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Abstract

Platelets, beyond their well-described role in haemostasis and thrombosis, act as inflamma-

tory cells playing an active role in several inflammatory conditions. As observed with other

inflammatory cells platelets can migrate in vitro, either randomly or in the direction of a

chemotactic agent, and in vivo, into inflammed tissues in response to different stimuli. In

this chapter we will summarize the current knowledge about the mechanisms that regulate

platelet chemotaxis, the evidence for the ability of platelets to migrate in vitro and in vivo,

and the mechanisms by which platelets influence chemotaxis of other cells.

Introduction

It is now well established that platelets act as inflammatory

cells and contribute to both innate and adaptive immune

response through several mechanisms, like pathogen binding,

trapping and killing, direct modulation of leukocyte and

endothelial cell activation, leukocyte recruitment, and activa-

tion of antigen presenting cells (APC) (Czapiga et al. 2004;

Jenne et al. 2013; Semple et al. 2011; Vieira-de-Abreu et al.

2012) (also see Slaba and Kubes 2017). Platelets are there-

fore the most abundant circulating cell type (150–400,000/μ
L) with an immune function and participate in host defence

against parasites, bacteria and viruses. Moreover, increasing

evidence shows that platelets play a pathogenic role in sev-

eral chronic inflammatory disorders including atherosclero-

sis, allergic inflammation (asthma, rhinitis and eczema),

chronic obstructive pulmonary disease, rheumatoid arthritis

and inflammatory bowel disease.

Several structural and biochemical characteristics

allow platelets to act as inflammatory cells (Heijnen and

Korporaal 2017; Slaba and Kubes 2017), probably

because they retain some functions of their phylogenetic

ancestor, the amoebocyte, the unique nucleated cell with

defensive and haemostatic functions circulating in the

haemolymph of invertebrates (Momi and Wiwanitkit

2017).

One of the crucial functions of “bona fide” inflammatory

cells is their ability to migrate through tissues. Platelets

display a number of attributes compatible with the ability

to migrate: they express receptors for adhesive proteins and

chemokines, contain and release matrix metalloproteinases

(MMPs) required for extracellular matrix (ECM) degrada-

tion, and have the cytoskeletal and enzymatic machinery

required for cell locomotion.

In this chapter, we will summarize the in vitro and in vivo

evidence of platelet migration in response to chemotactic

stimuli and of the role of platelets in tissue recruitment of

other cells, including leukocytes and cancer cells.

Chemotaxis is the active movement, or migration, of a

cell in the direction of a chemotactic gradient. It is a

central event in several physiologic processes, such as

embryonic development, tissue repair, angiogenesis and

immune response, and the abnormal chemotaxis of the

cells contributes to many pathologic conditions, like

chronic inflammation, autoimmunity and metastasis. Cell

locomotion is a complex and multistep process by which

an extracellular chemotactic gradient is detected by a

specific cell receptor, a signal is translated to the cell’s
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motile apparatus and an intracellular functional and struc-

tural asymmetry is generated allowing the cell to move

towards the detected chemoattractant. Cell polarization is

crucial for chemotaxis and consists of the formation of

two cellular compartments, the leading edge at the front

and the trailing edge at the rear. At the leading edge the

cell extends a protrusion, a lamellipodium or filopodium,

in the direction of the chemotactic stimulus, which

establishes new adhesion sites with the substratum, while

at the trailing edge the cell contracts, adhesion sites

detach and the uropod, a protrusion at the rear of the

cell, retracts. In each of these steps several proteins and

intracellular signaling pathways are involved and a funda-

mental role is played by the cytoskeleton and its ability to

rapidly assemble and disassemble (Fig. 1) (Charest and

Firtel 2007; Germena and Hirsch 2013; Jin 2013;

Raftopoulou and Hall 2004).

Structural Characteristics Ascribing to Platelets
the Ability to Migrate

Platelets possess all the structural characteristics required for

chemotaxis. They express on their surface several functional

chemokine receptors, such as CCR1, CCR3, CCR4, CXCR1,

CXCR4, CXCR6, CXCR7 and CX3CR1 (Abi-Younes et al.

2000, 2001; Borst et al. 2012; Chatterjee et al. 2014; Clemetson

et al. 2000; Kowalska et al. 1999, 2000; Postea et al. 2012;

Rath et al. 2014; Schafer et al. 2004; Suttitanamongkol and

Gear 2001; Wang et al. 1998) and other receptors involved in

leukocyte migration, like Toll-like receptor 4 (TLR4) and

formyl peptide receptors (FPR) (Andonegui et al. 2005;

Cognasse et al. 2005; Czapiga et al. 2005).

Platelets possess the central components of chemotaxis-

related intracellular signaling, and in particular phosphatidy-

linositol 3-kinase (PI3K) and phosphatase and tensin homo-

logue deleted on chromosome 10 (PTEN) that regulate the

production and cellular localization of phosphatidylinositol

3,4,5-trisphosphate (PIP3), which is crucial for the genera-

tion and maintenance of cell polarity (Van Keymeulen et al.

2006), and the Rho family of small GTPases that activate a

plethora of effector molecules modulating actin cytoskeleton

dynamics (Germena and Hirsch 2013; Worthylake and

Burridge 2001; Yan and Jin 2012).

Platelets contain a cytoskeletal framework that allows

cell movement. The discoid shape of platelets is maintained

by a membrane skeleton that coats internally the plasma

membrane, composed by a network of actin filaments,

spectrin, adducin, and actin-associated proteins, and by a

rigid cytoplasmic scaffold made of actin and filamin

A. Actin-associated proteins and filamin A link the platelet

cytoskeleton to integrins. Platelet activation induces changes

Fig. 1 Cellular polarization.

Structural and functional

asymmetry of a migrating cell

consisting of a leading edge at the

front in the direction of

movement and a trailing edge at

the rear associated with a

cytoskeletal organization

338 E. Petito et al.



in the cytoskeletal organization with the formation of focal

adhesion complexes, dynamic structures linking integrins to

the actin cytoskeleton and which together with stress fibres

contribute to a contractile response (Goggs et al. 2015;

Hartwig 2006).

Platelets contain, and release upon activation, several

MMPs, including MMP-1, -2, -3, and -14 (Seizer and May

2013; Busti et al. 2010), which may accomplish the extra-

cellular matrix degradation required for the passage of

migrating cells through the basement membrane (Fig. 2).

Platelet Migration: Studies In Vitro

The first in vitro observations on the ability of platelets to

migrate date back to the early 70s. Before then, platelets

were considered cell fragments passively drifting in the

circulation until a contact with an area of damaged endothe-

lium stopped them. The motion of platelets occasionally

observed under a light microscope was considered as passive

diffusion or Brownian movements, i.e. a temperature-

dependent, erratic, not directional movement of particles

smaller than 4–5 μm observed in colloidal suspensions

(Chamot and Mason 1947).

The first studies on platelet migration in vitro assessed the

optimal conditions to study platelet movement showing that

several factors, such as temperature, pH, anticoagulant,

platelet concentration and buffer composition, influence

this process (Lowenhaupt et al. 1977; Nathan 1973; Valone

et al. 1974) (Table 1).

Methods

Lowenhaupt and Valone were the first to study platelet

migration (Lowenhaupt et al. 1973, 1977; Lowenhaupt

1978; Valone et al. 1974). Lowenhaupt adapted the capil-

lary tube migration chamber previously described by

George and Vaughan for the study of macrophage migra-

tion (George and Vaughan 1962). This consisted of an

incubation chamber with a capillary tube immobilized at

the bottom. The incubation chamber was composed of a

stainless steel slide (75 � 25 � 3 mm) with a center hole

20 mm in diameter and one side sealed by a siliconized

glass slide to form a dish and two small channels

connecting it to the edge of the slide (Fig. 3a). A silicon-

ized micro-hematocrit capillary tube, fire-sealed at one

end, was filled with platelet-rich plasma (PRP) (300,000

platelets/μL) and centrifuged for 5 min. The capillary tube

was then cut at the meniscus between platelet poor plasma

(PPP) and the platelet pellet and secured to the bottom of

the incubation chamber. The chamber was then filled with

autologous PPP, covered with a siliconized cover glass

and incubated at 22 �C for 18 h in a CO2 incubator in

order to maintain pH between 7.2 and 7.4. To investigate

platelet chemotaxis, in the same incubation chamber, a

thread-like piece of collagen or a fine-collagen-packed

capillary tube was placed at a distance of about 5–6 mm

from the platelet-packed capillary tube. The end point was

the area of platelet migration out of the capillary tube

visible by a stereomicroscope and measured with a pla-

nimeter (Lowenhaupt et al. 1973).

Fig. 2 Structural characteristics

ascribing to platelets the ability to

migrate. Platelets express on their

surface several receptors

triggering chemotaxis. Platelets

possess the main components of

chemotaxis-related intracellular

signalling, involved in cell

polarization and cytoskeletal

re-organization. Platelets contain

and release upon activation

different MMPs involved in the

ECM degradation required for

their passage through the

basement membrane
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Table 1 Methods used to study platelet migration in vitro and optimal experimental conditions

Parameter Optimal condition Method References

Temperature (�C) 22 Capillary tubea,b Lowenhaupt et al. (1973, 1977, 1982) and

Lowenhaupt (1978)7-compartment chambera

25 Capillary tubeb Duquesnoy et al. (1975)

30 Capillary tubeb Nathan (1973)

37 Boyden chamberb Valone et al. (1974)

Transwell migration and

videomicroscopya
Czapiga et al. (2005)

Boyden chambera Pitchford et al. (2008)

Transwell migration and

videomicroscopya
Kraemer et al. (2010)

pH 5–6.5 Boyden chamberb Valone et al. (1974)

7.0 Capillary tubeb Nathan (1973)

7.2–7.4 Capillary tubea,b Lowenhaupt et al. (1973, 1977) and

Lowenhaupt (1978)

7.4 Transwell migration and

videomicroscopya
Kraemer et al. 2010

Anticoagulant Heparin Capillary tubeb Nathan (1973)

Citrate Boyden chamberb Valone et al. (1974)

Capillary tubeb Duquesnoy et al. (1975)

Boyden chambera Pitchford et al. (2008)

3.8 % trisodium citrate dihydrate or ACD

15 % v/v

Capillary tubea Lowenhaupt et al. (1973)

Capillary tubeb Lowenhaupt et al. (1977)

ACD Transwell migration and

videomicroscopya
Kraemer et al. (2010)

Incubation time

(hrs)

0.25 Micromazea Lowenhaupt (1978)

1.5 Boyden chambera Pitchford et al. (2008)

2 Transwell migrationa Czapiga et al. (2005)

3 Boyden chamberb Valone et al. (1974)

7-compartment chambera Lowenhaupt (1982)

8 Transwell migrationa Kraemer et al. (2010)

12 Capillary tubeb Duquesnoy et al. (1975)

18 Capillary tubea, b Lowenhaupt et al. (1973, 1977) and

Lowenhaupt (1978)

24 Capillary tubeb Nathan 1973

Platelet

suspension

300,000/μL (PRP) Capillary tubea,b Lowenhaupt et al. (1973, 1977) and

Lowenhaupt (1978)

100,000/μL (WP) Boyden chamberb Valone et al. (1974)
111In-oxine-labeled (PRP) 7-compartment chambera Lowenhaupt (1982)

3333/μL Transwell migrationa Czapiga et al. (2005)

300,000/μL (PRP) Boyden chambera Pitchford et al. (2008)

2000/μL (WP) Transwell migrationa Kraemer et al. (2010)

Pore size of the

filter (μm)

0.4 Transwell migrationa Kraemer et al. (2010)

2 Transwell migrationa Czapiga et al. (2005)

3 Boyden chambera Pitchford et al. (2008)

8 Boyden chamberb Valone et al. (1974)

Endpoint of the

test

Area of migration (planimeter) Capillary tubeb Nathan (1973)

Duquesnoy et al. (1975)

Area of migration, (stereomicroscope and

planimeter)

Capillary tubea,b Lowenhaupt et al. (1973, 1977) and

Lowenhaupt (1978)

Microphotographs of platelet movement Micromazea Lowenhaupt (1978)

Radioactive counts 7-compartment chambera Lowenhaupt (1982)

Platelet count per microscopic field Valone et al. (1974)

Pitchford et al. (2008)

Platelet count in the bottom well and

image sequences of platelet movement

Czapiga et al. (2005)

Kraemer et al. (2010)

PRP platelet rich plasma, WP washed platelets
aMigration in the direction of a chemotactic agent
bRandom migration
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Valone instead studied platelet migration by adapting the

Boyden chamber initially developed for the study of leuko-

cyte chemotaxis (Boyden 1962) (Fig. 3b). This is a perspex

chamber composed of two compartments separated by a filter

membrane 100 μm thick with pores of 8 μm size. A platelet

suspension in standard buffer (0.005 M KH2PO4, 0.005 M

Na2HPO4, 0.1 M NaCl, 0.2 g/100 mL glucose and 0.5 g/mL

gelatin) (100,000/μL) was placed in the upper compartment

and buffer medium in the lower compartment. After 3 h of

incubation the filter was removed, washed, fixed in 10 %

formalin, stained, cleared and mounted on a glass slide.

Platelets migrated into the filter were counted in 10 high-

power fields by phase-contrast microscopy at a fixed level

(40–70 μm from the top of the filter) (Valone et al. 1974).

Directional migration of platelets towards a chemotactic

gradient was also studied with the micromaze method

(Lowenhaupt 1978) or the 7-compartment chamber using

indium111-oxine-labeled platelets (Lowenhaupt et al.

1982). The micromaze is a chamber formed by four

compartments connected by thin slits to permit cell passage

between compartments; collagen was placed in compart-

ment 4 (Fig. 4a). Platelet movement was visualized by an

inverted phase-contrast microscope by following the leading

edge of the platelet mass or by viewing the passage of

individual platelets between compartments through the

slits: time-lapse image sequences were taken at fixed

intervals (Lowenhaupt 1978). The 7-compartment chamber

consists of seven identical compartments linearly connected

and separated by Nucleopore or Millipore filters of different

pore size (III and IV 3 μm, II and V 1 μm, I and VI 0.45 μm);

collagen was placed in compartment G (Fig. 4b). Gel-filtered

platelets were labeled with 111In-oxine, resuspended in

autologous platelet-free plasma (PFP) and filtered through

two sterile nylon mesh filters to remove aggregates. Platelet

chemotaxis was expressed as a ratio of the radioactive

counts of the two-end compartments (Lowenhaupt et al.

1982).

More recently platelet chemotaxis has been studied using

several further modifications of the original Boyden cham-

ber, namely:

1. The NeuroProbe 96-well ChemoTx microplate, with the

upper and lower compartments separated by a 2 μm pores

filter. After 2 h of incubation, platelets migrated into the

lower compartment were counted by light microscopy

(Czapiga et al. 2005).

2. The Nucleopore single wells, with the upper and lower

compartments separated by a 3 μm pore size filter, loaded

with murine or human PRP. After 1.5 or 3 h incubation,

respectively, filters were stained and platelets were

counted at various depths below the filter surface

(0–100 μm for murine and 40–70 μm for human platelets)

(Pitchford et al. 2008).

3. The transwell inserts, with a polyethylene terephthalate

(PET) membrane with 0.4 μm pores. Platelets were

added in the upper compartment, allowed to migrate

Fig. 3 (A) Diagram of the stainless steel slide. (B) Boyden chemotaxis chamber

Fig. 4 (A) Diagram of the micromaze. PRP is placed in compartment

1, PFP in compartments 2 and 3 and collagen suspended in PFP in

compartment 4. (B) Seven-compartment chamber. (sx) A basic unit of

the seven-compartment chamber. (dx) The linearly connected

7-compartment chamber showing contents in each compartment
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for 8 h and then counted in the lower compartment by

flow cytometry (Kraemer et al. 2010).

Horizontal migration of platelets has been studied in a

delta T culture dish placed on a microscope with a heated

stage and platelet movements were recordedbefore and dur-

ing the addition of either fMLP or PBS (as a control) every

5 s for 15 min (Czapiga et al. 2005), or in a migration

chamber consisting of a fibrinogen-coated slide with a cen-

tral spot of low-melting agarose containing the chemotactic

agent and platelet movement were recorded using a polari-

zation microscope for 3 h (Kraemer et al. 2010).

The assays used to study platelet migration are

summarized in Table 1.

Chemotactic Agents

Platelets can detect an extracellular chemotactic gradient

and move along this gradient. The first platelet chemotactic

agent to be described has been collagen. Various types of

collagen (bovine, equine, human from skin or from achilles

tendon) elicit platelet chemotaxis, although with different

potency. Only native collagen, and not heat-denatured or

dinitrofluorobenzene-treated collagen, induces platelet che-

motaxis. Interestingly, the structural features of collagen

required for platelet aggregation, i.e. the fibrillar structure,

are not required for chemotaxis. Collagen-induced platelet

chemotaxis does not require a direct contact with platelets,

given that migration was still observed when a filter imper-

meable to the large polymerized collagen molecules was

interposed between platelets and the stimulus. Thus, the

generation of “chemotaxins”, low molecular weight

substances produced by the interaction between collagen

and plasma, was postulated (Lowenhaupt 1982). Platelets

migrated in the direction of collagen for a long distance

(3000 times their diameter, i.e. 6 mm) in a very short time

(15 min) (Lowenhaupt 1978).

Formyl peptides, cleavage products of bacterial and mito-

chondrial proteins, induce platelet chemotaxis via binding to

formyl peptide receptors (FPR), seven transmembrane

receptors coupled to Gαi stored in α-granules and expressed

on the platelet surface after activation (Czapiga et al. 2005).

Platelet movement towards fMLP at a velocity of

13.07 � 1.10 μm/min has also been recorded in time-lapse

(Czapiga et al. 2005).

Recently, platelet chemotaxis towards a conventional

chemokine of the CXC family, CXCL12 or stromal cell-

derived factor-1α (SDF-1α), has been shown (Kraemer

et al. 2010). This chemokine induced platelet migration

upon binding to its specific receptor CXCR4 expressed on

platelets, given that the CXCR4-receptor antagonist

AMD3100 inhibits it. Platelets also trans-migrate through

an IL-1β-activated layer of human umbilical vein endothe-

lial cells (HUVEC) in the direction of SDF-1α (Kraemer

et al. 2010). In time-lapse studies platelets accumulated

around the source of SDF-1α after 3 h, with a speed of

migration variable depending on the number of focal adhe-

sion contacts. In the early stages of migration (fast migra-

tion: 200 μm/3 h) platelets have only few focal adhesion

contacts, while their number increases as migration speed

slows down (Kraemer et al. 2010).

Molecular Mechanisms Regulating Platelet
Migration

Platelet migration is an active, energy-consuming process that

requires viable andmetabolically intact platelets. Infact, fixation

with formalin or pre-treatment with iodoacetic acid (IAA) and

sodium fluoride (NaF), which interfere with the glycolytic

pathway, with 2,4-dinitrophenol (DNP), which uncouples

oxidative phosphorylation, and with 6-aminonicotinamide,

which suppresses the hexose monophosphate shunt, blocks

platelet migration (Valone et al. 1974; Lowenhaupt et al.

1977). As expected cytochalasin B, which disrupts actin

filaments, inhibited migration, while colchicine, which

interferes with the polymerization of microtubules, did not

(Lowenhaupt et al. 1977).

Platelet migration triggered by SDF-1α is mediated by

PI3K, given that the PI3K inhibitors wortmannin and

LY294002 significantly inhibited it. PI3K phosphorylates

Wiskott-Aldrich syndrome protein (WASP) that induces

the rearrangement of the actin cytoskeleton (Kraemer et al.

2010). Downstream signaling linking PI3K to platelet

migration involves the serum- and glucocorticoid-inducible

kinase 1 (SGK1), known to be involved in endothelial cell

and monocyte/macrophage migration (Borst et al. 2015;

Zarrinpashneh et al. 2013). The importance of SGK1 in

platelet migration seems to be connected to its ability to

regulate the actin cytoskeletal architecture in fact WASP

and vinculin, two proteins interacting with actin, are

SGK1-sensitive. WASP activates the Arp 2/3 complex that

binds actin, thus inducing its polymerization, and vinculin is

an actin-binding protein that, when phosphorylated,

stabilizes the focal adhesions (Kraemer et al. 2010; Schmidt

et al. 2012). SGK1-deficient platelets show impaired migra-

tion, reduced WASP activation and enhanced vinculin phos-

phorylation (Schmidt et al. 2012).

Platelet migration is dependent on the increase of intra-

cellular Ca2+ via the Ca2+ channel Orai1, the pore forming

unit of the store-operated Ca2+ entry (SOCE) channel, and

on K+ efflux via the Ca2+-activated K+ channel SK4

(Schmidt et al. 2011).

Platelets adhering to a fibrinogen-coated surface and then

exposed to high shear conditions (1500 s�1) undergo
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polarization, cytoskeletal reorganization with increased

WASP phosphorylation and redistribution of intracellular

focal adhesion kinases (FAK) to areas of dynamic focal

adhesions, and migration in the direction of flow at a speed

of approximately 10 μm/h (Kraemer et al. 2011).

Platelet Migration in Disease

Platelet migration has also been studied in disease conditions

and/or in response to various pathologic stimuli. Duquesnoy

in 1975 described a platelet migration inhibition (PMI) assay

to detect antibodies in serum directed against the human

leukocyte antigen (HLA) and the platelet-specific antigen

Pl-A1 (Duquesnoy et al. 1975), or alloantibodies against

platelets in platelet-transfused patients (Levine and

Brubaker 1983). This assay was a modification of the capil-

lary tube chemotaxis chamber used by Lowenhaupt et al.

(1973) and it tested the capacity of antibodies to inhibit

platelet migration by mixing control PRP with patient’s
serum. The sensitivity of the PMI test was reported to be

comparable or even greater to that of several other methods

used for the detection of platelet antibodies, such as the

platelet lysis assay, complement fixation, platelet

aggregometry and platelet factor-3 release (Duquesnoy

et al. 1975; Levine and Brubaker 1983).

Platelets from allergic asthmatic subjects, but not from

healthy donors, concentration-dependently migrated in vitro

in response to the specific sensitizing allergen and in response

to a monoclonal anti-human IgE antibody. In asthmatic

subjects allergen-specific IgEs, produced upon previous con-

tact with the allergen and bound to the platelet high-affinity

receptor for IgE, FcεRI, bind the allergen inducing the cross-

linking of contiguous receptors thus triggering platelet che-

motaxis (Pitchford et al. 2008). The same phenomenon is

triggered by an anti-IgE antibody that, binding to contiguous

Fc portions of FcεRI-bound IgEs, induces the cross-linking of
the receptors. The crosslinking of IgE receptors on platelets

was previously shown to trigger other platelet functional

activities, such as cytotoxicity (Polack et al. 1991), oxygen

radical formation (Vargas et al. 1999) and release of

chemokines (Hasegawa et al. 2001; Klouche et al. 1997).

Migration of platelets from ovalbumin (OVA)-immunized

mice in response to the sensitizing allergen was also

demonstrated (Pitchford et al. 2008).

Platelet Chemotaxis: Studies in Animal Models

Studies in animal models confirm the ability of platelets to

migrate into inflammed tissues. Extravascular accumulation

of platelets in bronchial tissue and in lungs, associated with

bronchospasm, has been observed by electron microscopy or

by the accumulation of 111In-oxine-labelled platelets in

guinea pigs and baboons after intravenous challenge with

platelet-activating factor (PAF) and other platelet agonists,

like ADP or collagen. The penetration of platelets in tissue

was not the consequence of blood extravasation, as no other

blood cells were concomitantly found (Arnoux et al. 1988;

Lellouch-Tubiana et al. 1985; Page et al. 1984; Robertson

and Page 1987). The presence of platelets in skin

accompanied by neutrophils was also described after the

intradermal injection of PAF in rats (Pirotzky et al. 1984).

Platelets have also been detected in bronchoalveolar lavage

(BAL) fluid of mice with chronic allergic airway inflammation

(Pitchford et al. 2004) and from rabbits with experimental

asthma, following allergen-challenge (Coyle et al. 1990).

Platelets from OVA-immunized mice were observed to

migrate out of blood vessels after allergen inhalation and to

localize in lung parenchima, directly underneath the airways

(Fig. 5). Platelet influx in tissue preceded leukocytes and was

largely independent of the latter (Pitchford et al. 2003,

2005). Platelet migration into inflammed lung was shown

to be mediated by the binding of allergen to FcεRIγ-bound
allergen-specific IgEs on the platelet surface (Pitchford et al.

2008), a phenomenon previously described for other inflam-

matory cells such as eosinophils, basophils and mast cells

(Ishizuka et al. 2001; Orida et al. 1983; Svensson et al.

2004).

Transendothelial migration of platelets into the skin of

guinea pigs induced by the subcutaneous injection of fMLP

was demonstrated by serial electron-microscopy of thin tis-

sue sections (Feng et al. 1998b). In that study it was shown

Fig. 5 Individual platelets (arrows) migrated in lung parenchyma after

mouse allergen challenge. Reprinted with permission of the American

Thoracic Society. Copyright (c) 2016 American Thoracic Society.

Pitchford SC et al., 2008, Allergen induces the migration of platelets

to lung tissue in allergic asthma, Am Respir Crit Care Med 177;

604–612. The American Journal of Respiratory and Critical Care Med-

icine is an official journal of the American Thoracic Society
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that platelets crossed endothelial cells not at the level of

interendothelial cell junctions, which remained closed.

However, platelets have been demonstrated to extend

pseudopods suggesting active diapedesis. Moreover, single

platelets enclosed within endothelial cytoplasmic vacuoles,

generally located close to interendothelial cell junctions,

were observed and the platelet-containing vacuoles were

observed to open to the abluminal surface whereupon

platelets were discharged into the underlying basal lamina.

Following transmigration across the basal lamina, platelets

were found free in dermal connective tissue, together with

neutrophils and other white cells. Interestingly, migrating

platelets did not display the ultrastructural features of a

release reaction, suggesting that conventional platelet acti-

vation is not required for platelet migration (Feng et al.

1998b).

The mechanism of transmigration observed in this

model, i.e. that platelets cross undamaged endothelium by

a process similar to pinocytosis, has been previously

described for neutrophils (Feng et al. 1998a). This mecha-

nism does not necessarily apply to all stimuli-inducing

diapedesis and active migration through interendothelial

cell junctions may also take place (Laitinen 1993; Marchesi

1966).

Platelet translocation into the Disse spaces of the liver

and their active penetration into hepatocytes have been

reported by immunostaining for 5-hydroxytryptamine

(5-HT), a sensitive method to detect platelets in tissue as

platelets contain large amounts of 5-HT, and by electron

microscopy (Nakamura et al. 1998). Platelets in the Disse

spaces of lipopolysaccharide (LPS)-treated mice were

in contact with Kupffer cells (hepatic macrophages)

(Nakamura et al. 1998; Yamaguchi et al. 2006). This process

seems to involve biochemical pathways different from those

involved in aggregation, given that anti-platelet agents,

including aspirin, did not prevent hepatic platelet accumula-

tion (Nakamura et al. 1998).

In a murine model of corneal abrasion, diapedesis of

platelets out of vessels was demonstrated with accumulation

of platelets in the limbus where they actively contribute to

corneal nerve regeneration. The accumulation of platelets

was mediated by P-selectin (Li et al. 2011), an adhesion

molecule that also plays a role in the accumulation of

platelets in glomeruli in a murine model of glomerulonephri-

tis (Zachem et al. 1997). Activated platelets, alone or

together with neutrophils, were found by immunofluores-

cence within glomeruli of rats with nephritis induced by

the selective perfusion of the renal artery with the lectin

concanavalin A (Zachem et al. 1997).

In a model of ligation of intestinal arteries in mice, green

fluorescent protein (GFP)-labeled platelets were observed in

areas of post-ischemic inflamed tissue, where they could

function as pilot cells that guide the invasion of other

inflammatory cells. This mechanism was mediated by

SDF-1α involving signalling through PI3K and activation

of SGK-1 (Kraemer et al. 2010). Furthermore, SGK-1�/�

mice showed decreased platelet transmigration into the

ischemic intestinal vascular wall (Schmidt et al. 2012).

Platelet Chemotaxis: Studies in Humans

Despite the difficulty in detecting platelets in tissue using

histology with conventional staining techniques, due to the

small dimensions and the lack of a nucleus, observations

using electron microscopy and/or immunological staining

confirm the ability of platelets to transmigrate into tissues

in humans with inflammatory conditions.

Platelets were found in BAL of patients with allergic

asthma following allergen challenge without the concomi-

tant presence of erythrocytes, confirming active diapedesis

and not passive transfer due to blood extravasation, with

some degranulated platelets and free granules in the lavage

(Metzger et al. 1985, 1987). Platelet aggregates have also

been observed in the lamina propria of the microvasculature

of lungs of asthmatic subjects by transmission electron

microscopy during late-onset airways obstruction following

allergen provocation, in apposition to areas of bronchial

smooth muscle, underneath the epithelium, and in areas of

eosinophil infiltration (Beasley et al. 1989).

Extravascular platelets, colocalized with leukocytes, have

been detected by immunofluorescence in surgically excised

nasal polyps from patients with aspirin-exacerbated respira-

tory disease (AERD), a chronic inflammatory disorder

characterized by nasal polyposis and asthma triggered by

the ingestion of aspirin (Laidlaw and Boyce 2012).

Platelets were also identified by immunohistochemistry

in brain tissue sections from patients with multiple sclerosis

with active demyelinating plaques and by confocal immu-

nofluorescent microscopy in a chronic active type 1 lesion

(active inflammation and demyelination) (Langer et al.

2012).

Electron microscopy of the synovium of patients with

rheumatoid arthritis (RA) showed platelet thrombi obliterating

the lumen of vessels and platelets were observed in the vicinity

of gaps between endothelial cells of the joint vasculature

(Schumacher 1975). Positive staining for αIIbβ3 outside the

vasculature was detected using immunohistochemistry of the

synovium from patients with RA, representing either platelets

or platelet-derived microparticles (PMPs) (Konttinen et al.

1989; Palmer et al. 1986). Moreover, platelets, platelet

aggregates and platelet-leukocytes complexes have been

shown in the synovial fluid of patients with RA suggesting

active migration into extravascular sites (Endresen 1981;

Endresen and Forre 1992; Farr et al. 1984; Ginsberg et al.

1978; Yaron and Djaldetti 1978).
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Platelet Contribution to the Chemotaxis
of Other Cells

Platelets influence the migration of other cells by releasing

soluble chemotactic mediators, by liberating PMPs, or by

direct contact with the involved cells (Fig. 6).

Platelet lysates enhanced cell migration of several hepa-

tocellular carcinoma cell lines (Carr et al. 2014) and

fibroblasts (Carducci et al. 2016; Senior et al. 1983), and

adherent activated platelets stimulated the migration of

murine embryonic endothelial progenitor cells (EPC)

(Langer et al. 2006).

Platelets contain and release upon activation several sol-

uble mediators influencing cell migration (Table 2). Among

them chemokines, which represent a significant fraction of

the platelet α-granules content, are released upon platelet

activation and mediate the recruitment of several cells to

sites of inflammation, including leukocytes, cancer cells and

hematopoietic cells, thus favouring neointima formation and

atherosclerosis, vessel repair and regeneration after vascular

injury (Gleissner et al. 2008). CXCL4/platelet factor 4

(CXCL4/PF4), the first member of the chemokine family

discovered in platelets and the most abundant platelet chemo-

kine (Deuel et al. 1977), and CXCL7/neutrophil-activating

peptide-2 (CXCL7/NAP-2) purified from supernatants of

thrombin-stimulated platelets induce neutrophils to undergo

firm adhesion on an endothelial cells monolayer in a

concentration-dependent manner. CXCL7 also stimulates neu-

trophil transendothelial migration (Petersen et al. 1999; Schenk

et al. 2002). Furthermore, CXCL7 and CXCL5/epithelial

neutrophil-activating protein 78 (ENA-78), secreted by

activated platelets upon contact with tumor cells, induce

Fig. 6 Platelet contribution to the chemotaxis of other cells. Platelets

play an active role in the induction of chemotaxis of other cells by

releasing, upon activation, soluble mediators contained in their

granules (α, δ and lysosomes), by liberating PMPs, and by expressing

surface receptors favouring cell–cell interactions
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granulocyte migration and guide the formation of the early

metastatic niche (Labelle et al. 2014). Activated platelets

are a major source of CXCL12/SDF-1α (Chatterjee and

Gawaz 2013). Platelet-derived CXCL12 supports adhesion of

CD34+ human progenitor cells (PCs) under static conditions

and facilitates the rolling and firm adhesion of CD34+ cells

onto platelets adhered to a layer of human aortic endothelial

cells (HAEC) under high shear rate in vitro and in vivo (Stellos

et al. 2008). Platelet-derived CXCL12 also enhances the adhe-

sion and migration of bone marrow progenitor cells to sites of

vascular injury thereby promoting repair (Massberg et al.

2006). Furthermore, CXCL12 released by activated platelets

induces monocyte chemotaxis by acting on CXCR4 and mono-

cyte adhesion under static and dynamic arterial flow conditions

by acting on CXCR7 (Chatterjee et al. 2015). CCL5/regulated

on activation normal T cell expressed and secreted (CCL5/

RANTES) secreted by activated platelets and immobilized on

the inflamed/activated endothelium of atherosclerotic arteries

induces adhesion of monocytes (Mause et al. 2005; Schober

et al. 2002; von Hundelshausen et al. 2001). Platelets under

shear flow deposit CXCL4 and CCL5 on atherosclerotic or

IL-1β-activated HAEC, enhancing the recruitment of

monocytes to the endothelium (Baltus et al. 2005; Huo et al.

2003). Moreover, platelet-derived macrophage migration

inhibitory factor (MIF) stimulates monocyte arrest on endothe-

lium and chemotaxis (Wirtz et al. 2015).

Platelet-derived IL-1β induces the secretion of CCL2/mono-

cyte chemottractant protein-1 (MCP-1) and increases the expres-

sion of intracellular adhesion molecule-1 (ICAM-1) by

endothelial cells, promoting the adhesion of monocytes to the

endothelium and their chemotaxis; in fact MCP-1 is a potent

chemotactic factor for monocytes (Gawaz et al. 2000). Platelet-

derived IL-1 induces the release of CXCL1 and CXCL8 from

endothelium,which in turn induces neutrophil recruitment (Page

and Pitchford 2013; Kaplanski et al. 1993; Thornton et al. 2010).

Platelet dense-granules contain serotonin, a vasoactive

inflammatory mediator that can induce vascular permeabil-

ity and promotes the recruitment of neutrophils into lung and

peritoneum, after intraperitoneal and intratracheal LPS

administration, and in aseptic skin wounds (Duerschmied

et al. 2013), and the recruitment of T cells into the liver

during viral hepatitis-induced hepatic injury (Lang et al.

2008). Platelet-derived ATP promotes tumor cell

transendothelial migration and metastasis via stimulation

of P2Y2 receptors (Schumacher et al. 2013).

Platelet release lysosomal enzymes, such as cathepsin,

β-hexosoaminidase and heparinase, in vivo in humans at a

localized site of vessel wall damage (Ciferri et al. 2000;

Vlodavsky et al. 1992), and these may participate in cell

diapedesis due to their tissue-degrading activity and by

remodelling the inflammed tissues, a role already

demonstrated to be involved in the migration of fibroblasts,

Table 2 Soluble platelet-derived inflammatory mediators and platelet surface proteins that modulate cell migration

Soluble platelet-derived mediators Responding cells

α-granules

CXCL4/PF4 Neutrophil firm adhesion on the endothelium

CXCL7/NAP-2 Neutrophil firm adhesion on the endothelium and trans-migration

Formation of the early metastatic niche

CXCL12/SDF-1α Adhesion and migration of bone marrow progenitor cells

Monocyte adhesion and chemotaxis

CXCL5/ENA-78 Neutrophil migration

Formation of the early metastatic niche

CCL5/RANTES Monocyte adhesion on the endothelium and recruitment

MIF Monocyte arrest on the endothelium and chemotaxis

Dense granules

Serotonin Neutrophil and T-cell recruitment

ATP Tumor cell transendothelial migration and metastasis

Lysosomes

Cathepsin, heparinase, β-hexosoaminidase Cell diapedesis by remodeling the inflammed tissue

PMPs Neutrophil and monocyte adhesion to the endothelium

Chemotaxis and invasion of breast and lung cancer cells

Chemotaxis of hematopoietic stem/progenitor (CD34+) and various myeloid and lymphoid cells

Platelet surface proteins

CD40L/CD154 Endothelial cell activation

CD40 T cell recruitment

P-selectin Monocyte and neutrophil rolling and adhesion to the endothelium

JAM-A Platelet adhesion to the endothelium

JAM-C Firm adhesion of leukocytes on adherent platelets
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cancer and endothelial cells (Mohamed and Sloane 2006;

Palka et al. 1997; Schraufstatter et al. 2003)

PMPs play an important role in tissue recruitment of

inflammatory cells by the interaction between P-selectin

expressed on their surface and P-selectin glycoprotein

ligand-1 (PSGL-1) on neutrophils (Forlow et al. 2000) and

simultaneously by their adhesion to the subendothelial

matrix through integrin αIIbβ3 (Merten et al. 1999). PMPs

stimulate monocyte adhesion also by inducing endothelial

cells (ECs) to express ICAM-1 and by delivering

chemokines, such as RANTES, to the endothelium (Barry

et al. 1998; Mause et al. 2005). In addition, PMPs transport

cytokines (e.g. IL-1β) that stimulate polymorphonuclear

cells (PMNs) adhesion to ECs and miRNAs that may modify

the phenotype of endothelial cells (Gidlof et al. 2013) and

macrophages (Laffon et al. 2016). PMPs enhance the che-

motaxis of invasive breast and lung cancer cells and stimu-

late their invasion across Matrigel by inducing MMPs

production. Furthermore, PMPs act as chemotactic agent

for hematopoietic stem/progenitor (CD34+) cells as well as

for various myeloid and lymphoid cells (Baj-Krzyworzeka

et al. 2002; Janowska-Wieczorek et al. 2005, 2006).

Platelets express upon activation a number of surface

proteins involved in heterotypic interactions with endothe-

lial cells and leukocytes, mediating the rolling and adhesion

of leukocytes to the endothelium and the subsequent trans-

migration into inflammed tissue (Gawaz et al. 2005;

Weyrich and Zimmerman 2004). The formation of platelet-

neutrophil and platelet-monocyte complexes, the subsequent

neutrophil and monocyte adhesion to the endothelium and

recruitment into the inflammed tissue is dependent on plate-

let P-selectin (Page and Pitchford 2013), mediated by its

binding to the high affinity counter ligand PSGL-1 (Ham-

burger and McEver 1990; Moore et al. 1995; Kuijper et al.

1998). High-resolution videomicroscopy has revealed the

existence of membrane tethers involving P-selectin/PSGL-

1 bonds that regulate neutrophil rolling on platelets

(Schmidtke and Diamond 2000). The importance of platelet

P-selectin/PSGL-1 axis has been determined by the use of P-

selectin-deficient mice, by the blockade of P-selectin or with

PSGL-1 antibodies (Abdulla et al. 2012; Diacovo et al. 1996;

Mayadas et al. 1993; Pitchford et al. 2005).

Platelet CD40 ligand (CD40L/CD154) binds CD40 on

endothelial cells and enhances the release of IL-8 and

MCP-1, the expression of E-selectin (CD62-E), Vascular

Cell Adhesion Protein-1 (VCAM-1) and ICAM-1, and the

release of matrix metalloproteinases (e.g., MMP-1, -2, -3,

and -9). Furthermore CD40L-positive T cells activate

platelets through a CD40-dependent pathway resulting in

CCL5 release and T cell recruitment (Danese et al. 2004;

Henn et al. 1998; Giannini et al. 2011).

Platelet Junctional Adhesion Molecule (JAM-A) can sup-

port homophilic interactions with endothelial-cell JAM-A,

mediating platelet adhesion to the endothelium (Babinska

et al. 2002), thus facilitating the deposition on endothelium

of platelet CCL5/RANTES (Zernecke et al. 2006). Platelet

JAM-C functions as a counter-receptor for the β2-integrin
Mac-1 on neutrophils mediating firm adhesion of leukocytes

to adherent platelets (Santoso et al. 2002).

Conclusions

Among the functions that characterize platelets as inflamma-

tory cells, one which is little considered but is probably

crucial is the ability to migrate into tissue in the direction of

a chemotactic stimulus. This allows platelets to actively par-

ticipate in the tissue inflammatory process by releasing stored

or newly synthesized mediators acting both on other platelets

and/or on other cell types. Furthermore, platelets influence

and sometimes are essential for the migration of other inflam-

matory cells, including leukocytes and cancer cells.

This “non-classical” platelet activity is an example of the

existence of a dichotomy in platelet function, i.e. the ability

of platelets to display an inflammatory or a haemostatic/

thrombotic response depending on the stimulus and on the

environment, recently elegantly demonstrated investigating

the role of different purinergic receptor subtypes on platelets

(Amison et al. 2015).

Further investigation into the mechanisms regulating

platelet migration, and in general the characterization of

the mechanisms regulating this dichotomy of platelet func-

tion, may be crucial for the discovery of new therapeutic

approaches to inflammatory diseases by the development of

drugs able to interfere with the inflammatory but not with the

haemostatic function of platelets.

Take Home Messages

• Platelets possess several characteristics that allow

them to migrate: the expression of receptors for

chemokines and for other chemotactic agents, the

presence of all the signaling pathways responsible

for the transduction of the extracellular chemotactic

signal to the motile apparatus, a dynamic cytoskel-

eton and the relase of several enzymes (MMPs,

cathepsins, β-hexosoaminidase, heparinase)

responsible for ECM degradation.

• The ability of platelets to migrate in vitro, both

randomly and in the direction of a chemotactic stim-

ulus, such as collagen, fMLP, SDF-1α, IgE and

allergens, has been confirmed using different assays.

• The penetration of platelets in inflammed tissues

has been described in several animal models and in

human disease conditions.

(continued)
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• Platelets can induce the migration of other cell

types by several mechanisms, including the shed-

ding of PMPs, release of granular materials

(chemokines, cytokines, growth factors, ATP,

enzymes), and the expression of surface receptors

involved in platelet heterotypic interactions with

leukocytes, endothelial and cancer cells.
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