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Abstract. Risk-based test strategies enable the tester to harmonize the
number of specified test cases with imposed time and cost constraints.
However, the risk assessment itself often requires a considerable effort of
cost and time, since it is rarely automated. Especially for complex tasks
such as testing the interoperability of different components it is expensive
to manually assess the criticality of possible faults. We present a method
that operationalizes the risk assessment for interoperability testing. This
method uses behavior models of the system under test and reinforcement
learning techniques to break down the criticality of given failure situa-
tions to the relevance of single system actions for being tested. Based on
this risk assessment, a desired number of test cases is generated which
covers as much relevance as possible. Risk models and test cases have
been generated for a mobile payment system within an industrial case
study.

1 Introduction

Interoperability testing of a distributed system checks whether the components
of the system are able to communicate with each other and thus render requested
services correctly through interaction [5]. The typically high number of possi-
ble interaction scenarios (e.g., combination of messages) makes interoperability
testing a complex task. Since it seems impossible to cover all scenarios, their
relevance for being tested has to be prioritized somehow. A criticality-based test
strategy should focus the test effort on revealing faults which are expected to
lead to the most critical failures [2]. However, the existence of implementation
faults and the ensuing reachability of failures in real operation is unknown. Still,
extending behavior models of the communicating components of the System
under Test (SuT ) with possible implementation faults, we can at least estimate
the impact of a fault on the reachability of failures. The challenge is to find
causal connections between the implementation faults and resulting failures.

We tackle this challenge by combining model-based [16] and risk-based testing
methods [1,2] with reinforcement learning [15]. Our approach builds on given
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behavior models of the interacting components of the SuT, common implementa-
tion faults, and a set of the most critical failure situations, each of them described
by the combination of component states and a score of its deemed effect. A fail-
ure situation is reached if all of the combined component states are active at
the same point in time. None of the failures is actually reachable in the given
behavior models, as the models do not describe faults. If we introduce common
implementation faults into the behavior models, however, we are able to assess
the criticality of faults, i.e., their “ability” to cause the effect of failures.

Let us imagine that a malicious developer of a component actually tries to
induce the whole system to reach the maximum effect of failures in real operation
by implementing the “right” component faults. These faults would be the ones
to be tested for with highest priority. What he could do is to use a learning
technique, such as reinforcement learning [15], on a simulated environment: He
could implement his component as an intelligent agent which makes its own
local decisions to achieve the global goal of reaching the most critical failures.
This agent then would map received rewards to the preceding actions (either
specified in the behavior model or faults) so as to assess the expected return for
every possible action. The ultimate reward to be reinforced would be reaching a
critical failure situation. Then the agent’s learned expected return for executing
a fault can be understood as the fault’s criticality.

For finding those test cases which cover the most critical faults with high-
est priority, it seems reasonable to apply the same technique as our imaginary
malicious developer. This procedure can be seen as defending the system against
the faults he could inject. After the learning phase, each agent contains a func-
tion that maps its actions to their expected return, i.e., their criticality. From
a mutation testing perspective [12], the actions representing anticipated faults
can be seen as mutants of the specified actions in the behavior models. The
functions of the agents weight these mutants by their criticality. Thus, test cases
can now be prioritized by the criticality of the mutants they are assumed to kill.
We propose a method for reducing the criticality of the mutants to the relevance
of specified actions in the given behavior models for being tested. Building on
this, we generate a desired number of logical test cases covering the most rele-
vant actions. We have implemented our approach of deriving risk-optimized test
cases using reinforcement learning and we have applied the method to a case
study provided by an industrial partner. The case study showed, in particular,
that the assessment of the criticality of actions by experts is matched by the
values learned by reinforcement learning.

The remainder of this paper is structured as follows: In Sect. 2, we outline
the used behavior models. Based on these models, we show in Sect. 3 how the
criticality of faults can be estimated using reinforcement learning. In Sect. 4, we
present our method for deriving a desired number of test cases that cover as
much criticality as possible. Section 5 shows how the overall approach scales in
an industrial case study in which we applied the concepts to a mobile payment
system. After placing our approach in context with related work in Sect. 6, we
give an outlook to future investigations in Sect. 7.
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2 Test Model Specifications

We build our approach on three inputs: (1) models for the desired behavior of all
local SuT components together with a precise description of their communica-
tion paradigm; (2) a fault model for implementation and communication defects
spanning the fault variability space; and (3) an (expert’s) estimate of critical
global system situations.

2.1 Behavior SuT Models and Their Communication

Though our testing approach is not limited to a particular formalism of behavior
models, for conciseness, we use in the following a rather simple model of non-
deterministic finite state machines communicating over a broadcasting message
bus. The execution of an assembly of such components happens in rounds in
which each component chooses some currently possible action: An action is pos-
sible if all of its message dependencies have been satisfied; a component stutters
if, and only if, no such action is available.

For a concrete example, consider the three components M, N and O in Figs. 1a
to c. The transition M1

a!−→ M2 of M defines an action that broadcasts the
message a; N1

a?/d!−−−→ N2 of N defines an action that broadcasts the message d

when message a is received; and O1
d?−→ O2 of O defines an action that does not

broadcast any message when d is received. In addition to possible broadcasts,
every action defines the executing component’s change in state. Figure 1d shows
the composition of M, N, and O according to broadcasting communication: A
local action that broadcasts a message by M leads to a local action receiving

the message by N and vice versa. Furthermore, the actions N1
a?/d!−−−→ N2 and

M2
b?/e!−−−→ M1 trigger the actions O1

d?−→ O2 and O2
e?−→ O1 in O, respectively. In

particular, action M1
a!−→ M2 causes the global effect that the entire system will

change its state to M2N2O2. By contrast, if in the next round N chooses action
N2

c!−→ N3, M has to choose M2
c?−→ M3 and O has to stutter.

The composition of those component behavior models forms the system behav-
ior model. This model shows the resulting composed actions as well as the reach-
able composed states forming again a (component) behavior model.

Fig. 1. Model of the components M, N and O and their broadcasting composition.
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2.2 Fault Models

The given behavior models for the SuT describe exclusively desired system
behavior. The actual system behavior could, however, differ in an unknown way
because of, e.g., implementation or communication faults. Since considering all
imaginable faults would be quite demanding, we content ourselves with “com-
mon faults”, i.e., classes of faults that are known to be frequently made. We
assume the common faults to be specified in fault models defining their repre-
sentation in the behavior models of the SuT. Based on them, we generate our
proper component test models extending the given behavior models with faulty
behavior using mutation.

Fig. 2. Component test model based on the fault model of message losses and resulting
system test model composing M′, N and O. Depicted in gray in (b), the system test
model has been complemented by a negative situation M′2−O1 with negativity score
ν = 2.0.

In communicating components such as M, N and O, an exemplary common
fault is the loss of messages. The associated fault model could define its repre-
sentation as mutations of broadcasting transitions leaving out some messages to
send. Figure 2a shows the generated test model M′ of component M for this fault
model; M′1, M′2, and M′3 are just different names for M1, M2, and M3, only
transitions have been added. The composition of the component test model M′,
i.e., the mutated component M, and the original component behavior models N
and O, shown in Fig. 2b, renders several new composed states reachable, in par-
ticular M′2N1O1, M′2N1O2, and M′N1O2. A composition involving at least one
component test model is called system test model, as opposed to the fault-free
system behavior model.

2.3 Negative Situations

By their non-deterministic nature, our test models comprise different behavior
variations of the SuT, and we do not know which of them is actually imple-
mented. Our aim is to identify those variations that would be associated with
the most critical failures. However, the assessment of a failure’s criticality is
rather subjective and therefore hard to automate. Thus, we assume critical fail-
ures as well as a score for their criticality to be given as inputs. We represent
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such failures by negative situations described by a tuple of component states
that associates each component with at most one state. Negative situations are
annotated with a negativity score ν ∈ R>0 quantifying their criticality.

In the example of components M, N, and O, a negative situation could be
given by M2−O1, i.e., all those system states where component M is in state
M2 and component O is in state O1; we choose ν = 2.0. For the system test
model, state M2 now corresponds to M′2 (see Fig. 2a) and thus all composed
states of the form M′2−O1 are deemed critical. In our example (see Fig. 2b),
just M′2N1O1 is reachable. Obviously, this negative situation is not reachable in
the system behavior model (cf. Fig. 1). This observation matches with the fact
that failures should only be reachable through faulty behavior.

3 From Failure Negativity to Fault Criticality

Let now a system test model, composed of component test models according to a
fault model, and an additional set of negative situations be given. In this system
test model, an action looks the more critical the higher the probability that
negative situations are reached through this action and the higher the negativity
scores of the reachable negative situations. Consequently, to be able to focus the
test effort on revealing the most critical faults, we first have to quantify these
expectations for every action. In other words, we have to map the critical failures
(represented by negative situations) to those faulty and specified actions of the
component test models which lead to them, and give local negativity scores
to such actions. This process shows similarities to introducing decision makers,
such as malicious developers, that exercise control over our models. They aim to
collect the maximally possible negativity score and thus are trying to find the
most critical actions.

A more formal way for modeling this task of making sequential decisions is
provided by the framework of Markov Decision Processes (MDPs) [6]. An MDP
is described by a state space S and an action space A; a map T : S × A × S →
[0, 1] giving probabilities over state transitions, such that T (s, a, s′) indicates
the probability that action a in state s leads o state s′; and a reward function
R : S × A × S → R denoting rewards for taking particular transitions.

In fact, we are able to express our setting as an MDP: S and A are directly
constructed from the composed states and actions of the system test model.
Since we do not assume that transition probabilities of the SuT are known by
the tester, we suppose T for every state s and every action a to be uniformly
distributed over the target states s′ that are forming transitions (s, a, s′) of the
system test model. R reinforces transitions (s, a, s′) with the negativity score
of s′ if s′ is a negative situation, and with 0 otherwise. MDPs are meant to be
partially controlled by a decision maker (often called agent) in the following way:
in every (discrete) time step, the agent is supposed to select an action a ∈ A that
is enabled in the current state s ∈ S. This triggers a state transition according
to T and offers a numerical reward signal according to R.
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3.1 Solving MDPs

The task typically associated with an MDP is to find a strategy, i.e., a rule
for selecting an action in any given state, that maximizes the agent’s expected
return (in terms of collected reward). In [15], Sutton and Barto summarize the
class of so-called reinforcement learning methods which are designed for solving
this task.

However, even though a malicious developer had to solve a reinforcement
learning task for reaching a critical failure situation, ours seems different. Instead
of finding a path through the system test model (or the MDP) that is supposed
to offer the maximum reward, we first of all aim to assess the criticality of every
action in order to eventually form a risk-optimized test suite. In terms of an
MDP, we are searching for the expected returns of all actions. Fortunately, most
of the reinforcement learning methods also provide us with these values. They
are based on estimating value functions, i.e., mappings of states (or state-action
tuples) to the expected return when being in the given state (or selecting the
given action in a given state) [15]. Thus, in using one of these algorithms, we are
able to estimate the actions’ criticality.

Temporal difference learning, as a subclass of reinforcement learning, offers
the special charm of working on sample experience and thus not requiring a
model. In using a temporal difference method, we thus do not have to explic-
itly build the system test model which may be prohibitively large due to the
number of components and possible faults. In order to exploit this advantage,
we have chosen a fully decentralized approach: Within a simulation of system
runs, we associate each single component of the SuT with an agent that learns
the expected return of its actions. An agent’s action corresponds to the simu-
lated execution of a transition specified in the component test model. The action
can be executed as soon as the specified inputs of the associated transition are
present. If an action is executed, the specified messages to broadcast are sent to
the other agents. In this way an agent interacts with its environment (i.e., the
entirety of agents) under the rules of the system test model. The agents are syn-
chronized by logical time steps at which each agent performs exactly one action
per step. Dependencies during a time step are resolved by a scheduler which
implements the chosen communication paradigm over a message bus. At the end
of each time step, each agent is situated in a state defined by the associated
component test model. A composed state is formed by collecting the states of
every agent and each agent is reinforced according to R.

3.2 Q-learning

More specifically, we follow the Q-learning approach [18]. Each agent owns a so-
called Q-function mapping environmental states together with actions to their
expected return. We call the pair of an environmental state and an action a
decision. After a reward Rt+1 has been received for action at executed at time
step t out of the environmental (global) state st, the expected return for the
decision (st, at) is updated as follows:
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Qt+1(st, at) = Qt(st, at) + α
(
Rt+1 + γ max

a
Qt(st+1, a) − Qt(st, at)

)
. (1)

The parameters α ∈ ]0, 1] and γ ∈ [0, 1] denote the learning rate and the dis-
count factor. Decisions which have not been mapped on an expected return yet
get a default assignment of 0. As one can see in Eq. 1, the expected returns –
that are representing our measure of criticality – are updated with respect to a
policy in which the agent chooses anytime the action with the highest criticality
(represented by the max-term in 1. This optimal policy invokes the worst-case
behavior of the component, that, as we suppose, is the most appropriate one in
case of risk-based testing.

As known for off-policy learning [15], the evaluated policy (in our case the
optimal one) is not affected by the way of generating behavior during the learn-
ing process (behavior policy). However, our simultaneous simulation of several
agents weakens this independence, since the reachability of a negative situation
may depend on decisions of multiple agents. In our running example, such a
dependence can be seen at the decision of agent B for choosing action N2

b!−→ N1
in composed state s1 = M′2N2O2. This decision could lead to different composed
states depending on the selected action of agent A. Let us assume that agent
A implements a behavior policy which selects each possible action with equal
probability (uniformly distributed policy). Then, the decision for N2

b!−→ N1 in
s1 will lead in half of the executions to s2 = M′1N1O1 and in the other half to
s3 = M′1N1O2. Thus, we expect Q(M′2N2O2,N2 b!−→ N1) in the equilibrium for
(Q) (where Qt+1(s, a) = Qt(s, a) for all s and a) to be the average of the two
different outcomes ν(s2) + γ maxa Q(s2, a) and ν(s3) + γ maxa Q(s3, a). Table 1
shows the Q-functions of agents A, B and C for γ = 0.5 in their equilibria,
assuming uniformly distributed behavior policies.

Table 1. Q-functions computed by agents for the system test model of Fig. 2b with
negative situation M′2−O1, ν = 2.0, and γ = 0.5.

Agent with action (left) and criticality (right column)

State A for M′ (see Fig. 2b) B for N (see Fig. 1b) C for O (see Fig. 1c)

M′1N1O1 M′1 −→ M′2 2.0 N1
a?/d!−−−→ N2 0.29 O1

d?−→ O2 0.5

M′1 a!−→ M′2 0.5 N1 −→ N1 2.0 O1 −→ O1 2.0

M′2N2O2 M′2
b?/e!−−−→ M′1 1.0 N2

b!−→ N1 0.57 O2
e?−→ O1 1.0

M′2 b?−→ M′1 0.25 N2
c!−→ N3 0.0 O2 −→ O2 0.06

M′2 c?−→ M′3 0.0

M′1N1O2 M′1 a!−→ M′2 0.5 N1
a?/d!−−−→ N2 0.29 O2 −→ O2 0.25

M′1 −→ M′2 0.0 N1 −→ N1 0.0
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4 Deriving Tests with High Risk-Based Impact

Up to this point, we have a set of agents, each one containing a Q-function
mapping decisions to criticality values. This, as an intermediate result, would
enable the imaginary malicious developer of Sect. 1 to implement the most criti-
cal faults in his component; and it enables us to assess observed decisions of any
of the SuT’s components in real operation. However, we still want to use this
learned information for generating test cases covering the most critical faults.
For this purpose, two things have to be considered: (1) Positive test cases, as
we exclusively consider in this paper, do only include decisions with specified
actions (specified decisions) but are able to detect implemented decisions with
mutated actions (mutated decisions). More precisely, we assume the test of a
specified decision to detect all of its mutants, i.e., decisions with the same state
but with actions that are mutants of that contained in the specified decision.
Hence, we have to distinguish between a decision’s criticality and a specified
decision’s relevance for being tested that, in fact, should even comprise the criti-
cality values of its mutants. (2) A Q-function, as we formed it, assesses decisions
with local actions (local decisions). A system test case, however, should specify
the execution of global decisions involving one local decision per component.

Thus, we assess the relevance in (1) local and (2) global relevance functions
whereby the latter depends on the first. System test cases then are generated
and assessed using the global relevance functions.

4.1 Relevance Functions

The local relevance function r maps each specified local decision to its relevance
for being tested. We define the relevance of a decision by the sum of the criticality
values of its mutants. This is reasonable, since a specified decision is deemed to
reveal all of its mutants if they are implemented. From a mutation-based testing
perspective, the relevance can be seen as the reward for killing a set of mutants.
More formally, for a specified decision d = (s, a), let M(d) be the set of mutated
decisions whose actions are mutants of a and whose composed state is s. Then
we define

r(d) = Q(d) +
∑

d′∈M(d) Q(d′) .

Continuing the above example, Table 2a shows the local relevance function for
agent A. The local relevance functions for agents B and C are the Q-functions
of these agents as shown in Table 1, as they involve no mutated decision.

The global relevance function r maps each possible global decision to its
relevance for being tested. A global decision d consists of one specified (local)
decision per agent. A global decision is possible iff the contained local decisions
can be made at the same time. Thus, the local decisions contained in a possible
global decision share the same composed state and actions which satisfy the
chosen communication paradigm. Since only the specified local decisions are
considered, but not their mutants that would result in much more possible global
decisions, the computation of the set of global decisions turns out to be feasible,
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Table 2. Relevance functions on the basis of the Q-functions in Table 1.

even for rather complex models. The execution of a global decision by a test
case implies the execution of all included specified (local) decisions. We define a
global decision d to be as relevant as the sum of its local decisions:

r(d) =
∑

d∈d r(d) .

Table 2b shows the global relevance function for our running example of
agents A, B and C where we abbreviate a global decision by its resulting com-
posed action in the system test model.

4.2 Deriving Logical Test Cases

Building on the global relevance function, we are now able to derive a risk-
optimized test suite, i.e., a suite of a desired number of logical interoperability test
cases that covers as much relevance as possible. A logical test case comprises a
path through the system behavior model starting from the initial state. However,
we still want to avoid computing the complete system behavior model. In fact,
since the criticality and relevance values were learned by sample experience, we
have no guarantee that each composed action of the system behavior model
has been reached and thus assessed by the global relevance function. Hence we
directly consider the graph of the global relevance function, linking the states of
the assessed global decisions with their defined composed actions. Decisions that
cannot be reached from the composed source state, such as d4 in our example,
are ignored. Then, a logical test case, i.e., a sequence of global decisions in the
graph of the global relevance function, covers the relevance of each comprised
decision.

In practice, the number of executable and assessable test cases is typically
limited by an upper bound σ, particularly for huge systems with many com-
ponents. Hence, we are looking for the σ test cases covering the most relevant
decisions with σ given by the tester. More formally, if Pσ is the set of all cycle-
free path sets with cardinality σ and r(P ) =

∑
d∈P r(d) for each P ∈ Pσ, we

aim to find ts = arg max{r(P ) | P ∈ Pσ}, i.e., a test suite ts with the maximum
relevance. We solve this maximization problem by (1) identifying all cycle-free



Risk-Based Interoperability Testing Using Reinforcement Learning 61

Table 3. Test case selection algorithm and test cases generated for the case study.

paths through the graph of the global relevance function, (2) iteratively adding
test cases to the test suite, and (3) updating the values of the global relevance
function after adding a test case. Table 3a implements (2) and (3) for the set
paths identified in (1). Since the relevance values of covered global decisions are
set to zero (see Table 3), the derived test suite cannot contain a path twice.
Table 3b shows the test cases of a generated test suite with an upper bound
σ = 2 for our running example.

The presented algorithm generally works for every graph with weighted edges.
In addition to relevance values resulting from the proposed learning procedure,
the tester is thus able to introduce any desired custom weights. The algorithm in
Table 3a, in particular, generates test cases out of the global relevance function
which exclusively comprises specified decisions. Thus, it does not suffer from the
major state space blow up resulting from the inclusion of mutations. Though it
repeatedly iterates through the state space, the following case study will show
that this test case generation is indeed feasible, at least for moderately sized
systems.

5 Evaluation Within a Mobile Payment Application

We implemented our risk-based interoperability testing procedure in a research
prototype. For evaluation, we applied it to the specification of a mobile payment
system provided by an industrial partner.

5.1 Inputs and Implications for an Optimal Test Suite

Mobile payment systems enable customers to pay goods or services cashless with
their mobile phone. We extracted the involved components of such an application
and translated them into finite state machines as inputs for our prototype. For
conciseness, we thereby focused on the use case of the actual payment process.
Figures 3a to f show the resulting component models: the user interface (typi-
cally an app on the user’s mobile phone, component UI), the cashier (the cashier
himself, C), the cash desk (the software deployed on the cash desk for process-
ing the payment, CD), the retailer system (a central server on the retailer side,
R), the service provider (a server handling the payment process, S), and the
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Fig. 3. Component behavior models for the mobile payment case study.

Fig. 4. Generated graph of the mobile payment system’s global relevance function.
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bank system (the bank’s service for processing a transaction, B). Every action
in the presented models is named by a prefix at the message specification, e.g.,
UI:LoggedIn ui1:SQR!−−−−−→ UI:Ready2Scan. Each component exclusively consumes the
messages for which it is authorized. Thus, even though the considered communi-
cation over a broadcasting message bus would not be explicitly implemented for a
mobile payment system, it does not restrict the presented models in representing
the intended communication behavior.

We consider situations to be critical where the retailer assumes the success of
a transaction although the bank refused it. In the models, these situations can
be described by those system states in which the bank is in B:TANotStored while
the retailer system is in R:TAClosed. In such system states, the service provider
could be either in S:TAFailed or in S:TADone. Thus, we distinguish the following
two negative situations, each one annotated with an exemplary negativity score
of 1.0 (“−” indicates that the corresponding component may be in arbitrary
state):

1. UI:−,C:−,CD:−, R:TAClosed,S:TAFailed,B:TANotStored
2. UI:−,C:−,CD:−, R:TAClosed,S:TADone,B:TANotStored

For the purpose of this case study, we exclusively considered output faults,
i.e., faults in sending messages. Thereby we identified three classes of common
faults: (1) message loss, (2) sending of a wrong message, and (3) delay in sending
a message. The associated fault models mutate transitions as follows: For (1),
message losses, no outgoing message is sent at all. For (2), wrong messages,
messages are sent which originally are defined for being sent on other transitions
with the same source state as the mutated one. The messages which are defined
for being sent on the mutated transition are not sent. Finally, for (3), delayed
messages, specified outgoing messages on a transition t1 are shifted to any other
transition t2 reachable from the target state of t1. Whilst t1 then sends no
message at all, t2 sends a random message out of all delayed messages in addition
to the originally defined ones on t2.

Considering the resulting mutants, the defined negative situations are only
reachable if the bank system chooses transition b4. If the bank system sends the
wrong message ReqOK on b4, the service provider has to enter S:TADone. Then,
negative situation 2 occurs, if the service provider sends the specified message
OKStatus. Even if the bank system sends the specified message on b4 a negative
situation could occur: The service provider has to choose s6 into S:TAFailed; if it
thereby sends the faulty message OKStatus, the retailer enters R:TAClosed and
negative situation 1 is reached.

Thus, it can be assumed that composed actions which include r3, s5, and b4
or r3, s6, and b4 are crucial for the reachability of negative situations. These
actions, which we are referencing in the following as {r3, s5,b4} and {r3, s6,b4},
should be associated with higher relevance values than the others. The other
composed actions cannot directly lead to a negative situation, and their rele-
vance should depend on the length of the paths which are leading to {r3, s5,b4}
and {r3, s6,b4}. A risk-optimized test suite should preferably test paths leading
through {r3, s5,b4} and {r3, s6,b4}.
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Table 4. Case study results: (a) Test cases generated for the global relevance function
in Fig. 4 with their covered relevance. (b) Results for ten executions with different
numbers of simulation runs; the right-most columns show the number of generated test
suites that contain both expected test cases of (a) or at least one of them.

5.2 Application and Results

We applied our prototype on the inputs described in Sect. 5.1. For this evalu-
ation, we chose a fixed learning rate of α = 0.1 and a fixed discount factor of
γ = 0.5. Furthermore, for promoting exploration within the simulation proce-
dure, all agents were reset to their initial states when (1) a negative situation
was reached, (2) no negative situation was reachable anymore, or (3) the num-
ber of global decisions made since the last reset exceeded the upper bound of
100. Figure 4 shows the graph of the global relevance function generated with
100,000 simulation runs, i.e., sequences of global decisions from the agents’ ini-
tial states up to the next reset. The graph contains one edge per crucial com-
posed action: edge d7 contains {r3, s5,b4}, d8 contains {r3, s6,b4}. As expected
in Sect. 5.1, their relevance is predominant. In correspondence with the system
behavior model and the reset conditions mentioned above, the graph includes
the following paths:

1. d1 → d2 → d3 → d4
2. d1 → d2 → d3 → d5

3. d1 → d2 → d3 → d6 → d7
4. d1 → d2 → d3 → d6 → d8 → d9

Paths 1 and 2 cover the most relevant composed actions d7 and d8 and
thus should be contained in a risk optimized test suite with an upper bound of
2 as test cases. Table 4a shows the actually generated test cases for the global
relevance function shown in Fig. 4 together with their covered relevance. The test
case order seems to be plausible—for an upper bound of 2 exactly the defined
test cases would be chosen.

However, the chosen behavior strategy cannot assure that every possible com-
bination of local decisions is covered during the simulation. Since number and
kind of chosen decisions may differ, we can not even assure that different execu-
tions of the prototype will lead to the same results. In fact, because of the uni-
formly distributed behavior policy, it is rather unlikely to get the same absolute
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relevance values twice. Because of the convergence of learning, the returned val-
ues, however, should become the more representative the higher the number
of executed simulation runs. To investigate the stability of the results, we exe-
cuted the prototype several times with the same inputs but a different number
of simulation runs, in each case ten times. Table 4b shows the frequency the
expected test suite had been generated, the frequency the generated test suite
at least contained one of the two expected test cases, and the average number
of reached negative situations within the ten executions for the different number
of simulation runs. Obviously, the average number of reached negative situa-
tions increases with the number of simulation runs. The higher the number of
reached negative situations, the more often the expected test suite is generated.
For 100,000 simulation runs and an average of 33.7 reached negative situations,
every execution generates the expected test suite. This result implies, on the one
hand, that a more focused behavior strategy could be useful. If it would lead to
a higher average number of reached negative situations, the expected test suite
could be generated constantly for less simulation runs. On the other hand, the
proposed approach leads to acceptable results, even if the state space is not fully
explored many times. Although the expected test suite had been generated only
two times out of ten executions for 5,000 simulation runs, it contained 6 times
at least one of the desired test cases. Such a test suite covers wide parts of the
model’s relevance.

6 Related Work

Our approach combines interoperability testing, risk-based testing, and test case
generation with reinforcement learning.
Machine Learning. The application of machine learning techniques on software
testing has already been identified as a fruitful perspective by Groce et al. [9]. In
[8], Groce uses reinforcement learning via adaption-based programming for test
input generation. This method rewards coverage increases during test execution
to achieve a higher coverage than random testing. By contrast, our method
uses reinforcement learning for assessing the criticality of possible faults before
test execution. Veanes et al. [17] present a technique inspired by reinforcement
learning for choosing coverage optimizing test actions in online testing, i.e., the
combination of test generation and test execution in a single algorithm. They
also do not consider risk estimations.
Interoperability Testing. For generating interoperability test cases, it is a common
technique to form a system test model by the composition of several component
test models. Luo et al. [11] reduce a set of communicating non-deterministic
finite state machines to a single machine and generate test sequences from this
machine. Seol et al. [13] propose a method that composes input/output state
machines to generate interoperability test cases. Though our algorithm for gen-
erating test cases from the global relevance function implements a similar app-
roach, it additionally takes into account the relevance of actions for being tested.
In fact, in [11,13] the number of generated test cases depends on the composed,
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global model’s complexity, whereas our approach generates a desired number of
risk-optimized test cases.
Risk-Based Testing. Building on general high-level considerations from authors
such as Bach [2] or Amland [1], several methods for integrating risk estima-
tions in testing evolved though at different levels of automation. Similar to our
approach, several works propose the use of test models for the SuT, which are
getting annotated by risk values, for deriving or even generating test cases: Kloos
et al. [10] construct test models from the results of a fault tree analysis from
which test cases can be generated. Bauer et al. [4] transfer the risk of annotated
UML diagrams to a test model, from which test cases are derived. Zimmermann
et al. [20] extend this approach by refining the test models so that from these only
so-called critical test cases are generated. Wendland et al. [19] propose to for-
mulate requirements for the SuT in so-called integrated behavior trees. These are
annotated with risk values associated with certain risk levels. A risk-optimized
test suite is generated from the annotated models by using test directives. In all
of these approaches the risk assessment is done by experts. Also our approach
builds on expert estimation, since the most critical failure situations have to be
given. However, in contrast to the mentioned methods, we automatically derive
the contribution of the component’s actions to critical situations.

Stallbaum and Metzger [14] note that the risk assessment of test cases done
by experts could get a critical cost factor. They propose an approach that auto-
mates the risk assessment based on requirement metrics. Such metrics refer for
example to the revision frequency or the cyclomatic complexity of a use case.
However, the determination of risk exposures is still done by experts. The use
of metrics for risk estimation in testing was also proposed by Amland [1]. He
calculates so called risk indicators for every function of the SuT from which the
occurrence probability of failures can be estimated. The exposure of possible
failures is quantified by expert estimates. No hint is given on how to derive test
cases based on these considerations. Since Amland [1] assesses rather the prob-
ability and costs of possible failures than a fault criticality, his method could
be used for identifying the most hazardous failures together with their deemed
effect as input for our approach. Altogether, we assume that metrics are eligible
for approximating the occurrence probability of faults in different parts of the
system. The assessment of the criticality of faults, however, is hard to determine
using code or requirement metrics. Our approach of assessing the criticality of
faults by their contribution to the reachability of failures seems more reasonable.
In the future, metrics-based approaches could be used to extend our approach
with assumed occurrence probabilities of faults.
Probabilistic Model Checking. Not only from the strict risk-based testing per-
spective, the model-based test case generation is an active research topic. Fraser
et al. [7] summarize methods which are using model checkers for this task. The
fundamental idea behind this approach is to formulate logical properties on a
model of the SuT in such a way that the counterexamples returned by the
model checker can be interpreted as test cases. Closest to our approach are the
mutation-based test case generation approaches [7]: Mutations are introduced in
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the inputs of the model checker according to some fault model and then logical
properties are formulated for getting counterexamples representing test cases
that kill the mutants. Traditional model checkers, however, only return single
counterexamples for absolute properties, such as “The system will never reach a
negative situation”, whereas the metrics of fault criticality and action relevance
imply the need for quantitative properties, such as “The system will reach a neg-
ativity score of 10 with a probability of at most 0.4”. For evaluating such quanti-
tative properties we would need to use probabilistic model checkers which are able
to solve verification tasks on Markov-Chains and Markov-Decision-Processes [3].
In fact, we believe that our approach is implementable by such model checkers.
The performance could, however, be rather unsatisfactory, since a probabilistic
model checker would have to consider the system test model with all of the
introduced mutants for evaluating given quantitative properties.

7 Conclusions and Future Work

We have presented a risk-based generation procedure for interoperability test
cases. It extends behavior models of the SuT with possible faults and assesses
them by their criticality w.r.t. reachable failures. An agent-based simulation
using the technique of reinforcement learning automates wide parts of this
process: Each component of the system is associated with a software agent which
learns the criticality of possible faults during a parallel simulation of all agents.
The global relevance function is formed by merging the learned criticality values
of the agents. Afterwards, Table 3a generates a risk-optimized test suite out of
the graph of the global relevance function. We applied a prototype on parts of
a specification of a mobile payment system. It could be seen that the quality of
results increases with the number of executed simulation runs. With 100,000 sim-
ulation runs the prototype generated constantly the expected test suite. These
observations emphasize the general eligibility of the presented approach.

However, several concepts still can be optimized. More sophisticated agent
behavior strategies could lead to the expected results with fewer simulation runs.
The agents currently make random decisions between their possible actions thus
not always hitting the worst-case behavior of the system. Letting the agents, how-
ever, always choose the decision with the highest criticality value, exploration
is nearly dropped. Hence, some other strategies should be studied that balance
between exploration and exploitation. We exclusively considered the worst-case
behavior of the SuT, as we did not assume probabilities for choosing specified
actions or for the occurrence of faults to be given. Annotating the models with
such probabilities would incorporate such system behavior assumptions and lead
to a kind of on-policy learning. To increase the efficiency of our algorithms, we
aim to avoid calculating the set of possible global decisions from the local ones.
The application of meta-heuristic techniques could further improve the scaling
of the test cases generation algorithm on the global relevance function. Fur-
ther case studies will be made for different system models to identify additional
optimizations.
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Apart from the definition of behavior models for the components we autom-
atized every activity of the proposed approach. For further automation, these
behavior models could also be generated, e.g., from common interface defini-
tions, and the generated test cases could be transformed for a direct import into
common test automation systems.
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