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Abstract. Testing is an important and expensive part of software and
hardware development. Over the recent years, the construction of combi-
natorial interaction tests rose to play an important role towards making
the cost of testing more efficient. Covering arrays are the key element of
combinatorial interaction testing and a means to provide abstract test
sets. In this paper, we present a family of set-based algorithms for gen-
erating covering arrays and thus combinatorial test sets. Our algorithms
build upon an existing mathematical method for constructing indepen-
dent families of sets, which we extend sufficiently in terms of algorith-
mic design in this paper. We compare our algorithms against commonly
used greedy methods for producing 3-way combinatorial test sets, and
these initial evaluation results favor our approach in terms of generating
smaller test sets.

Keywords: Combinatorial testing · Independent families of sets ·
Set-based algorithms

1 Introduction

In modern software development testing plays an important role and therefore
requires a large amount of time and resources. According to a report of the
National Institute of Standards in Technology (NIST) [1], faults in software costs
the U.S. economy up to $59.5 billion per year, where these costs could be reduced
by $22.2 billion, provided better software testing infrastructure. Another report
from NIST [11] shows that failures appear to be caused by the interaction of only
few input parameters of the system under test (SUT). Combinatorial testing
guarantees good input-space coverage, while reducing the resources needed for
testing. In particular, it is a t-wise testing strategy whose key ingredient is a
Covering Array (CA), a abstract mathematical object that provides coverage
of all t-way interactions of a certain amount of input parameters, reducing the
amount of tests that need to be executed. For their use in practice, the columns
of CAs are identified with the input parameters of the SUT, where each entry
in a certain column is mapped to a value of the corresponding parameter [12].
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This way each row of the CA translates to a certain parameter value setting of
the input model of the SUT which can be used as a test. Translating each row
of a CA in this way, one obtains a concrete test set hence a CA can be regarded
as an abstract combinatorial test set. To reduce further the amount of resources
needed for testing, one is interested to construct optimal CAs (e.g. arrays of a
minimal size that provide maximal coverage). This software testing problem is
tightly coupled with hard combinatorial optimization problems for CAs (shown
to be NP-hard [17]).

Contribution. In this paper, we use a set-based method for constructing CAs
based on independent families of sets (IFS) from [7]. There exists an equiva-
lence between these two combinatorial objects which allowed us to use the two
discrete structures interchangeably in terms of algorithmic design. In particu-
lar, we extend this set-based method with balancing properties that can impose
restrictions on the cardinality of the appearing intersections. This (among other
concepts) enabled us to define different building blocks that give rise to a family
of algorithms based on IFSs (and consequently also for CAs). Furthermore, as
a proof of concept we compared our algorithms against a widely used combi-
natorial strategy (the so-called IPO-strategy [15]) which bares similarities with
our approach for constructing and extending CAs. Our initial results outperform
this strategy for 3-way testing, generating better sized covering arrays.

Structure of the Paper. In Sect. 2 we give some preliminaries for CAs, where we
also review related algorithms and problems for the former objects. Afterwards,
in Sect. 3 we describe a set-based method for constructing CAs and extend it
with concepts necessary for devising an algorithmic concept later on Sect. 4, in
which we also propose a variety of algorithms for generating CAs. Subsequently,
in Sect. 5 we compare our algorithms against IPO-strategy greedy techniques
for constructing CAs and comment on the evaluated results. Finally, Sect. 6
concludes the work and discusses future directions of work.

2 Problems and Algorithms for Covering Arrays

In this section we give a short overview of the needed definitions, as well as
of related problems, related algorithms and work in general. In the following
we frequently use the abbreviation [N ] for a set {1, . . . , N} ⊆ N and also AC

denotes the complement [N ]\A of A in [N ]. The definitions given below are
slightly different phrased as those given in [5], and can also be found in [13].

2.1 Preliminaries for Covering Arrays

Definition 1 (t-Independent Family of Sets). A t-independent family of
sets, IFS (N ; t, k), is a family (A1, . . . , Ak) of k subsets of [N ], with the property
that for each choice {i1, . . . , it} ⊆ [k] of t different indices, for all j ∈ [t] and
for all Āij ∈ {Aij , A

C
ij

} it holds that
⋂t

j=1 Āij �= ∅. The parameters t and k are
called, respectively, the strength and the size of the IFS.
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We say that a family of sets is t-independent if it is an IFS (N ; t, k) for
some value of N and k. Without loss of generality we only consider IFS over a
underlying set [N ] with N ∈ N.

Table 1. The sets A1, A2, A3, A4 and B are considered as subsets of [12]. We identify
them with their binary indicator vectors, i.e. vectors in {0, 1}12 that have 1 in position
i if, and only if i is element of the corresponding set, and 0 otherwise.

A1 = {6, 7, 8, 9, 10, 11} ↔ (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0)T = a1

A2 = {1, 2, 3, 6, 7, 8} ↔ (1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0)T = a2

A3 = {1, 2, 4, 6, 9, 10} ↔ (1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0)T = a3

A4 = {1, 2, 5, 7, 9, 11} ↔ (1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0)T = a4

B = {1, 2, 5, 8, 9, 10} ↔ (1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0)T = b

Example 1. From Table 1 the family A = (A1, A2, A3, B) is an IFS (12; 3, 4), i.e.
if we choose 3 sets of A or independently their complements, their intersection is
nonempty. For example, A1 ∩AC

3 ∩B = {8} �= ∅ and A1 ∩A2 ∩AC
3 = {7, 8} �= ∅.

Definition 2 (Binary t-Covering Array). A N ×k binary array M , denoted
in column form as M = (m1, . . . ,mk), is a binary t-covering array, CA(N ; t, k),
if M has the property that for each {i1, . . . , it} ⊆ [k], the corresponding t × N
sub array (mi1 , . . . ,mit) of M cover all binary t-tuples {0, 1}t, i.e. these tuples
have to appear at least once as a row of the sub array (mi1 , . . . ,mit). In some
cases M is also called a binary covering array of strength t.

Remark 1. Covering arrays of fixed non-binary alphabet with size u are denoted
with CA(N ; t, k, u) in the literature (e.g. see [5]). When u = 2 is clear from the
context we simply use the notation introduced as above.

As the similarity of the former definitions of these combinatorial objects
implies, there is a close relation between the two of them. For example, it is
known that every CA(N ; t, k) is equivalent to an IFS (N ; t, k) (see for example
[5,13], Remark 10.5).

Example 2. From Table 1 we take the vectors a1, a2, a3 and b to form the array

A = (a1, a2, a3, b) =

⎛

⎜
⎜
⎝

0 0 0 0 0 1 1 1 1 1 1 0
1 1 1 0 0 1 1 1 0 0 0 0
1 1 0 1 0 1 0 0 1 1 0 0
1 1 0 0 1 0 0 1 1 1 0 0

⎞

⎟
⎟
⎠

T

,

which is equivalent to the IFS given in Example 1. The defining property of
an IFS translates to the defining property of a binary CA. In this case, within
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each three selected columns of (a1, a2, a3, b), each binary 3-tuple appears at least
once. Therefore the given array A is a CA(12; 3, 4). On the other hand, the IFS
in Example 1 can be uniquely reconstructed from the array A, interpreting its
columns as indicator vectors of subsets of [12].

Definition 3. The smallest number of rows N such that a binary CA(N ; t, k)
exists is defined as CAN (t, k) := min{N : ∃ CA(N ; t, k)}.

Definition 4. The largest number k such that a IFS (N ; t, k) exists is defined
as CAK (N ; t) := max{k : ∃ IFS (N ; t, k)}.

For an overview of the vast amount of theoretical and computational prob-
lems that arise in the theory of CAs we refer to [4,9]. Especially the problem of
determining binary CAs with minimum amount of rows turns out to be NP-hard
(see [17]).

2.2 Algorithms for Covering Arrays

The notorious difficulty of constructing optimal CAs has been the subject of
many algorithmic approaches. The most related ones to our work are greedy
methods such as AETG [2] and IPO [15]. AETG employs a randomized, greedy,
one row at a time extension strategy. The IPO-strategy is to grow the covering
array in both dimensions. Horizontal growth adds one column to the current
array by its cells with entries in a greedy manner. Vertical extension is performed,
by adding rows until the array is once again a CA. Adjusting the parameters of
the IPO-strategy has been the subject of [8]. Finally, in [7] a method is proposed
that produces exponentially sized IFS one set at a time. In terms of CAs this
comes down to a one column at a time construction of a binary CA. As this
method plays a pivotal role in our work, we further describe it in Sect. 3.

Due to space limitations, for other related works we refer the interested reader
to a recent survey [18].

3 A Set-Based Method for Constructing CAs

In this section we elaborate on a set-based method for constructing CAs and
extend it with concepts necessary for devising an algorithmic concept later on
in Sect. 4.

Before the description of the method, we have to define some terms needed.
It is well known that Orthogonal Arrays of index one are optimal CAs [5], i.e.
within each selection of t columns each binary t-tuple appears exactly once.

Also when constructing a CA with as few rows as possible, one tends to not
cover certain t-tuples multiple times; rather the target would be to cover as few
t-tuples as possible more than once. Lets consider the case of a CA (a1, . . . ,ar),
where only few t-tuples appear more than once within a certain choice c =
(ai1 , . . . ,ait) of t columns of that array. Since for each (t−1)-tuple (u1, . . . , ut−1)
there are exactly two binary t-tuples, that start with (u1, . . . , ut−1), namely
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(u1, . . . , ut−1, 0) and (u1, . . . , ut−1, 1). We know that within (ai1 , . . . , ait−1) each
(t − 1)-tuple appears at least twice, and only few of them appear more than
twice. Of course, this argument holds for each choice of (t − 1) columns of c.

Remark 2. Note as well that this argumentation can be iterated. From these
thoughts we design a necessary condition when a column is allowed to be added
to the current array. In particular, we want to ensure a minimum amount of
balance among the columns of the array in the regard just described.

In light of the previous remark, we introduce the notion of α-balance.

Definition 5. Let A = (A1, . . . , Ak) be a family of sets Ai ⊆ [N ] ∀i ∈ [k] and
α = (α1, . . . , αs) ∈ N

s, s ≤ k. We say that A is α -balanced, if

∀i ∈ [s] ∀{j1, . . . , ji} ⊆ [k] ∀Ājr ∈ {Ajr , A
C
jr} :

∣
∣

i⋂

r=1

Ājr

∣
∣ ≥ αi. (1)

Note that if a family of sets is (α1, . . . , αs)-balanced and αs ≥ 1 then it is
also s-independent.

Definition 6. Let B ⊆ [N ], A = (A1, . . . , Ak) be a family of sets Ai ⊆ [N ] ∀i ∈
[k] and α = (α1, . . . , αs) ∈ N

s. We say that B α-balanced with respect to A, if
the family (A1, . . . , Ak, B) of sets is α-balanced.

Example 3. Consider the family F = (A1, A2, A3, A4), constructed from the sets
of Table 1. This family is a (6, 3)-balanced family of sets, i.e. each set, as well
as its complement, has at least cardinality 6, and all intersections of any two
sets of F (complements might be involved) have at least cardinality 3 (e.g.
A1 ∩ AC

3 = {7, 8, 11} ≥ 3). B is an example for a set that is not (6, 3)-balanced
w.r.t. F , since AC

3 ∩ B = |{5, 8}| = 2 < 3.

4 A New Family of IFS Algorithms

In this section, we propose a variety of algorithms, IFS-origin, IFS-greedy
and IFS-score, based on independent families of sets. We call this class of algo-
rithms collectively a family of IFS-Algorithms. In particular, we formalized and
extended in terms of a combinatorial algorithmic design the method described
earlier. Our design is comprised of the following five building blocks: store, select,
admissible, extend and update which we state below.

– Store: The store is a data structure that serves as a resource, from which the
sets to build the target IFS are chosen. It may be static, or dynamic.

– Select: A procedure that returns one element of the store, e.g. randomly or
via a scoring function.

– Admissible: This procedure decides whether a certain element is allowed to be
added to the current IFS or not under certain admissible criteria which can
be based for example on the concept of α-balance.
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– Extend: A procedure that extends the IFS at hand.
– Update: The procedure which updates the store in case latter is dynamic.

In the following we frequently use F2(N) := {A ⊆ [N ]|N /∈ A ∧ |A| =
�N/2
}, which is a 2-independent family of sets of maximal size (cf. [10]). A
comprehensive overview of the proposed algorithms via their building blocks, is
given below in Table 2.

Table 2. Composition of the IFS-family algorithms.

Building blocks Algorithm

IFS-origin IFS-greedy IFS-score

Store F2 F2 F2

Select SelectRandom SelectNext SelectScore

Admissible Admissibleα Admissibleα Admissible

Extend Extend Extend Extend

Update Updateα - Update

4.1 IFS-Origin

Firstly we give a short algorithmic description of the method proposed in [7]
and extended in Sect. 3. We refer to it and its implementation as IFS-origin.
The algorithm takes as input the size N of the underlying set and the strength
t of the to be constructed IFS. The initial Store, S0, is set to be equal to
F2(N) and the initial IFS, A1, is set to be a random element of the Store.
This random initialization is justified because picking a different initial element
boils down to permuting the first [N − 1] elements of [N ], which also respects
Definition 1, and keeps F2(N) invariant under such permutations. From now on
in each step i the IFS-origin traverses through the whole Store Si−1 given at
that time, updating it by removing all non-Admissibleα (Admissibleα checks
for α-balance and t-independence) elements from it, which yields Si. For the
admissibility check the algorithm requires a vector α1×(t−1), which encodes the
desired balance of i-tuples for i = 1, . . . , t−1. Thereafter, now that Si is left with
only Admissibleα elements, a random element is chosen and added to the IFS
at hand, yielding Ai+1. The algorithm terminates when the Store is empty.

4.2 IFS-Greedy

When being familiar with IFS-origin described above, one will realize, that this
version, as was originally given in [7] lacks of a method to decide which of the
elements in the remaining Store should be added to the current array. In par-
ticular, this is done via a random pick, which in retrospect makes the Update
of the Store, which leaves the Store with only Admissibleα elements inside,
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unnecessary. The newly proposed IFS-greedy version bypass this decision prob-
lem by simply taking the next found Admissibleα element of the Store, having
the advantage that the Store has never to be updated. The initialization stays
the same as in IFS-origin. After that IFS-greedy traverses the Store only
once, adding the first element that is Admissible with respect to the already
chosen ones and α (recall Definition 6). The Store never gets updated.

4.3 IFS-Score

The overall structure of IFS-score is the same as that of IFS-origin, but dif-
ferent building blocks SelectScore and Admissible are defined. To circum-
vent the problem of IFS-origin of picking a random element from the updated
Store, we calculated a score for each element of the Store, that reflects α-
balance, and add the one (or one of those, since ties may occur) with the least
score. Each element is initialized with a score of zero and in the i-th step of the
algorithm we calculate again a score for each element of the current Store, Si−1,
as before. This has also the advantage that IFS-score does not require α. Since
we compute a score for each element, we already encounter the tuple balance of
(Ai, b) to our selection and we do not need to previously dictate via α how often
certain i-tuples have to appear. Therefore IFS-score is the only algorithm in
the proposed IFS-family that does not require an input of α. Consequently, in
an element of the Store passes the decision criterion of Admissible, if and
only if (A, b) is t-independent.

5 Results

As a proof of concept of our algorithmic design (cf. Section 4) we compared
our implementations of the IFS-family of algorithms for t = 3 to two of the
most commonly used greedy algorithms of the IPO-family, namely IPOG [14]
and IPOG-F [6]. In addition, we evaluate our results versus the current best
known upper bounds for CAK (N ; 3) (retrieved from [3], via CAK (N ; t) =
max{k|CAN (k, t) ≤ N}, cf. [13]), that are combined results of algorithms and
methods that are partly described in [18]. To the best of our knowledge the algo-
rithms of the IPO-family are the only ones that generate CAs using a horizontal
extension step similar to the one proposed in the IFS-family of algorithms.

Table 3 shows the amount of columns a binary CA of strength 3 can attain
by either the respective algorithm compared or according to [3]. Table 3 starts
with N = 8, since there are at least eight rows needed to cover all eight binary
3-tuples. It shows that the IFS-family of algorithms improves significantly over
IPOG and IPOG-F in almost every case presented, as well that IFS-greedy and
IFS-score improve over IFS-origin. It is also worth pointing out that during
our computations we obtained larger families, when running IFS-origin and
IFS-greedy on more restrictive α-vectors than running them on less restric-
tive α-vectors. We believe the concept of admissibility via α-balance (and its
requirement per different IFS algorithms) makes the difference versus IPOG and
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IPOG-F, since these algorithms lack of a balancing strategy during horizontal
extension. Regarding our results, we want to highlight that IFS-score is able
to deliver almost the same size of output IFS as IFS-greedy without the need
of an α-vector as input. On the other hand, IFS-score is more complex than
IFS-greedy and even IFS-origin due to score computations.

The values for IPOG-F in Table 3 are taken from [16]. For the experimental
evaluation we run IPOG locally as it is implemented in ACTS, a CA generation
tool provided by NIST [19]. For the input values of N in Table 3, IPOG and
IPOG-F were considerably faster than all three of our algorithms. We think that
the extra computations are fully justified, since the IFS-family of algorithms
outperforms IPOG and IPOG-F, in 14 out of the 18 documented cases in terms
of output size of produced IFS (or columns of produced CAs respectively) and
achieves the same size values in the other four. Especially, if we consider that in
our experiments the main objective was to compare to the best bounds provided
by greedy algorithms.

Table 3. Comparison of the amount of columns attained on N rows by different CA
algorithms (larger is better). Information for the best lower bound for CAK (N ; t) where
t = 3 is provided by Colbourn Tables [3]. The superscripts denote the α-vector that
was used as input for the computation that yields the output IFS, where a= (4, 2),
b= (6, 3), c = (8, 4), d= (10, 5).

N IPOG-F IPOG IFS-origin IFS-greedy IFS-score Colbourn Tables

8 4 4 4a 4a 4 4

9 4 4 4a 4a 4 4

10 4 4 4a 5a 5 5

11 5 4 4a 5a 5 5

12 5 6 11b 11b 11 11

13 5 6 6b 11b 11 11

14 6 6 6b 11b 11 11

15 6 6 7b 11b 11 12

16 7 7 8c 14c 14 14

17 9 7 10c 14c 14 16

18 11 8 12c 17c 16 20

19 12 8 13c 17c 16 22

20 13 10 11d 19d 19 23

21 15 10 15c 19c 19 25

22 16 12 18c 21c 21 26

23 16 13 19c 23c 22 30

24 19 13 23d 26d 25 38

25 21 14 24c 28a 26 44
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6 Conclusion and Future Work

In this paper, we present a family of set-based algorithms for covering arrays,
which can be regarded as abstract combinatorial test sets, based on independent
families of sets. Our algorithmic design is modular thanks to a variety of build-
ing blocks which can give rise to even more algorithms than the ones presented.
As a proof of concept of our approach we compared the implementations of the
proposed family against state of the art greedy algorithms that are also used
in practice for 3-way testing. This initial evaluation shows, that our approach
improves significantly, in terms of size, over the existing greedy algorithm, which
translates to smaller test sets. As future work, we plan to enhance the function-
ality of our algorithms via extending it to produce combinatorial test sets over
non-binary alphabets as well as conduct more experiments for test sets that can
be used for higher strength interaction testing.
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