for learning models that map from
controllable parameters and environmental conditions to SLA attributes? Some
answers to this question will be provided in Chap. 12.

e In the scenario above, both controllers used a relatively simple predictive model-
control approach to govern their actions. More sophisticated approaches are needed
to handle situations, where there is a delay between when an action is taken and
its effect is manifest, such as reinforcement learning. What are the best techniques
for exploiting models to select actions, and under what conditions?

e Inthe scenario above, the data center owner provided to each application owner the
amount of resource that they requested, and the application owners then did their
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best to manage within that allocation. One can envision other scenarios in which the
data center owner determines the amount of resource, or there is some information
exchange or negotiation through which both parties can jointly determine the
allocation. What other schemes exist, and how well do they work under various
circumstances, from the standpoint of both parties? Some answers to this question
can be found in Walsh et al. [31], and in Chap. 13.

e For both the data center owner and the application owners, the terms of the SLA
have a profound impact on the behavior of the system. What are some means by
which these SLAs can be established in the first place? Must they always be set
unilaterally, by the data center owner? Or, might there be a process of negotiation
between the data center owner and the application owners, and if so what are some
plausible (or perhaps optimal) negotiation mechanisms?

e Would it be feasible to replace SLAs with an auction or other type of dynamic
economic mechanism, and if so how would this affect the nature of the algorithms
employed by the controllers?

4.5 Cyber-Physical Systems

In this section, we present several scenarios involving cyber-physical systems in
which multiple self-aware entities interact within a shared environment. These sce-
narios allow us to study individual and collective self-awareness, and the relationships
between them. As in Frey et al. [8] and Chen et al. [7], the scenarios are organized
in order of increasing complexity and scale.

4.5.1 Thermostat

4.5.1.1 Scenario

The first and simplest scenario takes place within a home and involves a single
device pursuing a single goal. Specifically, a thermostat strives to maintain a room’s
temperature within one degree of a value specified by one of the home’s inhabitants.
The amount of heating or cooling power that must be supplied to the room depends
upon the ambient outside temperature, which can vary over the course of a day or a
season. Accordingly, the thermostat is equipped with a thermometer that senses the
room’s temperature, and it uses a simple model to convert the difference between the
observed and desired temperature into a signal that controls an actuator that turns
the room heating or air-conditioning on or off.

In a more complex variant of the scenario, the thermostat pursues multiple goals
simultaneously. For instance, in addition to the temperature goal, the thermostat can
be constrained by a power consumption goal, such as a maximum power that may
be used to heat or cool the house during a day. Alternatively, a power goal could be
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defined dynamically by an automatic controller of a local power grid, to which the
thermostat is connected. Rather than being defined in terms of a daily threshold, the
goal might require that the connected device prioritizes or avoids power consumption.
The goal may change at regular intervals depending on the overall state of the power
grid—i.e., the current balance between power consumption and production. In many
cases, the thermostat’s temperature and power goals may conflict with one another,
as reaching a higher temperature with respect to the external environment requires
the thermostat to consume (switch on) power while the power goal may recommend
the opposite (switch off). In more complicated cases, an additional (and potentially
conflicting) goal may be given to the thermostat in order to minimize the cost of power
consumption for the home owner, while the grid controller could impose fluctuating
power prices.

In an orthogonal variant of the scenario, the self-aware thermostat is capable of
explaining its state, behavior, and plans. Specifically, if queried, the thermostat would
be able to report its actions (past, current, and planned) and the motivations behind
them, evaluate its performance with respect to its goal(s), and perhaps even diagnose
failures to meet its goals. Such a degree of self-awareness is key to the ability of
the thermostat to improve itself, either dynamically at run-time or by collecting
observations that would aid in designing the next-generation self-aware thermostat.

4.5.1.2 Key Questions

e How would extending the thermostat’s awareness to encompass a broader context,
including the presence of humans or the temperature of adjoining rooms, improve
its performance and efficiency? How costly would it be to add the requisite sensors,
or communication capabilities, or computational power? Would the extra self-
awareness warrant this cost?

e How would extending the thermostat’s awareness to encompass a broader set of
models, such as daily or seasonal external temperatures, models of other rooms in
the house, or power price predictions improve its performance or efficiency? How
would the costs of such improvements compare to the benefits?

e What are the best means for resolving conflicts among multiple goals?

4.5.2 Smart Home

4.5.2.1 Scenario

This scenario adds to the previous scenario an additional “smart” window shutter and
awashing machine, thereby illustrating a case in which several heterogeneous devices
pursue different goals within a single environment, under a single authority. Acting
upon signals from sensors that sense sunlight and external and internal temperature,
and possibly human presence sensors as well, the smart window shutter pursues goals
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related to the home’s lighting and temperature by controlling actuators that rotate the
shutter panels individually. In doing so, the smart window controller simultaneously
affects both the temperature and the light intensity within the house.

The self-aware washing machine offers different programmes with different on-
off cycles and durations, which can be selected by users to run within a specified time
frame. When connected to a smart grid, the washing machine may avoid power con-
sumption or price peaks by delaying the washing cycle automatically. Note that, since
the shutter’s actions affect temperature and the washing machine’s, affect power, the
introduction of these two self-aware entities into the environment creates the potential
for goal conflicts that extend across these devices.

In a more complex version of the scenario, additional thermostats or window
shutters are introduced throughout the house, and the user specifies house-wide
goals or constraints, such as house temperature and lighting preferences, or power
consumption thresholds or costs—thereby requiring cross-device coordination.

Another interesting twist on the scenario considers the consequences of altering
the set of sensors or devices installed within the smart home. Individual self-aware
devices must adjust to the presence of new sensors or devices that consume power or
produce heat, or to the absence of the recently removed sensors or devices. Moreover,
any models or controllers that operate at the level of the smart home as a whole must
adjust to the changes in power-consumption or power-provision profiles or other
characteristics of the newly introduced or recently removed devices.

4.5.2.2 Key Questions

What conflicts might arise as multiple homogeneous or heterogeneous self-aware
devices operating within a single environment attempt to satisfy their individual
(and possibly multifarious) goals? For example, how could thermostats cooperate
with shutters to manage temperature goals, while simultaneously attending to their
respective power and light-intensity goals? How effectively can various negotiation
or other mechanisms resolve such conflicts?

e How can a collective of self-aware entities manage micro- and macrogoals simul-
taneously, such as the power consumption of each device and of the house overall?
What are the relative merits of a single central self-aware controller for the home
as a whole vs. an arbiter or a fully decentralized arrangement in which global goals
are somehow translated into local goals that are combined with the intrinsic goals
of the individual controllers?

e How can self-aware entities detect and cope with changes in their environment,
such as the addition or removal of sensors or devices?

e How could a self-aware collective (such as a smart home) provide coherent expla-

nations of its behavior and plans, both at an individual and a collective level?



100 J.O. Kephart et al.

4.5.3 Smart Micro-grid

4.5.3.1 Scenario

Consider a scenario in which several smart homes are interconnected via a smart
micro-grid. Not only does this move up a level in the scale from the previous scenario,
but also it allows one to explore the situations in which there is no single authority,
but rather multiple authorities with interests that may both overlap and conflict. The
interests of each smart home owner may be represented by its own independent
self-aware controller, while the interest of the power company that owns the micro-
grid may also be represented by its own self-aware controller. The interests of these
various authorities overlap in some regards; for example, they all desire power service
dependability and sustainability. However, they also conflict in other aspects; for
example, each home owner desires minimal costs, while the power company wants
maximal profits.

Each self-aware controller may act independently of the other and may even
choose to leave the power grid at any time. The power grid authority likely plays a
role in determining the power consumed by each smart home, but it may be indirect in
nature, or shared with the smart homes (e.g., if the allocation depends upon pricing or
some type of negotiation). However, it does not have fine-grained over the allocation
of power within individual homes; that is the province of the individual smart home
controllers.

Other minor variants of the scenario introduce additional entities representing the
interests of other independent authorities, such as follows:

e alternative energy generators (e.g., wind turbines and solar plants);

e governmental or other regulatory authorities that may impose general laws (and
hence constraints) directly (e.g., restrictions on power consumption by individual
homes) or indirectly (e.g., limits on prices charged by the power company);

e entities other than smart homes that consume electric power: businesses, electric
cars, etc., and whose behavior are therefore coupled in myriad subtle and unantic-
ipated ways with that of the smart homes (see, for example, [23], on the topic of
probabilistic modeling, and Chap. 13).

4.5.3.2 Key Questions

e When multiple self-aware controllers with independent objectives interact in the
absence of a central authority, what forms of communication and negotiation
ensure most that there is sufficient mutual benefit to warrant the interaction?

e In systems of multiple independent self-aware entities, the learning and adaptation
of one such entity induces a behavioral change that affects the experience of those
with which it interacts. How is it possible for self-aware entities to learn and adapt
in an environment that is always changing due to the learning and adaptation of
the other self-aware entities?
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e In systems of multiple independent self-aware entities, to what extent is it possible
or desirable for self-aware entities to become aware of one another’s goals, internal
states, and behaviors?

e Given possible restrictions on information access (e.g., due to privacy concerns),
what mechanisms and incentives support exchange of useful information among
self-aware entities? How might they best employ such information?

4.5.4 System of Autonomous Shuttles

4.5.4.1 Scenarios

As a final cyber-physical systems scenario, consider an intelligent transportation
system in which trains of connected railroad cars are replaced by a collection of
autonomous shuttles.’ By operating on demand, autonomous shuttles can be more
efficient and tailor their operation more precisely to passenger needs and priorities.
For example, managers may request high-speed transport to an urgent meeting, while
tourists may request transport within a certain time window for less cost.

A prototype autonomous shuttle system of this nature is under development [11].
In order to separate the hard real-time processing required for reliable switching and
reconfiguration from the soft real-time processing required for long-term decision-
making, the system features an operator controller module (OCM) containing an
arbiter that controls the underlying physical processes. The reflective operator han-
dles the necessary reconfiguration in hard real time. At the same time, a cognitive
operator captures the more demanding aspects of self-optimization such as decision
making based on run-time models. As depicted in Fig. 4.1, the architecture of a single
autonomous shuttle is a hierarchy of OCMs.® Optionally, the highest level OCMs
within each autonomous shuttle may interact with one another.

In one class of variants, the shuttles operate completely independently, optimizing
their own operation without directly sharing any information other than what can be
obtained from observation; that is, they have no awareness of one another’s models or
intent. For example, they might parasitically save energy by following other shuttles
when possible to reduce air resistance. In another variant, shuttles compete with
another to earn money by transporting passengers or cargo. If the mechanism used to
match shuttles with transport requests is an auction, then to form a competent bid the
shuttles need to generate good estimates of the time, energy, and expense incurred in
meeting specific transport requests, which requires that they learn and/or use models

Shttp://www.railcab.de/index.php?id=2\&L=1.

5The design of a single autonomous shuttle would be an interesting scenario in itself. See the
Mechatronic UML approach [6] for the model-driven development of self-optimizing embedded
real-time systems, which includes a notion of UML components for hybrid behavior, real-time
statecharts extending UML state machines, and the required tool support [6, 10] and analysis
techniques [3, 10-12] developed to be able to design safe autonomous shuttles and their internal
hierarchical structure with self-optimization.
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Fig. 4.1 Architecture of the autonomous shuttle as well as their combination (figure taken from

(11D

of their own capabilities and costs, as well as a model of the environment in which
they operate. Their bids may be placed with or without an awareness of the existence
of other shuttles that are vying to serve the same transport requests.

In another class of variants, the shuttles are aware of one another in the sense of
possessing or being capable of learning models of other shuttles. Such a degree of
awareness could be advantageous, as it affords the possibility of anticipating their
likely bids or operational behaviors.

Another dimension to the autonomous shuttle fleet scenario is whether the shuttles
coordinate their actions with one another, and if so whether that coordination is
achieved through a central coordinator or in a decentralized fashion via messages
exchanged among the shuttles (in which case coordination would be an emergent
effect). A natural motivation for such coordination would be to optimize transport
orders globally across the entire fleet, maximizing its revenue by optimizing quality
of service and minimizing its cost by determining which shuttles are in a position
to provide the requested service most efficiently. While fleet-level planning would
be conducted across the set of shuttles, each shuttle’s individual controller would
still be responsible for executing the plan, based on its model of its own capabilities
along with characteristics of the environment in which it operates.

In the case where shuttles cooperate by explicitly exchanging high-level informa-
tion with one another, all of the activities of self-aware computing systems discussed
by Weyns et al. [32] may be realized, including the following:

e Learning run-time models jointly. Consider a fleet of shuttles that cooperates
by exchanging monitoring data to learn the characteristics of other shuttles, the
characteristics of the environment, or the characteristics of the shuttle fleets. For
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example, exchanging data on track conditions [6] can help shuttles optimize their
travel to any part of the system that has been experienced by at least one shuttle.

¢ Sharing goals and joint reasoning. If shuttles exchange their goals, their planning
can take into account what other shuttles are likely to do and might through bilateral
or multilateral negotiation arrive at a mutually satisfactory itinerary. For example,
they may avoid operating at cross-purposes, e.g., bidding against one another or
planning conflicting itineraries.

e Joint actions. If shuttles share with one another their plans, they have a chance
to detect problems or conflicts and renegotiate or discover a solution that will be
more globally beneficial. For example, if a shuttle is no longer able to move on its
own, another shuttle may be able to help it by pushing it to the next station.

Also of interest is a competitive scenario that inherits the characteristics of the
cooperative shuttle scenario presented above, including the autonomy of individual
shuttles and the centralized or decentralized coordination that optimizes plans and
schedules over an individual fleet, and imbeds that scenario in a larger one in which
fleets compete with one another to serve transport requests. This scenario shares
much in common with the scenario in which individual shuttles compete with one
another, except that now the competition is at the level of entire fleets rather than
shuttles. For example, in the case it becomes interesting to consider the potential
advantage that one fleet might gain by learning models of competing fleets.

Finally, the scenario may be extended to a larger-scale and more heterogeneous
intelligent-transport system that encompasses automobiles, taxis, bicycles, and other
forms of transportation that are represented by self-aware controllers—a diverse
milieu that brings together myriad diverse interests and applications (e.g., bus and
trucking companies, individual and taxi drivers, traffic management, and city gov-
ernment).

4.54.2 Key Questions

e How can a system of autonomous shuttles or other self-aware systems fulfill
dependability requirements?

e What coordination mechanisms can permit self-aware systems to satisfy their own
individual objectives while functioning competently in a system of systems that
contains myriad other self-aware systems that represent multiple diverse interests?

e What forms of information can usefully be shared among self-interested self-aware
entities in cooperative settings, or competitive settings, or combinations thereof?
Depending upon the type of information shared, how can self-aware entities best
avail themselves of such information for making individual decision, or for engag-
ing in negotiation or cooperative planning with other self-aware entities? Under
what conditions are the cost and effort worthwhile?
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4.6 Conclusion

This chapter presented three broad scenarios, providing some insights into the role
of self-awareness in the design of smarter systems. The first scenario, an adaptive
sorting algorithm, showed a single-agent adaptation system, where one entity can
exploit its knowledge of the system to improve its behavior. The second scenario
showed multiple entities in a data center that could benefit from self-awareness to
pursue higher level goals. In this case, there is at least a specific data center owner,
together with other players. The owner and the players’ goals should be fulfilled.
The third set of scenarios showed multiple entities that can have conflicting goals,
where the owner of the system is unclear or undefined. For all these scenarios, the
chapter pointed out challenges and opportunities to be explored.
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Chapter 5
Architectural Concepts for Self-aware
Computing Systems

Holger Giese, Thomas Vogel, Ada Diaconescu, Sebastian Gotz
and Samuel Kounev

Abstract Self-awareness in a computing system is achieved by implementing a
model-based learning, reasoning, and acting loop (LRA-M loop). Similar to the
feedback loops for self-adaptive software, we argue that the LRA-M loop should
be addressed during the architectural design of self-aware computing systems. This
allows engineers to explicitly decide and reason about the system’s self-awareness
capabilities. This chapter, therefore, introduces the relevant architectural concepts
to address and make the LRA-M loop visible in the architectural design. Based
on these concepts, we discuss how context-awareness, self-awareness, and meta-
self-awareness become manifest in an architecture. Finally, we relate the presented
architectural concepts to the definition and framework for self-aware computing

systems introduced in the previous chapters.
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5.1 Introduction

The vision of self-aware computing as introduced in Chap. 1 promises that self-
aware systems achieve their goals in a flexible manner despite the dynamic and
uncertain nature of their environments and goals. To achieve their goals, such systems
continuously learn and reason about themselves, their environment, and their goals
and, if needed, take appropriate actions. For instance, based on their self-awareness,
such systems are able to self-adapt at runtime, steer their behavior directly as required,
or report to their users to explain what happened.

There are a number of initiatives aiming for more flexible software systems such
as autonomic computing [22], self-* systems [3], self-adaptive and self-managing
systems [9, 10, 13, 14, 24, 34], organic computing [1, 29], or cognitive comput-
ing [21] that advocate a paradigm shift for software from design-time decisions and
understanding toward resolving issues dynamically at runtime—typically by equip-
ping the system with a feedback loop [7].

While these approaches traditionally looked only into reactive classes of solutions
that act at runtime in response to changes without anticipating future changes or
reasoning about the long-term future (cf. [17, 24]), recently an additional paradigm
shift from a reactive to a proactive operation can be observed that aims to integrate
the ability to learn, reason, and act at runtime (cf. [8, 11, 19]). This trend is well in
line with the ideas centered around the notion of self-aware computing [1, 2, 20, 23,
25, 27, 43], runtime models [4-6, 39, 41, 42], and related terms [12, 15, 26, 33]
that gained momentum in recent years.'

In this chapter, we will look at the solution space for self-aware computing systems
with a particular focus on software architecture as “a collection of computational
components—or simply components—together with a description of the interac-
tions between these components—the connectors” [36, p.4]. Therefore, this chapter
explores which concepts are required to describe architectures of self-aware systems.
As introduced by the definition of a self-aware computing system, the concepts we
address include runtime models of the context and the system itself as well as learn-
ing, reasoning, and acting processes (cf. Chap. 1). In this context, we consider the
prereflective and reflective forms of self-awareness (cf. Chap. 3).

It is important to emphasize that the chapter does not propose a dedicated archi-
tectural language for development or a set of well-established, concrete architectures
but rather aims to provide an initial basis to compare approaches as well as to explore
and discuss the possible solution space. Consequently, the concepts we discuss and
capture in the examples in this chapter need not to be relevant for every, but only
for specific applications of self-aware computing systems and often only depict a
fragment of an architecture rather than a complete architecture. Furthermore, the
concepts are the building blocks for such systems but not necessary ingredients.
Therefore, they also support modeling architectures of systems that are yet not self-
aware. Our goal is to provide an architectural language that allows us (1) to discuss

! A broader discussion of other related work including also agents and multi-agent systems can be
found in Chap. 2 of this book.
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the whole spectrum of self-aware computing systems (see Chap. 3), (2) to classify
whether a given system is self-aware, (3) to study systems that may evolve into such
self-aware computing systems, and (4) to derive steps to adjust the architecture of a
non-self-aware system to migrate it into a self-aware system.

Therefore, we do not claim that these concepts are generally relevant for self-
aware computing systems. In contrast, they should be considered as a source of
inspiration when conducting research or developing an architecture and design for
such a system. Future results, experiments, and solutions may then confirm, refine,
or even contradict the usefulness of the various concepts we propose. In any of
these cases, the purpose of the proposed concepts to start-off research and work on
architectures for self-aware computing systems would have largely been fulfilled.

To start-off such research and work, we propose concepts that emerged from the
discussions at the Dagstuhl seminar on self-aware computing system and that make
the specifics of such systems explicit and visible in the architectural design. We argue
that these specifics should become the first-class entities of the architectural design
such that they can be properly addressed during development. Similarly, Shaw [35],
Miiller et al. [28, 30], and Brun et al. [7] argue that feedback loops as the essen-
tial characteristic of self-adaptive software should be made explicit and visible in the
architectural design, for instance, to also make design decisions explicit and to enable
reasoning on the design. Consequently, we borrowed several ideas from approaches
of the authors of this chapter. In particular, we borrowed ideas from EUREMA [40],
addressing the explicit modeling of feedback loops in the self-adaptive software, as
well as from MechatronicUML [18], supporting collaborations on flexible architec-
tures. However, none of these approaches targets self-aware computing systems in
particular.? In the context of this chapter, applying all of the proposed concepts may
lead to a too detailed model that might be considered more like a specific design
rather than a general architecture. However, our intention is to be able to express also
subtle differences between solutions in one notation rather than finding an appropri-
ate compromise between expressiveness and ease of use. Consequently, an important
aspect that will need further attention is to determine under which circumstances the
proposed concepts are really helpful for architecture modeling and when they are
too detailed and rather concerned with the more fine-grained design.

The concepts we propose in this chapter are the foundations for the following
chapters. Particularly, Chap. 6 will explore the specific needs of architectures for a
single self-aware computing system while Chap.7 will explore collectives of self-
aware systems. Furthermore, Chap.8 will review the state of the art and contrast
it with the proposals of this chapter and of Chaps.6 and 7. In addition, Chaps. 12
and 13 will target the detailed algorithmic questions of how learning, reasoning, and
acting are realized within a single or collective of systems, which is not covered by
the chapters on the architectures for self-aware systems.

This chapter is organized as follows: In Sect. 5.2, we introduce the running exam-
ple we use throughout this chapter as well as basic notational concepts of the UML to

2 A comparison of these related approaches to self-aware computing systems can be found in Chap. 8
of this book.
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describe software architectures. Then, we discuss the proposed concepts in terms of
elements and relations that are specific to self-aware computing systems in Sects. 5.3
and 5.4. Using these concepts, we describe different cases of self-awareness in
Sect.5.5. In Sect. 5.6, we discuss these concepts concerning architectural views as
well as their coverage of the definition and framework of self-aware computing sys-
tems (see Chaps. 1 and 3). Finally, we conclude the chapter in Sect.5.7.

5.2 Preliminaries

In this section, we introduce the running example, a smart home system, that we use
to illustrate the architectural and design concepts for self-aware computing systems.
Then, we introduce basic notational concepts from the Unified Modeling Language
(UML) [32] to describe software architectures, which are extended in this chapter
to address the specifics of self-aware computing systems. Finally, we summarize the
definition and framework for such systems from Chaps. 1 and 3.

5.2.1 Running Example: Smart Home

To discuss the architectural concepts for self-aware computing systems, we use a
running example based on the smart home exemplary scenario presented in Chap. 4.
In contrast to the original scenario, we use here a smart home system with a more
complicated architecture of prereflective components that control devices in a house
and that are coordinated by a house manager (see Fig.5.1).

The house manager reports to the user if something goes wrong (e.g., if failures
are detected), self-adapts (e.g., to optimize energy consumption), and actuates the
device controllers in the house (e.g., in case of emergencies). Besides a centralized
house manager that coordinates the device controllers located in the house, we further
consider variants of less hierarchical interaction schemes such as collaborations or
self-organization to achieve the coordination among the device controllers.

A house consists of several floors and rooms. Each room is equipped with devices
such as sensors to perceive the indoor and outdoor temperature, lighting conditions,
and persons, as well as controllers for the heater (start or stop heating), lights (switch
on or off the lights), windows (tilt, open, or close the window), and shutter panels
(open or close the panels). Each controller works independently; for example, one
controls the heater based on the temperature and another one the windows based on
time. This might result in conflicts such as heating up the room while opening the
windows. The task of the house manager is to coordinate the controllers according to
some goals. Therefore, the manager aims for (1) self-healing and (2) self-optimization
while we leave out other self-* capabilities to keep the example simple.
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Fig. 5.1 Overview of the smart home system with a centralized house manager

(1) Self-healing:

a. If a sensor in a certain room is broken, the house manager relies on the
sensor data from the neighboring rooms.

b. If a single point of failure is affected, such as the window cannot be closed
any more, a person in the house who is close to the window is notified.

(2) Self-optimization:

a. The energy consumption should be optimized while achieving the goals such
as maintaining a certain room temperature.

b. Various influencing factors for the optimization can be considered, such as
market prices, weather forecasts, government subsidies, and user prefer-
ences.

In this chapter, we illustrate the architectural concepts for self-aware comput-
ing systems with this example. To discuss a particular concept, we often present a
fragment of the example emphasizing this concept instead of a complete architecture.

5.2.2 Architectural Modeling with UML

Before we introduce the architectural concepts that are specific to self-aware com-
puting systems, we provide a summary of UML-based concepts [32] for architecture
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Example Legend
Module:
m:HouseManager house:House
P — voe
Coord»
Coord» | Temp» |—| Tempy | h1:Heater
‘—l' I Port:
typed
rc2:RoomCtrl
Y coora» | [Temp» | Tempr | h2:Heater Connector:
— —

Fig. 5.2 Generic UML elements for architecture modeling

modeling which serve as a basis for this chapter. These UML concepts are modules
(e.g., components®), ports provided or required by modules, connectors, collabora-
tions, and participation links between modules and collaborations.

Modules have a name and a type and they can be hierarchically composed to
UML hierarchies. If the name of a module is not relevant, we may omit it (cf.
anonymous module). We may also omit the type of a module if it is not relevant for
the discussion. Modules may provide or require ports that encapsulate functionality
and restrict access. Ports are defined by their types. The direction of the arrows (A,
Vv, », <) within a port denotes whether the port is provided or required by a module.*
A module provides (requires) a port if the direction of the port’s arrow points from
the module inward (outward). Provided and required ports of the same type are wired
by a connector to visualize interactions among the corresponding modules.

The example depicted in Fig. 5.2 shows two modules of different types: m of type
HouseManager and house of type House. The manager m coordinates the controllers
rc1 and rc2 that are located in different rooms of the house. Therefore, the house is
hierarchically decomposed into room controllers each with its own heater to con-
trol. The manager requires the port Coord that is provided by the house. Both ports
are connected and the manager coordinates the controllers in the house. The house
forwards the coordination commands from the manager to the individual controllers
that eventually set the temperature to the heaters in the corresponding rooms. The
manager’s responsibility is to achieve similar temperatures in both rooms.

In addition to modules with their connectors and hierarchical (de)composition,
more flexible forms of cooperating behavior can be modeled with collaborations.
Collaborations are depicted by ellipses and they are wired to the modules that col-
laborate by participation links. For instance, Fig. 5.3 shows a collaboration in which
four room controllers agree on a common temperature for each room.

In general, UML hierarchies with shared aggregation and UML collaborations
may overlap to some extent. For instance, we may employ collaborations to cap-
ture the interaction in a UML hierarchy, but also to capture non-hierarchically struc-

30ftentimes the modules may be in fact components [38]. However, as components imply a certain
degree of encapsulation that might not be the case for the system elements considered in this chapter,
we use the more general term of a module here.

“This can be seen as simple generalization of the different flow properties for ports in SysML [31].
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Fig. 5.3 Generic UML elements for modeling collaboration of modules

tured compositions. However, participations of elements in UML collaborations may
change rather frequently while memberships in a hierarchy are usually considered
more stable and durable (even though such memberships may also change).

5.2.3 Self-awareness Terminology and Framework

The terminology and framework for self-aware computing systems introduced in
Chaps. 1 and 3 provide a definition and several dimensions spanning the overall
spectrum of such systems. In the following, we briefly summarize the definition and
dimensions since they provide the foundation for the architectural concepts of self-
aware computing systems, which we discuss in this chapter. At first, we recap the
definition of self-aware computing systems given in Chap. 1:

Self-aware computing systems are computing systems that:

1. learn models capturing knowledge about themselves and their environment
(such as their structure, design, state, possible actions, and runtime behavior)
on an ongoing basis, and

2. reason using the models (e.g., predict, analyze, consider, and plan) enabling
them to act based on their knowledge and reasoning (e.g., explore, explain,
report, suggest, self-adapt, or impact their environment)

in accordance with higher-level goals, which may also be subject to change.

Based on this definition, we may sketch a self-aware computing system with the
conceptual learn-reason-act-model (LRA-M) loop (see Fig. 5.4). This loop shows the
relevant aspects of the definition. Particularly, the system collects empirical observa-
tions of the self and of phenomena outside the self. Learning and reasoning processes
produce and use models that capture knowledge derived from the observations. Based
on the knowledge, the system may act upon itself and on its context. The processes
operate according to higher-level goals that may dynamically change.
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Consequently, the definition and the LRA-M loop introduce the concepts of empir-
ical data/observations, models, and goals, which are used by learning, reasoning,
and acting processes. We can elaborate this use relationship by describing the data
flow within the LRA-M loop. The system observes itself and its environmental con-
text, for which models are learned and used for reasoning and acting. Thus, a system
realizing such a loop becomes aware of itself and its context.

These aspects are refined by Chap. 3 providing several dimensions for self-aware
computing systems, which we consider as a conceptual framework. This frame-
work covers different levels of self-awareness: A prereflective self-awareness level
denoting simple subjective observations, a reflective self-awareness level if learning
and reasoning with awareness models are involved, and a meta-self-awareness level
where the object of the reflection is a reflective self-awareness process. Moreover,
the framework distinguishes a subject (i.e., the span) and an object of awareness
(i.e., the scope) while the span reflects on the scope. In this context, the notion of
action scope that includes all entities that the system may act directly upon and the
notion of influence scope that refers to entities upon which the system may only act
indirectly are introduced. Finally, the framework refines the notion of awareness by
emphasizing different aspects of awareness such as identity, state, interaction, time,
behavior, appearance, goal, expectation, and belief awareness.

In the rest of this chapter, we will discuss architectural concepts for self-aware
computing systems, which address these aspects and dimensions by applying and
extending the generic UML concepts for architecture modeling. To illustrate these
architectural concepts, we use the introduced running example.
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5.3 Architectural Elements for Self-awareness

In this section, we propose general elements (i.e., building blocks) for describing
architectures of self-aware systems, which are motivated by the aspects and dimen-
sions of self-aware computing systems introduced in Chaps. 1 and 3. Thereby, the
architectural descriptions target concrete architectures of systems and therefore, the
emphasis is on describing specific instance configurations. An overview of the pro-
posed elements is given in the appendix.

5.3.1 System, Environmental Context, and Modules

As depicted in Fig.5.5a, we may first distinguish a system from its environmental
context. The environmental context, represented by a cloud, is the fragment of the
environment (including possibly other systems) scoped by the system’s capacities
of sensing and exploration. Furthermore, we may distinguish modules that represent
a system and individual elements that compose the system. Both are depicted by
rectangles but a system is illustrated with a bold border in contrast to an individual
module having only a thin border. If we do not want to distinguish whether we refer
to a system or to a module, we just use a rectangle.

The example shown in Fig. 5.5a describes the SmartHome system with two mod-
ules, Controllers and HouseManager, and the environmental context HouseEnvCtx.

(a) (b)

SmartHome:

><<Iearn>> > ><<act>> >

> <<observe>> > > <<react>> >

Fig. 5.5 Notation for system, modules, environmental context, and processes

SmartHome:

HouseManager:

Controllers:
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Fig. 5.7 Classification of )
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5.3.2 Reflective and Prereflective Processes

We now show how to model processes within the systems and modules. In this
context, we will distinguish between processes for prereflective and reflective self-
awareness. The former considers basic subjective observations of the system while
the latter additionally considers learning and reasoning activities with awareness
models. An example is given in Fig.5.5b. Processes are labeled with <«learn>>>
when they capture how models are learned based on the observations, <reason>>
when they analyze the situation or plan actions, or <act>> when they have an external
or internal impact and are driven by the results of reasoning.

In the example depicted in Fig.5.5b, the learning process located in the House-
Manager learns about the underlying Controllers module. Then, a reasoning process
identifies shortcomings of the Controllers and plans their circumvention. Finally, the
act process will enact the planned adaptation by effecting the Controllers accordingly.

These processes can be refined and classified into reflective self-awareness and
self-expression (see Fig.5.6). For self-awareness, we have already introduced the
processes of learning models and reasoning on such models for acting. For self-
expression (i.e., acting), we consider processes that have an external influence such
as adapting the system itself or other systems, effecting the context or other systems,
and reporting to the user or to superordinated system entities.’

Similarly, we may classify the processes for prereflective self-awareness (see
Fig.5.7). Observe denotes measuring the system itself, other systems, or the envi-
ronmental context, analyze covers simple variants of analysis based on the observa-
tions, and react describes the reaction to specific situations either directly observed

SWe distinguish adapting and effecting an entity as the former involves changing an entity (e.g.,
modifying the entity’s structure) while the latter denotes interactions between entities that do not
require any substantial changes of the entity (e.g., by exchanging knowledge among entities).



5 Architectural Concepts for Self-aware Computing Systems 119

or identified by the analysis. Such prereflective processes can be allocated within the
systems and modules as illustrated for the Controllers module in Fig. 5.5b.

The classifications of reflective and prereflective processes shown in Figs.5.6
and 5.7 are derived from the definition of self-aware computing systems (cf. Chap. 1)
and should therefore be considered at the conceptual level. In practice, these classi-
fications can be further refined or extended given the specific problem at hand.

5.3.3 Awareness Models, Empirical Data (Models),
and Goal Models

As described by the learn-reason-act-model (LRA-M) loop for self-aware computing
systems sketched in Sect.5.2.3, awareness models (AMs) and empirical data (ED)
are used online. To capture the scope that is represented by the model or data, we
use the stereotypes < ctx>> in the case of the environmental context and <sys>> in
the case of the system itself or parts of it.

AMs are employed online® and represent originals outside the system (e.g., the
environmental context or other systems) or inside the system (e.g., modules or
processes of the self). Such models can be subjective and not a perfect representation
of the originals as they might be based on individual measurements as part of specific
learning processes. In general, AMs are usually obtained by <learn>> processes and
they are subject to «reason>> and < act>> processes. AMs are depicted as blue-
shaded, rounded boxes in our notation (see Fig.5.8).

In the example depicted in Fig. 5.8a, the system has an AM of its environmental
context. In Fig. 5.8b, the HouseManager module has an AM of the Controllers module,
which is thus a system model. Finally, in Fig.5.8c, a learning process within the
HouseManager module maintains such a system model locally.

Either a single or a group of models is depicted if one or more models are used
online. An AM or a group of them can be located within a system, a module, or a
process. A group of AMs covers different aspects of the same scope, for instance, a
timing aspect to capture the history of AMs. Otherwise, we use completely separate
boxes for the AMs if they refer to different scopes.

In addition to AMs, the LRA-M loop addresses empirical data (ED) such as
sensor data obtained and used by prereflective processes (cf. Chap. 1). Thus, ED is
usually obtained by <« observe>> processes and subject to «analyze>> and «react>>

%The awareness models (AMs) discussed here overlap with the concept of models@ run.time [6]
when there is a causal connection with the system itself. Our assumption is that not every AM is or
needs to be causally connected to the running system. Another view on runtime models considers
any models that are used within the system and that either represent (parts of) the system or context
for reflection or specify (parts of) the system for execution [40, 41]. In this view, the reflection
models correspond to the idea of AMs. In general, we do not restrict the scope of an AM. If an AM
represents the context, it usually supports establishing context-awareness while an AM representing
(parts of) the system supports establishing self-awareness.
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Fig. 5.8 Notation for awareness models within systems, modules, or processes
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Fig. 5.9 Notation for empirical data within systems, modules, or processes

Fig. 5.10 Notation for goal
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processes. Such data are specified in the notation as blue-shaded, rounded boxes with
a dashed border (see Fig.5.9).

As outlined in the definition of self-aware computing systems in Chap. 1, a self-
aware system is driven by goals and it may be necessary to be able to cope with
the changing goals or even the dynamically generated goals. Such runtime goals
can be explicitly represented in one or more goal models (GMs). Such models are
depicted as red-shaded, rounded boxes stereotyped with «goal>> in the notation
(see Fig.5.10). In our example of Fig.5.10, the GM describes the criteria indicating
the direction that the self-optimization should steer the SmartHome system to, for
instance, reducing the energy consumption while considering constraints such as “do
not shut down the heater in a room if there is a person in the room”.

Runtime goals must be explicitly captured by online GMs. In contrast, design-
time goals influence the system during development, for instance, by determining
the type of models and processes to be developed. Some of them may not be explic-
itly represented and they can remain implicit in the implementation—if they do not
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change dynamically. Goals that may change dynamically must be explicitly repre-
sented to be able to handle such changes. Thus, if a system needs to be goal-aware,
then the goals are typically explicitly represented, otherwise not necessarily.

If goals of another system or element are derived by observations, we use AMs
rather than GMs to describe these goals. We only use GMs to denote those goals
that are imposed on the system either from the outside (e.g., by the user) or from the
system itself generating the goals (e.g., based on some observations).

Splitting the system into multiple layers, GMs can be part of each layer though the
goals might be of a different kind. Goals in the lowest layer refer to the domain func-
tionality while goals at higher layers refer to awareness such as to the success/failure
of lower-layer goals (cf. awareness requirements [37]). For example, a higher-layer
goal may prescribe that the controllers have to achieve the desired room temperature
in 90 % of the time. The corresponding lower-layer goal prescribes that the desired
room temperature should be as close to 22 C as possible.

5.4 Architectural Relations for Self-awareness

Besides the architectural elements for self-aware computing systems discussed
in Sect.5.3, the definition for self-aware computing systems given in Chap. 1
and its refinements in Chap.3 introduce explicitly or implicitly several relations
(cf. Sect.5.2.3). These relations seem helpful for architectural considerations and
they are discussed in the following. An overview of the proposed relations is addi-
tionally given in the appendix.

5.4.1 Data Flow Related to Self-awareness

The first relation we introduce is the data flow between models, empirical data,
processes, modules, other systems, and the environmental context. This is motivated
by the data flow that forms the learn-reason-act-model (LRA-M) loop introduced in
Chap. 1. As shown in Fig.5.11, the data flow is represented by a solid black arrow
whose direction indicates the direction of the data flow. Thus, the data flow extends the
UML connector (see Sect.5.2.2) by connecting arbitrary elements and representing
a flow of data. Note that such a data flow may be realized by quite different technical
means such as procedure calls, messages, or flows.

Using the data flow relation, we can describe that a «learn>> process obtains
AMs guided by the goals of the self, a «reason>> process uses the AMs and GMs to
reason, and finally, that an <adapt>> process uses the AMs to dynamically change
a module (see Fig.5.11a).

Considering our example and Fig.5.11a, the HouseManager uses the goal model
GM, which may prescribe that the desired room temperature should be achieved in
90 % of the time, to learn about the performance of the Controllers module. Learning
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Fig. 5.11 Data flow for self-awareness and self-expression

results in producing a set of awareness models AM describing the Controllers’ perfor-
mance, which are then used to reason about the performance and the achievement of
the goals. If the goals are not achieved, the HouseManager may adapt the Controllers
module based on the AM, for instance, by changing the control strategy to react more
quickly to disturbances of the actual room temperature. For this example, Fig.5.11b
shows an abstraction that only considers the self-awareness (encapsulating the learn-
ing and reasoning) and the self-expression (encapsulating the acting) processes while
hiding the employed models. Consequently, the figure only captures the data flow
between these two processes and the Controllers module.

In general, we can describe detailed views making the data flow between individual
processes, models, and modules explicit (see Fig.5.11a) or abstract views that, for
instance, hide the models and the detailed processes (see Fig. 5.11b). Thus, a data flow
from or to a module or process may be refined to a data flow from or to an element
contained in the module or process. Such contained elements can particularly be
AMs and GMs that are used in architectural views to emphasize the role of models
in self-aware computing. In this sense, the diagram in Fig.5.11a refines the one in
Fig.5.11b. It refines the self-awareness and self-expression processes and makes the
AMs and GMs explicit. Likewise, we may refine the Controllers module and denote
which processes or ED exist within this module.

When refining a module by describing the contained elements such as processes
and models, we can emphasize the encapsulation and interactions of these elements
by ports. A port describes the functionality that is provided or required by modules
and connected ports make the interaction among modules explicit. The functionality
can be specific to self-aware computing, which we denote by stereotypes. A module
can observe (<0O>>) and effect (<E>>) an element or the context, adapt (<A>>) an
element, or report (<R>) to the user or to another element. In this case, the module
requires corresponding ports for these functionalities (see Fig.5.12a). Moreover, if a
module can be observed, effected, adapted, or reported to, it provides the correspond-



5 Architectural Concepts for Self-aware Computing Systems 123

(a)

<<goal>>
l GM:

(b)
<<goal>>
l GM:
<<sys>> <<sys>>
l AM: l AM:
4' <<O>>v H <<E>>v 4' <<O>>aA H <<E>>aA

Fig. 5.12 Required (a) and Provided (b) ports of a module
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ing ports (see Fig.5.12b). Finally, the ports of a module may be connected to the
elements contained in this module (e.g., to delegate incoming reports to a process).

In general, we may omit the ports in the diagrams if they are not relevant for the
selected architectural view. For instance, a view might emphasize the models and
neglect the encapsulation and interaction between modules.

5.4.2 Awareness and Expression Links

Two important aspects of self-aware computing are self-awareness and self-
expression. As discussed in Chap. 3, self-awareness has a domain and enables that a
subject of the awareness (i.e., the span) reflects about an object of awareness (i.e., the
scope) by means of a model employed online. Based on the introduced elements, we
can therefore illustrate with an awareness link that a scope is represented by a model
maintained by a span. Thus, the span is aware of the scope. As shown in Fig.5.13 by
the red bold arrow, usually a model or a group of models represents another module
or the context. If we want to abstract the models in an architectural view, we link the
scope to a process or module containing the (hidden) models.

Additionally, we may have an expression link in the opposite direction. Such a
link is denoted by a blue bold arrow pointing from a model maintained by a span
to the scope (see Fig.5.13). Such a link illustrates that the span’s self-expression

(a)

SmartHome:

HouseManager: (b) (C) (d)

SmartHome: SmartHome: SmartHome:
Ty X

Fig. 5.13 Notation for awareness and expression links
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Fig. 5.14 Awareness and expression links with a complex scope

impacts the scope. Again, if we abstract the model in an architectural view, we link
the process or module containing the (hidden) model to the scope.

In our example, the HouseManager has an awareness model of the Controllers
module as illustrated by an awareness link in the diagram of Fig.5.13a. Since the
HouseManager also adapts the Controllers module, we additionally have an expression
link in the opposite direction. For the other three cases in Fig. 5.13, an awareness link
illustrates that the context is known by the SmartHome system and represented in an
awareness model, by a process of the system, and by a module of the system. These
three diagrams also describe that the expression of the corresponding span impacts
the context—as visualized by expression links.

According to Chap. 3, the scope of an awareness can be further refined. In our
example, a group of awareness models maintained by the HouseManager may be
connected via awareness and expression links to dedicated controller modules (see
Fig.5.14). Furthermore, the aspect of the reflection for each element in the scope
may differ (cf. Chap. 3). We therefore attach stereotypes to the awareness links
to distinguish, among others, stimulus awareness (<sa>>), interaction awareness
(Kia>>), time awareness (<ta>>), and goal awareness (<ga>>>).

Asdepicted in Fig. 5.15, besides direct awareness (solid red arrow) and expression
(solid blue arrow) we consider indirect awareness (dashed red arrow) and expression
(dashed blue arrow) to address the action scope and influence scope introduced in
Chap. 3. Typical cases where such scopes become relevant is when modules exploit
the awareness and expression capabilities of other modules.

In the example of Fig.5.15a, the Controllers module learns about the context and
produces AMs of the context, which is exploited by the HouseManager by feeding
its own AMs from these ones through a data flow (black arrow). Consequently, the
HouseManger’s AMs cover aspects of the environmental context although the House-
Manager does not directly observe the context. The same holds for the expression.
The HouseManager may indirectly effect the context by adapting the Controllers mod-
ule. A variant of this example is shown in Fig. 5.15b. The Controllers module observes
the context and only maintains ED; that is, it does not perform any learning. How-
ever, the HouseManager may (re)use these data to perform the learning and produce
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AMs. Thus, in the example, a module such as the HouseManager does not have to
perform the observing or learning processes itself but it can rely on the observations
or learned information from other modules such as the Controllers.

Another view of indirect awareness is to derive information about a module by
observing and learning its environmental context. This is illustrated in Fig.5.16
showing two modules that do not explicitly interact with each other. However, the
Optimizing module effects the environment (see expression link) and the result of its
effects may be observed and learned by the Healing module (see awareness link).
The resulting awareness model AM1 is then used to learn about the (behavior of) the
Optimizing module. The learned knowledge is captured in the awareness model AM-
Opt. Consequently, the Healing module is indirectly aware of the Optimizing module
(see indirect awareness link). However, the learned knowledge about the Optimizing
module may not be accurate since it is the result of interpreting and speculating about
changes in the environment and possible causes of these changes.

As depicted in Fig.5.17, the fact that a system/module is indirectly aware of
another system/module can be realized without having to learn a context and system
model. Instead, a phenomenon (bold dot) in the environmental context is connected
to the observed system/module with an expression link and to the observing sys-
tem/module with an awareness link. In the example, the Optimizing module effects
the environment (see the expression link), which causes a phenomenon such as a
huge increase in the room temperature. This phenomenon is the observable fragment
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Fig. 5.18 Direct and indirect awareness with collaborations

of the Healing module in the context. The Healing module is directly aware of the
phenomenon and, therefore, can be indirectly aware of the Optimizing module.
Finally, the notation can be used similarly to describe direct and indirect aware-
ness if knowledge is obtained through collaborations. This is illustrated in Fig.5.18
showing the Sensor module that senses and learns about the context, which results
in the awareness model AM. This module shares the learned knowledge through the
collaboration with the other modules. The ReasonC and ReasonE modules reason
about the obtained knowledge independent of each other to identify a heating config-
uration that is comfortable for the user, respectively, energy-efficient. The LearnUser
modules use the obtained knowledge to learn about the behavior of the user. Finally,
the DecideAct module obtains the knowledge created by the ReasonC, ReasonE, and
LearnUser modules to make a decision of how to adjust the heating configuration in
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the house and to eventually enact the adjustments. This example illustrates that mod-
ules can be indirectly aware of the context by obtaining knowledge about it through
a collaboration, one of whose participants is directly aware of the context.

5.5 Self-awareness and Architecture

Based on the elements and relations defined in the preceding Sects.5.3 and 5.4, we
now approach the question of when and how self-awareness is denoted by awareness
links in an architecture. In this context, we discuss that not every occurrence of an
awareness link needs to result in self-awareness as defined in this book (cf. Chap. 1).
In addition, we study the characterization of specific forms of self-awareness such
as meta-self-awareness at the architectural level.

In general, it has to be noted that self-awareness is always relative to a given scope.
Usually, the scope is the considered system and environmental context. However, we
may consider just the context, a particular module of a system, or any other element
of a system such as a process.

5.5.1 Self-awareness: Awareness of the Context

One particular aspect of self-awareness for a system is depicted in Fig.5.19. Accord-
ing to the definition of a self-aware system (cf. Chap. 1), a system must be aware
of its environmental context and must have processes capable of learning awareness
models and reasoning about the context using the learned models. Furthermore, the
system may act upon the models to effect the context. In our example, the SmartHome
may have a contextual awareness model of the context capturing information such
as the current outdoor temperature and other weather conditions.

Fig. 5.19 Self-awareness: -
aspect of context-awareness St SmartHome:
GM: <<reason>>
<<ctx>>
AM:
<<learn>> 1 <<act>>

Sensev
HouseEnvCix:
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5.5.2 Self-awareness: Awareness of Its Own Elements

A key aspect of self-awareness is that the system is aware of itself or elements of
itself, which is illustrated in Fig.5.20. The elements, a system can reflect on and
be aware of, are modules or processes. In contrast, we consider reflecting on an
awareness model, empirical data, or a goal model as insufficient since we require the
existence of the reflective self-awareness processes in terms of learning, reasoning,
and acting.

When a clear separation between the element being the scope and the element
being the span of awareness is given, this is similar to the external approach in self-
adaptive software that separates the managing from the managed element [34]. This
approach may simplify the treatment of self-awareness. First, it promotes separation
of concerns. Second, the scope need not to be altered for realizing self-awareness
(maybe besides adding some sensors and effectors) and the capabilities of learning,
reasoning, and potentially acting have to be established only in the span. We name this
case external self-awareness. In contrast, internal self-awareness describes that an
element can be aware of itself without any architectural separation between the span
and the scope. In the context of self-adaptive software, this case is called the internal
approach [34]. We discuss internal self-awareness in the subsequent sections.

Figure 5.20 shows the case of external self-awareness. The HouseManager reflects
on the Controllers module using several awareness models that the processes learn,
reason, and act upon (Fig.5.20a). In addition, the learning and reasoning processes
take into account the goal model. A variant of this case is shown in Fig.5.20b,
where the HouseManager reflects on a particular process of the Controllers module.
Consequently, the scope of awareness can be individual architectural elements.

Moreover, multiple awareness links may exist and jointly describe self-awareness.
The scopes of these awareness links may overlap and therefore learning, reason-
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\ / Controllers:
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— process
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Fig. 5.20 External self-awareness concerning elements of the system
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Fig. 5.21 Overlapping self-awareness and self-expression

ing, and acting processes refer to overlapping scopes. This is illustrated in Fig.5.21
showing the Optimizing and Healing modules that are both aware of the Controllers
module. While for the awareness links the overlap is generally not a problem, for the
expression links the overlap may require coordination of the individual processes,
for instance, to avoid conflicting adaptations (cf. [16, 40]).

As depicted in Fig.5.21, the HouseManager module consists of two modules,
Optimizing and Healing. The former realizes the self-optimization and the latter the
self-healing capabilities of the smart home (cf. Sect. 5.2.1). Each of these two modules
runs an LRA-M loop with individual awareness models as well as learning, reasoning,
and acting processes. The independent learning and reasoning in both modules are not
problematic at the conceptual level since the acting processes have to be coordinated.
However, from a practical point of view it may be a waste of resources to let the
optimization run an expensive reasoning process to optimize a faulty Controllers
configuration until this configuration has been healed.

5.5.3 Self-loops and Cyclic Self-awareness

In this section, we discuss the notion of self-loops that may occur due to abstraction
or internal self-awareness, as well as the related notion of cyclic self-awareness. Both
notions are neither explicitly covered nor excluded in the Chaps. 1 and 3. However,
we consider them here because of their architectural implications.
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5.5.3.1 Self-loops

The notion of a self-loop is illustrated by the examples of Fig.5.22. A self-loop
denotes that an element is aware of itself; that is, the span and scope of the awareness
are not disjoint. For instance, the whole system, a module, or a process can be
aware of itself (see examples from left to right in Fig.5.22). The second example
additionally emphasizes that the system maintains an awareness model of itself.
Similarly to denoting such kind of self-awareness, if an element acts upon itself, we
use an expression link as a self-loop to describe the self-expression. Moreover, if
an embedded element has a self-loop, we may optionally depict this self-loop at the
level of the embedding element to make it visible at the higher level of abstraction.

Self-loops may occur because of two reasons: abstraction or internal self-
awareness. For the first reason, we abstract from fine- to coarse-grained architectural
views while during this abstraction step the awareness and expression links can be
lost. However, to make self-awareness and self-expression visible in the architectural
views, self-loops are used. For instance, the architecture shown in Fig. 5.21 shows that
within the SmartHome system, the Optimizing and Healing modules are aware of and
act upon the Controllers module. If we abstract from the submodules of SmartHome,
we can state that the SmartHome is aware of itself although the awareness is partial
since its scope is only the Controllers module. To denote this, we use a self-loop as
shown in the leftmost example in Fig. 5.22.

The other reason for occurrences of self-loops is more fundamental and based on
design decisions or constraints. In this case, we cannot or do not want to separate
the span and scope of the self-awareness in the architectural design. In the context of
self-adaptive software, this case is called the internal approach [34] as one element
performs both the managing and the managed part of the self-adaptation. For a self-
aware computing system, this results in situations in which one element is (partially)
aware of itself. We call this phenomenon internal self-awareness, which is denoted by
self-loops as depicted in Fig. 5.22. Likewise, we may use (blue) expression self-loops
to denote the self-expression of an element; that is, an element acts upon itself.

Al []
¥ ]

SmartHome: SmartHome: SmartHome: SmartHome:

Fig. 5.22 Examples of self-loops



5 Architectural Concepts for Self-aware Computing Systems 131

ﬂ SmartHome:
ApartmentiController: o
“|| Ap2:

Ap1:

t

Fig. 5.23 Cycles of awareness links

Apartment2Controller:

5.5.3.2 Cyclic Self-awareness

Besides self-loops, another variant is cyclic self-awareness. An example is given in
Fig.5.23 depicting two modules that are aware of each other. This constitutes a cycle
since ApartmentiController is aware of Apartment2Controller and vice versa. In general,
longer/bigger cycles involving more than two modules may exist. Moreover, cycles
may exist for awareness or expression links such that we may have arbitrary networks
of awareness or expression links forming a directed, cyclic graph. Such cycles can
complicate achieving stable behavior as modules may continuously be triggered
through awareness or expression links. Hence, cycles should be made visible in the
architectural design such that they are explicitly handled.

For our example in Fig.5.23, each apartment controller is aware of itself as well
as of the other controller. Based on this awareness, it controls the heating in its own
apartment and optimizes the energy consumption.

Similar to self-loops, cyclic self-awareness may occur because of two reasons:
abstraction and internal self-awareness. Cyclic self-awareness resulting from abstrac-
tion disappears in the architectural design at a more fine-grained level. For instance,
Fig.5.24a shows the refinements of the apartment controllers into heater controller
and heater modules that resolve the cycle existing in the more abstract design
(cf. Fig.5.23). The refinements show that Heater1Controller is aware of Heater2 that
has no awareness of ApartmentiController. The same holds the other way around such
that there is no cyclic self-awareness present. Having awareness of its own and the
other heater, a controller knows about the temperatures in the different apartments
and it may act upon this knowledge, especially, to change the heating settings in its
own apartment. This example illustrates that a cyclic self-awareness can be resolved
when refining the architectural design.

However, there is also the case of internal self-awareness where no refinement of
the design exists that resolves the cycles. This is illustrated in Fig.5.24b show-
ing the persisting cycle of awareness links among the ApartmentiController and
Apartment2Controller, particularly, among their top submodules Heater1Controller and
Heater2Controller. These submodules are both aware of each other and each of them
can be aware of that the other submodule is aware of it. In this example, a heater
controller adjusts the own heater based on the temperature of the own apartment and
on the behavior of the heater controller of the neighboring apartment.
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Fig. 5.24 a Resolved and b Remaining cyclic self-awareness in a refined design

If a cycle of awareness or expression links remains, the depth of the awareness
is not clear, that is, the extent to which mutual awareness of the awareness exists.
Potentially, there could be an infinite cycle of awareness of awareness, which has to
be handled by the reflective learning and reasoning processes. Despite the infinite
cycle, the processes have to converge and eventually produce knowledge based on
learning and reasoning such that the system may act upon the knowledge.

5.5.4 Meta-Self-awareness

A particular case of self-awareness is meta-self-awareness; that is, a system is aware
of its self-awareness (see Chap. 3). Considering external and internal self-awareness,
we may combine them to describe meta-self-awareness at the architectural level.
Such combinations make the meta-self-awareness explicit in the architectural design.
However, to actually realize meta-self-awareness, appropriate reflections and LRA-
M loops are required, which are able to identify the self-awareness capabilities of
the reflected subsystem. In the following, we focus on making meta-self-awareness
visible in the architectural design.

Atfirst, we may combine twice the external self-awareness by stacking as depicted
in Fig. 5.25. The HouseManagerAdjuster reflects on and is aware of the HouseManager
that reflects on and is aware of the Controllers. In particular, the HouseManagerAdjuster
is aware of the self-awareness established by the HouseManager.

To make the meta levels of reflective self-awareness visible in the architecture,
we may stereotype the system with < self-aware>>> if it has self-awareness and with
«meta-self-aware>>> if it has meta-self-awareness capabilities (see the SmartHome
Fig.5.25). Similarly, we may stereotype modules if they reflect on other system ele-
ments. Modules that do not reflect on any other element are prereflective and thus
stereotyped with <prereflective>> (see the Controllers in Fig.5.25). Modules that
reflect on a prereflective module are reflective and thus stereotyped with < reflective>>
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(see the HouseManager in Fig.5.25). Modules that reflect on a reflective module are
meta-reflective and thus stereotyped with <« meta-reflective>> (see HouseManagerAd-
juster in Fig.5.25).

A second possible case is that we stack internal self-awareness twice as depicted in
Fig.5.26a. In contrast to the former case, there is no separation between the individual
spans and scopes such that we get a compact visual representation of stacking the
self-loops for awareness. Likewise, self-loops for expressions (i.e., blue self-loops)
are conceivable if the meta-self-awareness includes meta-self-expression.

Finally, we may conceive combinations of internal and external self-awareness
to achieve meta-self-awareness. This is illustrated in Fig. 5.26b. In general, the self-
awareness relationship is not restricted concerning its depth. Thus, we may apply
the external or internal self-awareness more than twice to obtain meta-meta-self-
awareness, meta-meta-meta-self-awareness, etc.

5.6 Discussion

In this section, we discuss the proposed architectural concepts for modeling self-
aware computing systems. First, we relate them to architectural views and then we
discuss the coverage of the needs raised in Chaps. 1 and 3.

5.6.1 Architectural Views

We have introduced several concepts to describe architectures for self-aware com-
puting systems such as modules, processes, goals, and models. Depending on the
purpose of architecture modeling, we may consider different architectural views
that focus on specific concepts and therefore, on specific dimensions of self-aware
systems. In this context, we have already identified the following views/dimensions:

System and Module View: The system and modules form the basic structure
of an architecture such that this view provides an architectural overview. However,
each diagram may consider a different level of abstraction. To avoid too complex
diagrams, we may omit the breakdown of a system or module into further submodules
by abstracting from the internal design. We rather expect that a diagram of this view
represents the whole architecture while it may support different abstraction levels
for individual parts. A basic example of such a view is shown in Fig. 5.5a.

Self-Awareness Process View: In addition to the system and module view, the
prereflective and reflective self-awareness processes are an important dimension of
the architecture. Therefore, a process view considers processes in addition to or
instead of the modules. For a process view and a given level of abstraction, we
expect that all processes of the system are covered. A basic example of such a view
is shown in Fig. 5.5b.
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Self-Awareness and Self-Expression View: This view emphasizes the different
awareness models and the empirical data used within a system as well as the aware-
ness and expression links. This view, thus, focuses on the awareness and expression
relationships potentially neglecting the processes that operate on the models or data.
Basic examples of such a view are shown in Figs.5.8 and 5.9.

Self-Awareness and Goal View: This view emphasizes the different goals that
are used within the system (see Chap. 7 for more architectural concepts concerning
goals that may populate the view). This view, thus, focuses on goal models possibly
neglecting the processes and the other models and data. However, a goal view can be
used together with the process view to show the impact of the goals on the behavior.
A basic example of such a view is shown in Fig.5.10.

Such views help in reducing the complexity in the architecture by focusing on
the specific dimensions while abstracting from others. Finally, such views can be
combined if multiple dimensions are relevant. For instance, the diagram in Fig.5.27
uses processes and models to describe the LRA-M loop, thus combining the process
and the self-awareness/self-expression views. In Chaps.6 and 7, we will study in
detail the different concepts and views for various architectural styles.

5.6.2 Coverage

We discuss in the following on how the concepts introduced in this chapter cover the
needs of architectures for self-aware computing systems. First, we look at the basic
needs raised by the definition of self-aware computing systems in Chap. 1 and then
at the refined needs raised in Chap. 3.

5.6.2.1 Coverage of the Definition of Chap. 1

How self-awareness manifests in the architecture highly depends on the concrete
notion of self-aware computing systems that is employed. Therefore, we first look
at the definition of self-aware computing systems given in Chap. 1 and consider the
related Learn-Reason-Act-Model (LRA-M) loop.

The definition of self-aware computing systems emphasizes that these systems
employ models for capturing knowledge about themselves and their environment,
and that these models are learned and used for reasoning according to their higher-
level goals, which may be subject to change. The reasoning enables these systems
to act (e.g., to report to the user or to self-adapt).

The notation for modeling architectures of self-aware computing systems that
we introduce in this chapter considers the concepts of awareness models and goal
models as well as learning, reasoning, and acting processes. These concepts allow
us to model all the aspects mentioned in the definition as part of an architecture.
Moreover, the definition considers models for knowledge that refers to the system
itself or to the system’s environment. Therefore, we distinguish between system and
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context-awareness models; that is, we make explicit whether the scope of reflec-
tion is the system itself or the context by applying corresponding stereotypes to
awareness models. Similarly, we consider further stereotypes to specialize learning,
reasoning, and acting processes. For instance, variations of acting such as explore,
explain, report, suggest, self-adapt, or impact on the environment are captured by
corresponding stereotypes.

Consequently, we may conclude that the notation with its concepts covers all of the
aspects mentioned in the definition of self-aware computing systems. These aspects
can be interpreted as the basic needs a system has to satisfy to be self-aware. Hence,
our notation with its concepts addresses these needs at the architectural or design
level and is therefore, a preliminary approach to model architectures and designs of
self-aware computing systems.

Besides the definition of self-aware computing systems, Chap. | introduces the
LRA-M loop as depicted in Fig.5.4. This conceptual loop illustrates the activities
and artifacts that are implemented by a self-aware system. Particularly, the system
(i.e., the self) collects empirical observations of itself and the environment uses these
observations to learn and reason on models, which eventually enables the system to
act upon itself or the environment.

Using the proposed concepts, we can describe the conceptual LRA-M loop. The
notation supports modeling the system and the environment as well as refining the
system to modules, processes, awareness models, goal models, and empirical data
while wiring all of them with data flow connectors. This is sufficient to model the
LRA-M loop as depicted in Fig.5.27. Compared to Fig. 5.4, we extended the LRA-
M loop with a prereflective <observe>> process to describe how the empirical data
are obtained. That is, this process monitors the self and the environmental context
to obtain the empirical observations. These data are used by a learning process to
obtain awareness models, which is guided by the goals of the self. The reasoning
process uses the awareness and goal models to reason. Finally, the act process may
influence the context or the self, for instance, by performing a self-adaptation.

Using the awareness and expression relations of our notation, the essence of the
LRA-M loop can be captured in a more abstract way—as depicted in Fig. 5.28a—to
illustrate the self-awareness and self-expression of the system. Rather than describing
data flows that implement some form of awareness, we model the self-awareness and
self-expression in a declarative way by using awareness and expression links. Besides
being more abstract, this version is also more explicit than the one in Fig.5.27 in
making the self-awareness and self-expression visible. Thereby, the awareness and
expression target the self as well as the context of the self.

In the case of Fig.5.27, the data flow links are required to form a LRA-M loop
that realizes the self-awareness. However, the existence of data flow links does not
necessarily imply that self-awareness has really been realized since such links may
describe quite different data flows (e.g., at the prereflective level) that do not neces-
sarily lead to self-awareness. Therefore, Fig.5.28a explicitly denotes the existence
of self-awareness by awareness and expression links.
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Fig. 5.27 The LRA-M loop modeled with the proposed concepts
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Fig. 5.28 The LRA-M loop extended with awareness and expression links
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Finally, we can combine both, the data flow and the awareness/expression links,
as shown in Fig.5.28b. On the one hand, the data flow among processes and models
makes the realization of the self-awareness (i.e., the internal design of the system)
visible. On the other hand, the awareness and expression links explicitly emphasize
the self-awareness and self-expression of the system.
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5.6.2.2 Coverage of the Framework of Chap.3

The conceptual framework for self-aware computing systems as introduced in Chap. 3
proposes various dimensions. In the following, we discuss the coverage of these
dimensions by the proposed concepts for architecture modeling.

One dimension is the level of self-awareness, which can be prereflective or reflec-
tive. We address both levels in Sect.5.3.2 by considering self-awareness processes,
especially observe, analyze, and react for the prereflective level as well as learn,
reason, and act for the reflective level. Similarly, we support stereotyping of sys-
tems and modules depending on the level they are operating on (see Sect.5.5.4 for
the < prereflective>>, K reflective>>, and «<meta-reflective > stereotypes). In this con-
text, we additionally discussed meta-self-awareness by providing stereotypes to label
a system as < self-aware>> or <Kmeta-self-aware>>.

Concerning goals and goal models introduced in Chap. 1 and addressed here in
Sect.5.3.3, Chap. 3 refines this aspect for self-awareness by discussing the domain
of a goal in terms of their span and scope. These refinements are not supported by the
architectural concepts proposed here but we will come back to them when discussing
collective self-aware systems in Chap. 7.

In general, self-awareness has a domain and enables that a subject of the awareness
(i.e., the span) reflects about an object of awareness (i.e., the scope) (see Chap.3).
This distinction between a span and a scope is addressed by awareness and expression
links that connect the span and scope of a self-awareness relationship (see Sect. 5.4.2).
A refinement of such relationships in terms of action scope that includes all entities
that the system may act directly upon and influence scope that refers to entities upon
which the system may only act indirectly is introduced in Chap.3. We cover this
refinement with direct and indirect expression links (see Sect. 5.4.2). Similarly to the
expression links, direct and indirect awareness links are further supported.

We may further refine the awareness links using stereotypes to distinguish, among
others, stimulus awareness (<Ksa>>>), interaction awareness (<Kia>>), time awareness
(Kta>>), and goal awareness (<ga>>). These stereotypes cover different aspects of
awareness as discussed in Chap. 3.

Finally, the notion of self-loops discussed in Chap. 3 is addressed by recurrent or
cyclic awareness and expression links in Sects. 5.5.3.

5.6.2.3 Summary

The definition and framework for self-aware computing systems (see Chaps. 1 and 3)
propose several dimensions that we have discussed previously and that we summarize
Table 5.1. These dimensions provide the necessary architectural and design concepts
to explore the solution space of self-aware computing system.
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Besides these dimensions that are specific to self-aware computing systems,
we consider general architectural concepts such as systems, modules, composi-
tion/aggregation and collaborations of systems/modules, ports, and connectors to
provide the necessary means for describing software architectures. In this context,
the dimensions enrich the general concepts, which results in a kind of domain-specific
architectural language for the domain of self-aware computing systems.

5.7 Conclusion

In this chapter, we developed basic concepts for describing architectures for self-
aware computing systems as defined in Chaps. 1 and 3.

First, we identified the core architectural elements required for self-aware com-
puting systems. In addition to the system and its refinement to modules, the relevant
environmental context the system is aware of has to be identified. Furthermore, we
noticed and addressed the need to allocate prereflective (observe, analyze, and react)
and reflective (learn, reason, and act) self-awareness processes within the architec-
ture. Besides processes representing behavior, the models (e.g., awareness, empirical
data, and goal models) have been identified as core ingredients—as they capture the
knowledge of self-aware systems—that should be made visible at the architectural
level and in the refined design. In addition to all these elements, their linkage is
relevant to describe their interactions. The data flow connects modules, processes,
and models, which are required for realizing the LRA-M loop and therefore the self-
awareness and self-expression. In this context, we aim for making the self-awareness
and self-expression explicit by emphasizing when a span is directly or indirectly
aware of a scope (cf. awareness link) and when a span directly or indirectly acts
upon a scope (cf. expression link).

Based on these concepts we studied how context- and self-awareness can be
addressed in the architectural design of self-aware computing systems. Moreover,
we discussed specific cases of self-awareness such as multiple overlapping scopes and
spans, self-loops, cyclic self-awareness, and meta-self-awareness. Finally, we have
shown in Table 5.1 that the proposed architectural concepts cover the needs for self-
aware computing systems as raised in Chaps. I and 3. The main concepts covering
the needs for describing architectures of self-aware computing systems are relevant
for individual (see Chap. 6) as well as collectives of such systems (see Chap. 7). The
concepts extending the UML offer the necessary elements to discuss specifics of
self-aware computing systems such as the LRA-M loop at the architectural level.
The sketched use of multiple architectural views provides means to emphasize cer-
tain specifics such as the processes, models, or the self-awareness/self-expression in
the architecture. Making such specifics explicit in the architectural design supports
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Table 5.1 Dimensions and section of this chapter covering each dimension

Dimensions Section

Dimensions introduced in Chap. 1

Awareness models 5.33
Empirical data 5.33
Goal models 533
Data flow 54.1
Awareness of context 5.5.1
Awareness of itself 552

Dimensions introduced in Chap. 3

Prereflective self-awareness 532,554
Reflective self-awareness 532,554
Meta-reflective self-awareness 554
Domain (span and scope) of awareness 542
Direct and indirect awareness/expression 542

Aspects of awareness (stimulus, interaction, ...) | 5.4.2

Self-loops and cyclic self-awareness 5.53

engineers in deciding and reasoning about the system’s self-awareness capabilities,
which eventually supports development.

In this chapter, we motivated the need for the introduced architectural concepts
without an in-depth discussion of their novelty. This discussion will be provided
when reviewing the state of the art and research field of architectures for individual
and collective self-aware computing systems in Chap. 8.
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Summary of the Notation

The following table provides a summary of the concepts for modeling architectures
of self-aware computing systems. For each concept, its name, syntactic construct
(notational element), description, and rationale are listed (Table 5.2).
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Table 5.2 Architectural concepts for self-aware computing systems
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Name

Syntax

Description

Rationale

System

name:type

A system with a name and
type. We may omit either its
name (anonymous system) or
type. It can be hierarchically
decomposed into modules.
Stereotypes such as
«self-aware>s> and
<meta-self-aware>>
indicate whether a system is
self-aware, meta-self-aware,
etc.

The entirety of the
modeled system
distinguished from the
environmental context

Module

name:type

A module with a name and
type. We may omit either its
name (anonymous module)
or type. It can be
hierarchically decomposed
into modules. The
stereotypes <reflective>>
and «prereflective>>
indicate whether the module
reflects on any other module
or not. Stereotypes for higher
forms of reflection are
<meta-reflective>>,

< meta-meta-reflective>>,
etc.

Modules are required to
decompose a system or
other modules

Environmental
context

An environmental context of
a system describes the
fragment of the environment
that is scoped by the
system’s capacities of
sensing and exploration. It
has a name and type, one of
which we may omit

The portion of the
overall environment
that is relevant for the
system

Port

A port describes provided or
required functionality of a
system, module, or context. It
is characterized by its type.
The direction of the arrow
indicates a required (arrow
points outward the element
requiring the functionality)
or provided (arrow points
inward the element providing
the functionality) port.
Stereotypes indicate the kind
of functionality: effect
<E>, adapt <A>>, observe
«O>>, and report <R>>

A port supports
encapsulation of
elements by making the
providing or requiring
functionality explicit

(continued)
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Name Syntax Description Rationale
Data Flow - A data flow describes the Data flow connectors make
interactions between the compositional structure
systems, modules, processes, | explicit; that is, how
and models by means of elements are wired
exchanging data
Composition name:type In a composition (UML A composition allows us to
=3 composite structure decompose the system i.nto
| nametype || | diagram), we refine modules | modules and a module into
(R 1| | to other modules while we other modules and to
distinguish between distinguish the kind of
nameivpe exclusive (solid border of the | membership of a contained
embedded module) and module
shared (dashed border of the
embedded module)
membership of an embedded
module
Collaboration mervoe A collaboration describes A collaboration supports
the cooperating behavior modeling more flexible
among systems, modules, and | cooperations among
processes. The concrete systems, modules, and
behavior of the cooperation | processes compared to
is described within the wiring all of the elements
collaboration using data flow connectors
Participation A participation connects a A participation makes
system, module, or process to | explicit which elements
a collaboration such that the | cooperate via a
system, module, or process collaboration in contrast to
participates in the directly exchanging data
collaboration through data flow
connectors
Process A process describes activities | Self-aware systems have
within a system or module specific processes such as
and therefore emphasizes the | learning awareness models,
behavior within these reasoning, or acting that
structural elements should be made visible in
the architecture
Awareness e An awareness model An awareness model
model represents learned aspects of | makes explicit that a span

a scope. The scope is often
(part of) the system itself,
other systems, or the
environmental context. In the
former case, the model is
stereotyped with «Sys>>, in
the latter case with <<ctx>>.
An awareness model has a
name and type, one of which
can be omitted

maintains a model
representing the scope of
the awareness

(continued)
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Table 5.2 (continued)
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Name Syntax Description Rationale
Empirical data ] Empirical data represents | An empirical data model
| hame:type |

observations of a scope.
The scope is often (part
of) the system itself, other
systems, or the
environmental context. In
the former case, the
empirical data model is
stereotyped with
«K8ys>>, in the latter
case with <ctx>>. An
empirical data have a
name and a type, one of
which we may omit

makes explicit that a span
collects (sensor) data
about a scope

Goal model

<<goal>>

A goal model describes
the goals (parts of) the
system should achieve.
Goals are imposed to the
system from outside (e.g.,
by the user) or internally
produced. A goal model
has a name and type, one
of which can be omitted.
It is stereotyped with
<goal>

Explicit goal models are
required since self-aware
systems are driven by
goals and they should be
able to handle
dynamically changing
goals

Awareness link

An awareness link
denotes that a span is
directly aware of a scope.
If a span exploits
awareness knowledge
about a scope that has
been established by
another span, the former
span is indirectly aware
of the scope. Indirect
awareness is transitive
and can be explicitly
represented by dashed
awareness links.
Awareness links can be
specialized by indicating
their type: «sa>> for
stimulus, «ia>> for
interaction, <ta>> for
time, and <ga> for
goal awareness

An awareness link
connects the span and the
scope to make explicit
which element learns and
reasons about which
other element, and
specifically, which
element is the original
represented in an
awareness model

(continued)



144

Table 5.2 (continued)

H. Giese et al.

Name Syntax

Description

Rationale

Expression link

An expression link
denotes that a span
directly impacts a scope.
If a span indirectly

An expression link
connects the span and the
scope to make explicit
which element acts upon

impacts a scope via another element
another span, the former
span can be connected to
the scope to make the
indirect expression
visible. Indirect
expressions are transitive
and can be explicitly
represented by dashed
expression links. To
specialize the expression
type, a link is stereotyped
with effect <E>>, adapt
<&A>, observe <O,
or report <R>>
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Chapter 6
Generic Architectures for Individual
Self-aware Computing Systems

Holger Giese, Thomas Vogel, Ada Diaconescu, Sebastian Gotz
and Kirstie L. Bellman

Abstract Making computing systems self-aware calls for appropriate architectural
designs of such systems that allow developers to explicitly decide and reason about
the system’s self-awareness capabilities. In this context, a critical issue is the devel-
opment of appropriate reflections that enable self-awareness and that impact the
architectural design. This chapter, therefore, discusses generic architectures for pre-
reflective, reflective, and meta-reflective self-awareness as well as various forms of
constructing reflections while focusing on an individual system as opposed to a col-
lective of self-aware computing systems. Finally, we discuss the presented ideas with
respect to existing control schemes and architectural styles for self-adaptive software
that seem to be promising for the architectural design of self-aware computing sys-
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6.1 Introduction

Research communities such as autonomic computing [1], self-* systems [2], self-
adaptive, and self-managed systems [3—7], organic computing [8, 9], or cognitive
computing [10] are all arguing for shifting design-time decisions to the run time to
better cope with the dynamic and uncertain contexts and requirements. The vision
of self-aware computing systems as introduced in Chaps. 1 and 3 argues similarly
that self-aware systems are better suited for such dynamic and uncertain settings than
traditional systems because the system’s self-awareness enables capabilities to learn,
reason, (self-)adapt, or explain to users what happened. Initial ideas on self-aware
computing have already been proposed [8, 11-17] as well as related ideas in the
context of run-time models [18-22], meta-cognition [23, 24], and self-organization
[25].!

The notion of self-aware computing systems as defined in Chaps. 1 and 3 provides
the foundation for this chapter to discuss the implications of self-awareness on the
architecture. Such a foundation was missing beforehand [26-28] and now allows us
to study the architectural design and development of such systems.

In this chapter, we will look at the solution space for self-aware computing systems
with the particular focus on the software architecture [29] of an individual system.
This is motivated among others by Kramer and Magee [30] who argue that the
engineering of self-managed systems is an architectural challenge. Therefore, focus-
ing on self-aware computing systems, we will target fundamental questions of how
pre-reflective, reflective, and meta-reflective self-awareness can be addressed at the
architectural level. Addressing these questions at the architectural level allows engi-
neers to explicitly decide and reason about the system’s self-awareness capabilities.
In this context, we discuss variants of reflection such as local, hierarchical and cen-
tralized, and coordinated reflection as well as their implications on the architecture.
Finally, we relate these variants of reflection and the different kinds of self-awareness
to existing control schemes and architectural styles that seem to be promising for the
architectural design of a self-aware computing system.

The ideas presented in this chapter are based on the architectural concepts for
self-aware computing system presented in Chap. 5. These concepts have been derived
from the definition and conceptual framework of self-aware computing systems dis-
cussed in Chaps. 1 and 3. While we focus on individual systems in this chapter, we
study collectives of self-aware computing systems in Chap.7. Moreover, we skip
discussing the state of the art concerning architectures for self-aware computing
systems in this chapter, but we come back to it in Chap. 8.

It is important to emphasize that the concepts introduced in Chap.5 are not a
dedicated architectural language intended for development. It rather provides an
initial basis to compare approaches as well as to explore and discuss the space of
possible architectural solutions. Therefore, the specific architectures or fragments
of an architecture we present in this chapter may also include elements of a design
to discuss and clarify a certain solution. Our intention is to be able to express and

ISee also Chap. 2 for a discussion of related concepts and research areas.
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compare also subtle differences in the architecture or even design rather than having
an appropriate compromise between expressiveness and an easy-to-use language.
Consequently, the presented diagrams may be too detailed for an architecture as
their purpose is to make the comparison possible rather than being a cost-effective
step during the development of self-aware computing systems. Hence, the purpose
of the presented architectures is to start-off research and work on architectures for
self-aware computing systems, while future results, experiments, and solutions may
then confirm, refine, or even contradict them.

This chapter is organized as follows: In Sect. 6.2, we introduce the running exam-
ple and summarize the required terminology. Then, we discuss architectures for
pre-reflective (Sect.6.3), reflective (Sect.6.4), and meta-reflective (Sect.6.5) self-
awareness. These ideas are discussed with respect to the existing control schemes
and architectural styles of self-adaptive systems in Sect. 6.6. Finally, we conclude
the chapter with Sect.6.7.

6.2 Preliminaries

In this section, we introduce the running example that we use to discuss generic
architectures for individual self-aware computing systems. Then, we summarize the
terminology required for understanding the discussion.

6.2.1 Running Example: Smart Home

To discuss the solution space for architectures and designs of an individual self-
aware computing system, we use the running example that has been discussed in
detail in Chap.5. This example considers a smart home system with a set of pre-
reflective components controlling devices within a single house. These components
are coordinated by a smart house manager responsible for the whole house.

The house manager reports to the user if something goes wrong (e.g., if failures
are detected), self-adapts (e.g., to optimize energy consumption) and actuates the
device controllers in the house (e.g., in the case of emergencies). Besides a centralized
house manager that coordinates the device controllers located in the house, we further
consider variants of less hierarchical interaction schemes such as collaborations or
self-organization to achieve the coordination among the device controllers.

A house consists of several floors and rooms. Each room is equipped with devices
such as sensors to perceive the in- and outdoor temperature, lighting conditions, and
persons, as well as controllers for the heater (start or stop heating), lights (switch on
or off the lights), windows (tilt, open, or close the window), and shutter panels (open
or close the panels). Each controller works independently, for example, one controls
the heater based on the temperature and another one the windows based on time. This
might result in conflicts such as heating up the room while opening the windows.
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