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Abstract

Proteomics is a rapidly evolving research approach in parallel with genomics, utilizing

advanced technologies in protein separation, identification, quantification, and bioinfor-

matics. We have reviewed the different proteomic techniques that have been used success-

fully to analyze platelets in humans over time. Using more advanced technologies, an

increasing number of platelet proteins have been identified and this by investigating the

resting platelet proteome and that of activated platelets using diverse agonists. It is also

possible to analyze platelet subproteomes including that of granules, microparticles, and

membrane proteins. Furthermore, experiments can be designed that specifically study

changes in the phosphorylation, glycosylation, or palmitoylation profiles of platelet

proteins. These studies have generated extensive protein databases of >5000 proteins for

platelets under normal physiological conditions that are also useful to study disease.

Examples of proteomic studies that were designed to study platelet-related bleeding

disorders and cardiovascular diseases, but also other complex disorders where platelets

can be used as a model cell, are discussed.

Introduction to Platelet Proteomics

Proteomics is the large-scale study of proteins encoded by a

genome under specific conditions and at a given time

(Wilkins et al. 1996) and has also been used to study

platelets and platelet-related diseases. Because of recent

advances, especially in mass spectrometry (MS), proteomics

now enables the measurement of multiple properties for

thousands of proteins simultaneously, such as their abun-

dance, modifications, subcellular localization, and protein–

protein interactions (Larance and Lamond 2015). Platelets

are estimated to contain about 5000 different proteins,

spanning a wide abundance range and with different post-

translational modifications (Burkhart et al. 2012). The plate-

let proteome is highly dynamic as some proteins are secreted

upon platelet activation and the proteome itself changes with

age (Cini et al. 2015) or disease state (Macaulay et al. 2005).

In addition, the capability of platelets to absorb plasma

proteins further increases the proteome variability and com-

plexity. Platelets are anuclear, having no DNA and only

limited amounts of mRNA, which makes proteomic research

an attractive alternative for gene expression studies. Platelets

are readily available in living organisms and in relatively

high amounts; therefore proteomes can also be applied to

analyze platelets from children starting from small volumes

of blood. As for other cell types and organisms, knowledge

of the proteome is expected to be more useful than informa-

tion on the transcriptome as proteins are believed to be the

main effectors of gene functions. It has been estimated that

the 20,000 human genes translate into one million different

proteoforms due to alternatively splicing and posttransla-

tional modifications (Brett et al. 2002). Furthermore, several
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studies have revealed a poor correlation between mRNA and

protein profiles in lower organisms (Gygi et al. 1999a, b),

and this has also been described for platelets (Burkhart et al.

2012; Londin et al. 2014). This discrepancy might be

explained by a rapid decay of mRNAs in response to various

stimuli and posttranslational protein ubiquitination leading

to protein degradation. Moreover, a disease state may be

determined by translocation of proteins to different cellular

compartments rather than by changes in transcript levels. In

addition, several technical issues can explain the imperfect

correlation between transcriptomic and proteomic data.

For example, the current transcriptomic techniques provide

only limited information on alternative splicing, whereas

proteomics can detect separate protein isoforms encoded

by these variants. Given all these considerations, proteomics

represents an efficient tool to gain deeper insights into

the molecular mechanisms regulating unknown platelet

functions and platelet-related diseases. We, and others,

published extensive reviews on the application of proteo-

mics in the field of platelet research, mainly focused on the

commonly used methodologies and the key achievements in

the elucidation of platelet-related diseases (Di Michele et al.

2012a, b; Zufferey et al. 2012; Rotilio et al. 2012). Here, we

summarize recent updates for the main contemporary

proteomic strategies for platelet research in humans and

the most important studies that applied proteomics to

unravel the molecular mechanisms underlying platelets in

physiological (“Proteomic Methods Used for Platelet

Research” and “Proteomic Strategies to Decipher Platelet

Biology”) and pathological conditions (“Platelet Proteomics

to Gain Insights in Human Diseases”).

Proteomic Methods Used for Platelet Research

Gel-Based Proteomics

Gel-based methods, including conventional 2DE

(bidimensional electrophoresis) and DIGE (differential

in-gel electrophoresis), are commonly used for platelet pro-

teomics. In 2DE, proteins are first separated based on their

isoelectric point along a pH gradient by isoelectric focusing

and then based on their apparent molecular mass in a poly-

acrylamide gel by SDS-PAGE (Rogowska-Wrzesinska et al.

2013). Proteins are visualized by in-gel staining, matched in

different 2DE gels, quantified, and proteins of interest are

excised for further identification by MS. 2DE was first used

to study the platelet proteome in the 1970s, identifying

some most abundant proteins and membrane glycoproteins

(Clemetson et al. 1979) and later for the identification of

proteins with changed levels upon platelet storage (Snyder

et al. 1987). This method also contributed to generate the

proteome reference maps of quiescent platelets (Gravel et al.

1995; Marcus et al. 2000; O’Neill et al. 2002; Garcia et al.

2004a, b), activated platelets (Claeys et al. 2005; Shai et al.

2012), and platelet subproteomes including microparticles

(Shai et al. 2012; Garcia et al. 2005), cytosol, and

microsomes (Claeys et al. 2005). 2DE holds intrinsic

limitations such as the difficulty to analyze hydrophobic,

extremely charged, and very small or large proteins, as

well as having a limited reproducibility among gels and the

presence of multiple proteins in a single spot. Combined

with restricted sample loading and the scarce sensitivity of

protein stains, all of this hampers the detection of

low-abundant proteins. Some of these disadvantages were

overcome using DIGE, which allows improved reproducibil-

ity, higher quantification accuracy, and reduced time/costs.

With DIGE, two samples and one internal standard are

loaded together on the same gel after labeling with different

fluorescent dyes (Cydye-2, Cydye-3, and Cydye-5), each

with specific excitation/emission wavelengths (Unlu et al.

1997). The internal standard is a pool of equal amounts of all

the samples used to facilitate accurate spot matching across

gels, minimizing inter-gel variability, and allowing to calcu-

late the abundance of each protein spot as a ratio to its

corresponding spot in the internal standard, leading to the

measurement of subtle changes in protein abundance with

high statistical confidence. DIGE has been used to study

platelet proteomes under basal or activated conditions

(Cini et al. 2015; Baumgartner et al. 2013; Winkler et al.

2008; Veitinger et al. 2012).

Finally, 1D SDS-PAGE can be used in combination with

MS in the so-called GeLC-MS approach (Shevchenko et al.

2006). The underlying workflow involves SDS-PAGE,

in-gel protein staining, slicing of each lane into discrete

gel bands, in-gel protein digestion, peptide purification,

and LC-MS/MS analysis. GeLC-MS was successfully

used to study human platelet proteomes in resting and

stimulated conditions (Piersma et al. 2009; Qureshi et al.

2009; van den Bosch et al. 2014; Ambily et al. 2014),

during storage (Dzieciatkowska et al. 2015a; Schubert

et al. 2012a; b), or to analyze specific subproteomes includ-

ing the immunoproteasome (Klockenbusch et al. 2014) and

palmitoylome (Dowal et al. 2011).

Gel-Free Proteomics

Gel-based methods are progressively replaced by so-called

bottom-up MS-based proteomic methods that analyze pep-

tide mixtures derived from isolated proteomes. These

techniques require lower amounts of material, which is par-

ticularly important when studying rare platelet-related

diseases, platelets from young children, or subproteomes.

The first step in gel-free analysis typically consists of

digesting the proteome with a specific protease. This is
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followed by a chromatographic separation of the obtained

peptides coupled to MS for analysis, subsequent data

processing, and peptide identification.

The pioneering method is multidimensional protein

identification technology (MudPIT) which combines

orthogonal peptide separations prior to MS/MS analysis,

thereby maximizing sensitivity and resolution (Washburn

et al. 2001). The main advantage of MudPIT over gel-based

methods is that it largely avoids protein solubilization

problems as proteins are cut into peptides that are easier

to solubilize. MudPIT was used to analyze the basal plate-

let proteomes (Finamore et al. 2010), the thrombin-induced

secretome (Coppinger et al. 2004), the serine hydrolase

subproteome (Holly et al. 2013), and the effects of

dysregulated miRNA on thrombocythemic platelets

(Xu et al. 2012).

The exponentially modified protein abundance index

(emPAI) approach is widely used and assumes that abundant

peptides are more often detected, but also considers that

bigger proteins and proteins with many peptides in the m/

z-range for efficient MS analysis will generate more

observed peptides (Ishihama et al. 2005). The emPAI

method was successfully employed when studying protein

networks associated with platelet glycoprotein VI stimula-

tion (Wright et al. 2011).

Combined fractional diagonal chromatography

(COFRADIC) is a gel- and label-free proteomic method

(Gevaert et al. 2002). Given its versatility, several

COFRADIC protocols were developed, each allowing for

the enrichment of a specific set of peptides (Gevaert et al.

2003; Stes et al. 2014; Staes et al. 2011). COFRADIC relies

on three steps: (1) a first RP-HPLC fractionation of the

digested proteome, (2) a chemical or enzymatic reaction of

single or combined peptide fractions that modifies the chem-

ical structure of selected peptides that will then obtain

altered chromatographic properties, and (3) a series of

RP-HPLC fractionations identical to the first one during

which the altered peptides are isolated for LC-MS/MS anal-

ysis. COFRADIC was applied for studying the human plate-

let proteome together with GeLC-MS/MS and MudPIT,

revealing that the use of complementary techniques allows

for more comprehensive proteome mapping (Martens et al.

2005; Lewandrowski et al. 2009).

Labeling methods rely on the incorporation of stable

isotopes, i.e., 2H, 13C, 15N, and 18O by metabolic (SILAC),

chemical (ICAT, iTRAQ, or TMT), or enzymatic reactions.

In stable isotope labeling by amino acids in culture (SILAC),

cells are grown separately in media supplemented with

heavy or light labeled essential amino acids, such as lysine

and arginine (Ong et al. 2002). Although SILAC is typically

only applied to cells that can be expanded in vitro, it was also

successfully used for studying platelet proteomes (Kruger

et al. 2008; Zeiler et al. 2014). In isobaric tags for relative

and absolute quantitation (iTRAQ), quantification occurs

using MS/MS spectra rather than MS spectra (Gygi et al.

1999a, b). iTRAQ makes use of an amine-reactive reagent

available in different isotopic variants to label peptides at

their primary amines. iTRAQ was used to analyze the prote-

ome of human platelets focusing on inter- and intra-

biological variations (Burkhart et al. 2012; Vaudel et al.

2012) and platelets stimulated with ADP, thrombin, colla-

gen, TRAP, and/or iloprost (Beck et al. 2014; Cimmino et al.

2015). Furthermore, iTRAQ-based gel-free proteomics,

combined with DIGE- and ICAT-based proteome analysis,

was applied to detect changes in platelet protein levels

during storage of blood products (Thon et al. 2008). Similar

to iTRAQ, tandem mass tags (TMTs) employ amine-

reactive chemicals to label peptides (Thompson et al.

2003), and up to ten different isobaric tags are available

(Werner et al. 2014). TMT labeling was applied to study

protein changes in platelets from subjects sensitive or resis-

tant to aspirin (Floyd et al. 2014). Enzymatic labeling is

based on peptide labeling with oxygen-18 isotopes (Yao

et al. 2001). Stable enzymatic labeling of tryptic peptides

in combination with COFRADIC was applied to analyze

platelets (Staes et al. 2004).

Proteomic Strategies to Decipher Platelet
Biology

General Considerations for Experimental Design
of Platelet Proteomic Studies

Most proteomic studies are feasible with about 5 mL of

blood allowing the isolation of 108 platelets, corresponding

to 1 mg of proteins (Burkhart et al. 2012). For comparative

proteomic studies, different groups should contain age- and

sex-matched donors. Indeed, a DIGE study reported a quan-

titative variation of 18 % in platelet proteomes of a group of

56–100 years old volunteers, probably due to age differences

(Winkler et al. 2008). Also another study detected important

differences in the platelet proteome of children and adults

using DIGE coupled to LC-MS/MS (Cini et al. 2015). More-

over, higher levels of signaling cascade proteins have been

found by 2DE and MS in male compared to female donors

(Eidelman et al. 2010). Significant gender differences in

platelet proteins have also been detected in a recent study

using QconCAT-based MRM, not only in fresh blood from

donors but also in apheresis platelet concentrates following

varying storage times (Dzieciatkowska et al. 2015b).

Finally, inter- and intra-subject variation among the human

platelet proteome was measured in four healthy donors and

three different blood samples from one donor and revealed

that the proteome showed about 15 % of quantitative varia-

tion among donors (Burkhart et al. 2012). These studies
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highlight the usefulness of including biological replicates in

the experimental setup to counterbalance for the intrinsic

variability of samples. In addition, also some other factors

might be considered when choosing platelet donors, such as

medication use (such as aspirin), lifestyle, and dietary habits.

Furthermore, cigarette smoking was also found to differen-

tially regulate the levels of several platelet proteins (Della

Corte et al. 2012).

Obviously, protocols for sample preparation are also a

non-negligible source of variability. For example, the ana-

lytical variation of a single sample of platelet proteins within

and between four laboratories each using its own 2DE pro-

tocol was measured, and the coefficient of variation for each

of the matched spots after automatic and subsequent manual

matching ranged between 5 and 60 % (de Roos et al. 2008).

A 2DE study also revealed changes in the platelet proteome

in terms of composition rather than yield depending on the

precipitation method used to purify proteins, namely, etha-

nol versus trichloroacetic acid (Zellner et al. 2005). The type

of anticoagulant (acid citrate dextrose, heparin, EDTA, etc.)

used for blood collection is of fundamental importance, as

these substances can induce changes by interacting with

specific platelet proteins (Capila and Linhardt 2002). Partic-

ular attention must be given to obtaining highly purified

platelet fractions, due to possible contamination mainly

from plasma and other blood cells. The origin of plasma

proteins found in platelet proteomes, however, is still a

matter of debate as it is not clear if they derive from the

sample preparation method or are actually located within

platelets given their surface-connected open canalicular sys-

tem and its continuous exchange with plasma components. A

shotgun proteome analysis of the cytoplasmic, microparti-

cle, and secreted fractions of TRAP-activated platelets

supports the platelet origin of some plasma proteins

identified in platelet proteomes, thus excluding methodolog-

ical artifacts (Veitinger et al. 2012). Concerning contamina-

tion with other blood cells, a protocol for isolating highly

pure platelets preparations is recommended, leading to plate-

let preparations with less than 1 leukocyte per 106 platelets

and less than 1 erythrocyte per 104 platelets, beyond<1.5 %

by volume of plasma per platelet (Burkhart et al. 2012;

Gambaryan et al. 2010). In this context, particularly useful

are freely available protein databases of purified blood cells

(including T cells, monocytes, neutrophils, erythrocytes, and

platelets) obtained by both 2DE and shotgun proteomics,

which may be used as references (Haudek et al. 2009).

Proteomics of Resting Platelets

Since the first attempts to characterize the human platelet

proteome in the late 1970s by 2DE (Clemetson et al. 1979), a

huge number of such proteome studies have followed that

have identified a growing number of proteins. A combina-

tion of 2DE, immunoblotting, and N-terminal sequencing

identified about 25 platelet proteins (Gravel et al. 1995).

The cytosolic fraction of platelets was analyzed in a succes-

sive study using 2DE combined with MS, leading to the

identification of more than 200 proteins (Marcus et al.

2000). Two 2DE studies in combination with improved

first dimension separation identified more than 500 and

300 different proteins, respectively (O’Neill et al. 2002;

Garcia et al. 2004a, b). COFRADIC gave a further impulse

to the development of a detailed platelet proteome map of

about 650 platelet proteins, including several proteins not

previously detected, and hydrophobic membrane proteins

(Gevaert et al. 2003). Another study based on 2DE and

shotgun proteomics contributed to the compilation of the

platelet proteome in basal conditions by identifying about

100 unique proteins (Finamore et al. 2010). Shotgun proteo-

mics, based on peptide separation by OFFGEL fractionation

and RP chromatography coupled to LC-MS/MS detection,

was also applied to platelet proteomics and led to the identi-

fication of more than 1300 proteins (Krishnan et al. 2011).

Finally, the most comprehensive proteome database of

human platelets consists of more than 4000 unique

(phospho)proteins and has been obtained by iTRAQ and

TiO2 enrichment for the phosphorylated fraction (Burkhart

et al. 2012).

Proteomics of Activated Platelets

Upon activation by endothelial cell damage or inflammatory

events, platelets release a high number of proteins into the

circulation, the so-called platelet secretome or releasate,

which is involved in the regulation of primary hemostasis,

but also in coagulation, inflammation, angiogenesis, wound

healing, and some other processes (Golebiewska and Poole

2015). Numerous proteomic studies have attempted to char-

acterize the platelet secretome using different methods.

Moreover, different agonists have been used to activate

platelets and induce the protein releasate, such as ADP,

thrombin, TRAP, collagen, and arachidonic acid. These

agonists have been used alone or in combination, influencing

the composition of platelet secretome (Rogowska-

Wrzesinska et al. 2013). A concentration step on reverse-

phase chromatographic beads of diluted peptide mixtures

following in-gel digestion of 2DE-separated proteins and

MALDI-TOF-MS analysis was applied to the proteome of

platelets activated by thrombin with the identification of

several proteins that translocate to the cytoskeleton fraction

(Gevaert et al. 2000). In another study, a combination of

2DE and MudPIT resulted in a comprehensive characteriza-

tion of the secretome of thrombin-activated platelets, leading

to more than 300 identified proteins, many of which were
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described for the first time in platelets, such as secretogranin

III, cyclophilin A, and calumenin (Coppinger et al. 2004).

Another MudPIT-based analysis led to the identification of

82 proteins differentially expressed in the platelet secretome

upon stimulation with thrombin (McRedmond et al. 2004).

In activated platelets, these proteins include chemokines,

signaling molecules, and histones, as well as coagulation

factors and receptors involved in thrombosis. Another

study aimed at characterizing the proteome of thrombin-

stimulated platelets using DIGE coupled to MALDI-TOF-

MS (Della Corte et al. 2008). By comparing the secretome of

unstimulated and stimulated platelets, several differentially

secreted proteins were identified, including laminin A, a

nuclear protein described for the first time as released by

platelets. A recent study using DIGE and LC-MS/MS

focused on the difference in the platelet secretome following

stimulation with thrombin or collagen (Vélez et al. 2015).

Thirty-eight proteins differentially present between these

conditions were identified, and this relatively high number

of protein differences confirms the influence of the type of

agonist used for platelet stimulation on the composition of

the secretome. The analysis of the platelet proteome in

resting or TRAP-activated conditions by 2DE led to the

identification of 31 regulated proteins (Garcia et al. 2004a,

b). Among these, eight were not known to be present in

platelets, including the adapter downstream of tyrosine

kinase 2 (DOK-2). The number of proteins identified in the

secretome of TRAP-stimulated platelets dramatically

increased when using a GeLC-MS/MS approach, based on

1D SDS-PAGE and LTQ-FT MS with the identification of

716 proteins (Piersma et al. 2009). About 40 % of these

proteins were identified for the first time in platelet

releasates.

Platelets were also stimulated with less common agonists

such as GPIV-activating collagen receptor peptide (CRP)

(Wright et al. 2011). In this study, different platelet subcel-

lular compartments were isolated using ultracentrifugation

to reduce the overall complexity. The majority of differen-

tially expressed proteins after CRP stimulation were low

abundant and involved in signaling. In addition, more than

half of the 663 identified proteins were not previously known

to be present in platelets. An accurate quantitative proteomic

strategy based on stable isotope dimethylation, SCX, and

MS analysis was used to compare the platelet secretome

following PAR1 or PAR4 stimulation or in resting

conditions (van Holten et al. 2014). The differential release

of pro- and anti-angiogenic growth factors by PAR1 and

PAR4 might be important for the regulation of angiogenesis,

though no large differences in protein abundance could be

detected that confirmed such a hypothesis.

Some proteomic studies also investigated the effect of

different agonists simultaneously on the platelet proteome.

2DE combined with LC-MS/MS was used to identify

144 platelet proteins with changing levels following activa-

tion with arachidonic acid, collagen, and thrombin (Majek

et al. 2010). A more recent study analyzed the platelet

secretome following thrombin and collagen treatment

using a reversed releasate approach (Wijten et al. 2013).

Contrary to classical studies on platelet secretomes, which

may also detect proteins derived from cell lysis, in this case

the protein levels in the platelets after stimulation were

accurately quantified following stable isotope labeling,

assuming that the released proteins are less abundant in the

platelet proteome. Importantly, of the about 4500 platelet

proteins quantified, only 124 were found to be secreted,

spanning a concentration range of �5 orders. These proteins

included several novel low-abundant proteins and well-

known proteins such as thrombospondin and von Willebrand

factor.

Analysis of Platelet Subproteomes

Platelet Granules
To reduce the complexity of analyzing total proteomes, the

isolation of organelles prior to analysis is often used. Organ-

elle isolation can be achieved via density gradient centrifu-

gation, immunopurification, or free-flow electrophoresis

(Zufferey et al. 2012). However, assessment of possible

contamination from other organelles is recommended prior

to analysis using organelle markers via immunoblotting,

electron microscopy, or enzymatic assays. Platelets contain

three types of secretory granules, alpha granules, dense

granules, and lysosomes, each characterized by a different

number per platelet, content, morphology, and response to

stimuli (Rendu and Brohard-Bohn 2001). The proteome of

alpha granules isolated by sucrose gradient ultracentrifuga-

tion was extensively characterized by GeLC-MS/MS, lead-

ing to the identification of 219 proteins (Maynard et al.

2007). Not surprisingly, the majority of these were already

described in platelet secretomes, while 44 proteins were

novel. The proteome of dense granules was analyzed using

two proteomic methods: 2DE coupled to MALDI-TOF-MS

and LC-MS/MS analysis (Hernandez-Ruiz et al. 2007).

Overall, 40 proteins were identified, and most of them,

such as actin-associated proteins, glycolytic enzymes, and

regulatory proteins, were not previously known to reside in

these organelles. More recently, a proteomic analysis carried

out by subcellular fractionation on a sucrose gradient and

MS analysis led to the most comprehensive characterization

of the platelet granule proteome, identifying over

800 proteins (Zufferey et al. 2014).

Platelet Microparticles
In the most comprehensive analysis of platelet

microparticles so far, almost 600 proteins were identified
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(Garcia et al. 2005). About 65 % of these proteins have been

described for the first time, suggesting that these organelles

have a unique protein composition. The proteome of platelet

microparticles was also analyzed in a subsequent study using

2DE and LC-MS/MS, in which the microparticles were

separated by gel filtration in four classes based on their

size (from approximately 100 nm to greater than 500 nm),

revealing major differences in protein composition (Dean

et al. 2009). In particular, mitochondrial proteins were

mostly present in the largest microparticles, whereas alpha

granule proteins were more found in the smallest micropar-

ticle fractions. The platelet microparticles proteomes were

different depending on the stimulus used to activate platelets

as found by another proteomic study using 2DE (Shai et al.

2012). Twenty-six proteins were differentially expressed

between shear- and thrombin-activated platelets, mainly

involved in signaling pathways. The proteome of

microparticles from ADP-stimulated platelets was also

extensively characterized by shotgun proteomics (Capriotti

et al. 2013). This approach led to the identification of more

than 600 proteins, 40 % of which were described in platelet

microparticles for the first time.

Platelet Plasma Membrane
Despite a major role for membrane receptors and associated

proteins for platelet function, they are relatively poorly

represented in proteomics studies. This is mainly due to the

characteristics of these proteins, such as their low abundance,

hydrophobicity, and the reduced accessibility of trypsin to

transmembrane domains, which hamper both gel- and

MS-based proteomics. Therefore, specific methods are

required to improve plasma membrane protein identification.

The first study focusing on the platelet plasma membrane

proteome used pre-fractionation over a sorbitol gradient to

remove high abundant cytoskeletal proteins and contaminants

prior to plasma membrane isolation and GeLC-MS/MS anal-

ysis (Moebius et al. 2005). In addition, 1D SDS-PAGE sepa-

ration was performed both by conventional SDS-PAGE and

benzyldimethyl-n-hexadecylammonium chloride/SDS sepa-

ration to improve protein resolution on gel. Almost

300 proteins could be identified, the majority of which were

plasma membrane proteins. In a subsequent study, three

different techniques were used for the enrichment of platelet

plasma membrane proteins before LC-MS/MS analysis,

namely, lectin affinity chromatography, biotin/NeutrAvidin

affinity chromatography, and free-flow electrophoresis (Senis

et al. 2007). A total of 136 membrane proteins were

identified, many of which previously not known as platelet

membrane proteins. An interesting comparative analysis of

the membrane proteomes from platelets in control and

thrombin-activated conditions was carried out by

NeutrAvidin affinity chromatography, prior to protein sepa-

ration by liquid-phase IEF and SDS-PAGE and analysis by

FT-ICR MS to identify 88 differentially expressed proteins

(Tucker et al. 2009). Another study identified 182 membrane

proteins using a different proteomic approach (Qureshi et al.

2009). Membrane proteins were first precipitated via ultra-

centrifugation, resuspended in a glucopyranoside/guanidium

buffer and subsequently analyzed by LC-MS/MS. The most

extensive proteomic study on platelet plasma membrane

proteins led to the identification of 1282 proteins, which

were also relatively quantified via an emPAI-based method

(Lewandrowski et al. 2009). The power of this study resides

in the use of three different proteomic approaches, GeLC-

MS/MS, MudPIT, and N-terminal, methionine, or cysteine

COFRADIC, all in combination with aqueous two-phase

partitioning.

Proteomics to Analyze Platelet Posttranslational
Modifications

Platelet Phosphoproteome
Phosphoproteomics is particularly useful for studying cellu-

lar signaling events. 2DE and radioactive labeling were used

to identify phosphoproteins upon thrombin activation

(Immler et al. 1998). Several protein spots showing a signif-

icant increase or decrease in phosphorylation could be

detected, in particular different myosin isoforms. Another

study was also conducted on thrombin-stimulated platelets,

focusing on tyrosine phosphorylation, which plays a central

role in platelet activation (Maguire et al. 2002). Proteins

containing phosphorylated tyrosine were immunopre-

cipitated using a monoclonal antibody, separated by 2DE,

and the resulting protein spots differentially found between

platelets in control and activated conditions were identified

by immunoblotting and MALDI-TOF-MS. Further develop-

ment of modern and more resolving techniques for phospho-

protein/peptide enrichment and MS analysis significantly

contributed to shed light on signal-dependent activation

responses (Zahedi et al. 2006). For example, two different

approaches, treatment with 32P followed by 2DE using dif-

ferent pI ranges and autoradiography or immunoprecipita-

tion coupled to GeLC-MS/MS analysis, led to the

identification of 55 phosphoproteins and some in vivo phos-

phorylation sites (Marcus et al. 2003). In another work,

using IMAC-based phosphopeptide enrichment and SCX

chromatography coupled to LC-MS/MS, 564 phosphoryla-

tion sites belonging to almost 280 proteins were identified in

resting platelets (Zahedi et al. 2008). An extensive analysis

of the proteome and phosphoproteome of platelets in resting

conditions, with particular attention to the integrin signaling

pathway, was undertaken by IMAC and GeLC-MS/MS

(Qureshi et al. 2009). This led to the identification of more

than 1500 proteins, including 262 phosphoproteins. Another

strategy for phosphoprotein identification is based on the
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enrichment of phosphopeptides via titanium dioxide chro-

matography and LC-MS/MS after a prior enrichment of

plasma membrane proteins in an aqueous two phase

(Premsler et al. 2011). In yet another study, protein pulldown

using SH2 domains and LC-MS/MS analysis were used to

investigate the phosphotyrosine state of platelets upon ADP

activation (Schweigel et al. 2013). To study the phosphory-

lation events mediating platelet activation by collagen, a

comparative phosphoproteomic study was carried on

phosphotyrosine proteins in resting and CRP-activated

platelets (Bleijerveld et al. 2013). This approach was based

on immunoprecipitation of phosphotyrosine peptides and

stable isotope labeling MS and allowed to identify more

than 200 phosphotyrosine sites with an altered phosphoryla-

tion status. Also prothrombotic oxidized phospholipids in

addition to thrombin were used as agonists for platelet

stimulation (Zimman et al. 2014). Here, proteins from

stimulated platelets were digested by trypsin, and

phosphotyrosine peptides were enriched by immunoprecipi-

tation followed by IMAC. The nonprecipitated proteins were

fractionated by SCX, and the resulting fractions further

enriched for phosphopeptides using TiO2 beads. Finally,

phosphopeptides were identified and quantified by LC-MS/

MS. Interestingly, one study focused on the characterization

of the signaling pathways involved in platelet inhibition

rather than platelet activation (Beck et al. 2014). Human

platelets were treated with iloprost, a stable analog of pros-

tacyclin, which is the most important physiological inhibitor

of platelet activation acting on the cAMP/PKA signaling

cascade. Using iTRAQ and TiO2 phosphopeptide enrich-

ment, about 300 phosphopeptides modulated by iloprost

were detected.

Platelet Glycoproteome
Studies have shown that platelets possess efficient glycosyl-

transferase machinery, with more than 200 glycosyl-

transferases and several substrates (Wandall et al. 2012).

The first extensive proteomic study on platelet glycoproteome

was performed using concanavalin A affinity chromatogra-

phy and hydrazide chemistry for enriching glycopeptides,

after which they were deglycosylated by N-glycosidase F

and analyzed by LC-MS/MS (Lewandrowski et al. 2006,

2009). Concanavalin A, one of the most common lectins in

glycoproteomic studies, selectively binds N-glycoproteins.

This approach identified 41 glycoproteins and 70 different

glycosylation sites. In a subsequent study, the same group

focused on the glycosylation sites of platelet membrane

proteins (Lewandrowski et al. 2007). The membrane fraction

was enriched via aqueous two-phase partitioning in a poly-

ethylene glycol/dextran polymer system, the obtained

proteins were digested by trypsin, and the glycopeptides

were purified by SCX chromatography prior to

N-glycosidase F deglycosylation and MS analysis. By

applying this method, almost 150 glycosylation sites on

79 different proteins could be identified, 75 % of which

were annotated as plasma membrane proteins. The same

group also introduced another strategy for glycopeptide

enrichment based on electrostatic repulsion hydrophilic inter-

action chromatography (Lewandrowski et al. 2008). Impor-

tantly, this method might allow resolving different protein

isoforms, because of the different interactions of

glycopeptides with the stationary phase. By identifying

125 glycosylation sites on 66 different proteins, this work

largely contributed to the compilation of an extensive glyco-

sylation site database for human platelet proteins.

Platelet Palmitoylome
Protein palmitoylation, the covalent attachment of long

chain fatty acids to cysteines, has an important role in plate-

let biology, being involved in the regulation of platelet

activation and thrombi formation (Sim et al. 2007). A first

attempt to characterize the platelet palmitoylome was

performed by enriching the platelet membrane protein frac-

tion by acyl-biotinyl exchange chemistry and LC-MS/MS

analysis and led to the identification of 215 palmitoylated

proteins (Dowal et al. 2011). These proteins included

already known palmitoylated proteins, but also 103 new

putative palmitoylated ones.

Platelet Proteomics to Gain Insights in Human
Diseases

Platelet Proteomics to Study Platelet-Related
Bleeding Disorders

Rare inherited platelet-related bleeding disorders are a

highly heterogeneous group of disorders that can be caused

by abnormal platelet numbers, morphology, and function

(Freson et al. 2014). Many genes have been identified as a

cause for these disorders, though several patients with an

expected platelet-related bleeding disorder still do not

receive a genetic diagnosis (Westbury et al. 2015). However,

in recent years, next-generation sequencing has offered the

potential to improve the diagnosis for such patients. How-

ever, in parallel to such genetic studies, proteomics has been

used with success to gain insights in such platelet-related

bleeding disorders. In 2007, changes in α-granule proteins

were quantified for a patient with gray platelet syndrome

(GPS) compared to a healthy control (Maynard et al. 2007).

GPS is an inherited bleeding disorder caused by a reduced

number of α-granules and macrothrombocytopenia. A linear

sucrose gradient method was used to isolate α-granules, and
proteins were separated by 1D SDS-PAGE and identified by

LTQ-FT MS. About 586 proteins were identified, and it was

found that soluble, biosynthetic cargo proteins were severely

Platelet Proteomics and its Applications to Study Platelet-Related Disorders 163



reduced or undetected in GPS platelets, whereas the packag-

ing of soluble, endocytic cargo proteins was only moderately

affected, supporting the defect in α-granule incorporation

of proteins synthesized in megakaryocytes. Another bleed-

ing disorder that affects α-granules is Quebec platelet dis-

order (QPD), characterized by high levels of urinary

plasminogen activator (uPA) within platelets. The platelet

proteome of four members of the same QPD family was

compared to that of two healthy donors using 1D

SDS-PAGE gels and LC-MS/MS analysis (Maurer-Spurej

et al. 2008). Three α-granule proteins, fibrinogen,

multimerin, and thrombospondin-1, were downregulated

in patients’ platelets, and it was speculated that this was

due to degradation by platelet-derived uPA. Combined

DIGE and MALDI-ToF/ToF were used to compare the

platelet releasate of eight patients with storage pool disease

and bleeding symptoms to that of nine unrelated healthy

controls (Di Michele et al. 2011). This more advanced

technology identified 60 and 14 protein spots that varied

in the technical and biological replicate studies, and most

proteins are cytoskeleton-related. It was hypothesized that

the dense granule defect in these storage pool disease cases

might be due to an underlying cytoskeleton defect. A simi-

lar proteomic design was used to analyze platelet proteins

from patients with dominant macrothrombocytopenia

(Karmakar et al. 2015). Patients have altered levels of

actin-binding proteins, peroxiredoxin 2, protein disulfide

isomerase, and transthyretin that might be associated with

the structural changes of their platelets.

Platelet Proteomics to Study Cardiovascular
Disease

Arterial thrombosis is a pivotal event in the development of

cardiovascular disease, and platelets play a fundamental role

in this process. Platelet proteomics has been applied to study

this complex disease, and we have selected some examples.

The first study was performed in 2008 using 2DE and MS

and focused on patients with arterial thrombosis, primarily

with ischemic stroke (Arias-Salgado et al. 2008). Most of the

differences detected between groups were related to cyto-

skeletal changes, which supported the idea of preactivated

platelets. 2DE and MS analysis of platelets from patients

with non-ST segment elevation acute coronary syndrome

(ACS) revealed 22 differentially expressed proteins com-

pared to matched cases with chronic ischemic cardiopathy

(Parguiña et al. 2010). Most of these proteins are

interconnected as part of the network related to cell assem-

bly and morphology and are predicted to participate in

platelet activation via αIIbβ3 or GPVI receptors. Platelet

proteins isolated from ACS patients admitted within 24 h

of chest pain were compared to these from patients with

stable coronary ischemic disease (Lopez-Farre et al. 2011).

Different proteins involved in cytoskeleton, glycolysis path-

way, and cellular-related antioxidant system were altered in

the acute phase of the coronary event as identified via 2DE

and MS. The platelet proteome of ST-elevation myocardial

infarction (STEMI) patients was compared to that of stable

chronic ischemic cardiopathy (CAD) patients again using

2DE and MS (Parguina et al. 2011). This study found 42 dif-

ferentially expressed proteins with altered major signaling

pathways that include proteins related to integrin, integrin-

linked kinase, and GPVI signaling. The analysis of a coro-

nary thrombus itself by proteomics using different

techniques as 2DE with MS, 1-DE with LS-MALDI

MS/MS, and 1-DE with LTQ-Orbitrap identified a total of

708 proteins (Alonso-Orgaz et al. 2014). Some of these

proteins were co-expressed with the platelet marker CD41

and pointed out a potential activation of a focal adhesion

pathway in platelets during thrombus formation. Proteomics

of microvesicles isolated from plasma of STEMI versus

CAD patients was performed by DIGE and MS (Vélez

et al. 2014). About 102 proteins were identified that corre-

spond to 25 unique differentially expressed proteins that

have been linked to inflammation, infarction, and

thrombogenesis. The most recent proteomic study used

isolated thrombi from STEMI patients during percutaneous

coronary intervention at different time points after onset of

pain (3 or 6 h) (Ramaiola et al. 2015). Thrombi at 3 h were

platelet-rich, while at 6 h leukocyte infiltration was noticed,

and proteomic differences between these time points were

mainly related to changes in the cell cytoskeletal-associated

proteome.

Antiplatelet therapies are widely used to prevent

myocardial infarction, stroke, and other cardiovascular

events. Platelet proteomics proved also to be useful to

study the biological effects of antiplatelet therapy and to

study mechanisms of patients’ resistance to such drugs.

The platelet proteome was analyzed using 2DE for patients

with stable angina undergoing percutaneous coronary inter-

vention before angiography, 12 h after clopidogrel, and 24 h

after the intervention (Volpi et al. 2012). Protein changes

were detected associated with platelet activation and

clopidogrel response, and most proteins belong to the cyto-

skeleton rearrangement, energetic metabolism, and oxida-

tive stress functional classes. Platelet protein expression

profiles from aspirin (ASA)-resistant and ASA-sensitive

CAD patients were compared using 2DE and MS (Mateos-

Caceres et al. 2010). Differences were found for proteins

involved in energetic metabolism, cytoskeleton, oxidative

stress, and cell survival, which might be due to their different

ability to respond to ASA. Pre- and post-aspirin treatment

platelet lysate samples (300 mg daily for 28 days) from two

ASA-resistant and four ASA-sensitive healthy subjects were

analyzed by GeLC-MS/MS (Floyd et al. 2014). Though the
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groups presented with no detectable changes in the platelet

proteome at baseline, 406 differential proteins were present

after aspirin treatment with a marked increase in GPIIIa for

ASA resistance. Recently, a manually curated biochemical

reaction network of platelet metabolism was constructed

using 33 proteomic datasets and 354 literature references

(Thomas et al. 2014). The effect of ASA resistance was

evaluated using constraint-based modeling, providing evi-

dence for a redirection of glycolytic, fatty acid, and nucleo-

tide metabolism toward eicosanoid synthesis and reactive

oxygen species stress as validated by novel proteomic data.

The availability of such a network will stimulate data-driven

system analysis of platelet metabolism in order to gain

insights into pathologies.

Platelet Proteomics to Study Other Disorders

Platelet proteomics has also been used to gain insights in

diseases that are linked to platelets, such as for understand-

ing thrombosis risks for phosphomannomutase 2 (PMM2)

deficiency, sepsis, deep vein thrombosis (DVT), diabetes

and uremia, inflammation in cystic fibrosis, and bleeding in

myelodysplastic syndrome (MDS). Some of these proteomic

studies are discussed as examples. A subproteomic analysis

was performed for patients with the congenital disorder of

glycosylation PMM2 that have an increased risk for throm-

bosis (de la Morena-Barrio et al. 2014). DIGE analysis of the

N-glycoproteins however showed no quantitative or qualita-

tive differences between patients and controls. Platelet 2DE

profiles of septic patients versus healthy controls resulted in

five differentially expressed proteins that include GPIX and

GPIIb (Liu et al. 2014). Proteins isolated form plasma-

derived microparticles were tagged with iTRAQ reagents

and analyzed by 2DE with LS-MALDI MS/MS for nine

patients with DVT and six healthy controls (Ramacciotti

et al. 2010). The differentially expressed or depleted proteins

are expected to influence thrombosis via inflammation, cell

shedding, inhibition of fibrinolysis, and hemostatic plug

formation. Platelets from 13 diabetic patients were analyzed

before and 12 weeks after pioglitazone therapy using DIGE

and LS-MS/MS (Randriamboavonjy et al. 2012). More than

half of the differentially expressed protein spots identified

were known calpain substrates and could be classified as

cytoskeletal proteins and signaling molecules. This study

suggests that diabetes-induced platelet dysfunction might

be due to calpain activation. Platelet proteomics was

performed for uremia patients with functional versus dys-

functional platelets as tested by PFA100 (Marques et al.

2010). 2DE and MS analysis showed changes in protein

levels that might have occurred at the megakaryocyte

level. Shotgun nUPLC-MSE and 2DE were used to compare

platelet proteins between cystic fibrosis (CF) patients and

healthy controls (Pieroni et al. 2011). CF is caused by

mutations in the cystic fibrosis transmembrane conductance

regulator that is expressed on platelets and related to changes

in inflammation for which the proteomic study provided

evidence of changes in integrin signaling. The platelet pro-

teome of myelodysplastic syndrome (MDS) patients was

analyzed with DIGE and showed lower levels of proteins

that are important for integrin αIIbβ3 signaling (Fr€obel et al.

2013). Impaired platelet aggregation might therefore explain

the bleeding complications observed for MDS patients even

at sufficient platelet counts.

Less obvious are the platelet proteomic studies that have

been designed to unravel disease mechanisms for

neuropathologies. However, it is known that platelets do

share common characteristics with neurons (Goubau et al.

2013). Again, examples of proteomic studies conducted for

Alzheimer’s disease (AD), but also for monogenetic neuro-

logical diseases, are discussed. The platelet proteome was

analyzed by DIGE for 34 AD cases, 13 cases with vascular

dementia, 15 Parkinson cases, and 49 healthy controls

(Zellner et al. 2012). The study suggested that Mao-B plate-

let protein levels could be a biomarker for age-related

dementia in AD. In addition, the platelet membrane prote-

ome was determined for five AD cases versus controls using

1-DE and LC-MS/MS (Donovan et al. 2013). A total of

144 proteins were altered that represent secretory granule

proteins, and it was suggested that platelets may serve as a

source of blood-based biomarkers in neuropathologies.

DIGE with MS identification was used to analyze platelets

and fibroblasts from patients with alternating lemiplegia of

childhood (AHC) due to ATP1A3 mutations (Di Michele

et al. 2013). A total of 93 proteins have a different expres-

sion of which seven were detected in both cell types, and this

included lysosomal protein cathepsin. Functional validation

studies showed that AHC might be associated with a defec-

tive regulation of apoptosis via the lysosomal cathepsin

pathway.

Conclusion

The application of the proteomics and subproteomic

approaches described above has provided an invaluable con-

tribution to the elucidation of platelet physiological

mechanisms. We have included a figure with the most

important items discussed in this chapter (Fig. 1). Moreover,

they also provided remarkable insights into the molecular

basis underlying platelet-related diseases, though several

challenges still remain to be addressed. However, we are

confident that the integration of the most recent advances in

MS-based techniques in platelet proteomic studies will allow

further delineation of the mechanisms implicated in diseases

and identify new biomarkers or drug targets.
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Take-Home Messages

• Proteomics represents a powerful tool to study

platelet proteins and the molecular mechanisms

regulating unknown platelet functions and

platelet-related diseases.

• Gel-based and gel-free proteomics technologies,

both with their own advantages and limits, have

been efficiently used to analyze platelets in physio-

logical and pathological conditions.

• The experimental design of platelet proteomic stud-

ies should take into account the appropriate

controls, technical/biological replicates, and sam-

ple preparation protocols.

• Proteomics can be applied to the study of (1) whole

platelet proteome (in resting or activated condi-

tion); (2) platelet subproteomes (granules,

microparticles, plasma membrane); and platelet

PTMs (phosphoproteome, glycoproteome,

palmitoylome).

• Platelet proteomics has been used to investigate

platelet-related bleeding disorders and cardiovascu-

lar diseases, but also diseases less obviously linked

to platelets.
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López-Farré AJ (2010) Different protein expression in normal

and dysfunctional platelets from uremic patients. J Nephrol

23:90–101

Martens L, Van Damme P, Van Damme J, Staes A, Timmerman E,

Ghesquiere B, Thomas GR, Vandekerckhove J, Gevaert K (2005)

The human platelet proteome mapped by peptide-centric proteo-

mics: a functional protein profile. Proteomics 5:3193–3204

Mateos-Caceres PJ, Macaya C, Azcona L, Modrego J, Mahillo E,

Bernardo E, Fernandez-Ortiz A, Lopez-Farre AJ (2010) Different

expression of proteins in platelets from aspirin-resistant and aspirin-

sensitive patients. Thromb Haemost 103:160–170

Maurer-Spurej E, Kahr WH, Carter CJ, Pittendreigh C, Cameron M,

Cyr TD (2008) The value of proteomics for the diagnosis of a

platelet-related bleeding disorder. Platelets 19:342–351

Maynard DM, Heijnen HF, Horne MK, White JG, Gahl WA (2007)

Proteomic analysis of platelet alpha-granules using mass spectrom-

etry. J Thromb Haemost 5:1945–1955

McRedmond JP, Park SD, Reilly DF, Coppinger JA, Maguire PB,

Shields DC, Fitzgerald DJ (2004) Integration of proteomics and

genomics in platelets: a profile of platelet proteins and platelet-

specific genes. Mol Cell Proteomics 3:133–144

Moebius J, Zahedi RP, Lewandrowski U, Berger C, Walter U,

Sickmann A (2005) The human platelet membrane proteome

168 M. Di Michele et al.



reveals several new potential membrane proteins. Mol Cell Proteo-

mics 4:1754–1761

O’Neill EE, Brock CJ, von Kriegsheim AF, Pearce AC, Dwek RA,

Watson SP, Hebestreit HF (2002) Towards complete analysis of the

platelet proteome. Proteomics 2:288–305

Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H,

Pandey A, Mann M (2002) Stable isotope labeling by amino acids

in cell culture, SILAC, as a simple and accurate approach to expres-

sion proteomics. Mol Cell Proteomics 1:376–386

Parguiña AF, Grigorian-Shamajian L, Agra RM, Teijeira-Fernández E,
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