
Franz Wotawa
Mihai Nica
Natalia Kushik (Eds.)

 123

LN
CS

 9
97

6

28th IFIP WG 6.1 International Conference, ICTSS 2016
Graz, Austria, October 17–19, 2016
Proceedings

Testing Software 
and Systems



Lecture Notes in Computer Science 9976

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408


Franz Wotawa • Mihai Nica
Natalia Kushik (Eds.)

Testing Software
and Systems
28th IFIP WG 6.1 International Conference, ICTSS 2016
Graz, Austria, October 17–19, 2016
Proceedings

123



Editors
Franz Wotawa
Technische Universität Graz
Graz
Austria

Mihai Nica
AVL LIST GmbH
Graz
Austria

Natalia Kushik
Télécom SudParis
Evry Cedex
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-47442-7 ISBN 978-3-319-47443-4 (eBook)
DOI 10.1007/978-3-319-47443-4

Library of Congress Control Number: 2016954192

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

This volume contains the conference proceedings of the IFIP 28th International Con-
ference on Testing Software and Systems, which was held October 17–19, 2016. The
International Conference on Testing Software and Systems (ICTSS) addresses the
conceptual, theoretic, and practical problems of testing software systems, including
communication protocols, services, distributed platforms, middleware, embedded- and
cyber-physical systems, and security infrastructures. ICTSS is the successor of previous
(joint) conferences TESTCOM and FATES and aims to be a forum for researchers,
developers, testers, and users to review, discuss, and learn about new approaches,
concepts, theories, methodologies, tools, and experience in the field of testing com-
municating systems and software.

In 2016, the conference took place at the main building of the Technische
Universität Graz, Austria. Conjointly with the main conference, three workshops were
organized as part of the ICTSS workshop program, namely: the 4th International
Workshop on Risk Assessment and Risk-Driven Quality Assurance (RISK), the
Workshop on Digital Eco-Systems, and the Workshop on Quality Assurance in
Computer Vision (QACV).

ICTSS received 41 submissions from 24 countries, which were evaluated in a
rigorous single-blind peer reviewing process by a Program Committee including 53
experts and ten external reviewers. From the 41 submission, six were desk rejected
because of substantial deviations from the submission requirements and lack of
acceptable content. For the remaining 35 submissions, we received 105 reviews. Based
on the reviews, of the 41 submissions, 13 (32 %) were accepted for inclusion in theses
proceedings as full papers, and eight (20 %) were accepted as short papers. From the
short paper’s authors decided to retract three papers from these proceedings.

We wish to thank all Program Committee members and additional reviewers for
their great efforts in reviewing and discussing the submissions during the reviewing
process. The outcome of the review process shows the effectiveness of the selection
process and the commitment of the Program Committee to continue the high-quality
standards of ICTSS.

The ICTSS 2016 program also included three keynotes given by distinguished scien-
tists. Special thanks go to Gordon Fraser, Arnaud Gotlieb, and Jeff Offutt for their thought-
provoking keynotes and their active participation in discussions during the conference.

Last but not least, we want to thank everyone who helped make ICTSS 2016 a
success. This of course includes all authors, Program Committee members, Steering
Committee members, reviewers, and keynote speakers, as well as the organizers,
reviewers, and authors of the workshops. In addition we want to sincerely thank the
participants of ICTSS, without whom a conference would never be a success.

October 2016 Franz Wotawa
Mihai Nica

Natalia Kushik



Organization

General Chair

Franz Wotawa TU Graz, Austria
Mihai Nica AVL, Austria
Natalia Kushik Telecom SudParis, France

Steering Committee

Rob Hierons Brunel University, UK
Andreas Ulrich Siemens, Germany
Ana Cavalli Institut Mines-Telecom/Telecom SudParis, France
Khaled El Fakih American University of Sharjah, UAE
Nina Yevtushenko Tomsk State University, Russia
Mercedes G. Merayo Universidad Complutense de Madrid, Spain
Cemal Yilmaz Sabanci University, Turkey
Hüsnü Yenigün Sabanci University, Turkey

Publicity Chair

Ingo Pill TU Graz, Austria

Local Organization

Jörg Baumann TU Graz, Austria
Petra Pichler TU Graz, Austria
Elisabeth Orthofer TU Graz, Austria

Program Committee

Bernhard K. Aichernig TU Graz, Austria
Fevzi Belli University Paderborn, Germany
Gregor Bochmann University of Ottawa, Canada
Kirill Bogdanov The University of Sheffield, UK
Ana Cavalli Institut Mines-Telecom/Telecom SudParis, France
Byoungju Choi Ewha Womans University, Korea
John Derrick University of Sheffield, UK
Khaled El-Fakih American University of Sharjah, UAE
Gordon Fraser University of Sheffield, UK
Angelo Gargantini University of Bergamo, Italy
Sudipto Ghosh Colorado State University, USA



Jens Grabowski Georg August University of Göttingen, Germany
Klaus Havelund Jet Propulsion Laboratory, California Institute

of Technology, USA
Rob Hierons Brunel University, UK
Teruo Higashino Osaka University, Japan
Dieter Hogrefe Georg August University of Göttingen, Germany
Thierry Jéron Inria Rennes - Bretagne Atlantique, France
Ferhat Khendek Concordia University, Canada
Hartmut Koenig Brandenburg University of Technology, Germany
Victor Kuliamin Institute for System Programming, Russian Academy

of Sciences, Russia
Natalia Kushik Telecom SudParis, France
Bruno Legeard Smartesting, France
Stephane Maag Institut Mines Telecom/Telecom SudParis, France
Patricia Machado Federal University of Campina Grande, Brazil
Wissam Mallouli Montimage, France
Wes Masri American University of Beirut, Lebanon
Radu Mateescu Inria Grenoble - Rhône-Alpes, France
Karl Meinke Royal Institute of Technology (KTH) Stockholm

Sweden
Zoltan Micskei Budapest University of Technology and Economics,

Hungary
Edgardo Montes De Oca Montimage, France
Tejeddine Mouelhi ENST Bretagne – GET, France
Mihai Nica AVL, Austria
Brian Nielsen Aalborg University, Denmark
Manuel Nuñez Universidad Complutense de Madrid, Spain
Alexandre Petrenko CRIM, Canada
Andrea Polini ISTI – CNR, Italy
Ina Schieferdecker FU Berlin/Fraunhofer FOKUS, Germany
Holger Schlingloff Fraunhofer FIRST and Humboldt University, Germany
Adenilso Simao ICMC/USP, Brazil
Dimitris E. Simos SBA Research, Austria
Miroslaw Staron University of Gothenburg, Sweden
Uraz Cengiz Turker Gebze Technical University, Turkey
Andreas Ulrich Siemens AG, Germany
Cesar Viho IRISA/University of Rennes 1, France
Tanja E.J. Vos Universidad Politécnica de Valencia, Spain
Neil Walkinshaw The University of Leicester, UK
Farn Wang National Taiwan University, ROC
Stephan Weissleder Thales Deutschland, Germany
Burkhart Wolff University of Paris-Sud, France
Franz Wotawa TU Graz, Austria
Hirozumi Yamaguchi Osaka University, Japan
Hüsnü Yenigün Sabanci University, Turkey
Fatiha Zaidi University of Paris-Sud, France

VIII Organization



Additional Reviewers

Abbas Ahmad Easy Global Market, France
Gulsen Demiroz Sabanci University, Turkey
Patrick Harms Georg August University of Göttingen, Germany
Steffen Herbold Georg August University of Göttingen, Germany
David Honfi Budapest University of Technology and Economics,

Hungary
Jorge López Telecom SudParis, France
Diego Rivera Telecom SudParis, France
Urko Rueda Universidad Politécnica de Valencia, Spain
Wendelin Serwe Inria Grenoble - Rhône-Alpes, France
Paolo Vavassori University of Bergamo, Italy

Organization IX



Keynotes (Abstracts)



Gamifying Software Testing

Gordon Fraser

University of Sheffield, Sheffield, UK

Abstract. Writing good software tests is difficult and not every developer’s
favourite occupation. If an activity is so difficult, boring, or otherwise
unattractive that people do not want to engage with it, then gamification offers a
solution: By turning the activity into a fun and competitive task, participants
engage, compete, and excel. In this talk, I will explore how this idea can be
applied to software testing. Our ongoing work with the Code Defenders game
demonstrates that players engage with testing, and perceive it as a fun activity.
At the same time, by participating in the game, players produce test suites that
are far superior to anything automated testing tools generate. This illustrates the
potential of using gamification to address some of the many problems that we
are facing today in software testing. There are, however, many challenges ahead,
and I will outline some of the challenges and research opportunities related to
gamifying software testing.



Constraint-Based Test Suite Optimization

Arnaud Gotlieb

Simula Research Laboratory, Fornebu, Norway

Abstract. Test suite optimization is a crucial topic in software testing which was
recently boosted by the contributions of constraint programming and search-
based algorithms. The increased complexity of testing procedures and the
combinatorial nature of the underlying testing problems, namely (multi-criteria)
test suite reduction, prioritization and scheduling requires the usage of advanced
techniques which have been developed in other contexts. In this talk, I will
review some of these advances and their application to real-world testing
problems that we address in Certus, the Norwegian research-based innovation
centre dedicated to Software Validation and Verification.



Beyond Test Automation

Jeff Offutt

George Mason University, Fairfax, USA

Abstract. Many software testing researchers have the goal of making their
research valuable to industry. For example, STVR’s tagline is “Useful research
in making better software,” and a common exhortation is that software engi-
neering research should “help real engineers make real software better.” If so,
then improving test automation is certainly an effective strategy. Increasing test
automation is currently one of the most important and pervasive changes in the
software industry. This talk will overview the key elements of test automation,
summarize some of the recent research advances in test automation, explore how
this change is playing out in industry, and present some current challenges in
test automation. The talk will conclude by asking a simple question to go
beyond test automation: “why are my tests so dumb?”



Contents

Testing Methodologies

Conformance Testing with Respect to Partial-Order Specifications . . . . . . . . 3
Gregor von Bochmann

Back-to-Back Testing of Self-organization Mechanisms . . . . . . . . . . . . . . . . 18
Benedikt Eberhardinger, Axel Habermaier, Hella Seebach,
and Wolfgang Reif

Test Generation by Constraint Solving and FSM Mutant Killing . . . . . . . . . . 36
Alexandre Petrenko, Omer Nguena Timo, and S. Ramesh

Risk-Based Interoperability Testing Using Reinforcement Learning . . . . . . . . 52
André Reichstaller, Benedikt Eberhardinger, Alexander Knapp,
Wolfgang Reif, and Marcel Gehlen

A Combinatorial Approach to Analyzing Cross-Site Scripting (XSS)
Vulnerabilities in Web Application Security Testing . . . . . . . . . . . . . . . . . . 70

Dimitris E. Simos, Kristoffer Kleine,
Laleh Shikh Gholamhossein Ghandehari, Bernhard Garn, and Yu Lei

Heuristics and Non-determinism in Testing

Controllability Through Nondeterminism in Distributed Testing . . . . . . . . . . 89
Robert M. Hierons, Mercedes G. Merayo, and Manuel Núñez

Parallelizing Heuristics for Generating Synchronizing Sequences. . . . . . . . . . 106
Sertaç Karahoda, Osman Tufan Erenay, Kamer Kaya,
Uraz Cengiz Türker, and Hüsnü Yenigün

Resolving the Equivalent Mutant Problem in the Presence
of Non-determinism and Coincidental Correctness . . . . . . . . . . . . . . . . . . . . 123

Krishna Patel and Robert M. Hierons

On-the-Fly Construction of Adaptive Checking Sequences for Testing
Deterministic Implementations of Nondeterministic Specifications . . . . . . . . . 139

Nina Yevtushenko, Khaled El-Fakih, and Anton Ermakov

http://dx.doi.org/10.1007/978-3-319-47443-4_1
http://dx.doi.org/10.1007/978-3-319-47443-4_2
http://dx.doi.org/10.1007/978-3-319-47443-4_3
http://dx.doi.org/10.1007/978-3-319-47443-4_4
http://dx.doi.org/10.1007/978-3-319-47443-4_5
http://dx.doi.org/10.1007/978-3-319-47443-4_5
http://dx.doi.org/10.1007/978-3-319-47443-4_6
http://dx.doi.org/10.1007/978-3-319-47443-4_7
http://dx.doi.org/10.1007/978-3-319-47443-4_8
http://dx.doi.org/10.1007/978-3-319-47443-4_8
http://dx.doi.org/10.1007/978-3-319-47443-4_9
http://dx.doi.org/10.1007/978-3-319-47443-4_9


Practical Applications

Mutation-Based Test Generation for PLC Embedded Software
Using Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Eduard P. Enoiu, Daniel Sundmark, Adnan Čaušević, Robert Feldt,
and Paul Pettersson

STIPI: Using Search to Prioritize Test Cases Based on Multi-objectives
Derived from Industrial Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Dipesh Pradhan, Shuai Wang, Shaukat Ali, Tao Yue, and Marius Liaaen

From Simulation Data to Test Cases for Fully Automated Driving
and ADAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Christoph Sippl, Florian Bock, David Wittmann, Harald Altinger,
and Reinhard German

Short Contributions

Searching Critical Values for Floating-Point Programs . . . . . . . . . . . . . . . . . 209
Hélène Collavizza, Claude Michel, and Michel Rueher

UTTOS: A Tool for Testing UEFI Code in OS Environment . . . . . . . . . . . . 218
Eder C.M. Gomes, Paulo R.P. Amora, Elvis M. Teixeira,
Antonio G.S. Lima, Felipe T. Brito, Juliano F.C. Ciocari,
and Javam C. Machado

Towards Model Construction Based on Test Cases and GUI Extraction . . . . . 225
Antti Jääskeläinen

Set-Based Algorithms for Combinatorial Test Set Generation . . . . . . . . . . . . 231
Ludwig Kampel and Dimitris E. Simos

Automated Localisation Testing in Industry with Test� . . . . . . . . . . . . . . . . 241
Mireilla Martinez, Anna I. Esparcia, Urko Rueda, Tanja E.J. Vos,
and Carlos Ortega

Distribution Visualization for User Behavior Analysis on LTE Network. . . . . 249
Masaki Suzuki, Quentin Plessis, Takeshi Kitahara, and Masato Tsuru

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-47443-4_10
http://dx.doi.org/10.1007/978-3-319-47443-4_10
http://dx.doi.org/10.1007/978-3-319-47443-4_11
http://dx.doi.org/10.1007/978-3-319-47443-4_11
http://dx.doi.org/10.1007/978-3-319-47443-4_12
http://dx.doi.org/10.1007/978-3-319-47443-4_12
http://dx.doi.org/10.1007/978-3-319-47443-4_13
http://dx.doi.org/10.1007/978-3-319-47443-4_14
http://dx.doi.org/10.1007/978-3-319-47443-4_15
http://dx.doi.org/10.1007/978-3-319-47443-4_16
http://dx.doi.org/10.1007/978-3-319-47443-4_17
http://dx.doi.org/10.1007/978-3-319-47443-4_18


Testing Methodologies



Conformance Testing with Respect
to Partial-Order Specifications

Gregor von Bochmann(&)

School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa, Canada

bochmann@uottawa.ca

Abstract. This paper deals with the testing of distributed systems. An imple-
mentation under test is checked for conformance with the properties defined by a
reference specification. Since distributed systems usually have multiple inter-
faces, the reference specification will not define the order of all pairs of inter-
actions taking place at different interfaces. Therefore a specification formalism
supporting the definition of partial orders is required. Different such formalisms
are compared in this paper, including MSC-Charts (or Interaction Overview
Diagrams). A variation of this formalism, called Partial-Order-Charts (PO-
Charts) is proposed which makes abstraction from the exchange of messages. It
concentrates on the specification of partial orders between local actions in dif-
ferent system components. It is shown that the partial-order testing approach
introduced for a single partial order specification can be adapted to testing
PO-Charts which define various combinations of different partial orders which
are sequenced by strict or week sequencing, including loops. Various examples
are given to compare this testing approach with state machine testing methods
which can be applied for bounded PO-Charts for which one can derive an
equivalent state machine. The testing complexities and fault model assumptions
of these two approaches are compared.

1 Introduction

Conformance testing is an activity where an implementation under test (IUT) is
checked for conformance to a specification. For this purpose, input interactions are
applied by testers at the different interfaces of the IUT and the outputs provided by the
IUT are observed by the testers and are compared with what is expected according to
the requirements defined by the specification. For distributed systems, the order of
interactions taking place at different interfaces are often irrelevant for the defined
behavior, furthermore, it is sometimes difficult to control the order of inputs at different
interfaces, and to observe the order of outputs at different interfaces. For this reason,
state machine models for the specification are not appropriate, since they precisely
define a total order for all interactions. As a consequence, partial-order specifications
have been proposed for describing the required behavior of distributed systems.
A well-known example of a partial-order notation is Message Sequence Charts (MSC,
or UML Interaction diagrams).

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-47443-4_1



In order to test partial-order specifications, [Haar] proposed the concept of
Partial-Order Input-Output Automata (POIOA) and discussed how to derive confor-
mance test suites from such specifications. A POIOA is a state machine where each
transition involves in general a set of input and output interactions for which a partial
order is defined for their execution. However, each state of the POIOA represents a
global synchronization point involving all the distributed interfaces. This enforces strict
sequencing between the execution of subsequent transitions, that is, an interaction of
the next transition can only occur after all interactions of the preceding transition have
been completed. In real distributed systems, one often rather wants to impose weak
sequencing which means that sequencing is enforced locally at each interface (or each
component of the distributed system), but not globally.

Concepts for specifying control flow in distributed systems with partial orders
including strict AND weak sequencing was proposed in [Castejon]. These concepts are
quite similar to the more formal definition of MSC-Charts given by Alur and
Yannakakis [Alur]. In a few words, an MSC-Chart is a state machine in which each state
is associated with an MSC to be executed and the transitions between states are spon-
taneous. We modify this concept as follows and call it Partial-Order Chart (PO-Chart) by
specifying for each transition whether it represents strict or weak sequencing, and by
associating with each state a partial order of actions (including inputs, outputs and local
actions) where each action is placed on a vertical “swim-lane” (“process” in MSC, or
“role” in [Castejon]). Such a partial order is very similar to an MSC, but the arrows
represent a partial-order dependency, and not necessarily exchanges of messages (as in
MSCs and MSC-Charts).

We discuss in this paper how a test suite can be derived from a given PO-Chart
specification. The main point is the fact that the partial-order test derivation from [Haar]
can be applied to execution paths involving several PO-Chart states (corresponding to
several transitions in the POIOA model). For limiting the length of the test suite in the
case of loops in the PO-Chart, we adopt the approach that is common in software
testing: assuming regularity of the IUT (as explained in [Bouge]), which means that
one assumes that there exists an integer k such that, if a loop has been executed k times,
then no further fault would be found if one executed the loop more than k times.

The paper contains many examples to illustrate the discussion. For the testing of an
IUT in respect to a PO-Chart the partial-order testing of [Haar] is compared with state
machine testing methods based on an equivalent state machine model. However, often
the PO-Chart specifications are not bounded [Alur], which means that no equivalent
finite state model exists.

The paper is structured as follows: In Sect. 2, an introduction to POIOA testing is
given, as well as a formal definition of partial orders. In Sect. 3, we discuss the different
notations for defining the reference specification for testing. In Sect. 4 we show how
the partial-order testing of [Haar] and state machine testing can be applied to
PO-Charts. In Sect. 5, we provide some comments comparing the specification for-
malisms of POIOA, collaboration ordering, MSC-Charts and PO-Charts. We also
compare the complexity measures for partial-order and state machine testing, as well as
the underlying fault models. Section 6 contains the conclusions.

4 G. von Bochmann



2 Preliminaries

2.1 Testing POIOA

The testing of POIOA was introduced in [Haar]. A POIOA is a state machine where
each state transition involves possibly several input and output interactions for which a
partial order is specified for execution. When all interactions of a transition have been
performed, the machine enters the next state and is ready to execute another transition.
One normally assumes that each transition starts with a single or several (concurrent)
input interaction(s). An example of such a transition is shown in Fig. 1(a). This tran-
sition starts with the single input i1 which is followed by two concurrent outputs o1a
and o1b, each followed by a sequence of input and output, i2 followed by o2 and i3
followed by o3, respectively.

When testing an implementation for conformance with a POIOA specification, one
has to verify the following two aspects:

1. The partial order of interactions specified for each transition is implemented as
specified.

2. Each transition leads to the correct next state.

For the second aspect, traditional state machine testing approaches can be used,
such as Distinguishing Sequences [Bochmann a] or the HIS method [Bochmann c]. For
this purpose one needs state identification sequences for each state which are applied
after the execution of a transition, and which should be checked for validity on the
implementation. We do not discuss these issues further in this paper.

For the testing of the partial order of input and output interactions defined for a
given transition t, the following partial-order test has been proposed (see for instance
[Bochmann a]). For each input i of t, perform the following test (where it is assumed
that the implementation is already in the starting state of the transition):

1. Apply all inputs (different from i) that are not after i in the partial order of t (in an
order satisfying the partial order), and observe the set of output interactions, called
O1.

2. Apply i, and observe the set of subsequent output interactions, called O2.
3. Apply all other inputs of t (in an order satisfying the partial order), and observe the

set of output interactions, called O3.

Fig. 1. (a) A partial order with two roles. (b) An equivalent state machine

Conformance Testing with Respect to Partial-Order Specifications 5



If one of the output sets is different than what is expected from the specified partial
order, we have detected a fault in the implementation. We have a guarantee of fault
detection under the assumption that the transition t is realized in the implementation as
a single transition and in the form of a partial order. For the example transition shown
in Fig. 1(a), we obtain the following test suite (where the tested input is written in bold,
and the expected output sets are given in {}):

• For testing i1: <{}, i1 {o1a, o1b}, i2 {o2}, i3 {o3}>
• For testing i2: <{}, i1 {o1a, o1b}, i3 {o3}, i2 {o2}>
• For testing i3: same test case as for i1.

In [Bochmann a], it was also explained that the tests for several inputs can be
combined into a single test case if one of the input comes after another one. For the
example transition, we are left with the two test cases given above.

In this paper, we limit our attention to quiescent states of the IUT, that is, states in
which no further outputs are produced by the IUT unless further input is applied. The
above partial-order test goes only through quiescent states, since the next input is only
applied after some time-out period to ensure that no additional output is expected. An
interaction sequence is called a quiescent trace [Simao] if each input is applied when
the IUT is in a quiescent state. For example, the sequence <i1, o1a, i3, etc.> is allowed
by the partial order of Fig. 1(a), but it is not quiescent. The testing of non-quiescent
traces is discussed in [Bochmann a].

It was noted that the length of the resulting test suite for testing a single transition
using this method is much shorter in the presence of many concurrent inputs as
compared with traditional state machine testing. For the example transition shown in
Fig. 1(a), the corresponding state machine (showing only quiescent states) is shown in
Fig. 1(b). State machine testing (without state identification) yields for this state
machine the same two test cases above. However, if there are more concurrent inputs,
the number of states of the corresponding state machine will blow up exponentially (see
also Sect. 5).

The notion of POIOA has been criticized because it assumes that there is global
synchronization (involving all interaction points) in each state of the automaton. It was
argued that this is not realistic if the behavior of the POIOA is supposed to represent
the behavior of a distributed system where interactions take place at different inter-
action points distributed over several system components. To avoid this criticism, we
consider in this paper the concepts explained Sect. 3, which allow for strict sequencing
of transitions (as in the case of POIOA), as well as for weak sequencing (which is more
natural in distributed environments).

2.2 Formal Definition “Partial Order”

Given a set E of events, a partial order on E is a binary relation < of events which is
transitive, antisymmetric and irreflective. If <e1, e2> is in <, we say that e1 is before e2.
Often we characterize an order by the event pairs that generate all pairs in the order by
transitivity closure. We call these the generating event pairs of the order. For instance,
the arrows in Fig. 1(a) correspond to the generating event pairs, for instance the pair

6 G. von Bochmann



<i1, o1a>. However, the partial order defined by this figure also includes pairs such as
<o1a, o2> which are obtained by transitivity.

In order to deal with a situation where the same type of event occurs several times,
one usually considers a Partially Ordered Multi-Set (Pomset). Given a partial order
(E, >) where some events in E may be of the same type, a Pomset on (E, >) is obtained
by adding a labeling function L: E -> V, where V is a set of labels. For a given event e
ϵ E, L(e) represents the type of event e. In fact, the names given to events in our figures
represent the type of the event shown. For instance, the first event in Fig. 1(a) is of
type i1.

We call initiating event any minimum event of the order, that is, event e ϵ E is
minimum if there is no event e’ ϵ E such that e’ < e. Similarly, we call terminating
event any maximum event of the order. In the remainder of this paper, when we talk
about a partial order, we always mean a Pomset where the set of labels V is often
partitioned into two subsets: the set I of inputs and the set O of outputs.

3 The Concept of PO-Charts

3.1 Collaborations

Concepts for describing the behavior of distributed systems in a global view have been
proposed in [Castejon]. First, the UML concept of collaborations is used. A collabo-
ration identifies the different roles that the components of the distributed system may
play in a given application. However, this UML concept does not talk about the
dynamic aspect of the behavior. For describing the dynamic aspect of the behavior, it is
proposed to decompose a given collaboration into several sub-collaborations (each
involving possibly a subset of roles) and indicating in which order these sub-
collaborations are performed. Using the sequencing primitives of UML Activity dia-
grams (sequence, alternative and concurrency) an Activity-like notation is proposed,
however, with the following modifications to the semantics: (a) a single Activity –

called a “collaboration” – would normally involve several parties (roles – or swim-
lanes); and (b) sequencing between successive collaborations may be in strict sequence
(as in UML Activity diagrams, where any sub-activity of the second collaboration can
only start when all sub-activities of the first have been completed), or in weak sequence
(where a role may start with its activities of the second collaboration when it has
completed its own sub-activities for the first).

A simple example is shown in Fig. 2 (this is Fig. 3 from [Castejon]). This is a
simplified model of the execution of a medical test at the patient’s premises in the context
of tele-medicine. There are three roles in the system, as shown by the UML collaboration
diagram of Fig. 2(a): dt (doctor terminal), tu (test unit), and dl (data logger). Figure 2(b)
shows the dynamic behavior of the Test collaboration: A Test starts with the DoTest
sub-collaboration which is followed by the LogValues sub-collaboration. This may be
repeated several times until the GetValues sub-collaboration is performed. The whole
may be repeated several times.

The Test collaboration shown in the figure can, in turn, be used as a sub-
collaboration in a larger context of tele-medicine, as discussed in [Castejon]. This

Conformance Testing with Respect to Partial-Order Specifications 7



notation, therefore, allows for writing hierarchically structured behavior specifications.
At the most detailed level, the behavior of a collaboration can be defined in the form of
a Message Sequence Chart (MSC, also called UML Interaction diagram). A very
simple example is shown in Fig. 3(a) for the behavior of the GetValues collaboration
included in Fig. 2(b).

However, in the context of this paper, we prefer to define the behavior of a basic,
unstructured collaborations in the form of what we call a partial order with roles. This
is a notion very similar to an MSC. Like in MSCs, the roles involved in the behavior
are explicitly shown as vertical line. Actions performed by a role are indicated by dots
(events) with their names (event labels) and the partial order between these events is
indicated by arrows. However, these arrows do not necessarily represent messages, as
in MSCs. An example is given in Fig. 3(b) for the behavior of the two collaborations
DoTest and LogValues combined (see Fig. 2(b)).

The semantics of the sequencing primitives that define the order in which
sub-collaborations are executed are defined in [Castejon] informally, based on the
semantics of Activity diagrams (with modifications). A formal definition, using partial
orders of events, is given by Israr [Israr] where, in addition, performance aspects are
considered.

Fig. 2. The Test collaboration: (a) UML Collaboration diagram, (b) behavior definition
containing three sub-collaborations

Fig. 3. (a) MSC defining the GetValues collaboration. (b) Partial order with roles defining
DoTest and LogValues combined

8 G. von Bochmann



3.2 MSC-Graphs

In their article of 1999 [Alur], Alur and Yannakakis consider model checking of MSCs.
This paper contains several discussions that are useful for our purpose:

1. The paper formally defines the semantics of an MSC (basic features only) based on
partial orders.

2. The paper formally defines the notation of MSC-Graphs which correspond to the
UML notation of Interaction Overview Diagram (see for instance Fig. 17.27 in
[UML]). An MSC-Graph is an oriented graph where each node represents an MSC
and each edge represents the sequential execution of the pointed MSC after the
initial MSC. It is assumed in [Alur] that all edges either represent strict sequencing
(called synchronous concatenation) or weak sequencing (called asynchronous
concatenation). However, in this paper we assume that for each edge the type of
sequencing can be specified separately (similar as in the collaboration notation
discussed in Sect. 3.1).

3. The paper formally defines Hierarchical MSCs which is an extension of
MSC-Graphs were a node may also represent another MSC-Graph or Hierarchi-
cal MSC. However, it is assume that there is no recursion in this dependency. It is
shown how a Hierarchical MSC can be flattened in order to obtain an equivalent
(more complex) MSC-Graph. As this notation does not introduce any additional
power of description, we do not further discuss this notation in this paper.

4. The paper defines a subset of MSC-Graphs, called bounded MSC-Graphs which
have the important property that the defined behavior is regular, that is, it can be
represented by a finite state machine. Therefore, such MSC-Graphs can be
model-checked (which is further discussed in [Alur]), and also, for such
MSC-Graphs state machines testing methods can be applied. – An algorithm for
determining whether a given MSC-Graph is bounded is also given. Essentially, it
proceeds as follows: (a) The communication graph of an MSC has nodes corre-
sponding to the roles (processes) of the MSC and an arc from p1 to p2 if role p1
sends a message to p2 in the MSC. (b) Given a subset S of nodes of an MSC-Graph,
the communication graph of S is the union of the communication graphs of all the
MSCs in the nodes of S. In such a graph, the roles that receive or send a message in
some MSC of the graph are called the active processes of the graph. (c) An
MSC-Graph is bounded if for each cycle c in the graph, the communication graph of
the nodes on this cycle (after eliminating all non-active roles) is strongly connected.

3.3 PO-Charts

Inspired by the definition of MSC-Charts, we use in this paper the notion of PO-Charts.
These charts are defined like MSC-Charts, except that each node, instead of containing
an MSC, contains a partial order with roles, as defined in Sect. 3.1. Hierarchical
PO-Charts and bounded PO-Charts can be defined as described for MSC-Charts in
[Alur].

Conformance Testing with Respect to Partial-Order Specifications 9



The main difference with MSC-Charts is the fact that for each edge representing the
sequential execution between two partial orders with roles, it is indicated whether
sequencing is weak or strict. Weak sequencing (abbreviated “ws”) means that
sequencing is enforced for each role separately. Strong sequencing (abbreviated “ss”)
means that the initiating events of the second partial order may only occur after all
terminating events of the first partial order have occurred. This means that a strong
synchronization point is introduced at this point during the execution.

We note that Hierarchical PO-Charts are an alternative notation for defining the
behavior of collaborations as discussed in Sect. 3.1. We prefer this notation because it
has a formally defined semantics, however, it does not support directly concurrency.
An example of a PO-Chart is shown in Fig. 4(left): This chart defines the Test col-
laboration already shown in Fig. 2(b) – with a small change of control flow.

4 Conformance Testing with Respect to PO-Charts

4.1 General Testing Assumptions

Test Architecture. For distributed systems, the test architecture has a big impact on
testing. For testing a system that has several interfaces, one often uses the distributed
test architecture where a local tester is associated with each interface of the system. If
the local testers cannot communicate with one another, there are usually synchro-
nization problems for controlling the order of inputs to be applied to the system and
difficulties to observe the order of outputs at different interfaces. Therefore an archi-
tecture with local testers without mutual communication provides usually incomplete
testing power. – In the following we assume a test architecture with local testers that
can communicate with one another by message passing.

Fig. 4. (left) PO-Chart representing the Test collaboration. (right) The same behavior with
additional input-output interactions for testing.

10 G. von Bochmann



Architectures for testing distributed systems in respect to specifications in the form
of MSC were described in a recent paper [Dan]. In this context, it was assumed that the
processes identified in the MSC can be classified as system or user processes. Then the
user processes are replaced by local testers (that may, or may not communicate with
one another). These testers exchange messages as specified by the given MSC.

We take a slightly different approach for testing distributed implementations in
respect to PO-Chart specifications. We assume that each role of the PO-Chart may have
a local interface to which a local tester can be attached. We assume in this paper that
these local testers can communicate with one another by message passing. We assume
that, at each local interface, the local tester communicates with the implementation of
the role behavior through input and output interactions. These are synchronous inter-
actions between the tester and the role implementation, without queuing. This is similar
to the interactions of POIOA, although the interactions of PO-Charts are associated
with a particular role.

Let us consider the example PO-Chart of Fig. 4 (left). In order to define a suitable
test architecture, we have to determine which of the given actions are input or output,
or whether they are local actions that cannot be observed by the local tester. It may also
be necessary to introduce additional input or output interactions in order to increase the
power of testing. For this example system, we propose the enhanced PO-Chart of
Fig. 4 (right) which contains a few additional interactions with the local testers.
Non-observable local actions are represented by dark dots, inputs by white dots, and
outputs by white rectangles.

Test Suites. Since usually no finite test suite provides the guarantee that all possible
implementation faults would be detected, Bougé et al. [Bouge] suggest to consider a
sequence of test suites TSi (i = 1, 2, …) with increasing complexity, such that all faults
detected by TSi would also be detected by TSi+1. Then one can talk about validity of
such a set of test suites, which means that for any possible implementation fault, there
is a test suite TSi (for some i) that would detect this fault.

Fault Models. [Bouge] also stresses the point that there are always some assumptions
that are made about the tested implementations. These assumptions are often called
fault model. The fault model defines the range of faults that should be detected by the
given test suite. And at the same time these assumptions also state what properties of
the implementation are assumed to be correctly implemented (and therefore need not be
tested).

In this context, [Bouge] mentions the following types of assumptions that are
important for justifying the selection of particular test suites:

• Regularity hypothesis: This is an assumption about the structure of the imple-
mentation. Assuming that we have some measure of the complexity of each test
case, the regularity hypothesis states that there is a value of complexity k such that,
if the implementation behaves correctly for all test cases with complexity less than k
then it behaves correctly for all test cases. – In program testing, for example, one
typically executes loops only once or twice and assumes that if no fault was
detected then further executions of the loop will not lead to undetected faults.

Conformance Testing with Respect to Partial-Order Specifications 11



• Uniformity hypothesis: This assumption justifies the practice in program testing
where the domain of input parameters is partitioned into sub-domains and some
random values are selected in each sub-domain for testing. It is assumed that, if the
implementation behaves correctly for some value in a sub-domain, then it will
behave correctly for all values in that domain.

How do these considerations apply to the testing of PO specifications? – The
uniformity hypothesis applies to the variation of parameters of inputs to the imple-
mentation. In this paper we assume a finite set of distinct inputs where parameters can
be ignored. – The regularity hypothesis takes on a particular form in the context of
FSM testing methodology. The typical fault model of state machine testing assumes
that the number of states of the implementation is not much larger (if not smaller or
equal) to the number of states of the reference specification. Under this assumption, the
test suites with test cases of bounded length can provide the guarantee of fault
coverage.

For testing PO-Charts, we propose to use a regularity hypothesis similar to what is
used for program testing. A PO-Chart defines possible control flows from the initial
MSC-node to the final MSC-node. This is like the control flow in a program. As in
program testing, we propose to test a PO-Chart by executing the different control paths
through the chart, possibly using the well-known All-Branches or All-Paths criteria and
executing loops typically once or twice.

4.2 Testing PO-Charts

For a bounded PO-Chart, there are essentially two approaches to test suite selection:

• The partial-order testing method proposed in this paper: The test designer should
select a number of control flow paths through the PO-Chart, concatenate the partial
orders of the nodes in the order of the path, using weak or strong sequencing as
defined by the PO-Chart. The resulting partial order of inputs and outputs is then
tested using the partial-order test described in Sect. 2.1.

• The state machine testing approach (with all its different test selection methods):
Derive the state machine that has the same behavior as the PO-Chart, and then use
one of the state machine testing methods.

If the PO-Chart is unbounded, the second approach is not applicable. As an
example, we first discuss in the following the testing of a very simple bounded
PO-Chart, and then consider an examples of unbounded PO-Charts.

4.3 Example of a Bounded PO-Chart

We consider the PO-Chart shown in Fig. 5(a) which contains a loop with node
A containing the partial order of Fig. 1(a) with an additional ordering constraint
indicated by the dotted arrow. All sequencing between nodes are week sequences,
although for this example this is equivalent to strong sequencing. Figure 5(b) shows the
corresponding state machine.

12 G. von Bochmann



State Machine Testing. The state machine of Fig. 5(b) is a partially defined machine.
We recall that many state machine testing methods assume that the machine is fully
defined (that is, in all states for all inputs). Let us assume that input messages received
by the system are stored in a message pool until the system gets into a state where the
input can be consumed (this is called “full reordering of messages” in [Castejon],
Sect. 3.1). This is advantageous in distributed systems for avoiding race conditions
[Bochmann b]. If we assume this for the state machine of Fig. 5(b), then in all states all
inputs can be accepted – inputs for which no transition is defined in the current state
will provide no output, however, the state of the system changes since the content of
the pool changes.

Under this assumption, the state machine of Fig. 5(b) has unique input-output
(UIO) sequences of length one for all states, except for state 5. Let us assume that we
ignore the possible implementation fault that the i4-transition leads to one of the states
1, 2, 3 or 4. A test suite with fault detection guarantee for implementations built as state
machines with not more than 5 states would first include the test cases for validating the
UIO sequences. These tests would already include the test cases <i1, i2, i3, i4> and <i1,
i3, i2, i4> which cover all transitions of the state machine.

Partial-Order Testing. This PO-Chart allows for an infinite number of execution
paths p(n) – for n = 0, 1, 2, … where p(n) consists of n repetitions of the partial order
of node A followed by one execution of node B. If we only test the path p(1), using the
partial order test described in Sect. 2.1, we obtain the two test cases <i1, i2, i3, i4>
and <i1, i3, i2, i4>. For the path p(2) – shown in Fig. 6(a) - we obtain the following test
cases (where the dependencies of the bold inputs are determined): <i1, i3, i2, i1, i3, i2,
i4> and <i1, i2, i3, i1, i2, i3, i4>.

4.4 Examples of Unbounded PO-Charts

Let us consider the PO-Chart of Fig. 5(a) again, but now without the dashed depen-
dency. This chart is not bounded because there is no dependency where the right
process has to wait for the left process. In this case, the right process may execute a
second i1 input before an i3 input is applied to the left process, and this may repeat
after a second i2 input is applied to the right process.

Fig. 5. (a) Example of a PO-Chart. (b) An equivalent state machine

Conformance Testing with Respect to Partial-Order Specifications 13



With partial-order testing, we obtain for testing the path p(2) the following test
cases: <i1, i3, i2, i1, i3, i2, i4> and <i1, i2, i1, i2, i4, i3, i3>. For state machine testing
one may want to test an initial part of the corresponding infinite state machine. Such an
initial part is shown in Fig. 6(b).

Another example of an unbounded PO-Chart is shown in Fig. 4(right). The shortest
execution path goes through the partial orders of the two nodes only once. In this case,
the partial-order test gives rise to the following test cases (again, the inputs for which
the dependencies are tested are written in bold): <request, get-req, i2, i3, i5> and
<request, i2, i3, get-req, i5>. The realization of a correct implementation for the
behavior defined by this PO-Chart is not straightforward, as discussed in [Faleh]. An
implementation using messages for the order dependencies shown in the PO-Chart does
not work because in the case that the doctor terminal (dt) sends a get-req message
immediately after the request message to the test unit (tu), the former message may
arrive at the data-logger (dl) before the o2 message arrives, which means that the data
value returned does not include the last test measurement. Such a fault would be
detected by the first test case. A well-known solution for a correct implementation is to
count the number of times that the first node of the chart is executed, and include this
information in the messages sent to the data-logger [Faleh].

We note that this implementation fault would possibly not be detectable if there was
no testing interface at the test unit system component. On the other hand, the obser-
vation of the confirm output at the test unit is not useful for fault detection. We note that
the first test case requires some coordination between the local testers at the doctor
terminal and the test unit in order to make sure that the i2 input is not applied before the
get-req input at the doctor terminal and all resulting outputs (in this case none – a
timeout is assumed after each input in the test case) are observed.

Fig. 6. (a) Partial order of path p(2) based on the PO-Chart of Fig. 5(a). (b) Part of the infinite
state machine equivalent to the PO-Chart of Fig. 5(a) without the dashed dependency.

14 G. von Bochmann



5 Discussion

Specification Formalism. The POIOA specification formalism has been criticized for
assuming strong synchronization points in each state of the machine. This corresponds
to PO-Charts in which all sequential edges between different nodes (partial orders) have
strict sequencing. In contrast to the partial orders associated with POIOA transitions,
the partial orders associated with a node of a PO-Chart indicates for each interaction the
role (process or interface) where the interaction takes place. This additional information
allows us to define weak sequencing between different nodes of a PO-Chart.

One could possibly introduce an extension to POIOA where the sequencing of
incoming and outgoing transitions at each state could be explicitly specified by indi-
cating for each initiating event of an outgoing transition what are the terminating events
of an incoming transition for which this initial event must wait before proceeding (if the
state was reached by that incoming transition). If it has to wait for all terminating events,
then we have the situation of normal POIOA where the incoming transition must be
completely terminated before an outgoing transition may start. Weak sequencing could
also be specified if the roles of the events are known. However, we are not convinced
that such a generality of defining the sequence of transitions is useful – we prefer the
addition of the role information (as defined for PO-Charts) which automatically defines
the semantics of weak sequencing (if this is the desired form of sequencing).

Testing Complexity. It was argued in [Bochmann a] that the partial order test, as
discussed in Sect. 2.1, is of much lower complexity than state machine testing when
applied to systems with concurrency. This does not show up in the simple examples
discussed above. But it is clear that the number of states of a state machine that is
equivalent to a partial order grows exponentially if the degree of concurrency in the
partial order increases. With the number of states of the reference specification, also the
length of the test suite will grow accordingly.

As an example, we consider here a variation of the partial order of Fig. 1(a) where
we assume that three inputs i2, i3 and i4 are enabled after the input i1 (see Fig. 7(a)).

Fig. 7. (a) A partial order with roles. (b) An equivalent state machine.

Conformance Testing with Respect to Partial-Order Specifications 15



The corresponding state machine is shown in Fig. 7(b). The state machine testing
approach requires at least 6 test cases to cover all the branches of the state machine.
With the partial order approach, we obtain the three test cases <i1, i2, i3, i4>, <i1, i3,
i4, i2>, and <i1, i2, i4, i3>.

Different Fault Models. One may suspect that the lower complexity of the
partial-order tests implicitly implies that their fault coverage is lower. This is in fact
true. The fault model for which the partial-order tests provide fault coverage makes
stronger assumptions about the tested implementation than the fault model used with
state machine testing.

It was shown in [Bochman a] that the partial-order test method provides complete
fault coverage under the assumption that the tested implementation has the behavior
that can be defined by a single partial order (without alternatives). That is, a transition
of the POIOA model is implemented as a single transition in the implementation
POIOA. An example of an implementation that does not satisfy this assumption would
be an implementation that has the behavior of Fig. 7(b) with a single output fault in the
dashed transition. Such a fault is not detected by the test suite given above, and this
faulty implementation cannot be described by a single partial order.

6 Conclusions

For describing the behavior of distributed systems with multiple interfaces, one needs
the notion of partial order for the interactions at the different interfaces, since there is no
total order defined for all the interactions of the system. We have compared different
notions of partial-order specifications, including POIOA, ordering of collaborations,
and MSC-Charts (also called Interaction Overview Diagrams). We propose the use of a
variant of the latter, called Partial-Order-Charts (PO-Charts). We have shown that for
the testing of distributed systems in respect to such behavior specifications, the
partial-order tests of [Haar] can be used.

In the case that the PO-Chart is bounded, one can also derive an equivalent state
machine and use FSM testing methods. We provided in this paper a preliminary
comparison of testing complexities and fault models for these two testing approaches
(partial-order tests and FSM testing methods). For systems with much concurrency, the
partial-order tests are advantageous if one can assume that the fault model of
partial-order testing is satisfied. This is presumably the case when the implementation
uses message passing between the different system components to implement the order
dependencies defined in the specification.

Acknowledgements. I would like to thank Guy Vincent Jourdan for many fruitful discussions
on testing POIOA.

16 G. von Bochmann



References

[Alur] Alur, R., Yannakakis, M.: Model checking of message sequence charts. In:
Baeten, J.C., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129.
Springer, Heidelberg (1999)

[Bochmann a] von Bochmann, G., Haar, S., Jard, C., Jourdan, G.-V.: Testing systems
specified as partial order input/output automata. In: Suzuki, K., Higashino, T.,
Ulrich, A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047,
pp. 169–183. Springer, Heidelberg (2008)

[Bochmann b] von Bochmann, G.: Deriving component designs from global requirement. In:
Baelen, S.V., Graf, S., Filali, M., Weigert, T., Gerard, S. (eds.) Proceedings of
the First International Workshop on Model Based Architecting and Construc-
tion of Embedded Systems (ACES-MB 2008), Toulouse, CEUR Workshop
Proceedings, vol. 503, pp. 55–69 (2008)

[Bochmann c] von Bochmann, G., Jourdan, G.V.: Partial Order Input/Output Automata:
Model and Test, unpublished document

[Bouge] Bougé, L., Choquet, N., Fribourg, L., Gaudel, M.C.: Test sets generation from
algebraic specifications using logic programming. J. Syst. Softw. 6(3), 343–360
(1986)

[Castejon] Castejòn, H.N., Bochmann, Gv, Braek, R.: On the realizability of collaborative
services. J. Softw. Syst. Model. 10, 1–21 (2011)

[Dan] Dan, H., Hierons, R.M.: Conformance testing from message sequence charts.
In: Proceedings of 4th International Conference on Software Testing,
Verification and Validation (IEEE), pp. 279–288 (2011)

[Faleh] Faleh, M.N.M., von Bochmann, G.: Transforming dynamic behavior specifi-
cations from activity diagrams to BPEL. In: Proceedings of IEEE 6th
International Symposium on Service-Oriented System Engineering, Irvine,
California, pp. 305–311, December 2011

[Haar] Haar, S., Jard, C., Jourdan, G.-V.: Testing input/output partial order automata.
In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.)
TestCom/FATES 2007. LNCS, vol. 4581, pp. 171–185. Springer, Heidelberg
(2007)

[Israr] Israr, T., Bochmann, G.v.: Performance modeling of distributed collaboration
services with independent inputs-outputs. In: Proceedings of 5th International
Workshop on Non-functional Properties in Modeling: Analysis, Languages and
Processes Co-located with 16th International Conference on Model Driven
Engineering Languages and Systems, Miami, USA, 29 September 2013

[Simao] Simao, A., Petrenko, A.: Generating asynchronous test cases from test
purposes. Inf. Softw. Technol. 53, 1252–1262 (2011)

[UML] OMG Unified Modeling Language, Version 2.5, March 2015. http://www.omg.
org/spec/UML/2.5/PDF/. Accessed June 2016

Conformance Testing with Respect to Partial-Order Specifications 17

http://www.omg.org/spec/UML/2.5/PDF/
http://www.omg.org/spec/UML/2.5/PDF/


Back-to-Back Testing of Self-organization
Mechanisms

Benedikt Eberhardinger(B), Axel Habermaier, Hella Seebach,
and Wolfgang Reif

Institute for Software and Systems Engineering,
University of Augsburg, Augsburg, Germany

{eberhardinger,habermaier,seebach,reif}@isse.de

Abstract. When developing SO mechanisms, mapping requirements to
actual designs and implementations demands a lot of expertise. Among
other things, it is important to define the right degree of freedom for
the system that allows for self-organization. Back-to-back testing sup-
ports this hard engineering task by an adequate testing method helping
to reveal failures in this design and implementation procedure. Within
this paper we propose a model-based approach for back-to-back test-
ing. The approach is built on top of the S# framework and integrated
into the Visual Studio development environment, enabling the creation
of executable test models with comprehensive tooling support for model
debugging. By applying the concepts to a self-organizing production cell,
we show how it is used to fully automatically reveal faults of a SO mech-
anism.

Keywords: Adaptive systems · Self-organization · Software
engineering · Software testing · Quality assurance · Back-to-back
testing · Model-based testing

1 Introduction

The increasing complexity of current software systems has led to an increase of
autonomy of software components that are resilient, flexible, dependable, versa-
tile, recoverable, customizable, and self-optimizing by adapting to changes that
may occur in their environments [11]. Self-organization (SO) has become a key-
stone in the development of autonomous systems, allowing them to adapt their
behavior and structure in order to fulfill their goals under ever-changing envi-
ronmental conditions. Mechanisms of SO are built on top of the concepts of
classical feedback loops (cf. [9,16]). Therefore, the environment and the compo-
nents are sensed and controlled, using the feedback to adapt the behavior and/or
structure of the components. Different architectural concepts were developed to
engineer SO mechanisms, e.g., the MAPE Cycle [9] or the Observer/Controller
Architecture [16]. As an important part of the development of SO mechanisms,
testing needs to be integrated in order to achieve the required quality level of
the system.
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 18–35, 2016.
DOI: 10.1007/978-3-319-47443-4 2



Back-to-Back Testing of Self-organization Mechanisms 19

This paper presents a thorough approach for supporting the engineering
of SO mechanisms by back-to-back (BtB) testing [19] of feedback loop-based
self-organization mechanisms. In our experiences in developing SO mechanisms,
mapping requirements to actual designs and implementations demands a lot of
expertise. Among other things, it is important to allow the system the right
degree of freedom to enable self-organization. Back-to-back testing supports this
engineering task with an adequate testing method helping to reveal failures in
this design and implementation procedure. In order to supply BtB testing for
SO mechanisms, we are faced by the following challenges:

1. Supplying test oracles that are able to cope with the unbounded decision
space formed by different possible configurations of the systems controlled
by the SO mechanism(s) as well as the huge state space of the mechanisms
themselves.

2. Systematic test case selection is needed since exhaustive testing is not possible
due to the unbounded state space. Additionally, most SO algorithms are based
on heuristics, making their behavior quite non-deterministic and their state
space non-uniform. Thus, common test case selection strategies relying on
structured program behavior cannot be used.

3. Automation of test execution and evaluation is a keystone for the success,
since this is the only way to execute the large test suites.

We address these challenges in a model-based approach for BtB testing where
the test model mainly consists of two parts: (1) the model of the system con-
trolled by the SO mechanism, i.e., the environment model, and (2) the model of
the intended behavior of the SO mechanism, i.e., the test model. The latter is
based on our concept of the corridor of correct behavior (CCB) [7] that describes
the intended behavior of the system as a set of constraints. The concept of the
CCB is used as part of the test oracle by evaluating the constraints on the current
state of the model resp. system [3].

The model of the system to be controlled by the SO mechanism is used
for test case generation as well as for their execution. This is possible due the
S# modeling framework used by our approach: With S#, executable model
instances can be composed together with a high degree of flexibility in order to
test different system configurations. Furthermore, it is possible to integrate the
concrete SO mechanism(s) under test into the execution environment provided
by S# and to map the mechanism’s state back into the model instances for
evaluation within S#. The evaluation is based on checks whether the current
state matches the constraints made in the model of the intended behavior.

Overall, the following main contributions will be presented:

1. A model-based BtB testing concept for SO mechanisms that is fully integrated
into Visual Studio.

2. An approach for systematic test case selection for BtB testing of SO mecha-
nisms.

3. Automated evaluation of test results within our test model which is based on
the concepts of the CCB.



20 B. Eberhardinger et al.

The paper is organized as followed: The next section embeds the approach
into our overall testing concept for self-organizing, adaptive systems. After the
introduction of the case study (Sect. 3), Sect. 4 gives an overview of our S#
modeling framework and the BtB testing model. Section 5 describes model of
intended behavior of the SO mechanisms. Section 6 shows how test cases are
generated and executed. Section 7 evaluates the approach. We consider related
work in Sect. 8 and conclude in Sect. 9.

2 The Corridor Enforcing Infrastructure

Our approach for testing self-organizing, adaptive systems (SOAS)—and con-
sequently for testing SO mechanisms—is based on the Corridor Enforcing
Infrastructure (CEI) [3]. The CEI is an architectural pattern for SOAS using
regio-central or decentralized feedback loops to monitor and control single com-
ponents or small groups of components in order to ensure that the system’s goals
are fulfilled at all times. The CEI implements the concepts and fundamentals of
the Restore Invariant Approach (RIA) [7]. RIA defines the Corridor of Correct
Behavior (CCB), which is described by the system’s structural requirements,
formalized as constraints. Concerning a self-organizing production cell scenario
the CCB is formed by the constraints describing valid configurations of the sys-
tem. The conjunction of all these constraints is called the invariant (INV ). An
exemplary corridor is shown in Fig. 1: The system’s state is inside the corridor
if INV is satisfied; otherwise, the system’s state leaves the corridor, indicated
by the flash. In that case, the system has to be reorganized in order to return
into the corridor, as shown by the transition with a check mark. A failure occurs
if a transition outside of the corridor is taken, like the one marked by a cross,
although a transition back into the corridor exists.

The CEI implements the RIA either with centralized or decentralized pairs
of monitors and controllers, as proposed by the MAPE cycle [9] or the Observer/
Controller (O/C) architecture [16]. Figure 2 shows a schematic view of one possi-
ble implementation of the CEI based on the O/C architecture where the essential
parts are the system under observation and control (SuOC), i.e., single agents
or groups of agents; the observer (O), i.e., the component monitoring the state
of the SuOC (in- or outside of the CCB) and providing information to the con-
troller; and the controller (C), i.e., the SO algorithms controlling the SuOC.

Fig. 1. Schematic state-based view of the corridor of correct behavior; INV is the
conjunction of all constraints of the system controlled by the CEI [3].



Back-to-Back Testing of Self-organization Mechanisms 21

O C O C O C

O C

O C O C O C

O C

O

SuOC

C O

SuOC

C O

SuOC

C

O C

Observer

Constraint Monitor

Controller

Self-x-algorithms

O

SuOC

C O

SuOC

C O

SuOC

C

Agent Layer

Interaction Layer

System Layer

R-Detect R-Solution

R-Distribution

Fig. 2. Schematic view of one CEI implementation and its different layers for testing
(agent, interaction, and system layer) [2].

Note that the CEI consists of sets of nested feedback loops controlling the entire
system. Figure 2 further sketches the different layers for testing to cope with the
complexity of the system: agent, interaction, and system layer.

The reorganization by the controller is performed by one or more SO algo-
rithms resulting in a new system configuration. Such a system configuration has
to satisfy the constraints describing a valid organizational structure. The con-
crete choice of the SO algorithms and their constraints has no impact on our
approach. Since the system behaves like a traditional software system inside the
CCB, traditional test approaches can be used to ensure the quality of the SuOC.
The CEI, by contrast, enables self-organizing and adaptive behavior of the sys-
tem and demands new concepts for testing to cope with the challenges described
in Sect. 1.

In order to grasp SO mechanisms for testing, we need techniques to stepwise
examine the CEI and its mechanisms, covering the following responsibilities of
the CEI: correct initiation of a reorganization if and only if a constraint is vio-
lated (monitoring infrastructure, R-Detect); calculation of correct system con-
figurations in case of violations (R-Solution); and correct distribution of these
configurations within single agents or small groups of agents controlled by the
CEI (R-Distribution). In this paper, we focus on revealing SO mechanism fail-
ures which relate to (R-Detect) and (R-Solution), extending our approach of
isolated testing of SO algorithms presented in [2].

3 Case Study: The Self-organizing Production Cell

Future production scenarios demand for much more flexibility [4] than today’s
shop floor design to cope with the trend towards small series production, indi-
vidualized products and the reuse of production stations for different tasks. This
flexibility becomes possible due to the increased automation and data exchange



22 B. Eberhardinger et al.

in manufacturing technologies. These future cyber-physical systems will inte-
grate self-organization mechanisms to resolve the tasks of decentralized decision
making, to optimize the systems structure, and to autonomously react to com-
ponent failures at runtime increasing the system’s robustness. We envision self-
organizing production cells, where the production stations are modern robots
equipped with toolboxes and the ability to change their tools whenever neces-
sary (self-awareness). They are connected via mobile platforms (carts) that are
able to carry workpieces and to reach robots in any order. Thus, the production
cell is able to fulfill any task which corresponds to tools (capabilities) available
in the cell. This is possible due to the SO mechanisms that reorganize the carts
and robots in a way that the tools are applied to the workpieces in the correct
order. Finding a correct allocation of tools to robots and according routes to
carts (system configuration) constitutes a constraint satisfaction problem. Any
violation of the calculated configuration (represents a state of the system within
the CCB) at run-time triggers the SO algorithm calculating and distributing a
new system configuration. A tool-supported approach to systematically model
and analyze these kind of systems is shown next.

4 Building the Environment Model of SO Systems

The self-organizing production cell is an instance of the system class of self-
organizing resource-flow systems; a metamodel [18] for this system class based
on CEI is explained by Sect. 4. The case study maps to the metamodel as fol-
lows: The robots and carts are Agents monitored by the Observer/Controller. The
carts transport workpieces, i.e., Resources, between the robots, which have sev-
eral switchable tools, i.e., Capabilities, such as drills and screwdrivers that they
use on the workpieces. A Task requires a workpiece to be processed by a sequence

Fig. 3. A UML class diagram giving a simplified overview of the metamodel for self-
organizing resource-flow systems (according to [18]): Resources are passed along a
set of Agents, each applying certain Capabilities in order to conduct a step towards
the completion of the Resource’s Task. The Observer/Controller—encompassing the SO
mechanism—monitors the Agents and assigns their Roles such that all Resources are
eventually fully processed with the correct order of Capability applications. Such a
resource flow is specified by the Pre- and PostConditions of all Roles within the system,
as well as the inputs and outputs of the Agents that establish their interconnections.



Back-to-Back Testing of Self-organization Mechanisms 23

System 
Configuration

S# InstanceS# InstanceComponent 
Fault Model

virtual
commissioning

Observer

Controller

copy

M
ap

pi
ng

Observer 
Oracle

Controller 
Oracle

Actual Behavior Intended Behavior 

TCG Evaluation 
ResultsDCCA

Algorithm

System under TestTest PlatformS# Test Model

System Model

Configuration
Description

Fig. 4. Our approach is divided into three parts: the first part consists of the S#
test model as well as corresponding configuration descriptions (cf. Sect. 4). The second
part is the test platform that instantiates a system configuration as the basis for the
test case generation with Dcca; the component fault models represent the test cases
that are evaluated (cf. Sects. 4 and 6) and provide the test oracles for the observer
and controller (cf. Sect. 5). The third part represents the actual behavior of the SO
mechanism which must be mapped to the intended behavior after each execution for
evaluation purposes (cf. Sect. 6).

of tool applications, e.g., by applying the drill, insert, and tighten Capabilities.
Therefore, the robots and carts are responsible for processing incoming work-
pieces in a given sequence of tool applications. The Roles assigned to each robot
and cart indicate which tools they apply on the workpieces or which robots the
resources are transported between, respectively. The Observer/Controller forms
the SO mechanism of the system; it is responsible for reconfiguration in order to
compensate for broken tools, blocked routes, or to incorporate new tools, robots,
or carts, for instance (Figs. 3 and 4).

The case study is modeled using the S# modeling and analysis framework
for safety-critical systems [8]. As its modeling language is based on the C#
programming language, the metamodel shown in Sect. 4 can be directly rep-
resented by a set of C# classes, with two additional classes RobotAgent and
CartAgent derived from Agent encapsulating the production cell-specific parts
of the model. Even though the S# model of the case study is represented by a
C# program, it is still a model and not the actual implementation; for instance,
it completely abstracts from any distribution concerns, executing all modeled
agents locally to simplify modeling and analysis. S# also allows the composition
of a model to be automated: Arbitrary C# code can be executed to instantiate
system components and to connect them together in order to build up the overall
model, thereby providing meta-constructs for model creation. These capabilities
are particularly useful for the creation of different system configurations when
testing the case study; model instantiation with S# is illustrated by Listing 1.

CreateWorkpieces(5, produce(), drill(), insert(), tighten(), polish(), consume());
CreateRobot(produce());
CreateRobot(insert());
CreateRobot(tighten(), polish(), tighten(), drill());
CreateRobot(polish(), consume());
CreateCart(new Route(Robots[0], Robots[1]), new Route(Robots[0], Robots[3]));
CreateCart(new Route(Robots[2], Robots[3]));

Listing 1. Parts of the S# instantiation code for a configuration of the case study
consisting of five workpieces that require the task PDITPC to be carried out on them.
Four robots are created with some minor redundancy in available capabilities. The two
carts connect all four robots via bidirectional routes.



24 B. Eberhardinger et al.

S# executes the models as regular C# programs, taking care of potential
non-determinism in the models such that all combinations of non-deterministic
choices are fully analyzed. It is also possible to spawn additional processes during
model checking, enabling the integration of other tools into the models and the
analyses: For the case study, for example, a constraint solver is used to model
the SO algorithm within the Observer/Controller. Whenever a reconfiguration is
required, the S# model encodes the current system configuration for the con-
straint solver, requests a solution from it, and applies the returned solution back
onto itself.

5 The Test Model for the Intended Behavior of the SO
Mechanisms

S# integrates, as shown in Sect. 4, the complete testing framework, including
test cases derivation, test cases execution, as well as test case evaluation and
logging. In order to enable the evaluation of test cases, the overall model needs
to be extended by the test model. The extension encompasses a definition of the
intended behavior of the system under test within the S# model, as shown in
the right part of Sect. 4. Within the BtB testing approach, we propose this one
important step: to co-develop the intended behavior of the system and check it
against the actual behavior. Thus, the co-development of the intended behavior
is used in order to check whether it corresponds to the actual behavior. The
intended behavior is modeled in two parts, consisting of (1) a description of
valid system states, i.e., the INV of the CCB for the SO mechanism, as well
as further constraints concerning the form of the results of the SO algorithms
itself and (2) an evaluation mechanism that is able to state whether there is a
possible configuration for the current system state in order to spot whether the
SO algorithm missed a valid solution.

Valid system states are determined using one of the major advantages of
the CCB for testing SOAS: INV is a way to distinguish between correct and
incorrect actions of SO mechanisms—as described in Sect. 2. A failure occurs if
a violation of the CCB is not detected (R-Detect), the computed solution does
not lead to a system configuration inside the CCB (R-Solution), or a correct
solution is distributed incorrectly (R-Distribution). The approach of this paper
focuses on the first two aspects. As a basis for the evaluation, the constraints that
form the CCB are developed separately—an important step of co-development
in BtB testing—and integrated into the model. Listing 2 shows how parts of the
production cell case study’s CCB constraints are specified in the S# model.

The constraints that form the oracle are divided into two parts, one for the
observer and one for the controller (cf. Sect. 4). The observer part describes
all violations of the CCB that have to be detected by the observer. The con-
straints of the observer oracle are evaluated after the observer decided whether to
reconfigure or not and the oracle judges this decision. Afterward, the controller
might be activated—in case of an activation by the observer—and the result is
evaluated by the controller oracle. Note that for both evaluations, the mapping



Back-to-Back Testing of Self-organization Mechanisms 25

agent.Constraints = new List<Func<bool>>() {
// I/O Consistency
() => agent.AllocatedRoles.All(role => role.PreCondition.Port == null ||

agent.Inputs.Contains(role.PreCondition.Port)),
() => agent.AllocatedRoles.All(role => role.PostCondition.Port == null ||

agent.Outputs.Contains(role.PostCondition.Port)),
// Capability Consistency
() => agent.AllocatedRoles.All(

role => role.CapabilitiesToApply.All(capability =>
agent.AvailableCapabilites.Contains(capability))),

/* ... */
}

Listing 2. Partial S# model representing a subset of the constraints defined for the
oracle.

between the actual SO mechanism has to be establish with the test system, i.e.,
the results need to be interfaced. For the evaluation of the controller a set of
the constraints needs to be evaluated that is part of the controller oracle. In
most cases there are overlaps between the two constraint sets, however, mostly
the set of the controller oracle is a superset of the constraints of the observer
oracle, however, it also might be vice versa. The additional constraints in the
oracles might be due to the fact that additional requirements are necessary to
fully check the results of the different parts of the SO mechanism. In our case
study, this is the case for the controller oracle. The additional constraint con-
cern the assigned roles for the robots and carts: they must be connected in the
correct order for any task after reorganization so that they are applied the right
way (for instance, drill, then insert, then tighten). This constraint would not be
checked by the observer, since no environmental influence would change the role
definitions; only the tools within the roles are affected, for instance.

The satisfiability check of the oracle focuses on another obligation for the
SO algorithm: if a solution for a new system configuration is feasible on the
current system instance, the SO algorithm must find it in order to find a valid
configuration for the running system. If we do not check that second part of
the solution we would neglect faults resulting from too strict restrictions made
as a design decision in the development. Indeed, in the BtB testing approach,
we aim at revealing such errors. For this purpose, it is necessary to search in
the configuration space for possible configuration(s) of the system that fulfill all
requirements resp. constraints considered in the previous paragraph. We use a
search algorithm that systematically checks every given configuration for valid-
ity; if one is found then a solution is possible and the SO algorithm has to find
it. Algorithm 1, for instance, shows a search algorithm that evaluates whether a
reconfiguration is possible for the case study of the production cell: It starts by
checking whether all capabilities needed for the tasks that should be applied in
the system are available, e.g., if a task requires drilling at least one robot must
be able to drill. If that prerequisite is satisfied, the algorithm checks whether the
robots with the necessary capabilities are connected by carts such that work-
pieces can be transported between them in way that the tasks can be fulfilled.
Such an algorithm, if one exists at all, might be expensive in time and space. But
this is acceptable due to the following facts: the check has to be performed only
occasionally during the testing process as it is only executed when no solution is



26 B. Eberhardinger et al.

Algorithm 1. Checks whether a reconfiguration is possible for a given set of
robot and cart agents as well as the tasks to be carried out.
Input: robotAgents, cartAgents, tasks
Output: a Boolean value indicating whether a reconfiguration is possible
1: m ← GetConnectionMatrix(robotAgents) // transitive closure of all connected

robots
2: for all t ∈ tasks do
3: if ¬∀c ∈ t.Capabilities: ∃a ∈robotAgents: c ∈ a.AvailableCapabilities then
4: return false
5: end if
6: A ← {a ∈ robotAgents | t.Capabilities[0] ∈ a.AvailableCapabilities }
7: for i = 0 to |task.Capabilities| −1 do
8: A ← {a ∈ m[a′] | a′ ∈ A ∧ t.Capabilities[i + 1] ∈ a.AvailableCapabilities }
9: if |A| = 0 then

10: return false
11: end if
12: end for
13: end for
14: return true

found by the SO algorithm; when the SO algorithm cannot find a solution, the
configuration space is small in most cases.

6 Generating and Executing Test Cases with S#

A necessary prerequisite for deriving and executing test cases is to instantiate
the model with a concrete configuration, e.g., the numbers and kinds of robots in
the production cell. Within one such configuration the number of different test
cases are determined by the different possible environmental events the system
has to adapt to. Since the number of different configurations is unbounded,
a concrete configuration is chosen for testing. Subsequently, test cases for a
chosen configuration are defined by triggering environmental events that are
modeled as S# component faults, e.g., a tool breaks, a path for carts get blocked,
and so on. All of these events result in reconfigurations, i.e., executions of the
SO mechanism. The huge number of configurations and component faults make
exhaustive testing impossible, thus, we follow a two-part test selection strategy.
d latter adding the concrete observer to a tested SO algorithm.

6.1 Test Case Generation for SO Mechanisms

The test strategy we purpose is based on the ideas of virtual commissioning
and boundary interior testing. On the one hand, we only consider one concrete
configuration and use the concepts of virtual commissioning to check other con-
figurations on demand; on the other hand, the concepts of boundary interior
testing are applied to SO mechanisms to find relevant test cases more quickly.



Back-to-Back Testing of Self-organization Mechanisms 27

Virtual Commissioning of SOAS Systems for Test Case Reduction. The concept
of virtual commissioning is mainly applied in the field of large manufacturing
systems where a virtual manufacturing system is built in order to simulate indi-
vidual manufacturing processes for optimization and validation purposes [10].
Within this virtual environment, the real controller is executed on the virtual
plant enabling to test, tune, or initialize it for a specific configuration of the
plant. We adopt this concept for the reduction of possible configurations of the
system to be tested. The idea is to base the tests on only one configuration,
namely, the one which should be rolled out afterward. Indeed, there will be
changes at run-time, e.g., new robots are integrated, new tools are added, or
tasks change. Before such a change is rolled out to the running system, the
model instance must first be updated and the tests have to be re-run on the
new instance. Since the change of the current configuration of the system is due
to a human intervention—we assume the system not to extend itself by other
components or similar—it is possible to run this test-first-deploy-after strategy
at run-time. Thus, we select only the configuration for testing that is crucial for
the deployment and have the ability to test new configurations on demand. This
is possible due to the generic S# test model in which it is easy to instantiate
new configurations (cf. Listing 1) and to automatize the testing process.

Boundary Interior Testing for SO Mechanisms. For test case selection within
one configuration of the system we adopt the concepts of boundary interior
testing, where the idea is to select test cases at the boundary of expected behav-
ior changes. The boundaries of SO mechanisms are states of the system where
reconfiguration is rarely possible, i.e., where only few solutions are still possible.
Reconfigurations, as we consider them, are mainly driven by changing environ-
mental conditions that force the system to reorganize itself. In our test model,
we define these changing conditions as component faults of the controlled system
such as a robot being unable to apply its tools in the production cell case study.
The component faults are part of the S# model.

In order to find the component faults that bring the system to its bound-
aries, we use Deductive Cause-Consequence Analysis (Dcca). Dcca is a fully
automated model-based analysis techniques integrated into S#, usually used to
assess the system’s safety by computing all minimal cut sets for a hazard [8].
Minimal cut sets are combinations of component faults that can cause a hazard,
characterizing a cause-consequence relationship between component faults (the
causes) and the hazard (the consequence): a set of component faults is a cut set
for a hazard if and only if there is the possibility that the hazard occurs and
before that, at most the faults in the fault set have occurred. Dcca has expo-
nential complexity as it has to check all combinations of component faults. In
practice, however, the number of required checks usually is significantly lower, as
the cut set property is monotonic with respect to set inclusion. Dcca can also be
used to compute the boundaries of SO mechanisms: the hazard is simply defined
as the inability for further reconfigurations. To compute the boundaries, the
combinations of component faults are checked in order to determine whether
such a set does or does not have the potential to cause that hazard. Dcca



28 B. Eberhardinger et al.

DCCA w/ HeuristicsDCCA w/o HeuristicsDepth-First Approach

no component faults

all component faults

Fig. 5. The three boxes represent different test case generation strategies. The x-axises
of the graphic shows different system states for a particular SO mechanism under test
that are formed by the possible different configurations and settings of the system under
control. The boundaries of the SO mechanism relative to the number of component
faults activated is shown by the black line. The idea of boundary interior testing for SO
mechanisms is to stay inside and at the boundaries for testing. The left box represents a
näıve depth-first search whereas the middle box shows the boundary interior approach
with the standard Dcca and the right box it extension by heuristics.

automatically chooses the next set of component faults to be activated, i.e., the
next test case, and executes it. S#’s standard approach for Dcca checks the
fault sets by increasing cardinality, thus the approach also includes test cases for
inner boundary tests. The concepts of boundary interior testing for SO mecha-
nism is exemplified in Sect. 6.1. The left box refers to a näıve approach where
test cases are selected in a depth-first attempt and the boundaries of the SO
mechanisms are not taken into account. That implies that many negative test
cases are executed where less faults are expected to be revealed; in our evaluation
no fault has been detected by these negative tests. The middle box of Sect. 6.1
is representing Dcca for boundary interior testing and covers the interiors and
boundaries. The right box shows an extension that is currently under develop-
ment and evaluation where only the boundaries are considered by conducting
Dcca with different heuristics for selecting sets of component faults. They opti-
mize the search of the boundaries by selecting component fault sets first where
more faults of the same kind are activated and subsumption relations between
component faults are exploited (Fig. 5).

6.2 Test Case Execution with S#

In order to achieve significant results, we advocate to integrate different parts of
the SO mechanism step-wise: first isolate the SO algorithms, which form the con-
troller, and afterward hook up the observer part. That enables to assign possible
failures to the different parts, e.g., if a test suite is re-run after it has passed for
the SO algorithm with a hooked up observer, the failure is most likely due to a
faulty observer. In order to unhook the observer, the controller is triggered after
every execution step, causing the system to continuously reconfigure itself. This
leads also to a reduction of failure overlapping due to a missing activation of the
controller by the observer. Since S# models are fully executable, the generation



Back-to-Back Testing of Self-organization Mechanisms 29

and selection of test cases, their execution, and their evaluation are automati-
cally performed together. Additionally, it is also possible to manually execute
or re-execute given test cases. The integration of S# into Visual Studio lets the
development and execution of the test model benefit from the whole tool support
of Visual Studio, e.g., the debugger. Thus, it is possible to step through every
test case to monitor and control the execution and the state changes, making
fault localization and test model development much easier.

7 Evaluation

For our evaluation—whose implementation is fully available at http://safetysharp.

isse.de—we addressed the following four research questions:

R1. Is the proposed approach for testing SO mechanisms applicable to real
scenarios?

R2. Is the approach able to reveal failures in SO mechanisms?
R3. Do real faults reflect the ideas proposed and exploited for test case gener-

ation (i.e., occur faults at the boundaries of the SO mechanism?)?
R4. Does the mechanism for reaching these boundaries outperform a näıve app-

roach?

For the evaluation, we co-developed a SO mechanism for the self-organizing
production cell, described in Sect. 3. However, the test cases and constraints are
applicable to the whole system class of self-organizing resource-flow systems and
in particular, the concrete implementation of the SO algorithm can be replaced
by any other implementation. In the case at hand, we used MiniZinc1 as a con-
straint modeling language with FlatZinc as the low-level solver. The system
constraints have therefore been translated into a MiniZinc model that describes
valid configurations for the production cell; the MiniZinc input for a system
configuration is shown in Listing 3. Thus, it is possible to feed the SO algorithm
with a specification of a task, the number of agents (carts and robots), the capa-
bilities, and the routing table. If satisfiable, the SO algorithm returns a solution
that assigns each tool needed for the task to some robot and that routes the
carts between the robots accordingly. This SO algorithm has been plugged into
S# via an interface that provides the specification of the problem to be solved
by the SO algorithm and that parses MiniZinc results. The constraints of the
observer of the SO mechanism—originally developed in Java for our implemen-
tation of the production cell based on the multi-agent system Jadex 2—have been
converted to C# in order to integrate them into the S# model. This completes
the integration of the developed SO mechanism into the S# model and shows
that real scenarios are realizable with our approach (R1).

For evaluation purposes, we analyzed different configurations (cf. Table 1) of
the production cell. The configurations differ in the number of agents (robots

1 http://www.minizinc.org/.
2 http://www.activecomponents.org/.

http://safetysharp.isse.de
http://safetysharp.isse.de
http://www.minizinc.org/
http://www.activecomponents.org/


30 B. Eberhardinger et al.

task = [1,2,3,4,5,6]; noAgents = 6;
capabilities = [{1},{3},{4,5,4,2},{5,6},{},{}];
isConnected = [|true,false,false,false,true,false

|false,true,false,false,true,false
|false,false,true,false,false,true
|false,false,false,true,true,true
|true,true,false,true,true,false
|false,false,true,true,false,true|]

Listing 3. The input model for MiniZinc describing a task, the available capabilities of
the robots, as well as the connection matrix based on the carts’ routes, corresponding
to the configuration instantiated by Listing 1.

and carts), the average number of capabilities per robot, the number of tasks,
and the number of routes established by the carts between the robots.

One main achievement of the evaluation is that we were able to reveal the
following faults with the implementation of the SO mechanism; each fault is
annotated with the responsibility of the SO mechanism where the fault was
detected (cf. Sect. 2):

F1. The fault affected route handling: the MiniZinc implementation interpreted
transitive routes as direct ones. Its computed configurations included direct
connections that were not available, e.g. 0 → 2 �= 0 → 1 → 2 (R-Solution).

F2. The fault was that the SO algorithm expected the routes to be unidirec-
tional while they were in fact bidirectional. The failure manifested itself as
overlooked solutions even though at least one existed (R-Solution).

F3. The fault was a wrong implementation of the interface for the SO algorithm.
The interface expected first the capability of a designated agent, but got the
first capability of the task assigned to the designated agent (R-Solution).

F4. The fault was a wrong format for the mapping of the solution from the
SO algorithm to the system model concerning the pre- and postconditions of
a role (R-Distribution). The pre-/postconditions contained the state of the
workpiece in form of the remaining part of the task, e.g., for task [D, I, T ]
the precondition contained [D, I, T ] and the postcondition [I, T ] if D had
been performed. But the mapping should lead to states of the workpiece
representing the part of the task which already had been done, e.g., for task
[D, I, T ] the precondition should contain [] and the postcondition [D] if D
had been performed (R-Distribution). This fault was detected even though
the testing approach was initially not focused on R-Distribution.

F5. The fault was a too narrow restriction in the SO algorithm that did not
allow to use intermediate robots that apply no tools since the maximum
length of concatenated roles was restricted. Thus, Listing 3 was mistak-
enly considered to be unsatisfiable instead of returning the following solu-
tion, for instance: agents = [1, 5, 4, 6, 3, 6, 4, 5, 2, 5, 4, 6, 3, 3, 6, 4]; workedOn =
[1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 5, 0, 6] (R-Solution).

F6. The fault was a missing constraint with the observer, namely the I/O-
Consistency constraint checked in the oracle of Listing 2. The failures occurred
after activating a component fault that deactivates a cart that is part of the
active task (R-Detection).



Back-to-Back Testing of Self-organization Mechanisms 31

Table 1. Statistical data concerning the configuration used in the evaluation, the
number of test cases generated and executed, the demanded time. Note that all detected
faults have been removed and the time is used for complete testing of the interior and
boundaries. Note that the runs within our framework are deterministic, i.e., there is
no need to consider mean values or standard derivations.

#capabilities #capabilities time

#robots #carts per Robot per Task #routes #test cases (in min)

4 3 2.75 6 6 131, 000 570

3 2 1.67 5 4 49 0.2

3 2 3.67 5 4 26, 763 69.25

3 2 1.67 5 6 157 0.78

3 2 1.67 8 4 47 0.38

5 2 1.6 5 5 1, 577 6.88

3 4 1.67 5 5 369 1.08

The faults F3, F4, and F6 have been detected in all investigated configura-
tions. Indeed, F1, F2, and F5 mainly depend on the routing structure used in the
configuration, e.g., smaller configurations would not be able to reveal the faults.
F6 mainly depends on changing the active robots or carts of a task, since their
removal might not be detected and the controller is consequently not activated.
All detected faults mainly concern misinterpretation of requirement specifica-
tions. The kind of faults that we detected underpins one of the strengths of our
approach: the ability to reveal faults which are the result of a misinterpretation
of the specification (R2).

To answer R3 and R4, we focused on the performance of test case genera-
tion and execution, investigating the abilities of the boundary interior testing
approach for SO mechanisms. The results concerning the failures revealed, espe-
cially F1, F2, and F5, that the failures are more likely occur on the boundaries
where SO switches between being possible and impossible; e.g., F1 was revealed
when only one possible routing was left to fulfill the task, while F2 was revealed
when no more routing is possible for the task. For R4, we used a test case gener-
ation algorithm using a depth-first search strategy that systematically explores
the input space without respecting the boundaries of SO, unlike our proposed

Table 2. Statistical data comparing boundary-interior testing of SO mechanisms
(Dcca w/o heuristics) with a simple depth-first search. The configuration that is com-
pared is the first one of Table 1.

Metrics Boundary-interior Depth-first

F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6

#Test Cases 13 15 1 1 1,609 4 10 16 1 1 16,813 5

Time (in s) 3.12 3.91 < 1 < 1 420 0.96 2.25 3.11 < 1 < 1 7583.33 1.13



32 B. Eberhardinger et al.

approach. The overall testing times required by the test system to reveal the
failures and the number of test cases used is measured in Table 2.

At a first glance, the results indicate that the proposed approach for test case
generation does not payoff as expected in most cases. That is mainly an effect
of the kinds of faults we detected in the SO mechanisms which are able to be
revealed with quite a lot different combinations of component faults and thus
detected very early on. However, for F5 the potential of the approach especially
for a bit more sophisticated faults is shown. Furthermore, it is even possible to
optimize the concepts based on how the Dcca is used for reaching the bound-
aries. Currently, Dcca is applying a kind of depth-first search towards the states
where no reconfiguration is possible anymore. Within this search, Dcca further
performs optimizations according to the activation of the component faults based
on monotonicity of the cut set property.

8 Related Work

The approach for testing adaptive system could be clustered into run-time and
design-time approaches; both have identified non-determinism and the emergent
behavior as the main challenges for testing adaptive systems.

Run-time approaches for testing take up the paradigm of run-time verifica-
tion [5,12]. They shift testing into run-time to be able to observe and test, e.g.,
the adaptation to new situations. Camara et al. [1] use these concepts to con-
sider fully integrated systems. Their testing approach focuses mainly on testing
the non-functional properties of resilience of the adaptive system. The gained
information is used as feedback for the running system. A similar approach is
taken by Ramirez et al. [15], also focusing on non-functional requirements. The
authors use the sampled data from a simulation to calculate a distance to the
expected values derived from the goal specification of the system. This informa-
tion is subsequently used to adapt the system or its requirements proactively.
The run-time approaches are limited to tests of the fully integrated system and
therefore are faced with problems like error masking which is very likely in such
self-healing systems. In our testing approach, by contrast, we benefit from the
piecemeal integration of the system for testing. Thus, it is possible to avoid error
masking by testing the SO mechanism in an isolated way. Another important
difference to the aforementioned work is that we use these techniques for finding
failures instead of analyzing the current system state for generating feedback for
adaptation. Still, we also use the basic concepts of run-time testing. The CEI
allows us to split the evaluation into the three responsibilities of R-Detection,
R-Solution, and R-Distribution which in turn enables us to evaluate the runs
without the evaluation of complex system states on the system level.

Design-time approaches like [13,20] test the systems in a classical manner
during development. All of these approaches consider some dedicated parts of
the system. Consequently, it is not possible to give evidence about the correct
functionality of the overall system. Zhang et al. [20] compose their tests towards
fully integrated system tests, but they do not consider adaptivity or SO explicitly



Back-to-Back Testing of Self-organization Mechanisms 33

since they focus on testing the correct execution of plans within multi-agent
systems. Nguyen [13] promotes an approach for a component test suite, but does
not consider interactions between or organization of components as it would be
necessary for SO.

The evaluation of the test results, i.e., the application of a test oracle for adap-
tive behavior is only considered by Fredericks et al. [6] and Nguyen et al. [14].
Both approaches rely on goals reflecting the requirements of the system that are
somewhat loosened in order to reflect the ever-changing environment the compo-
nents have to adapt to: The approaches mitigate the goals with the RELAXed
approach or consider soft goals that do not need to hold at all times. Conse-
quently, the decisions of the test oracle are rather fuzzy. In our approach, the
definition of correct and incorrect behavior is given by the CCB that enables us
to clearly decide whether a failure indeed occured.

Back-to-back testing was initially proposed by Vouk [19] and describes the
concept of the co-development of a test framework and the actual system or
mechanisms based on the same requirements, letting the systems compete with
each other in order to reveal discrepancies and errors. Back-to-back testing is
focused on functional testing of the system with a special attention on the cor-
rect interpretation of the actual requirements and their implementation. The
assumption made is that two different developers resp. development teams will
not make the same mistake twice, i.e., misinterpret or neglect functional require-
ments, and so the discrepancies between the two systems reveal potential devel-
opment errors. In [17], we already showed how BtB testing could be successfully
applied to constraint programming, since our basic ideas of testing adaptive,
self-organizing system is based on constraining the SO algorithms. This paper
extends these concepts from constraint programming to SO mechanisms.

Our approach for BtB testing of SO mechanism is an efficient combination of
model-based techniques using the concepts of BtB testing in order to tackle the
challenges of testing SOAS. To our knowledge, there is no approach extending
both of these techniques to SO mechanism.

9 Conclusion and Outlook

We motivated the need for systematic testing of adaptive, self-organizing systems
and purposed a systematic approach for BtB testing of SO mechanisms. The con-
cept of BtB testing supports the challenging task of engineering SO mechanisms
in a co-development manner and is able to reveal different kinds of faults concern-
ing the functional specification of the system. The evaluation showed the utility
of the approach by revealing different faults within a real development endeavor.
The model-based approach presented is built upon a model of the system and its
intended behavior, with the latter being based on our concepts of the CCB that
enables fully automated evaluation of test runs. The test cases to be executed
are derived on the basis of the system model; the test case selection strategy is
based on ideas of virtual commissioning and boundary interior testing. Test case
generation, execution, evaluation, and logging is fully automated and proved to



34 B. Eberhardinger et al.

be able to reveal different failures, as shown in the evaluation. The integration
in the S# modeling framework allows to use our BtB testing concepts within
Visual Studio, enabling model refactoring and debugging, among others.

Future work includes, among other things, the enhancement of heuristics in
test case generation, enhancing the fault diagnostics, and integrating the app-
roach into our overall framework for testing SOAS. The heuristics for test case
generation should allow to reach the boundaries of SO mechanisms more effi-
ciently. A first concept might be to start with bigger initial sets of component
faults, e.g., to activate the component faults for all drills of all robots except
of one. This leads, in a first evaluation, to better converge towards the bound-
aries of SO mechanisms and should reveal failures with less testing effort. Fault
diagnostic is already possible in sense that we are able to track faults back to
a part of the SO mechanism as well as to a set of activated component faults
and a system configuration. However, the non-deterministic behavior of the SO
mechanisms is still a challenge that we are going to address in future research.
At last, the approach needs to be integrated into an overall approach for testing
SOAS to supply a complete framework for testing the class of self-organizing
resource flow systems.

Acknowledgments. This research is sponsored by the research project Testing Self-
Organizing, adaptive Systems (TeSOS) of the German Research Foundation. Addition-
ally, we thank our college Alexander Schiendorfer for his support with MiniZinc.

References

1. Cámara, J., de Lemos, R.: Evaluation of resilience in self-adaptive systems using
probabilistic model-checking. In: Proceedings of 7th International Symposium Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 53–62
(2012)

2. Eberhardinger, B., Anders, G., Seebach, H., Siefert, F., Knapp, A., Reif, W.: An
approach for isolated testing of self-organization algorithms. CoRR abs/1606.02442
(2016). http://arxiv.org/abs/1606.02442

3. Eberhardinger, B., Seebach, H., Knapp, A., Reif, W.: Towards testing self-
organizing, adaptive systems. In: Merayo, M.G., Oca, E.M. (eds.) ICTSS
2014. LNCS, vol. 8763, pp. 180–185. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44857-1 13

4. ElMaraghy, H., Monostori, L.: Variety management in manufacturing cyber-
physical production systems: roots, expectations and r&d challenges. In: Procedia
CIRP, vol. 17, pp. 9–13 (2014)

5. Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.: Runtime verifica-
tion of component-based systems. In: Barthe, G., Pardo, A., Schneider, G. (eds.)
SEFM 2011. LNCS, vol. 7041, pp. 204–220. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-24690-6 15

6. Fredericks, E.M., Ramirez, A.J., Cheng, B.H.C.: Towards run-time testing of
dynamic adaptive systems. In: Proceedings of 8th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 169–
174. IEEE (2013)

http://arxiv.org/abs/1606.02442
http://dx.doi.org/10.1007/978-3-662-44857-1_13
http://dx.doi.org/10.1007/978-3-662-44857-1_13
http://dx.doi.org/10.1007/978-3-642-24690-6_15
http://dx.doi.org/10.1007/978-3-642-24690-6_15


Back-to-Back Testing of Self-organization Mechanisms 35

7. Güdemann, M., Nafz, F., Ortmeier, F., Seebach, H., Reif, W.: A specification and
construction paradigm for organic computing systems. In: Proceedings of 2nd IEEE
International Conference Self-Adaptive and Self-Organizing Systems (SASO), pp.
233–242 (2008)

8. Habermaier, A., Eberhardinger, B., Seebach, H., Leupolz, J., Reif, W.: Runtime
model-based safety analysis of self-organizing systems with S#. In: Proceedings
of 9th IEEE International Self-Adaptive and Self-Organizing Systems Workshops
(SASOW), pp. 128–133 (2015)

9. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

10. Lee, C.G., Park, S.C.: Survey on the virtual commissioning of manufacturing sys-
tems. J. Comput. Des. Eng. 1(3), 213–222 (2014)

11. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.)
Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32.
Springer, Heidelberg (2013)

12. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

13. Nguyen, C.D.: Testing techniques for software agents. Ph.D. thesis, Uni. di Trento
(2009)

14. Nguyen, C.D., Marchetto, A., Tonella, P.: Automated oracles: an empirical study
on cost and effectiveness. In: Proceedings of Joint Meet European Software Engi-
neering Conference and ACM SIGSOFT Symposium Foundations of Software Engi-
neering (ESEC/FSE), pp. 136–146. ACM (2013)

15. Ramirez, A.J., Jensen, A.C., Cheng, B.H.C., Knoester, D.B.: Automatically explor-
ing how uncertainty impacts behavior of dynamically adaptive systems. In: Pro-
ceedings of 26th IEEE/ACM International Conference Automated Software Engi-
neering (ASE), pp. 568–571. IEEE (2011)

16. Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a
generic observer/controller architecture for organic computing. In: Informatik 2006
(2006)

17. Schiendorfer, A., Eberhardinger, B., Reif, W., André, E.: Back-to-Back testing a
soft constraint model for a smart exhibition space. In: Proceedings of 14th Inter-
national Workshop Constraint Modelling and Reformulation (ModRef) (2015)

18. Seebach, H., Nafz, F., Steghöfer, J.P., Reif, W.: How to Design and Implement
Self-organising Resource-Flow Systems, pp. 145–161. Springer, Heidelberg (2011)

19. Vouk, M.A.: Back-to-back testing. Inf. Softw. Technol. 32(1), 34–45 (1990)
20. Zhang, Z., Thangarajah, J., Padgham, L.: Model based testing for agent systems.

In: Proceedings of 8th International Conference Autonomous Agents and Multia-
gent Systems (AAMAS), pp. 1333–1334 (2009)



Test Generation by Constraint Solving
and FSM Mutant Killing

Alexandre Petrenko1(&), Omer Nguena Timo1, and S. Ramesh2

1 Computer Research Institute of Montreal, CRIM, Montreal, Canada
{petrenko,omer.nguena}@crim.ca

2 GM Global R&D, Warren, MI, USA
ramesh.s@gm.com

Abstract. The problem of fault model-based test generation from formal
models, in this case Finite State Machines, is addressed. We consider a general
fault model which is a tuple of a specification, conformance relation and fault
domain. The specification is a deterministic FSM which can be partially spec-
ified and not reduced. The conformance relation is quasi-equivalence, as all
implementations in the fault domain are assumed to be completely specified
FSMs. The fault domain is a set of all possible deterministic submachines of a
given nondeterministic FSM, called a mutation machine. The mutation machine
contains a specification machine and extends it with mutated transitions mod-
elling potential faults. An approach for deriving a test suite which is complete
(sound and exhaustive) for the given fault model is elaborated. It is based on our
previously proposed method for analyzing the test completeness by logical
encoding and SMT-solving. The preliminary experiments performed on an
industrial controller indicate that the approach scales sufficiently well.

Keywords: FSM � Conformance testing � Mutation testing � Fault modelling �
Fault model-based test generation � Test coverage � Fault coverage analysis

1 Introduction

Fault model-based testing receives constantly growing interests of both researchers and
test practitioners. Fault models are defined in the literature in a variety of ways [16].
The work [10] proposes to define a fault model as a tuple of a specification, confor-
mance relation and fault domain. In the context of testing from finite state machines,
the specification is a certain type of FSM. A conformance relation is specific to the
FSM type and for completely specified deterministic machines it is equivalence, while
for partially specified machines it is quasi-equivalence. The fault domain is a set of
implementation machines, aka mutants, each of which models some faults, such as
output, transfer and transition faults.

In the traditional checking experiment theory the fault domain is the universe of all
machines with a given number of states and input and output alphabets of the speci-
fication, see, e.g., [7, 8, 11–13]. Checking experiments are in fact sound and exhaus-
tive, i.e., complete tests. However, their size for realistic specifications is often
considered too big for practical applications. To us, this is a price to pay for considering

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved.
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 36–51, 2016.
DOI: 10.1007/978-3-319-47443-4_3



the universe of all FSMs. Intuitively, choosing a reasonable subset of this fault domain
might be the way to mitigate the test explosion effect. As an example, if one considers
the fault domain of mutants that model output faults, a test complete for this fault
model is simply a transition tour. The fault domains intermediate to these two domains
have not yet received in our opinion sufficient attention.

To define a fault domain which is a subset of the universe of all FSMs, one could
explicitly enumerate mutants as in program or model-based mutation testing, see, e.g.,
[1–3, 21] or avoid this enumeration by defining a fault domain as a set of all possible
submachines of a given nondeterministic FSM, called a mutation machine [4, 6, 9]. The
mutation machine contains as a submachine a specification machine, additional tran-
sitions model potential faults. Several methods were developed for test generation
using this fault model [4, 6, 9, 22]. All these methods are adaptations of classical
checking experiments for a fault domain defined by a mutation machine. A checking
experiment is in fact a complete test suite, however, the use of the state identification
approach imposes limitations on the fault model. First, the specification machine must
be completely specified and reduced, so that state identifiers exist. Second, the mutation
machine was defined only for such specification machines. The existing methods are
not applicable for partial specification machines and mutation machines derived from
them. Finally, the state identification approach does not support iterative test generation
with a mutation machine allowing the tester to terminate the process when a complete
test suite for the given fault model is not yet obtained, but facing the scalability
problems he is forced to make a compromise between fault coverage and test length.

Addressing the above limitations, in our recent work [20], we have developed a
method for analyzing the test completeness for a fault model using a mutation machine.
The analysis approach is based on logical encoding and SMT-solving, it avoids enu-
meration of mutants while still offering a possibility to estimate the test adequacy (mu-
tation score). This method paves a road to a test generation approach which uses the
results of the analysis to find tests which kill mutants survived a current test suite and
iterates until a test suite complete for a given fault model with a mutation machine is
obtained or the tester decides to terminate it earlier. Elaboration of the iterative test
generation approachwhich is based on the test completeness analysis and does not require
the specification machine to be complete and reduced is the main goal of this paper.

The remaining of this paper is organized as follows. Section 2 defines a specifi-
cation model as well as a fault model. In Sect. 3, we develop an approach for complete
test suite generation for a given fault model with a mutation machine. Section 4 reports
some results of experimental evaluation of the approach. Section 5 summarizes our
contributions and indicates future work.

2 Background

2.1 Finite State Machines

A Finite State Machine (FSM) M is a 5-tuple (S, s0, I, O, T), where S is a finite set of
states with initial state s0; I and O are finite non-empty disjoint sets of inputs and
outputs, respectively; T is a transition relation T � S × I × O × S, (s, i, o, s′) is a
transition.

Test Generation by Constraint Solving and FSM Mutant Killing 37



M is completely specified (complete FSM) if for each tuple (s, x) 2 S × I there exists
transition (s, x, o, s′) 2 T; M is partially specified (partial FSM), if for some (s, x) 2 S ×
I there is no transition, we say in this case that input x is not specified in state s. Let PM

denote the set of all pairs (s, x) for which M has no transitions.
M is deterministic (DFSM) if for each (s, x) 2 S × I there exists at most one

transition (s, x, o, s′) 2 T; if there are several transitions for some (s, x) 2 S × I then it is
nondeterministic (NFSM).

An execution of M from state s is a sequence of transitions forming a path from s in
the state transition diagram of M. The machine M is initially connected, if for any state
s 2 S there exists an execution from s0 to s. Henceforth, we assume that all FSMs are
initially connected. An execution is deterministic if each transition (s, x, o, s′) in it is the
only transition for (s, x) 2 S × I; otherwise, i.e., if for some transition (s, x, o, s′) in the
execution there exists in it a transition (s, x, o′, s′′) such that o ≠ o′ or s′ ≠ s′′, the
execution is nondeterministic. Clearly, a DFSM has only deterministic executions,
while an NFSM can have both.

A trace of M in state s is a string of input-output pairs which label an execution
from s. Let TrM(s) denote the set of all traces of M in state s and TrM denote the set of
traces of M in the initial state. Given sequence β 2 (IO)*, the input (output) projection
of β, denoted β↓I (β↓O), is a sequence obtained from β by erasing symbols in O (I).
Given a trace β in state s the input projection β↓I is an input sequence defined in state
s. We use ΩM(s) to denote the set of all the input sequences defined in state s and ΩM to
denote the set of all the input sequences defined in state s0. Clearly, if M is complete
then ΩM = I*.

We say that an input sequence triggers an execution of M (in state s) if it is the
input projection of a trace of the execution of M (in state s).

Given input sequence α 2 ΩM, let outM(s, α) denote the set of all output sequences
which can be produced by M in response to α at state s, that is outM(s, α) = {β↓O | β 2
TrM(s) and β↓I = α}.

We define several relations between states in terms of traces. Given states s1, s2 of
an FSM M = (S, s0, I, O, T), s1 and s2 are (trace-) equivalent, s1 ≃ s2, if TrM(s1) =
TrM(s2); s2 is trace-included into (is a reduction of) s1, s2 ≤ s1, if TrM(s2) � TrM(s1).
M is reduced if any pair of its states are distinguishable, i.e., for every s1, s2 2 S there
exists α 2 ΩM(s1) \ ΩM(s2) such that outM(s1, α) ≠ outM(s2, α), α is called a distin-
guishing sequence for states s1 and s2, this is denoted s1 ≄α s2 or simply s1 ≄ s2.

We also use relations between machines. Given FSMs M = (S, s0, I, O, T) and
N = (P, p0, I, O, N), M ≤ N if s0 ≤ p0; N ≃ M if s0 ≃ p0; N ≄ M if s0 ≄ p0.

In this paper, we assume that a specification machine is a DFSM which could be
complete or partial, but all the implementation machines are complete DFSMs. This
implies that we should use the quasi-equivalence relation [17] as a conformance
relation between implementation and specification machines. Given a DFSM M = (S,
s0, I, O, T) and DFSM N = (P, p0, I, O, N), N is quasi-equivalent to M if M is a
reduction of N.

Given a complete FSM M = (S, s0, I, O, T), a machine N = (S′, s0, I, O, N) is a
submachine of M if S′ � S and N � T. The set of all complete deterministic subma-
chines of M is denoted Sub(M). Obviously, each machine in Sub(M) is a reduction of
M; moreover, if M is deterministic then Sub(M) contains just M.

38 A. Petrenko et al.



2.2 Fault Model

We define the so-called mutation machine for a given specification machine by gen-
eralizing the definition previously given only a complete specification FSM [4, 6, 9, 20,
22] to allow the latter to be partially specified.

Definition 1. Let A = (S, s0, I, O, N) be a specification DFSM with the set of
state-input pairs PA for which A has no transitions. A complete NFSM M = (S, s0, I, O,
T) is a mutation machine of A, if {(s, x, o, s′) | (s, x) 2 PA, o 2 O, s′ 2 S} � T and A is a
submachine of M.

In this definition we interpret inputs which are not specified in some states of A as
don’t care inputs. This implies that in a conforming implementation these inputs may
cause transitions with an arbitrary output to any state in S.

The transitions T of the mutation machine can be classified as follows. The tran-
sitions in the set {(s, x, o, s′) | (s, x, o, s′) 2 T, (s, x) 2 PA} are called don’t care
transitions; we let DNCM denote this set. The transitions in T \ N are common for
M and A, these are unaltered transitions. Transitions in the set T\ (N [ DNCM), are
mutated transitions. Given (s, x) 2 S × I, we let Tsx denote the set of transitions from
state s and input x in M. If Tsx is a singleton then its transition is called a trusted
transition. The set Tsx is called a suspicious set of transitions if it is not a singleton,
transitions in a suspicious set are called suspicious. Notice that don’t care transitions
are also treated as suspicious, since they can either compensate faults represented by
mutated transitions and form a conforming mutant or expose wrong outputs.

We assume that all possible implementation machines for the specification machine
A constitute the fault domain Sub(M), the set of all deterministic submachines of the
mutation machine M of A. A submachine B 2 Sub(M), B ≠ A is called a mutant. All
mutants share all the trusted transitions, they may differ in suspicious and don’t care
transitions. In fact, transitions in suspicious sets are alternative and only one can be
present in a deterministic mutant. Similarly, each mutant has a single transition for each
pair (s, x) 2 PA, as all mutants are complete machines. A mutant B is conforming if it is
quasi-equivalent to A, otherwise, it is nonconforming. We say that input sequence α 2
ΩA detects or kills the mutant B if B ≄α A.

The tuple <A, ≃, Sub(M)> is a fault model [10]. For a given specification machine
A quasi-equivalence relation partitions the set Sub(M) into conforming and noncon-
forming implementations. In this paper, we do not require the FSM A to be complete
and reduced. A conforming mutant may therefore have fewer states than the specifi-
cation A; on the other hand, we assume that no fault creates new states in imple-
mentations, hence mutants with more states than the specification FSM are not in the
fault domain Sub(M).

Consider the example in Fig. 1.
The specification machine A in Fig. 1 is a partial DFSM, where input b is not

specified in state 2, hence PA = {(2, b)}. The machine is not reduced, since state 3 is
quasi-equivalent to state 2. All the existing methods for test generation using mutation
machines [4, 6, 9, 22] cannot be applied for such a machine, as they are based on the
assumption that the specification machine is a complete and reduced machine, as
required by the state identification approach.

Test Generation by Constraint Solving and FSM Mutant Killing 39



The mutation machine M in Fig. 1 has three mutated transitions, one representing
an output fault and the other two transfer faults. It also has 14 suspicious transitions,
eight of them are don’t care transitions.

The mutation machineM represents mutants as its deterministic submachines. Their
number is given by the following formula:

SubðMÞj j ¼
Y

ðs;xÞ2S�I
Tsxj j

In our running example, the number of mutants is 8 × 2 × 2 × 2 = 64.
In the extreme case, considered in classical checking experiments a fault domain is

the universe of all machines with at most n states, the number of states in the speci-
fication machine, and the alphabets of it. The corresponding mutation machine
becomes in this case a chaos machine with all possible transitions between each pair of
states. We use Chaos(A, n) to denote such a mutation machine for A. The number of
FSMs it represents is the product of the numbers of states and outputs to the power of
the product of the numbers of states and inputs.

3 Mutation Testing

A finite set of finite input sequences E � ΩA is a test suite for A. A test suite is said to be
complete w.r.t. the fault model <A, ≃, Sub(M)> if for each nonconforming mutant B 2
Sub(M) it contains a test detecting B.

In the case where M = Chaos(A, n) a complete test suite is called n-complete. This
notion coincides with the classical notion of checking experiments for the fault domain
consisting of FSMs with at most n states [5, 7, 10].

In the domain of program mutation testing, such a test suite is often called adequate
for a program relative to a finite collection of programs (in our case the set Sub(M)),
see, e.g., [3].

For deterministic FSMs tests that kill a given mutant FSM can be obtained from the
product of the two machines, see, e.g., [1, 2, 17]. This approach can also be used to
check whether a given test kills mutants, but it requires mutant enumeration.

Fig. 1. A specification machine A and mutation machine M, where mutated transitions are
depicted with dotted lines, don’t care transitions with dashed lines; state 1 is the initial state.

40 A. Petrenko et al.



In this work, we develop an approach for complete test suite generation for the fault
model <A, ≃, Sub(M)>, where A can be a partial or complete FSM not necessary
reduced. It is based on mutant killing, but does not check mutants one by one, thus
avoiding their full enumeration.

3.1 Distinguishing Automaton

Tests detecting mutants of the specification can be determined using a product of the
specification and mutation machines obtained by composing their transitions as
follows.

Definition 2 [20]. Given a specification machine A = (S, s0, I, O, N) and a mutation
machine M = (S, s0, I, O, T) of A, a finite automaton D = (C [ {∇}, c0, I, D, ∇), where
C � S × S, and ∇ is an accepting (sink) state is the distinguishing automaton for A and
M, if it holds that

• c0 = (s0, s0)
• For any (s, t) 2 C and x 2 I, ((s, t), x, (s′, t′)) 2 D, if there exist (s, x, o, s′) 2 N and

(t, x, o′, t′) 2 T, such that o = o′ and ((s, t), x, ∇) 2 D, if there exist (s, x, o, s′) 2
N and (t, x, o′, t′) 2 T, such that o ≠ o′.

Notice that there is no outgoing transition with an input from a state of the dis-
tinguishing automata if and only if the state includes a state of A for which the input not
specified.

We illustrate the definition using the specification and mutation machines in Fig. 1.
Figure 2 presents the distinguishing automaton for A and M.

The accepting state defines the language LD of the distinguishing automaton D for
A and M and possesses the following properties. First, LD � ΩA, then all input
sequences detecting each and every mutant belong to this language.

Theorem 1. Given the distinguishing automaton D for A and M, if B ≄α A for some
B 2 Sub(M), then there exists β 2 LD, such that B ≄β A and β is a prefix of α.

Notice that for any nonconforming mutant there exists an input sequence of length
at most n2, where n is the number of states of the specification machine, since a
distinguishing automaton has no more than n2 states.

An input sequence α 2 LD triggers an execution in the distinguishing automaton
D which is defined by an execution in the specification machine A and some execution
in the mutation machine M triggered by α. The latter to represent a mutant must be
deterministic. Such a deterministic execution of the mutation machine M defining an
execution of the distinguishing automaton D to the sink state is called α-revealing. An
input sequence triggering revealing executions enjoys a nice property of being able to
detect mutants. Moreover all its extensions also detect at least the same mutants.

Test Generation by Constraint Solving and FSM Mutant Killing 41



Theorem 2. [20]. Given an input sequence α 2 ΩA such that α 2 LD, an α-revealing
execution includes at least one mutated transition, moreover, each mutant which has
this execution is detected by the input sequence α.

Given an input sequence α 2 LD, the question arises how all the mutants (un) de-
tected by this input sequence can be characterized. We address this question in the next
section.

3.2 Characterisation of Mutants (Un)Detected by an Input Sequence

Consider an input sequence α 2 ΩA whose prefixes trigger α-revealing executions.
These executions characterize mutants detected by α, since each of them defines a
distinct set of suspicious transitions involved in the execution. Based on these sets we
can build a constraint on transition sets of mutants undetected by α. This can be
achieved by using a distinguishing automaton constrained to a given input sequence.

Let Pref(α) be the set of all prefixes of α. We define a linear automaton (Pref(α), ε,
I, Dα), such that each prefix of α is a state, and (β, x, βx) 2 Dα if βx 2 Pref(α).

Definition 3 [20]. Given a specification machine A = (S, s0, I, O, N), input sequence α
2 ΩA, and mutation machine M = (S, s0, I, O, T), a finite automaton Dα = (Cα [ {∇},
c0, I, Dα, ∇), where Cα � Pref(α) × S × S, and ∇ is a designated sink state is the α-
distinguishing automaton for A and M if it holds that

Fig. 2. The distinguishing automaton D for the specification A and mutation M machines in
Fig. 1, state 11 is the initial state.

42 A. Petrenko et al.



– c0 = (ε, s0, p0)
– For any (β, s, t) 2 Cα and x 2 I, such that βx 2 Pref(α), ((β, s, t), x, (βx, s′, t′)) 2 Dα,

if there exist (s, x, o, s′) 2 N, (t, x, o′, t′) 2 T, such that o = o′ and ((β, s, t), x, ∇) 2 D,
if there exist (s, x, o, s′) 2 N, (t, x, o′, t′) 2 T, such that o ≠ o′.

For α = bababa in our running example, the α-distinguishing automaton for A and
M is shown in Fig. 3.

There are eleven executions of the mutation machine listed below which are defined
by five executions of the α-distinguishing automaton reaching the sink state in Fig. 3.
Suspicious transitions are in bold font and the others are trusted transitions. Transitions
of the specification are underlined. Three executions, namely executions 9, 10, and 11,
are non-deterministic. The first eight executions belong to mutants detected by bababa.

1. ð1; b; 0; 2Þð2; a; 0; 3Þð3; b; 0; 3Þð3; a; 0; 3Þ
2. ð1; b; 0; 2Þð2; a; 0; 3Þð3; b; 0; 4Þð4; a; 1; 2Þð2; b; 1; 2Þ
3. ð1; b; 0; 2Þð2; a; 0; 3Þð3; b; 0; 4Þð4; a; 1; 2Þð2; b; 1; 1Þ
4. ð1; b; 0; 2Þð2; a; 0; 3Þð3; b; 0; 4Þð4; a; 1; 2Þð2; b; 1; 3Þ
5. ð1; b; 0; 2Þð2; a; 0; 3Þð3; b; 0; 4Þð4; a; 1; 2Þð2; b; 1; 4Þ
6. ð1; b; 0; 2Þð2; a; 0; 3Þð3; b; 0; 3Þð4; a; 1; 2Þð3; b; 0; 3Þð3; a; 1; 3Þ
7. ð1; b; 0; 2Þð2; a; 0; 3Þð3; b; 0; 4Þð4; a; 1; 2Þð2; b; 0; 3Þð3; a; 1; 3Þ
8. ð1; b; 0; 2Þð2; a; 0; 3Þð3; b; 0; 4Þð4; a; 1; 2Þð2; b; 0; 4Þð4; a; 1; 2Þ
9. ð1; b; 0; 2Þð2; a; 0; 3Þð3; b; 0; 3Þð3; a; 1; 3Þð3; b; 0; 4Þð4; a; 1; 1Þ

10. ð1; b; 0; 2Þð2; a; 0; 3Þð3; b; 0; 3Þð3; a; 1; 3Þð3; b; 0; 4Þð4; a; 1; 2Þ
11. ð1; b; 0; 2Þð2; a; 0; 3Þð3; b; 0; 4Þð4; a; 1; 2Þð2; b; 0; 4Þð4; a; 1; 1Þ

Fig. 3. The α-distinguishing automaton Dα for the specification A machine and mutation
machine M in Fig. 1, where α = bababa.

Test Generation by Constraint Solving and FSM Mutant Killing 43



Three prefixes of bababa, namely baba, babab and bababa belong to LD and
trigger α-revealing executions in the mutation machine. Any deterministic execution of
the mutation machine with the input sequence baba is α-revealing if it uses the two
suspicious transitions involved in the first execution, i.e., (3, b, 0, 3) and (3, a, 0, 3). We
recall that trusted transitions are used in every mutant submachine. Hence, every
mutant which has both these suspicious transitions is detected by baba. Considering all
eight executions, any mutant which has any of the eight sets of suspicious transitions is
nonconforming and detected by bababa. Conversely, any mutant undetected by
bababa must have mutated transitions such that do not form any of the sets defined by
the listed executions. This property can be formalized as a constraint on suspicious
transitions using conditional operators {= , ≠} and logical operators {∧, ∨} for con-
straint formulas.

Given a pair (s, x) 2 S × I such that Tsx is a suspicious set of transitions, we
introduce an auxiliary variable zsx which takes values from the indexes of the transi-
tions of the mutation machine in Tsx.

Each α-revealing execution e of the mutation machine involving the set of suspi-
cious transitions {t1, t2, …, tn} yields a clause ce = ((zs1 × 1 ≠ t1) ∨ (zs2 × 2 ≠ t2) ∨ … ∨
(zsnxn ≠ tn)) where si and xi are the source state and the input of transition ti for
1 ≤ i ≤ n. The clause ce is satisfied whenever zsixi is not ti for some 1 ≤ i ≤ n. A
solution of ce excludes at least one transition in e.

In the running example, the sets of suspicious transitions indexed with an integer
identifier are:

T2b = {(2, b, 0, 2)3, (2, b, 1, 2)4, (2, b, 0, 1)5, (2, b, 1, 1)6, (2, b, 0, 3)8, (2, b, 1, 3)9,
(2, b, 0, 4)10, (2, b, 1, 4)11}, T3a = {(3, a, 0, 3)12, (3, a, 1, 3)13}, T3b = {(3, b, 0, 3)14,
(3, b, 0, 4)15} and T4a = {(4, a, 1, 1)17, (4, a, 1, 2)18}. The remaining trusted transitions
are indexed as follows: (1, a, 0, 1)1, (1, b, 0, 2)2, (2, a, 0, 2)7, (4, b, 0, 2)16. So we
consider four variables z2b, z3a, z3b and z4a whose domains are T2b, T3a, T3b, and T4a,
respectively. To simplify the presentation we use transition identifiers in constraints.
The constraint formula for bababa consists of a preamble and eight clauses. The
preamble (z2b 2 T2b) ∧ (z3a 2 T3a) ∧ (z3b 2 T3b) ∧ (z4a 2 T4a) specifies the domains of
the variables, thus constraining the possible solutions of the conjunction of the eight
clauses to transitions of the mutation machine.

((z2b 2 T2b) ∧ (z3a 2 T3a) ∧ (z3b 2 T3b) ∧ (z4a 2 T4a) ∧ ((z3a ≠ 12) ∨ (z3b ≠ 14)) ∧
((z4a ≠ 18) ∨ (z2b ≠ 4) ∨ (z3b ≠ 15)) ∧ ((z4a ≠ 18) ∨ (z2b ≠ 6) ∨ (z3b ≠ 15)) ∧ ((z4a ≠ 18)
∨ (z2b ≠ 9) ∨ (z3b ≠ 15)) ∧ ((z4a ≠ 18) ∨ (z2b ≠ 11) ∨ (z3b ≠ 15)) ∧ ((z3a ≠ 13) ∨ (z3b ≠
14)) ∧ ((z4a ≠ 18) ∨ (z2b ≠ 8) ∨ (z3a ≠ 13) ∨ (z3b ≠ 15)) ∧ ((z4a ≠ 18) ∨ (z2b ≠ 10) ∨ (z3b
≠ 15))).

Clearly, the constraint always has a solution where values of variables determine all
the unaltered transitions, but to find nonconforming mutants we need a solution if it
exists which has at least one mutated transition. To this end, we add the constraint ((z3a
≠ 12) ∨ (z3b ≠ 15) ∨ (z4a ≠ 17)) excluding the solution defining the specification
machine augmented with an arbitrary don’t care transition, called a completed speci-
fication machine.

The final constraint formula for bababa is C(bababa) = ((z2b 2 T2b ∧ z3a 2 T3a ∧
z3b 2 T3b ∧ z4a 2 T4a) ∧ ((z3a ≠ 12) ∨ (z3b ≠ 14)) ∧ ((z4a ≠ 18) ∨ (z2b ≠ 4) ∨ (z3b ≠ 15))
∧ ((z4a ≠ 18) ∨ (z2b ≠ 6) ∨ (z3b ≠ 15)) ∧ ((z4a ≠ 18) ∨ (z2b ≠ 9) ∨ (z3b ≠ 15)) ∧ ((z4a ≠

44 A. Petrenko et al.



18) ∨ (z2b ≠ 11) ∨ (z3b ≠ 15)) ∧ ((z3a ≠ 13) ∨ (z3b ≠ 14)) ∧ ((z4a ≠ 18) ∨ (z2b ≠ 8) ∨ (z3a
≠ 13) ∨ (z3b ≠ 15)) ∧ ((z4a ≠ 18) ∨ (z2b ≠ 10) ∨ (z3b ≠ 15)) ∧ ((z3a ≠ 12) ∨ (z3b ≠ 15) ∨
(z4a ≠ 17))).

The constraint C(α) characterizing the mutants undetected by an input sequence α is
the conjunction of a clause excluding all completed specification machines and the
clauses generated for every α-revealing execution. Any existing constraint solver, e.g.,
Z3 [15], could be used for satisfiability checking. A solution of C(α) if it exists is an
assignment of the auxiliary variables. The mutant defined by such a solution includes
the transitions specified by the solution along with all the trusted transitions of the
mutation machine. Any nonconforming mutant detected by α cannot be defined by any
solution of C(α), only conforming mutants can.

Algorithm 1 presents a procedure that builds a constraint CTS for a given test suite
TS out of the constraints for each test in the test suite.

Theorem 3. Let CTS be a constraint specifying undetected mutants by the test suite TS.
TS is complete w.r.t. the fault model <A, ≃, Sub(M)> if and only if CTS is unsatisfiable
or every solution of CTS defines a conforming mutant.

In the running example, to solve the constraint formula C(bababa), we use the SMT
solver Z3 [15] which finds the solution z2b = 11, z3a = 13, z3b = 15, z4a = 17. The
solution defines a mutant with all trusted transitions, one don’t care transition (2, b, 1,
4)11 and one mutated transition (3, a, 1, 3)13. The mutant is presented in Fig. 4. The
mutant is nonconforming, which can be verified with the help of a distinguishing
automaton obtained for the specification machine and the mutant also shown in Fig. 4.

Test Generation by Constraint Solving and FSM Mutant Killing 45



Notice that the solver could find another solution of the C(bababa), namely,
z2b = 11, z3a = 12, z3b = 15, z4a = 17 which defines a conforming mutant.

Given an initial test suite TSinit, the question arises how to augment TSinit with new
input sequences to detect all nonconforming mutants. We elaborate a complete test
suite generation procedure in the next section.

3.3 Complete Test Suite Generation

We are given a test suite TSinit � ΩA and a fault model <A, ≃, Sub(M)>. We want to
add test cases to TSinit to obtain a complete test suite. Constraints defined in the
previous section can be used to analyse the completeness of a test suite, elaborated in
our previous work [20]. If the constraint for a test suite has no solution or the first
solution computed by a solver defines a nonconforming mutant, we can immediately
assert the incompleteness of the test suite. If however the solution defines a conforming
mutant, the search continues such that the mutant will not be found again in a new
round of satisfiability checking. This process iterates until no new solution is found or
the generated solution defines a nonconforming mutant. A witness nonconforming
mutant can be used to determine a test case which detects the mutant. A new test can
kill other nonconforming mutants. Hence the constraints generated by this test should
be added to the ones of the current test suite. The search terminates when the current
constraint is unsatisfiable which indicates that the test suite is complete. The test
generation procedure is formalized in Algorithm 2.

The algorithm has two loops. The coverage analysis loop includes statements in
lines 7 to 9 and the test generation loop includes statements at lines 4 to 13. The former
loop is nested in the latter. When the current test suite is not complete, the execution of
the test generation loop augments (in line 4) it with a new test case and updates the
constraint of the current test suite with that of the generated test case. Then the cov-
erage analysis loop is executed checking the completeness of the updated test suite,
searching for a new nonconforming mutant. To this end, constraints excluding con-
forming mutants defined by the found solutions are iteratively added to the current
constraint. The procedure terminates when the resulting constraint is unsatisfiable,
indicating that the current test suite is complete or the solver generates a solution
defining a nonconforming mutant. In this case, the execution of the test generation loop
augments the current test suite with a new test killing the mutant. It is determined by

Fig. 4. A nonconforming mutant defined by a solution of the constraint for TS = {bababa} and
the distinguishing automata for the mutant and the specification A.

46 A. Petrenko et al.



finding the shortest path to the sink state of the distinguishing automaton of the mutant
and the specification.

Theorem 4. Procedure TestSuiteGen always terminates with a complete test suite.

Proof. The procedure TestSuiteGen terminates as the test generation loop terminates. It
does so because a mutation machine has a finite number of submachines and the
solution defining a particular mutant is generated at most once. According to Theo-
rem 2, the computed tests are revealing input sequences. On termination of the pro-
cedure the final constraint characterizing undetected mutants excludes all conforming
mutants and it is unsatisfiable. Based on Theorem 3 we have that the test suite returned
by the procedure is complete.

To generate a complete test suite for the running example we consider the initial
test suite TSinit = {bababa}, used in Sect. 3.2. Procedure TestSuiteGen first goes into
the test generation loop which builds Cnew = C(bababa), updates TS and C to
{bababa} and C(bababa) defined in Sect. 3.2. Then the coverage analysis loop finds
the solution of C defining the nonconforming mutant in Fig. 4. The test baa is then
generated by determining the only shortest path to the sink state in the distinguishing
automaton for the specification and the mutant, so TSnew becomes {baa}. Then the
constraint Cnew = C(baa) = (z3a ≠ 13) is generated in line 5, TS becomes {bababa,

Test Generation by Constraint Solving and FSM Mutant Killing 47



baa} and C = C(bababa) ∧ C(baa). The solution of C defines a nonconforming mutant
killed by the test babaaba, the input sequence of the shortest path to the sink state the
distinguishing automaton for the new nonconforming mutant and the specification, then
TSnew becomes {babaaba}. The constraint Cnew = C(babaaba) = (((z3a ≠ 12) ∨
(z3b ≠ 14)) ∧ ((z3a ≠ 13) ∨ (z3b ≠ 14)) ∧ ((z4a ≠ 18) ∨ (z3b ≠ 15))) is generated; it
includes one clause for each of the three α-revealing executions triggered by babaaba.
TS becomes {bababa, baa, babaaba} and C = C(bababa) ∧ C(baa) ∧ C(babaaba).
C is satisfiable and the procedure iteratively generates only conforming mutants aug-
menting C each time with a constraint excluding the last conforming mutant. No
additional tests are generated. The conjunction of C with the eight constraints
excluding eight conforming mutants is unsatisfiable. The procedure returns a complete
test suite TS = {bababa, baa, babaaba}. Notice that it generated only ten out of total
64 mutants.

The procedure TestSuiteGen also generates a complete test suite starting when the
initial test suite contains just an empty input sequence.

In the next section we present experimental results obtained with a prototype tool.

4 Experimental Results

We have developed a prototype tool implementing the proposed method for complete
test suite generation. In this section we present the tool and some experimental results
using it.

4.1 Prototype Tool

The prototype tool is composed of four modules: an I/O module, a completeness
checking module, a test generation module and a module for solver execution. The I/O
module converts input data into an internal representation for processing and obtained
results into a human-readable format. To this end, it implements an ANTLR-based
parser [19] to interpret the mutation machine specified in a text format; it also parses
the output of SMT solver Z3 [15] to extract a solution and builds a mutant. The
completeness checking module builds α-distinguishing automata, determines revealing
executions of the mutation machine and generates constraints for the solver. The test
generation module iteratively calls the former module. The prototype can also be used
with other SMT solvers compatible with the SMT-LIB 2.0.

For the experiments we use a desktop computer with the following settings: 3.4
Ghz Intel Core i7-3770 CPU, 16.0 GB of RAM, Z3 4.3.2, and ANTLR 4.5.1.

4.2 Test Generation for an Automotive Controller

We consider as a case study an automotive controller of the air quality system (HVAC),
which we also used in our previous work [18, 20]. The functionality of the controller is
to set an air source position depending on its current state and input from the
environment.

48 A. Petrenko et al.



The controller initially specified as a hierarchical Simulink Stateflow model is
converted into an FSM with 14 states, 24 inputs and 24 × 14 = 336 transitions.

Several mutation machines were used in the experiments. The first one Mhvac was
obtained by adding 46 mutated transitions to the specification machine (details are
available in [20]). The formula in Sect. 2 gives the number of mutants
312 × 217 = 69,657,034,752.

The other mutation machines were built by adding more mutated transitions to
Mhvac. In particular, 20, 100, 428, 764 and 1000 mutated transitions were randomly
added, resulting in five more mutation machines, M+20, M+100, M+428, M+764 and
M+1000. Table. 1 presents the numbers of mutated transitions, mutants, generated tests
and the computation time. Each generated mutant was non-conforming, so their
number coincides with that of the tests, conforming mutants were never generated. The
third column of Table. 1 represents the average values for 30 mutation machines
randomly generated by adding 20 mutated transitions to Mhvac.

The experimental results indicate that the approach scales sufficiently well on a
typical automotive controller even with the large number of mutants.

5 Conclusions

In this paper we focused on generation of a complete test suite detecting all noncon-
forming implementations in a fault domain defined by a mutation machine. A mutation
machine is a nondeterministic FSM, interpreted as a compact representation of a set of
deterministic implementations of a system represented by a partially or completely
specified FSM. Each deterministic submachine of the mutation machine models an
implementation.

We proposed a method for generating a complete test suite which avoids complete
enumerations of nonconforming mutants. The method iteratively builds constraints
specifying mutants undetected by an incomplete (possibly empty) test suite and uses a
solution of constraints generated by a solver to determine an undetected mutant from
which a new test case is selected and derives an augmented constraint for a next
iteration step until the obtained constraint becomes unsatisfiable.

While it enumerates all conforming mutants, which exist mostly when the speci-
fication is partial or unreduced FSM, it does not generate all nonconforming ones. The
experimental results with a prototype tool which uses the SMT solver Z3 indicate that
the number of generated nonconforming mutants reaches only a small percentage of all
mutants represented by a mutation machine.

Table 1. Experimental results for randomly generated mutation machines

M M+20 M+100 M+428 M+764 M+1000

Mut. trans. 46 66 146 474 810 1046
Mutants 6.9×1010 3.6×1016 9.8×1038 7.8×10108 4.9×10160 3.2×10194

Tests 29 48 119 381 520 689
Seconds 0.57 0.7 1.8 8.6 58 154

Test Generation by Constraint Solving and FSM Mutant Killing 49



Novelty of the contributions of this paper are as follows. The proposed approach
allows one to construct checking experiments for FSMs which are not necessarily
complete and reduced without using any state identification facility such as charac-
terization sets, distinguishing sequences, and state identifiers, as opposed to traditional
checking experiment approaches. Thus, we demonstrate that it is possible to construct
checking experiments using logical encoding and constraint solving instead of classical
methods based on state identification [4, 6, 9, 22]. Moreover, test completeness is
guaranteed for a predefined subset of the universe of all FSMs with a given number of
states, represented by a mutation machine. Compared to all previous work on the use of
mutation machine [4, 6, 9, 20, 22], we have generalized its definition to make it
applicable to partially defined specification machines. The method proposed in [22] is
only applicable to mutation machines which satisfy the following assumption. If a
transition of the specification machine becomes suspicious in the mutation machine
then the latter has all possible (thus chaotic) suspicious transitions from the start state of
the transition caused by the same input. The method also requires the specification
machine be completely specified. Compared to that work, our method is applicable to
arbitrary mutation machines, while the specification machine is allowed to be partially
specified.

Another interesting feature of the approach is that it is iterative and allows the tester
to obtain an incomplete test suite for which fault coverage can be estimated (as dis-
cussed in [20]) when facing the scalability problems he is forced to make a compromise
between fault coverage and test length.

The experiments indicate that the proposed approach may scale sufficiently well,
though, more experiments with industrial size specifications are needed. Our current
work focuses on extending the approach to FSMs with symbolic inputs and outputs
[23] and eventually to a more general type of EFSM [14].

Acknowledgements. This work is supported in part by GM, NSERC and MEIE of Gou-
vernement du Québec.

References

1. Pomeranz, I., Sudhakar, M.R.: Test generation for multiple state-table faults in finite-state
machines. IEEE Trans. Comput. 46(7), 783–794 (1997)

2. Poage, J.F., McCluskey, Jr., E.J.: Derivation of optimal test sequences for sequential
machines. In: Proceedings of the IEEE 5th Symposium on Switching Circuits Theory and
Logical Design, pp. 121–132 (1964)

3. DeMilli, R.A., Offutt, J.A.: Constraint-based automatic test data generation. IEEE Trans.
Softw. Eng. 17(9), 900–910 (1991)

4. Grunsky, I.S., Petrenko, A.: Design of checking experiments with automata describing
protocols. Automatic Control and Computer Sciences. Allerton Press Inc. USA. No. 4 (1988)

5. Hennie, F.C.: Fault detecting experiments for sequential circuits. In: Proceedings of the IEEE
5th Annual Symposium on Switching Circuits Theory and Logical Design. Princeton,
pp. 95–110 (1964)

50 A. Petrenko et al.



6. Koufareva, I., Petrenko, A., Yevtushenko, N.: Test generation driven by user–defined fault
models. In: Proceedings of the 12th International Workshop on Testing of Communicating
Systems, pp. 215–233 (1999)

7. Lee, D., Yannakakis, M.: Principles and methods of testing finite-state machines - a survey.
Proc. IEEE 84(8), 1090–1123 (1996)

8. Moore, E.F.: Gedanken experiments on sequential machines. In: Automata Studies, pp. 129–
153. Princeton University Press (1956)

9. Petrenko, A., Yevtushenko, N.: Test suite generation for a FSM with a given type of
implementation errors. In: Proceedings of IFIP 12th International Symposium on Protocol
Specification, Testing, and Verification, pp. 229–243 (1992)

10. Petrenko, A., Yevtushenko, N., Bochmann, G.V.: Fault models for testing in context. In:
Gotzhein, R., Bredereke, J. (eds.) Formal Description Techniques IX, pp. 163–178. Springer,
Heidelberg (1996)

11. Vasilevskii, M.P.: Failure diagnosis of automata. Cybernetics, vol. 4, pp. 653–665. Plenum
Publishing Corporation, New York (1973)

12. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw.
Eng. 4(3), 178–187 (1978)

13. Vuong, S.T., Ko, K.C.: A novel approach to protocol test sequence generation. In: Global
Telecommunications Conference, vol. 3, pp. 2–5. EEE (1990)

14. Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing. IEEE
Trans. Softw. Eng. 30(1), 29–42 (2004)

15. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

16. Bochmann, G.V., et al.: Fault models in testing. In: Proceedings of the IFIP TC6/WG6.
1 Fourth International Workshop on Protocol Test Systems. North-Holland Publishing Co.,
pp. 17–30 (1991)

17. Petrenko, A., Yevtushenko, N.: Testing from partial deterministic FSM specifications. IEEE
Trans. Comput. 54(9), 1154–1165 (2005)

18. Petrenko, A., Dury, A., Ramesh, S., Mohalik, S.: A method and tool for test optimization for
automotive controllers. In: ICST Workshops, pp. 198–207. IEEE (2013)

19. Parr, T.: The Definitive ANTLR 4 Reference, vol. 2. Pragmatic Bookshelf, Raleigh (2013)
20. Petrenko, A, Nguena Timo, O., Ramesh, S.: Multiple mutation testing from FSM. In:

Proceedings of the 35th IFIP WG 6.1 International Conference on Formal Techniques for
Distributed Objects, Components, and Systems, pp. 222–238 (2016)

21. Belli, F., Budnik, C.J., Hollmann, A., Tuglular, T., Wong, W.E.: Model-based mutation
testing - approach and case studies. Sci. Comput. Programm. 120, 25–48 (2016)

22. El-Fakih, K., Dorofeeva, R., Yevtushenko, N., Bochmann, G.V.: FSM-based testing from
user defined faults adapted to incremental and mutation testing. Programm. Comput. Softw.
38, 201–209 (2012)

23. Petrenko, A.: Checking experiments for symbolic input/output finite state machines. In:
ICST Workshops, pp. 229–237. IEEE (2016)

Test Generation by Constraint Solving and FSM Mutant Killing 51



Risk-Based Interoperability Testing Using
Reinforcement Learning

André Reichstaller1(B), Benedikt Eberhardinger1, Alexander Knapp1,
Wolfgang Reif1, and Marcel Gehlen2

1 Institute for Software and Systems Engineering,
University of Augsburg, Augsburg, Germany

{reichstaller,eberhardinger,knapp,reif}@isse.de
2 MaibornWolff GmbH, Munich, Germany

marcel.gehlen@maibornwolff.de

Abstract. Risk-based test strategies enable the tester to harmonize the
number of specified test cases with imposed time and cost constraints.
However, the risk assessment itself often requires a considerable effort of
cost and time, since it is rarely automated. Especially for complex tasks
such as testing the interoperability of different components it is expensive
to manually assess the criticality of possible faults. We present a method
that operationalizes the risk assessment for interoperability testing. This
method uses behavior models of the system under test and reinforcement
learning techniques to break down the criticality of given failure situa-
tions to the relevance of single system actions for being tested. Based on
this risk assessment, a desired number of test cases is generated which
covers as much relevance as possible. Risk models and test cases have
been generated for a mobile payment system within an industrial case
study.

1 Introduction

Interoperability testing of a distributed system checks whether the components
of the system are able to communicate with each other and thus render requested
services correctly through interaction [5]. The typically high number of possi-
ble interaction scenarios (e.g., combination of messages) makes interoperability
testing a complex task. Since it seems impossible to cover all scenarios, their
relevance for being tested has to be prioritized somehow. A criticality-based test
strategy should focus the test effort on revealing faults which are expected to
lead to the most critical failures [2]. However, the existence of implementation
faults and the ensuing reachability of failures in real operation is unknown. Still,
extending behavior models of the communicating components of the System
under Test (SuT ) with possible implementation faults, we can at least estimate
the impact of a fault on the reachability of failures. The challenge is to find
causal connections between the implementation faults and resulting failures.

We tackle this challenge by combining model-based [16] and risk-based testing
methods [1,2] with reinforcement learning [15]. Our approach builds on given

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 52–69, 2016.
DOI: 10.1007/978-3-319-47443-4 4



Risk-Based Interoperability Testing Using Reinforcement Learning 53

behavior models of the interacting components of the SuT, common implementa-
tion faults, and a set of the most critical failure situations, each of them described
by the combination of component states and a score of its deemed effect. A fail-
ure situation is reached if all of the combined component states are active at
the same point in time. None of the failures is actually reachable in the given
behavior models, as the models do not describe faults. If we introduce common
implementation faults into the behavior models, however, we are able to assess
the criticality of faults, i.e., their “ability” to cause the effect of failures.

Let us imagine that a malicious developer of a component actually tries to
induce the whole system to reach the maximum effect of failures in real operation
by implementing the “right” component faults. These faults would be the ones
to be tested for with highest priority. What he could do is to use a learning
technique, such as reinforcement learning [15], on a simulated environment: He
could implement his component as an intelligent agent which makes its own
local decisions to achieve the global goal of reaching the most critical failures.
This agent then would map received rewards to the preceding actions (either
specified in the behavior model or faults) so as to assess the expected return for
every possible action. The ultimate reward to be reinforced would be reaching a
critical failure situation. Then the agent’s learned expected return for executing
a fault can be understood as the fault’s criticality.

For finding those test cases which cover the most critical faults with high-
est priority, it seems reasonable to apply the same technique as our imaginary
malicious developer. This procedure can be seen as defending the system against
the faults he could inject. After the learning phase, each agent contains a func-
tion that maps its actions to their expected return, i.e., their criticality. From
a mutation testing perspective [12], the actions representing anticipated faults
can be seen as mutants of the specified actions in the behavior models. The
functions of the agents weight these mutants by their criticality. Thus, test cases
can now be prioritized by the criticality of the mutants they are assumed to kill.
We propose a method for reducing the criticality of the mutants to the relevance
of specified actions in the given behavior models for being tested. Building on
this, we generate a desired number of logical test cases covering the most rele-
vant actions. We have implemented our approach of deriving risk-optimized test
cases using reinforcement learning and we have applied the method to a case
study provided by an industrial partner. The case study showed, in particular,
that the assessment of the criticality of actions by experts is matched by the
values learned by reinforcement learning.

The remainder of this paper is structured as follows: In Sect. 2, we outline
the used behavior models. Based on these models, we show in Sect. 3 how the
criticality of faults can be estimated using reinforcement learning. In Sect. 4, we
present our method for deriving a desired number of test cases that cover as
much criticality as possible. Section 5 shows how the overall approach scales in
an industrial case study in which we applied the concepts to a mobile payment
system. After placing our approach in context with related work in Sect. 6, we
give an outlook to future investigations in Sect. 7.



54 A. Reichstaller et al.

2 Test Model Specifications

We build our approach on three inputs: (1) models for the desired behavior of all
local SuT components together with a precise description of their communica-
tion paradigm; (2) a fault model for implementation and communication defects
spanning the fault variability space; and (3) an (expert’s) estimate of critical
global system situations.

2.1 Behavior SuT Models and Their Communication

Though our testing approach is not limited to a particular formalism of behavior
models, for conciseness, we use in the following a rather simple model of non-
deterministic finite state machines communicating over a broadcasting message
bus. The execution of an assembly of such components happens in rounds in
which each component chooses some currently possible action: An action is pos-
sible if all of its message dependencies have been satisfied; a component stutters
if, and only if, no such action is available.

For a concrete example, consider the three components M, N and O in Figs. 1a
to c. The transition M1

a!−→ M2 of M defines an action that broadcasts the
message a; N1

a?/d!−−−→ N2 of N defines an action that broadcasts the message d

when message a is received; and O1
d?−→ O2 of O defines an action that does not

broadcast any message when d is received. In addition to possible broadcasts,
every action defines the executing component’s change in state. Figure 1d shows
the composition of M, N, and O according to broadcasting communication: A
local action that broadcasts a message by M leads to a local action receiving

the message by N and vice versa. Furthermore, the actions N1
a?/d!−−−→ N2 and

M2
b?/e!−−−→ M1 trigger the actions O1

d?−→ O2 and O2
e?−→ O1 in O, respectively. In

particular, action M1
a!−→ M2 causes the global effect that the entire system will

change its state to M2N2O2. By contrast, if in the next round N chooses action
N2

c!−→ N3, M has to choose M2
c?−→ M3 and O has to stutter.

The composition of those component behavior models forms the system behav-
ior model. This model shows the resulting composed actions as well as the reach-
able composed states forming again a (component) behavior model.

Fig. 1. Model of the components M, N and O and their broadcasting composition.



Risk-Based Interoperability Testing Using Reinforcement Learning 55

2.2 Fault Models

The given behavior models for the SuT describe exclusively desired system
behavior. The actual system behavior could, however, differ in an unknown way
because of, e.g., implementation or communication faults. Since considering all
imaginable faults would be quite demanding, we content ourselves with “com-
mon faults”, i.e., classes of faults that are known to be frequently made. We
assume the common faults to be specified in fault models defining their repre-
sentation in the behavior models of the SuT. Based on them, we generate our
proper component test models extending the given behavior models with faulty
behavior using mutation.

Fig. 2. Component test model based on the fault model of message losses and resulting
system test model composing M′, N and O. Depicted in gray in (b), the system test
model has been complemented by a negative situation M′2−O1 with negativity score
ν = 2.0.

In communicating components such as M, N and O, an exemplary common
fault is the loss of messages. The associated fault model could define its repre-
sentation as mutations of broadcasting transitions leaving out some messages to
send. Figure 2a shows the generated test model M′ of component M for this fault
model; M′1, M′2, and M′3 are just different names for M1, M2, and M3, only
transitions have been added. The composition of the component test model M′,
i.e., the mutated component M, and the original component behavior models N
and O, shown in Fig. 2b, renders several new composed states reachable, in par-
ticular M′2N1O1, M′2N1O2, and M′N1O2. A composition involving at least one
component test model is called system test model, as opposed to the fault-free
system behavior model.

2.3 Negative Situations

By their non-deterministic nature, our test models comprise different behavior
variations of the SuT, and we do not know which of them is actually imple-
mented. Our aim is to identify those variations that would be associated with
the most critical failures. However, the assessment of a failure’s criticality is
rather subjective and therefore hard to automate. Thus, we assume critical fail-
ures as well as a score for their criticality to be given as inputs. We represent



56 A. Reichstaller et al.

such failures by negative situations described by a tuple of component states
that associates each component with at most one state. Negative situations are
annotated with a negativity score ν ∈ R>0 quantifying their criticality.

In the example of components M, N, and O, a negative situation could be
given by M2−O1, i.e., all those system states where component M is in state
M2 and component O is in state O1; we choose ν = 2.0. For the system test
model, state M2 now corresponds to M′2 (see Fig. 2a) and thus all composed
states of the form M′2−O1 are deemed critical. In our example (see Fig. 2b),
just M′2N1O1 is reachable. Obviously, this negative situation is not reachable in
the system behavior model (cf. Fig. 1). This observation matches with the fact
that failures should only be reachable through faulty behavior.

3 From Failure Negativity to Fault Criticality

Let now a system test model, composed of component test models according to a
fault model, and an additional set of negative situations be given. In this system
test model, an action looks the more critical the higher the probability that
negative situations are reached through this action and the higher the negativity
scores of the reachable negative situations. Consequently, to be able to focus the
test effort on revealing the most critical faults, we first have to quantify these
expectations for every action. In other words, we have to map the critical failures
(represented by negative situations) to those faulty and specified actions of the
component test models which lead to them, and give local negativity scores
to such actions. This process shows similarities to introducing decision makers,
such as malicious developers, that exercise control over our models. They aim to
collect the maximally possible negativity score and thus are trying to find the
most critical actions.

A more formal way for modeling this task of making sequential decisions is
provided by the framework of Markov Decision Processes (MDPs) [6]. An MDP
is described by a state space S and an action space A; a map T : S × A × S →
[0, 1] giving probabilities over state transitions, such that T (s, a, s′) indicates
the probability that action a in state s leads o state s′; and a reward function
R : S × A × S → R denoting rewards for taking particular transitions.

In fact, we are able to express our setting as an MDP: S and A are directly
constructed from the composed states and actions of the system test model.
Since we do not assume that transition probabilities of the SuT are known by
the tester, we suppose T for every state s and every action a to be uniformly
distributed over the target states s′ that are forming transitions (s, a, s′) of the
system test model. R reinforces transitions (s, a, s′) with the negativity score
of s′ if s′ is a negative situation, and with 0 otherwise. MDPs are meant to be
partially controlled by a decision maker (often called agent) in the following way:
in every (discrete) time step, the agent is supposed to select an action a ∈ A that
is enabled in the current state s ∈ S. This triggers a state transition according
to T and offers a numerical reward signal according to R.



Risk-Based Interoperability Testing Using Reinforcement Learning 57

3.1 Solving MDPs

The task typically associated with an MDP is to find a strategy, i.e., a rule
for selecting an action in any given state, that maximizes the agent’s expected
return (in terms of collected reward). In [15], Sutton and Barto summarize the
class of so-called reinforcement learning methods which are designed for solving
this task.

However, even though a malicious developer had to solve a reinforcement
learning task for reaching a critical failure situation, ours seems different. Instead
of finding a path through the system test model (or the MDP) that is supposed
to offer the maximum reward, we first of all aim to assess the criticality of every
action in order to eventually form a risk-optimized test suite. In terms of an
MDP, we are searching for the expected returns of all actions. Fortunately, most
of the reinforcement learning methods also provide us with these values. They
are based on estimating value functions, i.e., mappings of states (or state-action
tuples) to the expected return when being in the given state (or selecting the
given action in a given state) [15]. Thus, in using one of these algorithms, we are
able to estimate the actions’ criticality.

Temporal difference learning, as a subclass of reinforcement learning, offers
the special charm of working on sample experience and thus not requiring a
model. In using a temporal difference method, we thus do not have to explic-
itly build the system test model which may be prohibitively large due to the
number of components and possible faults. In order to exploit this advantage,
we have chosen a fully decentralized approach: Within a simulation of system
runs, we associate each single component of the SuT with an agent that learns
the expected return of its actions. An agent’s action corresponds to the simu-
lated execution of a transition specified in the component test model. The action
can be executed as soon as the specified inputs of the associated transition are
present. If an action is executed, the specified messages to broadcast are sent to
the other agents. In this way an agent interacts with its environment (i.e., the
entirety of agents) under the rules of the system test model. The agents are syn-
chronized by logical time steps at which each agent performs exactly one action
per step. Dependencies during a time step are resolved by a scheduler which
implements the chosen communication paradigm over a message bus. At the end
of each time step, each agent is situated in a state defined by the associated
component test model. A composed state is formed by collecting the states of
every agent and each agent is reinforced according to R.

3.2 Q-learning

More specifically, we follow the Q-learning approach [18]. Each agent owns a so-
called Q-function mapping environmental states together with actions to their
expected return. We call the pair of an environmental state and an action a
decision. After a reward Rt+1 has been received for action at executed at time
step t out of the environmental (global) state st, the expected return for the
decision (st, at) is updated as follows:



58 A. Reichstaller et al.

Qt+1(st, at) = Qt(st, at) + α
(
Rt+1 + γ max

a
Qt(st+1, a) − Qt(st, at)

)
. (1)

The parameters α ∈ ]0, 1] and γ ∈ [0, 1] denote the learning rate and the dis-
count factor. Decisions which have not been mapped on an expected return yet
get a default assignment of 0. As one can see in Eq. 1, the expected returns –
that are representing our measure of criticality – are updated with respect to a
policy in which the agent chooses anytime the action with the highest criticality
(represented by the max-term in 1. This optimal policy invokes the worst-case
behavior of the component, that, as we suppose, is the most appropriate one in
case of risk-based testing.

As known for off-policy learning [15], the evaluated policy (in our case the
optimal one) is not affected by the way of generating behavior during the learn-
ing process (behavior policy). However, our simultaneous simulation of several
agents weakens this independence, since the reachability of a negative situation
may depend on decisions of multiple agents. In our running example, such a
dependence can be seen at the decision of agent B for choosing action N2

b!−→ N1
in composed state s1 = M′2N2O2. This decision could lead to different composed
states depending on the selected action of agent A. Let us assume that agent
A implements a behavior policy which selects each possible action with equal
probability (uniformly distributed policy). Then, the decision for N2

b!−→ N1 in
s1 will lead in half of the executions to s2 = M′1N1O1 and in the other half to
s3 = M′1N1O2. Thus, we expect Q(M′2N2O2,N2 b!−→ N1) in the equilibrium for
(Q) (where Qt+1(s, a) = Qt(s, a) for all s and a) to be the average of the two
different outcomes ν(s2) + γ maxa Q(s2, a) and ν(s3) + γ maxa Q(s3, a). Table 1
shows the Q-functions of agents A, B and C for γ = 0.5 in their equilibria,
assuming uniformly distributed behavior policies.

Table 1. Q-functions computed by agents for the system test model of Fig. 2b with
negative situation M′2−O1, ν = 2.0, and γ = 0.5.

Agent with action (left) and criticality (right column)

State A for M′ (see Fig. 2b) B for N (see Fig. 1b) C for O (see Fig. 1c)

M′1N1O1 M′1 −→ M′2 2.0 N1
a?/d!−−−→ N2 0.29 O1

d?−→ O2 0.5

M′1 a!−→ M′2 0.5 N1 −→ N1 2.0 O1 −→ O1 2.0

M′2N2O2 M′2
b?/e!−−−→ M′1 1.0 N2

b!−→ N1 0.57 O2
e?−→ O1 1.0

M′2 b?−→ M′1 0.25 N2
c!−→ N3 0.0 O2 −→ O2 0.06

M′2 c?−→ M′3 0.0

M′1N1O2 M′1 a!−→ M′2 0.5 N1
a?/d!−−−→ N2 0.29 O2 −→ O2 0.25

M′1 −→ M′2 0.0 N1 −→ N1 0.0



Risk-Based Interoperability Testing Using Reinforcement Learning 59

4 Deriving Tests with High Risk-Based Impact

Up to this point, we have a set of agents, each one containing a Q-function
mapping decisions to criticality values. This, as an intermediate result, would
enable the imaginary malicious developer of Sect. 1 to implement the most criti-
cal faults in his component; and it enables us to assess observed decisions of any
of the SuT’s components in real operation. However, we still want to use this
learned information for generating test cases covering the most critical faults.
For this purpose, two things have to be considered: (1) Positive test cases, as
we exclusively consider in this paper, do only include decisions with specified
actions (specified decisions) but are able to detect implemented decisions with
mutated actions (mutated decisions). More precisely, we assume the test of a
specified decision to detect all of its mutants, i.e., decisions with the same state
but with actions that are mutants of that contained in the specified decision.
Hence, we have to distinguish between a decision’s criticality and a specified
decision’s relevance for being tested that, in fact, should even comprise the criti-
cality values of its mutants. (2) A Q-function, as we formed it, assesses decisions
with local actions (local decisions). A system test case, however, should specify
the execution of global decisions involving one local decision per component.

Thus, we assess the relevance in (1) local and (2) global relevance functions
whereby the latter depends on the first. System test cases then are generated
and assessed using the global relevance functions.

4.1 Relevance Functions

The local relevance function r maps each specified local decision to its relevance
for being tested. We define the relevance of a decision by the sum of the criticality
values of its mutants. This is reasonable, since a specified decision is deemed to
reveal all of its mutants if they are implemented. From a mutation-based testing
perspective, the relevance can be seen as the reward for killing a set of mutants.
More formally, for a specified decision d = (s, a), let M(d) be the set of mutated
decisions whose actions are mutants of a and whose composed state is s. Then
we define

r(d) = Q(d) +
∑

d′∈M(d) Q(d′) .

Continuing the above example, Table 2a shows the local relevance function for
agent A. The local relevance functions for agents B and C are the Q-functions
of these agents as shown in Table 1, as they involve no mutated decision.

The global relevance function r maps each possible global decision to its
relevance for being tested. A global decision d consists of one specified (local)
decision per agent. A global decision is possible iff the contained local decisions
can be made at the same time. Thus, the local decisions contained in a possible
global decision share the same composed state and actions which satisfy the
chosen communication paradigm. Since only the specified local decisions are
considered, but not their mutants that would result in much more possible global
decisions, the computation of the set of global decisions turns out to be feasible,



60 A. Reichstaller et al.

Table 2. Relevance functions on the basis of the Q-functions in Table 1.

even for rather complex models. The execution of a global decision by a test
case implies the execution of all included specified (local) decisions. We define a
global decision d to be as relevant as the sum of its local decisions:

r(d) =
∑

d∈d r(d) .

Table 2b shows the global relevance function for our running example of
agents A, B and C where we abbreviate a global decision by its resulting com-
posed action in the system test model.

4.2 Deriving Logical Test Cases

Building on the global relevance function, we are now able to derive a risk-
optimized test suite, i.e., a suite of a desired number of logical interoperability test
cases that covers as much relevance as possible. A logical test case comprises a
path through the system behavior model starting from the initial state. However,
we still want to avoid computing the complete system behavior model. In fact,
since the criticality and relevance values were learned by sample experience, we
have no guarantee that each composed action of the system behavior model
has been reached and thus assessed by the global relevance function. Hence we
directly consider the graph of the global relevance function, linking the states of
the assessed global decisions with their defined composed actions. Decisions that
cannot be reached from the composed source state, such as d4 in our example,
are ignored. Then, a logical test case, i.e., a sequence of global decisions in the
graph of the global relevance function, covers the relevance of each comprised
decision.

In practice, the number of executable and assessable test cases is typically
limited by an upper bound σ, particularly for huge systems with many com-
ponents. Hence, we are looking for the σ test cases covering the most relevant
decisions with σ given by the tester. More formally, if Pσ is the set of all cycle-
free path sets with cardinality σ and r(P ) =

∑
d∈P r(d) for each P ∈ Pσ, we

aim to find ts = arg max{r(P ) | P ∈ Pσ}, i.e., a test suite ts with the maximum
relevance. We solve this maximization problem by (1) identifying all cycle-free



Risk-Based Interoperability Testing Using Reinforcement Learning 61

Table 3. Test case selection algorithm and test cases generated for the case study.

paths through the graph of the global relevance function, (2) iteratively adding
test cases to the test suite, and (3) updating the values of the global relevance
function after adding a test case. Table 3a implements (2) and (3) for the set
paths identified in (1). Since the relevance values of covered global decisions are
set to zero (see Table 3), the derived test suite cannot contain a path twice.
Table 3b shows the test cases of a generated test suite with an upper bound
σ = 2 for our running example.

The presented algorithm generally works for every graph with weighted edges.
In addition to relevance values resulting from the proposed learning procedure,
the tester is thus able to introduce any desired custom weights. The algorithm in
Table 3a, in particular, generates test cases out of the global relevance function
which exclusively comprises specified decisions. Thus, it does not suffer from the
major state space blow up resulting from the inclusion of mutations. Though it
repeatedly iterates through the state space, the following case study will show
that this test case generation is indeed feasible, at least for moderately sized
systems.

5 Evaluation Within a Mobile Payment Application

We implemented our risk-based interoperability testing procedure in a research
prototype. For evaluation, we applied it to the specification of a mobile payment
system provided by an industrial partner.

5.1 Inputs and Implications for an Optimal Test Suite

Mobile payment systems enable customers to pay goods or services cashless with
their mobile phone. We extracted the involved components of such an application
and translated them into finite state machines as inputs for our prototype. For
conciseness, we thereby focused on the use case of the actual payment process.
Figures 3a to f show the resulting component models: the user interface (typi-
cally an app on the user’s mobile phone, component UI), the cashier (the cashier
himself, C), the cash desk (the software deployed on the cash desk for process-
ing the payment, CD), the retailer system (a central server on the retailer side,
R), the service provider (a server handling the payment process, S), and the



62 A. Reichstaller et al.

Fig. 3. Component behavior models for the mobile payment case study.

Fig. 4. Generated graph of the mobile payment system’s global relevance function.



Risk-Based Interoperability Testing Using Reinforcement Learning 63

bank system (the bank’s service for processing a transaction, B). Every action
in the presented models is named by a prefix at the message specification, e.g.,
UI:LoggedIn ui1:SQR!−−−−−→ UI:Ready2Scan. Each component exclusively consumes the
messages for which it is authorized. Thus, even though the considered communi-
cation over a broadcasting message bus would not be explicitly implemented for a
mobile payment system, it does not restrict the presented models in representing
the intended communication behavior.

We consider situations to be critical where the retailer assumes the success of
a transaction although the bank refused it. In the models, these situations can
be described by those system states in which the bank is in B:TANotStored while
the retailer system is in R:TAClosed. In such system states, the service provider
could be either in S:TAFailed or in S:TADone. Thus, we distinguish the following
two negative situations, each one annotated with an exemplary negativity score
of 1.0 (“−” indicates that the corresponding component may be in arbitrary
state):

1. UI:−,C:−,CD:−, R:TAClosed,S:TAFailed,B:TANotStored
2. UI:−,C:−,CD:−, R:TAClosed,S:TADone,B:TANotStored

For the purpose of this case study, we exclusively considered output faults,
i.e., faults in sending messages. Thereby we identified three classes of common
faults: (1) message loss, (2) sending of a wrong message, and (3) delay in sending
a message. The associated fault models mutate transitions as follows: For (1),
message losses, no outgoing message is sent at all. For (2), wrong messages,
messages are sent which originally are defined for being sent on other transitions
with the same source state as the mutated one. The messages which are defined
for being sent on the mutated transition are not sent. Finally, for (3), delayed
messages, specified outgoing messages on a transition t1 are shifted to any other
transition t2 reachable from the target state of t1. Whilst t1 then sends no
message at all, t2 sends a random message out of all delayed messages in addition
to the originally defined ones on t2.

Considering the resulting mutants, the defined negative situations are only
reachable if the bank system chooses transition b4. If the bank system sends the
wrong message ReqOK on b4, the service provider has to enter S:TADone. Then,
negative situation 2 occurs, if the service provider sends the specified message
OKStatus. Even if the bank system sends the specified message on b4 a negative
situation could occur: The service provider has to choose s6 into S:TAFailed; if it
thereby sends the faulty message OKStatus, the retailer enters R:TAClosed and
negative situation 1 is reached.

Thus, it can be assumed that composed actions which include r3, s5, and b4
or r3, s6, and b4 are crucial for the reachability of negative situations. These
actions, which we are referencing in the following as {r3, s5,b4} and {r3, s6,b4},
should be associated with higher relevance values than the others. The other
composed actions cannot directly lead to a negative situation, and their rele-
vance should depend on the length of the paths which are leading to {r3, s5,b4}
and {r3, s6,b4}. A risk-optimized test suite should preferably test paths leading
through {r3, s5,b4} and {r3, s6,b4}.



64 A. Reichstaller et al.

Table 4. Case study results: (a) Test cases generated for the global relevance function
in Fig. 4 with their covered relevance. (b) Results for ten executions with different
numbers of simulation runs; the right-most columns show the number of generated test
suites that contain both expected test cases of (a) or at least one of them.

5.2 Application and Results

We applied our prototype on the inputs described in Sect. 5.1. For this evalu-
ation, we chose a fixed learning rate of α = 0.1 and a fixed discount factor of
γ = 0.5. Furthermore, for promoting exploration within the simulation proce-
dure, all agents were reset to their initial states when (1) a negative situation
was reached, (2) no negative situation was reachable anymore, or (3) the num-
ber of global decisions made since the last reset exceeded the upper bound of
100. Figure 4 shows the graph of the global relevance function generated with
100,000 simulation runs, i.e., sequences of global decisions from the agents’ ini-
tial states up to the next reset. The graph contains one edge per crucial com-
posed action: edge d7 contains {r3, s5,b4}, d8 contains {r3, s6,b4}. As expected
in Sect. 5.1, their relevance is predominant. In correspondence with the system
behavior model and the reset conditions mentioned above, the graph includes
the following paths:

1. d1 → d2 → d3 → d4
2. d1 → d2 → d3 → d5

3. d1 → d2 → d3 → d6 → d7
4. d1 → d2 → d3 → d6 → d8 → d9

Paths 1 and 2 cover the most relevant composed actions d7 and d8 and
thus should be contained in a risk optimized test suite with an upper bound of
2 as test cases. Table 4a shows the actually generated test cases for the global
relevance function shown in Fig. 4 together with their covered relevance. The test
case order seems to be plausible—for an upper bound of 2 exactly the defined
test cases would be chosen.

However, the chosen behavior strategy cannot assure that every possible com-
bination of local decisions is covered during the simulation. Since number and
kind of chosen decisions may differ, we can not even assure that different execu-
tions of the prototype will lead to the same results. In fact, because of the uni-
formly distributed behavior policy, it is rather unlikely to get the same absolute



Risk-Based Interoperability Testing Using Reinforcement Learning 65

relevance values twice. Because of the convergence of learning, the returned val-
ues, however, should become the more representative the higher the number
of executed simulation runs. To investigate the stability of the results, we exe-
cuted the prototype several times with the same inputs but a different number
of simulation runs, in each case ten times. Table 4b shows the frequency the
expected test suite had been generated, the frequency the generated test suite
at least contained one of the two expected test cases, and the average number
of reached negative situations within the ten executions for the different number
of simulation runs. Obviously, the average number of reached negative situa-
tions increases with the number of simulation runs. The higher the number of
reached negative situations, the more often the expected test suite is generated.
For 100,000 simulation runs and an average of 33.7 reached negative situations,
every execution generates the expected test suite. This result implies, on the one
hand, that a more focused behavior strategy could be useful. If it would lead to
a higher average number of reached negative situations, the expected test suite
could be generated constantly for less simulation runs. On the other hand, the
proposed approach leads to acceptable results, even if the state space is not fully
explored many times. Although the expected test suite had been generated only
two times out of ten executions for 5,000 simulation runs, it contained 6 times
at least one of the desired test cases. Such a test suite covers wide parts of the
model’s relevance.

6 Related Work

Our approach combines interoperability testing, risk-based testing, and test case
generation with reinforcement learning.
Machine Learning. The application of machine learning techniques on software
testing has already been identified as a fruitful perspective by Groce et al. [9]. In
[8], Groce uses reinforcement learning via adaption-based programming for test
input generation. This method rewards coverage increases during test execution
to achieve a higher coverage than random testing. By contrast, our method
uses reinforcement learning for assessing the criticality of possible faults before
test execution. Veanes et al. [17] present a technique inspired by reinforcement
learning for choosing coverage optimizing test actions in online testing, i.e., the
combination of test generation and test execution in a single algorithm. They
also do not consider risk estimations.
Interoperability Testing. For generating interoperability test cases, it is a common
technique to form a system test model by the composition of several component
test models. Luo et al. [11] reduce a set of communicating non-deterministic
finite state machines to a single machine and generate test sequences from this
machine. Seol et al. [13] propose a method that composes input/output state
machines to generate interoperability test cases. Though our algorithm for gen-
erating test cases from the global relevance function implements a similar app-
roach, it additionally takes into account the relevance of actions for being tested.
In fact, in [11,13] the number of generated test cases depends on the composed,



66 A. Reichstaller et al.

global model’s complexity, whereas our approach generates a desired number of
risk-optimized test cases.
Risk-Based Testing. Building on general high-level considerations from authors
such as Bach [2] or Amland [1], several methods for integrating risk estima-
tions in testing evolved though at different levels of automation. Similar to our
approach, several works propose the use of test models for the SuT, which are
getting annotated by risk values, for deriving or even generating test cases: Kloos
et al. [10] construct test models from the results of a fault tree analysis from
which test cases can be generated. Bauer et al. [4] transfer the risk of annotated
UML diagrams to a test model, from which test cases are derived. Zimmermann
et al. [20] extend this approach by refining the test models so that from these only
so-called critical test cases are generated. Wendland et al. [19] propose to for-
mulate requirements for the SuT in so-called integrated behavior trees. These are
annotated with risk values associated with certain risk levels. A risk-optimized
test suite is generated from the annotated models by using test directives. In all
of these approaches the risk assessment is done by experts. Also our approach
builds on expert estimation, since the most critical failure situations have to be
given. However, in contrast to the mentioned methods, we automatically derive
the contribution of the component’s actions to critical situations.

Stallbaum and Metzger [14] note that the risk assessment of test cases done
by experts could get a critical cost factor. They propose an approach that auto-
mates the risk assessment based on requirement metrics. Such metrics refer for
example to the revision frequency or the cyclomatic complexity of a use case.
However, the determination of risk exposures is still done by experts. The use
of metrics for risk estimation in testing was also proposed by Amland [1]. He
calculates so called risk indicators for every function of the SuT from which the
occurrence probability of failures can be estimated. The exposure of possible
failures is quantified by expert estimates. No hint is given on how to derive test
cases based on these considerations. Since Amland [1] assesses rather the prob-
ability and costs of possible failures than a fault criticality, his method could
be used for identifying the most hazardous failures together with their deemed
effect as input for our approach. Altogether, we assume that metrics are eligible
for approximating the occurrence probability of faults in different parts of the
system. The assessment of the criticality of faults, however, is hard to determine
using code or requirement metrics. Our approach of assessing the criticality of
faults by their contribution to the reachability of failures seems more reasonable.
In the future, metrics-based approaches could be used to extend our approach
with assumed occurrence probabilities of faults.
Probabilistic Model Checking. Not only from the strict risk-based testing per-
spective, the model-based test case generation is an active research topic. Fraser
et al. [7] summarize methods which are using model checkers for this task. The
fundamental idea behind this approach is to formulate logical properties on a
model of the SuT in such a way that the counterexamples returned by the
model checker can be interpreted as test cases. Closest to our approach are the
mutation-based test case generation approaches [7]: Mutations are introduced in



Risk-Based Interoperability Testing Using Reinforcement Learning 67

the inputs of the model checker according to some fault model and then logical
properties are formulated for getting counterexamples representing test cases
that kill the mutants. Traditional model checkers, however, only return single
counterexamples for absolute properties, such as “The system will never reach a
negative situation”, whereas the metrics of fault criticality and action relevance
imply the need for quantitative properties, such as “The system will reach a neg-
ativity score of 10 with a probability of at most 0.4”. For evaluating such quanti-
tative properties we would need to use probabilistic model checkers which are able
to solve verification tasks on Markov-Chains and Markov-Decision-Processes [3].
In fact, we believe that our approach is implementable by such model checkers.
The performance could, however, be rather unsatisfactory, since a probabilistic
model checker would have to consider the system test model with all of the
introduced mutants for evaluating given quantitative properties.

7 Conclusions and Future Work

We have presented a risk-based generation procedure for interoperability test
cases. It extends behavior models of the SuT with possible faults and assesses
them by their criticality w.r.t. reachable failures. An agent-based simulation
using the technique of reinforcement learning automates wide parts of this
process: Each component of the system is associated with a software agent which
learns the criticality of possible faults during a parallel simulation of all agents.
The global relevance function is formed by merging the learned criticality values
of the agents. Afterwards, Table 3a generates a risk-optimized test suite out of
the graph of the global relevance function. We applied a prototype on parts of
a specification of a mobile payment system. It could be seen that the quality of
results increases with the number of executed simulation runs. With 100,000 sim-
ulation runs the prototype generated constantly the expected test suite. These
observations emphasize the general eligibility of the presented approach.

However, several concepts still can be optimized. More sophisticated agent
behavior strategies could lead to the expected results with fewer simulation runs.
The agents currently make random decisions between their possible actions thus
not always hitting the worst-case behavior of the system. Letting the agents, how-
ever, always choose the decision with the highest criticality value, exploration
is nearly dropped. Hence, some other strategies should be studied that balance
between exploration and exploitation. We exclusively considered the worst-case
behavior of the SuT, as we did not assume probabilities for choosing specified
actions or for the occurrence of faults to be given. Annotating the models with
such probabilities would incorporate such system behavior assumptions and lead
to a kind of on-policy learning. To increase the efficiency of our algorithms, we
aim to avoid calculating the set of possible global decisions from the local ones.
The application of meta-heuristic techniques could further improve the scaling
of the test cases generation algorithm on the global relevance function. Fur-
ther case studies will be made for different system models to identify additional
optimizations.



68 A. Reichstaller et al.

Apart from the definition of behavior models for the components we autom-
atized every activity of the proposed approach. For further automation, these
behavior models could also be generated, e.g., from common interface defini-
tions, and the generated test cases could be transformed for a direct import into
common test automation systems.

Acknowledgment. This research is partly funded by the research project Testing
self-organizing, adaptive Systems (TeSOS) of the German Research Foundation.

References

1. Amland, S.: Risk-based testing: risk analysis fundamentals and metrics for software
testing including a financial application case study. J. Syst. Softw. 53(3), 287–295
(2000)

2. Bach, J.: Heuristic risk-based testing. Softw. Test. Qual. Eng. Mag. 11(9), 99
(1999)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Bauer, T., Stallbaum, H., Metzger, A., Eschbach, R.: Risikobasierte Ableitung und
Priorisierung von Testfällen für den modellbasierten Systemtest. Softw. Eng. 121,
99–111 (2008)

5. Chen, N.: Passive interoperability testing for communication protocols. Ph.D. the-
sis, Université Rennes 1 (2013)

6. Feinberg, E.A., Shwartz, A.: Handbook of Markov Decision Processes: Methods
and Applications, vol. 40. Springer Science & Business Media, Heidelberg (2012)

7. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: a survey.
Softw. Test. Verification Reliab. 19(3), 215–261 (2009)

8. Groce, A.: Coverage rewarded: test input generation via adaptation-based pro-
gramming. In: Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, pp. 380–383. IEEE Computer Society (2011)

9. Groce, A., Fern, A., Erwig, M., Pinto, J., Bauer, T., Alipour, A.: Learning-based
test programming for programmers. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012,
Part I. LNCS, vol. 7609, pp. 572–586. Springer, Heidelberg (2012)

10. Kloos, J., Hussain, T., Eschbach, R.: Risk-based testing of safety-critical embedded
systems driven by fault tree analysis. In: 4th International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pp. 26–33. IEEE (2011)

11. Luo, G., Bochmann, G., Petrenko, A.: Test selection based on communicating non-
deterministic finite-state machines using a generalized Wp-method. IEEE Trans.
Softw. Eng. 20(2), 149–162 (1994)

12. Offutt, A.J., Untch, R.H.: Mutation 2000: uniting the orthogonal. In: Wong, W.E.
(ed.) Mutation Testing for the New Century. The Springer International Series on
Advances in Database Systems, vol. 24, pp. 34–44. Springer, Heidelberg (2001)

13. Seol, S., Kim, M., Chanson, S.T., Kang, S.: Interoperability test generation and
minimization for communication protocols based on the multiple stimuli principle.
IEEE J. Sel. Areas Commun. 22(10), 2062–2074 (2004)

14. Stallbaum, H., Metzger, A.: Employing requirements metrics for automating early
risk assessment. In: Wsh. Measuring Requirements for Project and Product Success
(MeReP), pp. 1–12 (2007)



Risk-Based Interoperability Testing Using Reinforcement Learning 69

15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

16. Utting, M., Legeard, B.: Practical Model-based Testing: A Tools Approach. Else-
vier, Amsterdam (2006)

17. Veanes, M., Roy, P., Campbell, C.: Online testing with reinforcement learning. In:
Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS, vol.
4262, pp. 240–253. Springer, Heidelberg (2006). doi:10.1007/11940197 16

18. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)
19. Wendland, M.F., Kranz, M., Schieferdecker, I.: A Systematic approach to risk-

based testing using risk-annotated requirements models. In: 7th International Con-
ference on Software Engineering Advances (ICSEA), pp. 636–642 (2012)

20. Zimmermann, F., Eschbach, R., Kloos, J., Bauer, T.: Risk-based statistical testing:
a refinement-based approach to the reliability analysis of safety-critical systems.
In: 12th European Workshop on Dependable Computing (EWDC) (2009)

http://dx.doi.org/10.1007/11940197_16


A Combinatorial Approach to Analyzing
Cross-Site Scripting (XSS) Vulnerabilities

in Web Application Security Testing

Dimitris E. Simos1(B), Kristoffer Kleine1,
Laleh Shikh Gholamhossein Ghandehari2, Bernhard Garn1, and Yu Lei2

1 SBA Research, 1040 Vienna, Austria
{dsimos,kkleine,bgarn}@sba-research.org

2 Department of Computer Science and Engineering,
University of Texas at Arlington, Arlington, TX 76019, USA

laleh.shikhgholamhosseing@mavs.uta.edu, ylei@cse.uta.edu

Abstract. Web applications typically employ sanitization functions to
sanitize user inputs, independently whether this input is assumed to be
legitimate, invalid or malicious. When such functions do not work cor-
rectly, a web application immediately becomes vulnerable to security
attacks such as XSS. In this paper, we report a combinatorial approach to
analyze XSS vulnerabilities in web applications. Our approach first per-
forms combinatorial testing where a set of test vectors is executed against
a subject application. If one or more XSS vulnerabilities are triggered
during testing, we analyze the structure of each test vector to identify
XSS-inducing combinations of its parameter model. If an attack vector
contains an XSS-inducing combination, then the execution of this vec-
tor will successfully exploit an XSS vulnerability. Identification of XSS-
inducing combinations provides insights about which kinds of user input
might still be leverageable for XSS attacks and how to correct the func-
tion to provide better security guarantees. We conducted an experiment
in which our approach was applied to four sanitization functions from the
Web Application Vulnerability Scanner Evaluation Project (WAVSEP).
The experimental results show that our approach can effectively identify
XSS-inducing combinations for these sanitization functions.

Keywords: Combinatorial testing · XSS · Fault localization · Security
testing

1 Introduction

Web application security is as important as ever but pervasive ubiquitous com-
puting, bundled with 24/7 network access, makes any connected web application
especially susceptible to attacks. Naturally, injection attacks are remote exploits

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 70–85, 2016.
DOI: 10.1007/978-3-319-47443-4 5



A Combinatorial Approach to Analyzing XSS Vulnerabilities 71

which can cause security breaches. Cross-site scripting (XSS) falls into this cat-
egory and constitutes the third serious vulnerability according to the Open Web
Application Security Project (OWASP) [22]. We focus on analyzing XSS vul-
nerabilities where we distinguish between two different types of XSS, namely
reflected XSS and stored XSS. In the former case the web server response con-
tains some data from the corresponding request, while the latter case includes
data stored permanently on the server (e.g., in a database). In line of this work
we are concerned only for reflected XSS vulnerabilities.

In this paper, we apply for the first time a fault-localization technique based
on combinatorial methods to identify one or more combinations of input parame-
ter values that would definitely trigger an XSS vulnerability for a given system
under test (SUT). We refer to these combinations as XSS-inducing combina-
tions or simply inducing combinations. If an XSS attack vector (test vector)
contains an inducing combination, then the execution of this test vector against
the SUT will successfully exploit an XSS vulnerability. The identification of
inducing combinations provides important information about why an input fil-
ter fails to sanitize a malicious vector, which in turns helps to make necessary
corrections.

Note that this is different from traditional fault localization, which is aimed
at identifying the location of a fault in the source code. Sanitization functions
are typically employed in web applications to sanitize invalid or malicious user
inputs. XSS vulnerabilities, if they exist, are in most cases contained in these
sanitization functions, which are mostly simply referred to as filters. Thus, the
location of an XSS vulnerability in the source code is typically considered known
or not difficult to be identified. However, designing and implementing rigorous
and secure input filters is a very complicated and challenging task [1]. In partic-
ular, when an input filter does not work as expected, it could be difficult for one
to understand why it does not work and how to correct a vulnerable filter. The
results of this paper enhance the capabilities of security testers to design better
attack models for web applications but at the same time guide the developers
on how to improve the filtering mechanisms met in such applications.

In Sect. 2 we describe related work for web application security testing and
fault localization techniques. Sections 3 and 5 reviews past achievements on com-
binatorial testing for web security testing and fault localization methods, respec-
tively, that relate to this work. Section 4 discusses the test execution method used
in this work. In Sect. 6 we present our methodology for analyzing XSS vulner-
abilities using combinatorial based fault localization methods. An experimental
evaluation that validates our approach is given in Sect. 7. Finally, Sect. 8 con-
cludes the work and discusses directions for future work.

2 Related Work

In this section, we describe related works with respect to fault localization
approaches for combinatorial testing and security testing frameworks devoted
to XSS detection. For a systematic literature review on research devoted to XSS



72 D.E. Simos et al.

we refer to [12] while for important contributions in combinatorial testing and
fault localization that relate to the work presented in this paper we refer to
Sects. 3 and 5, respectively, and cited references there in.

Web Application Security Testing Frameworks. Security testing is meant
to support vulnerability detection, and for this task several approaches and tools
have been developed in the past. In the following, we depict the most important
of them. A comparison of several penetration testing tools is given in [7,15]. The
authors of these works compare commercial as well as open source penetration
testing tools by testing several web applications. Security testing tools incorpo-
rating fuzzing techniques have been presented in [5,6,20]. The authors of the
last two works apply evolutionary approaches and learning in order to detect
potential vulnerabilities. Even though these works add towards test automation,
complete automation of the security testing process remains a very active chal-
lenge. Recent works on XSS vulnerability detection include unit testing methods
that can detect XSS vulnerabilities which cannot be found by static analysis tools
[16] and attack patterns for black-box security testing of web applications [19].

It is evident that even though a lot of works have been devoted to XSS
vulnerability detection very few of them focus on analyzing these vulnerabilities
and even fewer correlate malicious vectors with sanitizing functions.

Fault Localization Techniques Based on Combinatorial Methods. Com-
binatorial testing has been shown to be a very effective testing strategy [13]. A
t-way combinatorial test set is designed to detect failures that are triggered by
combinations involving no more than t parameters. After a failure is detected,
the next task is to identify the fault that causes the failure. The problem of
fault localization can be divided into two sub-problems: (1) Identifying failure-
inducing combinations. A combination is failure-inducing or simply inducing if
its existence in a test causes the test to fail. (2) Identifying actual faults in the
source code. A fault is a code defect that can be an incorrect, extra, or miss-
ing statement. As explained in Sect. 1, we are mainly interested in identifying
XSS-inducing combinations. Thus, in the following, we will focus on existing
approaches to identify failure inducing combinations.

Two techniques, called FIC and FIC BS [24], take as input a single failed
test from a combinatorial test set, and identify as output a minimal inducing
combination that causes the test to fail. The main idea of the two techniques
consists of changing, in a systematic manner, the parameter values in the failed
test. A parameter value is considered to be involved in an inducing combination
if changing it to a different value causes the failed test to pass. It is assumed that
changing a parameter value does not introduce any new inducing combination.

The AIFL technique in [18] first identifies a set of suspicious combinations as
candidates for being inducing. Second, it generates a group of tests for each failed
test. After executing the newly generated tests, combinations which appeared in
the passed tests are removed from the suspicious set. The IterAIFL technique



A Combinatorial Approach to Analyzing XSS Vulnerabilities 73

is an iterative approach proposed by Wang et al. in [21]. It iteratively generates
and refines suspicious set until it becomes stable.

In our earlier work, we developed a approach called BEN that identifies
suspicious combinations in the same way as AIFL and IterAIFL. However, BEN
produces a ranking of suspicious combinations and focuses on the most suspicious
combinations. Moreover, BEN significantly differs from AIFL and IterAIFL in
the way of generating new tests. A detailed description of BEN is given in Sect. 5.

Lastly, to the best of our knowledge this is the first work where combinatorial
based fault localization techniques are applied to analyze security vulnerabilities.

3 Combinatorial Testing for Web Security Testing

Combinatorial testing has been successfully applied for testing (critical) software
systems in large organizations [11]. It is an already proven method for black-box
security testing of large-scale web software systems [2,3,7] where t-way testing
was applied successfully to XSS detection. In this section, we review these key
contributions in web security testing that are based on combinatorial methods
and are used as a basis for analyzing XSS vulnerabilities via fault localization
methods throughout this paper. For a general treatment of the field of combina-
torial testing we refer the interest reader to the surveys of [4,17].

Throughout this paper, we are uniformly using a strength four (t = 4) test
set against the SUTs for reasons explained later in this section. The underlying
combinatorial model of XSS attack vectors is a refined and extended version
from the works in [2,7] and is a form of input parameter model [10]. Its goal is
to discretize the input space to parameters and discrete values so that these can
be given to combinatorial testing tools.

The generated test vectors aim at producing valid JavaScript code when these
are executed against SUTs. A description of parameters that appear in the input
model has briefly been mentioned in [2,7], however we give an excerpt here, for
the sake of completeness:

– The JSO (JavaScript Opening Tags) type represents tags that open a
JavaScript code block.

– The WS (white space) type family represents white space characters.
– The INT (input termination) type represents values that terminate the orig-

inal valid tags (HTML or others).
– The EVH (event handler) type contains values for JavaScript event handlers.
– The PAY (payload) type contains executable JavaScript.
– The PAS (payload suffix) type contains different values that should terminate

the executable JavaScript payload (PAY parameter).
– The JSE (JavaScript end tag) type contains different forms of JavaScript end

tags.

Moreover, this input model is optimized to fit to the employed test execution
method (see Sect. 4). A suitable metric has been introduced in [2] to assess the



74 D.E. Simos et al.

quality of produced combinatorial test sets for XSS detection, called exploita-
tion rate (ER), which measures the proportion of XSS attack vectors that were
successful, e.g. the ones that exploit an XSS vulnerability, per given test set and
SUT.

In particular, past work of ours has revealed that the usage of a 4-way test
set (with constraints) yields satisfactory practical results for web application
security testing and is justified as follows:

– In the majority of our past security testing experiments [2,3,7] we have wit-
nessed that higher strength interaction testing yields better results w.r.t.
exploitation rate. More specifically, we were able to report an increase in the
exploitation rate when moving from 2-way to 3-way and 4-way testing. Also,
in [2] we reported on cases where only a 4-way test set was able to successfully
trigger XSS exploits for specific SUTs but none of the test sets with weaker
t-way coverage properties could.

– In some of our past experiments [7], we have noticed performance issues when
moving from pairwise-testing to higher interaction testing. Depending on the
test execution method (see Sect. 4) (i.e. used penetration testing tool), the
SUT (i.e. tested HTTP parameter of a web application) and the underly-
ing operating system, we have seen execution times to vary greatly between
repeated test runs. We further noticed SUTs to become unresponsive, as well
as, increased memory usage. However, we were still able to exploit XSS vul-
nerabilities using a 4-way test set.

– An important finding in the post-processing of 2-way test sets used in [3] was
that it revealed a surprising high percentage of 3-way and 4-way combinations
covered in the successful XSS attack vectors (per test set and SUT).

These statements are in accordance with a relationship known as interaction
rule in combinatorial testing which is based on empirical data and shows that
most software faults are triggered by a single parameter value, or interactions
between a small number of parameters, generally two to six [14].

4 Penetration Testing Execution Methods

In this section, we provide details about the penetration testing execution
method we have used in our experimental evaluation. We give a detailed descrip-
tion of its procedure, functionality and test oracle, applicable when testing for
XSS vulnerabilities. The described method can be applied to security testing in
general, but in this paper we focus explicitly on penetration testing, e.g. exploit-
ing XSS vulnerabilities, where the main difference (to security testing) relies on
the fact that we initiate the testing procedure once the web applications are
installed in an operational environment. The main difference to conventional
penetration testing is that we are not interested in pinpointing where a vulner-
ability is located in the source code, but rather to analyze a known vulnerable
input field in a web application in order to get insights into its structure, i.e. the
necessary degree of interaction to trigger the successful exploitation of an XSS
vulnerability.



A Combinatorial Approach to Analyzing XSS Vulnerabilities 75

Test Execution. As test execution environment we used the Burp Suite1 which
is an integrated platform for performing security testing of web applications. It is
widely used by security professionals since it allows to perform many penetration
testing tasks.

In our case the Intruder module of BURP was used to execute our test
vectors. Intruder offers automated customized attacks against web applications,
to identify and exploit all kinds of security vulnerabilities including XSS attacks.
In order to test an SUT we supplied its location (server, port and URL) to
Intruder and also provided the position for the input parameter. Then, our test
set consisting of XSS attack vectors was loaded and executed one by one. The
response (HTML) of the SUT for each test vector was recorded and supplied to
the test oracle in order to determine whether an XSS vulnerability was triggered.

Test Oracle. The usual penetration testing procedure is mostly concerned
with finding which parts of a web application are potentially vulnerable to an
XSS attack. Here, the tester submits a request with user-controlled string in a
HTTP-parameter (e.g. the user enters a string <script> in a search function
and submits the query) and then examines the HTML response page from the
web application whether it contains any part of the submitted string. If there
are no sanitization functions invoked on the input at all, then this input field
is a very probable candidate for having an XSS vulnerability. It is a common
practice in security testing to rely on string matching as the underlying test
oracle which is commonly referred to as reflection oracle. This process is repeated
with all HTTP parameters in a web application. However, the reflection oracle
can not decide whether an identically reflected user input string would actually
be executed by a web browser. Therefore, the reflection oracle decision is not
indicative of the vector actually triggering an XSS vulnerability. Thus, in relation
to the detection of true XSS an oracle relying on reflection alone is not infallible
as it suffers both from false positives and false negatives. In order to determine
if the XSS vulnerability was indeed triggered by a test vector – meaning that
we have a true XSS – the response of the web application needs to be evaluated
under real-world conditions.

This necessary task can be fulfilled by employing a new test oracle, hence-
forward called the execution oracle. As indicated by the name, this oracle oper-
ates similar to a web browser and evaluates/parses the page response from a
web application. The generated test vectors must be designed in such a way
that their behavior is detectable by the execution oracle. Additionally, in the
presented form it must be ensured that this behavior is distinct from normal
intended behavior by the SUT, so that we can deduce true XSS by page-parsing
anomaly detection. We have used the XSS Validator extension of BURP to fill
the role of the execution oracle. The inner workings of the Validator are described
below in detail. We state an important fact: Under these conditions, every vec-
tor marked as triggering by the execution oracle is indeed a test vector which
triggers a true XSS vulnerability exploitation and as such the execution oracle
1 http://portswigger.net/burp/.

http://portswigger.net/burp/


76 D.E. Simos et al.

does not produce false positives. To illustrate this point, consider the test vector
onError=alert(1) which is reflected inside the body tag of an HTML page.
Under the assumption that the web application applies no filtering to the input
then this vector will be reflected without changes in the page response and the
reflection oracle will flag this vector. The execution oracle however, will not flag
this vector because it does not exploit the vulnerability.

An instantiation of the execution oracle can be found in the XSS Validator2

extension to BURP. This extension enhances the test execution capabilities of
BURP by adding a detection mechanism of triggered XSS vulnerabilities.

The XSS Validator receives the response from the SUT (including the
reflected test vector) and renders the HTML. During rendering, JavaScript con-
tained in the website will be executed. When it is detected that JavaScript was
executed which originated from a test vector then this test vector is flagged as
having triggered the XSS vulnerability.

Since the Validator extension comes with its own set of test vectors and
is targeted towards the detection of XSS vulnerabilities triggered by them we
modified the code to use our own test vectors and adapted the detection code
to recognize behavior triggered by them (see Sect. 6.2 for more details).

5 Fault Localization Based on Combinatorial Methods

BEN [8,9] adopts a spectrum-based fault localization technique and has been
applied to a Siemens test set and two programs i.e., grep and gzip. It leverages
the results of the combinatorial test set and generates the ranking of state-
ments in terms of their likelihood of being faulty. BEN consists of two major
phases: (1) In phase 1, BEN identifies a combination that is very likely to be
a failure-inducing combination. (2) In phase 2, BEN takes the failure-inducing
combination identified in phase 1 and then produces a ranking of statements in
the source code by analyzing the spectra of the small group of tests.

In this work, we only applied the first phase of BEN because we are not
interested on the ranking of statements in the source code since we are following
a black-box security testing approach. Therefore, we focus solely on the first
phase, identifying failure-inducing combinations. BEN takes the input parame-
ter model and a t-way combinatorial test set with execution results as input,
and adopts an iterative framework to identify inducing combinations of size t
or larger. At each iteration, BEN analyzes a test set F , which initially is the
t-way combinatorial test set taken as input. BEN first identifies a set of t-way
suspicious combinations, π, then, ranks them based on their suspiciousness, i.e.,
likelihood to be inducing.

Next, a small set of new tests, F ′, is generated. If all tests in F ′ that contain a
suspicious combination c are failing, then c is marked as an inducing combination,
and the process stops. Otherwise, all tests in F ′, will be added to test set F ,
to refine the set of suspicious combinations and their ranking. BEN continues

2 https://portswigger.net/bappstore.

https://portswigger.net/bappstore


A Combinatorial Approach to Analyzing XSS Vulnerabilities 77

the two steps, i.e., rank and test generation iteratively until a t-way suspicious
combination is marked as an inducing combination or a stopping condition is
satisfied [9]. In the latter case, no t-way inducing combination is identified, BEN
increases the size of inducing combination, and tries to identify a (t + 1)-way
inducing combination.

Rank generation and test generation are based on two notions, suspiciousness
of a combination and suspiciousness of the environment of a combination. Infor-
mally, the environment of a combination consists of other parameter values that
appear in the same test case. The higher the suspiciousness of a combination,
the lower the suspiciousness of its environment, the higher this combination is
ranked. Moreover, new tests are generated for the most suspicious combinations.
Let f be a new test generated for a suspicious combination c. Test f is gener-
ated such that it contains c and the suspiciousness of the environment for c is
minimized. If f fails, it is more likely to be caused by c instead of other values
in f .

This process is repeated until an inducing combination is found. Note that
this process must terminate, as a failed test is by definition an inducing combina-
tion. Note that if there is a resource limitation, the user can stop the process. The
top-ranked suspicious combination is reported as failure-inducing combination,
in this case.

6 Methodology

In this section, we present our approach for analyzing XSS vulnerabilities using
combinatorial based fault localization methods. Our methodology is comprised
of two parts: First executing XSS attack vectors against SUTs and second iden-
tifying one or more combinations of input values that can trigger a successful
XSS exploit. Our utter goal is to map the failure-inducing combinations found
to XSS-inducing combinations. As explained in Sects. 4 and 5, respectively, we
used the BURP suite for the first part and the BEN tool for the second. Further,
we discuss below modifications of the BEN tool needed for XSS detection and
also the necessity for a refinement of the attack model.

6.1 Modifications of BEN for XSS Detection

As explained in Sect. 5, BEN first looks for a t-way inducing combination, where
t is the strength of the initial test set. Since all t-way combinations are covered
by the t-way combinatorial test set, BEN guarantees to identify t-way inducing
combination if such a combination exists. When there is no t-way inducing com-
bination, BEN looks for (t+1)-way inducing combination that is covered by the
t-way test set.

For our experiments, we modified BEN to take the size of inducing combi-
nation as well as the t-way combinatorial test set. The user can search for an
inducing combination whose size is equal to, greater or less than the strength
of combinatorial test set, t. When the size of inducing combination is equal to



78 D.E. Simos et al.

or less than t, BEN could identify inducing combination of a requested size, if
there is any. When the size of inducing combination is greater than the strength
of the combinatorial test set, BEN starts looking for an inducing combination
with the requested size is covered by the test set. In this case, BEN does not
search for t-way inducing combination, although it may exist.

In the test generation step, a set of new tests is generated for a user-specified
number of top-ranked suspicious combinations. Note that the user could spec-
ify the number of top-ranked suspicious combinations and the number of tests
generated for each top-ranked combination. The more tests generated, the more
effort it takes to execute them, but the more confidence we have about the iden-
tified inducing combinations. Moreover, the bigger the top-ranked set, the more
effort to generate and execute the new tests, but the faster an inducing combina-
tion may be identified. This is because if an inducing combination c is included
in the top-ranked set, c is identified to be an inducing combination in the first
iteration. Otherwise, it may take multiple iterations for c to move up into the
top-ranked set.

For our experiments, we configure BEN to generate two tests for each of the
five top ranked suspicious combinations at each iteration. So, at each iteration
maximum 10 new tests will be added to the test set. Note that this is a practical
decision made in consideration with resource constraints.

6.2 Model Refinement

We revised our combinatorial model of XSS attack vectors from [2,7] to fit to
the new execution oracle based on the Validator extension of BURP and to
limit the size of the generated 4-way test set (due to the performance issues
mentioned in Sect. 3), resulting in a significantly more robust and sophisticated
test framework able to cast a 100% confidence decision on triggering test cases.
To this end, we changed some parameter values and removed some others such
that the resulting test vectors are in line with the implementation of hooks in the
Validator so we can detect triggering test vectors. Most importantly, we chose two
kinds of values for the payload parameter. One kind contains a call to the built-in
JavaScript alert function while the other defines the src attribute pointing to
some predefined and non-existing resource. Both types of these payloads trigger
detectable behavior at runtime by PhantomJS. We have also verified this kind
of JavaScript is not contained in our SUTs used in the experimental evaluation.

7 Experimental Evaluation

In this section, we conduct an experimental evaluation in order to validate our
methodology for analyzing XSS vulnerabilities.

7.1 Design of the Experiment

The purpose of the experiment is to have a setup where we can evaluate our
methodology for analyzing XSS vulnerabilities using combinatorial based fault



A Combinatorial Approach to Analyzing XSS Vulnerabilities 79

localization techniques. To this end we choose 4 input fields as SUTs from
WAVSEP, the Web Application Vulnerability Scanner Evaluation Project3, ver-
sion 1.2. WAVSEP is a web application specifically designed to allow testing for
various kinds of XSS exploits, among other vulnerabilities. In contrast with train-
ing applications for web application security testing that have been thoroughly
tested in the past [12], WAVSEP offers sophisticated filter mechanisms and the
majority of its SUTs can be tested for XSS vulnerabilities. In the following, we
give details about the chosen input fields.

In particular, we use four input HTTP parameters as SUTs out of the
WAVSEP when testing for XSS vulnerabilities. Each SUT receives over HTTP
one GET parameter which is reflected on the page in different contexts. Also,
the input might optionally be filtered by a SUT specific sanitization function.

SUT ID SUT name Reflection site

1 Tag2HtmlPageScope <body>$input</body>

2 Tag2TagStructure <input type="text" value="$input">

3 Event2TagScope <img src="$input">

4 Event2DoubleQuotePropertyScope <img src="$input">

We give an description of these four SUTs, below:

SUT 1. This SUT just outputs the received parameter without modifications
into the HTML body tag. Thus, possible exploits could just inject any
HTML tag without having to worry about properly terminating a preceding
tag in the page.

SUT 2. This SUT outputs the received parameter without modifications into
the value attribute of an input tag.

SUT 3. This SUT outputs the received parameter into the src attribute of an
image tag and filters angle brackets.

SUT 4. This SUT outputs the received parameter into the src attribute of an
image tag and filters angle brackets and single quotes.

Test Vectors. We have employed the ACTS combinatorial test generation tool
[23] for automated test generation of test vectors. The tool is developed jointly
by the US National Institute of Standards and Technology and the University of
Texas at Arlington and currently has more than 1400 individual and corporate
users. In line of this work, we generated a 4-way test set consisting of 6891 test
vectors.

Workflow. The test vectors described above were then all executed against all
four SUTs and classified as either triggering an XSS vulnerability or not. Then,

3 https://github.com/sectooladdict/wavsep.

https://github.com/sectooladdict/wavsep


80 D.E. Simos et al.

BEN was run on the abstract test set together with the positions of vectors which
did trigger a vulnerability (positive vectors) one time for each SUT. In the first
round BEN searched for 4-way suspicious combinations and produced a set of
recommended tests. These tests were then translated to concrete attack vectors
and executed again. Depending on the result, BEN classified the underlying
suspicious combinations either as inducing (in the case of all recommended tests
succeeding) or not.

In the case that inducing combinations were found, we instructed BEN to
look for lower strength faults to confirm if the fault was a true 4-way fault or
an embedded lower strength fault. In the other case, when not all recommended
tests succeeded, we instructed BEN to look for 5 or 6-way inducing combinations.

7.2 Results and Analysis

Here, we present our evaluation results grouped per analyzed SUT. In particu-
lar, we evaluate our findings w.r.t. underlying vulnerabilities and also correlate
failure-inducing combinations with shortcomings in the filter mechanisms.

SUT 1. The initial test execution revealed 24 test vectors to trigger the XSS
vulnerability. All ten recommended tests produced by BEN for 4-way suspi-
cious combinations did not trigger the vulnerability. Therefore, we increased the
strength and searched for 5 and 6-way suspicious combinations. As all eight
recommended tests from 6-way suspicious combinations triggered the vulnera-
bility we arrived at four inducing combinations of strength 6. In Table 1 we show
the composition of these recommended tests and highlight in red the inducing
combinations.

In the table the common structure of the triggering vectors is clearly visible as
they all start with an opening img tag and contain a reference to the predefined
resource. The other components of the inducing combination make sure that the
vector does not contain any interfering characters to ensure that the vector will
be parsed correctly when reflected in the page response.

Table 1. Recommended tests with embedded 6-way inducing combinations



A Combinatorial Approach to Analyzing XSS Vulnerabilities 81

Since this SUT applies no filter to the input parameter the final page response
will include the following HTML body when the first recommended test in the
table above is submitted:

<body><img src="invalid"\></body>

This will force the application to load the resource invalid and thus trigger
the XSS vulnerability.

SUT 2. The initial test execution revealed 3 test vectors to trigger the XSS
vulnerability. Four out of ten generated recommended tests derived from 4-way
suspicious combinations triggered the vulnerability. Because of this we instructed
BEN to search for 5-way inducing combinations. Since all four recommended
tests for 5-way suspicious combinations triggered, we found two inducing com-
binations. The final recommended tests and inducing combinations are summa-
rized in Table 2.

Table 2. Recommended tests with embedded 5-way inducing combinations

This SUT also does not perform any filtering of the input parameter and
the page response will include the following HTML expression after the first
recommended test from the table above is reflected:

<input type="text" value=""><script> alert(1) </script>">">

This vector, as well as the other recommended 5-way tests, triggers the XSS
vulnerability because of the embedded inducing combination. First the value
field and the input tag are terminated and then a new script environment with
the payload is created. Upon rendering the payload inside the script environment
is then executed.

SUT 3. In the initial test execution 228 test vectors triggered the XSS vul-
nerability. Based on these results, BEN recommended 10 tests using the found
4-way suspicious combinations. All of these tests triggered the vulnerability. We
also instructed BEN to look for 2-way and 3-way suspicious combinations but
none were found. This means that the reported 4-way inducing combinations
are truly 4-way and not lower-strength inducing combinations embedded inside
higher-strength combinations. The recommended tests and the inducing combi-
nations are displayed in Table 3.

As this SUT encodes angle brackets a page response contains the following
HTML part after the first recommended test is reflected:



82 D.E. Simos et al.

Table 3. Recommended tests with embedded 4-way inducing combinations

<img src="&lt;&lt;script&gt;"&gt; onError= alert(1) ’&gt; \&gt;">

This vector succeeds in triggering the vulnerability because it con-
tains an inducing combination which first defines the src attribute as
"&lt;&lt;script&gt; " which of course is not a valid image resource. This
causes the onError handler to be called which activates the payload, in this
case alert(1).

SUT 4. The initial test execution showed 280 vectors to trigger the XSS vulner-
ability. As all ten tests recommended by BEN for 4-way suspicious combinations
triggered the vulnerability five inducing combinations were found. As for SUT 3,
we also instructed BEN to look for 2-way and 3-way suspicious combinations but
none were found, meaning that the inducing 4-way combinations are minimal
inducing combinations. The recommended tests can be found in Table 4.

Table 4. Recommended tests with embedded 4-way inducing combinations

To illustrate how the inducing combinations trigger the vulnerability consider
the example below which shows the first recommended test vector from the above
table reflected in the page response after all angle brackets and single quotes have
been encoded by the SUT.



A Combinatorial Approach to Analyzing XSS Vulnerabilities 83

<img src=""&gt;&lt;script&gt; &#39;; onError= alert(1) &#39;&gt; \&gt;">

Here the vector succeeds in triggering the vulnerability because it first closes
the src attribute leaving it empty. Since the empty string is not a valid resource
the onError handler is called which in turn calls the alert(1) statement.

8 Conclusion and Future Work

In this paper we have presented a combinatorial approach to analyzing XSS
vulnerabilities in web applications. Our approach is based on the notion of XSS-
inducing combinations. An XSS-inducing combination is a combination of input
parameter values whose appearance in a test vector would definitely result in a
successful triggering of an XSS vulnerability at runtime when executed against
the SUT. Identification of XSS-inducing combinations helps to better understand
the root cause of an XSS vulnerability and provides insights about how to fix
a flawed sanitization function. Our approach is developed based on our earlier
work on applying combinatorial methods to security testing. In particular, our
approach consists of a refinement of a combinatorial model of XSS attack vectors
and a modification of a combinatorial testing-based fault localization method
that are developed in our earlier works. We have reported an experiment in
which our approach is applied to four sanitization functions from WAVSEP.
The experimental results show that our approach can effectively identify XSS-
inducing combinations and that these combinations provide significant insights
about the inner working of these sanitization functions.

We plan to continue our work in the following three directions. First, we
plan to conduct additional experiments for a more thorough evaluation of our
approach. In particular, we plan to apply our approach to more sanitization
functions that are found in real-life web applications. Second, we plan to apply
our approach to other types of vulnerabilities, e.g., SQL injections. We believe
that the principles embodied in our approach are general, i.e. not limited to
XSS vulnerabilities. Finally, we plan to build a software tool that automates
our approach with the goal to make our approach accessible to web application
developers.

Acknowledgments. This work has been funded by the Austrian Research Promotion
Agency (FFG) under grant 851205 and the Austrian COMET Program (FFG).

References

1. Argyros, G., Stais, I., Kiayias, A., Keromytis, A.G.: Back in black: towards for-
mal, black box analysis of sanitizers and filters. In: Proceedings of the 37th IEEE
Symposium on Security and Privacy (2016)

2. Bozic, J., Garn, B., Kapsalis, I., Simos, D., Winkler, S., Wotawa, F.: Attack
pattern-based combinatorial testing with constraints for web security testing. In:
Proceedings of the 2015 IEEE International Conference on Software Quality, Reli-
ability and Security, QRS 2015, pp. 207–212 (2015)



84 D.E. Simos et al.

3. Bozic, J., Garn, B., Simos, D.E., Wotawa, F.: Evaluation of the IPO-family algo-
rithms for test case generation in web security testing. In: 2015 IEEE Eighth Inter-
national Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pp. 1–10 (2015)

4. Brcic, M., Kalpic, D.: Combinatorial testing in software projects. In: Proceedings
of the 35th International Convention, MIPRO, 2012 , pp. 1508–1513 (2012)

5. Duchene, F., Groz, R., Rawat, S., Richier, J.L.: XSS vulnerability detection using
model inference assisted evolutionary fuzzing. In: Proceedings of the 2012 IEEE
Fifth International Conference on Software Testing, Verification and Validation,
ICST 2012, pp. 815–817. IEEE Computer Society, Washington (2012)

6. Duchene, F., Rawat, S., Richier, J.L., Groz, R.: KameleonFuzz: evolutionary
fuzzing for black-box XSS detection. In: CODASPY. ACM (2014)

7. Garn, B., Kapsalis, I., Simos, D., Winkler, S.: On the applicability of combinatorial
testing to web application security testing: a case study. In: Proceedings of the 2014
Workshop on Joining AcadeMiA and Industry Contributions to Test Automation
and Model-Based Testing, pp. 16–21. ACM (2014)

8. Ghandehari, L.S., Lei, Y., Kung, D., Kacker, R., Kuhn, R.: Fault localization based
on failure-inducing combinations. In: 2013 IEEE 24th International Symposium on
Software Reliability Engineering (ISSRE), pp. 168–177. IEEE (2013)

9. Ghandehari, L.S.G., Lei, Y., Xie, T., Kuhn, R., Kacker, R.: Identifying failure-
inducing combinations in a combinatorial test set. In: 2012 IEEE Fifth Interna-
tional Conference on Software Testing, Verification and Validation (ICST), pp.
370–379. IEEE (2012)

10. Grindal, M., Offutt, J.: Input parameter modeling for combination strategies. In:
Proceedings of the 25th Conference on IASTED International Multi-Conference:
Software Engineering SE 2007, pp. 255–260. ACTA Press, Anaheim (2007)

11. Hagar, J.D., Wissink, T.L., Kuhn, D., Kacker, R.N.: Introducing combinatorial
testing in a large organization. Computer 48(4), 64–72 (2015)

12. Hydara, I., Sultan, A.B.M., Zulzalil, H., Admodisastro, N.: Current state of
research on cross-site scripting (XSS) a systematic literature review. Inf. Softw.
Technol. 58, 170–186 (2015)

13. Kuhn, D.R., Okun, V.: Pseudo-exhaustive testing for software. In: 30th Annual
IEEE/NASA Software Engineering Workshop, SEW 2006, pp. 153–158. IEEE
(2006)

14. Kuhn, D., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. Chapman &
Hall/CRC Innovations in Software Engineering and Software Development Series.
Taylor & Francis (2013)

15. van der Loo, F.: Comparison of penetration testing tools for web applications.
Master’s thesis, University of Radboud, Netherlands (2011)

16. Mohammadi, M., Chu, B., Lipford, H.R., Murphy-Hill, E.: Automatic web security
unit testing: XSS vulnerability detection. In: Proceedings of the 11th International
Workshop on Automation of Software Test, AST 2016, pp. 78–84. ACM, New York
(2016)

17. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2),
11: 1–11: 29 (2011)

18. Shi, L., Nie, C., Xu, B.: A software debugging method based on pairwise test-
ing. In: Sunderam, V.S., Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS
2005. LNCS, vol. 3516, pp. 1088–1091. Springer, Heidelberg (2005). doi:10.1007/
11428862 179

http://dx.doi.org/10.1007/11428862_179
http://dx.doi.org/10.1007/11428862_179


A Combinatorial Approach to Analyzing XSS Vulnerabilities 85

19. Sudhodanan, A., Armando, A., Carbone, R., Compagna, L.: Attack patterns for
black-box security testing of multi-party web applications. In: Proceedings of the
Network and Distributed system Security Symposium (NDSS) (2016)

20. Tripp, O., Weisman, O., Guy, L.: Finding your way in the testing jungle: a learning
approach to web security testing. In: Proceedings of the 2013 International Sym-
posium on Software Testing and Analysis, ISSTA 2013, pp. 347–357. ACM, New
York (2013)

21. Wang, Z., Xu, B., Chen, L., Xu, L.: Adaptive interaction fault location based on
combinatorial testing. In: 2010 10th International Conference on Quality Software
(QSIC), pp. 495–502. IEEE (2010)

22. Williams, J., Wichers, D.: OWASP Top 10 2013 (2013). https://www.owasp.org/
index.php/Top 10 2013

23. Yu, L., Lei, Y., Kacker, R., Kuhn, D.: Acts: a combinatorial test generation tool.
In: 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation (ICST), pp. 370–375 (2013)

24. Zhang, Z., Zhang, J.: Characterizing failure-causing parameter interactions by
adaptive testing. In: Proceedings of the 2011 International Symposium on Soft-
ware Testing and Analysis, pp. 331–341. ACM (2011)

https://www.owasp.org/index.php/Top_10_2013
https://www.owasp.org/index.php/Top_10_2013


Heuristics and Non-determinism in
Testing



Controllability Through Nondeterminism
in Distributed Testing

Robert M. Hierons1, Mercedes G. Merayo2, and Manuel Núñez2(B)

1 Department of Information Systems and Computing, Brunel University London,
Uxbridge, Middlesex UB8 3PH, UK

rob.hierons@brunel.ac.uk
2 Departamento de Sistemas Informáticos y Computación,

Universidad Complutense de Madrid, Madrid, Spain
mgmerayo@fdi.ucm.es, mn@sip.ucm.es

Abstract. If the system under test interacts with its environment at
physically distributed ports, there is a separate independent tester at
each port, and there is no global clock then we are testing in the distrib-
uted test architecture. It is known that the distributed test architecture
can lead to additional controllability problems in which a tester cannot
know when to send an input and this has led to most test generation tech-
niques aiming to produce controllable test cases. However, there may be
no controllable test case that achieves a given objective. This paper intro-
duces the notion of a test section, in which each tester has a fixed input
sequence to apply and there is no attempt to synchronise the testers.
It defines the notion of a test section being convergent and shows how
convergent test sections can be used as the basis of a less restrictive form
of controllability.

1 Introduction

Software testing has traditionally been represented as a process in which a single
tester synchronously interacts with the system under test (SUT). However, test-
ing does not operate in this way if the SUT has multiple physically distributed
interfaces (ports) at which it interacts with its environment; one might then have
one local tester at each interface. For example, when testing the implementation
of a layer of a communications protocol there might be one local tester that
acts as the layer above the SUT and a second local tester that sits on a differ-
ent machine [4,5,21]. More generally, if the SUT has multiple ports then there
might be a separate tester at each port. If these testers do not synchronise their
actions and there is no global clock then we are testing in the ISO standardised
distributed test architecture [14].

Research partially supported by the projects DArDOS (TIN2015-65845-C3-1-R
(MINECO/FEDER)) and SICOMORo-CM (S2013/ICE-3006).

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 89–105, 2016.
DOI: 10.1007/978-3-319-47443-4 6



90 R.M. Hierons et al.

Most work on formal testing in the distributed test architecture uses multi-
port finite state machine (FSM) models [4,5,21] in which a transition is triggered
by an input, produces up to one output at each port, and possibly changes the
state. We also use this approach, of assuming that the specification is a multi-
port FSM, and we use the term FSM for such models. Note, however, that
some work has explored more general types of models in which, for example, a
transition can be labelled by a partially-ordered multi-set of actions [1,7,18,19].

Previous work has shown that the distributed test architecture changes the
nature of testing. Let us suppose that we wish to start a test sequence with input
x1 at port 1, this should lead to output y1 at port 1 and we wish to follow this
with input x2 at port 2. We might implement this using a test case t in which the
tester t1 at port 1 applies x1 and the tester t2 at port 2 applies x2. Since we are
testing in the distributed test architecture, tester t2 does not observe the input
or output at port 1 and so cannot know when to supply x2. Thus, if we use the
test case t then we cannot guarantee that the inputs arrive in the correct order;
this introduces non-determinism into testing even if the SUT is deterministic.
This situation is normally called a controllability problem [4,5,21]; if a test case
has no controllability problems then it is controllable. Controllability problems
can lead to situations in which we cannot know whether a test objective has
been achieved and also make it more difficult to debug a faulty system and trace
failures back to requirements. As a result, almost all work in distributed testing
aims to produce controllable test cases (see, for example, [4,5,13,16,21,23]).

While there are test generation algorithms that produce controllable test
cases from FSMs, these have inherent limitations. In particular, one can con-
struct an FSM M such that controllable testing can achieve very little. Consider,
for example, the fragment of an FSM shown in Fig. 1. Here, the label xp/(yq, yr)
on an arc means that the input is xp at port p and the output is yq at port q
and yr at port r, with − denoting no output at the corresponding port. If an
input sequence starts with x2 then there is no change in state and the resultant
output is at port 2 only. Thus, for a test sequence to be controllable we require
that the next input is at port 2, since only the tester at port 2 observed the pre-
vious input and output. It is straightforward to see that this situation continues
and so any controllable test case that starts with x2 cannot contain x1 and only
visits state s0. If we now consider a test case that starts with x1, the first input
takes the FSM to state s1 and produces y1 at port 1 only. Therefore, for a test
sequence to be controllable, the next input must be at port 1. However, if we
apply x1 then the FSM returns to s0 and produces output at port 1 only. Thus,
any controllable test case that starts with x1 cannot contain x2 and only visits
s0 and s1. Hence, if an FSM is of the form shown in Fig. 1 then controllable
testing can only visit s0 and s1 irrespective of how many states the FSM has.

There are several ways in which one might try to tackle the above prob-
lem. One approach is for the testers to synchronise actions through message
exchange [2,20]. When feasible, this allows controllability problems to be over-
come and provides a general solution. However, this requires a network to be
introduced and so can make testing more expensive. Message latency might also



Controllability Through Nondeterminism in Distributed Testing 91

s0 s1 s2 s3

x1/(y1,−)

x1/(y1,−) x2/(y1, y2)

...
x2/(−, y2)

Fig. 1. Part of an FSM where controllable testing achieves little

lead to situations in which a test case cannot be executed since it has timing
constraints. A second line of work aims to allow one to reason about what can
be achieved in controllable testing [8]. In particular, it is possible to construct
an FSM χmin(M) from the specification FSM M such that the transitions of
χmin(M) are those that can be executed in controllable testing and it is possible
to construct a non-deterministic FSM χmax(M) such that controllable testing
can show that an SUT is faulty if and only if there are traces of the SUT that are
not in the language defined by χmax(M). One can use χmin(M) and χmax(M)
to reason about the potential effectiveness of controllable testing. If the tester
decides that controllable testing is sufficiently powerful then they can use a
recently developed technique that generates a test suite that achieves as much
as possible given the constraint that testing is controllable [10]. It is also possible
to abandon the restriction that we use controllable test cases. However, as noted
above, there are good practical reasons for using controllable test cases and it
has also been shown that test generation problems, such as finding a prefix of a
test case that is guaranteed to take M to a given state s, become undecidable [9].

Consider now the part of an FSM, with three ports, shown in Fig. 2. If testing
starts with input x1 then a controllable test case can then apply input at any
port. There are two paths that take the FSM from s1 to s4: one has label
x2/(y1, y2,−)x3/(y1, y′

2, y
′
3) and the other has label x3/(−,−, y3)x2/(y1, y′

2, y
′
3).

Both of these are uncontrollable: in the first case the tester at port 3 does not
observe input or output from the transition with label x2/(y1, y2,−) and in the
second case the tester at port 2 does not observe input or output from the
transition with label x3/(−,−, y3). However, if we just require that the tester
at port 2 sends input x2 and the tester at port 3 sends input x3 then state s4
is reached irrespective of the order in which the inputs are supplied. Thus, even
though a corresponding test case is not controllable, we do know that it reaches
s4, with this situation being similar to partial order reduction (see, for example,
[6]). In addition, the testers at ports 2 and 3 know when s4 has been reached
since at this point they receive particular outputs (y′

2 at port 2, y′
3 at port 3).

Testing can thus continue with one of these testers applying an input in state
s4. In contrast, if one considers the two paths then in one case the tester at port
1 observes y1 and in the other the tester at port 1 observes y1y1. If the tester at
port 1 observes y1 then there are two possible explanations and the state is either
s2 or s4. As a result, one cannot guarantee that the tester at port 1 knows when



92 R.M. Hierons et al.

s2

s0 s1 s4

s3

x1/(y1, y2, y3)

x2/(y1, y2,−)

x3/(−,−, y3)

x3/(y1, y2, y3)

x2/(y1, y2, y3)

Fig. 2. Part of an FSM with controllability problems

s4 has been reached. This paper formalises and extends these ideas, showing how
one can relax controllable testing while retaining some of its benefits.

The rest of the paper is structured as follows. We start in Sect. 2 by defining
FSMs and the notation used. Section 3 shows how we can relax the notion of
controllability. Section 4 then considers computational complexity issues and a
bounded form. Finally, Sect. 5 draws conclusions and discusses related work.

2 Preliminaries

This paper concerns the testing of a state-based system and, as such, we will
reason about sequences of inputs and outputs. In testing the SUT will receive a
sequence of inputs and there will be a resultant sequence of input/output pairs,
called an input/output sequence or trace.

Definition 1. We let X be the set of inputs of the SUT and Y the set of outputs
of the SUT. Given x ∈ X and y ∈ Y , the corresponding input/output pair x/y
represents the SUT producing output y in response to input x.

A trace is a (possibly empty) sequence of input/output pairs. The trace that
has input/output pair x1/y1 followed by x2/y2, . . . , and finally xk/yk will be
represented using either x1/y1 x2/y2 . . . xk/yk, x1x2 . . . xk/y1y2 . . . yk, or x̄/ȳ
where x̄ = x1x2 . . . xk and ȳ = y1y2 . . . yk.

Given a sequence ā and an element a we let a · ā denote the sequence in which
a is followed by ā. Given a sequence ā = a1 . . . ak, with k ≥ 0, we will let pre(ā) =
{a1 . . . ai|0 ≤ i ≤ k} denote the set of prefixes of ā and we use ε to represent the
empty sequence. Given a set A of sequences, pre(A) =

⋃
ā∈A{pre(ā)}.

Since a trace is a sequence of input/output pairs, all prefixes of traces are
also traces and so

pre(x1/y1 x2/y2 . . . xk/yk) = {x1/y1 x2/y2 . . . xi/yi|0 ≤ i ≤ k}
Work on testing from an FSM in the distributed test architecture has used

multi-port FSMs. In such an FSM, there is a finite set of ports, which represent
the interfaces at which the SUT interacts with its environment. We let P denote



Controllability Through Nondeterminism in Distributed Testing 93

the set of (m) ports, with {1, . . . , m} denoting the names of the ports. If an
input is received in a multi-port FSM then this triggers a transition, which can
lead to a change in state and at most one output being produced at each port.

Definition 2. A multi-port FSM M with m ports is defined by a tuple
(S, s0,X, Y, δ, λ) in which:

– S is the finite set of states of M .
– s0 ∈ S is the initial state of M .
– X = X1 ∪ . . . ∪ Xm is the finite input alphabet of M , where for 1 ≤ p ≤ m,

Xp is the input alphabet at port p and for all 1 ≤ p < q ≤ m we have that
Xp ∩ Xq = ∅.

– Y = (Y1 ∪ {−}) × . . . × (Ym ∪ {−}) is the output alphabet of M , where for
1 ≤ p ≤ m, Yp is the output alphabet at port p, − denotes no output, and for
all 1 ≤ p < q ≤ m we have that that Yp ∩ Yq = ∅. In addition, the inputs and
outputs are disjoint and so X ∩ ∪1≤p≤mYp = ∅.

– δ is the (total) next state function of type S × X → S.
– λ is the (total) output function of type S × X → Y .

If M receives input x when in state s then it moves to state s′ = δ(s, x) and
outputs an m-tuple y = λ(s, x). This defines a transition t = (s, s′, x/y). We let
T denote the set of transitions of M . When we refer to actions, a subscript will
denote the port at which it is observed and a superscript will denote its position
in a sequence.

The functions δ and λ can be extended in the usual way to deal with
sequences of inputs. Specifically, given a state s ∈ S and a sequence of inputs
x̄ = x1x2 · · · xn we define δ(s, x̄) as δ(δ((· · · δ(δ(s, x1), x2) . . .), xn−1), xn), that
is, the state reached after following the sequence x̄ and we define λ(s, x̄) as
λ(s, x1) · λ(δ(s, x1), x2) · . . . λ(δ((· · · δ(δ(s, x1), x2), . . .), xn−1), xn), that is, the
sequence of tuples of outputs observed after following the sequence x̄.

A path of M is a sequence ρ = (s1, s2, x1/y1)(s2, s3, x2/y2) . . . (sk,
sk+1, xk/yk) of consecutive transitions. We let x1/y1x2/y2 . . . xk/yk denote the
label of ρ.

The requirement that the alphabets at the ports are pairwise disjoint is not
a restriction since one can label inputs and outputs with port numbers. We will
use the term FSM for multi-port FSMs and the term single-port FSM for FSMs
with one port. Note that our FSMs are deterministic: the current state and input
received uniquely determine the next state and output produced. Most work on
testing from single-port FSMs has concerned such deterministic machines (see,
for example, [3,15,17]), as has almost all work on distributed testing from FSMs
(see, for example, [4,5,13,16,21,23]).

Next we introduce notation to project the actions of an input sequence or a
trace onto a port.



94 R.M. Hierons et al.

Definition 3. Given a sequence x̄ ∈ X∗ and a port p, the projection πp(x̄) of x̄
at port p can be inductively defined as follows:

πp(x̄) =

⎧
⎨

⎩

ε if x̄ = ε
x′ if x̄ = x · x′ ∧ x 
∈ Xp

x · πp(x′) if x̄ = x · x′ ∧ x ∈ Xp

Definition 4. Let M = (S, s0,X, Y, δ, λ) be an FSM with port set P such that
|P | = m. Given an input/output sequence z̄ and a port p, the projection πp(z̄)
of z̄ at port p can be inductively defined as follows:

πp(z̄) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε if z̄ = ε
z′ if z̄ = x/(y1, . . . , ym) · z′ ∧ x 
∈ Xp ∧ yp = −
x · πp(z′) if z̄ = x/(y1, . . . , ym) · z′ ∧ x ∈ Xp ∧ yp = −
yp · πp(z′) if z̄ = x/(y1, . . . , ym) · z′ ∧ x 
∈ Xp ∧ yp 
= −
x · yp · πp(z′) if z̄ = x/(y1, . . . , ym) · z′ ∧ x ∈ Xp ∧ yp 
= −

We say that πp(z̄) is a local trace.
Given an input/output pair x/y, ports(x/y) = {p ∈ P |πp(x/y) 
= ε} denotes

the set of ports involved in x/y. Given transition t = (si, sj , x/y), ports(t) =
ports(x/y) and port(x) denotes the port p ∈ P such that x ∈ Xp.

Note that we have overloaded πp and ports: the first one was previously
used to project sequences of inputs and the second one denotes both the ports
involved in an input/output pair and in a transition.

Let us suppose that the input sequence x1 . . . xk leads to output sequence
y1 . . . yk when applied to M . In order for x1 . . . xk to be controllable [2,11,22]
we require that the tester that applies xi knows when to send xi and that this
is the case for all 1 < i ≤ k. If the tester at p sends xi (p = port(xi)) then it
knows when to send xi if it observed the previous transition and this is the case
if either xi−1 is at port p or yi−1 has non-empty output at port p.

Definition 5. Let M = (S, s0,X, Y, δ, λ) be an FSM with port set P . Trace
x1/y1 x2/y2 . . . xk/yk is controllable if port(xi) ∈ ports(xi−1/yi−1) for all 1 <
i ≤ k. Further, input sequence x1 . . . xk is controllable if x1 . . . xk/λ(s0, x1 . . . xk)
is controllable and a path is controllable if its label is controllable.

Previous work [12] showed how a directed graph G(M) can be produced from
FSM M such that the paths of G(M), from the vertex representing the initial
state of M , correspond to the controllable paths of M . The construction of G(M)
is based on the following concepts.

Definition 6. Let M = (S, s0,X, Y, δ, λ) be an FSM with port set P . For each
state s ∈ S and port p ∈ P we denote by Departp(s) the set of transitions
of M whose starting state is s and whose input is at port p, that is, the set
{(s, s′, x/y) ∈ T |x ∈ Xp}. For each state s and set P ⊆ P of ports we denote
by ArriveP(s) the set of transitions whose ending state is s and that involve the
set P of ports, that is, the set {(s′, s, x/y) ∈ T |ports(x/y) = P}.



Controllability Through Nondeterminism in Distributed Testing 95

In order to ensure controllability, transitions belonging to ArriveP(s) can
only be followed by input at a port p if p ∈ P. Thus, given transitions
τ = (s1, s2, x/y) and τ ′ = (s2, s3, x′/y′), we can follow τ by τ ′ without caus-
ing controllability problems if port(x′) ∈ ports(x/y). It is straightforward to see
that if τ ∈ ArriveP(s2) then we can follow τ by τ ′ in controllable testing if
and only if there is some p ∈ P such that τ ′ ∈ Departp(s2). We will use these
properties to construct the desired graph.

Definition 7. Let M = (S, s0,X, Y, δ, λ) be an FSM with port set P . The graph
G(M) = (V,E) provides all the controllable sequences contained in M . The
vertex set of G(M) is defined in two steps. First, we define an auxiliary vertex
set as follows:

1. vP
s0 is in Vaux.

2. For all s ∈ S and P ⊆ P we include vP
s in Vaux if ArriveP(s) 
= ∅.

Edge set E is defined by: for each t = (s, s′, x/y) ∈ T and vP
s ∈ Vaux with

port(x) ∈ P we include in E the edge (vP
s , vPt

s′ , x/y) where Pt = ports(x/y).
Finally, V is the subset of Vaux that includes all the nodes reachable from vP

s0 .

The notion of path (see Definition 2) can also be used with graphs: a path
is a sequence of consecutive edges. The vertex vP

s0 (the initial vertex ) represents
the situation in which the first input has not yet been applied; this first input
can be at any port. vP

s denotes the situation in which M has reached state s and
P is the set of ports that can receive the next input if testing is controllable.

Example 1. Consider the fragment of an FSM M with port set P = {1, 2, 3}
depicted in Fig. 3(a). Figure 3(b) shows G(M). For each of the transitions that
reaches a state of M , a new vertex is included in G(M). For example, the state s2
is reached by transitions (s1, s2, x2/(y1,−, y3)) and (s0, s2, x3/(−,−, y3)). Thus,
two vertexes, V

{1,2,3}
s2 and V

{3}
s2 , respectively, are generated. The superscripts of

each vertex contains the ports that are involved in the corresponding transition.
The graph only contains those transitions whose input corresponds to a port
included in the set associated with one of the vertices related to the outgoing
state. For example, the transition (s1, s2, x2/(y1,−, y3)) cannot be included in
the graph because the port 2, in which the action x2 must be applied, does not
belong to the set of ports of the only vertex associated to state s1, that is, V

{1,3}
s2 .

Intuitively, a tester placed at port 2 cannot know when to apply the input x2

because no action in the previous transition has been produced at this port. In
this case we would have a controllability problem. Finally, we do not include
V

{1,2,3}
s2 because it is not reachable from V

{1,2,3}
s0 .

The following relates paths of G(M) and controllable traces of M [12].

Proposition 1. For each path ρ of M that starts at the initial state of M and
has a controllable label, there is a path ρ′ in G(M) that starts at vP

s0 and has the
same label. In addition, for each path ρ′ of G(M) that starts at vP

s0 , there is a
path ρ of M that starts at the initial state of M and has the same label.



96 R.M. Hierons et al.

s0

s1 s2

x1/(y1,−, y3) x3/(−,−, y3)

x2/(y1,−, y3)

(a) M

V
{1,2,3}
s0 V

{1,3}
s1

V
{3}
s2

x3/(−,−, y3)

x1/(y1,−, y3)

(b) G(M)

Fig. 3. Generation of G(M)

3 Extending the Graph G(M)

We have seen that an FSM might have states that cannot be reached using
controllable input sequences; there might be a state s such that no vertex of
the form vP

s is reachable in G(M). In this section we explain how G(M) can be
extended through including parts of a test that are not controllable but where
the lack of controllability is not problematic. First we introduce test sections.

Definition 8. Let P be a set of m ports. Given m sequences of inputs such that
for all 1 ≤ p ≤ m we have that x̄p ∈ X∗

p , we say that the tuple x = (x̄1, . . . , x̄m)
is a test section. Given a test section x = (x̄1, . . . , x̄m), we denote by INT (x)
the set of interleavings of the sequences x̄1, . . . , x̄m. Formally, for all x̄ ∈ X∗

we have that x̄ ∈ INT (x) if and only if for all p ∈ P we have πp(x̄) = x̄p.

We will use a double overline to denote a test section. In using a test section x,
each tester simply applies its input sequence. Note that we allow empty sequences
of inputs for some of the ports. We now consider conditions under which edges
corresponding to test sections can be added to G(M).

It is straightforward to determine which vertices of G(M) can have edges
labelled with a particular test section leaving them: in order to be able to apply
(x̄1, . . . , x̄m) in a vertex vP

s we require that for every p ∈ P we have that if the
tester at p is to apply input (x̄p 
= ε) then p ∈ P.

Definition 9. Let M = (S, s0,X, Y, δ, λ) be an FSM with port set P and x =
(x̄1, . . . , x̄m) be a test section. Let G(M) = (V,E).

Given vP
s ∈ V , we say that x can be applied from vP

s if for all p ∈ P we
have that x̄p 
= ε implies that p ∈ P. Given states s, s′ ∈ S, we say that x is
convergent from s to s′ if for all x̄ ∈ INT (x) we have that s′ = δ(s, x̄). We also
say that x takes M from s to s′. Further, we say that x is convergent from s if
there exists a state s′ such that x is convergent from s to s′.

Convergence requires that all interleavings of the input sequences take M
from state s to s′; we do not have to control which interleaving occurs. Having
reached s′, we might continue testing in a controllable manner.



Controllability Through Nondeterminism in Distributed Testing 97

Proposition 2. Let M = (S, s0,X, Y, δ, λ) be an FSM with port set P , x = (x̄1,
. . . , x̄m) be a test section and s, s′ ∈ S. If M is in state s, x takes M from s
to s′, and from s the local tester at port p applies x̄p (for all p ∈ P ) then M is
guaranteed to be in state s′ after all inputs from x have been received.

If x takes M from s to s′ then there is potential to add a new edge to G(M)
that represents this fact. However, we then need to determine which vertex vP′

s′

should be reached and so the set P ′ of ports at which the next input (after the
test section) can be applied. This set of ports should be the ports whose tester
can determine when all of the inputs from (x̄1, . . . , x̄m) have been received. The
following gives a condition under which the tester at port p can determine this.

Definition 10. Let M = (S, s0,X, Y, δ, λ) be an FSM with port set P , x be a
test section, s ∈ S be a state of M and p ∈ P be a port. We say that port p ∈ P
is termination aware when x is applied from state s if for all x̄ ∈ INT (x) and
x̄′ ∈ pre(INT (x)) \ INT (x) we have πp(λ(s, x̄)) 
= πp(λ(s, x̄′)).

Once all inputs from x have been received the tester at p observes a local
trace of the form πp(λ(s, x̄)) for some x̄ ∈ INT (x); the above condition ensures
that this observation cannot have been made if one or more inputs from x have
not been received. The following is clear from the previous definition.

Proposition 3. Given FSM M = (S, s0,X, Y, δ, λ) with port set P and p ∈ P ,
let us suppose that p is termination aware when (x̄1, . . . , x̄m) is applied from
state s ∈ S. If (x̄1, . . . , x̄m) is applied from s then the tester at port p knows
when all inputs from each x̄q have been received.

We can now combine the notions of convergence and termination to obtain
a weaker type of controllability.

Definition 11. Let M = (S, s0,X, Y, δ, λ) be an FSM with port set P , s, s′ ∈ S
be states, x be a test section, and P,P ′ ⊆ P be sets of ports. Let us suppose that
x takes M from s to s′, P is the set of ports that are termination aware when x
is applied from state s, and P ′ is the following set of ports

P ∪ {p ∈ P |∀x̄, x̄′ ∈ INT (x) : πp(λ(s, x̄)) = πp(λ(s, x̄′))}
Then we say that (s, x, s′,P,P ′) is a semi-controllable tuple of M . We let
Reach(M) be the set of semi-controllable tuples of M .

If (s, x, s′,P,P ′) is a semi-controllable tuple then x = (x̄1, . . . , x̄m) is a test
section with the property that if x is applied from state s (and for all p such
that x̄p 
= ε, the tester at p knows that the state is s) then it takes M to s′

and the testers in P are termination aware. In this definition, a port p is in P ′ if
either p is termination aware or there is fixed output at p when the test section is
applied. Essentially, p ∈ P ′ captures two scenarios that ensure that if the tester
at p observes an output from a transition that is after x then this tester can
know that the output did not result from the application of the test section. We
will see that this condition is important if we later wish to apply inputs at p.



98 R.M. Hierons et al.

Reach(M) may be infinite and so an algorithm should not include a step
that generates this set. Instead, in this section we assume that there is some
fixed R ⊆ Reach(M); this will be a parameter of the algorithms introduced.
In the next section we consider the case where we place a bound k on the size
of the test sections used and so it is possible to generate the corresponding set
Reach(M,k).

If (s, x, s′,P,P ′) is a semi-controllable tuple, p ∈ P and x is applied from
state s then the tester at p can apply an input after x and know that this will
be received in state s′. This potentially allows an input xp ∈ XP to be applied
in a state s′ even if G(M) does not have a reachable vertex of the form vP′′

s′ with
p ∈ P ′′. In such cases, it is possible to execute additional transitions of M in
testing and to know that this has been achieved despite this not being possible
in controllable testing.

We will add vertices and edges based on R ⊆ Reach(M); if vP
s is a current

vertex and (s, x, s′,P,P ′) ∈ R then there is the potential to add a new vertex
and edge if x can be applied from vP

s (Definition 9). Before providing an algo-
rithm, for extending G(M), we will describe two additional factors that should
be considered.

Example 2. Consider again the part of an FSM shown in Fig. 2. We know that
(ε, x2, x3) is a test section that takes this FSM from s1 to s4 and also that the
testers at ports 2 and 3 are termination aware. Let us suppose that we follow
this test section by input x2 at port 2 and the corresponding transition t takes
the FSM to a state s5 and produces output (y1, y2,−). Then ports(t) = {1, 2}
and so normally one would expect to be able to apply input at either port 1
or port 2 after t. However, at this point there are two possible observations at
port 1: either y1y1y1 or y1y1y1y1, depending on which path from s1 to s4 was
followed. In addition, one of these (y1y1y1) is an observation that might have
been made in state s4. Thus, the tester at port 1 need not be able to determine
when s5 has been reached if t follows the test section from s1 to s4.

Let us suppose that (s, x, s′,P,P ′) ∈ Reach(M) is used to reach s′. The
example above shows that the restriction, on ports where one can apply inputs,
may still be required after we apply an additional input x at p ∈ P: even if
the tester at p′ observes output in response to x, the tester need not be able to
know that the output was in response to x. This is because there may have been
several possible observations at p′ in response to a test section previously used.
Naturally, there is no problem if the test section led to a fixed output sequence
at port p; this is why we use P ′ in addition to P in tuples in Reach(M) (see
Definition 11). Thus, if we use (s, x, s′,P,P ′) then we impose the restriction that
(in the current test sequence) no future input is applied at a port outside of P ′.
We will achieve this by adding a second set of ports to the label of a vertex.
A vertex with label vP1,P2 will denote the situation in which (in controllable
testing) input can be applied next at any port in P1 and in the current test
sequence we require that no further input is applied at ports outside of P2. The
graphs we construct will have that if vP1,P2 is a vertex then P1 ⊆ P2. Similar to



Controllability Through Nondeterminism in Distributed Testing 99

Algorithm 1. Update(G,R): Updating graph G

Input G = (V, E) and R ⊆ Reach(M)
V ′ = V
while V ′ �= ∅ do

Choose some vP1,P2
s ∈ V ′

V ′ = V ′ \ {vP1,P2
s }

for all r = (s, (x̄1, . . . , x̄m), s′, P, P ′) ∈ R do
P ′

1 = P ∩ P2

P ′
2 = P ′ ∩ P2

if ∀1 ≤ p ≤ m : (x̄p �= ε ⇒ p ∈ P1) and v
P′

1,P′
2

s′ is not subsumed by V then

V = V ∪ {v
P′

1,P′
2

s′ }
V ′ = V ′ ∪ {v

P′
1,P′

2
s′ }

E = E ∪ {(vP1,P2
s , (x̄1, . . . , x̄m), v

P′
1,P′

2
s′ )}

end if
end for

end while
Output (V, E)

before, we will say that (x̄1, . . . , x̄m) can be applied from vP1,P2
s if for all p ∈ P

we have that x̄p 
= ε implies that p ∈ P1.
The second factor is that the addition of a new vertex vP1,P2

s is only useful if
this provides potential for test execution that is not provided by current vertices;
if it is not subsumed by the current vertices.

Definition 12. Let M = (S, s0,X, Y, δ, λ) be an FSM with port set P and let
us consider a graph G = (V,E). Given a state s ∈ S and sets P1,P2 ⊆ P , we
say that a vertex vP1,P2

s is subsumed by the set V of vertices if for all p ∈ P1

there exist P ′
1,P ′

2 such that v
P′

1,P′
2

s ∈ V and p ∈ P ′
1.

This definition ignores P2; we do this in order to limit the size of the extended
graph we form (we avoid a, potentially exponential, subset construction). The
factors discussed above lead to the Update function in Algorithm 1 that extends
the current graph G, whose vertices are of the form vP1,P2

s , on the basis of a set
R ⊆ Reach(M). Having used Algorithm 1, there may now be potential to add
new edges and further vertices that correspond to controllable testing from the
vertices added. This process is outlined in Algorithm2.

The overall algorithm starts with the traditional graph G(M) as defined in
Definition 7 and repeatedly applies the Update and Complete functions until a
fixed point is found. This process is outlined in Algorithm3 in which G′(M) is
the graph G in which a vertex of the form vP

s is renamed vP,P
s .

Example 3. Consider the (part of an) FSM M in Fig. 2. G(M) is showed in
Fig. 4 (non-dotted vertices and lines). Next we explain how Algorithm3 works.
Consider test section (ε, x2, x3) and R = {(s1, (ε, x2, x3), s4, {2, 3}, {2, 3})}. Note
that ports 2 and 3 are termination aware, because the conditions included in
Definition 10 are satisfied.



100 R.M. Hierons et al.

Algorithm 2. Complete(G,M): Completing graph G

Input G = (V, E) and FSM M
V ′ = V
while V ′ �= ∅ do

Choose some vP1,P2
s ∈ V ′

V ′ = V ′ \ {vP1,P2
s }

for all p ∈ P1 and x ∈ Xp do
s′ = δ(s, x) and y = λ(s, x)
P ′ = ports(x/y), P ′

1 = P ′ ∩ P2

if v
P′

1,P2
s′ is not subsumed by a vertex in V then

V = V ∪ {v
P′

1,P2
s′ }

V ′ = V ′ ∪ {v
P′

1,P2
s′ }

E = E ∪ {(vP1,P2
s , x, v

P′
1,P2

s′ )}
end if

end for
end while
Output (V, E)

Algorithm 3. Generating the graph G

Input FSM M , G(M) = (V, E) and R ⊆ Reach(M)
V ′ = {vP,P

s |vP
s ∈ V }

E′ = {(vP,P
s , a, vP′,P′

s′ )|(vP
s , a, vP′

s′ ) ∈ E}
G′ = (V ′, E′)
repeat

G = G′

G′ = Complete(Update(G, R), M)
until G = G′

Output G

The application of the update function to G(M) and R creates a new vertex
V

{2,3},{2,3}
s4 and a new edge (V {1,2,3}{1,2,3}

s1 , (−, x2, x3), V
{2,3},{2,3}
s4 ) in the graph

(see the dotted edge and vertex).

Next we consider the complexity of constructing the final graph, assuming
that R is given. A vertex vP1,P2

s is added if it is not subsumed by the current
vertices and this is the case if and only if there exists p ∈ P ′ such that no current
vertex v

P′
1,P′

2
s has p ∈ P ′

1. If vP1,P2
s is added then this increases the number of

ports p such that there is a vertex v
P′

1,P′
2

s with p ∈ P ′
1. As a result, given state s,

Algorithm 3 can add at most m vertices of the form vP1,P2
s . Therefore, if R has

already been produced then Algorithm3 is a polynomial time algorithm. In the
next section we explore the case where there are bounds on test section size and
the complexity of the problem of generating Reach(M) in this situation.



Controllability Through Nondeterminism in Distributed Testing 101

V
{1,2,3},{1,2,3}
s0 V

{1,2,3},{1,2,3}
s1 V

{2,3},{2,3}
s4

V
{1,2},{1,2}
s2 V

{3},{3}
s3

x3/(−,−, y3)x2/(y1, y2,−)

x1/(y1, y2, y3) ( 2, x3)

Fig. 4. Extension of G(M)

4 Bounding Convergent Test Sections

In the previous section we showed how G(M) can be extended using test sections.
In principle such test sections might be arbitrarily long but we will want to use
relatively short test sections if we want testing to be efficient. Thus, in practice
one might want to place upper bounds on the lengths of test sections used. The
following two results provide additional motivation; they show that even the
process of checking whether a test section is convergent is coNP-complete.

Theorem 1. Let M = (S, s0,X, Y, δ, λ) be an FSM, s, s′ ∈ S be states of M ,
and x be a test section. The problem of deciding whether x is convergent from s
to s′ is coNP-complete.

Proof. We start by proving that the problem is in coNP. A non-deterministic
Turing machine might guess an interleaving x̄ ∈ INT (x) and check whether
x̄ takes M from s to s′. Since this process takes polynomial time, a non-
deterministic Turing machine can decide in polynomial time whether there is
an interleaving of x take M from s to a state other than s′. Thus, the problem
of deciding whether all interleavings of x take M from s to s′ is in coNP.

We now prove that the problem is coNP-hard by relating it to the negation
of the (NP-complete) Hamiltonian Path Problem (HPP). Let us suppose that we
are given a directed graph G and we wish to solve the HPP, which is to determine
whether there is a path that includes all vertices exactly once. Let v1, . . . , vn be
the vertices of G. We will construct an FSM M with inputs x1, . . . , xn (each xi

at a separate port i) and states s0, s1, . . . , sn, se as follows.

1. From the initial state s0 input xi takes M to si.
2. In state si 
= se, input xj has the following effect:

(a) If G contains an edge from vi to vj then we include a transition to sj .
(b) Otherwise there is a transition to the “error state” se.
(c) In state se, all inputs lead to no change of state.
(d) The outputs of the transitions can be chosen arbitrarily.



102 R.M. Hierons et al.

Now consider the test section (x1, . . . , xn) and its possible interleavings. The
key observation is that an interleaving x̄ = xi1 . . . xin of (x1, . . . , xn) takes M
from s0 to a state other than se if and only if vi1 . . . vin is a path of G and such
a path of G must be a Hamiltonian path of G. Thus, G has a Hamiltonian path
if and only if (x1, . . . , xn) is not convergent from s0 to se for M . Since the HPP
is NP-hard, this means that it is NP-hard to check that a test section is not
convergent. The result therefore follows.

Theorem 2. Let M = (S, s0,X, Y, δ, λ) be an FSM, s ∈ S be a state of M , and
x be a test section. The problem of deciding whether x is convergent from s is
coNP-complete.

Proof. The problem being in coNP follows from Theorem1 and there being
polynomially many states. The proof that the problem is coNP-hard follows in
the same way as the proof of Theorem 1 since in the constructed FSM we have
that the test section (x1, . . . , xn) is convergent if and only if it converges to se
(if the final state is not se, for interleaving xi1 . . . xin , then it is sin).

Since we want to have efficient algorithms, we now explore the case where
we place an upper bound on the size of test sections considered.

Definition 13. Let M = (S, s0,X, Y, δ, λ) be an FSM, s, s′ ∈ S be states of M ,
k ≥ 0, and x = (x̄1, . . . , x̄m) be a test section. x is k-convergent from s to s′ if x
is convergent from s to s′ and

∑m
p=1 |x̄p| ≤ k. Further, x is k-convergent from

s if there exists a state s′ such that x is k-convergent from s to s′.
Let M = (S, s0,X, Y, δ, λ) be an FSM and k ≥ 0. We define Reach(M,k) as

the following subset of Reach(M)
{

(s, (x̄1, . . . , x̄m), s′,P,P ′) ∈ Reach(M)

∣
∣
∣
∣
∣

m∑

p=1

|x̄p| ≤ k

}

Importantly, if we place an upper bound on k, or we fix k, then the number
of interleavings defined by a test section is also bounded. As a result, the process
of checking which states are reached using interleavings of a test section takes
polynomial time. We therefore obtain the following results.

Theorem 3. Let M = (S, s0,X, Y, δ, λ) be an FSM, s ∈ S be a state, k ≥ 0,
and x be a test section. If k is bounded then

1. Given state s′ ∈ S, the problem of deciding whether x is k-convergent from s
to s′ can be decided in polynomial time.

2. The problem of deciding whether x is k-convergent from s can be decided in
polynomial time.

The next result follows from the fact that for bounded k the number of
possible test sections, and the number of interleavings of each one, are bounded
by polynomials.



Controllability Through Nondeterminism in Distributed Testing 103

Theorem 4. Let M = (S, s0,X, Y, δ, λ) be an FSM and k ≥ 0. If k is bounded
then the problem of generating Reach(M,k) has polynomial time complexity.

This shows that if we bound (or fix) k then we can compute Reach(M,k)
in polynomial time and so Algorithm3 takes polynomial time. On the contrary,
from Theorem 1, we have that this result does not hold if we do not bound k
(unless P = NP ). This suggests that Algorithm 3 can be applied with the entire
set Reach(M,k) if one wishes to restrict attention to a relatively small value of
k but otherwise one might use heuristics to generate some R ⊆ Reach(M).

5 Conclusions

This paper concerned testing in the distributed test architecture, where a local
tester only observes events at its port, the testers do not synchronise, and there
is no global clock. Almost all test generation algorithms, for testing from an
FSM in the distributed test architecture, return controllable test sequences but
this can be restrictive. For example, an FSM specification M may have states
that cannot be reached in controllable testing. We introduced the notion of a
test section, which contains a fixed input sequence for each port. We showed how
test sections can be used to weaken the classical notion of controllability: rather
than require that the path of the FSM specification M traversed is uniquely
determined, we instead require that there is only one state of M that can be
reached by a test section (the test section is convergent). Thus, the notion of a
test section being convergent is similar to partial order reduction. We showed
how, given a set R of convergent test sections, one can derive a directed graph
G that describes what can be achieved using these test sections. In general, one
cannot expect to generate all convergent test sections, since this set might be
infinite. However, we found that if one bounds the size of the test sections then
one can generate the complete set (that satisfies this upper bound) in polynomial
time. As a result, one can also generate the graph G in polynomial time.

There are several possible lines of future work. First, it would be interesting
to explore alternative conditions under which one can efficiently generate the
set Reach(M). There is also the potential for the approach to be generalised to
allow test sections whose components are adaptive (the next input depends on
the observed output) and also to non-deterministic FSMs. One might also explore
notions of coverage. Finally, one might implement the proposed technique in a
tool and then carry out industrial case studies.

References

1. von Bochmann, G., Haar, S., Jard, C., Jourdan, G.-V.: Testing systems spec-
ified as partial order input/output automata. In: Suzuki, K., Higashino, T.,
Ulrich, A., Hasegawa, T. (eds.) FATES/TestCom-2008. LNCS, vol. 5047, pp. 169–
183. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68524-1 13

2. Cacciari, L., Rafiq, O.: Controllability and observability in distributed testing. Inf.
Softw. Technol. 41(11–12), 767–780 (1999)

http://dx.doi.org/10.1007/978-3-540-68524-1_13


104 R.M. Hierons et al.

3. Chow, T.S.: Testing software design modeled by finite state machines. IEEE Trans.
Softw. Eng. 4, 178–187 (1978)

4. Dssouli, R., von Bochmann, G.: Error detection with multiple observers. In: 5th
WG6.1 International Conference on Protocol Specification, Testing and Verifica-
tion, PSTV 1985, pp. 483–494. North-Holland (1985)

5. Dssouli, R., von Bochmann, G.: Conformance testing with multiple observers. In:
6th WG6.1 International Conference on Protocol Specification, Testing and Veri-
fication, PSTV 1986, pp. 217–229. North-Holland (1986)

6. Godefroid, P.: Using partial orders to improve automatic verification methods.
In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185.
Springer, Heidelberg (1991). doi:10.1007/BFb0023731

7. Haar, S., Jard, C., Jourdan, G.-V.: Testing input/output partial order
automata. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.)
FATES/TestCom-2007. LNCS, vol. 4581, pp. 171–185. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-73066-8 12

8. Hierons, R.M.: Canonical finite state machines for distributed systems. Theor.
Comput. Sci. 411(2), 566–580 (2010)

9. Hierons, R.M.: Reaching and distinguishing states of distributed systems. SIAM
J. Comput. 39(8), 3480–3500 (2010)

10. Hierons, R.M.: Generating complete controllable test suites for distributed testing.
IEEE Trans. Softw. Eng. 41(3), 279–293 (2015)

11. Hierons, R.M., Merayo, M.G., Núñez, M.: Controllable test cases for the distributed
test architecture. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M.
(eds.) ATVA 2008. LNCS, vol. 5311, pp. 201–215. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-88387-6 16

12. Hierons, R.M., Ural, H.: UIO sequence based checking sequences for distributed
test architectures. Inf. Softw. Technol. 45(12), 793–803 (2003)

13. Hierons, R.M., Ural, H.: Checking sequences for distributed test architectures.
Distrib. Comput. 21(3), 223–238 (2008)

14. Joint Technical Committee ISO/IEC JTC 1. International Standard ISO/IEC
9646–1. Information Technology - Open Systems Interconnection - Conformance
testing methodology, framework - Part 1: General concepts. ISO/IEC (1994)

15. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines:
a survey. Proc. IEEE 84(8), 1090–1123 (1996)

16. Luo, G., Dssouli, R., von Bochmann, G.: Generating synchronizable test sequences
based on finite state machine with distributed ports. In: 6th IFIP Workshop on
Protocol Test Systems, IWPTS 1993, pp. 139–153. North-Holland (1993)

17. Moore, E.P.: Gedanken experiments on sequential machines. In: Shannon, C.,
McCarthy, J. (eds.) Automata Studies. Princeton University Press, Princeton
(1956)

18. Ponce de León, H., Haar, S., Longuet, D.: Unfolding-based test selection for
concurrent conformance. In: Yenigün, H., Yilmaz, C., Ulrich, A. (eds.) ICTSS
2013. LNCS, vol. 8254, pp. 98–113. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41707-8 7

19. Ponce de León, H., Haar, S., Longuet, D.: Model-based testing for concurrent sys-
tems: unfolding-based test selection. Int. J. Softw. Tools Technol. Transfer 18(3),
305–318 (2016)

20. Rafiq, O., Cacciari, L.: Coordination algorithm for distributed testing. J. Super-
computing 24(2), 203–211 (2003)

21. Sarikaya, B., von Bochmann, G.: Synchronization and specification issues in pro-
tocol testing. IEEE Trans. Commun. 32, 389–395 (1984)

http://dx.doi.org/10.1007/BFb0023731
http://dx.doi.org/10.1007/978-3-540-73066-8_12
http://dx.doi.org/10.1007/978-3-540-88387-6_16
http://dx.doi.org/10.1007/978-3-642-41707-8_7
http://dx.doi.org/10.1007/978-3-642-41707-8_7


Controllability Through Nondeterminism in Distributed Testing 105

22. Ural, H., Whittier, D.: Distributed testing without encountering controllability and
observability problems. Inf. Process. Lett. 88(3), 133–141 (2003)

23. Ural, H., Williams, C.: Constructing checking sequences for distributed testing.
Formal Aspects Comput. 18(1), 84–101 (2006)



Parallelizing Heuristics for Generating
Synchronizing Sequences

Sertaç Karahoda1, Osman Tufan Erenay1, Kamer Kaya1,2,
Uraz Cengiz Türker3, and Hüsnü Yenigün1(B)

1 Computer Science and Engineering, Faculty of Science and Engineering,
Sabanci University, Tuzla, Istanbul, Turkey

{skarahoda,osmantufan,kaya,yenigun}@sabanciuniv.edu
2 Department of Biomedical Informatics,

The Ohio State University, Columbus, OH, USA
3 Computer Engineering, Faculty of Engineering,

Gebze Technical University, Gebze, Kocaeli, Turkey
urazc@gtu.edu.tr

Abstract. Synchronizing sequences are used in the context of finite
state machine based testing in order to initialize an implementation to a
particular state. The cubic complexity of even the fastest heuristic algo-
rithms known in the literature to construct a synchronizing sequence can
be a problem in practice. In order to scale the performance of synchroniz-
ing heuristics, some algorithmic improvements together with a parallel
implementation of these heuristics are proposed in this paper. An exper-
imental study is also presented which shows that the improved/parallel
implementation can yield a considerable speedup over the sequential
implementation.

1 Introduction

Model Based Testing (MBT) uses formal models of system requirements to gen-
erate effective test cases. Most MBT techniques use state-based models, where
the behaviour of the model is described in terms of states and state transitions.
There has been much interest in testing from finite state machines (FSMs) (e.g.,
see [1–6]). Common to most FSM based testing methods is the need to bring
the system under test (SUT) to a particular state. When there is a trusted reset
input in the SUT, this is quite easy. However, sometimes such a reset input
is not available, or even if it is available, it may be time consuming to apply
the reset input. Therefore there are cases where the use of a reset input is not
preferred [7–9].

A synchronizing sequence1 for an FSM M is a sequence of inputs such that
no matter at which state M currently is, if this sequence of inputs is applied, M

1 Synchronizing sequences are also known as reset sequences, or reset words.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 106–122, 2016.
DOI: 10.1007/978-3-319-47443-4 7



Parallelizing Heuristics for Generating Synchronizing Sequences 107

is brought to a particular state. Therefore a synchronizing sequence is in fact a
compound reset input, and can be used as such to simulate a reset input in the
context of FSM based testing [10].

A synchronizing sequence may not exist for an FSM. However, as the size of
the FSM gets larger, there almost always exists a synchronizing sequence [11].
For an FSM M with n states and alphabet size p, checking if M has a synchroniz-
ing sequence can be decided in time O(pn2) [12]. Since a synchronizing sequence
will possibly be used many times in a test sequence, computing a shortest one
for an FSM is of interest, but this problem is known to be NP-hard [12]. There
exist a number of heuristics, called synchronizing heuristics, to compute short
synchronizing sequences, such as Greedy [12] and Cycle [13] both with time
complexity O(n3+pn2), SynchroP and SynchroPL [14] with time complexity
O(n5 + pn2), and FastSynchro [15] with time complexity O(pn4). The upper
bound for the length of the synchronizing sequence that will be produced by
all of these heuristics is O(n3). Although synchronizing sequences are impor-
tant for testing methods, the scalability of the synchronizing heuristics has not
been addressed thoroughly. For practical applications, the use of even the fastest
algorithms (Greedy and Cycle) with cubic complexity can be a problem.

In this work we investigate the use of modern multicore CPUs to scale the
performance of synchronizing heuristics. We consider the Greedy algorithm to
start with, as it is one of the two cheapest synchronizing heuristics (in practice
as well [16]), known to produce shorter sequences than Cycle [16], and has been
widely used as a baseline to evaluate the quality and speed of more advanced
heuristics. To the best of our knowledge, this is the first work towards paralleliza-
tion of synchronizing heuristics. Although, a parallel approach for constructing
a synchronizing sequence for a partial machines is proposed in [17], the method
proposed in [17] is not exact (in the sense that it may fail to find a synchronizing
sequence even if one exists) and also it is not a polynomial time algorithm.

All synchronizing heuristics consist of a preprocessing phase, followed by
synchronizing sequence generation phase. As presented in this paper, our ini-
tial experiments revealed that the preprocessing phase dominates the runtime
of the overall algorithm for Greedy. Therefore for both parallelization and for
algorithmic improvements of Greedy, we mainly focus on the first phase of the
algorithm. With no parallelization, our algorithmic improvements alone yield a
20x speedup on Greedy for automata with 4000 states and 128 inputs. Further-
more, around 150x speedup has been obtained for the same class of automata,
when the improved algorithm is executed in parallel with 16 threads.

The rest of the paper is organized as follows: In Sect. 2, the notation is
given, and synchronizing sequences are formally defined. We give the details
of Eppstein’s Greedy construction algorithm in Sect. 3. The proposed improve-
ments and the parallelization approach together with implementation details
are described in Sect. 4. Section 5 presents the experimental results and Sect. 6
concludes the paper.



108 S. Karahoda et al.

2 Preliminaries

FSMs are used to describe a reactive behaviour, i.e., when an input is applied
to an FSM, it produces an output as a response. However, the output sequence
produced by the application of a synchronizing sequence does not play a role.
Therefore, in the context of synchronizing sequences, an FSM can simply be
considered as an automaton where the state transitions are only performed by
the application of an input, and no output is produced.

In this work, we only consider complete deterministic automata. An automa-
ton is defined by a triple A = (S,Σ, δ) where S is a finite set of n states, Σ is a
finite set of p input symbols (or simply inputs) called the alphabet. δ : S×Σ → S
is a transition function. If the automaton A is at a state s and if an input x is
applied, then A moves to the state δ(s, x). Figure 1 shows an example automaton
A with 4 states and 2 inputs.

Fig. 1. A synchronizable automaton A (left), and the data structures we used to store
and process the transition function δ−1 in memory (see Sect. 4.4 for the details). A syn-
chronizing sequence for A is abbbabbba.

An element of the set Σ� is called an input sequence. We use |w| to denote
the length of w, and ε is the empty input sequence. We extend the transition
function δ to a set of states and to an input sequence in the usual way. We have
δ(s, ε) = s, and for an input sequence w ∈ Σ� and an input symbol x ∈ Σ,
we have δ(s, xw) = δ(δ(s, x), w). For a set of states S′ ⊆ S, we have δ(S′, w) =
{δ(s, w)|s ∈ S′}.

We use the notation δ−1(s, x) to denote the set of those states with a tran-
sition to state s with input x. Formally, δ−1(s, x) = {s′ ∈ S|δ(s′, x) = s}.

Let A = (S,Σ, δ) be an automaton, and w ∈ Σ� be an input sequence. w is
said to be a merging sequence for a set of states S′ ⊆ S if |δ(S′, w)| = 1, and S′ is
called mergable. Any set {s} with a single state is mergable, since ε is a merging
sequence for {s}. w is called a synchronizing sequence for A if |δ(S,w)| = 1. A is
called synchronizable if there exists a synchronizing sequence for A. For example,
the automaton given in Fig. 1 is synchronizable, since abbbabbba is a synchroniz-
ing sequence for the automaton. Deciding if an automaton is synchronizable or
not can be performed in polynomial time based on the following result.

Proposition 1 [12,18]. An automaton A = (S,Σ, δ) is synchronizable iff for
all si, sj ∈ S, there exists a merging sequence for {si, sj}.



Parallelizing Heuristics for Generating Synchronizing Sequences 109

For a set of states C ⊆ S, let C〈2〉 = {〈si, sj〉|si, sj ∈ C} be the set of all
multisets with cardinality 2 with elements from C, i.e. C〈2〉 is the set of all subsets
of C with cardinality 2, where repetition is allowed. An element 〈si, sj〉 ∈ C〈2〉

is called a singleton if si = sj , otherwise it is called a pair.
As Proposition 1 makes it explicit, checking the existence of merging

sequences for pairs of states is needed to decide if an automaton is synchroniz-
able. In addition, the heuristic algorithms also make use of the merging sequences
for pairs. For both checking the existence of merging sequences and finding a
merging sequence (in fact for finding a shortest merging sequence) for pairs of
states of an automaton, one can use the notion of the pair automaton, which we
define next.

Definition 1. For an automaton A = (S,Σ, δ), the pair automaton A of A is
defined as A = (S〈2〉, Σ,Δ), where for a state 〈si, sj〉 ∈ S〈2〉 and an input symbol
x ∈ Σ, Δ(〈si, sj〉, x) = 〈δ(si, x), δ(sj , x)〉.

3 Eppstein’s Algorithm

In this section, we explain Eppstein’s Greedy algorithm, and we present an
observation on the timing profile of the algorithm. This observation guided our
work on the improvements and parallelization of the algorithm, which will be
explained in Sect. 4. Greedy (and also all other synchronizing heuristics men-
tioned in Sect. 1) has two phases. In the first phase, a shortest merging sequence
for each mergable pair of states is found. If all pairs are mergable, these merging
sequences are used to construct a synchronizing sequence in the second phase.

For a pair of states si, sj of an automaton A = (S,Σ, δ), checking the exis-
tence of a merging sequence for {si, sj}, and computing a shortest merging
sequence for {si, sj} can be performed in time O(pn2) by finding a shortest
path from the state 〈si, sj〉 of the pair automaton A to a singleton state in A
using Breadth First Search (BFS). Since we will have to check the existence and
find merging sequences for all pairs of states, one can instead use a backward
BFS, seeded at singleton states of the pair automaton, as explained below.

For an automaton A = (S,Σ, δ), a function τ : S〈2〉 → Σ�, is called a pairwise
merging function (PMF) for A, if for all 〈si, sj〉 ∈ S〈2〉, τ(〈si, sj〉) is a shortest
merging sequence for {si, sj} if {si, sj} is mergable, and τ(〈si, sj〉) is undefined
if {si, sj} is not mergable. Note that PMF for an automaton A is not unique,
and it is a total function iff A is synchronizable. Algorithm 1 computes such a
PMF τ for a given automaton A, where initially τ(〈s, s〉) = ε for the singleton
states in S〈2〉 (line 1), and τ(〈si, sj〉) is considered to be “undefined” for pair
states in S〈2〉 (line 2). The algorithm iteratively computes the values of τ(.) as
it discovers shortest merging sequences for more pairs in S〈2〉.

Algorithm 1 keeps track of a frontier set F which is initialized to all singleton
states at line 3. Throughout the algorithm, R represents the remaining set of
pairs with τ(〈si, sj〉) still being undefined. In each iteration of the algorithm
(lines 5–6), a BFS step is performed by using BFS step F2R given in Algorithm2.



110 S. Karahoda et al.

Algorithm 1. Computing a PMF τ : S〈2〉 → Σ� (F2R based)
input : An automaton A = (S, Σ, δ)

output: A PMF τ : S〈2〉 → Σ�

1 foreach singleton 〈s, s〉 ∈ S〈2〉 do τ(〈s, s〉) = ε;

2 foreach pair 〈si, sj〉 ∈ S〈2〉 do τ(〈si, sj〉) = undefined;
3 F ←− {〈s, s〉|s ∈ S}; // all singleton states of A
4 R ←− {〈si, sj〉|si, sj ∈ S ∧ si �= sj}; // all pair states of A
5 while F is not empty do
6 F, R, τ ←− BFS step F2R(A, F, R, τ);

Algorithm 2. BFS step F2R
input : An automaton A = (S, Σ, δ), the frontier F , the remaining set R, τ
output: The new frontier F ′, the new remaining set R′, and updated function τ

1 F ′ ←− ∅;
2 foreach 〈si, sj〉 ∈ F do
3 foreach x ∈ Σ do
4 foreach 〈s′

i, s
′
j〉 such that s′

i ∈ δ−1(si, x) and s′
j ∈ δ−1(sj , x) do

5 if τ(〈s′
i, s

′
j〉) is undefined then // 〈s′

i, s
′
j〉 ∈ R

6 τ(〈s′
i, s

′
j〉) ←− xτ(〈si, sj〉);

7 F ′ = F ′ ∪ {〈s′
i, s

′
j〉};

8 let R′ be R \ F ′;

BFS step F2R constructs the next frontier F ′ from the current frontier F , by
considering each 〈si, sj〉 ∈ F (line 2). Lines 4–5 of BFS step F2R identify a pair
〈s′

i, s
′
j〉 ∈ R such that s′

i = δ(si, x) and s′
j = δ(sj , x) for some x ∈ Σ, and lines

6–7 performs the necessary updates. Since this algorithm considers, in a sense,
the reverse transitions of 〈si, sj〉 in the frontier F to reach to pairs 〈s′

i, s
′
j〉 in R,

we call it as “Frontier to Remaining (F2R)” BFS step.
Algorithm 1 eventually assigns a value to τ(〈si, sj〉) if {si, sj} is mergable.

Based on Proposition 1, A is synchronizable iff there does not exist a pair state
〈si, sj〉 with τ(〈si, sj〉) being undefined when Algorithm1 terminates. We can
now present Eppstein’s Greedy algorithm based on Algorithm1.

The Greedy algorithm keeps track of a current set C of states yet to be
merged, initialized to S at line 4. A pair 〈si, sj〉 ∈ C〈2〉 is called an active pair.
In each iteration of the while loop at line 7, an active pair 〈si, sj〉 ∈ C〈2〉 is
found such that it has a shortest merging sequence among all active pairs in C
(line 8). The synchronizing sequence (initialized to the empty sequence at line 6)
is extended with τ(〈si, sj〉) at line 9. Finally, τ(〈si, sj〉) is applied to C to update
the current set of states. When |C| = 1, this means that Γ accumulated at that
point is a synchronizing sequence.

The following results are shown in [12, Theorem 5]. For an automaton A with
n states and p inputs, Phase 1 of Greedy (lines 1–3) can be implemented to



Parallelizing Heuristics for Generating Synchronizing Sequences 111

Algorithm 3. Eppstein’s Greedy Algorithm
input : An automaton A = (S, Σ, δ)
output: A synchronizing sequence Γ for A (or fail if A is not synchronizable)

1 compute a PMF τ using Algorithm 1;
2 if there exists a pair 〈si, sj〉 such that τ(〈si, sj〉) is undefined then
3 report that A is not synchronizable and exit;

4 foreach si, sj , sk ∈ S do compute δ(sk, τ(〈si, sj〉));
5 C = S; // C will keep track of the current set of states
6 Γ = ε; // Γ is the synchronizing sequence to be constructed
7 while |C| > 1 do // we have two or more states yet to be merged

8 find a pair 〈si, sj〉 ∈ C〈2〉 with minimum |τ(〈si, sj〉)| among all pairs in C〈2〉;
9 Γ = Γ τ(〈si, sj〉);

10 C = δ(C, τ(〈si, sj〉));

run in time O(pn2) and Phase 2 of Greedy (lines 4–10) can be implemented to
run in time O(n3). Hence the overall time for Greedy is O(n3 + pn2).

We performed an experimental analysis to see how much Phase 1 (which
we will call as the PMF construction phase2) and Phase 2 (the synchronizing
sequence construction phase) of the algorithm contribute to the running time
in practice for a sequential implementation. Based on these experiments, we
observed that PMF construction actually dominates the running time of the algo-
rithm (see Table 1). Hence, in order to improve the performance of Greedy, we
developed approaches for parallel implementation of PMF construction, together
with some algorithmic modifications, which we explain in Sect. 4.

Table 1. Sequential PMF construction time (tPMF ), and overall time (tALL) for
automata with n ∈ {1000, 2000, 4000} states and p ∈ {2, 8, 32, 128} inputs.

n = 1000 n = 2000 n = 4000

p tALL tPMF
tPMF
tALL

tALL tPMF
tPMF
tALL

tALL tPMF
tPMF
tALL

2 0.045 0.042 0.928 0.188 0.175 0.929 1.214 1.158 0.954

8 0.125 0.122 0.974 0.526 0.513 0.975 2.757 2.698 0.979

32 0.483 0.480 0.993 2.151 2.138 0.994 9.980 9.919 0.994

128 2.202 2.199 0.999 9.243 9.229 0.999 39.810 39.749 0.998

4 Parallelization Approach and Improvements

Algorithm 1 necessarily performs a BFS on the pair automaton A, and a BFS
forest rooted at singleton states of A is implicitly obtained. At the roots of
2 Lines 2–3 of Phase 1 is easily handled as a part of PMF construction by checking if

R is empty or not at the end of PMF construction.



112 S. Karahoda et al.

the forest (i.e. in the first frontier set F ) we have singleton states of A, which
corresponds to the nodes at level 0 of the BFS forest. At each iteration of the
algorithm, the current frontier F has all the nodes at level k in the BFS forest.
These nodes are processed by Algorithm 2 to compute the next frontier F ′ which
are the nodes at level k + 1 in the BFS forest. The processing of the state pairs
in F are the tasks to be performed at the current level. To process a state pair,
Algorithm 2 considers incoming transitions of the pair (i.e., inverse transitions)
based on the δ−1 function (line 4). Hence, the cost of each task can be different.
Furthermore, the total number of edges of the tasks in F , i.e., frontier edges,
determines the cost of the corresponding level’s BFS step F2R execution and
this also varies for each level. We used OpenMP for parallel implementation and
employed the dynamic scheduling policy (with batches of 512-pairs) since the
task costs are not uniform.

4.1 Computing a PMF in Parallel

When Algorithm 1 is implemented sequentially, handling two consecutive iter-
ations is seamless: using a single queue to enque and deque the frontier pairs
suffices to process them in the correct order (i.e. a pair at level k+1 is only found
after all level k pairs are found). However, with multiple threads, a barrier (a
global synchronization technique) is required after each iteration. Otherwise, a
pair from the next frontier can be processed before another pair in the current
frontier and an incorrect PMF function τ can be computed. Here we present
Algorithm 1 iteratively, and isolate the BFS step F2R from the main flow of the
algorithm since it will be our main target for efficiency.

Algorithm 4. BFS step F2R (in parallel)
input : An automaton A = (S, Σ, δ), the frontier F , the remaining set R, τ
output: The new frontier F ′, the new remaining set R′, and updated function τ

1 foreach thread t do F ′
t ←− ∅ ;

2 foreach 〈si, sj〉 ∈ F in parallel do
3 foreach x ∈ Σ do
4 foreach 〈s′

i, s
′
j〉 where s′

i ∈ δ−1(si, x) and s′
j ∈ δ−1(sj , x) do

5 if τ(〈s′
i, s

′
j〉) is undefined then // 〈s′

i, s
′
j〉 ∈ R

6 τ(〈s′
i, s

′
j〉) ←− xτ(〈si, sj〉);

7 F ′
t = F ′

t ∪ {〈s′
i, s

′
j〉};

8 F ′ ←− ∅;
9 foreach thread t do F ′ = F ′ ∪ F ′

t ;
10 let R′ be R \ F ′;

To parallelize BFS step F2R, we partition the current frontier F among mul-
tiple threads where only a single thread processes a frontier pair as shown in
Algorithm 4 (line 2). Since there is no task-dependency among the pairs, all
the threads can simultaneously work. However, a race condition occurs since
the next frontier set F ′ is a shared object in the sequential implementation.



Parallelizing Heuristics for Generating Synchronizing Sequences 113

To break dependency with a lock-free approach, in our parallel implementation,
each thread t uses a local frontier array F ′

t and when a new pair from the next
frontier is found by thread t, it is immediately added to F ′

t . When two threads
find the same pair 〈s′

i, s
′
j〉 at the same time, both threads insert it to their local

frontiers (lines 5–7). Hence, when the local frontiers are combined at the end of
each iteration (lines 8–9), the same pair can occur multiple times if no dupli-
cate pair check is applied. In our preliminary experiments, we observed that at
most one in a thousands extra pairs are inserted to F ′ when they are allowed.
Hence, we let the threads process them since the total extra pair cost is negligible
compared to the cost of checking and resolving duplicates.

4.2 Another Approach for BFS Steps

Algorithms 2 and 4 follow a natural and possibly the most common technique
to construct the next frontier set F ′ from the current frontier set F by consider-
ing the incoming transitions. Another approach to construct the next frontier F ′

function, which we call “Remaining to Frontier (R2F)”, is processing the remain-
ing state pairs’ edges instead of those in the frontier. As mentioned above, a state
pair 〈si, sj〉 stays in R, i.e., in the remaining pair set, as long as τ(〈si, sj〉) stays
undefined. In the parallel R2F approach described by Algorithm5, the threads
process the transitions of the remaining state pairs instead of the ones in the
frontier. Hence, instead of δ−1, the original transition function δ is used and the
pair found is checked to be in the frontier (lines 5–6). If a pair 〈si, sj〉 has a tran-
sition to a pair 〈s′

i, s
′
j〉 ∈ F (i.e., if 〈si, sj〉 is in the next frontier), τ(〈si, sj〉) is

set and the process ends (lines 7–9). Otherwise, 〈si, sj〉 is kept in the remaining
set (lines 10–11). Similar to parallel F2R, we use a local remaining pair array R′

t

for each thread t in the lock-free parallelization of R2F.

Algorithm 5. BFS step R2F (in parallel)
input : An automaton A = (S, Σ, δ), the frontier F , the remaining set R, τ
output: The new frontier F ′, the new remaining set R′, and updated function τ

1 foreach thread t do R′
t ←− ∅;

2 foreach 〈si, sj〉 ∈ R in parallel do
3 connected ←− false;
4 foreach x ∈ Σ do
5 〈s′

i, s
′
j〉 ←− 〈δ(si, x), δ(sj , x)〉;

6 if τ(〈s′
i, s

′
j〉) is defined then // 〈s′

i, s
′
j〉 ∈ F

7 τ(〈si, sj〉) ←− xτ(〈s′
i, s

′
j〉);

8 connected ←− true;
9 break;

10 if not connected then
11 R′

t = R′
t ∪ {〈si, sj〉};

12 R′ ←− ∅;
13 foreach thread t do R′ = R′ ∪ R′

t ;
14 let F ′ be R \ R′;



114 S. Karahoda et al.

Algorithm 6. Computing a function τ : S〈2〉 → Σ� (Hybrid)
input : An automaton A = (S, Σ, δ)

output: A function τ : S〈2〉 → Σ�

1 foreach singleton 〈s, s〉 ∈ S〈2〉 do τ(〈s, s〉) = ε;

2 foreach pair 〈si, sj〉 ∈ S〈2〉 do τ(〈si, sj〉) = undefined;
3 F ←− {〈s, s〉|s ∈ S}; // all singleton states of A
4 R ←− {〈si, sj〉|si, sj ∈ S ∧ si �= sj}; // all pair states of A
5 while F is not empty do
6 if |F | < |R| then
7 F, R, τ ←− BFS step F2R(A, F, R, τ);

8 else
9 F, R, τ ←− BFS step R2F(A, F, R, τ);

4.3 A Hybrid Approach to Construct the Next Frontier

Since the size of R decreases at each iteration, R2F becomes faster at each
step. On the other hand, F2R is expected to be faster than R2F during the
earlier iterations. Therefore it makes sense to use a hybrid approach, where
either an F2R or an R2F BFS step is used depending on their respective cost
for the current iteration. These observations have been used by Beamer et al.
to implement a direction-optimized BFS [19]. Since the cost of each F2R/R2F
iteration depends on the number of edges processed, it is reasonable to compare
the number of frontier/remaining pairs’ edges to choose the cheaper approach
at each iteration as in [19]. When the BFS is executed on a simple graph, this
strategy is easy to apply. However, by only using δ−1, it takes O(p) time to
count a new frontier pair’s edges. Overall, the counting process takes O(pn2)
time which is expensive considering that the overall sequential complexity is
also O(pn2). In this work, we compared the size of R and F instead of the edges
to be processed. The total additional complexity due to counting is O(n2) since
each pair will be counted only once.

To analyze the validity of our counting heuristic and the potential improve-
ment due to the Hybrid approach described in Algorithm6, we compared the
size of R and F , and the corresponding execution time of each F2R/R2F exe-
cution in Fig. 2. As the figure shows, counting the pairs instead of transitions
can be a good heuristic to guess the cheaper approach in our case. Furthermore,
the performance difference of F2R and R2F at the each iteration shows that the
proposed Hybrid approach can yield a much better performance.

4.4 Implementation Details

To store and utilize the δ−1(s, x) for all x ∈ Σ and s ∈ S, we employ the data
structures in Fig. 1 (right). For each symbol x ∈ Σ, we used two arrays ptrsx
and jsx where the former is of size n+1 and the latter is of size n. For each state
s ∈ S, ptrsx[s] and ptrsx[s + 1] are the start (inclusive) and end (exclusive)



Parallelizing Heuristics for Generating Synchronizing Sequences 115

(a) p = 8, #vertices (b) p = 8, execution time

(c) p = 128, #vertices (d) p = 128, execution time

Fig. 2. The number of frontier and remaining vertices at each BFS level and the corre-
sponding execution times of F2R and R2F while constructing the PMF τ for n = 2000
and p = 8 (top) and p = 128 (bottom).

pointers to two jsx entries. The array jsx stores the ids of the states δ−1(s, x)
in between jsx[ptrsx[s]] and jsx[ptrsx[s+1] - 1]. This representation has a low
memory footprint. Furthermore, we access the entries in the order of their array
placement in our implementation hence, it is also good for spatial locality.

The memory complexity of the algorithms investigated in this study is O(n2).
For each pair of states, we need to employ an array to store the length of the
shortest merging sequence. To do that one can allocate an array of size n2,
Fig. 3 (left), and given the array index � = (i − 1) × n + j for a state pair
{si, sj} where 1 ≤ i ≤ j ≤ n, she can obtain the state ids by i = � �

n	 and
j = � − ((i − 1) × n). This simple approach effectively uses only the half of the
array since for a state pair {si, sj}, a redundant entry for {sj , si} is also stored.
In our implementation, Fig. 3 (right), we do not use redundant locations. For an
index � = i×(i+1)

2 + j the state ids can be obtained by i = 
√1 + 2� − 0.5� and
j = �− i×(i+1)

2 . Preliminary experiments show that this approach, which does not
suffer from the redundancy, also have a positive impact on the execution time.
That being said, all the algorithms in the paper uses it and this improvement
will not have change their relative performance.



116 S. Karahoda et al.

Fig. 3. Indexing and placement of the state pair arrays. A simple placement of the
pairs (on the left) uses redundant places for state pairs {si, sj}, i �= j, e.g., {s1, s2}
and {s2, s1} in the figure. On the right, the indexing mechanism we used is shown.

5 Experimental Results

All the experiments in the paper are performed on a single machine running
on 64 bit CentOS 6.5 equipped with 64GB RAM and a dual-socket Intel Xeon
E7-4870 v2 clocked at 2.30 GHz where each socket has 15 cores (30 in total). For
the multicore implementations, we used OpenMP and all the codes are compiled
with gcc 4.9.2 with the -O3 optimization flag enabled.

To measure the efficiency of the proposed algorithms, we used randomly
generated automatons3 with n ∈ {1000, 2000, 4000} states and p ∈ {2, 8, 32, 128}
inputs. For each (n, p) pair, we randomly generated 20 different automatons and
executed each algorithm on these automatons. The values in the figures and
the tables are the averages of these 20 executions for each configuration, i.e.,
algorithm, n and p.

5.1 Multicore Parallelization of PMF Construction

Figure 4 shows the speedups of our parallel F2R implementation over the sequen-
tial baseline (that has no parallelism). Since F2R uses the same frontier extension
mechanism with the sequential baseline, and R2F employs a completely differ-
ent one, here we only present the speedup values of F2R. As the figure shows,
when p is large, the parallel F2R presents good speedups, e.g., for p = 128, the
average speedup is 14.1 with 16 threads. Furthermore, when compared to the
single-thread F2R, the average speedup is 15.2 with 16 threads. A performance
difference between sequential baseline and single-threaded F2R exists because
of the parallelization overhead during the local queue management. Overall, we
observed 10% parallelization penalty for F2R on the average over the sequential
baseline for all (n, p) pairs.

For p values smaller than 128, i.e., 2, 8, and 32, the average speedups are 5.4,
9.1, and 12.8, respectively, with 16 threads. The impact of the parallelization
overhead is more for such cases since the amount of the local-queue overhead
is proportional to the number of states but not to the number of edges. Con-
sequently, when p decreases the amount of total work decreases and hence, the
impact of the overhead increases. Furthermore, since the number of iterations
for PMF construction increases with decreasing p, the local queues are merged
more for smaller p values. Therefore, one can expect more overhead, and hence,
less efficiency for smaller p values as the experiments confirm.

3 For each state s and input x, δ(s, x) is randomly assigned to a state s′ ∈ S.



Parallelizing Heuristics for Generating Synchronizing Sequences 117

(a) n = 1000 (b) n = 2000 (c) n = 4000

Fig. 4. The speedup of our parallel F2R PMF construction over the sequential PMF
construction baseline.

Figure 5 compares the execution times of F2R, R2F and Hybrid algorithm for
n = 1000 (top) and n = 4000 (bottom) states, p ∈ {2, 8, 32} and {1, 2, 4, 8, 16}
threads (the results for n = 2000 are similar but omitted due to space limita-
tions). For better figure scaling, the results for p = 128 is given in Fig. 6. An
interesting observation is that F2R is consistently faster than R2F for p = 2,
however, it is slower otherwise. This can be explained by the difference in the
number of required iterations to construct PMF: when p is large, the frontier
expands very quickly and the PMF is constructed in less iterations, e.g., for
n = 2000, the PMF is generated in 16 iterations for p = 2, whereas only 7 itera-
tions are required for p = 8. Since each edge will be processed once, the runtime
of F2R always increases with p, i.e., with the number of edges. However, since the
frontier expands much faster, the total number of remaining (R-)pairs processed
by the R2F throughout the process will probably decrease. Furthermore, since
when the frontier is large, while traversing the edge list of an R-pair, it is more
probable to early terminate the traversal and add the R-pair to the next frontier
earlier. Surprisingly, when p increases, these may yield a decrease in the R2F
runtime (observe the change from p = 2 to p = 8 in Fig. 5). However, once the
performance benefits of early termination are fully exploited, an increase on the
R2F runtime with increasing p is more probable since the overall BFS work, i.e.,
the total number of edges, also increases with p (observe the change from p = 8
to p = 32 in Fig. 5).

Observing such performance differences for R2F and F2R on automatons
with different characteristics, the potential benefit of a Hybrid algorithm in
practice is more clear. As Figs. 5 and 6 show, the hybrid approach, which is
just a combination of F2R and R2F, is almost always faster than employing
a pure F2R or a pure R2F BFS-level expansion. Furthermore, we do not need
parallelism to observe these performance benefits: the Hybrid approach works
better even when a single thread is used at runtime. For example, when n = 4000
and p = 128, the Hybrid algorithm is 23 and 6 times faster than F2R and R2F,
respectively. For the same automaton set, the speedups due to hybridization of
the process become 14 and 4 with 16 threads on average.



118 S. Karahoda et al.

(a) n = 1000

(b) n = 4000

Fig. 5. Comparison of the parallel execution times of the three PMF construction
algorithms: (1) F2R, (2) R2F, and (3) hybrid. The figures show the times for n =
1000 (top) and n = 4000 (bottom), p ∈ {2, 8, 32}, with {1, 2, 4, 8, 16} threads (x-axis).
For a better readability and figure scaling, the single-thread F2R bars with 32 inputs
are allowed to exceed the max value on the y-axis.

(a) n = 1000 (b) n = 2000 (c) n = 4000

Fig. 6. Comparison of the parallel execution times of the three PMF construction
algorithms: (1) F2R, (2) R2F, and (3) hybrid. The figures show the times for n =
1000 (left), n = 2000 (middle), and n = 4000 (bottom), p = 128, with {1, 2, 4, 8, 16}
threads (x-axis).



Parallelizing Heuristics for Generating Synchronizing Sequences 119

When the Hybrid algorithm is used, the speedups on the PMF generation
phase are given in Fig. 7. As the figure shows, thanks to parallelism and good
scaling of Hybrid (for large p values), the speedups increase when the number
of threads increases. The PMF generation process becomes 95, 165, and 199
times faster when 16 threads used for 1000, 2000, and 4000 state automatons,
respectively. Even with single thread, i.e., no parallelization, the Hybrid heuristic
is 8, 14, and 21 times faster than the sequential algorithm.

Since we generate the PMF to find a synchronizing sequence, a more practi-
cal evaluation metric would be the performance improvement over the sequential
reset sequence construction process. As Table 1 shows, for Eppstein’s Greedy

(a) n = 1000

(b) n = 2000

(c) n = 4000

Fig. 7. The speedups of the Hybrid PMF construction algorithm with n = 1000 (top),
2000 (middle), 4000 (bottom) and p ∈ {2, 8, 32, 128}. The x-axis shows the number of
threads used for the Hybrid execution. The values are computed based on the average
sequential PMF construction time over 20 different automatons for each (n, p) pair.



120 S. Karahoda et al.

heuristic (also for some other heuristics such as Cycle [13]), the PMF genera-
tion phase dominates the overall runtime. For this reason, we simply conducted
an experiment where the Hybrid approach is used to construct the PMF and no
further parallelization is applied during the synchronizing sequence construction
phase. Table 2 shows the speedups for this experiment for single thread and 16
thread Hybrid executions. As the results show, even when the sequence construc-
tion phase is not parallelized, more than 50x and more than 100x improvement
is possible for p = 32 and p = 128, respectively.

Table 2. The speedups obtained on Eppstein’s Greedy algorithm when the Hybrid
PMF construction algorithm is used.

p (Single thread) p (16 threads)

n 2 8 32 128 2 8 32 128

1000 1.2 1.8 13.4 7.5 4.6 10.8 58.2 83.7

2000 1.2 2.7 2.2 14.0 4.8 13.1 24.3 133.9

4000 1.1 2.9 3.3 20.7 5.5 14.8 31.7 154.0

As noted before, F2R based PMF construction has O(pn2) time complexity.
R2F based PMF construction, on the other hand, has O(dpn2) time complex-
ity (where d is the diameter of the pair automaton A), since states of A in
the remaining set R will be processed at most d times. In practice, however,
R2F based construction (and Hybrid computation which also has O(dpn2) time
complexity since it performs R2F steps) can beat F2R based construction.

We did not perform an extensive study on automata with larger state num-
bers, since it takes too long with the sequential baseline implementation. For
example, sequential PMF generation takes around 75 min for an automaton with
32000 states and 128 letters, whereas our Hybrid implementation completes in
3 min.

6 Conclusion and Future Work

We investigated the efficient implementation and use of modern multicore CPUs
to scale the performance of synchronizing sequence generation heuristics. We
parallelized one of the well-known heuristics Greedy. We mainly focused on
the PMF generation phase (which is employed by almost all the heuristics in the
literature), since it is the most time consuming part of Greedy. Even with no
parallelization, our algorithmic improvements yielded a 20x speedup on Greedy
for automatons with 4000 states and 128 inputs. Furthermore, around 150x
speedup has been obtained with 16 threads for the same automata class.

To eliminate threats to validity, we checked and confirmed that the sequence
constructed by each algorithm is indeed a synchronizing sequence. We also com-
pared the length of the sequences constructed by the original implementation of



Parallelizing Heuristics for Generating Synchronizing Sequences 121

Greedy and different versions of Greedy algorithms suggested in this paper.
We observed that regardless of the PMF construction approach used, for each
pair 〈si, sj〉, we obtain the same length |τ(〈si, sj〉)| for the shortest merging
sequences, but the actual shortest merging sequence τ(〈si, sj〉) can differ, which
causes around ±1% difference in the length of the synchronizing sequences.

As a future work, we will apply our techniques to other heuristics in the
literature that are relatively slower than Greedy but can produce shorter syn-
chronizing sequences. For these heuristics, parallelizing only the PMF generation
phase may not be sufficient since the synchronizing sequence construction part
of these heuristics are much more expensive compared to Greedy. Hence, we
aim to parallelize the whole sequence generation process. Another problem we
want to study is the use of cutting-edge manycore architectures such as GPUs
and FPGAs to make such heuristics faster and more practical for large scale
automatons.

Acknowledgements. This work is supported by TÜBİTAK Grants #114E569 and
#115C018.

References

1. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. 4(3), 178–187 (1978)

2. Hennie, F.C.: Fault-detecting experiments for sequential circuits. In: Proceedings of
Fifth Annual Symposium on Switching Circuit Theory and Logical Design, Prince-
ton, New Jersey, pp. 95–110 (1964)

3. Ural, H., Wu, X., Zhang, F.: On minimizing the lengths of checking sequences.
IEEE Trans. Comput. 46(1), 93–99 (1997)

4. Hierons, R.M., Ural, H.: Reduced length checking sequences. IEEE Trans. Comput.
51(9), 1111–1117 (2002)

5. Petrenko, A., Yevtushenko, N.: Testing from partial deterministic FSM specifica-
tions. IEEE Trans. Comput. 54(9), 1154–1165 (2005)

6. Simão, A.S., Petrenko, A., Yevtushenko, N.: On reducing test length for FSMs
with extra states. Softw. Test. Verif. Reliab. 22(6), 435–454 (2012)

7. Hierons, R.M., Ural, H.: Generating a checking sequence with a minimum number
of reset transitions. Autom. Softw. Eng. 17(3), 217–250 (2010)

8. Schrammel, P., Melham, T., Kroening, D.: Chaining test cases for reactive system
testing. In: Yenigün, H., Yilmaz, C., Ulrich, A. (eds.) ICTSS 2013. LNCS, vol.
8254, pp. 133–148. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41707-8 9

9. Groz, R., Simao, A., Petrenko, A., Oriat, C.: Inferring finite state machines
without reset using state identification sequences. In: El-Fakih, K., Barlas, G.,
Yevtushenko, N. (eds.) ICTSS 2015. LNCS, vol. 9447, pp. 161–177. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-25945-1 10

10. Jourdan, G.V., Ural, H., Yenigun, H.: Reduced checking sequences using unreliable
reset. Inf. Process. Lett. 115(5), 532–535 (2015)

11. Berlinkov, M.V.: On the probability of being synchronizable. In: Govindarajan, S.,
Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 73–84. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-29221-2 7

http://dx.doi.org/10.1007/978-3-642-41707-8_9
http://dx.doi.org/10.1007/978-3-319-25945-1_10
http://dx.doi.org/10.1007/978-3-319-29221-2_7


122 S. Karahoda et al.

12. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3),
500–510 (1990)

13. Trahtman, A.N.: Some results of implemented algorithms of synchronization. In:
10th Journees Montoises d’Inform (2004)

14. Roman, A.: Synchronizing finite automata with short reset words. Appl. Math.
Comput. 209(1), 125–136 (2009)

15. Kudlacik, R., Roman, A., Wagner, H.: Effective synchronizing algorithms. Expert
Syst. Appl. 39(14), 11746–11757 (2012)

16. Roman, A., Szykula, M.: Forward and backward synchronizing algorithms. Expert
Syst. Appl. 42(24), 9512–9527 (2015)

17. Türker, U.C.: Parallel algorithm for deriving reset sequences from deterministic
incomplete finite automata. IJFCS Int. J. Found. Comput. Sci. (submitted)

18. Natarajan, B.K.: An algorithmic approach to the automated design of parts ori-
enters. In: FOCS, pp. 132–142 (1986)

19. Beamer, S., Asanović, K., Patterson, D.: Direction-optimizing breadth-first search.
In: Proceedings of the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, SC 2012, pp. 12:1–12:10. IEEE Computer
Society Press, Los Alamitos (2012)



Resolving the Equivalent Mutant Problem
in the Presence of Non-determinism

and Coincidental Correctness

Krishna Patel(B) and Robert M. Hierons

Department of Computer Science, Brunel University,
Uxbridge, Middlesex UB8 3PH, UK

{krishna.patel,rob.hierons}@brunel.ac.uk

Abstract. In this paper, we develop a new mutation testing technique
called Interlocutory Mutation Testing (IMT) that mitigates the equiv-
alent mutant problem in the presence of coincidental correctness and
non-determinism. The accuracy of IMT was evaluated; it obtained a
classification accuracy of 93.33 % for non-equivalent mutants and 100 %
for equivalent mutants in a non-deterministic system with coincidental
correctness.

Keywords: Mutation testing · Coincidental correctness · Non-
determinism · Equivalent mutant problem

1 Introduction

Mutation Testing (MT) is a technique for generating artificial faults [15], which
are reasonably accurate simulations of real faults [2]. MT operates by applying a
minor augmentation (referred to as a mutation) to the system under test (SUT)
So to produce a faulty version Sm [5] called a mutant. For example, a statement
X < 5 in So might be transformed into X > 5 in Sm.

Unfortunately, a limitation of MT is that it can produce equivalent mutants
[7] — this is known as the equivalent mutant problem. An equivalent mutant
is an augmentation Sm that is observationally equivalent to the SUT So. For
example, suppose that Math.abs(5) and Math.abs(−5) appear on Line 1 in So

and Sm respectively. Sm is an equivalent mutant, because the augmentation is
semantically equivalent and doesn’t modify the behaviour of So.

A study conducted by Yao et al. [24] demonstrated that the equivalent mutant
problem is pervasive. Despite the fact that deducing mutant equivalence is unde-
cidable [4], this has motivated some research into how the problem can be cir-
cumvented [11]. For example, let So(I) and Sm(I) denote the respective outputs
of So and Sm for a given input. Many researchers typically expose So and Sm to
a test suite to obtain a set of pairs 〈So(I), Sm(I)〉 and assume that So and Sm

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 123–138, 2016.
DOI: 10.1007/978-3-319-47443-4 8



124 K. Patel and R.M. Hierons

are equivalent if the following condition holds for each pair: So(I) = Sm(I). For
ease of reference, we refer to this as the Traditional Equivalent Mutant Detection
Technique (TEMDT). An example of the use of TEMDT can be found in Sadi
et al. [21].

However, this assumption doesn’t always hold. For example, non-
deterministic behaviours may be responsible for any observed discrepancies,
and may be misinterpreted as having originated from the mutation [5]. Another
example includes the presence of coincidental correctness; the SUT can misbe-
have but still produce the expected output, which can lead to non-equivalent
mutants being mistakenly classified as equivalent. Alternative techniques have
been proposed to address these problems, but have limitations (see Sect. 2).
Manual inspection is typically used under such circumstances [1].

In our previous work, we developed Interlocutory Testing (IT), a testing
technique that suppresses coincidental correctness and can operate effectively in
the presence of non-determinism [19]. This paper explores how IT can be used
to alleviate the Equivalent Mutant Problem in systems with non-determinism
and/or coincidental correctness. We call the approach Interlocutory Mutation
Testing (IMT).

The relationship between the input and output of the SUT, in conjunc-
tion with one’s knowledge/expectations about the SUT, can be used to predict
aspects of the execution trace. For example, consider the Bubble Sort algorithm;
Input and Output are sequences of integers. If Input �= Output, one can pre-
dict that the Swap Operator was invoked at least once. The correctness of this
prediction is predicated on whether the SUT’s behaviour mirrors the tester’s
expectations. Let f denote a fault in Bubble Sort that overwrites the value of
the first element of Input with a random value. f can lead to situations in which
Input �= Output and the swap operator was not invoked; the failure to satisfy
the prediction above in such situations shows that the behaviour of the SUT
does not satisfy the tester’s expectations1. IMT exploits this observation as fol-
lows. Let S denote the SUT and M denote a mutated version of S. Suppose
that M is executed with an input MInput, and produces an execution trace
MET and output MOutput. IMT uses the relationship between MInput and
MOutput, in conjunction with the tester’s knowledge/expectations about S, to
predict aspects of MET . If this prediction is incorrect then this suggests that
M is not an equivalent mutant.

This paper makes the following main contributions:

1. A new technique called IMT that can classify mutants as equivalent
and non-equivalent in programs with coincidental correctness and/or non-
deterministic behaviours.

2. An evaluation of the accuracy of IMT.

The paper is structured as follows. We begin by presenting related work
in Sect. 2. Section 3 describes our proposed technique and explains how the
1 Later we will see more complicated examples in which this process can help to

overcome coincidental correctness.



Resolving the Equivalent Mutant Problem 125

technique can be applied. Section 4 outlines our experimental set-up. The experi-
ment results are presented and discussed in Sect. 5, along with threats to validity
in Sect. 6. Conclusions are finally drawn in Sect. 7.

2 Related Work

2.1 The Equivalent Mutant Problem and Coincidental Correctness

Fault detection requires the execution of a faulty statement, that causes the
subsequent infection of a state (to produce a failure), and propagation of an
infected state to the output (so an oracle can assess it) [23]. According to Masri
and Assi [14], strong coincidental correctness occurs when the first two conditions
are satisfied, but the third is not, and weak coincidental correctness occurs when
the first condition is satisfied, but not the third; the second condition may or
may not be satisfied. Weak coincidental correctness subsumes strong coincidental
correctness. In this paper, “coincidental correctness” refers to weak coincidental
correctness.

In the context of mutation testing, coincidental correctness can be described
as follows: Let So be the SUT and Sm be a non-equivalent mutant. Also let
sm denote the state in Sm after the mutated statement executes and so be the
corresponding state in So. Coincidental correctness occurs if sm and so map to
the same output, despite the differences in code.

Masri and Assi [13] define information flow strength as the percentage of
information that propagates between two program points; a higher percentage
indicates greater strength. This determines the probability that an infected state
will propagate to the output, which is tantamount to the likelihood of observing
coincidental correctness. Masri et al. [14] conducted a series of experiments that
suggested that coincidental correctness is widespread. For example, 72 % and
96.5 % of the systems they investigated had strong and weak coincidental cor-
rectness respectively and between 63.76–97.58 % of the weak information flows
in six of these systems had a strength of 0.

Despite the prevalence of coincidental correctness, little research has been
conducted on determining mutant equivalence in the context of coincidental
correctness. To our knowledge, only one approach has been proposed. Offutt
and Lee [16] extend TEMDT (see Sect. 1). They suggest additionally comparing
so and sm. While this can be useful in some situations it’s not a universal solution
e.g. its effectiveness may be limited in non-deterministic systems.

2.2 The Equivalent Mutant Problem and Non-deterministic
Systems

Non-deterministic systems are becoming increasingly prevalent e.g. concurrency
can lead to alternative interleavings. For example, consider a variable X that is
instantiated with a value of 3. Suppose we have two threads t1 and t2 and that
t1 applies the following operation to X: X = X + 1. Further, suppose that t2



126 K. Patel and R.M. Hierons

updates the value of X to X = X × 2. The order of the interleavings affects the
final state of X i.e. if t1 executes first, then X = 8 and if t2 executes first X = 7.

This complicates the mutant classification process. Several proposals have
been made to address this. For example, Carver [5] identifies two methods -
Multiple Execution Testing (MET) and Deterministic Execution Testing (DET).
In MET, confidence is improved by executing the original So and mutant Sm

versions multiple times and observing their output distributions. DET involves
forcing the SUT to execute deterministically by manipulating conditions e.g. a
Genetic Algorithms Mutation Rate can be set to 100 % or 0 % to force deter-
ministic execution of the Mutation Operator.

Both strategies are viable, but have limitations. For example, MET is dic-
tated by chance; thus there is scope for misclassification [5] and non-replicability
[5]. It’s also expensive because it uses multiple executions. On the other hand,
DET limits test case selection; thus some mutation points may not be reachable
with allowable test cases. Carver [5] attempted to reduce the impact of these
weaknesses by combining MET and DET.

Gligoric et al. [7] suggest executing So with a test case t, and then estab-
lishing whether the mutant statement in Sm could have been reached by this
execution. Non-reachability implies equivalence for t. This approach is limited
to the identification of equivalent mutants in unexecuted code.

Finally, Papadakis et al. [17] propose comparing Sm’s object code to the
object code of So. If Sm’s object code matches So’s object code, then we can
guarantee that So is equivalent to Sm. However, if the comparison reveals that
there are discrepancies, Sm may either be equivalent or non-equivalent to So.
Although the approach can’t correctly classify all mutants, it is inexpensive and
so can be a valuable complimentary equivalent mutant classification technique.

3 Interlocutory Mutation Testing

IMT was developed to enable the classification of equivalent and non-equivalent
mutants in programs that are non-deterministic and/or are susceptible to coin-
cidental correctness. Section 3.1 introduces the technique and demonstrates
how it can classify mutants despite the presence of coincidental correctness,
and Sect. 3.2 shows how the technique can be extended to cope with non-
determinism.

3.1 Interlocutory Mutation Testing and Coincidental Correctness

This section draws on the following running example.
The SUT is a Genetic Algorithm, which is a search optimisation technique.

The SUT consists of four major components: Initial Population Generator,
Crossover, Mutation, and Selection. Let Sys denote the SUT.

Consider Sys’s selection operator, denoted by Sysso. Sysso’s Input consists
of a population size parameter PS, which is the maximum population size, and
a Population, such that Population.size() ≥ PS. Let PopulationSOI be the



Resolving the Equivalent Mutant Problem 127

state of Population at this point in the execution trace. Input is processed by
Sysso as follows: random elements of PopulationSOI are iteratively removed
until Population.size() == PS. Sysso’s resultant Output is a version of the
Population that has been subjected to this process; PopulationSOO denotes the
state of Population at this point in the execution.

Suppose that a non-equivalent mutant, denoted by MUT , of the Sys was
produced. The delta between MUT and Sys is that MUT performs an addi-
tional operation; it adds a random individual to PopulationSOI during Sysso’s
initialisation phase. Since Sysso iteratively removes random individuals from
PopulationSOO.size() until PopulationSOO.size() == PS, all traces of an addi-
tional member being added to PopulationSOI might be lost by the time the exe-
cution reaches the PopulationSOO state. Thus, MUT is a coincidentally correct
mutant.

Intuition. Let’s consider how MUT could be correctly classified. Suppose that
MUT is executed and produces a log file that details the execution trace MET .
Let MUTso denote MUT ’s selection operator. The execution trace of MUTso is
a subsequence of MET . Let MInput and MOutput be MUTso’s input and out-
put respectively. Information about MET can be revealed by assessing the rela-
tionship between MInput and MOutput. For example, PopulationSOI .size() >
PopulationSOO.size() may be one relationship between MInput and MOutput,
and from this, we can deduce that members of Population were removed during
the execution.

If we assume that MUT is equivalent to Sys, we can use our knowledge
about how Sys behaves in this context to predict aspects of MET . To illustrate,
since we know that the Selection Operator iteratively removes random members
of Population until Population.size() == PS, when PopulationSOI .size() >
PopulationSOO.size(), we can deduce that the Population must have been
expanded by PopulationSOI .size() − PopulationSOO.size() individuals before
the Selection Operator was executed. Since we also know that the only function
that can add additional members to a Population of size PS is the Crossover
Operator, the following prediction about MET can be made: the Crossover
Operator generated PopulationSOI .size() − PopulationSOO.size() individuals
and added them to Population.

Finally, this prediction can be checked against MET . Let CrossoverN be
the total number of members that were actually generated by the Crossover
Operator during the execution i.e. as reported in MET . In continuation of the
example above, this involves checking CrossoverN == PopulationSOI .size() −
PopulationSOO.size(). Since an additional member is added to PopulationSOI

by MUT , this predicate would evaluate to false, which indicates that the predic-
tion was incorrect. The behaviour of MUT deviated from how Sys would have
behaved; thus we can conclude that MUT is not equivalent to Sys.

Had MUT been equivalent to Sys (i.e. had the additional member not been
added to Population during the initialisation of the Selection Operator), the
prediction would have been correct.



128 K. Patel and R.M. Hierons

The example above demonstrates that one can use the relationship between
MInput and MOutput to predict properties of MET . Discrepancies between
this prediction and MET indicate that MUT is not equivalent to Sys. The
example also demonstrates that this approach works in the presence of coin-
cidental correctness. This forms the intuition of our technique - Interlocutory
Mutation Testing (IMT).

Technique Description. This section outlines how IMT realises the intuition
described above. IMT requires that the relationship between an input and output
(Input-Output pair) is associated with a prediction about the mutant’s execu-
tion trace MET . Associating a prediction with every individual Input-Output
pair would be impractical. Instead, IMT groups Input-Output pairs together
using Input-Output Relationships (IORs). Certain predictions are applicable
to all Input-Output pairs in such a group. Consider the earlier example;
PopulationSOI .size() > PopulationSOO.size() is an IOR (for ease of reference,
we call this IOR1), and it groups Input-Output pairs where the prediction is that
the Crossover Operator produced PopulationSOI .size()−PopulationSOO.size()
members and added them to the Population.

The prediction that is associated with an IOR is referred to as an “Inter-
locutory Decision” (ID). An ID can be expressed using any method, on the
proviso that it can unambiguously describe one’s prediction about MET and
be automatically compared with the execution trace MET . For example, as
demonstrated above, IDs can be expressed as predicates e.g. CrossoverN ==
PopulationSOI .size()−PopulationSOO.size() (this ID is associated with IOR1).
Alternative methods of expressing IDs are discussed in our previous work [19].

In IMT, the mutant is executed, which results in an execution trace
MET . IMT checks whether an IOR is satisfied by an input MInput and
output MOutput, which are extracted from MET . In continuation of the
example above, MInput = PopulationSOI and MOutput = PopulationSOO.
If MInput.size() > MOutput.size(), then IOR1 is satisfied. If the IOR
is satisfied, then IMT checks that MET satisfies the IOR’s associated IDs
(e.g. in the case of IOR1, this would involve checking CrossoverN ==
PopulationSOI .size() − PopulationSOO.size()). Finally, if the prediction is cor-
rect (e.g. if CrossoverN == PopulationSOI .size() − PopulationSOO.size()),
then IMT reports that the mutant is possibly equivalent, otherwise it reports
that the mutant is non-equivalent.

An Input-Output pair I/O is said to be valid if the SUT can produce out-
put O in response to input I. IOR1 doesn’t cater for all valid Input-Output
pairs — it’s possible to observe PopulationSOI .size()==PopulationSOO.size()
in Sys. IOR1 must report that its classification was inconclusive in such
cases. This can be remedied by creating more IORs that cover such pairs. For
example, PopulationSOI .size() == PopulationSOO.size() can be IOR2 and
CrossoverExecuted == false can be its ID.

Interlocutory Relations (IRs) are the final construct used by IMT. An IR
groups multiple IORs together to enable the definition of potentially complex



Resolving the Equivalent Mutant Problem 129

relationships between IORs. Such relationships can enhance their classification
accuracy. To illustrate, since all valid Input-Output pairs in Sys are collectively
covered by IOR1 and IOR2, if a situation arises where neither IOR1 nor IOR2 is
satisfied i.e. if PopulationSOI .size() < PopulationSOO.size(), then the IR can
guarantee that the Input-Output pair under consideration can not have been
observed in Sys, and thus reports that the mutant is non-equivalent. We refer
to this grouping of IOR1 and IOR2 as IR1. Thus, an IR operates as follows:
Each IOR that is associated with the IR is evaluated as described above to
obtain a set of Possibly Equivalent/Non-Equivalent/Inconclusive classifications.
These classifications are analysed by the IR to arrive at a final conclusion. If at
least one classification is possibly equivalent and none are non-equivalent, then
the final conclusion is that the mutant is equivalent, and if at least one is non-
equivalent, then the final conclusion is non-equivalent. Assuming that the IR has
IORs that collectively cover all valid Input-Output Pairs, the final conclusion
can be non-equivalent if all classifications are inconclusive (as is the case for
IR1).

3.2 Interlocutory Mutation Testing and Non-determinism

Intuition. Consider the Tournament Selection Operator (TSO) of a Genetic
Algorithm. In particular, consider the logic that determines the winner of a
tournament. A tournament consists of a set of competitors tournament =
{Competitor1, Competitor2, ..., Competitorn}, each of which is associated with
a fitness value. One Competitori ∈ tournament is randomly selected to be the
winner of the tournament. A competitor’s chance of winning is based on their
fitness value, relative to the combined fitness values of all other competitors
in the tournament. Thus, even though any competitor could win, the competi-
tor with the highest fitness will have the greatest chance of being selected as
the winner. Let winner denote the selected competitor. On invocation of TSO,
multiple tournaments are performed tournaments={〈tournament1, winner1〉,
〈tournament2, winner2〉, 〈tournament3, winner3〉, ...}.

An IR, which we will refer to as TournamentPIR, may be constructed for
TSO. TournamentPIR may be associated with one IOR IORTPIR that is only
satisfied under the following condition: For each 〈tournamenti, winneri〉 in
tournaments, tournamenti contains at least two competitors Competitorj and
Competitork, such that Competitorj .getF itnessV alue() �= Competitork.get
F itnessV alue().

Let tournamentsstrong be a subset of tournaments, such that for each
〈tournamenti, winneri〉 ∈ tournamentsstrong, winneri was a solution with the
highest fitness in tournamenti. Conversely, let tournamentsweak be a subset
of tournaments, where in each 〈tournamenti, winneri〉 ∈ tournamentsweak,
winneri was a solution with the lowest fitness. IORTPIR may be associated
with an ID that predicts that tournamentsstrong contains more members than
tournamentsweak.

In summary, TournamentPIR predicts that tournamentstrong will contain
more members than tournamentsweak (this is the ID), when every tournament



130 K. Patel and R.M. Hierons

in tournaments contains at least two competitors with different fitness values
(this is the IOR). Although it’s unlikely, it’s possible that tournamentstrong may
validly contains fewer members than tournamentsweak. This means that Tour-
namentPIR can misclassify an equivalent mutant as a non-equivalent mutant.
We refer to such a misclassification error as a false positive.

This demonstrates that a revised evaluation method is necessary for IRs that
deal with probabilistic behaviours, to reduce the incidence of false positives. We
refer to IRs that use the revised evaluation method as Probabilistic IRs (PIRs).
For the sake of clarity, we refer to IRs that use the evaluation method detailed
above as Deterministic IRs.

The intuition behind the new evaluation method is as follows. As dis-
cussed above, certain behaviours can cause PIRs to report false positives e.g.
when tournamentstrong contains fewer members than tournamentweak. The ran-
domised properties of a system determine how frequently certain behaviours are
observed. This means that all behaviours, including those that can lead to false
positives will have a typical rate of occurrence. In other words, a PIR has a
typical false positive rate. The proposed evaluation method is to use statisti-
cal techniques to compare a PIR’s typical false positive rate to the proportion
of non-equivalent classifications made by that PIR; if the proportion of non-
equivalent mutant classifications is significantly higher than the false positive
rate, then it’s likely that the mutant is non-equivalent, otherwise, it’s possible
that the mutant is equivalent.

Technique Description. This section introduces the evaluation method used
by PIRs to reduce the impact of false positives.

The PIR evaluation method is two-fold. The first part of the evaluation
method attempts to reduce the impact of false positives for a single test case
tc. Let PIR be a PIR e.g. TournamentPIR and suppose that PIR has a typ-
ical false positive rate FPRtc of 30 %. FPRtc can be determined by analysing
the randomised properties of the SUT, extrapolated from empirical test data,
or be based on the tester’s expertise. PIR may be evaluated multiple times
during an execution of tc. For example, TournamentPIR is evaluated each time
TSO is executed, and TSO can execute multiple times if the Genetic Algorithm
has been configured to perform more than one generation. Each evaluation of
PIR will either yield an equivalent or non-equivalent classification. Let Rtc =
count(Non Equivalenttc)÷ (count(Non Equivalenttc)+ count(Equivalenttc)),
where count(Non Equivalenttc) and count(Equivalenttc) represent the number
of times the mutant was classified as Non-Equivalent and Equivalent respectively.
Thus, Rtc represents the proportion of times that PIR classified the mutant as
Non-Equivalent in tc. In the first part of the evaluation method, Rtc is compared
with FPRtc using Pearsons χ2. PIR’s classification of the mutant based on tc
is Non-equivalent if Rtc > FPRtc and the difference is statistically significant,
otherwise the classification is equivalent. PIRC(tc) denotes this classification.
To illustrate, suppose that Rtc = 70 % and PIR was evaluated 100 times; since
70% > 30% and the difference between Rtc and FPRtc is significant, PIRC(tc)



Resolving the Equivalent Mutant Problem 131

would be Non-Equivalent. Conversely, if Rtc = 33 %, the difference between Rtc

and FPRtc would not be statistically significant and PIRC(tc) would Equiva-
lent.

As discussed above, the first part of the PIR evaluation method alleviates
the impact of false positives for a single test case execution. However, because
of non-determinism, it’s also possible for PIRC(tc) to be a false positive. Typ-
ically, one has access to a test suite ts = {tc1, tc2, ...}. Each test case tci ∈ ts
would have been subjected to the first part of the PIR evaluation method to
obtain an Equivalent or Non-Equivalent classification TCClassifications =
{PIRC(tc1), P IRC(tc2), ...}. The second part of the PIR evaluation method
compares the proportion of Non-Equivalent to Equivalent classifications in
TCClassifications to a known false positive rate for TCClassifications for
the PIR under consideration using Pearsons χ2. This “known false positive
rate” can be determined using the same methods as above. The results of this
comparison is interpreted in the same way as in the first part of the evalua-
tion method; the resulting classification is the PIR’s final classification for the
mutant.

3.3 Applying IMT

Multiple IRs. In practice, one would typically leverage multiple IRs. Each IR
may classify the mutant differently. This should be interpreted as follows: The
mutant should be assumed to be non-equivalent if at least one IR classifies the
mutant as non-equivalent, and should be considered to be equivalent if all IRs
classify the mutant as equivalent.

Assumptions. IMT assumes that an IR is encoded with accurate information
about how Sys works. Unfortunately, this assumption may not hold if a real fault
is in the system or IRs. To reduce the impact of this assumption, we recommend
applying the IRs to Sys with a test suite. If any of the IRs indicate that the
Sys is non-equivalent, then the assumption doesn’t hold. In such cases, one can
either modify the system and/or IRs, or remove IRs until all IRs report that
Sys is equivalent. The same test suite should then be used for conducting IMT.

Constructing IRs. Let si and so denote the program’s input and output
respectively. One must use one’s domain knowledge to develop an intuition into
how si and so are related. si, so and this intuition form an IOR. Tools that
partially automate the exploration of relationships between inputs and outputs
may simplify this task [6]. One must then leverage one’s knowledge about the
SUT’s implementation details to identify execution trace behaviours that should
manifest in executions in which this IOR is satisfied.

UCov is a test case coverage adequacy assessment tool for regression testing
[3]. Like IMT, UCov leverages execution trace behaviours to achieve its objective.
However, these execution trace behaviours are used to assess the intent of a test
case i.e. program behaviours that should be executed by the test case, whilst



132 K. Patel and R.M. Hierons

such behaviours are used by IMT to assess the intent of the SUT i.e. program
behaviours that should manifest if the SUT has not been adversely affected by
the mutation. Given their similarities, some of UCov’s findings are relevant for
IMT. For example, the aforementioned knowledge has been found to be available
in the SUT’s documentation [3].

Automated program analytic tools like Program Slicing [8] and Invariant
Detection e.g. Daikon [9] can assist one in identifying useful execution trace
behaviours. These behaviours are the IDs of IOR. This process is repeated to
obtain multiple pairs 〈IORi, IDsi〉, where IORi is an IOR and IDsi is a set
of IDs that are associated with IORi. Finally, one can group multiple pairs
together, such that the IORs in these pairs have relationships. Identifying IORs
that are amenable to such a grouping can be a natural task, because such IORs
are typically highly related.

4 Experimental Set-Up

4.1 Subject Program

The subject program is a Genetic Algorithm for the Bin Packing Problem that
was developed by the author based on the design of Mladen Jankovic [10] with
the JAGA Genetic Algorithm API toolbox [18]. The subject program consists
of 1606 source lines of code (SLOC)2, 29 classes and 244 methods (average 8
per class). The subject was partly selected to enhance the representativeness
of the experiment and also minimise experimental bias. The former is achieved
because it is non-deterministic and has weak information flow strength [14] and
is thus susceptible to coincidental correctness. With regards to the latter, the
implementation involves multiple developers, most of which were not aware of
this research.

4.2 Interlocutory Relations

We used the same 48 IRs that were used in our previous work [19]. For a compre-
hensive list of these IRs, please see [19]. A real fault was present in the system,
so we tested the assumption outlined in Sect. 3.3. We found that the assumption
holds i.e. these IRs were not sensitive to the real fault. 42 IRs are Deterministic
and 6 are Probabilistic.

4.3 Mutants

MuJava [12] was used to generate 30 non-equivalent mutants. It was applied
to all classes that significantly contributed to the SUT’s core functionality. 11
interface classes (MuJava couldn’t produce mutants for these), 2 unused classes
and the test case input class were excluded. We also excluded 3 simple data
2 We used the “Code Lines” metric in the Understand program [22] to compute SLOC.

This metric ignores blank and comment lines.



Resolving the Equivalent Mutant Problem 133

classes and 2 abstract classes that stored a single object and only implemented
getter/setter methods and/or just exposed methods that this object already
has. For example, the simple data class may have an ArrayList ArrayObj and
a method remove(i), which simply calls ArrayObj.remove(i). Finally, a com-
parator class was also excluded. Equivalent mutants and obvious mutants (i.e.
mutants that resulted in system crashes or infinite loops) were also removed. We
also rejected mutations of faulty code. These mutants were classified as either
coincidentally correct or standard faults. Let S denote the system and M be
a mutant of S. ORACLE is an oracle that checks all of S’s output proper-
ties (listed below). This was achieved by using ORACLE on M ’s output. If
ORACLE passes, then the infected state didn’t propagate to the output; thus
M is coincidentally correct. We found that 15 were coincidentally correct and
15 were standard.

– Let DataSet be the set of items to be sorted into bins. The output O should
be a permutation of DataSet.

– O should contain at least one bin.
– O should not contain empty bins.
– O should not contain a bin that has more items than its capacity.
– O should not have a fitness that is greater than the maximum obtainable

fitness (Fitness Function Constant).

Refactoring augments source code structure, while retaining behaviour; thus
refactorings are effectively equivalent mutants. AutoRefactor [20] was used to
generate 30 equivalent mutants.

In summary, this experiment leverages 60 mutants in total, 30 non-equivalent
and 30 equivalent.

4.4 Test Cases

We use the same test suite that was used in our previous work [19]. The test
suite consists of 100 test cases that were generated by Random Testing.

5 Results and Discussion

This section reports an empirical study that measures the accuracy of IMT for
non-equivalent and equivalent mutants.

5.1 Non-equivalent Mutants

IMT correctly classified 28/30 non-equivalent mutants. This suggests that IMT’s
classification accuracy can be high for non-equivalent mutants. Since the SUT
is non-deterministic, this also demonstrates that the technique’s classification
accuracy for these mutants was not hampered by non-determinism. Specifically,
15/15 and 13/15 standard and coincidentally correct mutants were correctly



134 K. Patel and R.M. Hierons

Fig. 1. Number of mutants that were correctly classified by Deterministic IRs, broken
down by mutant type

classified. The difference in performance for these mutant types is not significant
(Fisher’s Exact Test: p > 0.05). This indicates that IMT can be effective for
standard and coincidentally correct faults.

Recall that there are two types of IRs - Deterministic and Probabilistic IRs.
These IRs are distinguished by the types of logic they are applied to — deter-
ministic IRs are applied to aspects of the system that behave deterministically,
whilst probabilistic IRs are applied to non-deterministic aspects of the system.
To that end, each approach has different evaluation methods; the difference
being, Probabilistic IRs leverage statistical techniques to factor out the effect
of false positives that arise due to non-determinism. We therefore decided to
further break down the analysis by these IR types.

Deterministic IRs correctly classified 23/30 (13/15 standard and 10/15 coin-
cidentally correct) non-equivalent mutants. The difference in the Deterministic
IR’s performance for standard and coincidentally correct mutants is not statis-
tically significant (Fisher’s Exact Test: p > 0.05). This demonstrates that one
can leverage these IRs in contexts where coincidental correctness is present, or
absent. Each bar in Fig. 1 represents a Deterministic IR that correctly classified
a mutant. The height of the bar denotes the number of correctly classified non-
equivalent mutants. Each bar also represents the proportion of mutants that were
standard or coincidentally correct. Figure 1 demonstrates that some IRs are more
accurate than others for different mutants. For example, the IR represented by
the third bar correctly classifies standard mutants, but not coincidentally correct
mutants, and the converse is true for the IR represented by the second bar.

19/30 (14/15 standard and 5/15 coincidentally correct) non-equivalent
mutants were correctly classified by Probabilistic IRs. A comparison of the per-
formance of Deterministic and Probabilistic IRs for standard faults revealed that
the difference was not statistically significant (Fisher’s Exact Test: p > 0.05),
but was for coincidentally correct faults (Fisher’s Exact Test: p < 0.05). This
suggests that Probabilistic IRs may be less effective in situations where coinci-
dental correctness is present. However, we observed that 3 of the coincidentally



Resolving the Equivalent Mutant Problem 135

Fig. 2. Number of mutants that were correctly classified by Probabilistic IRs, broken
down by mutant type

correct faults found by IMT were uniquely identified by Probabilistic IRs, which
means that they can add value in situations where coincidental correctness is
present. Figure 2 presents the same information as in Fig. 1, but for Probabilis-
tic IRs; it shows the breakdown of the results; similar observations can be made
to those in Fig. 1.

As discussed above, all of the IRs collectively, correctly classified 28/30 non-
equivalent mutants. Deterministic IRs and Probabilistic IRs correctly classified
23 and 19 mutants respectively, which means that neither IR type correctly
classified all of the mutants on their own. This demonstrates that both IR types
can add value.

Interestingly, these results also suggest that there was a substantial degree
of overlap in terms of the number of mutants that were correctly classi-
fied by the IRs. We therefore decided to perform a subsumption analysis
to determine the smallest number of IRs that would be required to obtain
the same results. We found that only 12 were necessary: AverageFitnessGen-
eration, ChoosingPairsOfParentsComposition, CreateRandomIndividualNew-
Bins, CrossoverRate, DecidingWhoShouldMutateFineGrained, GAController,
Mutate-Individual, PartitionChild, ReplacementOperationIntegrity, ShouldUse-
NewIndividual, TerminateGA, TournamentComposition. This shows that the
technique can be effective with relatively few IRs.

5.2 Equivalent Mutants

Promisingly, IMT correctly classified 30/30 equivalent mutants. Since Deter-
ministic IRs don’t check non-deterministic aspects of the system, they aren’t
susceptible to false positives, assuming that the assumption detailed in Sect. 3.3
holds. It’s therefore not surprising that they did not misclassify any equivalent
mutants. Since Probabilistic IRs do check such behaviours, false positives may
be possible. To that end, we extended the evaluation method used by Proba-
bilistic IRs, as described in Sect. 3.2, to curtail the incidence of false positives.



136 K. Patel and R.M. Hierons

These results illustrate that this evaluation method was successful in achieving
this goal.

6 Threats to Validity

There are several threats to validity. We attempted to address these where pos-
sible e.g. randomisation was used throughout the experiment to reduce experi-
mental bias.

Firstly, the presence of real faults may confound the results i.e. an IR may
assume that misbehaviour emanating from a real fault actually originated from
the mutant process. To mitigated the impact of real faults on the experiment, we
only used IRs that were not sensitive to the real fault and excluded mutations
of the real fault.

Each IR is associated with a logging function. These logging functions cap-
ture data about the execution trace, during the execution of the SUT. Some
mutants can alter the SUT’s control flow. These alterations can cause the log-
ging functions to crash. In such situations, the IR has effectively recognised that
the SUT’s control flow is incorrect and has thus correctly classified the non-
equivalent mutant. Our experiment did not distinguish between these crashes
and system crashes, and so they were conservatively removed. Therefore, the
experimental results presented in this paper for non-equivalent mutants under-
estimate the technique’s effectiveness. However, we do not believe that this had
a significant impact on the results, since the technique already correctly classifies
most of the mutants.

There is also a threat to generalisability; we only used one subject pro-
gram. However, the subject program had the operating environment that we
were studying i.e. non-determinism and a high propensity for coincidental cor-
rectness, and was therefore suitable for assessing our research objectives. As a
part of ongoing research, we are currently applying IMT to four other subject
programs; the preliminary results are promising, see Sect. 7.

Finally, the results demonstrated that different IRs obtained different levels
of effectiveness. Thus, the effectiveness of the technique may vary considerably,
depending on one’s choice of IRs. This may be a threat to repeatability.

7 Conclusion

In this paper, we proposed Interlocutory Mutation Testing, the first mutant
classification technique that can be applied in the presence of coincidental cor-
rectness and/or non-determinism. The technique correctly classified 93.33 % of
the non-equivalent mutants and 100 % of the equivalent mutants, which sug-
gests that the technique is capable of producing highly accurate results. We also
observed that different IRs are more effective than others for classifying different
faults, which suggests that using a diverse range of IRs can be valuable.

As mentioned in Sect. 6, one of the limitations of our study is that we only
considered one subject program. As a part of ongoing research, we are currently



Resolving the Equivalent Mutant Problem 137

conducting IMT on four other subject programs. A brief summary of the pre-
liminary results are as follows. We applied IMT to Dijkstra’s Algorithm. IMT
obtained a non-equivalent mutant classification accuracy of 93.33 %, and 100 %
mutant classification accuracy for equivalent mutants; 30 non-equivalent and 30
equivalent mutants were used. 34 mutants, which include a mixture of equiva-
lent and non-equivalent mutants, were also generated across Bubble Sort, Binary
Search and Knuth-Morris-Pratt. All of these mutants were correctly classified.
It is our hope that these experiments will reduce the impact of this limitation.

Another limitation of our work is the effort required to apply the technique.
Our experiment leveraged 48 IRs, which may be unacceptable in some cases.
In Sect. 5.1, we observed that a small proportion (12) of the IRs subsumed all
of the other IRs. This demonstrates that the technique can be applied with
relatively few IRs, which may be more acceptable in the aforementioned cases,
if one restricts their development efforts to such IRs. Unfortunately, the results
did not indicate how one might do this. We would therefore like to investigate
this in future work.

In Sect. 3.3, we detailed the partially automated process that is used to
develop IRs. Increasing the degrees of automation further will also reduce the
effort required to use the technique and so can reduce the impact of the limitation
above. Thus, for future work, we would like to explore methods of automating
the development of IRs further.

In the future, we would also like to assess the impact that IMT has on one’s
mutant classification productivity. This would involve determining the costs that
are associated with developing IRs, and the cost savings that can be obtained
from leveraging the technique. As a part of ongoing work, we are currently
investigating the latter.

References

1. Aichernig, B.K., Jobstl, E.: Efficient refinement checking for model-based mutation
testing. In: International Conference on Quality Software (QSIC), pp. 21–30. IEEE,
Xi’an (2012)

2. Androutsopoulos, K., Clark, D., Dan, H., Hierons, R.M., Harman, M.: An analysis
of the relationship between conditional entropy and failed error propagation in
software testing. In: Proceedings of the 36th International Conference on Software
Engineering, pp. 573–583. ACM, NY (2014)

3. Assi, R.A., Masri, W., Zaraket, F.: UCov: a user-defined coverage criterion for test
case intent verification. Softw. Test. Verif. Reliab. 26(6), 1–32 (2016)

4. Budd, T.A., Angluin, D.: Two notions of correctness and their relation to testing.
Acta Informatica 18(1), 31–45 (1982)

5. Carver, R.: Mutation-based testing of concurrent programs. In: Proceedings of
IEEE International Test Conference, pp. 845–853. IEEE, USA (1993)

6. Chen, T.Y., Poon, P.L., Xie, X.: METRIC: METamorphic relation identification
based on the category-choice framework. J. Syst. Softw. 116, 177–190 (2016)

7. Gligoric, M., Jagannath, V., Marinov, D.: MuTMuT: efficient exploration for muta-
tion testing of multithreaded code. In: Proceedings of the Third International Con-
ference on Software Testing, Verification and Validation, pp. 55–64. IEEE Com-
puter Society, USA (2010)



138 K. Patel and R.M. Hierons

8. Harman, M., Hierons, R.M.: An overview of program slicing. Softw. Focus 2(3),
85–92 (2001)

9. Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: A comprehensive survey of trends
in oracles for software testing. Technical report TR-09-03, University of Sheffield
(2013)

10. Jankovic, M.: Genetic Algorithm for Bin Packing Problem (2013). http://www.
codeproject.com/Articles/633133/ga-bin-packing

11. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

12. Ma, Y.S., Kwon, Y.R., Offutt, J., Li, N.: Mujava (2013). http://cs.gmu.edu/
∼offutt/mujava/

13. Masri, W., Assi, R.: Cleansing test suites from coincidental correctness to enhance
fault-localization. In: Third International Conference on Software Testing, Verifi-
cation and Validation (ICST), pp. 165–174. IEEE, Paris (2010)

14. Masri, W., Assi, R.A.: Prevalence of coincidental correctness and mitigation of
its impact on fault localization. ACM Trans. Softw. Eng. Methodol, 23(1), 1–28
(2014)

15. Offutt, A.J.: Investigations of the software testing coupling effect. ACM Trans.
Softw. Eng. Methodol. 1(1), 5–20 (1992)

16. Offutt, A.J., Lee, S.D.: How strong is weak mutation? In: Proceedings of the Sym-
posium on Testing, Analysis, and Verification, pp. 200–213. ACM, NY (1991)

17. Papadakis, M., Jia, Y., Harman, M., Traon, Y.L.: Trivial compiler equivalence: a
large scale empirical study of a simple, fast and effective equivalent mutant detec-
tion technique. In: Proceedings of the 37th International Conference on Software
Engineering, pp. 936–946. IEEE, USA (2015)

18. Paperin, G.: JAGA - Java API for Genetic Algorithms (2004). http://www.jaga.
org/index.html

19. Patel, K., Hierons, R.M.: Interlocutory Testing: Combating Coincidental Correct-
ness in Testing (2015). http://people.brunel.ac.uk/csstrmh/Intt/IT.pdf

20. Rouvignac, J.N.: AutoRefactor (2015). https://marketplace.eclipse.org/content/
autorefactor

21. Sadi, M.S., Kuo, F.C., Ho, J.W.K., Charleston, M.A., Chen, T.Y.: Verification of
phylogenetic inference programs using metamorphic testing. J. Bioinf. Comput.
Biol. 9(6), 729–747 (2011)

22. Scitools: Understand static code analysis tool (2016). https://scitools.com/
23. Voas, J.: PIE: a dynamic failure-based technique. IEEE Trans. Softw. Eng. 18(8),

717–727 (1992)
24. Yao, X., Harman, M., Jia, Y.: A study of equivalent and stubborn mutation opera-

tors using human analysis of equivalence. In: Proceedings of the 36th International
Conference on Software Engineering, pp. 919–930. ACM, NY (2014)

http://www.codeproject.com/Articles/633133/ga-bin-packing
http://www.codeproject.com/Articles/633133/ga-bin-packing
http://cs.gmu.edu/~offutt/mujava/
http://cs.gmu.edu/~offutt/mujava/
http://www.jaga.org/index.html
http://www.jaga.org/index.html
http://people.brunel.ac.uk/csstrmh/Intt/IT.pdf
https://marketplace.eclipse.org/content/autorefactor
https://marketplace.eclipse.org/content/autorefactor
https://scitools.com/


On-the-Fly Construction of Adaptive Checking
Sequences for Testing Deterministic
Implementations of Nondeterministic

Specifications

Nina Yevtushenko1, Khaled El-Fakih2(&), and Anton Ermakov1

1 Tomsk State University, Tomsk, Russia
nyevtush@gmail.com, antonermak@inbox.ru

2 American University of Sharjah, Sharjah, UAE
kelfakih@aus.edu

Abstract. A method is proposed for deriving an adaptive checking sequence
for a given deterministic implementation of a nondeterministic Finite State
Machine (FSM) specification with respect to the reduction relation. The
implementation is non-initialized, i.e., there is no reliable reset input. In order to
obtain a sequence of reasonable length, in the proposed technique, we consider
specifications with adaptive distinguishing test cases and adaptive transfer
sequences. In fact, we show how under these considerations we can on-the-fly
derive a checking sequence where the head part establishes the one-to-one
correspondence between states of the implementation and the specification and
if established the second part of the sequence is constructed for checking the
one-to-one correspondence between transitions of the implementation and a
submachine of the specification FSM. The latter construction appropriately
utilizes information from the first part to reach and check intended transitions.

Keywords: Nondeterministic finite state machines � Reduction relation � Fault
model � Test derivation � Distinguishing test case � Definitely reachable states �
Adaptive sequence

1 Introduction

Finite State Machine (FSM) based test derivation is widely used when deriving con-
formance tests in many application domains such as sequential circuits, communication
protocols, web-services, etc. There are many approaches for FSM-based test derivation
that are summarized in many surveys such as [2, 4, 20, 24]. In many approaches, such
as in the W-method [3] and its many derivatives, both the specification and imple-
mentation FSMs are assumed to be initialized and thus, tests (input sequences or traces)
are derived from a given initialized specification FSM; these tests are concatenated by a
reliable reset that brings the machine to the initial state. Many other approaches do not
rely on the existence of such possibly expensive resets and derive so-called checking
sequences consisting of one test without resets. The reader may refer to [7–13] for
some approaches and summary of existing work on deriving and reducing length of

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 139–152, 2016.
DOI: 10.1007/978-3-319-47443-4_9



checking sequences for deterministic FSMs. In general, while constructing a checking
sequence for deterministic FSMs, as there are no resets, one may rely on the so-called
synchronizing (or homing) sequence that takes the FSM from any state to the known
state in addition to an input sequence that can distinguish two different states of the
machine.

Nowadays, design and analysis of non-deterministic systems is capturing a lot of
attention. Nondeterminism can occur due to several reasons, such as limited observ-
ability, abstraction, etc. Accordingly, in this paper, we consider the derivation of
checking sequences for observable nondeterministic FSMs. A nondeterministic
machine is observable if for each state and input the machine can have many outgoing
transitions under the input as long as different outputs are produced at these transitions.
Otherwise, the machine is non-observable. We consider observable machines as it is
known that any non-observable specification machine can be transformed into an
observable one with the same behavior.

Petrenko et al. [14] proposed a method for deriving a checking sequence for a
complete nondeterministic FSM with respect to the equivalence relation under appro-
priate assumptions about the specification FSM and the fault domain. The specification
FSM has to have a distinguishing input sequence for which the sets of output responses
at any two different states do not coincide. Since an implementation under test (IUT) can
be nondeterministic, the authors also rely on the all-weather conditions assumption. In
[21] the authors extended the work considering the derivation of a checking sequence
with respect to the reduction relation. Resetting is still used yet only in one phase of the
construction approach. Ermakov [6] presented a method for deriving an adaptive
checking sequence with respect to the reduction relation under the assumption that the
specification has a separating sequence, i.e., an input sequence for which the sets of
output responses at any two different states are disjoint. The specification FSM has also
to be deterministically connected, i.e., each state is deterministically reachable from any
other state while an IUT is a complete deterministic FSM. A checking sequence is
adaptive if the selection of the next input to be applied to an IUT depends on the outputs
produced by the IUT to previously applied inputs. As in the other above approaches, the
approach given in [6] also uses resetting. In this paper, we reduce the limitation con-
sidered in the above papers about the use of resets. Moreover, differently from [6] we
show how to effectively use adaptive transfer and distinguishing sequences when
deriving an adaptive checking sequence as such adaptive sequences can exist when there
are no preset ones; in addition, such adaptive sequences can be shorter [1, 17, 19]. More
precisely, we construct an adaptive checking sequence from a given non-deterministic
observable FSM against a given complete deterministic IUT assuming that the speci-
fication FSM has adaptive transfer sequences as well as an adaptive distinguishing
sequence (a distinguishing test case) of reasonable length. The existence of an adaptive
transfer sequences means that every state of the machine is definitely reachable from any
other state. We show that in this case, when testing with respect to the reduction relation,
each state of the specification FSM is required to be implemented in an IUT. As usual,
we also assume that the behavior of the IUT is not known, we only know that the
number of states of the IUT does not exceed that of the specification. Under the above
assumptions, an IUT is a reduction of the specification machine if and only if the IUT is
isomorphic to a complete submachine of the specification FSM and thus, when testing it

140 N. Yevtushenko et al.



is enough to establish the one-to-one correspondence between states and transitions of
the IUT and states and transitions of an appropriate submachine in the specification
FSM. In other words, each transition of the IUT has to be traversed and an adaptive
distinguishing sequence has to be applied for verifying the final state of the transition.
This approach allows us to derive checking sequences of reasonable length when an
adaptive distinguishing sequence has polynomial length with respect to the number of
states of the specification FSM.

This paper is organized as followed. Section 2 includes preliminaries with related
definitions. Section 3 includes the considered fault model and Sect. 4 includes the
checking sequence construction method with related propositions and a simple appli-
cation example. Section 5 concludes the paper.

2 Preliminaries

A finite state machine (FSM), or simply a machine, is a 4-tuple S = 〈S, I, O, hS〉, where
S is a finite nonempty set of states, I and O are finite input and output alphabets, and hS
� S × I × O × S is a (behavior) transition relation. FSM S is nondeterministic if for
some pair (s, i) 2 S × I there can exist several pairs (o, s′) 2 O × S such that (s, i, o, s′)
2 hS. FSM S is complete if for each pair (s, i) 2 S × I there exists (o, s′) 2 O × S such
that (s, i, o, s′) 2 hS. FSM S is observable if for each two transitions (s, i, o, s1), (s, i, o,
s2) 2 hS it holds that s1 = s2. FSM S is initialized if it has the designated initial state s1,
written S/s1. Thus, an initialized FSM is a 5-tuple 〈S, I, O, h, s1〉. In the following, we
consider observable and complete FSMs if the contrary is not explicitly stated.

A trace of S at state s is a sequence of input/output pairs of consecutive transitions
starting from state s. Given a trace i1o1 … ikok at state s, the input projection i1 … ik of
the trace is a defined input sequence at state s. For an observable nondeterministic
FSM, if γ = i1o1 … ikok is a trace at a state s, then there exists a unique sequence of
consecutive transitions (s, i1, o1, s1)(s1, i2, o2, s2)…(sk-1, ik, ok, sk). As usual, for state
s and a sequence γ 2 (IO)* of input/output pairs, the γ-successor of state s is the set of
all states that are reached from s by trace γ. If γ is not a trace at state s then the
γ-successor of state s is empty or we simply say that the γ-successor of state s does not
exist. For an observable FSM S, for any string γ 2 (IO)*, the cardinality of the
γ-successor of state s is at most one. Given a subset S′ of states, the γ-successor of S′ is
the union of γ-successors over all states of the set S′.

FSM S is single-input if at each state there is at most one defined input at the state,
i.e., for each two transitions (s, i1, o1, s1), (s, i2, o2, s2) 2 hS it holds that i1 = i2, and S is
output-complete if for each pair (s, i) 2 S × I such that the input i is defined at state s,
there exists a transition from s with i for every output in O. An initialized FSM S is
acyclic if the FSM transition diagram has no cycles. An initialized FSM S is (initially)
connected if each state is reachable from the initial state. Given an input alphabet I and
an output alphabet O, a test case TC(I, O) is an initially connected single-input
output-complete observable initialized FSM T = (T, I, O, hT, t1) with an acyclic
transition graph [22]. Given a complete FSM S over alphabets I and O, a test case TC(I,
O) represents an adaptive experiment with the FSM S [15].

On-the-Fly Construction of Adaptive Checking Sequences 141



If | I | > 1 then a test case is a partial FSM. A state t 2 T is a deadlock state of the
FSM T if there are no defined inputs at this state. In general, given a test case T, the
length (height) of the test case T is defined as the length of a longest trace from the
initial state to a deadlock state of T and it specifies the length of the longest input
sequence that can be applied to an FSM S during the experiment. A trace from the
initial state to a deadlock state is a complete trace of a test case [23]. As usual, for
complexity reasons, one is interested in deriving a test case with minimal length. A test
case T is a distinguishing test case (DTC) for an FSM S if for every trace γ of T from
the initial state to a deadlock state, γ is trace at most at one state of S. Sometimes, a
distinguishing test case is called an adaptive distinguishing sequence.

Consider FSM S in Fig. 1a. Using the approach proposed in [18] a (adaptive)
distinguishing test case can be constructed for FSM S (Fig. 2).

a/0 a/0
1 2

4

c/1

a/1

a,c/1

a,c/0

c/1

c/1a/1

b/1

a/0

3
b/0

b/1

b/0

A B

D

c/1

a/1

c/1

c/1

b/0

c/1a/1

a/0

C

b/0

b/1

b/1

Fig. 1. (a) Specification FSM S (b) Implementation FSM P

{1,2,3,4}

{2,3}

{1,3}

{1,2}

b/0 b/1

b/0 b/1
a/0

a/1

b/0 b/1
{3} {2}

{3} {1}

{2}

{1 , 2 , 3 , 4 }

{ 2 ,  3 }

{ 1 ,   3 }

{ 1  ,  2 }

b/0
b/1

b/0 b/1
a/0

a/1

b/0 b/1
{3} {2}

{3} {1}

{2}

 4  :  3  1  :  2 

3 4
1 2  :  1 

1
2

initial state
 1 :  2 : 3 : 4 

reached state

(a)

(b)

Fig. 2. (a) The distinguishing test case (b) The test case for (a) where source states are indicated

142 N. Yevtushenko et al.



Given a complete observable FSM S = (S, I, O, hS), state s′ 2 S is definitely-
reachable (def-reachable) from state s 2 S if there exists a test case Ts,s′ over I and O,
initialized with the singleton {s}, and for every trace γ of Ts,s′ from the initial state to a
deadlock state, the γ-successor of state s is either the empty set or {s′}.

We hereafter refer to such a test case Ts,s′ as a def-transfer test case from state s to
state s′ or as an adaptive def-transfer sequence.

In fact, a def-transfer test case is defined in [23] as an extension of a deterministic
(d-)transfer sequence for states s and s′. All the traces of Ts,s′ take the FSM S from state
s to state s′. When testing with respect to the reduction relation not each state of the
specification FSM, except for the initial state, is required to be implemented in an
implementation FSM P. However, if there exists a def-transfer test case Ts,s′ and state
s is implemented in the reduction P of S then according to [23], state s′ must be
implemented in P.

In [23], necessary and sufficient conditions were established to check if state s′ 2
S is definitely reachable from the initial state of the initialized FSM. Accordingly, when
checking whether state s′ is definitely reachable form state s, the initialized FSM S/
s can be considered. Moreover, in [23] it is shown how a def-transfer test case Ts,s′ can
be derived such that the length of Ts,s′ (if it exists) does not exceed the number of states
of FSM S.

By direct inspection, one can assure that for every two different states s, s′ of
FSM S (Fig. 1a) there exists a def-transfer test case Ts, s′. As an example, consider T1,2

in Fig. 3. If an IUT replies with 1 to the applied input a at state 1 then we know that the
next state of the specification is state 2. If the output 0 is produced by the IUT then the
specification reaches state 3 and we apply the input a again. If the IUT replies with 0 to
the applied input a then we know that the next state of the specification is state 2. If the
output 1 is produced by the IUT then the specification reaches state 4 and we apply an
input b in order to reach state 2.

Consider the FSM in Fig. 1a. For states 2 and 1, 3 and 1, and 4 and 1, there exist
deterministic transfer sequences, namely, state 1 is d-reachable from 2 by input
sequence a, state 3 is d-reachable from 1 by input sequence c b a and state 4 is d-
reachable from 1 by input sequence b a. State 2 is d-reachable from 3 and 4 by input
sequences c b and b correspondingly, state 3 is d-reachable from 2 and 4 by input
sequences b a and a, while state 4 is d-reachable from 2 and 3 by input sequence b. By
direct inspection, one can assure that T1,3 and T1,4 can be easily derived from the
machine in Fig. 3 as states 3 and 4 are deterministically reachable from state 2.

In order to check if there exists a distinguishing test case for the specification
FSM S, we can use the procedures proposed in [16, 17]. If a general procedure is used
then the complexity can become exponential w.r.t. the number of FSM states [5]. The
complexity of the procedure proposed in [16] is polynomial but it can be applied only
for so-called merging free FSMs. A complete observable FSM is merging free if for
each two different states s1 and s2, every input i and every output o, the non-empty
i/o successors of s1 and s2 do not coincide. For a merging free FSM, a distinguishing
test case exists if and only if a distinguishing test case exists for each pair of different

On-the-Fly Construction of Adaptive Checking Sequences 143



state of the FSM; the latter can be checked in polynomial time and the length of such
test case is at most n(n − 1)/2 if the FSM has n states. Then a distinguishing test case
for the FSM is derived step by step starting from a single pair and adding a new state
for the set of initial states at each step. In [16], it is shown that the length of such test
case is O(n3). The class of merging-free FSMs is big enough; at least it contains many
deterministic FSMs which are used in practical applications [9].

Hereafter we use S to denote a complete observable nondeterministic specification
machine while P denotes a complete deterministic IUT.

Given complete FSMs S and P, state p of the FSM P is a reduction of state s of the
FSM S, written p ≤ s, if the set of traces of P at state p is a subset of that of S at state s;
otherwise, p is not a reduction of state s, written p ≰ s. FSM P is a reduction of FSM S
if for each state p there exists state s such that p ≤ s.

Given complete FSM S, two different states s1 and s2 and an input sequence α, α is
a separating sequence of states s1 and s2 if the sets out(s1, α) and out(s2, α) are disjoint.
If α separates each pair of different states then α is a separating sequence for FSM S.
For non-deterministic observable machines the tight upper bound on the length of a
separating sequence of two states is known to be exponential with respect to number of
FSM states [25] while for deterministic FSMs the length of an adaptive distinguishing
sequence (a distinguishing test case) is polynomial [26]. Moreover, if there exists a
separating sequence then there exists a distinguishing test case but the opposite is not
necessarily true. When an implementation is deterministic then the observation of
n different replies to a separating sequence immediately means that the IUT has at least
n states. For recognizing states of an implementation, a separating sequence sometimes
can be replaced by state identifiers. An input sequence α is a state identifier of state s of
FSM S if α is a separating sequence for each pair (s, s′), s′ ≠ s. As an example, the b b is
a state identifier for states 3 and 4 of the FSM in Fig. 1a and b a b is a state identifier for
states 1 and 2.

Given a test case TC of a complete observable specification S, a trace that takes TC
from the initial state to a deadlock state is a complete trace; the set CompleteTraces(TC)

a/1a/0

a/0 a/1

b/0

1

23

2

2

4

Fig. 3. A def-transfer test case for states 1 and 2 of the FSM in Fig. 1a

144 N. Yevtushenko et al.



is the set of all complete traces of TC. If there exists a distinguishing test case then any
two different states s1 and s2 of FSM S are r-distinguishable and thus, any state of any
complete FSM over alphabets I and O is not a reduction of two different states of
FSM S [22]. The set of input projections of all complete traces of a distinguishing test
case sometimes is called a distinguishing set. In [22], it is shown, that given a state p of
a complete FSM over alphabets I and O, for any two states s1 and s2 of FSM S there
always exists an input sequence of the distinguishing set such that the set of output
responses of P at state p is not a subset of that at both states s1 and s2. Moreover, given
a reduction P of FSM S, not each state of S has to be implemented in P. However,
according to Proposition 1, if S has both a distinguishing test case and a def-transfer test
case for each pair of different states then each state of S has to be implemented in P and
there is the one-to-one correspondence between states and transitions of P and the
corresponding states and transitions of an appropriate submachine of S. The latter
allows the construction of shorter tests and reduces the efforts of checking if a given
FSM P is a reduction of such specification FSM.

Two FSMs over the same input and output alphabets are isomorphic if there exists
one-to-one correspondence between their states and transitions, i.e., if there exists
one-to-one mapping f: S → P such that for any input i and any state s the 4-tuple (s, i,
o, s′) 2 hs if and only if (f (s), i, o, f (s′)) 2 hP.

Proposition 1. Given a complete observable FSM S with n states, let S have a dis-
tinguishing test case and each pair of different states s and s′ of S have a def-transfer test
case Ts, s′. A complete observable FSM P that has at most n states is a reduction of S if
and only if P is isomorphic to a submachine of S.

Proof. If P is isomorphic to a submachine of S then P is a reduction of S.
Let now P be a reduction of S, i.e., for each state p of P there exists state s of S such

that p ≤ s. When there exists a distinguishing test case DTC for S, states of the FSM S
are r-distinguishable and thus, any state of any complete FSM over alphabets I and O is
not a reduction of two different states of FSM S [23]. Moreover, if p ≤ s then a
distinguishing test case DTC has a trace at state p of P that is not a trace at any other
state of S. On the other hand, let state s of FSM S be implemented in P as state p ≤
s. Any state s′ is def-reachable from s and thus also is implemented in P as p′ ≤ s′.
Therefore, each state of S is implemented in P and since P has at most n states, each
state of S is implemented as a unique P state. Correspondingly, we can establish
one-to-one correspondence FDTC: S → P between states of FSMs S and P according to
the given distinguishing test case.

Moreover, since P is a reduction of S the following holds. If there is a transition p –

i/o - p′ where p = FDTC(s) and p′ = FDTC(s′) then S has a transition s – i/o - s′. □

Let S have a distinguishing test case DTC, each pair of different states s and s′ of S
have a def-transfer test case Ts, s′ and the number of states of FSM P does not exceed
that of S. FSM P is DTC-compatible with S if there exists one-to-one correspondence
F: S → P such that for each state s 2 S it holds that the intersection of Tr(S/s) \
Tr(P/p) \ CompleteTraces(DTC) is not empty if and only if p = F(s).

On-the-Fly Construction of Adaptive Checking Sequences 145



Proposition 2. Given the specification FSM S that has a distinguishing test case DTC,
let a deterministic complete FSM P be DTC-compatible with S, each pair of different
states s and s′ of S have a def-transfer test case Ts, s′ and the number of states of FSM P
does not exceed that of S. For each state p of P, the distinguishing test case DTC has a
complete trace α/β that is a trace at state p; moreover, α is a state identifier of state p in P.

Proof. In fact, if there exists one-to-one correspondence between states of S and P
according to the distinguishing test case DTC, then for each two states s and s′, s′ ≠ s,
there exists a prefix of an input sequence of some complete trace α/β of DTC such that
output responses at corresponding states p = F(s) and p′ = F(s′) are different. As DTC is
a distinguishing test case of S and FSM P is complete and deterministic, the latter means
that a corresponding input projection of trace α/β is a state identifier of state p. □

3 Fault Model for Deriving an Adaptive Checking Sequence

In FSM-based testing, it is assumed that the specification FSM describes the reference
behavior while the fault domain FD contains each possible implementation FSM of the
specification. In our case, the specification FSM S is complete and observable,
moreover, S has a distinguishing test case and there exists a def-transfer test case for
each pair of different states of S. The conformance relation is the reduction relation
while any IUT of the FD is complete and deterministic and the number of its states does
not exceed that of the specification FSM. In other words, we implicitly assume that the
nondeterminism of the specification is implied by the optionality where a designer
selects a better option according to some criteria. We do not rely on machines for
having a reset; moreover, if the machines have a reset we still check if it is implemented
correctly.

An implementation P conforms to the specification S if P is a reduction of S;
otherwise, P is a nonconforming implementation. According to Proposition 1 the
former means that P is isomorphic to some complete submachine of S.

An adaptive sequence is an input sequence when the next input of the sequence is
selected based on the output of the IUT to the previous inputs. In fact, an adaptive
checking sequence is a test case; however, the total length of this test case is big
enough and for this reason, we do not talk about the complete test case and usually
consider only a part of it that is appropriate for the implementation at hand. Corre-
spondingly, similar to [23], we propose a technique for testing an IUT P on-the-fly but
with a single input sequence; the algorithm yields the verdict pass if P is a reduction of
a given specification FSM S and the verdict fail if P is not a reduction of S. Our
proposed technique has two procedures. The former checks if P has the same number
of states as S and establishes, based on a distinguishing test case, the one-to-one
correspondence between the states of P and S if such a correspondence exists. We
underline that when such correspondence can be established then an appropriate trace
of the distinguishing test case is identified as a state identifier of the corresponding state
in P (Proposition 2). The second procedure checks that there is one-to-one corre-
spondence between the transitions of P and an appropriate submachine of S.

146 N. Yevtushenko et al.



4 Deriving an Adaptive Checking Sequence

This section includes two procedures for on-the-fly constructing a checking sequence
for a given IUT P from the specification FSM S with respect to the reduction relation.
Given a distinguishing case DTC for the FSM S, Procedure 1 returns the verdict fail if
P is not DTC-compatible with S; otherwise, it computes the set “state_identifier”. For
each state s of S, this set includes the trace of DTC executed by the IUT at the state of P
corresponding to s and it also includes the state of S reached after this trace. Then
Procedure 2 starting from information obtained from Procedure 1 continues deriving
the checking sequence where it focuses on checking the one-to-one correspondence
between transitions of P and some submachine of S.

As an application example of Procedure 1, consider the implementation FSM P in
Fig. 1b and assume that at the beginning of testing P is at state C. After applying DTC
(in Fig. 2a) we observe a trace b b/0 0 which is a trace of state 3 of S. Accordingly,
s = s1 = 3, σ = γ. After applying DTC again (at Step 1), we observe η = b b/0 0 which
is a trace of state C of P. Thus, σ becomes b b b b/0 0 0 0, s2 = 3, s′ = 3 as the starting
state of S where η is a trace of DTC, and the tuple <3, b b/0 0, 3> is added to the
(initially empty) set “state_identifier”, s = 3, γ = η = b b/0 0, and then we go to Step 2
as the tuple <3, b b/0 0, 3> is in “state_identifier”.

Let snew = 4, then s = 4, we then apply the transfer sequence c, observe 1, and thus
have η = c/1. Then after applying the b b of DTC to P, we observe b b/0 1. As σ = b b
b b c b b/0 0 0 0 1 0 1 is a trace at s1, then we go back to Step 1 where we apply b a of
DTC and observe 1 0, then s2 becomes 1, s′ = 2, and we add the tuple <4, b b/0 1, 2> to
“state_identifier”. Similarly, afterwards, s = s′ = 2, γ: = η = b a, at Step 1, we apply b
a b of DTC, the trace b a b/1 1 1 is observed and the tuple <2, b a b/1 0 1, 1> is added
to the set “state_identifier”.

Then, at Step 2, snew = s = 1, after applying T2,1 (input sequence a) we observe 0
and then after applying again the input sequences b a followed by b b of DTC the traces
b a/1 1 followed by b b/1 1 are observed and accordingly the tuple <1, b a /1 1, 2> is
added to “state_identifier”. We stop as the set “state_identifier” is complete and the
specification FSM reaches state 2 after the observed trace. Table 1 represents the set
“state_identifier”.

Table 1. The set “state_identifier” for the FSM in Fig. 1b according to the distinguishing test
case in Fig. 2.

Current state of S
(corresponding state in IUT)

State
identifier

Output
response

Next state of S
(corresponding state in IUT)

1 (A) b a 1 1 2 (B)
2 (B) b a b 1 0 1 1 (A)
3 (C) b b 0 0 3 (C)
4 (D) b b 0 1 2 (B)

On-the-Fly Construction of Adaptive Checking Sequences 147



According to Proposition 1, if P is a reduction of S then each state p of P has to
have a corresponding state s in S such that the set of complete traces of DTC executed
at state s has a trace executed at state p, i.e., the following proposition holds.

148 N. Yevtushenko et al.



Proposition 3. If a trace σ observed when executing Procedure 1 is a trace of the
specification FSM S, i.e., Procedure 1 does not return the verdict fail, then the IUT P is
DTC-compatible with S. □

If the verdict fail is produced by Procedure 1 then the IUT P is not a reduction of S.
Otherwise, P is DTC-compatible with S and for each state s of S the set “state_iden-
tifier” includes the trace of DTC executed by the IUT at the state corresponding to s and
it also includes the state of S reached after this trace.

Moreover, if P is DTC-compatible with S, then due to Proposition 2, the input
projection of a trace observed at state p of P is a state identifier of this state.

On-the-Fly Construction of Adaptive Checking Sequences 149



Proposition 4. Let the IUT P be DTC-compatible with S, i.e., there exists one-to-one
correspondence F: S → P such that for each state s 2 S it holds that the intersection of
Tr(S/s) \ Tr(P/p) \ CompleteTraces(TC) is not empty if and only if p = F(s). Given a
tuple <s, γ, s′> of the set “state_identifier”, the input projection of trace γ is a state
identifier of state F(s) while s′ is the state of S reached by γ. □

Proposition 5. The verdict pass is produced by Procedure 2 if and only if the IUT P is
a reduction of S.

Proof. If FSM P passes Procedure 1 then P is strongly connected, since each state of P
is traversed when executing Procedure 1. For this reason, if at Step 1, the reached state
has no unchecked transitions then at Step 2, in the set “Transitions” that has only
already checked transitions, there is a path to a state with an unchecked transition.
Procedure 2 establishes the one-to-one correspondence between transitions of FSM P
and an appropriate submachine of S, since all P transitions are executed and checked
for a conforming output and corresponding final state (according to DTC). Therefore,
FSM P passes Procedure 2 if and only if P is isomorphic to some submachine of S and
the proposition holds according to Proposition 1. □

As an application example, consider the FSM in Fig. 1a, after applying Procedure 1,
we obtain s1 = 3, the trace σ, and state s2 = 2 (reached after applying σ); in addition,
the set “state_identifier” = {<1, b a /1 1, 2>, <2, b a b/1 0, 1>, <3, b b/0 0, 3>, <4, b b/
0 1, 2 >}. As s = s2 = 2 and the set “Transitions” is empty, at Step 1, apply the input
b at s2 followed by b a b of DTC and observe the trace b b a b/1 1 0 1 that reaches state
1 of the FSM S. Add (2, b, 1, 2) to “Transitions”, σ becomes that of Procedure 1
concatenated with the trace b b a b/1 1 0 1, and the reached state s2 = 1 according to
the tuple <2, b a b/1 0 1, 1> of the “state_identifier”. We go-back to Step 1, apply the
input a followed by b a b of DTC and observe 1 1 0 1, reach state s2 = 1, add (1, a, 1,
2) to “Transitions”, append σ as usual, and proceed again to Step 1. At s2 = 1 apply b,
then apply b a of DTC and observe 1 1 1; add (1, b, 1, 1) to “Transitions” and reach
state s2 = 2. Again at Step 1, apply a followed by b a and observe 0 1 1, add (2, a, 0, 1)
to “Transitions”. Then at the reached state s2 = 2, apply c followed by b b of DTC,
observe 1 0 1, add (2, c, 1, 4) to “Transitions” and reach state s2 = 2. Now, as all (2, b,
1, 2), (2, a, 0, 1), (2, c, 1, 4) are in the set “Transitions”, at Step 2, we consider s = 4
such that from the reached state s2 = 2 there is the checked trace η = c/1 from 2 to 4
and for some input i there is no transition (4, i, o, s′) in the set “Transitions”. We
transfer to state 4 from state 2 by applying the input c, now s2 becomes the reached
state 4. We go-back to Step 1 where we select to apply the input a followed by
applying the sequence b b of DTC, observe 1 0 0, add (4, a, 1, 3) to “Transitions” and
reach state s2 = 3. We proceed as above till the set “Transitions” is full. The verdict
pass is produced after completing the set “Transitions” and thus, FSM P is a reduction
of the specification FSM S.

As the length of a transfer sequence when checking a new input is less than the
number n of states of the FSM S, the length of a checking sequence returned by
Procedure 2 is proportional to the length of a distinguishing test case. If this length is
polynomial with respect to the number of S states as it happens for merging-free FSMs

150 N. Yevtushenko et al.



then the length of an adaptive checking sequence is O(n3), i.e., the length evaluation is
almost similar to that for deterministic FSMs [10].

5 Conclusion

In this paper, we have proposed an adaptive strategy for testing a deterministic
implementation FSM against nondeterministic observable specification FSM with
respect to the reduction relation. Similar to deterministic FSMs, the strategy can be
applied under appropriate restrictions upon the specification FSM and fault domain.
However, we show that the requirement of the existence of a separating sequence can
be replaced by the requirement of the existence of a distinguishing test case. This is
useful as the existence of a distinguishing test case is more likely than that of a
separating sequence and generally, the length of a distinguishing test case is less than
that of a separating sequence (when both exist). In addition, the construction uses
adaptive transfer sequences that reduce the length of an applied input sequence. We
note that in this paper, we do not discuss any optimization procedure for deriving
adaptive checking sequences; this is left for the future work. Another possible direction
of a future work is the extension of the proposed work for testing nondeterministic
non-initialized implementations. It could be also interesting to apply a proposed
approach for deriving checking sequences for I/O automata, for example, with respect
to the widely used ioco conformance relation that is very close to the reduction relation
between FSMs.

Acknowledgment. This work was partially supported by the RSF project №. 16-49-03012.

References

1. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondeterministic and
probabilistic machines. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on
Theory of Computing, pp. 363–372 (1995)

2. Bochmann, G.V., Petrenko, A.: Protocol testing: review of methods and relevance for
software testing. In: Proceedings of the ACM International Symposium on Software Testing
and Analysis, pp. 109–123 (1994)

3. Chow, T.S.: Testing software design modelled by finite state machines. IEEE Trans. Softw.
Eng. 4(3), 178–187 (1978)

4. Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A., Yevtushenko, N.: FSM-based
conformance testing methods: a survey annotated with experimental evaluation. Inf. Softw.
Technol. 52(12), 1286–1297 (2010)

5. El-Fakih, K., Yevtushenko, N., Kushik, N.: On the reachability of the exponential upper
bound of adaptive experiments for nondeterministic finite state machines (2016, submitted)

6. Ermakov, A.: Deriving checking sequences for nondeterministic FSMs. In: Proceedings of
the Institute for System Programming of RAS, vol. 26, pp. 111–124 (2014). (In Russian)

7. Gonenc, G.: A method for the design of fault detection experiments. IEEE Trans. Comput.
19(6), 551–558 (1970)

On-the-Fly Construction of Adaptive Checking Sequences 151



8. Güniçen, C., Jourdan, G.-V., Yenigün, H.: Using multiple adaptive distinguishing sequences
for checking sequence generation. In: El-Fakih, K., et al. (eds.) ICTSS 2015. LNCS, vol.
9447, pp. 19–34. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25945-1_2

9. Güniçen, C., Inan, K., Türker, U.C., Yenigün, H.: The relation between preset distinguishing
sequences and synchronizing sequences. Formal Aspects Comput. 26(6), 1153–1167 (2014)

10. Hennie, F.C.: Fault-detecting experiments for sequential circuits. In: Proceedings of the Fifth
Annual Symposium Switching Circuit Theory and Logical Design, pp. 95–110 (1964)

11. Hierons, R.M., Ural, H.: Reduced length checking sequences. IEEE Trans. Comput. 51(9),
1111–1117 (2002)

12. Hierons, R.M., Ural, H.: Optimizing the length of checking sequences. IEEE Trans. Comput.
55(5), 618–629 (2006)

13. Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill, New York (1978)
14. Petrenko, A., Simão, A., Yevtushenko, N.: Generating checking sequences for nondeter-

ministic finite state machines. In: Proceedings of the International Conference on Software
Testing, pp. 310–319 (2012)

15. Kushik, N: Methods for deriving homing and distinguishing experiments for nondetermin-
istic FSMs. Ph.D. thesis, Tomsk State University (2013). (In Russian)

16. Yevtushenko, N., Kushik, N.: Decreasing the length of adaptive distinguishing experiments
for nondeterministic merging-free finite state machines. In: Proceedings of IEEE East-West
Design & Test Symposium, pp. 338–341 (2015)

17. Kushik, N., El-Fakih, K., Yevtushenko, N.: Adaptive homing and distinguishing experi-
ments for nondeterministic finite state machines. In: Yenigün, H., Yilmaz, C., Ulrich, A.
(eds.) ICTSS 2013. LNCS, vol. 8254, pp. 33–48. Springer, Heidelberg (2013)

18. Yevtushenko, N., Kushik, N., El-Fakih, K., Cavalli, A.R.: On adaptive experiments for
nondeterministic finite state machines. Int. J. Softw. Tools Technol. Transf. 18(3), 251–264
(2016)

19. Kushik, N., Yevtushenko, N., Yenigun, H.: Reducing the complexity of checking the
existence and derivation of adaptive synchronizing experiments for nondeterministic FSMs.
In: Proceedings of the International Workshop on Domain Specific Model-Based
Approaches to Verification and Validation (AMARETTO 2016), pp. 83–90 (2016)

20. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a survey.
Proc. IEEE 84(8), 1090–1123 (1996)

21. Petrenko, A., Simão, A.: Generalizing the DS-methods for testing non-deterministic FSMs.
Comput. J. 58(7), 1656–1672 (2015)

22. Petrenko, A., Yevtushenko, N.: Conformance tests as checking experiments for partial
nondeterministic FSM. In: Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997,
pp. 118–133. Springer, Heidelberg (2006)

23. Petrenko, A., Yevtushenko, N.: Adaptive testing of deterministic implementations specified
by nondeterministic FSMs. In: Wolff, B., Zaïdi, F. (eds.) ICTSS 2011. LNCS, vol. 7019,
pp. 162–178. Springer, Heidelberg (2011)

24. Simao, A., Petrenko, A., Maldonado, J.C.: Comparing finite state machine test. IET Softw. 3
(2), 91–105 (2009)

25. Spitsyna, N., El-Fakih, K., Yevtushenko, N.: Studying the separability relation between
finite state machines. Softw. Test. Verification Reliab. 17(4), 227–241 (2007)

26. Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and verification.
IEEE Trans. Comput. 43(3), 306–320 (1994)

152 N. Yevtushenko et al.

http://dx.doi.org/10.1007/978-3-319-25945-1_2


Practical Applications



Mutation-Based Test Generation for PLC
Embedded Software Using Model Checking

Eduard P. Enoiu1(B), Daniel Sundmark1, Adnan Čaušević1, Robert Feldt2,
and Paul Pettersson1

1 Software Testing Laboratory, Mälardalen University, Väster̊as, Sweden
eduard.paul.enoiu@mdh.se

2 Blekinge Institute of Technology, Karlskrona, Sweden

Abstract. Testing is an important activity in engineering of industrial
embedded software. In certain application domains (e.g., railway indus-
try) engineering software is certified according to safety standards that
require extensive software testing procedures to be applied for the devel-
opment of reliable systems. Mutation analysis is a technique for creat-
ing faulty versions of a software for the purpose of examining the fault
detection ability of a test suite. Mutation analysis has been used for eval-
uating existing test suites, but also for generating test suites that detect
injected faults (i.e., mutation testing). To support developers in software
testing, we propose a technique for producing test cases using an auto-
mated test generation approach that operates using mutation testing
for software written in IEC 61131-3 language, a programming standard
for safety-critical embedded software, commonly used for Programmable
Logic Controllers (PLCs). This approach uses the Uppaal model checker
and is based on a combined model that contains all the mutants and the
original program. We applied this approach in a tool for testing indus-
trial PLC programs and evaluated it in terms of cost and fault detection.
For realistic validation we collected industrial experimental evidence on
how mutation testing compares with manual testing as well as auto-
mated decision-coverage adequate test generation. In the evaluation, we
used manually seeded faults provided by four industrial engineers. The
results show that even if mutation-based test generation achieves better
fault detection than automated decision coverage-based test generation,
these mutation-adequate test suites are not better at detecting faults
than manual test suites. However, the mutation-based test suites are
significantly less costly to create, in terms of testing time, than man-
ually created test suites. Our results suggest that the fault detection
scores could be improved by considering some new and improved muta-
tion operators (e.g., Feedback Loop Insertion Operator (FIO)) for PLC
programs as well as higher-order mutations.

1 Introduction

Software testing is an important verification and validation activity used to
reveal software faults and make sure that actual software behavior matches

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 155–171, 2016.
DOI: 10.1007/978-3-319-47443-4 10



156 E.P. Enoiu et al.

its expected behavior [2]. Safety-critical and real-time software systems imple-
mented in Programmable Logic Controllers (PLCs) are used in many real-world
industrial application domains. One of the programming languages defined by
the International Electrotechnical Commission (IEC) for PLCs is the Function
Block Diagram (FBD) language. In testing IEC 61131-3 FBD programs in
the railway domain, the engineering processes of software development are per-
formed according to safety standards and regulations [5]. As an alternative to
manually testing software, a few techniques for automated test generation have
been proposed [4,9]. While high code coverage has historically been used as a
proxy for the ability of a test suite to detect faults, recent results (e.g., [17])
indicate that code coverage may not be a good measure of fault detection effec-
tiveness. As an alternative to coverage-based test generation, mutation testing
has been proposed [7,11]. In mutation testing, test cases are generated based on
the concept of mutants – small syntactic modifications in the program, intended
to imitate real faults. A set of test cases that can distinguish a certain program
from its mutants is sensitive to faults, and it thus hypothesized to be good at
detecting real faults (a hypothesis that has strong empirical support [21]). How-
ever, for domain specific languages used in embedded software development (i.e.,
IEC 61131-3), there is a lack of mature approaches and tools for performing
mutation test generation.

In this paper, we describe and evaluate an automated mutation-based test
generation approach for IEC 61131-3 embedded software. The main contribu-
tions of the paper are:

– An approach for mutation test generation of IEC 61131-3 programs using a
model checker by combining all the mutants and the original program into a
single combined model that is monitored dynamically.

– An evaluation of the approach in an industrial case study. The results show
that mutation-adequate test suites are worse at detecting faults than manual
test suites with the cost of performing mutation testing being consistently
lower than the cost of manually testing IEC 61131-3 software.

– The identification of new mutation operators for mutation testing of IEC
61131-3 software. The reduction in fault detection between manual and muta-
tion testing was attributed based on our analysis to an incomplete list of
mutation operators for IEC 61131-3 software. We propose new operators
simulating this kind of faults (e.g., Feedback loop Insertion Operator (FIO)).

The rest of the paper is organized as follows. Section 2 introduces PLC
embedded software, automated test generation and mutation testing. Section 3
describes the approach for mutation test generation for IEC 61131-3 programs
using a model checker. Section 4 explains the experimental method, while the
results are provided and discussed in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Background and Related Work

This paper describes a method for mutation testing for PLC embedded programs
implemented in the IEC 61131-3 FBD language. In this section, we provide a



Mutation-Based Test Generation for PLC Embedded Software 157

background on PLC embedded software, automated test suite generation and
mutation testing.

2.1 PLC Embedded Software

Safety-critical embedded systems implemented using Programmable Logic Con-
trollers (PLCs) are used in many industrial application domains such as elec-
tric, transportation, chemical, pharmaceutical, etc. One of the programming
languages defined by the International Electrotechnical Commission (IEC) for
PLCs is the Function Block Diagram (FBD) language [16]. Programs developed
in FBD are compiled into program code, which in turn is compiled into machine
code by using specific engineering tools provided by PLC vendors. The moti-
vation for using FBD as the target language in this study comes from the fact
that it is the de facto standard in many industrial systems [26], such as the ones
in the railway transportation domain. Programs running on a PLC execute in
a loop, in which the iteration follows the “read-execute-write” semantics. FBD
is popular because of its graphical notations and its usefulness in applications
with a high degree of data flow between control components. As shown in Fig. 1,
predefined logical and/or stateful blocks (i.e., SR, XOR, TOF, LT and TON in
Fig. 1) and signals (i.e., connections) between blocks represent the behavior of an
FBD program. The blocks are supplied by the hardware manufacturer or defined
by a developer. PLCs contain particular types of blocks called timers (e.g., TON
and TOF) that provide the same functions as timing relays in electrical circuits
and are used to activate or deactivate a device after a preset interval of time.
For more details on this programming language we refer the reader to the work
of John and Tiegelkamp [20].

Fig. 1. An FBD program with six inputs and two outputs.

2.2 Automated Test Generation for PLC Embedded Software

In general, automated test generation has been explored in a considerable
amount of work [25] in the last couple of years. Numerous techniques for auto-
mated test generation using code coverage criteria (e.g., [4,9]) have been pro-
posed in the last decade, since test suites can be created and executed with



158 E.P. Enoiu et al.

reduced human effort and cost. However, for domain specific languages used in
embedded software development, contributions have been more sparse. For IEC
61131-3 software, a few automated test generation approaches [18,28,30] have
been proposed in the last couple of years, but currently there is a lack of tool sup-
port. In our previous work, we developed an automated test input generation
approach and tool named CompleteTest [8], which automatically produces
test suites for a given coverage criterion and an IEC 61131-3 program writ-
ten using the FBD language. CompleteTest supports different code coverage
criteria with the default criterion being decision coverage.

2.3 Mutation Testing

Recent work [13,17] suggests that coverage criteria alone can be a poor indication
of fault detection in testing. To tackle this issue, researchers have proposed
approaches for improving fault detection by using mutation analysis as a test
criterion. Mutation analysis is the technique of automatically generating faulty
implementations of a program for the purpose of examining the fault detection
ability of a test suite [6]. A mutant is a new version of a program created by
making a small change to the original program. The execution of a test case on
the resulting mutant may produce a different output as the original program,
in which case we say that the test case kills that mutant. The mutation score
is calculated using either an output-only oracle (i.e., strong mutation [29]) or a
state change oracle (i.e., weak mutation [15]) against the set of mutants. For all
programs, one needs to assess the fault-finding effectiveness of each test suite by
calculating the ratio of mutants killed to total number of mutants. When this
technique is used to generate test suites rather than evaluating existing ones, it
is commonly referred to as mutation testing or mutation-based test generation.
Despite its effectiveness [21], to the best of our knowledge, no attempt has been
made to propose and evaluate mutation testing for PLC embedded software
written in the IEC 61131-3 FBD programming language. This motivated us
to develop an automated test generation approach based on mutation testing
targeting this type of software.

3 Mutation Test Generation for PLC Embedded Software

Within the last decade model-checking has turned out to be a useful technique for
generation of test cases from models [10]. In this paper, we describe an approach
to automatically generate test suites using a model checker based on mutation
testing for PLC embedded software. Overall, the approach is composed of the
following steps, mirrored in Fig. 2:

1. Mutant Generation. This first step (described in detail in Sect. 3.1) entails
systematically making small syntactic changes (mutants) to a program based
on a set of predefined operators (e.g., mimicking programming errors). The
output of this step is a set of replicas of the original program, each with one
inserted mutant.



Mutation-Based Test Generation for PLC Embedded Software 159

Fig. 2. Overview of mutation testing for IEC 61131-3 FBD programs.

2. Model Aggregation. The second step (described in detail in Sect. 3.2) is
used for combining a program and the set of mutants into a single model. The
output of this step is a model containing the original structure and behavior
of the program together with all inserted mutants.

3. Mutant Annotation. The third step (described in Sect. 3.3) involves the
annotation of the combined model with instrumentation instructions for the
detection of each mutant. This means that the mutation detection monitor
is used to record the mutant execution and detection, thus for all mutants a
property is created for checking the detection of mutants.

4. Test Suite Generation. The fourth step (described in Sect. 3.4) requires
the use of the Uppaal model checker [22] to generate a set of test cases
satisfying the detection of mutants by using the model checker’s ability to
export abstract traces witnessing a submitted property.

3.1 Mutation Generation

To facilitate mutation testing, we begin by generating mutated versions of the
original program. The mutation generator parses a given program and processes
the structural elements for performing mutations. In particular, for each muta-
tion operator, the program is traversed invoking the corresponding mutation
function at all possible locations, each mutation resulting in a separate mutant
version of the program. For the creation of mutants, we rely on previous studies
that looked at commonly occurring faults in IEC 61131-3 software [23,27]. We
used these common faults in this study for establishing the following mutation
operators:



160 E.P. Enoiu et al.

– Logic Block Replacement Operator (LRO) replaces a logical block with another
block from the same function category (e.g., replacing an XOR block with an
OR block),

– Comparison Block Replacement Operator (CRO) replaces a comparison block
with another block from the same function category (e.g., replacing a Less-
Than (LT) block with a Less-or-Equal (LE) block),

– Arithmetic Block Replacement Operator (ARO) replaces an arithmetic block
with another block from the same function category (e.g., replacing a maxi-
mum (MAX) block with a subtraction (ADD) block),

– Negation Insertion Operator (NIO) negates an input or output connection
(e.g., an input variable IN1 becomes not (IN1)),

– Value Replacement Operator (VRO) replaces a value of a constant variable
connected to a block (e.g., replacing a constant value (const = 20 s) with its
boundary values (e.g., const = 19 s and const = 21 s)), and

– Timer Block Replacement Operator (TRO) replaces a timer block with another
block from the same function category (e.g., replacing a Timer-On (TON)
block with a Timer-Off (TOF) block).

These mutation operators are systematically applied to the entire program
(i.e., blocks, variables, constants, connections) and thus resulting in a set of
mutants, each simulating one syntactic change.

3.2 Model Aggregation

We start the model aggregation step with the translation of a program and its
set of mutants to a timed automata representation. We have shown in a previ-
ous study [8] how the mapping of an IEC 61131-3 program to timed automata
is implemented. Timed automata, introduced by Alur et al. [1], were chosen
because there is an already existing formal semantics and tool support for sim-
ulation and model-checking using Uppaal [22] and automated test generation
using CompleteTest [8]. A timed automaton is a standard finite-state automa-
ton extended with time (i.e., real-valued clocks are used for measuring time
progress). A model in Uppaal consists of a network of processes that are com-
posed of locations. Transitions between these locations define how the model
behaves. The semantics of a timed automaton A is defined in terms of a state
transition system, where the state of A is defined as a pair (l, u), where l is a
location (i.e. node) and u is a clock assignment. A state of A depends on its
current location and on the current values of its clocks. A network of timed
automata B0 ‖ ... ‖ Bn−1 is a parallel composition of n timed automata over
synchronization functions (i.e., a! is correlative with a?). Further information on
timed automata can be found in [1]. In our previous work [8] we showed that
an IEC 61131-3 FBD program can be transformed to a formal representation
containing both its functional and timing behavior. In this study, the model
aggregation is using this already developed translation for obtaining the model
needed for running mutation-based test generation. Let M be a finite set of of
mutants, each of which contains one syntactic change in the original program P .
The model aggregation step is applied as follows:



Mutation-Based Test Generation for PLC Embedded Software 161

– Create a timed automaton P corresponding to the original FBD program, and
construct the structure of the program representing the set of blocks bn, set
of signals sm and set of variables vp in P: b1 ‖ ... ‖ bn, s1 ‖ ... ‖ sm and
v1 ‖ ... ‖ vp.

– For each mutant mi in M , created by changing a block, signal or variable in P ,
create a duplicate version of it (e.g., b11 is a duplicate of b1) having a different
identifier and output than the original. This duplicate version has an interface,
consisting of a name identifier. In addition, this duplicate version contains
the same inputs as the original behavior, but different output variables and
internal parameters in case of a mutated block. The interface is used to access
both the block behavior and its duplicated version.

– Create a supervision automaton that executes each block and its mutants
according to the order of execution. The execution order N is automatically
defined according to the general rules included in the IEC 61131-3 standard
[16]. This predetermined order directly dictates the data dependency in a
program. Basically, each mutated entity executes in parallel with its original
counterpart.

As a result of the model aggregation step we consider that the combined
model is a closed network of timed automata. This model, briefly shown in
Fig. 2, contains four processes, two modeling the program and its mutants and
the other two supervising the overall execution and monitoring the mutant detec-
tion. To show an example of an aggregated model cycle scan, different actions
are executed: read(IN) for reading input variables, write(OUT) for updating
the output variables, and write(OUT(mi)) for updating the duplicated output
variables corresponding to each mutant mi. When the execution order holds, the
input variables are updated and the execution continues to the next block.

3.3 Mutant Annotation

Informally, our approach is based on the idea that in order to kill all mutants of
a specific program, it would be sufficient to (i) annotate the mutants in an FBD
program by adding a mutation detection monitor, (ii) formulate a reachability
property for the mutation score (i.e., what portion of the existing mutants have
been killed), and (iii) find a path from the initial state to some state where
the mutation score is 100 %. Thus, using auxiliary variables, we annotate the
aggregated model such that a condition describing whether a single mutant is
killed or not can be expressed.

For annotation, it should be noted that there are different interpretations of
how to implement mutation analysis. The most common implementation, called
strong mutation deals with the comparison of the original and mutated pro-
gram outputs at the end of the execution cycle. Another way is weak mutation,
which compares the state of the program immediately after the execution of
the mutated part of the program. As these implementations can be useful in
their different interpretation of mutation analysis, our approach employed both
approaches.



162 E.P. Enoiu et al.

Weak Mutation. A mutant is weakly killed in an FBD program if it leads to
a block output change (i.e., block infection) compared to the original program
behavior. For each mutation operator we define a detection monitor that pre-
cisely describes the decision that leads to a change in block output. In model
checking we require a reachability property and a mutant detection monitor that
guides the search towards detection. We define this weak mutation monitor for
individual mutation operators. For each mutant mi in M , where M is the entire
set of mutants, there is a weak mutation monitor wmi(M) that looks at the block
output change; if wmi(M) is 1 then mi is detected. Using a model checker, the
aim of weak mutation testing is to achieve a state where all mutants are killed
with respect to the block output change. For generating tests for weak mutation
we represent the test obligations over a set of variables monitoring the original
behavior and its mutants as a reachability property.

Strong Mutation. Weak mutation testing for an FBD program results in a
test suite where an internal block is infected; however, a change in block output
does not necessarily propagate to an observable program output. Using a model
checker, we propose to propagate the mutated behaviors to the output of the
program using additional data variables and signals and monitor the change
in output using a strong mutation monitor. For each mutant mi in M , where
M is the entire set of mutants, the output of each mutant is propagated to the
depended blocks until it reaches the program output. There is a strong mutation
monitor smi(M) that looks at the program output change; if smi(M) is 1 then
mi is detected. Using a model checker, the aim of strong mutation testing is to
achieve a state where all mutants are killed with respect to the program output
change. In our scenario, a mutant is killed if there exists a path in the model
such that a test input shows that the mutated program output differs from the
output of the original program.

3.4 Test Generation

In order to generate a test suite for mutation testing of FBD programs using
Uppaal, we make use of Uppaal’s ability to generate traces witnessing a sub-
mitted reachability property. A trace produced by the model checker for a given
reachability property defines the set of actions executed on an FBD program
which in our case is considered the system model fbd. An example of a diag-
nostic trace has the following form (fbd0)

t1−→ (fbd1)
t2−→ ...

tn−→ (fbdn), where
(fbdk) are states of the combined model and ak are either internal synchroniza-
tion actions, time-delays or read!, execute!, and write! global synchroniza-
tions. Test cases are obtained by extracting from the test path the observable
actions read! and write! as these actions contain updates on input and output
variables. In summary, the output of this step is a set of ordered test cases con-
taining inputs, actual outputs and timing information (i.e., the time parameter
in the test suite is expressing timing constraints within one program).



Mutation-Based Test Generation for PLC Embedded Software 163

4 Experimental Evaluation

In order to evaluate the proposed mutation test generation technique, we
designed an industrial case study. In particular, we aimed to answer the fol-
lowing research questions:

– RQ1: Does mutation adequate test suites detect more faults than tests suites
manually created by industrial engineers or automatically created test suites
based on decision coverage?

– RQ2: Are mutation adequate test suites less costly than tests suites manually
created by industrial engineers or automatically created test suites based on
decision coverage?

The case study setup is shown in Fig. 3. From a high level view we started
the case study by collecting: (i) a set of real industrial programs from a recently
developed train control management system (TCMS), and (ii) manual test suites
created for the above programs by industrial engineers. The studied programs
were already thoroughly tested and are currently used in a set of operational
trains. For all programs, test suites were also generated for weak mutation, strong
mutation and decision coverage (as detailed below).

In order to measure fault detection, realistic faulty versions of the programs
under test are required. However, the data set did not contain any information
about what faults occurred during development, as Bombardier Transportation
AB does not keep any such data in a format that could be directly collected
post-mortem at this level of testing. To overcome this issue, several engineers
from Bombardier were asked to manually create a number of faults for the pro-
grams considered in this study. We obtained faults from engineers at Bombardier
Transportation manually introducing relevant faults in some of the programs
considered in this study. Since mutation-based test generation is using an exist-
ing program implementation to guide the search, we automatically generate all
tests suites using the seeded faults instead of the original programs. This cor-
responds to the realistic situation where an engineer has made a fault located
in the program to be tested. In summary, we used a TCMS system containing

Fig. 3. Overview of the experimental setup used to perform the case study.



164 E.P. Enoiu et al.

61 programs provided by Bombardier Transportation AB. These programs con-
tained on average per program: 828 lines of IEC 61131-3 FBD code, 22 decisions
(i.e., branches), 11 input variables and 5 output variables.

Manually Seeding Faults. For the TCMS programs, we provided four engi-
neers working at Bombardier Transportation AB, who were not involved with the
study with a document on doing fault seeding together with all the 61 programs.
We asked each engineer to seed faults into the set of programs; we followed a
specific fault seeding procedure using the IEC 61131-3 programming tools the
engineers are using for developing the programs and instructed them to insert
faults that were as realistic as possible. In particular, we instructed the engineers
to insert any number of relevant faults, based on their experience, in the set of
programs we provided as a TCMS project. We specifically instructed them to try
to insert multiple faults in the same program one at the time and seed faults in
at least ten programs from the total of 61. To avoid any misunderstanding, the
fault seeding procedure document included information about the type of faults
we were interested in: any fault that they might have encountered in their expe-
rience, as long as the interface (i.e., inputs and outputs) remained the same. This
includes, but is not limited to, faults associated with variables, blocks, connec-
tions and constants. The fault seeding procedure resulted in 77 faults, versions
of 33 (out of 61 in total) original programs containing a single fault (i.e., each
fault contained one or more changes in the program). Each of the collected and
generated test suites was executed on each of the faulty versions and its original
counterpart so that a fault detection score could be calculated. Practically, each
faulty variant contained one fault that had been manually seeded. A fault was
considered to be detected by a test suite if the output from the faulty program
differed from that of the original program.

Test Generation. For each faulty program, we ran mutation and decision-
coverage test generation ten times using a random-depth-first search (RDFS)
strategy with random seed (i.e., test suites are varying from run to run), each
test generation run with a stopping time limit for the search of 10 min. The
stopping criteria for the search is three-fold: achieving 100 % mutation score,
reaching the time limit of 10 min, or getting a memory exception. We chose a
time limit of 10 min for the sake of this experiment. In addition, we used manual
test suites created by industrial engineers in Bombardier Transportation from a
TCMS project delivered already to customers. Manual test suites were collected
by using a post-mortem analysis of the test data available. The test suites col-
lected in this study were based on functional specifications expressed in a natural
language. Practically, we considered the original TCMS programs and for each
faulty program, we executed the test suites produced by manual testing for the
original program. Finally, for all test suites we collected the following measures:
generation time, execution time, number of test cases and fault detection score.
In order to calculate the fault detection score, each test suite was executed on



Mutation-Based Test Generation for PLC Embedded Software 165

both the original program and its faulty counterpart. In case the results differed
between the executions, the fault was considered to be detected.

Measuring Cost. We measured the cost of performing testing focusing on the
unit testing process as it is implemented in Bombardier Transportation for test-
ing the programs selected in this case study. For the TCMS system, the creation
and execution of test cases is performed by the implementer of the IEC 61131-3
software. In the cost measure, we use the creation cost, the execution cost, and
the result check cost. The cost does not include the required tool preparation,
the reporting and the maintenance of the test suite. We consider that all cost
components related to human effort are depended to the number of test cases.
The higher the number of tests cases, the higher are the respective costs. We
assume this relationship to be linear with a constant factor representing the
average time spend by an engineer in each cost component for a test case. Prac-
tically, we measured the costs of these activities directly as an average of the
time taken by three industrial engineers (working at Bombardier Transportation
implementing some of the IEC 61131-3 programs used in our case study) to
perform manual testing.

5 Experimental Results and Discussion

The case study presented us with a fault detection score and a cost measure-
ments for each of the collected test suites (i.e., manually created test suites by
industrial engineers (MAN), mutation-adequate test suites (i.e., weak-mutation
testing (WM), strong-mutation testing (SM)) and automatically generated test
suites based on decision coverage (DC)). The overall results of this study are
summarized in the form of boxplots1 in Figs. 4 and 5.

Fault Detection. To answer RQ1 regarding the fault detection, in terms of
detection of manually seeded faults, we focused on comparing all DC, WM, SM
and MAN test suites. For all programs, as shown in Fig. 4, the fault detection
scores obtained by manual written test suites are higher in average with 9 % and
6 % than those achieved by weak mutation and strong mutation respectively. The
difference in fault detection is slightly greater between strong-mutation testing
and decision coverage-adequate testing (i.e., a difference of almost 12 % on aver-
age). To understand how manual test suites achieve better fault detection than
mutation-adequate test suites, we examined if the test suites are particularly
weak or strong in detecting certain type of faults. We concern this analysis to
what kind of faults were detected by manual testing and not by strong-mutation
test generation. From a total of 77 faults, we identified eight faults (i.e., for exem-
plification purposes these faults are named Fault 1–8) that were not detected
1 Boxes spans from 1st to 3rd quartile, black middle lines mark the median and the

whiskers extend up to 1.5x the inter-quartile range and the circle symbols represent
outliers.



166 E.P. Enoiu et al.

SM WM DC MAN

70

75

80

85

90

95

100
Fa

ul
t D

et
ec

tio
n 

(%
)

(a) Overall Fault Detection Comparison.

SM WM DC MAN

Fa
ul

t D
et

ec
tio

n 
Sc

or
e 

(%
)

0
20

40
60

80
10

0

83.4% 80.1%
71.5%

89.6%

(b) Average Fault Detection Score.

Fig. 4. Fault detection results for manual testing (MAN), decision coverage-directed
test generation (DC), weak mutation testing (WM) and strong mutation testing (SM).

by any strong-mutation test suite while being detected by manual test suites.
To produce meaningful results the remaining 69 faults are not included in this
fault detection analysis because there is no consistent difference between man-
ual and strong-mutation test suites. There are some broad trends for eight faults
that can be used for explaining at least the difference in fault detection between
manual and strong-mutation testing. Test suites written using manual testing
are able to detect all of these eight faults. Mutation test suites are achieving a
poor selection of test inputs produced for detecting certain faulty behaviors; for
six faults, strong mutation testing generated test suites achieving 100 % muta-
tion score while for the remaining two faults, the model checker was unable to
find a test suite detecting all mutants, given the 10 min time limit. It seems
that manual testing has a stronger ability to detect these faults than mutation
testing because of its inherent advantage of relying also on the specification of
the program under test. For four of the faults, multiple changes in the program
have been seeded (e.g., two or more blocks and variables have been replaced,
deleted or inserted). For example, Fault 1 contains three changes combining
three simpler faults corresponding to the application of CRO and VRO muta-
tion operators. Fault 2 contains a combination of seeded changes corresponding
to the creation of mutants using LRO and NIO mutation operators. In addition,
Faults 3 and 4 contain multiple changes that were not captured by previously
defined mutation operators. On the other hand, four of the faults are first order
faults containing only one change in the program. A feedback loop signal con-
necting one of the outputs of the programs with one of the blocks was seeded in
Faults 5 and 6. On the other hand, Fault 7 contains an extra logical block that
was added to the original program while in Fault 8 a constant variable has been
replaced to a non-boundary value. As a direct result, we discuss in Sect. 5.1 the



Mutation-Based Test Generation for PLC Embedded Software 167

SM W
M D
C

M
AN

0

50

100

150

200

250
To

ta
l C

os
t (

in
 m

in
ut

es
)

(a) Overall Cost Results

SM
(g

+e
)

W
M

(g
+e

)
M

AN
(g

+e
)

D
C

(g
+e

)
SM

(c
)

W
M

(c
)

M
AN

(c
)

D
C

(c
)

0

50

100

150

200

C
os

t (
in

 m
in

ut
es

)

(b) Detailed Cost Results

Fig. 5. Cost measurement results for manual testing (MAN), decision coverage-directed
test generation (DC), weak mutation testing (WM) and strong mutation testing (SM).

improvement of mutation-based test generation for PLC software by considering
additional mutation operators not considered before in the literature [23,27] to
model possible faults.

Cost. We interviewed three engineers working on developing and manually test-
ing TCMS software and asked them to estimate the time (in minutes) needed
to create, execute and check the result of a test suite. All engineers indepen-
dently provided similar cost estimations. We averaged the estimated time given
by these three engineers and we calculated each individual cost using the follow-
ing constants: 6.6 min for the creation of a test case, 3.3 min for the execution of
a test case and 2.5 min for the checking of the result of a test case. Practically,
for answering RQ2, we used these constants and the number of test cases in each
test suites to represent the average time spend by an engineer to manually test
each program. In addition, for mutation-based and decision coverage-directed
test generation the total cost involves both machine and human resources. We
calculated the cost of generating and executing a test suite by directly measuring
the time required by the tool to run the test generation and the time required to
execute each test case. For the cost of checking the test result we used the same
average time as for manual testing (i.e. 2.5 min for the checking of the result
of a test case). The resulting cost measures are reflected in Fig. 5. The cost of
performing testing using mutation testing either weak or strong is consistently
significantly lower than for manually created test suites; automatically generated
test suites have a smaller testing cost (110 and 115 min shorter testing time on
average for WM and SM respectively) than the cost of using manual test suites.



168 E.P. Enoiu et al.

A more detailed cost measurement would be needed to obtain more confidence
in the cost results obtained in this study.

5.1 Discussion

To explore the results of our study we consider the implications for future work
and the extent to which mutation testing for PLC programs can be improved.

Improving Mutation Testing for PLC Programs. The results of this study
indicate that fault detection scores obtained by manual test suites are better than
the ones achieved by mutation testing. While comparing just strong-mutation
testing with manual testing, we discovered that some of these faults are not
reflected in the mutation operator list used for generating mutation adequate
test suites, as described in Sect. 3.1. From our results, we highlight the need
for improving the list of mutation operators used for mutation testing of PLC
software by the addition of the following new mutation operators:

– Feedback loop Insertion Operator (FIO) is inserting a signal connecting an
output variable to any block that is connected with the input variables.

– Logical Block Insertion Operator (LIO) is inserting a logical block between
any other two logical blocks in the program.

– Logical Block Deletion Operator (LDO) is deleting a logical block and con-
necting the inputs of this block to the next logical block in the program.

In addition there are couple of already implemented mutation operators (shown
in Sect. 3.1) that can be improved by considering the following operators:

– Value Replacement Operator-Improved (VRO-I) is replacing a value of a con-
stant variable value connected to a block not only with its boundary values
but also with a selection of non-boundary values including 0, 1, −1.

– Logical Block Replacement Operator-Improved (LRO-I) is replacing a logical
block not only with logical blocks from the same category but also with other
blocks with Boolean inputs (e.g., replace an AND block with an SR block).

By generating test suites that detect faults created based on these mutation
operators, one could improve the goals of mutation testing for PLC programs. In
addition, we recommend the use of higher-order mutation [19] for PLC software
in order to find more complex faults.

Mutation Testing Using Model Checking. Our study is the first to con-
sider mutation testing using model checking for PLC programs written in IEC
61131-3 FBD language. Model checking is a formal technique based on state
exploration that has been applied to mutation testing by either using a process
named reflection [3], by state machine duplication [24], or by explicitly evalu-
ating the fault coverage over multiple mutants [12,14] thus creating test cases
for manifesting fault propagation. The performance of this kind of approaches



Mutation-Based Test Generation for PLC Embedded Software 169

is depended not only on the model size but also the time spent on checking
each and every mutated model or property against its original counterpart. This
way of using the model checker for mutation testing can introduce unnecessary
runs of the model checker and can considerably affect the feasibility of these
approaches in practice. The method proposed in this study for the IEC 61131-
3 FBD language is using a rather different approach for mutation testing, by
combining all the mutants and the original model into a single combined model
that is monitored dynamically using a model checking approach. By consider-
ing this way of utilizing the model checker one could potentially improve the
cost of using mutation testing for other languages and models; the detection can
be verified in a single run of the model checker for all mutated models rather
than considering each individual case and thus removing the unnecessary model
checking runs needed for detecting trivial mutants. This needs to be carefully
considered in future studies and compared with other approaches on mutation
testing using model checking.

6 Conclusions

In this paper we introduced mutation testing for PLC programs written in IEC
61131-3 programming language using a model checker. We implemented our
approach in a tool and used this implementation to evaluate mutation test-
ing on industrial programs and manually seeded faults. Our results show that
mutation testing achieves lower fault detection compared to manual testing but
with a significant lower cost in terms of testing time. We found out that these
fault detection scores can be improved by considering some new and improved
mutation operators for PLC programs as well as higher-order mutation.

Acknowledgments. This research was supported by The Knowledge Foundation
(KKS) through the following projects: (20130085) Testing of Critical System Charac-
teristics (TOCSYC), Automated Generation of Tests for Simulated Software Systems
(AGENTS), and the ITS-EASY industrial research school.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: Logic
in Computer Science, pp. 414–425. IEEE (1990)

2. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2008)

3. Black, P.E.: Modeling and marshaling: making tests from model checker counterex-
amples. In: Digital Avionics Systems, vol. 1. IEEE (2000)

4. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Symposium on Operating
Systems Design and Implementation, vol. 8. USENIX (2008)

5. CENELEC: 50128: Railway Application: Communications, Signaling and Process-
ing Systems, Software For Railway Control and Protection Systems. In: Standard.
European Committee for Electrotechnical Standardization (2001)



170 E.P. Enoiu et al.

6. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. IEEE Comput. 11, 34–41 (1978)

7. Demillo, R.A., Offutt, J.A.: Constraint-based automatic test data generation.
Trans. Softw. Eng. 17(9), 900–910 (1991)

8. Enoiu, E., Čaušević, A., Ostrand, T.J., Weyuker, E.J., Sundmark, D.,
Pettersson, P.: Automated test generation using model checking: an industrial eval-
uation. J. Softw. Tools Technol. Transf. 18(3), 335–353 (2014). Springer

9. Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented
software. In: Foundations of Software Engineering. ACM (2011)

10. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: a survey. J.
Softw. Test. Verif. Reliab. 19, 215–261 (2009). Wiley

11. Fraser, G., Zeller, A.: Mutation-driven generation of unit tests and oracles. Trans.
Softw. Eng. 38(2), 278–292 (2012)

12. Gargantini, A.: Using model checking to generate fault detecting tests. In:
Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 189–206. Springer,
Heidelberg (2007)

13. Gay, G., Staats, M., Whalen, M., Heimdahl, M.: The risks of coverage-directed test
case generation. Trans. Softw. Eng. 41(8), 803–819 (2015). IEEE

14. Godskesen, J.C., Nielsen, B., Skou, A.: Connectivity testing through model-
checking. In: Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235,
pp. 167–184. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30232-2 11

15. Howden, W.E.: Weak mutation testing and completeness of test sets. Trans. Softw.
Eng. 4, 371–379 (1982)

16. IEC: International Standard on 61131-3 Programming Languages. In: Program-
mable Controllers. IEC Library (2014)

17. Inozemtseva, L., Holmes, R.: Coverage is not strongly correlated with test suite
effectiveness. In: International Conference on Software Engineering. ACM (2014)

18. Jamro, M.: POU-oriented unit testing of IEC 61131–3 control software. Trans. Ind.
Inform. 11, 1119–1129 (2015)

19. Jia, Y., Harman, M.: Higher order mutation testing. Inf. Softw. Technol. 51(10),
1379–1393 (2009)

20. John, K.H., Tiegelkamp, M.: IEC 61131–3: Programming Industrial Automation
Systems. Springer, Berlin (2010)

21. Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G.: Are
mutants a valid substitute for real faults in software testing? In: Foundations of
Software Engineering, pp. 654–665. ACM (2014)

22. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1, 134–152 (1997). Springer

23. Oh, Y., Yoo, J., Cha, S., Son, H.S.: Software safety analysis of FBD using fault
trees. Reliab. Eng. Syst. Saf. 88, 215–228 (2005). Elsevier

24. Okun, V., Black, P.E., Yesha, Y.: Testing with model checker: insuring fault visi-
bility. Syst. Sci. Appl. Math. 2(1), 77–82 (2003)

25. Orso, A., Rothermel, G.: Software testing: a research travelogue (2000–2014). In:
Proceedings of the on Future of Software Engineering. ACM (2014)

26. Schwartz, M.D., Mulder, J., Trent, J., Atkins, W.D.: Control system devices: archi-
tectures and supply channels overview. In: Sandia National Laboratories Sandia
Report SAND2010-5183 (2010)

27. Shin, D., Jee, E., Bae, D.-H.: Empirical evaluation on FBD model-based test cov-
erage criteria using mutation analysis. In: France, R.B., Kazmeier, J., Breu, R.,
Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 465–479. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33666-9 30

http://dx.doi.org/10.1007/978-3-540-30232-2_11
http://dx.doi.org/10.1007/978-3-642-33666-9_30


Mutation-Based Test Generation for PLC Embedded Software 171

28. Simon, H., Friedrich, N., Biallas, S., Hauck-Stattelmann: automatic test case gen-
eration for PLC programs using coverage metrics. In: ETFA. IEEE (2015)

29. Woodward, M., Halewood, K.: From weak to strong, dead or alive? An analysis of
some mutation testing issues. In: STVA. IEEE (1988)

30. Wu, Y.C., Fan, C.F.: Automatic test case generation for structural testing of FBD.
Inf. Softw. Technol. 56, 1360–1376 (2014). Elsevier



STIPI: Using Search to Prioritize Test Cases
Based on Multi-objectives Derived

from Industrial Practice

Dipesh Pradhan1(&), Shuai Wang1, Shaukat Ali1, Tao Yue1,2,
and Marius Liaaen3

1 Certus V&V Center, Simula Research Laboratory, Oslo, Norway
{dipesh,shuai,shaukat,tao}@simula.no

2 University of Oslo, Oslo, Norway
3 Cisco Systems, Oslo, Norway

marliaae@cisco.com

Abstract. The importance of cost-effectively prioritizing test cases is undeni-
able in automated testing practice in industry. This paper focuses on prioritizing
test cases developed to test product lines of Video Conferencing Systems
(VCSs) at Cisco Systems, Norway. Each test case requires setting up configu-
rations of a set of VCSs, invoking a set of test APIs with specific inputs, and
checking statuses of the VCSs under test. Based on these characteristics and
available information related with test case execution (e.g., number of faults
detected), we identified that the test case prioritization problem in our particular
context should focus on achieving high coverage of configurations, test APIs,
statuses, and high fault detection capability as quickly as possible. To solve this
problem, we propose a search-based test case prioritization approach (named
STIPI) by defining a fitness function with four objectives and integrating it with
a widely applied multi-objective optimization algorithm (named Non-dominated
Sorting Genetic Algorithm II). We compared STIPI with random search (RS),
Greedy algorithm, and three approaches adapted from literature, using three real
sets of test cases from Cisco with four time budgets (25 %, 50 %, 75 % and
100 %). Results show that STIPI significantly outperformed the selected
approaches and managed to achieve better performance than RS for on average
39.9 %, 18.6 %, 32.7 % and 43.9 % for the coverage of configurations, test
APIs, statuses and fault detection capability, respectively.

Keywords: Test case prioritization � Search � Configurations � Test APIs

1 Introduction

Testing is a critical activity for system or software development, through which
system/software quality is ensured [1]. To improve the testing efficiency, a large
number of researchers have been focusing on prioritizing test cases into an optimal
execution order to achieve maximum effectiveness (e.g., fault detection capability) as
quickly as possible [2–4]. In the industrial practice of automated testing, test case

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved.
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 172–190, 2016.
DOI: 10.1007/978-3-319-47443-4_11



prioritization is even more critical because usually there is a limited budget (e.g., time)
to execute test cases, and thus executing all available test cases at a given context is
infeasible [1, 5].

Our industrial partner for this work is Cisco System, Norway, who develops pro-
duct lines of Video Conferencing Systems (VCSs), which enable high quality con-
ference meetings [4, 5]. To ensure the delivery of high quality VCSs to the market, test
engineers of Cisco continually develop test cases to test software of VCSs under
various hardware or software configurations, statuses (i.e., states) of VCSs with ded-
icated test APIs. A test case is typically composed of the following parts: (1) setting up
test configurations of a set of VCSs under test; (2) invoking a set of test APIs of the
VCSs; and (3) checking the statuses of the VCSs after invoking the test APIs to
determine the success or failure of an execution of the test case. When executing test
cases, several objectives need to be achieved, i.e., covering the maximum number of
possible configurations, test APIs, statuses and detecting as many faults as possible.
However, given a number of available test cases, it is often infeasible to execute all of
them in practice due to a limited budget of execution time (e.g., 10 h), and it is
therefore important to seek an approach for prioritizing the given test cases to cover
maximum number of configurations, test APIs, statuses and detect faults as quickly as
possible.

To address the above-mentioned challenge, we propose a search-based test case
prioritization approach named Search-based Test case prioritization based on Incre-
mental unique coverage and Position Impact (STIPI). STIPI defines a fitness function
with four objectives to evaluate the quality of test case prioritization solutions, i.e.,
Configuration Coverage (CC), test API Coverage (APIC), Status Coverage (SC) and
Fault Detection Capability (FDC), and integrates the fitness function with a
widely-applied multi-objective search algorithm (i.e., Non-dominated Sorting Genetic
Algorithm II) [6]. Moreover, we propose two prioritization strategies when defining the
fitness function in STIPI: (1) Incremental Unique Coverage, i.e., for a specific test case,
we only consider the incremental unique elements (e.g., test APIs) covered by the test
case as compared with the elements covered by the already prioritized test cases; and
(2) Position Impact, i.e., a test case with a higher execution position (i.e., scheduled to
be executed earlier) has more impact on the quality of a prioritization solution. Notice
that both of these strategies are defined to help search to achieve high criteria (i.e., CC,
APIC, SC and FDC) as quickly as possible.

To evaluate STIPI, we chose five approaches for the comparison: (1) Random
Search (RS) to assess the complexity of the problem; (2) Greedy approach; (3) One
existing approach [7] and two modified approaches from the existing literature [8, 9].
The evaluation uses in total 211 test cases from Cisco, which are divided into three sets
with varying complexity. Moreover, four different time budgets are used for our
evaluation, i.e., 25 %, 50 %, 75 % and 100 % (100 % refers to the total execution time
of all the test cases in a given set). Notice that 12 comparisons were performed (i.e.,
three sets of test cases*four time budgets) for comparing STIPI with each approach, and
thus in total 60 comparisons were conducted for the five approaches. Results show that
STIPI significantly outperformed the selected approaches for 54 out of 60 comparisons
(90 %). In addition, STIPI managed to achieve higher performance than RS for on

STIPI: Using Search to Prioritize Test Cases 173



average 39.9 % (configuration coverage), 18.6 % (test API coverage), 32.7 % (status
coverage), and 43.9 % (fault detection capability).

The remainder of the paper is organized as follows: Sect. 2 presents the context, a
running example and motivation. STIPI is presented in Sect. 3 followed by experiment
design (Sect. 4). Section 5 presents experiment results and overall discussion. Related
work is discussed in Sect. 6, and we conclude the work in Sect. 7.

2 Context, Running Example and Motivation

Figure 1 presents a simplified context of testing VCSs (Systems Under Test (SUTs)),
and Fig. 2 illustrates (partial) configuration, test API and status information for testing
a VCS. First, one VCS consists of one or more configuration variables (e.g., attribute
protocol of class VCS in Fig. 2), each of which can take two or more configuration
variable values (e.g., literal SIP of enumeration Protocol). Second, a VCS holds one or
more status variables defining the statuses of the VCS (e.g., NumberofActiveCalls), and
each status variable can have two or more status variable values (e.g., Num-
berofActiveCalls taking values of 0, 1, 2, 3 and 4). Third, testing a VCS requires
employing one or more test API commands (e.g., dial), each of which includes zero or
more test API parameters (e.g., callType for dial). Each test API parameter can take two
or more test API parameter values (e.g., Video and Audio for CallType).

Figure 3 illustrates the key steps of a test case for testing VCSs. First, a test case
configures one or more VCSs by assigning values to configuration variables. For
example, the test case shown in Fig. 3 configures the configuration variable protocol
with SIP (Line 1). Second, a test API command is invoked with appropriate values

Fig. 1. A simplified context of testing VCSs

Fig. 2. Partial configuration, status and test API information for testing a VCS

174 D. Pradhan et al.



assigned to its input parameters, if any. For example, the test case in Fig. 3 invokes the
test API command dial consisting of the two test API parameter values: Video for
callType and SIP for protocol) (Line 2). Third, the test case checks the actual statuses
of VCSs. For example, the test case in Fig. 3 checks the status of the VCS to see if
NumberOfActiveCalls equals to 1 (Line 4).

In the context of testing VCSs, test case prioritization is a critical task since it is
practically infeasible to execute all the available test cases within a given time budget
(e.g., 5 h). Therefore, it is essential to cover maximum configurations (i.e., configu-
ration variables and their values), test APIs (i.e., test API commands, parameters and
their values) and statuses (i.e., status variables and their values), and detect faults as
quickly as possible. For instance, Table 1 lists five test cases ðT1. . .T5Þ with the
information about configurations, test APIs and statuses. The test case in Fig. 3 is
represented as T1 in Table 1, which (1) sets the configuration variable protocol as SIP;
(2) uses three test API commands: dial with two parameters (callType, protocol),
accept and disconnect; and (3) checks values of three status variables (e.g.,
MaxVideoCalls).

Notice that the five test cases in Table 1 can be executed in 325 orders (i.e.,
C 5; 1ð Þ � 1!þC 5; 2ð Þ � 2!þ . . .þCð5; 5Þ � 5!). When there is a time budget, each
particular order can be considered as a prioritization solution. Given two prioritization
solutions s1 ¼ T5; T1; T4;T2; T3f g, s2 ¼ T1; T3; T5; T2; T4f g, one can observe that s1 is
better than s2 since the first three test cases in s1 can cover all the configuration
variables and their values, test API commands, test API parameters, test API parameter
values, status variables and status variable values, while s2 needs to execute all the five
test cases to achieve the same coverage as s1. Therefore, it is important to seek an

Table 1. Illustrating test case prioritization*

Test case Configuration Test API Status

Protocol Dial Accept Disconnect SV1 SV2 SV3

callType Protocol

T1 SIP Video SIP U U 0, 1 1 1
T2 SIP Audio SIP U U 0, 1 1 0
T3 SIP Audio SIP U 1 1 0
T4 H323 Audio H323 U 0, 1, 2 2 0
T5 H320 Audio H320 U 1 1 1

*SV1: NumberOfActiveCalls, SV2: MaxNumberOfCalls, SV3: MaxVideoCalls.

1. protocol = SIP //Configure the configuration variable
2. dial(Video, SIP) //Employ test API command dial and assigning

values to parameters: callType and protocol
3. accept //Employ test API command with no parameters
4. assert (NumberOfActiveCalls=1,MaxNumberOfCalls=1,          

MaxVideoCalls =1) //Check values of the status variables   
5. disconnect //Employ test API command with no parameters
6. assert(NumberofActiveCalls=0) //Check status

Fig. 3. An excerpt of a sanitized and simplified test case

STIPI: Using Search to Prioritize Test Cases 175



efficient approach to find an optimal order for executing a given number of test cases to
achieve high coverage of configurations, test APIs and statuses, and detect faults as
quickly as possible, which forms the motivation of this work.

3 STIPI: Search-Based Test Case Prioritization Based
on Incremental Unique Coverage and Position Impact

This section presents the problem representation (Sect. 3.1), four defined objectives,
fitness function (Sect. 3.2) and solution encoding (Sect. 3.3).

3.1 Basic Notations and Problem Representation

Basic Notations. We provide the basic notations as below used throughout the paper.
T ¼ T1; T2. . .Tnf g represents a set of n test cases to be prioritized.
ET ¼ et1; et2. . .etnf g refers to the execution time for each test case in T.
CV ¼ cv1; cv2. . .cvmcvf g represents the configuration variables covered by T. For

each cvi, CVVi refers to the configuration variable values: CVVi ¼ cvvi1. . .cvvicvvf g.
mcvv is the total number of unique values for all the configuration variables, which can

be calculated as: mcvv ¼ Smcv

i¼1
CVVi

� �����
����.

AC ¼ ac1; ac2. . .acmacf g represents a set of test API commands covered by T. For
each aci, APi denotes the test API parameters: APi ¼ api1. . .apiap

� �
. map is the total

number of unique test API parameters, calculated as: map ¼ j Smac

i¼1
APi

� �
j. For each api,

AVi refers to the test API parameter values: AVi ¼ avi1. . .aviavf g. mav is the total

number of unique test API parameter values, i.e., mav ¼ j Smap

i¼1
AVi

� �
j.

SV ¼ sv1; sv2. . .svmsvf g represents a set of status variables covered by T. For each
svi, SVVi refers to the status variable values: SVVi ¼ svvi1. . .svvisvvf g. msvv is the total
number of unique status variable values, calculated as: msvv ¼ Smsv

i¼1
SVVi

� �����
����:

Effect ¼ effect1. . .effectneffect
� �

defines a set of effectiveness measures.
S ¼ s1; s2. . .snsf g represents a set of potential solutions, such that

ns ¼ C n; 1ð Þ � 1!þC n; 2ð Þ � 2!þ . . .þCðn; nÞ � n!. Each solution sj consists of a set
of prioritized test cases in T: sj ¼ Tj1. . .Tjn

� �
, where Tji 2 T refers to the test case with

the execution position i in the prioritized solution sj. Note that it is possible for the
maximum number of test cases in sj (i.e., jn) to be less than the total number of test
cases in T, since only a subset of T is prioritized during limited budget (e.g., time).

Problem Representation. We aim to prioritize the test cases in T in two contexts:
(1) 100 % time budget and (2) less than 100 % time budget (i.e., time-aware [1]).
Therefore, we formulate the test case prioritization problem as follows: (a) search a

176 D. Pradhan et al.



solution sk with nk test cases from the total number of ns solutions in S to obtain the
highest effectiveness; and (b) a test case Tjr in a particular solution (e.g.,sj) with a higher
position p has more influence for Effect than the test case with a lower position q.

(1) With 100 % time budget:

8i¼1 to n effect8j¼1 to ns Effect ðsk; effectiÞ�Effect sj; effecti
� �

_ effecti Tjr; p
� �

[ 8q�ðpþ 1ÞeffectiðTjr; qÞ:

where effecti Tjr; p
� �

and effecti Tjr; q
� �

refer to the effectiveness measure i for a
test case Tjr at position p and q, respectively for a particular solution sj.
Effectðsk; effectiÞ and Effectðsj; effectiÞ returns the effectiveness measure i for
solutions sk , sj respectively.

(2) With a time budget tb less than 100 % time budget:

8i¼1 to neffect8j¼1 to ns Effect ðsk; effectiÞ�Effect sj; effecti
� �

_
Xnk

l¼1
ETl � tb; effecti Tjr; p

� �
[ 8q�ðpþ 1ÞeffectiðTjr; qÞ:

3.2 Fitness Function

Recall that we aim at maximizing the overall coverage for configuration, test API and
status, and detect faults as quickly as possible (Sect. 2). Therefore, we define four
objective functions for the fitness function to guide the search towards finding optimal
solutions, which are presented in details as below.

Maximize Configuration Coverage (CC). CC measures the overall configuration
coverage of a solution sj with jn number of test cases, which is composed of Config-
uration Variable Coverage (CVC) and Configuration Variable Values Coverage

(CVVC). We can calculate CVC and CVVC for sj as: CVCsj ¼
Pjn

i¼1
UCVTji�n�iþ 1

n

mcv ;

CVVCsj ¼
Pjn

i¼1
UCVVTji�n�iþ 1

n

mcvv , where mcv and mcvv represent the total number of unique
Configuration Variables (CV) and Configuration Variable Values (CVV) respectively
covered by the total test cases in T (e.g., in Table 1 mcvv ¼ 3). Moreover, we propose
two prioritization strategies for calculating CVC and CVVC. The first one is Incremental
Unique Coverage, i.e., UCVTji and UCVVTji representing the number of incremental
unique CV and CVV covered by Tji (Sect. 3.1). For example, in Table 1, for one test case
prioritization solution s1 ¼ T5; T1; T4; T2; T3f g;UCVVT5 is 1 since T5 is in the first
execution position and covers one CVV (i.e., H320). UCVVT1 and UCVVT4 are at the
second and third position, and cover one CVV each (i.e., SIP, H323). However, UCVVT2
and UCVVT3 are 0, since they are already covered by UCVVT1 . This strategy is defined
since test case prioritization in our case concerns how many configurations, test APIs,
and statuses can be covered rather than how many times they can be covered. The
second prioritization strategy is Position Impact, which is calculated as n�iþ 1

n , where n is
the total number of test cases, and i is a specific execution position in a prioritization

STIPI: Using Search to Prioritize Test Cases 177



solution. Thus, test cases with higher execution positions have higher impact on the
quality of a prioritization solution, which fits the scope of test case prioritization that
aims at achieving higher criteria as quickly as possible. For instance, using this strategy,

CVVC for s1 is: CVVCs1 ¼ 1�5
5þ 1�4

5þ 1�3
5þ 0�2

5þ 0�1
5

3 ¼ 0:8: Moreover, CC for sj is rep-

resented as: CCsj ¼
CVCsj þCVVCsj

2 . A higher value of CC shows a higher coverage of
configuration.

Maximize Test API Coverage (APIC). APIC measures the overall test API coverage
of a solution sj with jn number of test cases. It consists of three sub measures: Test API
Command Coverage (ACC), Test API Parameter Coverage (APC), and Test API
parameter Value Coverage (AVC). ACC, APC and AVC can be calculated as below:

ACCsj ¼
Pjn

i¼1 UACTji � n�iþ 1
n

mac
; APCsj ¼

Pjn
i¼1 UAPTji � n�iþ 1

n

map
; AVCsj

¼
Pjn

i¼1 UAVTji � n�iþ 1
n

mav
:

Similarly, the same two strategies (i.e., Incremental Unique Coverage and Position
Impact) are applied for calculating ACC, APC and AVC, where UACTji , UAPTji and
UAVTji denotes the number of unique test API commands (AC), test API parameters
(AP), and test API parameter values (AV) respectively covered by Tji (Sect. 3.1). They
are measured similar as for UCVVT in CVVC. mac, map, and mav refer to the total
number of unique AC, AP, and AV covered by the total number of test cases as explained

for mcvv in CVVC. The APIC for sj is represented as: APICsj ¼
ACCsj þAPCsj þAVCsj

3 .
A higher value of APIC shows a higher coverage of test APIs.

Maximize Status Coverage (SC). SC measures the total status coverage of a solution
sj. It consists of two sub measures: Status Variable Coverage (SVC) and Status

Variable Value Coverage (SVVC), calculated as follow: SVCsj ¼
Pjn

i¼1
USVTji�n�iþ 1

n

msv ,

SVVCsj ¼
Pjn

i¼1
USVVTji�n�iþ 1

n

msvv . Similarly, USVTji and USVVTji are the number of unique
Status Variables (SV) and Status Variable Values (SVV) respectively covered by Tji
(Sect. 3.1), which are measured similar as UCVVT in CVVC. msv and msvv represent
the total number of unique SV and SVV respectively measured similar as for mcvv in

CVVC. The SC for sj is represented as: SCsj ¼
SVCsj þ SVVCsj

2 , with a higher value
indicating a higher status coverage, and therefore representing a better solution.

Maximize Fault Detection Capability (FDC). In the context of Cisco, FDC is
defined as the detected number of faults for test cases in a solution sj [4, 5, 10–12]. The

FDC for a test case Tji is calculated as: FDCTji ¼ Number of times that Tji found a fault
Number of times that Tji was executed

. Notice

that the FDC of Tji is calculated based on the historical information of executing Tji.
For example, if tci was executed 10 times, and it detected fault 4 times, the FDC for tci

is 0.4. We calculate FDC for a solution sj as: FDCsj ¼
Pjn

i¼1
FDCTji�n�iþ 1

n

mfdc . FDCTji denotes

178 D. Pradhan et al.



the FDC for a Tji, mfdc represents the sum of all FDC of test cases, and a higher value
of FDC implies a better solution. Notice that we cannot apply the incremental unique
coverage strategy for calculating FDCsj since the relations between faults and test cases
are not known in our case (i.e., we only know whether the test cases can detect faults
after executing it for a certain number of times rather than having access to the detailed
faults detected).

3.3 Solution Representation

The test cases in T are encoded as an array A ¼ v1; v2. . .vnf g, where each variable vi
represents one test case in T, and holds a unique value from 0 to 1. We prioritize the test
cases in TS by sorting the variables in A in a descending order from higher to lower,
such that 1 is the highest, and 0 is the lowest order. Initially, each variable in A is
assigned a random value between 0 and 1, and during search our approach returns
solutions with optimal values for A guided by the fitness function defined in Sect. 3.2.
In terms of time-aware test case prioritization (i.e., with a time budget less than 100 %),
we pick the maximum number of test cases that fit the given time budget. For example,
in Table 1 for TS ¼ T1. . .T5f g with A as 0:6; 0:2; 0:4; 0:9; 0:3f g and the execution time
(recorded as minutes) as ET ¼ 4; 5; 6; 4; 3f g, the prioritized test cases are
T4; T1; T3; T5; T2f g based on our encoding way for test case prioritization. If we have a

time budget of 11 min, the first two test cases (in total 8 min for execution) are first
added to the prioritized solution sj, and there are 3 min left, which is not sufficient for
executing T3 (6 min). Thus, T3 is not added into sj, and the next test case is evaluated to
see if the total execution time can fit the given time budget. T5 with 3 min will be added
into sj, since the inclusion of T5 will not make the total execution time exceed the time
budget. Therefore, the new prioritized solution will be T4; T1; T5f g.

Moreover, we integrate our fitness function with a widely applied multi-objective
search algorithm named Non-dominated Sorting Genetic Algorithm (NSGA-II) [6, 13,
14]. The tournament selection operator [6] is applied to select individual solutions with
the best fitness for inclusion into the next generation. The crossover operator is used to
produce offspring solutions from the parent solutions by swapping some of the parts
(e.g., test cases in our context) of the parent solutions. The mutation operator is applied
to randomly change the values of one or more variables (e.g., in our context, each
variable represents a test case) based on the pre-defined mutation probability, e.g.,
1/(total number of test cases) in our context.

4 Empirical Study Design

4.1 Research Questions

RQ1: Is STIPI effective for test case prioritization as compared with RS (i.e.,
random prioritization)? We compare STIPI with RS for four time budgets: 100 %
(i.e., total execution time of all the test cases in a given set), 75 %, 50 % and 25 %,

STIPI: Using Search to Prioritize Test Cases 179



to assess the complexity of the problem such that the use of search algorithms is
justified.
RQ2: Is STIPI effective for test case prioritization as compared with four selected
approaches, in the contexts of four time budgets: 100 %, 75 %, 50 % and 25 %?
RQ2.1: Is STIPI effective as compared with the Greedy approach (a local search
approach)?
RQ2.2: Is STIPI effective as compared with the approach used in [7] (named as A1
in this paper)? Notice that we chose A1 since it also proposed a strategy to give
higher importance to test cases with higher execution positions.
RQ2.3: Is STIPI effective as compared with the modified version of the approach
proposed in [8] (named as A2 in this paper)? We chose A2 since it combines the
Average Percentage of Faults Detected (APFD) metric and NSGA-II for test case
prioritization without considering time budget. We modified it by defining Average
Percentage of Configuration Coverage (APCC), Average Percentage of test API
Coverage (APAC) and Average Percentage of Status Coverage (APSC) (Sect. 4.3)
for assessing the quality of prioritization solutions for configurations, test APIs and
statuses.
RQ2.4: Is STIPI effective as compared with the modified version of the approach in
[9] (named as A3 in this paper)? We chose A3 since (1) it combines the ADFD with
cost (APFDc) metric and NSGA-II for addressing time-aware test case prioritization
problem. We revised A3 by defining Average Percentage of Configuration Cover-
age with cost (APCCc), Average Percentage of test API Coverage with cost
(APACc) and Average Percentage of Status Coverage with cost (APSCc). For
illustration, we provide a formula for Average Percentage of Configuration Variable
Value Coverage with cost (APCVVCc) that is a sub-metric for APCCc as:

APCVVCc ¼
Pmcvv

i¼1
ð
Pjn

k¼TCVVi
etk�1

2etTCVVi ÞPjn

k¼1
etk�mcvv

. For a solution sj with jn test cases, TCVVi is

the first test case from sj that covers CVVi (i.e., the i
th configuration variable value),

mcvv is the total number of unique configuration variable value, and etk is the
execution time for kth test case. Notice that the detailed formulas for APCCc, APACc

and APSCc can be consulted in our technical report in [15].

We also compare the running time of STIPI with all the five chosen approaches,
since STIPI is invoked very frequently (e.g., more than 50 times per day) in our
context, i.e., the test cases require to be prioritized and executed often. Therefore, it
would be practically infeasible if it takes too much time to apply STIPI.

4.2 Experiment Tasks

As shown in Table 2 (Experiment Task column), we designed two tasks (T1, T2) for
addressing RQ1–RQ2. The task T1 is designed to compare STIPI with RS for the four
time budgets (i.e., 100 %, 75 %, 50 % and 25 %) and three sets of test cases (i.e., 100,
150 and 211). Similarly, the task T2 is designed to compare STIPI with the other four
test case prioritization approaches, which is divided into four sub-tasks for comparing
Greedy, A1, A2 and A3, respectively.

180 D. Pradhan et al.



Moreover, we employed 211 real test cases from Cisco for evaluation by dividing it
into three sets with varying complexity (#Test Cases column in Table 2). For the first
set, we used all the 211 test cases. For the second set, we used 100 random test cases
from the 211 test cases. Finally, for the third set, we used the 150 test cases by choosing
111 test cases not selected in the second set (i.e., 100) and 39 random test cases from
the second set. Notice that the goal for using three test case sets is to evaluate our
approach with test datasets with different complexity.

4.3 Evaluation Metrics

To answer the RQs, we defined in total seven EMs (Table 3). Six are used to assess
how fast the configurations, test APIs and statuses can be covered: (1) Average Per-
centage Configuration Coverage (APCC), (2) Average Percentage test API Coverage
(APAC), (3) Average Percentage Status Coverage (APSC), (4) Average Percentage
Configuration Coverage that penalizes missing configuration (APCCp), (5) Average
Percentage test API Coverage that penalizes missing test API (APACp) and (6) Average
Percentage Status Coverage with penalization for missing status (APSCp). We defined
APCC, APAC and APSC for test case prioritization with 100 % time budget based on
the APFD metric [8, 16]. For example, for a solution sj with jn test cases and total
number of test cases n from T (a given number of test cases), TCV1 is the first test case
from sj that covers CV1 for the sub metric APCVC in Table 3 (Sect. 3.1). Notice that
n and jn are equal when there is 100 % time budget.

When there is a limited time budget, it is possible that not all the configurations, test
APIs and statuses can be covered. Therefore, we defined APCCp, APACp, and APACp

to give penalty to missing configurations, test APIs, and statuses for time-aware pri-
oritization (i.e., 25 %, 50 % and 75 % time budget) based on the variant of APFD

Table 2. Overview of the experiment design

RQ Experiment task # test
cases

Time
budget %

Evaluation metric
(EM)

Quality
indicator

Statistical test

1 T1: STIPI vs. RS 100
150
211

100 APCC, APAC, APSC – Vargha and
Delaney Â12

Mann-Whitney
U test

25, 50, 75 APCCp, APACp,
APSCp, MFDC

–

2 T2.1 STIPI vs.
Greedy

100 APCC, APAC, APSC –

25, 50, 75 APCCp, APACp,
APSCp, MFDC

–

T2.2 STIPI vs.
A1

100 APCC, APAC, APSC Hypervolume
(HV)25, 50, 75 APCCp, APACp,

APSCp, MFDC

T2.3 STIPI vs.
A2

100 APCC, APAC, APSC

25, 50, 75 APCCp, APACp,
APSCp

T2.4 TIPI vs. A3 100 APCC, APAC, APSC

25, 50, 75 APCCp, APACp,
APSCp

STIPI: Using Search to Prioritize Test Cases 181



metric used for time-aware prioritization [1, 16]. For example, for a solution sj with jn
test cases reveal cv; sj

� �
gives the test case from sj that covers cv for APCVCp in

Table 3. If sj does not contain a test case that covers cv, reveal cv; sj
� � ¼ jnþ 1. Notice

that in our context, we only have information about how many times in a given period
(e.g., a week) a test case was successful in finding faults. Therefore, it is not possible to
use the APFD metric to evaluate FDC. Hence, we defined a metric: Measured Fault
Detection Capability (MFDC) to measure the percentage of fault detected for time
budget of 25 %, 50 % and 75 %.

4.4 Quality Indicator, Statistical Tests and Parameter Settings

When comparing the overall performance of multi-objective search algorithms (e.g.,
NSGA-II [6]), it is common to apply quality indicators such as hypervolume (HV).
Following the guideline in [10], we employ HV based on the defined EMs to address
RQ2.2–RQ2.4 (i.e., tasks T2.2–T2.4 in Table 2). HV calculates the volume in the
objective space covered by members of a non-dominated set of solutions (i.e., Pareto
front) produced by search algorithms for measuring both convergence and diversity
[17]. A higher value of HV indicates a better performance of the algorithm.

Table 3. Different metrics for evaluating the approaches*

EC Time
budget %

EM Sub metric Formula

Name Formula

Con 100 APCC APCVC 1� TCV1 þTCV2 þ ...þTCVmcv
n�mcv þ 1

2n APCC ¼ APCVCþAPCVVC
2

APCVVC 1� TCVV1 þ TCVV2 þ ...þ TCVVmcvv
n�mcvv þ 1

2n

25
50
75

APCCp APCVCp 1�
Pmcv

cv¼1
reveal cv;sjð Þ

jn�mcv þ 1
2jn

APCCp ¼ APCVCp þAPCVVCp

2

APCVVCp 1�
Pmcvv

cvv¼1
reveal cvv;sjð Þ

jn�mcvv þ 1
2jn

API 100 APAC APACC 1� TAC1 þTAC2 þ ...þTACmac
n�mac þ 1

2n APAC ¼ APACCþAPAPCþAPAVC
3

APAPC 1� TAP1 þTAP2 þ ...þ TAPmap

n�map þ 1
2n

APAVC 1� TAV1 þTAV2 þ ...þ TAVmav
n�mav þ 1

2n

25
50
75

APACp APACCp 1�
Pmac

ac¼1
reveal ac;sjð Þ

jn�mac þ 1
2jn

APACp ¼ APACCp þAPAPCp þAPAVCp

3

APAPCp 1�
Pmap

ap¼1
reveal ap;sjð Þ

jn�map þ 1
2jn

APAVCp 1�
Pmav

av¼1
reveal av;sjð Þ

jn�mav þ 1
2jn

Stat 100 APSC APSVC 1� TSV1 þ TSV2 þ ...þTSVmsv
n�msv þ 1

2n
APSC ¼ APSVCþAPSVVC

2

APSVVC 1� TSVV1 þ TSVV2 þ ...þ TSVVmsvv
n�msvv þ 1

2n

25
50
75

APSCp APSVCp 1�
Pmsv

sv¼1
reveal sv;sjð Þ
jn�msv þ 1

2jn
APSCp ¼ APSVCp þAPSVVCp

2

APSVVCp 1�
Pmsvv

svv¼1
reveal svv;sjð Þ

jn�msvv þ 1
2jn

FDC 25,50,75 MFDC - -
MFDC ¼

Pjn

i¼1
FDCTiPn

k¼1
FDCTk

� 100%

*EC: Evaluation Criteria, Con: Configuration, API: Test API, Stat: Status.

182 D. Pradhan et al.



The Vargha and Delaney Â12 statistics [18] and Mann-Whitney U test are used to
compare the EMs (T1 and T2), and HV (T2.2–T2.4), as shown in Table 2 by following
the guidelines in [19]. The Vargha and Delaney Â12 statistics is a non-parametric effect
size measure, and Mann-Whitney U test tells if results are statistically significant [20].
For two algorithms A and B, A has better performance than B if Â12 is greater than 0.5,
and the difference is significant if p-value is less than 0.05.

Notice that STIPI, A1, A2 and A3 are all combined with NSGA-II. Since tuning
parameters to different settings might result in different performance of search algo-
rithms, standard settings are recommended [19]. We used standard settings (i.e.,
population size = 100, crossover rate = 0.9, mutation rate = 1/(number of test cases))
as implemented in jMetal [21]. The search process is terminated when the fitness
function has been evaluated for 50,000 times. Since A2 does not support prioritization
with a time budget, we collect the maximum number of test cases that can fit a given
time budget.

5 Results, Analyses and Discussion

5.1 RQ1: Sanity Check (STIPI vs. RS)

Results in Tables 4 and 5 show that on average STIPI is higher than RS for all the EMs
across the three sets of test cases. Moreover, for the three test sets using four time
budgets, STIPI managed to achieve higher performance than RS for on average 39.9 %
(configuration coverage), 18.6 % (test API coverage), 32.7 % (status coverage), and
43.9 % (FDC). In addition, results of the Vargha and Delaney statistics and the Mann
Whitney U test show that STIPI significantly outperformed RS for all the Ems since all
the values of Â12 are greater than 0.5 and all the p-values are less than 0.05.

Table 4. Average values of the EMs with 100 % and 75 % time budget*

# T 100 % time budget 75 % time budget
EM RS Gr A1 A2 A3 STI EM RS Gr A1 A2 A3 STI

100 CC 0.7 0.76 0.75 0.77 0.75 0.77 CCp 0.63 0.71 0.73 0.74 0.73 0.74
150 0.68 0.84 0.8 0.79 0.75 0.79 0.60 0.81 0.69 0.72 0.73 0.77
211 0.74 0.83 0.83 0.85 0.81 0.85 0.67 0.76 0.79 0.80 0.79 0.81
100 AC 0.83 0.74 0.85 0.85 0.84 0.86 ACp 0.78 0.70 0.83 0.82 0.84 0.83
150 0.78 0.64 0.83 0.86 0.85 0.86 0.72 0.57 0.75 0.81 0.83 0.84
211 0.82 0.67 0.85 0.89 0.89 0.89 0.77 0.56 0.83 0.87 0.87 0.88
100 SC 0.73 0.65 0.76 0.82 0.76 0.82 SCp 0.67 0.60 0.73 0.79 0.79 0.81
150 0.74 0.62 0.8 0.85 0.83 0.85 0.68 0.56 0.71 0.80 0.81 0.83
211 0.78 0.64 0.79 0.85 0.82 0.85 0.72 0.56 0.79 0.84 0.85 0.86
100 - - - - - - - MF 0.78 0.79 0.91 - - 0.89
150 - - - - - - - 0.79 0.80 0.70 - - 0.87
211 - - - - - - - 0.77 0.63 0.91 - - 0.90

*T: Test Case, Gr: Greedy, CC: APCC, AC: APAC, SC: APSC, CCp: APCCp, ACp: APACp,
SCp: APSCp, MF: MFDC, STI: STIPI.

STIPI: Using Search to Prioritize Test Cases 183



5.2 RQ2: Comparison with the Selected Approaches

We compared STIPI with Greedy, A1, A2 and A3 using the statistical tests (Vargha and
Delaney statistics and Mann Whitney U test) for the four time budgets (25 %, 50 %,
75 % and 100 %), and the three sets of test cases (i.e., 100, 150, 211). Results are
summarized in Fig. 4. For example, the first bar (i.e., Gr) in Fig. 4 refers to the
comparison between STIPI and Greedy for the 100 % time budget where A = STIPI
and B = Greedy. A > B means the percentage of EMs for which STIPI has significantly
better performance than Greedy ðÂ12 [ 0:5&& p\0:05Þ;A\B means the opposite
ðÂ12\0:5&& p\0:05Þ, and A = B implies there is no significant difference in per-
formance (p� 0:05).

RQ2.1 (STIPI vs. Greedy). From Tables 4 and 5, we can observe that the average
values of STIPI are higher than Greedy for 93.3 % (42/45)1 EMs across the three sets of
test cases with the four time budgets. Moreover, from Fig. 4, we can observe STIPI
performed significantly better than Greedy for an average of 93.1 % for the four time
budgets (i.e., 88.9 % for 100 %, 91.7 % for 75 %, 91.7 % for 50 %, and 100 % for
25 % time budget). Detailed results are available in [15].

RQ2.2 (STIPI vs. A1). Based on Tables 4 and 5, we can see that STIPI has a higher
average value than A1 for 82.2 % (37/45) EMs, and STIPI performed significantly
better than A1 for an average of 76.4 % EMs across the four time budgets, while there
was no difference in performance for 14.6 % from Fig. 4. Figure 5 shows that for HV,
STIPI outperformed A1 for all the three sets of test cases with the four time budgets,
and such better results are statistically significant. Detailed results are in [15].

Table 5. Average values of the EMs with 25 % and 50 % time budget*

EM # T 25 % time budget 50 % time budget
RS Gr A1 A2 A3 STIPI RS Gr A1 A2 A3 STIPI

APCCp 100 0.37 0.30 0.55 0.51 0.62 0.66 0.52 0.65 0.65 0.67 0.70 0.73
150 0.35 0.59 0.52 0.45 0.66 0.71 0.50 0.81 0.74 0.63 0.72 0.74
211 0.42 0.43 0.63 0.56 0.69 0.71 0.52 0.53 0.65 0.67 0.70 0.73

APACp 100 0.56 0.26 0.70 0.61 0.74 0.70 0.71 0.61 0.79 0.77 0.81 0.81
150 0.50 0.35 0.59 0.55 0.74 0.75 0.64 0.54 0.76 0.74 0.81 0.82
211 0.58 0.33 0.71 0.65 0.77 0.75 0.71 0.52 0.79 0.81 0.85 0.85

APSCp 100 0.42 0.14 0.59 0.55 0.70 0.66 0.57 0.51 0.68 0.72 0.76 0.76
150 0.44 0.33 0.54 0.53 0.73 0.74 0.52 0.53 0.65 0.67 0.70 0.73
211 0.48 0.24 0.66 0.62 0.78 0.77 0.63 0.52 0.74 0.78 0.84 0.85

MFDC 100 0.30 0.06 0.55 - - 0.50 0.54 0.45 0.77 - - 0.78
150 0.30 0.19 0.40 - - 0.63 0.55 0.74 0.75 - - 0.76
211 0.29 0.09 0.52 - - 0.44 0.53 0.48 0.75 - - 0.76

1 An EM has one average value for one set of test case with one time budget (Tables 4 and 5). Thus,
for 100 % time budget with 3 EMs there are 9 values, and 45 average values for 4 time budgets and 4
EMs for other 3 time budgets.

184 D. Pradhan et al.



RQ2.3 (STIPI vs. A2). RQ2.3 is designed to compare STIPI with the approach A2
(Sect. 4.1). Table 4 shows that the two approaches had similar average for EMs with
100 % time budget. Moreover, for 100 % time budget, there was no significant dif-
ference in the performance between STIPI and A2 in terms of EMs and HV (Figs. 4 and
5). However, when considering the time budgets of 25 %, 50 % and 75 %, STIPI had a
higher performance for 96.3 % (26/27) EMs (Tables 4 and 5). Furthermore, the sta-
tistical tests in Figs. 4 and 5 show that STIPI significantly outperformed A2 for an
average of 88.9 % EMs and HV values across the three time budgets (25 %, 50 %,
75 %), while there was no significant difference for 11.1 %.

RQ2.4 (STIPI vs. A3). Based on the results (Tables 4 and 5), STIPI held a higher
average values for 75 % (27/36) EM values for the four time budgets and three sets of
test cases. For 100 %, 75 %, and 50 %, we can observe from Fig. 4 that STIPI per-
formed significantly better than A3 for an average of 74.1 % EMs, while there was no
significant difference for 22.2 %. For the 25 % time budget, there was no statistically
significant difference in terms of EMs for STIPI and A3. However, when comparing the
HV values, STIPI significantly outperformed A3 for an average of 91.7 % across the
four time budgets and three sets of test cases.

Notice that 12 comparisons were performed when comparing STIPI with each of
the five selected approaches (i.e., three test case sets * four time budgets), and thus in
total 60 comparisons were conducted. Based on the results, we can observe that STIPI
significantly outperformed the five selected approaches for 54 out of 60 comparisons
(90 %), which indicate that STIPI has a good capability for solving our test case
prioritization problem. In addition, STIPI took an average time of 36.5, 51.6 and 82 s
(secs) for the three sets of test cases. The average running time for the five chosen

Fig. 4. Results of comparing STIPI with Greedy, A1, A2 and A3 for EMs

Fig. 5. Results of comparing STIPI with A1, A2 and A3 for HV

STIPI: Using Search to Prioritize Test Cases 185



approaches are: (1) RS: 18, 24.7 and 33.2 s; (2) Greedy: 42, 48 and 54 ms; (3) A1:
35.7, 42.8 and 65.5 s; (4) A2: 35.2, 42.2 and 55.4 s; and (5) A3: 8.9, 33.4 and 41.2 s.
Notice that there is no practical difference in terms of the running time for the
approaches except Greedy, however the performance of Greedy is significantly worse
than STIPI (Sect. 5.2), and thus Greedy cannot be employed to solve our test case
prioritization problem. In addition, based on the domain knowledge of VCS testing, the
running time in seconds is acceptable when deployed in practice.

5.3 Overall Discussion

For RQ1, we observed that STIPI performed significantly better than RS for all the EMs
with the three sets of test cases under the four time budgets. Such an observation
reveals that solving our test case prioritization problem is not trivial, which requires an
efficient approach. As for RQ2, we compared STIPI with Greedy, A1, A2 and A3
(Sect. 4.1). Results show that STIPI performed significantly better than Greedy. This
can be explained that Greedy is a local search algorithm that may get stuck in a local
space during the search process, while STIPI employs mutation operator (Sect. 4.4) to
explore the whole search space towards finding optimal solutions. In addition, Greedy
converted our multi-objective optimization problem into a single-objective optimiza-
tion problem by assigning weights to each objective, which may lose many other
optimal solutions that hold the same quality [22], while STIPI (integrating NSGA-II)
produces a set of non-dominated solutions (i.e., solutions with equivalent quality).

When comparing STIPI with A1, A2 and A3, the results of RQ2 showed that STIPI
performed significantly better than A1, A2 and A3 by 83.3 % (30/36). Overall STIPI
outperformed the five selected approaches for 90 % (54/60) comparisons. That might
be due to two main reasons: (1) STIPI considers the coverage of incremental unique
elements (e.g., test API commands) when evaluating the prioritization solutions, i.e.,
only the incremental unique elements covered by a certain test case are taken into
account as compared with the already prioritized test cases; and (2) STIPI provides the
test cases with higher execution positions more influence on the quality of a given
prioritization solution. Furthermore, A2 and A3 usually work under the assumption that
the relations between detected faults and test cases are known beforehand, which is
sometimes not the situation in practice, e.g., in our case, we are only aware how many
execution times a test case can detect faults rather than having access to the detailed
faults detected. However, STIPI defined FDC to measure the fault detection capability
(Sect. 3.2) without knowing the detailed relations between faults and test cases, which
may be applicable to the similar other contexts when the detailed faults cannot be
accessed. It is worth mentioning that the current practice of Cisco do not have an
efficient approach for test case prioritization, and thus we are working on deploying our
approach in their current practice for further strengthening STIPI.

5.4 Threats to Validity

The internal validity threat arises due to using search algorithms with only one con-
figuration setting for its parameters as we did in our experiment [23]. However, we

186 D. Pradhan et al.



used the default parameter setting from the literature [24], and based on our previous
experience [5, 10], good performance can be achieved for various search algorithms
with the default setting. To mitigate the construct validity threat, we used the same
stopping criteria (50,000 fitness evaluations) for finding the optimal solutions. To avoid
conclusion validity threat due to the random variations in the search algorithms, we
repeated the experiments 10 times to reduce the possibility that the results were
obtained by chance. Following the guidelines of reporting the results for randomized
algorithms [19], we employed the Vargha and Delaney test as the effect size measure
and Mann-Whitney test to determine the statistical significance of results. First external
validity threat is that one may argue the comparison performed only included RS,
Greedy, one existing approach and two modified versions of the existing approaches,
which may not be sufficient. Notice that we discussed and justified why we chose these
approaches in Sect. 4.1, and it is also possible to compare our approach with other
existing approaches, which requires further investigation as the next step. Second ex-
ternal validity threat is due to the fact that we only performed the evaluation using one
industrial case study. We need to mention that we conducted the experiment using three
sets of test cases with four distinct time budgets based on the domain knowledge of
VCS testing.

6 Related Work

In the last several decades, test case prioritization has attracted a lot of attention and
considerable amount of work has been done [1–3, 8]. Several survey papers [25, 26]
present results that compare existing test case prioritization techniques from different
aspects, e.g., based on coverage criteria. Followed by the aspects presented in [25], we
summarize the related work close to our approach and highlight the key differences
from the following three aspects: coverage criteria, search-based prioritization tech-
niques (which is related with our approach) and evaluation metrics.

Coverage Criteria. Existing works defined a number of coverage criteria for evalu-
ating the quality of prioritization solutions [2, 3, 26] such as branch coverage and
statement coverage, function coverage and function-level fault exposing potential,
block coverage, modified condition/decision coverage, transition coverage and round
trip coverage. As compared with the state-of-the-art, we proposed three new coverage
criteria driven by the industrial problem (Sect. 3.2): (1) Configuration coverage (CC);
(2) Test API coverage (APIC) and (3) Status coverage (SC).

Search-Based Prioritization Techniques. Search-based techniques have been widely
applied for addressing test case prioritization problem [3–5, 10]. For instance, Li et al.
[3] defined a fitness function with three objectives (i.e., Block, Decision and Statement
Coverage) and integrated the fitness function with hill climbing and GA for test case
prioritization. Arrieta et al. [7] proposed to prioritize test cases by defining a
two-objective fitness function (i.e., test case execution time and fault detection capa-
bility) and evaluated the performance of several search algorithms. The authors of [7]
also proposed a strategy to give higher importance to test cases with higher positions
(to be executed earlier). A number of research papers have focused on addressing the

STIPI: Using Search to Prioritize Test Cases 187



test case prioritization problem within a limited budget (e.g., time and test resource)
using search-based approaches. For instance, Walcott et al. [1] proposed to combine
selection (of a subset of test cases) and prioritization (of the selected test cases) for
prioritizing test cases within a limited time budget. Different weights are assigned to the
selection part and prioritization part when defining the fitness function followed by
solving the problem with GA. Wang et al. [5] focused on the test case prioritization
within a given limited test resource budget (i.e., hardware, which is different as
compared with the time budget used in this work) and defined four cost-effectiveness
measures (e.g., test resource usage), and evaluated several search algorithms (e.g.,
NSGA-II).

As compared with the existing works, our approach (i.e., STIPI) defines a fitness
function that considers configurations, test APIs and statuses, which were not addressed
in the current literature. When defining the fitness function, STIPI proposed two
strategies, which include (1) only considering the unique elements (e.g., configurations)
achieved; and (2) taking the impact of test case execution orders on the quality of
prioritization solutions into account, which is not the case in the existing works.

Evaluation Metrics (EMs). APFD is widely used in the literature as an EM [2, 3, 8,
16]. Moreover, the modified version of APFD (i.e., APFDp) using time penalty [1, 16]
is usually applied for test case prioritization with a time budget. Other metrics were also
defined and applied as EMs [9, 26] such as Average Severity of Faults Detected, Total
Percentage of Faults Detected and Average Percentage of Faults Detected per Cost
(APFDc). As compared with the existing EMs, we defined in total six new EMs driven
by our industrial problem for configurations, test APIs and statuses (Table 3), which
include: (1) APCC, APAC, and APSC, inspired by APFD, when there is 100 % time
budget; and (2) APCCp, APACp, and APSCp inspired by APFDp, when there is a limited
time budget (e.g., 25 % time budget). Furthermore, we defined the seventh EM
(MFDC) to assess to what extent faults can be detected when the time budget is less
than 100 % (Table 3). To the best of our knowledge, there is no existing work that
applies these seven EMs for assessing the quality of test case prioritization solutions.

7 Conclusion and Future Work

Driven by our industrial problem, we proposed a multi-objective search-based test case
prioritization approach named STIPI for covering maximum number of configurations,
test APIs, statuses, and achieving high fault detection capability as quickly as possible.
We compared STIPI with five test case prioritization approaches using three sets of test
cases with four time budgets. The results show that STIPI performed significantly better
than the chosen approaches for 90 % of the cases. STIPI managed to achieve a higher
performance than random search for on average 39.9 % (configuration coverage),
18.6 % (test API coverage), 32.7 % (status coverage) and 43.9 % (FDC). In the future,
we plan to compare STIPI with more prioritization approaches from the literature using
additional case studies with larger scale to further generalize the results.

188 D. Pradhan et al.



Acknowledgements. This research is supported by the Research Council of Norway
(RCN) funded Certus SFI. Shuai Wang is also supported by the RFF Hovedstaden funded
MBE-CR project. Shaukat Ali and Tao Yue are also supported by the RCN funded
Zen-Configurator project, the EU Horizon 2020 project funded U-Test, the RFF Hovedstaden
funded MBE-CR project and the RCN funded MBT4CPS project.

References

1. Walcott, K.R., Soffa, M.L., Kapfhammer, G.M., Roos, R.S.: Timeaware test suite
prioritization. In: Proceedings of 2006 International Symposium on Software Testing and
Analysis, pp. 1–12 (2006)

2. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Test case prioritization: an empirical
study. In: Proceedings of International Conference on Software Maintenance (ICSM 1999),
pp. 179–188 (1999)

3. Li, Z., Harman, M., Hierons, R.M.: Search algorithms for regression test case prioritization.
IEEE Trans. Softw. Eng. (TSE) 33, 225–237 (2007)

4. Wang, S., Buchmann, D., Ali, S., Gotlieb, A., Pradhan, D., Liaaen, M.: Multi-objective test
prioritization in software product line testing: an industrial case study. In: International
Software Product Line Conference, pp. 32–41 (2014)

5. Wang, S., Ali, S., Yue, T., Bakkeli, Ø., Liaaen, M.: Enhancing test case prioritization in an
industrial setting with resource awareness and multi-objective search. In: ICSE, pp. 182–191
(2016)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. TSE 6, 182–197 (2002)

7. Arrieta, A., Wang, S., Sagardui, G., Etxeberria, L.: Test case prioritization of configurable
cyber-physical systems with weight-based search algorithms. In: Genetic and Evolutionary
Computation (GECCO), pp. 1053–1060 (2016)

8. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for regression
testing. TSE 27, 929–948 (2001)

9. Elbaum, S., Malishevsky, A., Rothermel, G.: Incorporating varying test costs and fault
severities into test case prioritization. In: Proceedings of International Conference on
Software Engineering (ICSE), pp. 329–338 (2001)

10. Wang, S., Ali, S., Yue, T., Li, Y., Liaaen, M.: A practical guide to select quality indicators
for assessing pareto-based search algorithms in search-based software engineering. In: ICSE,
pp. 631–642 (2016)

11. Wang, S., Ali, S., Gotlieb, A.: Cost-effective test suite minimization in product lines using
search techniques. J. Syst. Softw. 103, 370–391 (2015)

12. Wang, S., Ali, S., Gotlieb, A.: Minimizing test suites in software product lines using
weight-based genetic algorithms. In: Proceedings of 15th Annual Conference on Genetic and
Evolutionary Computation, pp. 1493–1500 (2013)

13. Sarro, F., Petrozziello, A., Harman, M.: Multi-objective software effort estimation. In: ICSE,
pp. 619–630 (2016)

14. Wang, S., Ali, S., Yue, T., Liaaen, M.: UPMOA: an improved search algorithm to support
user-preference multi-objective optimization. In: International Symposium on Software
Reliability Engineering (ISSRE), pp. 393–404 (2015)

15. Technical report (2016-06): https://www.simula.no/publications/stipi-using-search-
prioritize-test-cases-based-multi-objectives-derived-industrial

STIPI: Using Search to Prioritize Test Cases 189

https://www.simula.no/publications/stipi-using-search-prioritize-test-cases-based-multi-objectives-derived-industrial
https://www.simula.no/publications/stipi-using-search-prioritize-test-cases-based-multi-objectives-derived-industrial


16. Lu, Y., Lou, Y., Cheng, S., Zhang, L., Hao, D., Zhou, Y., Zhang, L.: How does regression
test prioritization perform in real-world software evolution? In: Proceedings of 38th ICSE,
pp. 535–546 (2016)

17. Nebro, A.J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.J., Beham, A.: AbYSS: adapting
scatter search to multiobjective optimization. IEEE Trans. Evol. Comput. 12, 439–457
(2008)

18. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common language effect
size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25, 101–132 (2000)

19. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized
algorithms in software engineering. In: 33rd International Conference on Software
Engineering (ICSE), pp. 1–10 (2011)

20. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947)

21. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimization. Adv.
Eng. Softw. 42, 760–771 (2011)

22. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms:
a tutorial. Reliab. Eng. Syst. Safety 91, 992–1007 (2006)

23. De Oliveira Barros, M., Neto, A.: Threats to validity in search-based software engineering
empirical studies. Technical report 6, UNIRIO-Universidade Federal do Estado do Rio de
Janeiro (2011)

24. Arcuri, A., Fraser, G.: On parameter tuning in search based software engineering. In: Cohen,
M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS, vol. 6956, pp. 33–47. Springer,
Heidelberg (2011)

25. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a survey.
Softw. Test. Verif. Reliab. 22, 67–120 (2012)

26. Catal, C., Mishra, D.: Test case prioritization: a systematic mapping study. Softw. Qual.
J. 21, 445–478 (2013)

190 D. Pradhan et al.



From Simulation Data to Test Cases for Fully
Automated Driving and ADAS

Christoph Sippl1,2(B), Florian Bock2, David Wittmann3, Harald Altinger1,
and Reinhard German2

1 Audi Electronics Venture GmbH, Sachsstr. 20, 85080 Gaimersheim, Germany
{christoph.sippl,harald.altinger}@audi.de

2 Department of Computer Science 7, Friedrich-Alexander-University,
91058 Erlangen, Germany

{florian.inifau.bock,reinhard.german}@fau.de
3 Chair of Automotive Technology, Technical University of Munich,

Boltzmannstr. 15, 85748 Garching, Germany
wittmann@ftm.mw.tum.de

Abstract. Within this paper we present a new concept on deriving test
cases from simulation data and outline challenging tasks when testing
and validating fully automated driving functions and Advanced Driver
Assistance Systems (ADAS). Open questions on topics like virtual sim-
ulation and identification of relevant situations for consistent testing of
fully automated vehicles are given. Well known criticality metrics are
assessed and discussed with regard to their potential to test fully auto-
mated vehicles and ADAS. Upon our knowledge most of them are not
applicable to identify relevant traffic situations which are of importance
for fully automated driving and ADAS. To overcome this limitation, we
present a concept including filtering and rating of potentially relevant
situations. Identified situations are described in a formal, abstract and
human readable way. Finally, a situation catalogue is built up and linked
to system requirements to derive test cases using a Domain Specific Lan-
guage (DSL).

Keywords: Virtual validation · ADAS · Fully automated vehicles ·
Simulation · Test case generation · DSL

1 Introduction

Today’s driver assistance functions and emergency systems help to avoid acci-
dents and support the driver in critical situations. As the system boundaries
are clearly defined, test cases can easily be specified. On the contrary, Advanced
Driver Assistance Systems (ADAS) and fully automated vehicles ensure safety
and comfort while driving in a normal mode. Here, defining all relevant test
cases poses problems for developers due to the large amount of dynamic objects,
including pedestrians and cyclists in urban traffic as well as the variety of prior-
ity rules and traffic guidance. So far, comprehensive test concepts and structured
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 191–206, 2016.
DOI: 10.1007/978-3-319-47443-4 12



192 C. Sippl et al.

test case generation, such as Equivalence Class Partitioning (ECP), Boundary
Value Analysis (BVA) and Predicate Testing improve the efficiency of software
testing as stated by Eo et al. [1], but are not well-suited to identify all possible
and relevant situations for fully automated vehicles and ADAS.

Therefore, simulation-based development and new concepts for virtual vali-
dation are needed, instead of testing new driving functions with the help of many
thousands of test kilometres. There are already numerous tools for simulation-
based function development and testing, thus driving simulators with realistic,
environment-sensitive behaviour of road users (e.g. pedestrians, cyclists and cars)
can be used to generate a huge amount of data. This data contain new situations,
which are relevant for testing certain driving functions. An automatic identifi-
cation of these situations and the comparison with an existing set of situations
in the test suite improve the overall test coverage of fully automated driving
functions and ADAS. Manual inspection and filtering of the relevant situations
or describing test cases is not recommended with respect to time and budget.

2 Related Work

In general, test cases are described by analysing the obligatory system require-
ments. In case of ADAS and fully automated driving functions, this can be done
by evaluating data, produced by model-based simulation or empirically collected
data. Zofka et al. [2] presented an innovative data-driven method and a con-
cept contrary to previous approaches in order to create critical traffic situations
from recorded sensor data. This concept allows reconstruction and parametriza-
tion of real world traffic scenarios. These reconstructed test scenarios can be
re-simulated by deviating parameters in order to evaluate and test ADAS com-
ponents. This approach may modify already observed and identified situations,
but cannot detect completely unknown events.

Prior Schuldt and Menzel [3] presented a method to assign test cases auto-
matically to X-in-the-loop simulation techniques using quality criteria. In [4], a
modular virtual test repository is presented to reduce the number of required
test cases for validation of driving functions by systematic test case generation
with consistent test coverage. This approach improves the overall test process
by using simulation techniques and provides evaluation methods. However, using
this method, generated test cases are derived from predefined parameters which
have impact on the system specification and requirements, scenario catalogues
and existing guidelines and standards. Thus, complex and not yet identified
situations are not taken into account. Stellet et al. [5] summed up challeng-
ing tasks on testing fully automated vehicles and ADAS and worked out, why
automated driving functions cannot be tested by defining system level criteria.
Stellet et al. argue, that “such concepts are too simplistic for future continuously
intervening automated driving functions”. In their work, a number of research
questions are pointed out that remain unanswered to date. One of these questions
is: “How to overcome the dilemma of testing the entire complexity of real-world
traffic?”



From Simulation Data to Test Cases 193

To ensure consistent terminology regarding the terms scene, situation and
scenario we follow the definitions given by Ulbrich et al. in [6]. They reflected
various definitions and pointed out their understanding of the terms with regard
to fully automated driving. Reduced to the key facts and following the definition
given in [6], the terms are described as below:

Scene. “A scene describes a snapshot of the environment including the scenery
and dynamic elements, as well as all actors’ and observers’ self-representations,
and the relationships among those entities [...]”

Situation. “A situation is the entirety of circumstances, which are to be consid-
ered for the selection of an appropriate behavior pattern at a particular point of
time. It entails all relevant conditions, options and determinants for behavior. A
situation is derived from the scene by an information selection and augmentation
process based on transient [...] as well as permanent goals and values. Hence, a
situation is always subjective by representing an element’s point of view.”

Scenario. “A scenario describes the temporal development between several
scenes in a sequence of scenes. Every scenario starts with an initial scene. Actions
and events as well as goals and values may be specified to characterize this tem-
poral development in a scenario. Other than a scene, a scenario spans a certain
amount of time.”

Aim of This Work. This paper drafts a concept to derive system test cases
for black box testing from simulation data. In the first step of this concept, an
environment-sensitive behaviour simulation generates a large quantity of data.
Then, the simulation data is pre-filtered in order to identify traffic situations,
in which dynamic objects may affect the target vehicle. Upon our knowledge,
standalone criticality metrics experience limitations and might not be adequate
for a reasonable rating according virtual test and validation of fully automated
driving functions and ADAS. Thus, the pre-filtered data are rated by a new
factor to extract relevant situations. This new factor can be parametrised by
developer specifications or use case specific targets. Then, identified situations
are described formally and in an abstract way to build up a situation catalogue.
System requirements are linked to the situation catalogue to define test criteria
and derive a test suite from evaluated simulation results using a Domain Specific
Language. The situation catalogue linked to systems requirements represent the
input stimuli for system testing of fully automated vehicles and ADAS. The
generated test cases can be used during typical development stages e.g. Software
in the Loop (SiL), Hardware in the Loop (HiL), etc. A common simulation
environment might be Virtual Test Drive [7].



194 C. Sippl et al.

3 Traffic Conflict Techniques for Fully Automated
Driving

Traffic Conflict Techniques (TCT) have come a long way since they were intro-
duced in the late 1950s. Several studies have been conducted to evaluate traffic
conflicts and criticality metrics have been developed and extensively discussed
since the late 1970s. Amundsen and Hydn [8] defines a conflict as “an observa-
tional situation in which two or more road users approach each other in space
and time to such an extent that a collision is imminent if their movements remain
unchanged”. Time-To-Collision (TTC) [9] and Post-Encroachment-Time (PET)
[10], Deceleration-To-Safety-Time (DST) [11] and various modifications of TTC
and PET like Gap-Time (GT), the Proportion of Stopping Distance (PSD),
Time-To-React, Time-To-Maneuver and Initially-Attempt-Post-Encroachment-
Time (IAPT) became effective measurements for the rating of traffic conflicts
and the development of Collision-Avoidance-System (CAS) and Pre-Crash Sys-
tems (PCS). They are also used in the field of accident research. Rodemerk’s
[12] general criticality criterion represents a collision risk in potential collision
areas, using motion prediction models and the knowledge of the course of the
roadway. Common to all these metrics, they only calculate, whether a collision
or a conflict zone occurs if participating objects do not change their path or
speed. A rating of the traffic situation thus, can only be processed if there is an
imminent conflict or accident.

Fully automated vehicles and ADAS have to process situation analysis and
interpretation. An adequate interpretation is done by taking all relevant dynamic
objects into account. Identifying these situations to process situation analysis
and interpretation, they have to be detected and rated much earlier than known
criticality metrics can provide. So, situations which may look harmless or initially
pose no danger might also be interesting for interpretation, due to environment
reasons and missing or vague traffic guidance. To be able to develop appropri-
ate strategies for fully automated driving, it is necessary to analyse complex
traffic situations at a time, when surrounding objects and their influence to the
target vehicle cannot be assessed by conflict and criticality metrics. Analysing
apparently uncritical, but complex traffic situations is inevitably to quantify a
situation as a whole and further information regarding the environment, objects
and traffic regulations have to be taken into account. A factor to calculate the
influence of surrounding objects and all relevant attributes of a situation to
the target vehicle due to its future actions can be used for a suitable situation
interpretation. This is indispensable for fully automated driving and ADAS,
especially in urban space. In addition, such a criterion enables new techniques
to identify situations in simulation data as well as real traffic data, which will
not be detected using well known conflict and criticality metrics. Junghans and
Saul [13] shows methods to detect atypical situations and actions like U-turn,
driving wiggling lines and traffic violations. As Detzer et al. [14] mentions “atyp-
ical situations refer to incident, which differ from the usual case, but most of
all present a danger to road users”, the situations Junghans and Saul are able



From Simulation Data to Test Cases 195

to detect are caused by driving actions and decisions of human drivers, that in
fully automated vehicle are not allowed to happen.

4 Concept

To derive test cases for fully automated driving and ADAS, we propose a mul-
tilayer concept as pictured in Fig. 1. This concept shows necessary steps from
an environment-sensitive behaviour simulation, an extraction of relevant situa-
tions through to the derivation of executable test cases. As seen in Fig. 1, step
1 shows an environment-sensitive behaviour simulation which generates a large
amount of data. In the next step, the generated data are filtered and individual
situations are rated to extract relevant situations for fully automated driving
and ADAS. Extracted situations are described formally and in a textual, human
understandable way, cf. step 3. In the fourth step, a situation catalogue is build
up with the help of the textual description. The situations of the catalogue
get linked to the formal scenario description. This enables an automated re-
simulation of individual situations afterwards. Using the situation catalogue and
system requirements, a test catalogue including tags to the formal description of
the situation catalogue can be derived as presented in step 5 of Fig. 1. The final
step of this concept is, extracting executable test cases automatically. Figure 1,
step 6 shows a linking to the formal scenario description. Having the tagging of
the derived test cases to the formal description, an automated simulation of the
test cases can be done. From an automation perspective, Step 1 to 4 can be easily
automated with respect to parameter specification (filters, etc.) which need to
be performed manually. The automation level of step 5 will depend on the level
of formalism used within requirements documents. From a todays practitioners
perspective this will be manual work. Step 6 might be automated using various
templates. In the following, the steps are described in detail and open challenges
are given.

4.1 Environment-Sensitive Behaviour Simulation

The first step of this concept is the generation of simulation data using a
probabilistic environment-sensitive behaviour simulation. A belonging scenario
description consists of a logical database for the environment description (e.g.

Fig. 1. Concept for deriving test cases from simulation data.



196 C. Sippl et al.

roads with their type and lanes, lane marking, traffic signs, etc.), dynamic ele-
ments (e.g. pedestrians, cyclists, vehicles, traffic lights), goals and values for
dynamic objects and actions and events (cf. Ulbrich et al. [6]). A scenario descrip-
tion can exist in different formats such as XML or HTML files. All participating
objects pursue individual goals controlled by behaviour models close to reality.
The scenario description, the behaviour models for the dynamic objects and the
logical database for the road network represent the input for the simulation and
the presented method.

A target vehicle continuously moves along defined routes and further dynamic
objects react situationally according to each other and to the target vehi-
cle. Regarding the use case and implemented functions, the subject vehicle
is also able to react situational. Thus, this simulation method with realistic,
environment-sensitive behaviour models tries to model the complexity of real-
world traffic and generates data. These data include probabilistic relevant, not
known situations which have to be tested to ensure full and consistent vali-
dation of highly connected and automated vehicles. This simulation will be
operated continuously and generates data by executing the dynamic elements
plans (actions, paths, events, etc.). As the simulation continues, new situations
will occur, which do not need to be scripted in advance and might represent a
realistic scenario. Thus, randomly generated data might be too extensive to be
analysed manually.

It is possible to include a driving simulator to this environment-sensitive
behaviour simulation. This enables human interactions while the simulation
process. Thus, driving studies in a virtual environment can be done and gener-
ated data can be evaluated afterwards. This overcomes limitations of behaviour
models and a wider range of variations of included situations can be achieved.

The outcome of the simulation run contains states, positions and circum-
stances of every dynamic object and element for every frame. Depending on the
development process and granularity of the used model and functions for the ego
vehicle, the simulation results may also contain sensor views, output of control
units or bus messages. This can be achieved by linking for example a HiL sim-
ulator. These extracted simulation results then are processed by the following
steps of this concept.

Exemplary Situation. In order to acquire a feel for the conceptual approach,
we have taken out an exemplary traffic situation in urban space. Throughout,
this situation will be picked up in the following to exemplify specific steps. The
environment-sensitive behaviour simulation is not restricted to simulate urban
traffic scenarios. Also highway traffic can be simulated.

Exemplary Situation: Urban Traffic. We presuppose a X-intersection (cf. Fig. 2).
The target vehicle (object 1) plans to turn left while the oncoming traffic (object
2) has got a green traffic light signal. Beside that, a pedestrian crossing, also
regulated by traffic lights has got a green traffic light signal too. A pedestrian
(object 3), located on a pedestrian walk leading to the pedestrian crossing, moves
straight forward to the crossing.



From Simulation Data to Test Cases 197

Fig. 2. Exemplary situation which is of importance for situation interpretation and
cannot be detected by well known criticality metrics in case of certain circumstances.
(Color figure online)

Open Challenges. As this environment-sensitive behaviour simulation is able
to produce data, there are some open questions to be answered. To get a better
representation of reality and improve the following overall process, a verifica-
tion has to be done, whether an adequate number and variations of scenes were
generated. A verification can be done in two ways, via logging and checking
afterwards or online analysis. If an online analysis is done, the simulation has
to provide editing specific parameters while it is running. To guarantee a wide
range of relevant situations in the simulation results, it would be conceivable to
include variations during the simulation process. This can be done by automated
editing the behaviour models while the simulation runs or define periodic recur-
ring elements on specific points of the environment and different states of the
behaviour models. Also a challenging task is the reset and roll back of individual
elements during the simulation process, if they run into crashes or deadlocks.

4.2 Extracting Relevant Situations

Pre-filtering. For fully automated vehicles, relevant situations contain all
objects, elements and circumstances that may affect the vehicle in its trajec-
tory planning. As strategy to apply situation analysis and plan future actions,
we suggest the concept of manoeuvre spaces. Manoeuvre spaces describe abut-
ting areas divided by stopping lines and logical points, where traffic guidance
requires an analysis and interpretation of the situations and, if necessary, an
adaptation of the driving actions. Manoeuvre spaces result from existing stop-
ping lines at intersections and lane junctions caused by traffic guidance and
logical stopping points resulting from “turning while conditional compatibility”.
Required information therefore can be extracted from the used logical datasets
(e.g. OpenDrive [15], RoadGraph [16]). For an example, we extracted manoeuvre
spaces for a simulated complex intersection (cf. Fig. 3). The source format was
an XODR-file following the OpenDrive specification. The visualisation was done
by using Unity 3D1.
1 Unity 3D is a game and graphic development platform to build high-quality 2D and

3D games and visualisations [17].



198 C. Sippl et al.

Fig. 3. Extracted manoeuvre spaces (grey surfaces) for a simulated intersection.

After extracting manoeuvre spaces in a defined area or radius around the
subject vehicle, the localisation and association to the traffic lanes is neces-
sary. The objective of the localisation and mapping to its corresponding traffic
lane is to calculate, which lanes are reachable and following the lane of the tar-
get vehicle, if traffic regulations are going to be upheld. This can be expected,
because fully automated vehicles have to act rule-consistently. Furthermore, as
fully automated vehicles already know their actual route, only traffic lanes along
the planned route have to be taken into account.

Simultaneously, all dynamic objects and elements have to be extracted and
included. After that, the detected objects will be mapped to their related traf-
fic lane or (traffic) surface, similar to the mapping of the subject vehicle to
its traffic lane. Then, for every object an estimation for future trajectories or
future occupied areas will be calculated. This is done by using motion predic-
tion models (cf. [18–23]). Using motion prediction models afterwards, instead
of using the implemented behaviour model for simulation, for pre-filtering has
got advantages. Motion prediction models give different results than simulation
behaviour models. Behaviour models take their surrounding and circumstances
into account and plan their actions situationally. Motion prediction models esti-
mate possible trajectories and future occupied areas on the basis of observed
behaviour and give multiple estimated actions, assessed by a probability value.
Due to use case or developer requirements, motion prediction models should be
able to be adapted, e.g. how they take traffic light states and traffic regulations
into account.

In conjunction with a defined temporal forecast, one can figure out poten-
tial overlapping zones with the computed manoeuvre spaces of the subject car.
By having this information, the current scene can be reduced to its relevant
objects according to a defined temporal forecast. The filtered situation now rep-
resents the relevant dynamic objects for the target vehicle and in which future
manoeuvre it might be influenced by other objects.

The pre-filtering parameters can be edited by the developer in a configuration
file. Using this, specific requirements or use cases can be included and different
types of situations can be identified. It is possible, taking only pedestrians, other
vehicles or cyclists into account or reduce the simulation results due to specific



From Simulation Data to Test Cases 199

traffic routes or environments like intersections, pedestrian crosswalks, acceler-
ation lanes, traffic light regulations, etc. It is also possible to filter individual
situations, e.g. targets vehicles camera field of view. Situations can be found,
where e.g. a defined number of pedestrians are in the field of view of the camera
or dynamic objects have a defined orientation to the target vehicle.

Rating Traffic Situations. The influence of identified relevant objects to
the target vehicle is calculated by extracting the information when overlapping
manoeuvre spaces will be reached by the target vehicle. The extracted time will
be adapted to the estimated motions of the dynamic objects and a probabil-
ity of occupancy can be calculated. The exact definition and calculation of the
probability of occupancy will be part of a future publication. So, every manoeu-
vre space gets a probability for being occupied by a dynamic object when the
target car approaches. A calculated high probability of occupancy for a manoeu-
vre space at a specific point of time does not imply, that this manoeuvre space
was crossed by a dynamic object in the further simulation process. It merely
indicates, that this situation would have been of importance for the situation
analysis and interpretation at a certain point of time. By having a probability
and the extracted time when the target vehicle will reach the manoeuvre space,
developers have the possibility to filter the simulation data due to a tempo-
ral forecast or a pre-defined probability of occupancy will be exceeded. To pick
up the thought of an evaluation framework, the probability of occupancy can
be expanded by including worst case assumptions like traffic rule violation and
atypical behaviour. Furthermore, the probability of occupancy can be linked or
expanded by already known criticality metrics, if a collision course exists by
estimated trajectories of the dynamic objects.

Exemplary Situation: Identify the Situation. Known criticality metrics cannot
rate the exemplary situation (cf. Sect. 4.1, Fig. 2), if the target vehicle is standing
or driving with a certain speed, because an imminent collision does not exist. This
situation, is of importance for situation interpretation, because of various ways
to challenge this traffic situation and plan future actions. For example, the target
vehicle waits until the oncoming traffic has passed, then continues the planned
route with enough speed to pass the pedestrian walk, before the pedestrian
reaches the crosswalk. Another possibility is to wait until both objects (2 and 3)
have passed. Applying motion prediction models and the concept of manoeuvre
spaces, this situation will be identified as relevant. Concerning the used motion
prediction model, the estimated trajectory of the pedestrian (object 3) will cross
the planned trajectory of the target vehicle (object 1). Also the oncoming traffic
(object 2) will intersect the planned trajectory of the target vehicle. For this
situation a high probability of occupancy will be calculated and the situation
will be automatically detected.

Executing Relevant Situations. After pre-filtering and rating situations
according to the use case or developer specifications, relevant situations have to



200 C. Sippl et al.

be extracted. Therefore, the probability of the occupancy (and possibly a linked
criticality metric) can be seen as a search criterion, which has to be parametrized
by the developer. So, situations which exceed a defined value of probability or
criticality can be found and extracted from a huge amount of simulation results.
In order to get the outset of the situation, the related scene has to be reduced to
its relevant objects and circumstances. Decisions of actions of the participating
objects (cf. Ulbrich et al. [6]) have to be taken into account.

Open Challenges. As the concepts allows filtering and extracting relevant
situations for interpretation, there are still some limitations. If multiple dynamic
objects in one situation are viewed on their own and might be rated as “not
relevant”, certain circumstances of these objects and their combination might
be relevant for situation interpretation. Also a specific sequence of events, like
atypical behaviour, might become interesting for situation analysis. An open
task is to extend the suggested concept, to be able to detect such situations or
sequences of events.

4.3 Describing Executed Situations

Formal Situation Description. After the extraction of relevant situations
from simulation data, the situations have to be described formally to enable fur-
ther automated processing like comparison to other situations. A formal descrip-
tion for situations consists of the sum of its elements, its corresponding concre-
tised parameters and the sequence of events. A formal description language may
follow a scheme like the one given by Geyer et al. in [24].

Exemplary Situation: Formal Description. As an example for a formal descrip-
tion of the exemplary situation we used a XML based format. Because this
example should demonstrate how a formal description can be done, the descrip-
tion of the situation is reduced to the key facts:

<!DOCTYPE FORMAL DESCRIPTION SITUATION #1>
<infrastructure>

<trafficlight name="tl1" type="simple"
pos="45,25,4" state="green"/>

<trafficlight name="tl2" type="advanced"
pos="-45,20,4" state="green"/>

<trafficsign type="stop" pos="45,-25,3"/>
<trafficsign type="stop" pos="-45,25,3"/>

</infrastructure>
<dynamic>

<person name="p1" pos="-45,-30,2" direction="2" speed="1.5"/>
<car name="car1" pos="50,20,2" direction="3" speed="20"/>
<car name="car2" pos="-50,-20,2" direction="2" speed="10"/>

</dynamic>



From Simulation Data to Test Cases 201

Abstract Situation Description. To be better understandable by humans, we
recommend a textual description generated from the formal scenario description
(cf. Fig. 1, step 3). An advantage of a textual description of a relevant situation
is, that additional information (e.g. obstacle in lane, vehicles in front in the same
lane, traffic light states, ...) in plain text can be added. This textual description
is tagged with the formal scenario description. So, predefined scenario element
sets (e.g. traffic jam, cut in object, pedestrian crosswalks) for re-simulation,
readable in an easy way for developer, can be executed. Using scenario based
development, intended system behaviour for re-simulation and test cases can
directly be derived, based on the abstract situation description in combination
with the tagged formal scenario description.

Exemplary Situation: Textual Description. After generating the formal descrip-
tion, a textual and human understandable description of the identified situation
can be extracted automatically. For an example, a textual description of the
exemplary situation may look like the following:

TEXTUAL DESCRIPTION SITUATION #1:
Crossing situation with

2 traffic lights,
2 road signs,
2 cars,
1 person.

Lane 1 consists of
2 traffic lights at (45,25,4|-45,20,4)

with the states (green|green).
2 cars at (50,20,2|-50,-20,2)

with direction (4|2+3) and speed (20|10).
Lane 2 consists of

2 road signs (stop|stop) at (45,-25,3|-45,25,3).
A person at (-45,-30,2)

with direction (2) and speed (1.5)
is crossing lane 2.

Beside extracting the formal and abstract description out of the simulation
results, it is possible to generate an illustration of the identified situation (cf.
Fig. 4 for our exemplary situation). Therefore, the logical database is used to gen-
erate the infrastructure representation. Dynamic objects and elements, including
their positions, then can be embedded.

Situation Catalogue. Using the abstract, textual and human understandable
description, a situation catalogue can be build up (cf. Fig. 1, step 4). As the
situation catalogue should be dynamically extendible, new situations have to
be compared with the existing set of situations. For this purpose, the tagged
formal description can be used for automated comparison and evaluation of the
catalogue. We also suggest a classification of the collected situations by driving



202 C. Sippl et al.

Fig. 4. Generated illustration of the exemplary situation using the logical database
and the formal description.

actions, developer specific demands or use cases. Uncertainty in classifying a
situation can be handled by identifying corresponding elements, parameters and
events of the formal description. The built up situation catalogue claims what a
system for automated driving has to manage.

Open Challenges. Establishing formal and abstract description languages and
building up a suitable situation catalogue implies some open and challenging
tasks. A situation can be described by ambiguous possibilities and in differ-
ent ways. A sufficient large description language has to be found to display all
necessary information. On the contrary, a description language has to be of man-
ageable scale and variety, to assure efficient search, classification and evaluation
of situations. In consequence, an appropriate selection of the abstraction level
and choice of relevant elements and parameters is inevitable.

4.4 Build up Test Catalogue

Linking to System Requirements. To maintain a certain degree of trace-
ability, links between each situation listed in the situation catalogue and the
related system requirements have to be created and documented. This enables
the user to view the requirements which are relevant for a specific situation, as
well as to filter all situations covering a particular set of requirements. Addi-
tionally, situations or requirements with no established links can be identified to
guarantee the integrity of the system. Textual requirements are either written
in a natural language or in a formal way. Especially in the automotive domain,
a natural language is often chosen as primary solution, because the specifier can



From Simulation Data to Test Cases 203

stick to familiar descriptions and phrases. Formal styles are much more labori-
ous to get used to. A link between the requirements and the situation catalogue
can be established in form of a requirement identifier reference embedded in the
situation description and the tool-supported tracing of these connections.

Exemplary Situation: Requirement. System requirements to handle the exem-
plary situation may have the following form:

REQUIREMENTS FOR SITUATION #1:
#1: If Ego turns left, the system has to give way to

oncoming traffic.
#2: If Ego turns into a lane, the system has to give

way to crossing pedestrians and cyclists.
#3: In give way situations, the system has to stop in front of

relevant conflict zones until a safe passing is possible.

Deriving Test Cases. After establishing the links, test cases have to be created
to be able to test the system. This can be done by hand, which requires the test
engineer to review and understand the requirements and the situations, which is
prone to errors and misinterpretations. A better solution is to partly automatize
the test case creation. In our case, both the requirements and the situation
catalogue are textual, which advices a textual generation technique.

A Domain-Specific Language (DSL) is a programming language limited to
a specific domain and capable of automatically generating diverse textual and
graphical artefacts (cf. Fig. 5). Such artefacts include, for example, diagrams,
models and even source code in different general purpose languages (e.g. C++).
Although DSLs can be graphical as well, the textual nature of our source docu-
ments leads to a textual DSL as optimal solution.

This textual DSL can directly use syntax and semantics of the situation
catalogue and the system requirements. An automatic interpretation of both
documents is possible, although it might be challenging. The feasibility of this
automatism has to be examined in detail and will be part of a future publication.
The advantage of this approach is the maintenance of the readability for humans
and the usage of already specified patterns. The DSL then aggregates all relevant
information out of the situations and requirements and generates predefined
artefacts. The main type of artefact in our case are the test cases extracted

Fig. 5. DSL workflow for test case generation.



204 C. Sippl et al.

out of the situations, which then can be used in manual and automated system
testing. Additionally, the test cases and the related results can be reintegrated,
tagged and included in other environment-sensitive behaviour simulations. This
can be done automatically, due to the fact that the derived test cases from the
situation catalogue are tagged with a formal description.

Exemplary Situation: Executable Test Case. Using the extracted descriptions
and the system requirement, test cases for all relevant objects of the situation can
be generated automatically. The range of the parameters can differ depending on
predefined legal or technical constraints. For our exemplary situation, the test
case may have the following form and range of parameters:

TEST CASE #1, SITUATION #1:
RANGE OF PARAMS:

p1: speed=[0;8]
car1: speed=[0;30]
car2: speed=[0;50]

EXPECTED SYSTEM BEHAVIOUR:
The system should turn left on lane 2.

TEST CRITERIA:
Does the target vehicle give way to the vehicle and pedestrian?

Open Challenges. Our presented concept derives test cases, but no real test
oracle. The comparison of the system behaviour to the extracted test criteria can
be potentially automated, but will not be considered here. A further issue that
needs to be solved, is how an automated valuation method can be set up. Up
today a human test expert has to rate every situation. A first implementation of
a test oracle might be to define a passed test case as preventing a collision with
other objects.

5 Conclusion and Future Work

We discussed well known criticality metrics regarding their usability in the field
of rating traffic situations and pointed out, why their use for fully automated
vehicles and ADAS is not sufficient. Fully automated vehicles and ADAS have
to analyse and interpret traffic situations at every point of time. Thus, relevant
situations have to be identified to ensure full testing and validation. Virtual sim-
ulation methods are getting more important and are producing a large quantity
of data. The challenge thereby is to be able to execute relevant situations and
derive test cases. As a solution, we suggest a multilayer model concept to filter
simulation data, rate relevant situations, transfer them to a situation catalogue
and derive executable test cases. Using DSLs, situations can be presented in a for-
mal and textual, human understandable way and linked to system requirements.
This enables a throughout automation for deriving test cases from simulation
data. To demonstrate the benefit of this approach, an exemplary situation was



From Simulation Data to Test Cases 205

taken out and picked up consistently to exemplify specific steps of this concept.
Figure 1 presents a good overview to our approach.

Future work will contain an exact definition of the probability of occupancy
and its parametrization. Further parameters like traffic rule violation and atypi-
cal behaviour are going to be included, to cover more specific developer require-
ments and get a more detailed rating of the situation executing framework.
Beside that, we are working on an appropriate formal and abstract description
capable of building up the situation catalogue and using a DSL to automatically
link the requirements and derive executable test cases.

References

1. Eo, J.S., Choi, H.R., Gao, R., Lee, S., Wong, W.E.: Case study of requirements-
based test case generation on an automotive domain. In: 2015 IEEE International
Conference on Software Quality, Reliability and Security - Companion, pp. 210–
215. IEEE Press (2015)

2. Zofka, R.M., Kuhnt, F., Kohlhaas, R., et al.: Data-driven simulation and para-
metrization of traffic scenarios for the development of advanced driver assistance
systems. In: 18th International Conference on Information Fusion, pp. 1422–1428.
IEEE Press, Washington DC (2015)

3. Schuldt, F., Menzel, T.: Eine Methode für die Zuordnung von Testfällen
für automatisierte Fahrfunktionen auf X-in-the-Loop Verfahren im modularen
virtuellen Testbaukasten. In: 10. Uni-DAS e.V. Workshop Fahrerassistenzsysteme
2015, pp. 1–12. Uni-DAS e.V., Walting (2015)

4. Schuldt, F., Lichte, B., Maurer, M., Scholz, S.: Systematische Auswertung von
Testfällen für Fahrfunktionen im modularen virtuellen Testbaukasten. In: 9. Uni-
DAS e.V. Workshop Fahrerassistenzsysteme 2014, pp. 169–179. Uni-DAS e.V.,
Walting (2014)

5. Stellet, J., Zöllner, J.M., Schumacher, J., et al.: Testing of advanced driver assis-
tance towards automated driving: a survey and taxonomy on existing approaches
and open questions. In: 2015 IEEE 18th International Conference on Intelligent
Transportation Systems, pp. 1455–1462. IEEE Press (2015)

6. Ulbrich, S., Menzel, T., Reschka, A., et al.: Defining and substantiating the terms
scene, situation, and scenario for automated driving. In: 2015 IEEE 18th Interna-
tional Conference on Intelligent Transportation Systems, pp. 982–988. IEEE Press,
Las Palmas (2015)

7. Vires Simulationstechnologie GmbH: Virtual Test Drive User Manual (2014).
https://www.vires.com/docs/VIRES VTD Overview 201403.pdf

8. Amundsen, F., Hydn, C. (eds.): Proceedings of the First Workshop on Traffic
Conflicts. Institute of Transport Economics Oslo and LTH Lund (1977)

9. Hayward, J.C.: Near miss determination through use of a scale of danger. Highw.
Res. Rec. 384, 24–34 (1972). (The Pennsylvania State University, Pennsylvania)

10. Allen, B.L., Shin, B.T., Cooper, P.J.: Analysis of traffic conflict collisions. Transp.
Res. Rec. 667, 67–74 (1978). (National Research Council, Washington D.C.)

11. Hupfer, C.: Deceleration to safety time (DST) - a useful figure to evaluate traffic
safety. In: ICTCT Conference Proceedings of Seminar 3, Department of Traffic
Planning and Engineering, Lund (1997)

https://www.vires.com/docs/VIRES_VTD_Overview_201403.pdf


206 C. Sippl et al.

12. Rodemerk, C., Habenicht, S., Weitzel, A., et al.: Development of a general criti-
cality criterion for the risk estimation of driving situations and its application to
a maneuver-based lane change assistance system Claas. In: IV. IEEE Intelligent
Vehicles Symposium, pp. 264–269. IEEE Press, Alcala de Henares (2012)

13. Junghans, M., Saul, H.: Chances for the evaluation of the traffic safety risk
at intersections by novel methods. In: VII. Russisch-Deutsche Konferenz für
Verkehrssicherheit, pp. 60–67. Sankt Petersburg (2014)

14. Detzer, S., Junghans, M., Kozempel, K., Saul, H.: Analysis of traffic safety for
cyclists - an automatic detection of critical traffic situations of cyclists. In: 20th
International Conference on Urban Transport and the Built Environment, pp. 491–
503. WIT Press, Portugal (2014)

15. Dupuis, M., et al.: OpenDRIVE Format Specification, Rev. 1.4 (2015)
16. Knaup, J., Homeier, K.: RoadGraph - graph based environmental modelling and

function independent situation analysis for driver assistance systems. In: 13th Inter-
national IEEE Annual Conference on Intelligent Transportation Systems, pp. 428–
432. IEEE Press, Madeira Island (2010)

17. Unity Technologies Website. http://unity3d.com/
18. Bonnin, S., Weisswange, T.H., Kummert, F., Schmuedderich, J.: Pedestrian cross-

ing prediction using multiple context-based models. In: 2014 IEEE 17th Inter-
national Conference on Intelligent Transportation Systems (ITSC), pp. 378–385.
IEEE Press, Qingdao (2014)

19. Meyer-Delius, D., Sturm, J., Burgard, W.: Regression-based online situation recog-
nition for vehicular traffic scenarios. In: 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2009, pp. 1711–1716. IEEE Press, St.
Louis (2009)

20. Schneider, N., Gavrila, D.M.: Pedestrian path prediction with recursive Bayesian
filters: a comparative study. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR
2013. LNCS, vol. 8142, pp. 174–183. Springer, Heidelberg (2013)

21. Ziebart, B., Ratliff, N., Gallagher, G., Peterson, K.: Planning-based prediction for
pedestrians. In: Proceedings of the 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3931–3936. IEEE Press, St. Louis (2009)

22. Rehder, E., Kl, H., Stiller, C.: Planungsbasierte Fußgängerprädiktion. In: 10. Uni-
DAS e.V. Workshop Fahrerassistenzsysteme, pp. 129–138, Uni-DAS e.V., Walting
(2015)

23. Quintero, R., Parra, I., Llorca, D.F., Sotelo, M.A.: Pedestrian path prediction based
on body language and action classification. In: 2014 IEEE 17th International Con-
ference on Intelligent Transportation Systems (ITSC), pp. 679–684. IEEE Press,
Qingdao (2014)

24. Geyer, S., Baltzer, M., Franz, B., et al.: Concept and development of a unified
ontology for generating test and use-case catalogues for assisted and automated
vehicle guidance. IET Intell. Transp. Syst. 8, 183–189 (2014)

http://unity3d.com/


Short Contributions



Searching Critical Values for Floating-Point
Programs

Hélène Collavizza, Claude Michel, and Michel Rueher(B)

University of Nice–Sophia Antipolis, I3S/CNRS BP 121,
06903 Sophia Antipolis Cedex, France

{helene.collavizza,claude.michel,michel.rueher}@unice.fr

Abstract. Programs with floating-point computations are often derived
from mathematical models or designed with the semantics of the real
numbers in mind. However, for a given input, the computed path with
floating-point numbers may significantly differ from the path correspond-
ing to the same computation with real numbers. As a consequence, devel-
opers do not know whether the program can actually produce very unex-
pected outputs. We introduce here a new constraint-based approach that
searches for test cases in the part of the over-approximation where errors
due to floating-point arithmetic could lead to unexpected decisions.

1 Introduction

In numerous applications, programs with floating-point computations are derived
from mathematical models over the real numbers. However, computations on
floating-point numbers are different from calculations in an idealised semantics1 of
real numbers [8]. For some values of the input variables, the result of a sequence of
operations over the floating-point numbers can be significantly different from the
result of the corresponding mathematical operations over the real numbers. As a
consequence, the computed path with floating-point numbers may differ from the
path corresponding to the same computation with real numbers. This can entail
wrong outputs and dangerous decisions of critical systems. That’s why identifying
these values is a crucial issue for programs controlling critical systems.

Abstract interpretation based error analysis [3] of finite precision implemen-
tations computes an over-approximation of the errors due to floating-point oper-
ations. The point is that state-of-the-art tools [6] may generate numerous false
alarms. In [16], we introduced a hybrid approach combining abstract interpre-
tation and constraint programming techniques that reduces the number of false
alarms. However, the remaining false alarms are very embarrassing since we
cannot know whether the predicted unstable behaviors will occur with actual
data.

1 That’s to say, computations as close as possible to the mathematical semantics of
the real numbers; for instance, computations with arbitrary precision or computer
algebra systems.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 209–217, 2016.
DOI: 10.1007/978-3-319-47443-4 13



210 H. Collavizza et al.

More formally, consider a program P , a set of intervals I defining the expected
input values of P , and an output variable x of P on which depend critical deci-
sions, e.g., activating an anti-lock braking system. Let [x

R
, xR] be a sharp approx-

imation over the set of real numbers R of the domain of variable x for any input
of P . [x

F
, xF] stands for the domain of variable x in the over-approximation com-

puted over the set of floating-point F for input values of I. The range [x
R
, xR]

can be determined by calculation or from physical limits. It includes a small tol-
erance to take into account approximation errors, e.g. measurement, statistical,
or even floating-point arithmetic errors. This tolerance – specified by the user
– defines an acceptable loss of accuracy between the value computed over the
floating-point numbers and the value calculated over the real numbers. Values
outside the interval [x

R
, xR] can lead a program to misbehave, e.g. take a wrong

branch in the control flow.
The problem we address in this paper consists of verifying whether there exist

critical values in I for which the program can actually produce a result value
of x inside the suspicious intervals [x

F
, x

R
) and (xR, xF]. To handle this prob-

lem, we introduce a new constraint-based approach that searches for test cases
that hit the suspicious intervals in programs with floating-point computations.
In other words, our framework reduces this test case generation problem to a
constraint-solving problem over the floating-point numbers where the domain
of a critical decision variable has been shrunk to a suspicious interval. A con-
straint solver – based on filtering techniques designed to handle constraints over
floating-point numbers – is used to search values for the input data. Preliminary
results of experiments on small programs with classical floating-point errors are
encouraging.

The CPBPV FP, the system we developed, outperforms generate and test
methods for programs with more than one input variable. Moreover, these search
strategies can prove in many cases that no critical value exists.

2 Motivating Example

Before going into the details, we illustrate our approach on a small example.
Assume we want to compute the area of a triangle from the lengths of its sides
a, b, and c with Heron’s formula:

√
s ∗ (s − a) ∗ (s − b) ∗ (s − c)

where s = (a+ b+ c)/2. The C program in Fig. 1 implements this formula, when
a is the longest side of the triangle.

The test of line 5 ensures that the given lengths form a valid triangle.
Now, suppose that the input domains are a ∈ [5, 10] and b, c ∈ [0, 5]. Over the

real numbers, s is greater than any of the sides of the triangle and squared_area

cannot be negative. Moreover, squared_area cannot be greater than 156.25 over
the real numbers since the triangle area is maximized for a right triangle with



Searching Critical Values for Floating-Point Programs 211

1 /∗ Pre−condition : a ≥ b and a ≥ c ∗/
2 float heron(float a, float b, float c) {

3 float s, squared_area;

4 squared_area = 0.0f;

5 if (a <= b + c) {

6 s = (a + b + c) / 2.0f;

7 squared_area = s*(s-a)*(s-b)*(s-c);

8 }

9 return sqrt(squared_area);

10 }

Fig. 1. Heron

b = c = 5 and a = 5
√

2. However, these properties may not hold over the floating-
point numbers because absorption and cancellation phenomena can occur2.

Tools performing value analysis over the floating-point numbers [6,15]
approximate the domain of squared_area to the interval [−1262.21, 979.01]. Since
this domain is an over-approximation, we do not know whether input values lead-
ing to squared_area < 0 or squared_area > 156.25 actually exist. Note that input
domains –here a ∈ [5,10] and b, c ∈ [0,5]– are usually provided by the user.

Assume the value of the tolerance3 ε is 10−5, the suspicious intervals for
squared_area are [−1262.21,−10−5) and (156.25001, 979.01]. CPBPV FP, the
system we developed, generated test cases for both intervals:

– a = 5.517474, b = 4.7105823, c = 0.8068917, and squared_area equals−1.000
0001 · 10−5;

– a = 7.072597, b = c = 5, and squared_area equals 156.25003.

CPBPV FP could also prove the absence of test cases for a tolerance ε =
10−3 with squared_area > 156.25 + ε.

In order to limit the loss of accuracy due to cancellation [8], line 7 of Heron’s
program can be rewritten as follows:

squared_area = ((a+(b+c))*(c-(a-b))*(c+(a-b))*(a+(b-c)))/16.0f;

However, there are still some problems with this optimized program. Indeed,
CPBPV FP found the test case a = 7.0755463, b = 4.350216, c = 2.72533,
and squared_area equals −1.0000001 · 10−5 for interval [−1262.21,−10−5) of
squared_area. There are no more problems in the interval (156.25001, 979.01]
and CPBPV FP did prove it.

2 Let’s remind that absorption in an addition occurs when adding two numbers of
very different order of magnitude, and the result is the value of the biggest number,
i.e., when x + y with y �= 0 yields x. Cancellation occurs in s − a when s is so close
to a that the subtraction cancels most of the significant digits of s and a.

3 Note that even this small tolerance may lead to an exception in statement 9.



212 H. Collavizza et al.

3 Framework for Generating Test Cases

This section details the framework we designed to generate test cases reaching
suspicious intervals for a variable x in a program P with floating-point compu-
tations.

The kernel of our framework is FPCS [1,12–14], a solver for constraints
over the floating-point numbers; that’s to say a symbolic execution approach for
floating-point problems which combines interval propagation with explicit search
for satisfiable floating-point assignments. FPCS is used inside the CPBPV
bounded model checking framework [5]. CPBPV FP is the adaptation of
CPBPV for generating test cases that hit the suspicious intervals in programs
with floating-point computations.

The inputs of CPBPV FP are: P , an annotated program; a critical test ct
for variable x; [x

F
, x

R
) or (xR, xF], a suspicious interval for x. Annotations of P

specify the range of the input variables of P as well as the suspicious interval
for x. The latter assertion is just posted before the critical test ct.

To compute the suspicious interval for x, we approximate the domain of
x over the real numbers by [x

R
, xR], and over the floating-point numbers by

[x
F
, xF]. These approximations are computed with rAiCp [16], a hybrid system

that combines abstract interpretation and constraint programming techniques
in a single static and automatic analysis. The current implementation of rAiCp
is based upon the abstract interpreter Fluctuat [6], the constraint solver over
the reals RealPaver [10] and FPCS. The suspicious intervals for variable x are
denoted [x

F
, x

R
) and (xR, xF].

CPBPV FP performs first some pre-processing: P is transformed into DSA-
like form4. If the program contains loops, CPBPV FP unfolds loops k times
where k is a user specified constant. Loops are handled in CPBPV and rAiCp
with standard unfolding and abstraction techniques5. So, there are no more loops
in the program when we start the constraint generation process. Standard slicing
operations are also performed to reduce the size of the control flow graph.

In a second step, CPBPV FP searches for executable paths reaching ct. For
each of these paths, the collected constraints are sent to FPCS, which solves
the corresponding constraint systems over the floating point numbers. FPCS
returns either a satisfiable instantiation of the input variables of P , or ∅.
As said before, FPCS [1,12–14] is a constraint solver designed to solve a set of
constraints over floating-point numbers without losing any solution. It uses 2B-
consistency along with projection functions adapted to floating-point arithmetic
[1,13] to filter constraints over the floating-point numbers. FPCS also provides
stronger consistencies like kB-consistencies, which allow better filtering results.

The search of solutions in constraint systems over floating numbers is trickier
than the standard bisection-based search in constraint systems over intervals of

4 DSA stands for Dynamic Single Assignment. In DSA-like form, all variables are
assigned exactly once in each execution path.

5 In bounded model checking, k is usually increased until a counter-example is found
or until the number of time units is large enough for the application.



Searching Critical Values for Floating-Point Programs 213

real numbers. Thus, we have also implemented different strategies combining
selection of specific points and pruning. Details on theses strategies are given in
the experiments section.

CPBPV FP ends up with one of the following results:

– a test case proving that P can produce a suspicious value for x;
– a proof that no test case reaching the suspicious interval can be generated: this

is the case if the loops in P cannot be unfolded beyond the bound k (See [5]
for details on bounded unfolding) ;

– an inconclusive answer: no test case could be generated but the loops in P
could be unfolded beyond the bound k. In other words, the process is incom-
plete and we cannot conclude whether P may produce a suspicious value.

4 Preliminary Experiments

We experimented with CPBPV FP on six small programs with cancellation and
absorption phenomena, two very common pitfalls of floating-point arithmetic.
The benchmarks are listed in the first two columns of Table 1.

First two benchmarks concern the heron program and the optimized heron
program with the suspicious intervals described in the Sect. 1.

Program slope (see Fig. 2) approximates the derivative of the square function
f(x) = x2 at a given point x0. More precisely, it computes the slope of a nearby
secant line with a finite difference quotient: f ′(x0) ≈ f(x0+h)−f(x0−h)

2h . Over the
real numbers, the smaller h is, the more accurate the formula is. For this function,
the derivative is given by f ′(x) = 2x which yields exactly 26 for x = 13. Over
the floats, Fluctuat [6] approximates the return value of the slope program to
the interval [0, 25943] when h ∈ [10−6, 10−3] and x0 = 13.

float slope(float x0, float h) {

float x1 = x0 + h; float x2 = x0 - h;

float fx1 = x1*x1; float fx2 = x2*x2;

float res = (fx1 - fx2) / (2.0*h);

return res;

}

Fig. 2. Approximation of the derivative of x2 by a slope

Program polynomial in Fig. 3 illustrates an absorption phenomenon. It com-
putes the polynomial (a2+b+10−5)∗c. For input domains a ∈ [103, 104], b ∈ [0, 1]
and c ∈ [103, 104], the minimum value of the polynomial over the real numbers
is equal to 1000000000.01.

simple interpolator and simple square are two benches extracted from
[9]. The first bench computes an interpolator, affine by sub-intervals while the
second is a rewrite of a square root function used in an industrial context.



214 H. Collavizza et al.

float polynomial(float a, float b, float c) {

float poly = (a*a + b + 1e-5f) * c;

return poly;

}

Fig. 3. Computation of polynomial (a2 + b + 10−5) ∗ c

All experiments were done on an Intel Core 2 Duo at 2.8 GHz with 4 GB
of memory running 64-bit Linux. We assume C programs handling IEEE 754
compliant floating-point arithmetic, intended to be compiled with GCC without
any optimization option and run on a x86 64 architecture managed by a 64-
bit Linux operating system. Rounding mode was to the nearest, i.e., where ties
round to the nearest even digit in the required position.

4.1 Strategies and Solvers

We run CPBPV FP with the following search strategies for the FPCS solver:

– std: standard prune &bisection-based search used in constraint-systems over
intervals: splits the selected variable domain in two domains of equal size;

– fpc: splits the domain of the selected variable in five intervals:
• Three degenerated intervals containing only a single floating point number:

the smallest float l, the largest float r, and the mid-point m;
• Two open intervals (l,m) and (m, r);

– fp3s: selects 3 degenerated intervals containing only a single floating point
number: the smallest float l, the largest float r, and the mid-point m. Hence,
fp3s is an incomplete method that might miss some solutions.

For all these strategies, we select first the variables with the largest domain
and we perform a 3B−consistency filtering step before starting the splitting
process.

We compared CPBPV FP with CBMC [4] and CDFL [7], two state-of-the-
art software bounded model checkers based on SAT solvers that are able to deal
with floating-point computations. We also run a simple generate & test strategy:
the program is run with randomly generated input values and we test whether
the result is inside the suspicious interval. The process is stopped as soon as a
test case hitting the suspicious interval is found.

4.2 Results

Table 1 reports the results for the other strategies and solvers. Since strategy
fpc3s is incomplete, we indicate whether a test case was found or not. Column
s? specifies whether a test case actually exists. Note that the computation times
of CBMC and CDFL include the pre-processing time for generating the con-
straint systems; the pre-processing time required by CPBPV is around 0.6 s but
CPBPV is a non-optimised system written in java.



Searching Critical Values for Floating-Point Programs 215

Table 1. Results of the different solvers and strategies on the benchmarks

Name Condition CDFL CBMC std fpc fpc3s s?

heron area < 10−5 3.874 s 0.280 s >180 0.705 0.022 (n) y

area > 156.25 + 10−5 > 180 s 34.512 s 22.323 7.804 0.083 (n) y

optimized_heron area < 10−5 7.618 s 0.932 s >180 0.148 0.022 (n) y

area > 156.25 + 10−5 > 180 s >180 s 8.988 30.477 0.101 (n) n

slope with dh < 26.0 − 1.0 2.014 s 1.548 s 0.021 0.012 0.012 (y) y

h ∈ [10−6, 10−3] dh > 26.0 + 1.0 1.599 s 0.653 s 0.055 0.011 0.011 (y) y

dh < 26.0 − 10.0 0.715 s 1.108 s 0.006 0.006 0.007 (n) n

dh > 26.0 + 10.0 1.025 s 1.080 s 0.006 0.006 0.006 (n) n

polynomial r < 109 +

0.0099999904 − 10−3
0.170 s 0.295 s 0.022 0.006 0.006 (y) y

simple_interpolator res < −10−5 0.296 s 0.264 s 0.018 0.012 0.012 (y) y

simple_square S > 1.453125 −− 1.079 s 0.012 0.012 0.012 (n) n

5 Discussion

5.1 Results Analysis

The generate & test strategy behaves quite well on programs with only one input
variable when a test case exists but it is unable to find any test case for programs
with more than one input variable. More precisely, it found a test case in less
than 0.008 s for the 6 suspicious intervals of program slope and for program
simple_interpolator. The generate & test strategy failed to find a test within
180 s in all other cases. Of course, this strategy cannot show that there is no test
case reaching the suspicious interval; so, it is of little interest here.

Strategy fpc is definitely the most efficient and most robust one on all these
benchmarks. Note that CBMC and CDFL could neither handle the initial, nor
the optimized version of program heron in a timeout of 20 min whereas FPCS
found solutions in a reasonable time.

These preliminary results are very encouraging: they show that CPBPV FP
is effective for generating test cases for suspicious values outside the range of
acceptable values on small programs with classical floating-point errors. More
importantly, a strong point of CPBPV FP is definitely its refutation capabili-
ties.

Of course, experiments on more significant benchmarks and on real appli-
cations are still necessary to evaluate the full capabilities and limits of
CPBPV FP.

5.2 Related and Further Work

The goals of software bounded model checkers based on SAT solvers are close
to our approach. The point is that SAT solvers tend to be inefficient on these
problems due to the size of the domains of floating-point variables and the cost of
bit-vector operations [7]. CDFL [7] tries to address this issue by embedding an
abstract domain in the conflict driven clause learning algorithm of a SAT solver.



216 H. Collavizza et al.

SAT solvers often use bitwise representations of numerical operations, which may
be very expensive (e.g., thousands of variables for one equation in CDFL). Brain
et al. [2,11] have recently introduced a bit-precise decision procedure for the the-
ory of floating-point arithmetic. The core of their approach is a generalization of
the conflict-driven clause-learning algorithm used in modern SAT solvers. Their
technique is significantly faster than a bit-vector encoding approach. Note that
the constraint programming techniques used in our approach are better suited to
generate several test cases than these SAT-based approaches. The advantage of
CP is that it provides a uniform framework for representing and handling inte-
gers, real numbers and floats. A new abstract-interpretation based robustness
analysis of finite precision implementations has recently been proposed [9] for
sound rounding error propagation in a given path in presence of unstable tests.

A close connection between our floating-point solvers and the two above-
mentioned approaches is certainly worth exploring.

A second direction for further work concerns the integration of our constraint-
based approach with new abstract-interpretation based robustness analysis of
finite precision implementations for sound rounding error propagation in a given
path in presence of unstable tests.

Acknowledgments. This work was partially supported by ANR COVERIF (ANR-
15-CE25-0002).

References

1. Botella, B., Gotlieb, A., Michel, C.: Symbolic execution of floating-point compu-
tations. Softw. Test. Verif. Reliab. 16(2), 97–121 (2006)

2. Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Interpolation-based
verification of floating-point programs with abstract CDCL. In: Fähndrich, M.,
Logozzo, F. (eds.) Static Analysis. LNCS, vol. 7935, pp. 412–432. Springer,
Heidelberg (2013)

3. Chen, L., Miné, A., Cousot, P.: A sound floating-point polyhedra abstract domain.
In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer,
Heidelberg (2008)

4. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

5. Collavizza, H., Rueher, M., Van Hentenryck, P.: A constraint-programming frame-
work for bounded program verification. Constr. J. 15(2), 238–264 (2010)

6. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.:
Towards an industrial use of FLUCTUAT on safety-critical avionics software. In:
Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp.
53–69. Springer, Heidelberg (2009)

7. D’Silva, V., Haller, L., Kroening, D., Tautschnig, M.: Numeric bounds analysis with
conflict-driven learning. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 48–63. Springer, Heidelberg (2012)

8. Goldberg, D.: What every computer scientist should know about floating point
arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)



Searching Critical Values for Floating-Point Programs 217

9. Goubault, E., Putot, S.: Robustness analysis of finite precision implementations.
In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 50–57. Springer, Heidelberg
(2013)

10. Granvilliers, L., Benhamou, F.: Algorithm 852: RealPaver: an interval solver using
constraint satisfaction techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)

11. Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with
systematic abstraction. In: Formal Methods in Computer-Aided Design, FMCAD,
pp. 131–140. IEEE (2012)

12. Marre, B., Michel, C.: Improving the floating point addition and subtraction con-
straints. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 360–367. Springer,
Heidelberg (2010)

13. Michel, C.: Exact projection functions for floating-point number constraints. In:
7th International Symposium on Artificial Intelligence and Mathematics (2002)

14. Michel, C., Rueher, M., Lebbah, Y.: Solving constraints over floating-point num-
bers. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 524–538. Springer,
Heidelberg (2001)

15. Ponsini, O., Michel, C., Rueher, M.: Refining abstract interpretation based value
analysis with constraint programming techniques. In: Milano, M. (ed.) CP 2012.
LNCS, vol. 7514, pp. 593–607. Springer, Heidelberg (2012)

16. Ponsini, O., Michel, C., Rueher, M.: Verifying floating-point programs with con-
straint programming and abstract interpretation techniques. Autom. Softw. Eng.
23(2), 191–217 (2016)



UTTOS: A Tool for Testing UEFI Code in OS
Environment

Eder C.M. Gomes1, Paulo R.P. Amora1(B), Elvis M. Teixeira1,
Antonio G.S. Lima1, Felipe T. Brito1, Juliano F.C. Ciocari2,

and Javam C. Machado1

1 Department of Computer Science, Federal University of Ceará, Fortaleza, Brazil
{eder.clayton,paulo.amora,elvis.teixeira,gerbson.lima,felipe.timbo,

javam.machado}@lsbd.ufc.br
2 Hewlett-Packard Inc., Porto Alegre, Brazil

juliano.ciocari@hp.com

Abstract. Unit tests are one of the most widely used tools to assure a
minimal level of quality and compliance during development. However,
they are not used in many projects where development takes place at
low-level contexts. The main reason is that unit test development itself
demands more time and becomes expensive in this context and tools that
assist test creation are rare or absent. In UEFI development this scenario
matches the reality of most teams and unit testing as well as other testing
techniques are often not used. To address this fault we propose UTTOS, a
tool that parses EDKII build configuration files, mocks the UEFI-specific
functions for C development and enables UEFI test suite code to run in
the operating system. We show that UTTOS is able to run the test suit
in the operating system and save development time.

Keywords: UEFI · Unit test · C · Code coverage · Embedded systems

1 Introduction

Testing has being often considered the crucial phase in the process of creat-
ing high quality software systems and most development frameworks include
functionality to assist the use of some automatic testing strategy. In low level
systems such as embedded systems, BIOS and device drivers development the
situation is much less well established. Here, requirements are often fixed by
protocol specification. This decreases complexity and most testing is basically
checking for conformity to the protocols. On the other hand automated testing
is not generally easy here since the code is targeted to run in devices different
from the developer’s workstation often through the use of cross compiling. Tools
to assist the generation of automatic tests are rare in such platforms.

UEFI (Unified Extensible Firmware Interface) is the current specification for
the interface between the platform firmware and the operating system, it is meant
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 218–224, 2016.
DOI: 10.1007/978-3-319-47443-4 14



UTTOS: A Tool for Testing UEFI Code in OS Environment 219

to eventually replace the BIOS (Basic Input Output System) and addresses
many of it’s limitations. First of all, the BIOS development is made in assembly
language thus the complexity of keeping it modularized and maintainable was
a big issue, BIOS runs on 16 bit mode so the amount of memory usable is
very limited. In UEFI there is a call stack and most of the development is
done in C, also the execution environment is 32bit or 64bit depending on the
processor architecture. These features make it a much richer platform with many
application possibilities, therefore going beyond the basic task of initializing the
hardware and calling the OS loader [12,14].

UEFI also enables OEMs (Original Equipment Manufacturer) to bundle
applications and drivers with the machine itself then providing a minimal OS-like
environment. But with the greater flexibility provided by UEFI and the variety
of software that is being written to that platform comes complexity, and then
the need for robust development and quality assurance practices. The issue at
hand is that the DXE (Driver Execution Environment) code is targeted to run
in the pre-boot phases, so it is usually written and compiled in a workstation
then run in the target machine in order to be tested and then brought back to
the developers workstation to be validated and debugged.

It is possible to identify two alternatives to use automated test strategies for
UEFI software: to develop or use testing tools that run in the DXE or develop
tools to mimic the DXE by mocking its basic functions. We favour the second
approach in order to run the code in to be tested in the OS context, thus over-
coming the lack of test tools available by enabling DXE code to be run in the
OS by using unit tests with the external dependencies, such as the functions in
the boot services table, mocked.

Since the code is run in the OS, developers and testers have access to many
other tools that exist to help them ensure code quality, such as code coverage
and other tools that are not available in UEFI environment.

Contributions. In this paper we discuss a tool that enables unit tests for UEFI
code to run as standard operating system programs and show a case study with
a compliant driver to evaluate it’s benefits. During the discussion of the driver
implementation ideas about how to use the test suit to minimize the number
of times a developer needs to rewrite the machine’s flash memory and protocol
conformity.

Section 2 describes the state-of-the-art techniques for unit testing of DXE
code. It shows that the existing techniques are not extensible, and do not allow
for further code metrics. In Sect. 3, the proposed tool and the way it works is
explained. Section 4 describes the case study and presents results. Finally, Sect. 5
concludes this paper and proposes future work.

2 Related Work

There are several works advocating the use of unit testing in the development
of software [3,7,8]. While in UEFI there are no specific unit test tools, there



220 E.C.M. Gomes et al.

are validation tools for firmwares and drivers such as PI SCT [11] provided by
the UEFI open source community, FWTS [1] and Chipsec [4]. All of these run
functional tests.

The field that most closely resembles tasks accomplished in UEFI develop-
ment is that of embedded systems development, mainly because of the use of
C and the fact that many operating system services may not be available. In
that context there are some tools that try to make test-driven development more
pleasant, Unity [13] for example, provides several assertion macros to guide unit
test development for C modules. CMock [13] parses the included header files
and checks for function declarations to provide mocked or stub implementa-
tions of them, this allows one to remove the dependencies on the functionality
of third party modules avoiding effects of their behaviour in the results of the
tests. Ceedling [13] is a build management system that integrates those tools
and allow custom configurations through its project descriptor file.

EDKII (EFI Development Kit) [10] module development uses the following
structure: At first, a package is created. Inside the package are the platform
descriptor file (.dsc), responsible for describing all the dependencies used by
the modules in the platform. The declaration file (.dec) contains all the include
paths used by the modules, as well as GUID declarations for protocol communi-
cation. Then, each module inside the package, be it an application or driver, has
its descriptor file (.inf), which contains information about the module such as
compiled source codes, libraries, dependencies and protocol GUIDs published or
consumed, separated into sections, such as [Packages], [Guids] and [Protocols].

According to Saadat, H. [9], hardware diagnostics are not effective in detect-
ing code errors, therefore, UEFI code must be tested from a software perspective.
Also, it is mentioned that only one test tool may be insufficient to cover all the
phases in UEFI, which is why a combination of tools must be used.

There are some groups interested in testing embedded systems code during
development and UEFI code as well. However, the UEFI approach to unit testing
still uses the UEFI environment, making the use of debbugers and other OS
specific tools impossible. Our solution, called UTTOS, aims to execute the code
in the OS, mocking UEFI specific dependencies, thus allowing unit tests to be
run in the same development environment and enabling use of other tools, like
code coverage tools.

3 The UTTOS Solution

It is possible to write unit tests that run in UEFI through the use of CuTestLib
[5] or some other similar tool. However, the fact that the firmware run in a
process-less, single threaded fashion poses a number of limitations. If there is a
problem with a statement and the code breaks in a way that should generate a
segmentation fault in an OS context, the firmware is likely to just freeze, leaving
the test developer without any feedback or clue to what happened. This is an
issue that may happen to even more sophisticated test approaches that involve
transmission of test results over network or serial port.



UTTOS: A Tool for Testing UEFI Code in OS Environment 221

Those limitations and the extra complexity needed to achieve simple tasks
like writing test results to a screen or to a file in the firmware level makes good
practices like test-driven development often impractical or even absent in many
projects.

To avoid these problems, we propose an UEFI Test Tool for Operating Sys-
tems (UTTOS). UTTOS addresses this issue by enabling code that was written
to the EDKII platform and meant to run in the DXE context to be compiled
and executed as an ordinary executable in the operating system of the devel-
oper platform. The unit tests generated in this fashion are much more flexible as
they enable the test developer to use the full stack of debugging tools that are
available for C. If there is a segmentation fault, for example, the developer can
make use of the core dump generated by the operating system and a debugger,
like GDB, without any specialized hardware-aided solution.

UTTOS strategy for running EDKII in the operating system runtime consists
of looking for dependencies declared in the descriptor of the module being com-
piled, that is our UEFI driver or application, and then generates stub versions
of the EDKII specific functions. The developer is responsible for configuring the
expected arguments and return values of these functions for each test suite. This
effort is not repetitive since the most used functions can be reused.

The main tool used by UTTOS is Ceedling, that tracks dependencies and
have a configuration file feature-rich enough to permit customization of the
whole process. Ceedling itself makes use of a few other open source tools, namely:
CMock for mocking and Unity for test creation. UTTOS acts in the beginning
of the process parsing the EDKII build files and generating the Ceedling config-
uration accordingly. And as we are in an operating system environment we also
include Gcov for coverage evaluation.

A more detailed view of the UTTOS workflow is described in Fig. 1. It first
parses the module descriptor file and gathers information about the dependencies
and the consumed resources. The resources in a UEFI firmware are identified by
a Globally Unique Identifier (GUID). In the process of constructing the depen-
dency tree, the descriptor files and declaration files (.dec extension) of other
modules are read to gather all the required headers, include paths and GUIDs

Fig. 1. Workflow of UTTOS, from module descriptor to test suites.



222 E.C.M. Gomes et al.

used by the current module. From this procedure, two files, guids.h and guids.c
are output for use in the test suite compilation.

The next step is the generation of a Ceedling project where the module
descriptor is located. The project is created using Ceedling’s default configura-
tions for a C project. After this, the Ceedling project descriptor is modified by
UTTOS, that adds the include paths for the dependencies, the source files to
be built, the suitable compiler options and the instructions to CMock on which
functions have to be mocked.

The final step is the placing of the generated files inside the created test
suite to allow correct code compilation. The test suite is generated with two
stub functions for setup and clean up. At this stage, it is ready to use. Ceedling
manages the test suite and its dependencies, assuring transparent use of the
UEFI code. If further configuration is needed, the project is customizable after
UTTOS executes.

With the suite ready to be executed, the user can add individual test cases
with custom assertions and control flows. The user can also specify the expected
parameter and return values for the mocks created by CMock to strengthen
the tests coverage further. Ceedling also monitors suite execution and reports
formatted results, allowing the developer to ensure quickly that the written code
is working.

4 Case Study

As a case study, a simple UEFI DXE driver fully compliant with the UEFI
Driver Model was developed. The driver installs a protocol and an associated
GUID to the UEFI runtime that provides a service for UEFI applications to
convert roman numbers in string format to a regular C integer type. Because
one of the most interesting scenarios that requires testing in the context of driver
development is the process of providing a new protocol, we decided to go with an
algorithm that, although simple, provides a good number of test cases as there
are a number of possibilities for invalid roman numbers.

The driver was developed under the EDKII version 2.6 source tree in a Debian
GNU/Linux 8 machine using the GCC compiler version 4.9.

This process starts by creating a set of functions called the Driver Binding
Protocol [2]. These functions are responsible for querying all the nodes of the
UEFI service database checking if any of these corresponds to a device that the
driver can control. This query process is performed by the Supported function
and it has to return a success status for a device that is suitable for the driver and
an unsupported status otherwise. If such a device is found, the Start function is
called to initialize the driver data structures and the device itself.

If for some reason the user wants to remove the driver from the environment,
the driver binding protocol also provides the Stop function, that is responsible
for releasing all the resources that were allocated by Start, and for the removal of
any protocol installed by the driver and their respective GUIDs. Stop makes sure
the services provided by the driver will not appear to be available to applications
after it is unloaded.



UTTOS: A Tool for Testing UEFI Code in OS Environment 223

In UEFI, all the available memory is shared as a single address space to all
drivers and applications. Therefore, an error in any of these functions is likely
to freeze the whole system. Consequently, all these steps must be previously
validated before one takes the job of rewriting the firmware of the machine to
check if the driver works as expected. Here is where the ability to run unit tests
in the developer’s workstation as a prior step shows it’s value, since most of the
trivial mistakes can be avoided before actually touching the target hardware.

The Gcov [6] utility was used to evaluate the code coverage of the tests
performed. Gcov is another python tool that translates the symbols generated
by GCC to human readable results allowing a nice html format to be output.

Lines: 71
71

75
40

94.7 %
95.0 %

Exec Total Coverage

Branches:
Date:

Directory:

Legend:

File Lines Branches

high: >= 90.0 %medium: >= 75.0 %low: < 75.0 %

2016-06-02

.

88.2%
100.0%

88.9%
100.0%

30/34
41/41

16/18
22/22

Fig. 2. Code coverage report of the implemented driver.

Figure 2 shows the test coverage results for our case study. It can be seen
that most of the control flows were covered. The results of the individual test
cases were all positive and they have successfully assured that the driver binding
process would occur without errors when embedded in the machine’s firmware.
This is important in the sense that it allows the developer to be concerned with
the driver’s functionality correctness straight from the first firmware writing, and
not with these initial service and protocol setup that often takes a considerable
time in real world projects.

In comparison with the approach of testing the code in DXE environment
directly, the first major benefit observed is that ones does not have to rewrite the
firmware in the flash memory so many times to test code, a process that is time
consuming and decreases flash memory life time. Additionally, code coverage
measuring tools are one of many that are not available in the DXE phase so
these results would not the easily achieved today.

5 Conclusion and Future Works

In this paper, we proposed UTTOS, a tool that makes use of a set of OS-based
test tools to test UEFI code. It adapts the test framework to be able to run
UEFI code as a regular operating system executable with that UEFI specific
functions mocked. A case study was also conducted, with the implementation
of an example driver in order to test the whole process of driver installation,
production usage and removal to simulate as close as possible the reality of
device driver development.

In the development time it was observed a decrease in the need for rewriting
the machine’s firmware and the ability to focus in functionality rather than in



224 E.C.M. Gomes et al.

protocols conformity which can in practice be, using UTTOS, considered to be
boilerplate code.

During the experiments, we were able to not only create unit tests, but
to make use of code coverage, as we were running the code in an OS-based
environment. This would not be possible by running the code only in UEFI
DXE phase.

For future works, it is intended to integrate this tool with an IDE. Support
for other code metrics, such as cyclomatic complexity and nesting depth can also
be considered.

Acknowledgements. This publication is the result of a project promoted by the
Brazilian Informatics Law (Law No. 8248 of 1991 and subsequent updates) and was
developed under the Cooperation Agreement 11/2016 between Federal University of
Ceara and HP Brazil Industry and Trade Electronic Equipment Ltda. This research
was also partially supported by LSBD/UFC.

References

1. Canonical: Firmware Test Suite 16.01.00 (2016). https://wiki.ubuntu.com/
FirmwareTestSuite. Accessed 23 May 2016

2. Corporation, I.: Uefi driver writer’s guide (2013). https://github.com/tianocore/
tianocore.github.io/wiki/UEFI-Driver-Writers-Guide. Accessed 01 June 2016

3. Greening, J.W.: Test Driven Development for Embedded C, 1st edn. Pragmatic
Bookshelf, Raleigh (2011)

4. Intel Corporation: CHIPSEC: Platform Security Assessment Framework 1.2.2
(2015). http://www.intelsecurity.com/advanced-threat-researchchipsec.html. Acce
ssed 23 May 2016

5. Jalis, A.: CuTest: C Unit Testing Framework 1.5 (2013). http://cutest.sourceforge.
net. Accessed 23 May 2016

6. Ledru, S., Cai, K., Woydziak, L., Schumacher, N., Hart, W.: Gcovr (2014). http://
gcovr.com. Accessed 23 May 2016

7. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing, 3rd edn. Wiley,
Hoboken (2011)

8. Pressman, R.S., Maxim, B.: Software Engineering: A Practitioner’s Approach, 8th
edn. McGraw-Hill Education, New York (2014)

9. Saadat, H.: Design and development of an automated regression test suite for UEFI
(2014)

10. Tianocore: Edk2 code repository (2016). https://github.com/tianocore/edk2.
Accessed 01 June 2016

11. UEFI Forum: Platform Initialization Self Certification Test 2.4B (2015). http://
www.uefi.org/testtools. Accessed 23 May 2016

12. UEFI Forum: UEFI Specification 2.6 (2016). http://www.uefi.org/specifications.
Accessed 23 May 2016

13. VanderVoord, M., Karlesky, M., Williams, G.: ThrowTheSwitch.org (2016). http://
www.throwtheswitch.org/tools. Accessed 23 May 2016

14. Zimmer, V., Rothman, M., Marisetty, S.: Beyond BIOS: Developing with the Uni-
fied Extensible Firmware Interface, 2nd edn. Intel Press, Mountain View (2010)

https://wiki.ubuntu.com/FirmwareTestSuite
https://wiki.ubuntu.com/FirmwareTestSuite
https://github.com/tianocore/tianocore.github.io/wiki/UEFI-Driver-Writers-Guide
https://github.com/tianocore/tianocore.github.io/wiki/UEFI-Driver-Writers-Guide
http://www.intelsecurity.com/advanced-threat-research/chipsec.html
http://cutest.sourceforge.net
http://cutest.sourceforge.net
http://gcovr.com
http://gcovr.com
https://github.com/tianocore/edk2
http://www.uefi.org/testtools
http://www.uefi.org/testtools
http://www.uefi.org/specifications
http://www.throwtheswitch.org/tools
http://www.throwtheswitch.org/tools


Towards Model Construction Based on Test
Cases and GUI Extraction

Antti Jääskeläinen(B)

Department of Pervasive Computing, Tampere University of Technology,
PO Box 553, 33101 Tampere, Finland

antti.m.jaaskelainen@tut.fi

Abstract. The adoption of model-based testing techniques is hindered
by the difficulty of creating a test model. Various techniques to automate
the modelling process have been proposed, based on software process
artefacts or an existing product. This paper outlines a hybrid approach
to model construction, based on two previously proposed methods. The
presented approach combines information in pre-existing test cases with
a model extracted from the graphical user interface of the product.

Keywords: Model extraction · Model-based testing · Software testing

1 Introduction

Model-based testing is a testing methodology that automates the generation of
tests as well as their execution. In a typical approach, the tester first creates a
formal model (such as a state machine) that depicts the behaviour of the system
under test (SUT). The model is then explored by an automated tool in order to
generate a sequence of actions to be used as a test. Models can also be used to
otherwise support the testing process, such as in inspections.

A significant drawback of model-based testing is the skill and effort required
in modelling. Creating a model that covers all the relevant aspects of the SUT,
does so correctly, and is otherwise suitable for test generation, is no small task.

Various methods for easing or partially automating the modelling process
have been proposed. Models can be generated from different artefacts of the soft-
ware process, or the artefacts used directly as test models. Suitable candidates
include specifications [10] and pre-existing test cases [9,14]. Alternatively, mod-
els can be extracted from an existing product, either the source code [4,13,15],
the structure and functionality of the graphical user interface (GUI) [1,6,11,12],
or other known behaviour [7,8]. Many of these methods also use the results of
the generated tests to further hone the model.

This paper outlines a hybrid model construction method based on test cases
and information extracted from the GUI. Information on the correct behaviour
of the SUT in specific states is found in the test cases, and the states can be
combined based on information gleaned from the GUI. In this way, weaknesses of
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 225–230, 2016.
DOI: 10.1007/978-3-319-47443-4 15



226 A. Jääskeläinen

each method can be compensated for with the strengths of the other. Hopefully,
the new method could reduce the effort required to produce a useful test model.

The rest of the paper is structured as follows: Sect. 2 presents the two model
construction methods that act as the basis for the new approach, which is out-
lined in Sect. 3. Section 4 considers the potential benefits of the approach. Finally,
Sect. 5 concludes the paper with a more general discussion.

2 Automated Model Construction

The approach of this paper builds on two previously presented methods for
constructing models to describe the SUT. The first is based on combining test
cases into a model, the second on examining the GUI of the system.

2.1 Synthesis from Test Cases

The model synthesis process proposed in [9] is based on pre-existing test cases
that are linear sequences of automatically executable steps (keywords), and con-
sists of five phases: First, keywords used in test cases are identified and classified.
Second, part of the information in the test cases (such as input data) is separated
into variables. Third, an initialization sequence for the test model is prepared.
Fourth, important states in the test cases are identified manually. Finally, the
actual merging of the test cases takes place.

In the merging phase, the linear state sequences of the test cases are combined
into a more complex model by merging some of the states with each other.
The previously identified common states in the test cases are trivially merged.
However, states in different test cases may also be combined if they are reached
by the same sequence of keywords, which suggests that the cases are in fact
handling the same part of the SUT. Separating input data into variables allows
states to be combined even if the stored inputs would actually leave the system
in different states, as the data can be combined back into the model afterward.

Although this method works, it relies on a significant amount of manual
effort. In particular, the separation of variables requires significant work and
skill [9]. Also, the tester has to confirm the merges between the test cases man-
ually, as the state sequence method may generate false positives [9]. Thus, the
practicality of the method as presented is questionable.

2.2 Extraction from GUI

As an example of methods that extract a model out of a GUI we consider Mur-
phy, a tool that examines the GUI of an application, tries out different functions,
and builds a model to describe its observations [1]. It can use various methods
to access the GUI, or crawl through it. The publicly available version [5] pro-
vides crawlers that use Windows APIs or cycle through GUI controls with the
tabulator key. The constructed model is a graph with a node for each observable
state of the application.



Towards Model Construction Based on Test Cases and GUI Extraction 227

Murphy starts out at desktop, and launches the application with a predefined
command. These two application states, not running and just launched, form the
two first nodes in the constructed graph. In each GUI state, Murphy maps out
the controls found in it. Then it proceeds to try out a control, such as clicking
a button, and considers the resulting state of the GUI. A given state of the
application is identified by the controls that can be found in its GUI, while
ignoring the data such as the contents of text labels. Based on these, Murphy
will either create a transition to an existing node or add a new node to the graph.
Extraction can be performed in multiple runs starting from the desktop, with
the results combined into a single graph.

Visual inspection of the extracted models can be very helpful in finding errors,
and the models can support manual testing of the application [2]. They can also
be used for automated regression testing by comparing the extracted models
between different versions of the application or using an extracted sequence as a
smoke test for the next version [2]. That said, their usefulness for test generation
is limited: they can make no difference between an erroneous feature and a correct
one, and contain no verifications of the system state beyond finding the expected
controls in the GUI. Also, specific input data has to be added into the extraction
script manually, as it cannot be inferred from the GUI.

3 Combined Methodology

Both approaches described above have their drawbacks. In the test case synthesis
method, the test cases provide detailed information of what can and should
happen in different situations, but constructing a model out of them is difficult.
In the GUI extraction method, a graph to describe the SUT can be constructed
with little manual effort, but its understanding of the SUT is limited. But what
if the two were combined?

If we have a ready set of test cases when we begin the extraction process, then
we can track the actions taken in the GUI within the cases. For each node of the
constructed graph, we will have a set of test cases that reach the corresponding
SUT state at a specific point of their execution. Then, we can examine the next
steps in those cases for information on the current state of the SUT and the
actions available in it. The process could work as follows:

1. Before extraction, establish a correspondence between the keywords within the
test cases and actions supported by the extraction crawler. This is trivial if the
two use the same mechanism for accessing the GUI, and should be doable with
any mechanisms that understand the structure of a GUI. Also, make note of
any keywords used to verify the state of the SUT without changing it.

2. At the beginning of an extraction run, start with the full set of test cases at
their initial states. When the extractor performs an action, examine the cases
to see if they would execute the corresponding keyword next, skipping past
any keywords that do not change the state of the SUT. Advance these cases
past that keyword, and discard the other cases in the set. Make a note that
this node can be reached by the remaining test cases at their current stage.



228 A. Jääskeläinen

3. At each node, examine the test cases that can reach it. Any verifications
performed by the test cases at this node can be added into the model. Also,
the next keywords in the cases should be executable in the GUI, even if the
crawler fails to find a corresponding control. In particular, test data in the
cases, such as the parameter of a type text keyword, can be used as an input.

This process produces a model that incorporates and combines both the
information extractable from the SUT and that present in the test cases. It may
even contain functionality present in neither, if the test cases provide the crawler
access to a part of the GUI it could not reach on its own.

4 Potential Applications

Combining the test case synthesis and GUI extraction methods as described
above offers several potential benefits. Either of the test cases or the extracted
model can be used to support a testing approach based on the other. The result-
ing model can also act as a basis for a manually maintained test model.

If the testing process is based on test cases, their coverage can be increased
with the information extracted from the GUI. With the extracted information,
it is possible to tell when two test cases reach the same SUT state, or when a test
case loops back into a state it has already visited. By using the model for test
generation, it is possible to reach a state by a keyword sequence taken from one
test case and continue with a sequence from another, even if such a combination
does not occur in any of the original cases. A model that loops back into itself at
several points can be particularly useful in robustness testing: properly directed,
a test run can continue indefinitely without simply repeating a single sequence
of keywords over and over.

Conversely, in a testing process based on the extracted model, the test cases
can improve the quality of that model. They can improve model coverage by
supplying performable actions that cannot be identified in the GUI, and in par-
ticular by providing realistic test data. Also, the verifications in the test cases
improve the ability of the model to detect errors.

Finally, the constructed model can support a move to proper model-based
testing, where the tests are generated from the model. Creating a test model
can be a daunting task, especially if a fairly complete product already exists, so
that the model cannot be developed incrementally as new features are added.
In this situation, a method for automatically constructing a preliminary model
can be helpful, even though some augmentation and refactoring is likely to be
required. A model extracted purely from the GUI can already be useful here,
but the increased coverage and verifications added by the test cases can take
this support further.



Towards Model Construction Based on Test Cases and GUI Extraction 229

5 Discussion

The previous sections have outlined a method for constructing models based
on information in test cases and the GUI of the SUT. The resulting models
can be used to improve test coverage in a testing approach based on test cases,
or to better support static analysis and exploratory techniques. The method
is language-independent, and only requires the SUT to have a GUI that can
be handled by test automation. Obviously, it assumes the existence of some
manually created test cases, and is thus primarily suited for testing approaches
that will have those anyway. Practical experience will be required to see whether
writing test cases specifically for this method could be worthwhile.

As presented here, the GUI extraction part of the process is based on the
Murphy tool. However, there is nothing tool-specific in the approach itself, and
other tools can be used, as well. The basic requirement is that the tool can
distinguish different GUI events from each other, so that they can be matched
with those occurring in the test cases. The test cases must naturally have a
similar level of abstraction.

At this point, a prototype tool for the methodology is under development.
The prototype can be used to estimate the practicality of the approach, although
it will likely be unable to handle complex applications due to the limitations in
the crawler component of the freely available version of Murphy [5]. For industrial
use, integration with a professional quality test execution tool will be required.

There is likely also room for improvement in the methodology presented here.
For example, it may be possible to factor out inputs from the test cases so that we
could produce separate models for the control graph and saved data. Detecting
the input data as identical output later on should be simple, but potential effects
of data on the control graph could be more difficult to identify, and modified
versions of the data impossible to recognize without domain knowledge. Likewise,
it remains to be seen whether the Murphy approach of ignoring data in the GUI
when identifying states is the best solution for the new method.

If the test cases have been created using action words and keywords [3], it
might be possible to import these two tiers of abstraction into the constructed
model. Presenting the model at a higher level of abstraction could make analysing
it significantly easier, and produce a better basis for a full-fledged test model.

Acknowledgements. Funding by Ulla Tuominen Foundation is gratefully acknowl-
edged.

References

1. Aho, P., Suarez, M., Kanstrén, T., Memon, A.M.: Industrial adoption of automati-
cally extracted GUI models for testing. In: Chaudron, M., Genero, M., Abrahão, S.,
Pareto, L. (eds.) Proceedings of the 3rd International Workshop on Experiences
and Empirical Studies in Software Modelling (EESSMod 2013), CEUR-WS, vol.
1078, pp. 49–54. CEUR Workshop Proceedings, October 2013



230 A. Jääskeläinen

2. Aho, P., Suarez, M., Kanstrén, T., Memon, A.M.: Murphy tools: utilizing extracted
GUI models for industrial software testing. In: O’Conner, L. (ed.) Proceedings of
the 7th International Conference on Software Testing, Verification and Validation
Workshops (ICSTW 2014), pp. 343–348. IEEE Computer Society, Los Alamitos
(2014)

3. Buwalda, H.: Action figures. In: Software Testing and Quality Engineering Maga-
zine, pp, 42–47, March/April 2003

4. Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A.: Generating test cases
for specification mining. In: Proceedings of the 19th International Symposium on
Software Testing and Analysis (ISSTA 2010), pp. 85–96. ACM, New York, July
2010

5. F-Secure: GitHub - F-Secure/murphy (2014). https://github.com/F-Secure/
murphy. Accessed June 2016

6. Grilo, A.M.P., Paiva, A.C.R., Faria, J.P.: Reverse engineering of GUI models for
testing. In: Proceedings of the 5th Iberian Conference on Information Systems and
Technologies (CISTI 2010), pp. 1–6. IEEE Computer Society, Los Alamitos, June
2010

7. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol.
2306, pp. 80–95. Springer, Heidelberg (2002). doi:10.1007/3-540-45923-5 6

8. Hungar, H., Margaria, T., Steffen, B.: Test-based model generation for legacy sys-
tems. In: Proceedings of the 2003 International Test Conference (ICT 2003), vol.
2, pp. 150–159. IEEE Computer Society, Los Alamitos, September–October 2003

9. Jääskeläinen, A., Kervinen, A., Katara, M., Valmari, A., Virtanen, H.: Synthesizing
test models from test cases. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol.
5394, pp. 179–193. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01702-5 18

10. Ma, C., Du, C., Zhang, T., Hu, F., Cai, X.: WSDL-based automated test data
generation for web service. In: Kawada, S. (ed.) Proceedings of the International
Conference on Computer Science and Software Engineering (CSSE 2008), pp. 731–
737. IEEE Computer Society, Los Alamitos (2008)

11. Memon, A., Banerjee, I., Nagarajan, A.: GUI ripping: reverse engineering of graph-
ical user interfaces for testing. In: van Deursen, A., Stroulia, E., Storey, M.A.D.
(eds.) Proceedings of the 10th Working Conference on Reverse Engineering (WCRE
2003), pp. 260–269. IEEE Computer Society, Los Alamitos (2003)

12. Memon, A.M.: An event-flow model of GUI-based applications for testing. Softw.
Test. Verif. Reliab. (STVR) 17(3), 137–157 (2007)

13. Silva, J.C., Silva, C., Gonçalo, R.D., Saraiva, J., Campos, J.C.: The GUISurfer
tool: towards a language independent approach to reverse engineering GUI code.
In: Proceedings of the 2nd ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS 2010), pp. 181–186. ACM, New York, June 2010

14. Xie, T., Notkin, D.: Mutually enhancing test generation and specification infer-
ence. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 60–69.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24617-6 5

15. Yang, W., Prasad, M.R., Xie, T.: A grey-box approach for automated GUI-model
generation of mobile applications. In: Cortellessa, V., Varró, D. (eds.) FASE
2013. LNCS, vol. 7793, pp. 250–265. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37057-1 19

https://github.com/F-Secure/murphy
https://github.com/F-Secure/murphy
http://dx.doi.org/10.1007/3-540-45923-5_6
http://dx.doi.org/10.1007/978-3-642-01702-5_18
http://dx.doi.org/10.1007/978-3-540-24617-6_5
http://dx.doi.org/10.1007/978-3-642-37057-1_19
http://dx.doi.org/10.1007/978-3-642-37057-1_19


Set-Based Algorithms for Combinatorial Test
Set Generation

Ludwig Kampel and Dimitris E. Simos(B)

SBA Research, Vienna, Austria
{lkampel,dsimos}@sba-research.org

Abstract. Testing is an important and expensive part of software and
hardware development. Over the recent years, the construction of combi-
natorial interaction tests rose to play an important role towards making
the cost of testing more efficient. Covering arrays are the key element of
combinatorial interaction testing and a means to provide abstract test
sets. In this paper, we present a family of set-based algorithms for gen-
erating covering arrays and thus combinatorial test sets. Our algorithms
build upon an existing mathematical method for constructing indepen-
dent families of sets, which we extend sufficiently in terms of algorith-
mic design in this paper. We compare our algorithms against commonly
used greedy methods for producing 3-way combinatorial test sets, and
these initial evaluation results favor our approach in terms of generating
smaller test sets.

Keywords: Combinatorial testing · Independent families of sets ·
Set-based algorithms

1 Introduction

In modern software development testing plays an important role and therefore
requires a large amount of time and resources. According to a report of the
National Institute of Standards in Technology (NIST) [1], faults in software costs
the U.S. economy up to $59.5 billion per year, where these costs could be reduced
by $22.2 billion, provided better software testing infrastructure. Another report
from NIST [11] shows that failures appear to be caused by the interaction of only
few input parameters of the system under test (SUT). Combinatorial testing
guarantees good input-space coverage, while reducing the resources needed for
testing. In particular, it is a t-wise testing strategy whose key ingredient is a
Covering Array (CA), a abstract mathematical object that provides coverage
of all t-way interactions of a certain amount of input parameters, reducing the
amount of tests that need to be executed. For their use in practice, the columns
of CAs are identified with the input parameters of the SUT, where each entry
in a certain column is mapped to a value of the corresponding parameter [12].

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 231–240, 2016.
DOI: 10.1007/978-3-319-47443-4 16



232 L. Kampel and D.E. Simos

This way each row of the CA translates to a certain parameter value setting of
the input model of the SUT which can be used as a test. Translating each row
of a CA in this way, one obtains a concrete test set hence a CA can be regarded
as an abstract combinatorial test set. To reduce further the amount of resources
needed for testing, one is interested to construct optimal CAs (e.g. arrays of a
minimal size that provide maximal coverage). This software testing problem is
tightly coupled with hard combinatorial optimization problems for CAs (shown
to be NP-hard [17]).

Contribution. In this paper, we use a set-based method for constructing CAs
based on independent families of sets (IFS) from [7]. There exists an equiva-
lence between these two combinatorial objects which allowed us to use the two
discrete structures interchangeably in terms of algorithmic design. In particu-
lar, we extend this set-based method with balancing properties that can impose
restrictions on the cardinality of the appearing intersections. This (among other
concepts) enabled us to define different building blocks that give rise to a family
of algorithms based on IFSs (and consequently also for CAs). Furthermore, as
a proof of concept we compared our algorithms against a widely used combi-
natorial strategy (the so-called IPO-strategy [15]) which bares similarities with
our approach for constructing and extending CAs. Our initial results outperform
this strategy for 3-way testing, generating better sized covering arrays.

Structure of the Paper. In Sect. 2 we give some preliminaries for CAs, where we
also review related algorithms and problems for the former objects. Afterwards,
in Sect. 3 we describe a set-based method for constructing CAs and extend it
with concepts necessary for devising an algorithmic concept later on Sect. 4, in
which we also propose a variety of algorithms for generating CAs. Subsequently,
in Sect. 5 we compare our algorithms against IPO-strategy greedy techniques
for constructing CAs and comment on the evaluated results. Finally, Sect. 6
concludes the work and discusses future directions of work.

2 Problems and Algorithms for Covering Arrays

In this section we give a short overview of the needed definitions, as well as
of related problems, related algorithms and work in general. In the following
we frequently use the abbreviation [N ] for a set {1, . . . , N} ⊆ N and also AC

denotes the complement [N ]\A of A in [N ]. The definitions given below are
slightly different phrased as those given in [5], and can also be found in [13].

2.1 Preliminaries for Covering Arrays

Definition 1 (t-Independent Family of Sets). A t-independent family of
sets, IFS (N ; t, k), is a family (A1, . . . , Ak) of k subsets of [N ], with the property
that for each choice {i1, . . . , it} ⊆ [k] of t different indices, for all j ∈ [t] and
for all Āij ∈ {Aij , A

C
ij

} it holds that
⋂t

j=1 Āij �= ∅. The parameters t and k are
called, respectively, the strength and the size of the IFS.



Set-Based Algorithms for Combinatorial Test Set Generation 233

We say that a family of sets is t-independent if it is an IFS (N ; t, k) for
some value of N and k. Without loss of generality we only consider IFS over a
underlying set [N ] with N ∈ N.

Table 1. The sets A1, A2, A3, A4 and B are considered as subsets of [12]. We identify
them with their binary indicator vectors, i.e. vectors in {0, 1}12 that have 1 in position
i if, and only if i is element of the corresponding set, and 0 otherwise.

A1 = {6, 7, 8, 9, 10, 11} ↔ (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0)T = a1

A2 = {1, 2, 3, 6, 7, 8} ↔ (1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0)T = a2

A3 = {1, 2, 4, 6, 9, 10} ↔ (1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0)T = a3

A4 = {1, 2, 5, 7, 9, 11} ↔ (1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0)T = a4

B = {1, 2, 5, 8, 9, 10} ↔ (1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0)T = b

Example 1. From Table 1 the family A = (A1, A2, A3, B) is an IFS (12; 3, 4), i.e.
if we choose 3 sets of A or independently their complements, their intersection is
nonempty. For example, A1 ∩AC

3 ∩B = {8} �= ∅ and A1 ∩A2 ∩AC
3 = {7, 8} �= ∅.

Definition 2 (Binary t-Covering Array). A N ×k binary array M , denoted
in column form as M = (m1, . . . ,mk), is a binary t-covering array, CA(N ; t, k),
if M has the property that for each {i1, . . . , it} ⊆ [k], the corresponding t × N
sub array (mi1 , . . . ,mit) of M cover all binary t-tuples {0, 1}t, i.e. these tuples
have to appear at least once as a row of the sub array (mi1 , . . . ,mit). In some
cases M is also called a binary covering array of strength t.

Remark 1. Covering arrays of fixed non-binary alphabet with size u are denoted
with CA(N ; t, k, u) in the literature (e.g. see [5]). When u = 2 is clear from the
context we simply use the notation introduced as above.

As the similarity of the former definitions of these combinatorial objects
implies, there is a close relation between the two of them. For example, it is
known that every CA(N ; t, k) is equivalent to an IFS (N ; t, k) (see for example
[5,13], Remark 10.5).

Example 2. From Table 1 we take the vectors a1, a2, a3 and b to form the array

A = (a1, a2, a3, b) =

⎛

⎜
⎜
⎝

0 0 0 0 0 1 1 1 1 1 1 0
1 1 1 0 0 1 1 1 0 0 0 0
1 1 0 1 0 1 0 0 1 1 0 0
1 1 0 0 1 0 0 1 1 1 0 0

⎞

⎟
⎟
⎠

T

,

which is equivalent to the IFS given in Example 1. The defining property of
an IFS translates to the defining property of a binary CA. In this case, within



234 L. Kampel and D.E. Simos

each three selected columns of (a1, a2, a3, b), each binary 3-tuple appears at least
once. Therefore the given array A is a CA(12; 3, 4). On the other hand, the IFS
in Example 1 can be uniquely reconstructed from the array A, interpreting its
columns as indicator vectors of subsets of [12].

Definition 3. The smallest number of rows N such that a binary CA(N ; t, k)
exists is defined as CAN (t, k) := min{N : ∃ CA(N ; t, k)}.

Definition 4. The largest number k such that a IFS (N ; t, k) exists is defined
as CAK (N ; t) := max{k : ∃ IFS (N ; t, k)}.

For an overview of the vast amount of theoretical and computational prob-
lems that arise in the theory of CAs we refer to [4,9]. Especially the problem of
determining binary CAs with minimum amount of rows turns out to be NP-hard
(see [17]).

2.2 Algorithms for Covering Arrays

The notorious difficulty of constructing optimal CAs has been the subject of
many algorithmic approaches. The most related ones to our work are greedy
methods such as AETG [2] and IPO [15]. AETG employs a randomized, greedy,
one row at a time extension strategy. The IPO-strategy is to grow the covering
array in both dimensions. Horizontal growth adds one column to the current
array by its cells with entries in a greedy manner. Vertical extension is performed,
by adding rows until the array is once again a CA. Adjusting the parameters of
the IPO-strategy has been the subject of [8]. Finally, in [7] a method is proposed
that produces exponentially sized IFS one set at a time. In terms of CAs this
comes down to a one column at a time construction of a binary CA. As this
method plays a pivotal role in our work, we further describe it in Sect. 3.

Due to space limitations, for other related works we refer the interested reader
to a recent survey [18].

3 A Set-Based Method for Constructing CAs

In this section we elaborate on a set-based method for constructing CAs and
extend it with concepts necessary for devising an algorithmic concept later on
in Sect. 4.

Before the description of the method, we have to define some terms needed.
It is well known that Orthogonal Arrays of index one are optimal CAs [5], i.e.
within each selection of t columns each binary t-tuple appears exactly once.

Also when constructing a CA with as few rows as possible, one tends to not
cover certain t-tuples multiple times; rather the target would be to cover as few
t-tuples as possible more than once. Lets consider the case of a CA (a1, . . . ,ar),
where only few t-tuples appear more than once within a certain choice c =
(ai1 , . . . ,ait) of t columns of that array. Since for each (t−1)-tuple (u1, . . . , ut−1)
there are exactly two binary t-tuples, that start with (u1, . . . , ut−1), namely



Set-Based Algorithms for Combinatorial Test Set Generation 235

(u1, . . . , ut−1, 0) and (u1, . . . , ut−1, 1). We know that within (ai1 , . . . , ait−1) each
(t − 1)-tuple appears at least twice, and only few of them appear more than
twice. Of course, this argument holds for each choice of (t − 1) columns of c.

Remark 2. Note as well that this argumentation can be iterated. From these
thoughts we design a necessary condition when a column is allowed to be added
to the current array. In particular, we want to ensure a minimum amount of
balance among the columns of the array in the regard just described.

In light of the previous remark, we introduce the notion of α-balance.

Definition 5. Let A = (A1, . . . , Ak) be a family of sets Ai ⊆ [N ] ∀i ∈ [k] and
α = (α1, . . . , αs) ∈ N

s, s ≤ k. We say that A is α -balanced, if

∀i ∈ [s] ∀{j1, . . . , ji} ⊆ [k] ∀Ājr ∈ {Ajr , A
C
jr} :

∣
∣

i⋂

r=1

Ājr

∣
∣ ≥ αi. (1)

Note that if a family of sets is (α1, . . . , αs)-balanced and αs ≥ 1 then it is
also s-independent.

Definition 6. Let B ⊆ [N ], A = (A1, . . . , Ak) be a family of sets Ai ⊆ [N ] ∀i ∈
[k] and α = (α1, . . . , αs) ∈ N

s. We say that B α-balanced with respect to A, if
the family (A1, . . . , Ak, B) of sets is α-balanced.

Example 3. Consider the family F = (A1, A2, A3, A4), constructed from the sets
of Table 1. This family is a (6, 3)-balanced family of sets, i.e. each set, as well
as its complement, has at least cardinality 6, and all intersections of any two
sets of F (complements might be involved) have at least cardinality 3 (e.g.
A1 ∩ AC

3 = {7, 8, 11} ≥ 3). B is an example for a set that is not (6, 3)-balanced
w.r.t. F , since AC

3 ∩ B = |{5, 8}| = 2 < 3.

4 A New Family of IFS Algorithms

In this section, we propose a variety of algorithms, IFS-origin, IFS-greedy
and IFS-score, based on independent families of sets. We call this class of algo-
rithms collectively a family of IFS-Algorithms. In particular, we formalized and
extended in terms of a combinatorial algorithmic design the method described
earlier. Our design is comprised of the following five building blocks: store, select,
admissible, extend and update which we state below.

– Store: The store is a data structure that serves as a resource, from which the
sets to build the target IFS are chosen. It may be static, or dynamic.

– Select: A procedure that returns one element of the store, e.g. randomly or
via a scoring function.

– Admissible: This procedure decides whether a certain element is allowed to be
added to the current IFS or not under certain admissible criteria which can
be based for example on the concept of α-balance.



236 L. Kampel and D.E. Simos

– Extend: A procedure that extends the IFS at hand.
– Update: The procedure which updates the store in case latter is dynamic.

In the following we frequently use F2(N) := {A ⊆ [N ]|N /∈ A ∧ |A| =
�N/2}, which is a 2-independent family of sets of maximal size (cf. [10]). A
comprehensive overview of the proposed algorithms via their building blocks, is
given below in Table 2.

Table 2. Composition of the IFS-family algorithms.

Building blocks Algorithm

IFS-origin IFS-greedy IFS-score

Store F2 F2 F2

Select SelectRandom SelectNext SelectScore

Admissible Admissibleα Admissibleα Admissible

Extend Extend Extend Extend

Update Updateα - Update

4.1 IFS-Origin

Firstly we give a short algorithmic description of the method proposed in [7]
and extended in Sect. 3. We refer to it and its implementation as IFS-origin.
The algorithm takes as input the size N of the underlying set and the strength
t of the to be constructed IFS. The initial Store, S0, is set to be equal to
F2(N) and the initial IFS, A1, is set to be a random element of the Store.
This random initialization is justified because picking a different initial element
boils down to permuting the first [N − 1] elements of [N ], which also respects
Definition 1, and keeps F2(N) invariant under such permutations. From now on
in each step i the IFS-origin traverses through the whole Store Si−1 given at
that time, updating it by removing all non-Admissibleα (Admissibleα checks
for α-balance and t-independence) elements from it, which yields Si. For the
admissibility check the algorithm requires a vector α1×(t−1), which encodes the
desired balance of i-tuples for i = 1, . . . , t−1. Thereafter, now that Si is left with
only Admissibleα elements, a random element is chosen and added to the IFS
at hand, yielding Ai+1. The algorithm terminates when the Store is empty.

4.2 IFS-Greedy

When being familiar with IFS-origin described above, one will realize, that this
version, as was originally given in [7] lacks of a method to decide which of the
elements in the remaining Store should be added to the current array. In par-
ticular, this is done via a random pick, which in retrospect makes the Update
of the Store, which leaves the Store with only Admissibleα elements inside,



Set-Based Algorithms for Combinatorial Test Set Generation 237

unnecessary. The newly proposed IFS-greedy version bypass this decision prob-
lem by simply taking the next found Admissibleα element of the Store, having
the advantage that the Store has never to be updated. The initialization stays
the same as in IFS-origin. After that IFS-greedy traverses the Store only
once, adding the first element that is Admissible with respect to the already
chosen ones and α (recall Definition 6). The Store never gets updated.

4.3 IFS-Score

The overall structure of IFS-score is the same as that of IFS-origin, but dif-
ferent building blocks SelectScore and Admissible are defined. To circum-
vent the problem of IFS-origin of picking a random element from the updated
Store, we calculated a score for each element of the Store, that reflects α-
balance, and add the one (or one of those, since ties may occur) with the least
score. Each element is initialized with a score of zero and in the i-th step of the
algorithm we calculate again a score for each element of the current Store, Si−1,
as before. This has also the advantage that IFS-score does not require α. Since
we compute a score for each element, we already encounter the tuple balance of
(Ai, b) to our selection and we do not need to previously dictate via α how often
certain i-tuples have to appear. Therefore IFS-score is the only algorithm in
the proposed IFS-family that does not require an input of α. Consequently, in
an element of the Store passes the decision criterion of Admissible, if and
only if (A, b) is t-independent.

5 Results

As a proof of concept of our algorithmic design (cf. Section 4) we compared
our implementations of the IFS-family of algorithms for t = 3 to two of the
most commonly used greedy algorithms of the IPO-family, namely IPOG [14]
and IPOG-F [6]. In addition, we evaluate our results versus the current best
known upper bounds for CAK (N ; 3) (retrieved from [3], via CAK (N ; t) =
max{k|CAN (k, t) ≤ N}, cf. [13]), that are combined results of algorithms and
methods that are partly described in [18]. To the best of our knowledge the algo-
rithms of the IPO-family are the only ones that generate CAs using a horizontal
extension step similar to the one proposed in the IFS-family of algorithms.

Table 3 shows the amount of columns a binary CA of strength 3 can attain
by either the respective algorithm compared or according to [3]. Table 3 starts
with N = 8, since there are at least eight rows needed to cover all eight binary
3-tuples. It shows that the IFS-family of algorithms improves significantly over
IPOG and IPOG-F in almost every case presented, as well that IFS-greedy and
IFS-score improve over IFS-origin. It is also worth pointing out that during
our computations we obtained larger families, when running IFS-origin and
IFS-greedy on more restrictive α-vectors than running them on less restric-
tive α-vectors. We believe the concept of admissibility via α-balance (and its
requirement per different IFS algorithms) makes the difference versus IPOG and



238 L. Kampel and D.E. Simos

IPOG-F, since these algorithms lack of a balancing strategy during horizontal
extension. Regarding our results, we want to highlight that IFS-score is able
to deliver almost the same size of output IFS as IFS-greedy without the need
of an α-vector as input. On the other hand, IFS-score is more complex than
IFS-greedy and even IFS-origin due to score computations.

The values for IPOG-F in Table 3 are taken from [16]. For the experimental
evaluation we run IPOG locally as it is implemented in ACTS, a CA generation
tool provided by NIST [19]. For the input values of N in Table 3, IPOG and
IPOG-F were considerably faster than all three of our algorithms. We think that
the extra computations are fully justified, since the IFS-family of algorithms
outperforms IPOG and IPOG-F, in 14 out of the 18 documented cases in terms
of output size of produced IFS (or columns of produced CAs respectively) and
achieves the same size values in the other four. Especially, if we consider that in
our experiments the main objective was to compare to the best bounds provided
by greedy algorithms.

Table 3. Comparison of the amount of columns attained on N rows by different CA
algorithms (larger is better). Information for the best lower bound for CAK (N ; t) where
t = 3 is provided by Colbourn Tables [3]. The superscripts denote the α-vector that
was used as input for the computation that yields the output IFS, where a= (4, 2),
b= (6, 3), c = (8, 4), d= (10, 5).

N IPOG-F IPOG IFS-origin IFS-greedy IFS-score Colbourn Tables

8 4 4 4a 4a 4 4

9 4 4 4a 4a 4 4

10 4 4 4a 5a 5 5

11 5 4 4a 5a 5 5

12 5 6 11b 11b 11 11

13 5 6 6b 11b 11 11

14 6 6 6b 11b 11 11

15 6 6 7b 11b 11 12

16 7 7 8c 14c 14 14

17 9 7 10c 14c 14 16

18 11 8 12c 17c 16 20

19 12 8 13c 17c 16 22

20 13 10 11d 19d 19 23

21 15 10 15c 19c 19 25

22 16 12 18c 21c 21 26

23 16 13 19c 23c 22 30

24 19 13 23d 26d 25 38

25 21 14 24c 28a 26 44



Set-Based Algorithms for Combinatorial Test Set Generation 239

6 Conclusion and Future Work

In this paper, we present a family of set-based algorithms for covering arrays,
which can be regarded as abstract combinatorial test sets, based on independent
families of sets. Our algorithmic design is modular thanks to a variety of build-
ing blocks which can give rise to even more algorithms than the ones presented.
As a proof of concept of our approach we compared the implementations of the
proposed family against state of the art greedy algorithms that are also used
in practice for 3-way testing. This initial evaluation shows, that our approach
improves significantly, in terms of size, over the existing greedy algorithm, which
translates to smaller test sets. As future work, we plan to enhance the function-
ality of our algorithms via extending it to produce combinatorial test sets over
non-binary alphabets as well as conduct more experiments for test sets that can
be used for higher strength interaction testing.

Acknowledgments. This work has been funded by the Austrian Research Promotion
Agency (FFG) under grant 851205 and the Austrian COMET Program (FFG).

References

1. The economic impacts of inadequate infrastructure for software testing. U.S.
Department of Commerce, National Institute of Standards and Technology (2002)

2. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Trans. Softw. Eng. 23(7),
437–444 (1997)

3. Colbourn, C.J.: Table for CAN(3, k, 2) for k up to 10000. http://www.public.asu.
edu/∼ccolbou/src/tabby/3-2-ca.html. Accessed 25 Apr 2016

4. Colbourn, C.J.: Combinatorial aspects of covering arrays. Le Matematiche (Cata-
nia) 58, 121–167 (2004)

5. Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs. CRC Press,
Boca Raton (2006)

6. Forbes, M., Lawrence, J., Lei, Y., Kacker, R., Kuhn, D.R.: Refining the in-
parameter-order strategy for constructing covering arrays. J. Res. Nat. Inst. Stand.
Technol. 113, 287–297 (2008)

7. Freiman, G., Lipkin, E., Levitin, L.: A polynomial algorithm for constructing fam-
ilies of k-independent sets. Discret. Math. 70(2), 137–147 (1988)

8. Gao, S.W., Lv, J.H., Du, B.L., Colbourn, C.J., Ma, S.L.: Balancing frequencies
and fault detection in the in-parameter-order algorithm. J. Comput. Sci. Technol.
30(5), 957–968 (2015)

9. Hartman, A., Raskin, L.: Problems and algorithms for covering arrays. Discret.
Math. 284(13), 149–156 (2004)

10. Kleitman, D.J., Spencer, J.: Families of k-independent sets. Discret. Math. 6(3),
255–262 (1973)

11. Kuhn, D., Kacker, R., Lei, Y.: Practical combinatorial testing. In: NIST Special
Publication pp. 800–142 (2010)

12. Kuhn, D., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. Chapman &
Hall/CRC Innovations in Software Engineering and Software Development Series.
Taylor & Francis, New York (2013)

http://www.public.asu.edu/~ccolbou/src/tabby/3-2-ca.html
http://www.public.asu.edu/~ccolbou/src/tabby/3-2-ca.html


240 L. Kampel and D.E. Simos

13. Lawrence, J., Kacker, R.N., Lei, Y., Kuhn, D.R., Forbes, M.: A survey of binary
covering arrays. Electron. J. Comb. 18(1), P84 (2011)

14. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG-IPOG-D: efficient
test generation for multi-way combinatorial testing. Softw. Test. Verif. Reliab.
18(3), 125–148 (2008)

15. Lei, Y., Tai, K.C.: In-parameter-order: a test generation strategy for pairwise test-
ing. In: 1998 3rd IEEE International Proceedings of High-Assurance Systems Engi-
neering Symposium, pp. 254–261. IEEE (1998)

16. NIST: Table for CA(3, k, 2). National Institute of Standards and Technology.
http://math.nist.gov/coveringarrays/ipof/tables/table.3.2.html. Accessed 25 Apr
2016

17. Seroussi, G., Bshouty, N.H.: Vector sets for exhaustive testing of logic circuits.
IEEE Trans. Inf. Theor. 34(3), 513–522 (1988)

18. Torres-Jimenez, J., Izquierdo-Marquez, I.: Survey of covering arrays. In: 2013 15th
International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting (SYNASC), pp. 20–27. IEEE (2013)

19. Yu, L., Lei, Y., Kacker, R.N., Kuhn, D.R.: Acts: a combinatorial test generation
tool. In: 2013 IEEE 6th International Conference on Software Testing, Verification
and Validation (ICST), pp. 370–375. IEEE (2013)

http://math.nist.gov/coveringarrays/ipof/tables/table.3.2.html


Automated Localisation Testing in Industry
with Test∗

Mireilla Martinez1, Anna I. Esparcia1, Urko Rueda1(B), Tanja E.J. Vos2,
and Carlos Ortega3

1 Universidad Politecnica de Valencia, Camino de vera s/n, Valencia, Spain
{mimarmu1,aesparcia,urueda,tvos}@pros.upv.es

2 Open Universiteit, Valkerburgerweg 177, Heerlen, The Netherlands
tanja.vos@ou.nl

3 Indenova, Carrer Dels Traginers 14, Valencia, Spain
cortega@indenova.com

http://www.testar.org

Abstract. Test∗ is a testing tool that automatically and dynamically
generates, executes and verifies test sequences based on a tree model that
is derived from the software User Interface through assistive technologies.
Test∗ is an academic prototype that we continuously try to transfer to
companies to get feedback about its applicability. In this paper we report
on one of these short experiences of using Test∗ in industry at the Valen-
cian company Indenova. We applied the tool to check the localisation
quality of a secure web platform that encapsulates a set of applications
as services.

Keywords: Automated testing · Localisation · Technology transfer

1 Introduction

In previous work [4] we have presented an approach to automated testing of
software applications from their User Interface (UI). Test∗1 automatically and
dynamically generates test sequences which are executed and verified to reveal
quality issues of the software under test. The tool is based on a tree model
that is derived from the UI through the Operating System’ Accessibility API2.
From that API we can get access to the set of widgets that compose the UI of
the target application (e.g. buttons, text-fields, menu bars) and the properties of
each widget that characterise their appearance in the screen (e.g. screen position,
size, whether it is enabled or not). From the UI model Test∗ is able to compute

1 Previously known as TESTAR or Testar, and available as open source at http://
www.testar.org.

2 https://msdn.microsoft.com/en-us/library/windows/desktop/ff486375(v=vs.85).
aspx.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 241–248, 2016.
DOI: 10.1007/978-3-319-47443-4 17

http://www.testar.org
http://www.testar.org
https://msdn.microsoft.com/en-us/library/windows/desktop/ff486375(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff486375(v=vs.85).aspx


242 M. Martinez et al.

a set of feasible actions (user events like left clicks and typing texts) to automate
the interaction, so do the testing, with the software interface. No test cases are
recorded and the tree model is dynamically inferred for every state3, this implies
that tests will run even when the GUI changes. This reduces the maintenance
problem that threatens other GUI testing techniques like Capture and Replay
[3] or Visual testing [1].

The Test∗ tool has been developed in the context of the EU FITTEST project
that finished in 2014. First, it was evaluated in experimental conditions using
different real and complex software applications like MS Office suite (running it
48 hours we detected 14 crash sequences). Subsequently, and with the purpose of
getting a better understanding about the applicability of the tool in an industrial
environment, we continuously try to apply Test∗ in companies to get feedback
about its applicability and help companies to obtain solutions to the problems
they face. In [5] results are described of transferring and evaluating the tool
within 3 different companies on 2 desktop applications and one web application.
In this paper we report on yet another short experience of using Test∗ in industry
at the Valencian company Indenova4.

2 Test∗

To automate test generation, execution and verification, Test∗ performs the steps
as is shown in Fig. 1: (1) start the SUT (System Under Test); (2) obtain the
GUI’s State (a widget tree5); (3) derive a set of sensible actions that a user
could execute in a specific SUT’s state (i.e. clicks, text inputs, mouse gestures);
(4) select one of these actions (random or using some search-based optimisation
criteria); (5) execute the selected action (through Java Robot6 class); (6) apply
the available oracles to check (in)validness of the new UI state. If a fault is found,
stop the SUT (7) and save a re-playable sequence of the test that found the fault.
If not, keep on testing if more actions are desired within the test sequence.

Using Test∗, you can start testing immediately from the UI without the
traditional requirement of specifying test cases, which are commonly provided
manually with some degree of tool support. Based on the information gath-
ered from the Accessibility API tests are generated by selecting an action to
execute in the UI (e.g. left click a button with the title “Ok”). The action selec-
tion mechanism mainly drives how the test cases are generated, which can be
performed randomly (select any suitable action for the current UI) or using
a more advanced approach to increase the effectiveness of tests like the work
in [2]. Without specifying anything, Test∗ can detect the violation of general-
purpose system requirements through implicit oracles like those stating that the

3 The Graphical User Interface at a particular time.
4 www.indenova.com/.
5 Test∗ uses the Operating System’s Accessibility API, which has the capability to

detect and expose a GUI’s widgets, and their corresponding properties like: display
position, widget size, title, description, etc.

6 https://docs.oracle.com/javase/8/docs/api/java/awt/Robot.html.

www.indenova.com/
https://docs.oracle.com/javase/8/docs/api/java/awt/Robot.html


A Short Experience with Test∗ in Industry 243

START 
SUT

SCAN GUI + 
OBTAIN 

WIDGET TREE

more 
actions?

DERIVE SET 
OF USER 
ACTIONS

EXECUTE 
ACTION

No

Yes

STOP 
SUT

optional 
instrumentation

ORACLEFAULT?
Yes

No

more sequences?

SELECT 
ACTION

Domain Experts Action 

Oracle

SUT

Replayable
Erroneous Sequences

1 2

6

3

4

57

11

Fig. 1. Test∗ testing flow

SUT should not crash, the SUT should not find itself in an unresponsive state
(freeze) and the GUI state should not contain any widget with suspicious words
like error, problem, exception, etc.

This is a very attractive feature for companies because it enables them to
start testing immediately and refine the tests as we go.

3 Indenova and the SUT eSigna

Indenova is a Valencian ICT company that provides ERP (Enterprise Resource
Planning) solutions for companies. Their initial clients are based in Spain. But
throughout the years, Indenova has gained new clients in Latin America. Testing
at Indenova is mainly manual and basically done at the system acceptance test
level. Written requirements are used for the design of system test suites. They
would like to have more tests automated, but currently in the company there is
a lack of time and people with knowledge about test automation.

Becoming aware of Test∗ Indenova is very interested to see how they can
start test automation, so they provided access to their eSigna product. It is
a web platform that securely integrates and provides access to applications as
services enabling users to perform specific processes inside their organisations.
Thus, eSigna is a base component in which concrete services can be plugged-in
as required by each particular project. Those services are independent from each
other, but they are interconnected to share information in real time.

4 The Industrial Experience

During the investigation we have measured the following effectiveness and effi-
ciency aspects of Test∗ for testing the localisation quality of eSigna:

1. Number of failures (wrongly translated words) observed after executing Test∗

on eSigna



244 M. Martinez et al.

2. Time needed to set-up the test environment and get everything running
3. Lines Of Code (LOC) and time needed for UI actions definition, oracles design

and stopping criteria setup.
4. Time for running Test∗ to reveal localisation issues on eSigna.

The project has been carried out in a fashion that allowed us to perform
iterative development of Test∗. The process included the following steps which
were repeated several times to yield the final setup:

1. Planning: Implementation of Test Environment, consisting of planning and
implementing the technical details of the test environment for Test∗, as well
as the anticipating and identifying potential fault patterns in the Error Defi-
nition.

2. Implementation: Consisting of implementing the Test∗ protocol consisting of:
Oracles to implement the detection of the errors defined in the previous step;
Action Definition to define the action set from which Test∗ selects; and the
Implementation of stopping criteria that determine when sufficient testing
has been done by Test∗.

3. Testing and Evaluation: Run the tests.

4.1 Planning the Testing: What Do We Want to Test

One of the immediate problems that Indenova faces with eSigna, localisation to
Latin America community, fits perfectly with Test∗ capabilities. The tool enables
not only to detect stability problems for free, like crashes and exceptions, but it
also allows to systematically analyse the UI in the search of wrongly translated
texts.

As previously indicated, the initial clients from Indenova were from Spain,
but gradually they have expanded to Spanish speaking South American coun-
tries. One of the problem encountered is that there are differences between the
Castilian Spanish spoken in Spain and the different Latin American Spanish.
Although it is not a problem of not being able to understand what is meant,
some of the clients from Columbia and Peru just have complained about the
usage of Castilian words. For example:

English Castilian Spanish Latin American Spanish

Mobile phone Móvil Celular

Holiday Festivo Feriado

Computer Ordenador Computadora

Since the implementation is not based on dictionaries and the Castilian
Spanish is hard-coded, there is no other way than test the application to find
the words that need to be changed for the other countries. This is a tedious and
boring job.



A Short Experience with Test∗ in Industry 245

4.2 Implementing the Test∗ protocol

Test∗ has the flexibility to adapt its default behaviour for specific needs. We
will describe next how did we setup the tool to automatically verify localisation
problems on eSigna product. We refer to the steps in the testing flow (Fig. 1):

1. START SUT - Set eSigna activation: it will tell Test∗ how to start/run
the application. Being a web application, it consists of a command line
BROWSER URL where BROWSER is the path and executable of an avail-
able web browser (i.e. Internet Explorer) and URL the entry point for the
eSigna web application.

2. DERIVE SET OF USER ACTIONS - Set suitable actions: from the space
of candidate actions that the user could perform over the product UI we are
interested in (1) actions that will enable an automatic login to eSigna and
(2) actions which are not interesting for our localisation verifying objective
(i.e. web browser actions, a logout button, an administration panel in eSigna,
etc.)

3. SELECT ACTION - Set test algorithm: the tool provides several strategies
to generate a test (e.g. picking a random action each time). We are interested
in exercising as much of the UI as possible to verify any potential localisation
issues. We selected the Q-Learning algorithm from previous work [2].

4. ORACLE - Set localisation oracles: verifying the localisation correctness of
eSigna for a target language can be straightforward performed by defining a
list of taboo words that should not appear in the UI. This list can be easily
defined in Test∗ UI through Java regular expressions (i.e.
.*[mM][óo]vil.*—.*[fF]estivo.*—.*[oO]rdenador.*).

5. FAULT?/more actions? - Set the stopping criteria: the tool offers different
approaches to stop a test, including a fixed time for execution, a fixed length
for the number of UI actions to be executed or a self-made stopping criteria
through a Java based protocol class (check next point). We made use of the
last option to establish that we have tested enough when no more new UI is
being exercised by our tests.

6. Advanced setup editing the tool’ test protocol: Test∗ provides a Java class
composed of a method for each task in the testing cycle presented in Fig. 1.
Concretely, we implemented the automated login inside the task START
SUT, non-interesting actions filtering inside the task DERIVE SET OF USER
ACTIONS and the stopping criteria in the more actions? check point.

Once Test∗ was setup for automated localisation verification we just had to
wait for the tool test reports. Following the testing flow of Test∗ it would first
activate eSigna, perform an automated login and repeat a cycle of <select and
execute action, verify localisation problems, check stopping criteria>.

4.3 Testing and Evaluation

Our context multilingual scenario consisted of one target language, Latin Amer-
ican Spanish, as this was the first concern on eSigna testing with Test∗. We



246 M. Martinez et al.

account in Table 1 (LOC = Lines Of Code; time in minutes) for metrics that
measure the effort required for our solution on automated verification of locali-
sation issues.

Setting up Test∗ for eSigna is an easy process that consists on providing
the command line that would activate the product. Actions configuration would
require some effort though as we would like Test∗ to perform automated tests
without user intervention. Thus, we first need to analyse eSigna authentica-
tion process to provide the proper actions once the product has been activated.
Additionally, we wanted to maintain our tests in relevant UI parts of eSigna,
for example disabling/filtering non interesting actions like closing the browser,
log-out of eSigna, etc. Yet, 35 lines of code and 10 min were enough for Test∗ to
perform automated tests over eSigna. We acknowledge that future enhancements
on Test∗ would enable a more efficient configuration of actions (we used version
1.1a of the tool).

Table 1. Efficiency

Setup environment Actions Oracles Stop criteria Test run

Time LOC Time LOC Time LOC Time Time

1 35 10 0 5 9 2 >60

Oracles did not require any lines of code, but just a regular expression with
the full list of unwanted localised product words (e.g. Móvil, Festivo, Ordenador).
From Indenova, we acquired a full list of more than 30 words that the Latin
American community had issued to the company in the past. This list contained
wrongly used Spanish words (e.g. Móvil instead of Celular). Thus, we defined
the regular expression for the words in the list that would enable Test∗ to check
the quality of eSigna with respect to its localisation.

The stopping criteria was easily implemented taking into account how much
of the UI was being exercised (user events) by the test. We named this UI space
exploration, where the full UI space is composed of every particular and different7

screen window that the application might show to the user. We forced to stop
the tests when no more UI space was being explored by the last 100 executed
actions. In other words, when there was no new UI window already exercised by
the test.

Finally, using the configuration just described we let Test∗ run a test for
almost an hour. The tool was able to report localisation issues on 2 words from
the list in the first 5 min of execution. Both words were confirmed by the company
as they were already aware that they were incorrectly localised. Other words
were not reported, but Indenova indicated that such words were not part of

7 Two windows are considered different if there is almost (a) one widget not present
in both windows or (b) a widget with different properties (e.g. text or size)) in each
window.



A Short Experience with Test∗ in Industry 247

the product. We also observed that new UI space was explored after an hour
of execution, which could reveal additional issues in the localised product. We
expect a direct relation between the UI space exploration (coverage) and the
effectiveness achieved on localisation verification of software products, but this
should be analysed in a further study.

We would like to make some final considerations. We acknowledge that the
verification of localisation issues has been traditionally performed using other
alternatives, for example through text finding utilities like grep command on
Linux hosts or a general purpose text editor with file searching features. A main
efficiency problem of these approaches is that we cannot safely distinguish
between texts used in the source code, and text that is mainly appearing in
the UI: users will never complain on texts that they do not see in the User
Interface.

Moreover, more complex products like eSigna might make more difficult to
check localisation issues when the source code is spread over several (virtual)
machines (perhaps targeting different operative systems), databases, or even
legacy systems. In this sense, Test∗ provides a central setup place from which
products localisation can be verified.

Additionally, we decided to stop our tests after an hour of execution tough we
could have allowed it to run for longer. If checking localisation issues is performed
manually by a human (interacting with the UI) then Test∗ is helpful once it is
setup correctly, as it can operate without human supervision. Although Test∗ is a
general purpose testing tool, we have presented how it can be used to verify that
a software product has the quality levels expected by a company like inDenova.

5 Conclusions and Further Work

We have presented a short experience of transferring an academic prototype
from the university to the industry, for testing software applications at the UI
level. Indenova is a Valencian ICT company that provides ERP solutions to
other companies. We applied the prototype Test∗ for testing localisation issues
in eSigna product, which targets the Latin American countries. eSigna is a secure
web platform composed of integrated web services.

The automation level achieved by the prototype and its potential for testing
software products made Indenova consider the integration of Test∗ into their
testing processes. They used the prototype for performing smoke testing, which
would provide early feedback of the quality of developed product versions.

As further work, we will improve localisation testing in the prototype by
including dictionaries. We would also like to further investigate the effectiveness
of the presented localisation testing solution, concretely its relation to the test’
UI space coverage.

Acknowledgement. This work was partly funded by the SHIP project (EACEA/
A2/UHB/CL 554187) and the PERTEST project (TIN2013-46928-C3-1-R). Test∗ was
funded by the EC within the context of the FITTEST project, ICT-2009.1.2 no. 257574
(2012–2015).



248 M. Martinez et al.

References

1. Alegroth, E., Nass, M., Olsson, H.H.: Jautomate: a tool for system- and acceptance-
test automation. In: 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation (ICST), pp. 439–446, March 2013

2. Bauersfeld, S., Vos, T.: A reinforcement learning approach to automated GUI
robustness testing. In: Fast Abstracts of the 4th Symposium on Search-Based Soft-
ware Engineering (SSBSE 2012), pp. 7–12. IEEE (2012)

3. Nguyen, B.N., Robbins, B., Banerjee, I., Memon, A.M.: GUITAR: an innovative tool
for automated testing of GUI-driven software. Autom. Softw. Eng. 21(1), 65–105
(2014)

4. Rueda, U., Vos, T.E.J., Almenar, F., Mart́ınez, M.O., Esparcia-Alcázar, A.I.: TES-
TAR: from academic prototype towards an industry-ready tool for automated test-
ing at the user interface level. In: Canos, J.H., Gonzalez Harbour, M. (eds.) Actas
de las XX Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD 2015), pp.
236–245 (2015)

5. Vos, T.E.J., Kruse, P.M., Condori-Fernández, N., Bauersfeld, S., Wegener, J.: Tes-
tar: tool support for test automation at the user interface level. Int. J. Inf. Syst.
Model. Des. 6(3), 46–83 (2015)



Distribution Visualization for User Behavior
Analysis on LTE Network

Masaki Suzuki1(&), Quentin Plessis1, Takeshi Kitahara1,
and Masato Tsuru2

1 KDDI R&D Laboratories Inc., 2-1-15 Ohara, Fujimino-shi, Saitama, Japan
{masaki-suzuki,qu-plessis,kitahara}@kddilabs.jp

2 Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka, Japan
tsuru@cse.kyutech.ac.jp

Abstract. In order to seamlessly provide high quality communication services,
mobile network operators (MNOs) tackle to promptly respond to a degradation
of the communication quality when it occurs. MNOs are facing a difficulty to
detect the degradation without any error messages or nonconformity. For the
first step of the study, we implemented a Self-Organizing Map (SOM)-based
visualization system to analyze the users’ behavior in evolved packet core based
on state transitions estimated by capturing LTE C-Plane signals. We show a case
study of analyzing actual LTE signals using the implemented system, which
demonstrates that we can intuitively see the unexpected characteristic of users’
behavior from the results.

Keywords: LTE � C-Plane analysis � Self-Organizing Map (SOM)

1 Introduction

Mobile network operators (MNOs) are responsible for providing high quality of
communication services. It is very important for them to monitor the communication
quality. For this purpose, MNOs tackle to immediately detect the degradation of the
communication quality when any incidents occur. The existing approaches are gen-
erally either the log-based or the conformance-based. In the log-based approaches, a
system monitors messages and system logs of equipment in the LTE network [1]. The
system detects hardware errors and link errors. On the other hand, in the conformance-
based approaches, a system detects unfamiliar sequence of messages referring the
specifications of 3GPP standard. However, there exists a degradation of the commu-
nication quality occurring without any error messages or nonconformity. For instance,
ping-pong handover is a general phenomenon in mobile networks, which causes
inefficient network performance and communication quality [2, 3]. When one User
Equipment (UE) which is moving close to the fringe between multiple evolve node Bs
(eNBs) and connecting to one of them, it handovers from one eNB to another eNB,
then it often immediately connects back to the former eNB. In the case where the UE
stays around the fringe, it sometimes repeatedly handovers from/to these eNBs. In this
situation, there exists no evolved packet core (EPC) equipment errors. However, this
phenomenon still causes unnecessary control messages in EPC and degrades the

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 249–255, 2016.
DOI: 10.1007/978-3-319-47443-4_18



communication quality. In such a case, MNOs hardly detect the degradation unless
customers report the problem to them.

For the first step to study detecting the degradation without any errors, MNOs have
to know how users behave in EPC. In order not to lose the generality, the users’
behavior analysis should be exhaustive and comprehensive. However, since EPC
signals through various interfaces between function nodes in EPC are mixture of
different protocols and IDs, it is difficult to trace users’ behavior sequentially.

In this paper, we report a preliminarily implemented system that captures and
analyzes C-Plane signals in EPC, quantifies users’ behavior, and visualizes the dis-
tribution of users’ behavior. Then we introduce a case study with the actual C-Plane
signals and a typical example for cluster of degraded situation of users’ behavior.

2 Related Works

There exist several studies about users’ behavior analysis in mobile networks. In [4],
the authors analyze signaling storms based on radio resource control (RRC) protocol.
In order to detect anomaly and malicious users’ behavior causing signaling storms, [4]
firstly models and analyzes the patterns of signals in RRC protocol. Then, it identifies
the specific patterns. In [5], the authors focus on retrieving radio access information
from S1-MME and S11 interfaces. As an example, the authors summarize the time
transition of the duration of radio access bearer establishment.

To the best of our knowledge, there exists no study analyzing or visualizing users’
behavior in EPC. Therefore, for the first step of research, we tackle to visualize users’
behavior based on C-Plane signals in EPC.

3 Implementation

In order to analyze users’ behavior in EPC, we implement a distribution visualization
system in an actual LTE network which is standardized by 3GPP [6]. Figure 1 briefly
depicts the LTE architecture regarding to C-Plane signals. In our implementation, we
focus on the signals through S1-MME, S10 and S11 interfaces. They are a mixture of
S1 application protocol (S1AP) and Evolved general packet radio service tunneling
protocol for control plane (GTPv2-C). Figure 2 shows the architecture of our imple-
mentation. Firstly, the capture server captures signals. Secondly, the signal analyzer
extracts users’ state transition from capture files. Thirdly, the statistics monitor quantify
users’ behavior based on users’ state transition. Finally, the distribution visualizer
draws users’ behavior distribution using self-organizing map (SOM).

3.1 Capture of C-Plane Signals and Signal Analysis

The process in our implementation starts with the capture of the signals. The imple-
mented system groups the signals by user, then constructs signal sequences by user.
After that, it extracts specific patterns of signal sequences. Note that, the implemented

250 M. Suzuki et al.



system does not identify the specific user. It can only distinguish users using a tem-
porary assigned identifier. Since the temporary identifier is valid for a certain duration
of time, the implemented system can trace users’ behavior for a short time. Thus the
implemented system cannot follow any specific user for a long time, e.g. several hours
or longer.

Based on the signal sequences, the system constructs a state transition graph. The
state transition graph consists of 5 elements as follows. The input is specific patterns of
signaling messages extracted from S1AP and GTPv2-C signals. The states are defined
according to 3GPP standard, and determined by the combination of current state and
input. In the system, the initial and final state of the transition are ignored since, in
actual LTE networks, the initial state should always be the same state and the final state
should not be naturally defined. Tables 1 and 2 show the lists of states and examples of
state transition respectively.

Fig. 1. LTE architecture. Fig. 2. System architecture.

Table 1. States in the system

State Description State Description

0 UNKNOWN 13 ACTIVATION
1 IDLE 14 START_WIFI
2 INITIAL_CONTEXT_SETUP 15 END_WIFI
3 S1_HO_INITIATION 16 TAU
4 S1_HO_ALLOCATION 17 THREEG_HD
5 S1_HO_ALLOCATED 18 CALL
6 S1_HO_BEING_CARRIED_OUT 19 ACTIVE_ENTER
7 S1_HO_SUCCEEDED 20 ACTIVE_LEAVE
8 S1_HO_ALLOCATION_FAILED 21 SETUP_BEARER
9 S1_HO_PREPARATION_FAILED 22 RELEASED_BEARER
10 S1_HO_CANCELLED 23 INACTIVE
11 X2_HANDOVER_SUCCEEDED 24 X2_HANDOVER_INITIATION
12 X2_HANDOVER_FAILED 25 LEFT_MEASURED_AERA

Distribution Visualization for User Behavior Analysis on LTE 251



3.2 Statistics Monitor

After that, the implemented system calculates statistics values in order to quantify the
behavior of each user based on his/her state transition. In the implementation, in order
to characterize the continuous-time state transition of a user, we adopt the state tran-
sition probability matrix (p(n,m)) as well as the average and the variation coefficient of
the dwell time ðtðiÞ n;mð ÞÞ at state n in a transition from state n to state m. The prob-
ability p(n,m) from state n to state m is calculated in Eq. 1,

p n;mð Þ ¼ the number of state transition from n to m
the number of state transition from n to any states

: ð1Þ

The dwell time tðiÞ n;mð Þ is calculated by state transition as in Eq. 2,

tðiÞ n;mð Þ ¼ tðiÞn � tðiÞm ; ð2Þ
where, tðiÞm and tðiÞn is the arrival time at state m and n in i-th state transition from state
m to n respectively. To gather these values, we describe users’ behavior with a
multi-dimensional vector. As respecting the definition of states, number of possible
state transition is 600. Since we adopt 3 different statistics values, users’ behavior
described in a 1,800-dimensional space in our implementation.

3.3 Distribution Visualizer

In order to visualize the distribution in a multi-dimensional space, the distribution
visualizer uses the self-organizing map (SOM) [7]. SOM is an artificial neural network

Table 2. Examples of state transition

Current state Next state Description Procedure code

X2 HO succeeded X2 HO initiated PATH SWITCH REQUEST ACKNOWLEDGE 3 DL SUCCESS

S1 HO allocation S1 HO allocated HANDOVER REQUEST ACKNOWLEDGE 1 UL SUCCESS

S1 HO allocation S1 HO allocation failed HANDOVER FAILURE 1 UL UNSUCCESS

S1 HO prep. failed S1 HO initiated HANDOVER REQUIRED 0 UL

S1 HO allocated S1 HO in progress HANDOVER COMMAND 0 DL SUCCESS

Inactive Idle UE CONTEXT RELEASE COMPLETE (inactivity) 23 UL SUCCESS

Idle Tracking are update INITIAL UE MESSAGE (TAU) 12 UL

Idle Activation INITIAL UE MESSAGE 12 UL

X2 HO initiated X2 HO succeeded PATH SWITCH REQUEST 3 UL

Initial context setup Inactive UE CONTEXT RELEASE REQUEST (inactivity) 23 UL

Activation Initial context setup INITIAL CONTEXT SETUP RESPONSE 9 UL SUCCESS

S1 HO alloc. failed S1 HO allocation HANDOVER REQUEST 1 DL

Tracking are update Idle UE CONTEXT RELEASE COMPLETE 23 UL

Tracking are update Initial context setup INITIAL CONTEXT SETUP RESPONSE 9 UL SUCCESS

S1 HO in progress S1 HO succeeded HANDOVER NOTIFY 2 UL

S1 HO initiated S1 HO allocation HANDOVER REQUEST 1 DL

S1 HO initiated S1 HO cancelled HANDOVER CANCEL ACKNOWLEDGE 4 DL

S1 HO initiated S1 HO preparation failed HANDOVER PREPARATION FAILURE 0 DL UNSUCESS

S1 HO cancelled S1 HO initiated HANDOVER REQUIRED 0 UL

252 M. Suzuki et al.



using unsupervised learning to construct a two-dimensional space representing a
multi-dimensional space. We can intuitively see the distribution of the users’ behavior
by mapping the distribution in a multi-dimension into a two-dimension.

According to the SOM algorithm, the distribution visualizer firstly define the vector
space based on the entire input data. Secondly, the distribution visualizer plots the
quantified user’s behavior in an n-dimensional space one by one. Then it transforms the
distribution into a two-dimensional space. In the process of the transformation, it draws
regular grid of circles (namely, units) in the two-dimensional space. Each unit repre-
sents principal components and each plot is located in the closest circle so that the more
the behaviors are similar, the closer they are located. The visualizer highlight the
specific condition of users in the case where they are labeled in advance and we can
compare different conditions of users intuitively.

4 Case Study

In order to validate the result of the implemented system and assess its usefulness, we
visualize users’ behavior based on 24 h of the actual anonymized C-Plane signals in a
large urban area in Japan. In this case study, we intuitively identify the fundamental
characteristics of specific users who had experienced ping-pong handovers and labeled
in advance. Firstly, the signal analyzer parses the captured signals and constructs signal
sequences by users. Then, it extracts state transitions. Figure 3 depicts the state tran-
sition diagram. In the figure, the indexes of the nodes are the indexes of the states in
Table 1 and the width of edges are the probability of state transition (p(n,m)). For the
readability, we ignore the edges which p(n,m) is less than 0.10 in the figure. According
to the state transitions, the statistics monitor quantifies the users’ behavior in terms of p
(n,m), the mean value and variation coefficient of dwell time (t(i)(n,m)).

We define the input space using the entire 24 h of input data. We prepare 100 units
to describe the input space in the 2-dimensional space and the indexes of units are
numbered in a left-to-right and bottom-to-top fashion as described in Fig. 4. Figure 5
depicts distribution maps of 0 am, 6 am, 12 pm and 6 pm in the day. In each unit, we
plot users’ behavior of each hour in gray color. Then we highlight users’ who had
experienced ping-pong handovers in the period of time in red color.

According to the figures, the number of visualized users are varied by time and the
distribution of users are different especially between 0 am and 6 am. The highlighted

Fig. 3. State transition diagram. Fig. 4. Indexes of units.

Distribution Visualization for User Behavior Analysis on LTE 253



users, however, located in similar units. Focusing on those unit 2, 3, 13, 14, 15, 23 and
24, the components of them commonly include variation coefficient of tði2XÞ 11; 24ð Þ, p
(11, 24), p(11, 23), p(2, 24). Since ping-pong handovers mean frequent handovers, it is
quite understandable those users are likely to belong to those units which include
transition from 11 to 23 or 24. However, the visualized results indicate a phenomenon
that a number of users who experience ping-pong handovers also start X2 handover
right after the initial context setup, which is unexpected by MNOs. Our system enables
to highlight the unknown characteristics of ping-pong handovers.

5 Conclusion and Future Works

In order to analyze the users’ behavior in EPC, we implemented the visualization
system for user’s behavior distribution. We draw the distribution maps using imple-
mented system with the actual C-Plane data. As future works, we will deeply analyze
users’ behavior based on multi-hop transitions of states.

Fig. 5. Distribution maps of (a) 0 am (b) 6 am (c) 12 pm and (d) 6 pm. (Color figure online)

254 M. Suzuki et al.



References

1. Agrawal, N.: On the design of element management system for node Bs in a 3G wireless
network. In: Proceedings of IEEE International Conference on Personal Wireless Commu-
nications, pp. 51–55, 15–17 December 2002

2. Li, S., Cheng, F., Yuan, Y., Hu, T.: Adaptive frame switching for UMTS UL-EDCH -
Ping-Pong avoidance. In: Vehicular Technology Conference, vol. 5, pp. 2469–2473, 7–10
May 2006

3. Kim, T.-H., Yang, Q., Lee, J.-H., Park, S.-G., Shin, Y.-S.: A mobility management technique
with simple handover prediction for 3G LTE systems. In: Proceedings of Vehicular
Technology Conference, pp. 259–263, 30 September 2007–3 October 2007

4. Gorbil, G., Abdelrahman, O.H., Pavloski, M., Gelenbe, E.: Modeling and analysis of
RRC-based signalling storms in 3G networks. In: IEEE Transactions on Emerging Topics in
Computing, vol. 4, no. 1, pp. 113–127, January–March 2016

5. Wang, J., Zhou, W., Wang, H., Chen, L.: A control-plane traffic analysis tool for LTE
network. In: Sixth International Conference on Intelligent Human-Machine Systems and
Cybernetics (IHMSC), pp. 218–221 (2014)

6. 3rd Generation Partnership Project, General Packet Radio Service (GPRS) Enhancements for
Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access, TS 23.401. Release
Dec 2014

7. Kohonen, T.: The self-organizing map. In: Proceedings of the IEEE, vol. 78, no. 9, pp. 1464–
1480, September 1990

Distribution Visualization for User Behavior Analysis on LTE 255



Author Index

Ali, Shaukat 172
Altinger, Harald 191
Amora, Paulo R.P. 218

Bock, Florian 191
Brito, Felipe T. 218

Čaušević, Adnan 155
Ciocari, Juliano F.C. 218
Collavizza, Hélène 209

Eberhardinger, Benedikt 18, 52
El-Fakih, Khaled 139
Enoiu, Eduard P. 155
Erenay, Osman Tufan 106
Ermakov, Anton 139
Esparcia, Anna I. 241

Feldt, Robert 155

Garn, Bernhard 70
Gehlen, Marcel 52
German, Reinhard 191
Ghandehari, Laleh Shikh Gholamhossein 70
Gomes, Eder C.M. 218

Habermaier, Axel 18
Hierons, Robert M. 89, 123

Jääskeläinen, Antti 225

Kampel, Ludwig 231
Karahoda, Sertaç 106
Kaya, Kamer 106
Kitahara, Takeshi 249
Kleine, Kristoffer 70
Knapp, Alexander 52

Lei, Yu 70
Liaaen, Marius 172
Lima, Antonio G.S. 218

Machado, Javam C. 218
Martinez, Mireilla 241
Merayo, Mercedes G. 89
Michel, Claude 209

Núñez, Manuel 89

Ortega, Carlos 241

Patel, Krishna 123
Petrenko, Alexandre 36
Pettersson, Paul 155
Plessis, Quentin 249
Pradhan, Dipesh 172

Ramesh, S. 36
Reichstaller, André 52
Reif, Wolfgang 18, 52
Rueda, Urko 241
Rueher, Michel 209

Seebach, Hella 18
Simos, Dimitris E. 70, 231
Sippl, Christoph 191
Sundmark, Daniel 155
Suzuki, Masaki 249

Teixeira, Elvis M. 218
Timo, Omer Nguena 36
Tsuru, Masato 249
Türker, Uraz Cengiz 106

von Bochmann, Gregor 3
Vos, Tanja E.J. 241

Wang, Shuai 172
Wittmann, David 191

Yenigün, Hüsnü 106
Yevtushenko, Nina 139
Yue, Tao 172


	Preface
	Organization
	Keynotes (Abstracts)
	Gamifying Software Testing
	Constraint-Based Test Suite Optimization
	Beyond Test Automation
	Contents
	Testing Methodologies
	Conformance Testing with Respect to Partial-Order Specifications
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Testing POIOA
	2.2 Formal Definition “Partial Order”

	3 The Concept of PO-Charts
	3.1 Collaborations
	3.2 MSC-Graphs
	3.3 PO-Charts

	4 Conformance Testing with Respect to PO-Charts
	4.1 General Testing Assumptions
	4.2 Testing PO-Charts
	4.3 Example of a Bounded PO-Chart
	4.4 Examples of Unbounded PO-Charts

	5 Discussion
	6 Conclusions
	Acknowledgements
	References

	Back-to-Back Testing of Self-organization Mechanisms
	1 Introduction
	2 The Corridor Enforcing Infrastructure
	3 Case Study: The Self-organizing Production Cell
	4 Building the Environment Model of SO Systems
	5 The Test Model for the Intended Behavior of the SO Mechanisms
	6 Generating and Executing Test Cases with S#
	6.1 Test Case Generation for SO Mechanisms
	6.2 Test Case Execution with S#

	7 Evaluation
	8 Related Work
	9 Conclusion and Outlook
	References

	Test Generation by Constraint Solving and FSM Mutant Killing
	Abstract
	1 Introduction
	2 Background
	2.1 Finite State Machines
	2.2 Fault Model

	3 Mutation Testing
	3.1 Distinguishing Automaton
	3.2 Characterisation of Mutants (Un)Detected by an Input Sequence
	3.3 Complete Test Suite Generation

	4 Experimental Results
	4.1 Prototype Tool
	4.2 Test Generation for an Automotive Controller

	5 Conclusions
	Acknowledgements
	References

	Risk-Based Interoperability Testing Using Reinforcement Learning
	1 Introduction
	2 Test Model Specifications
	2.1 Behavior SuT Models and Their Communication
	2.2 Fault Models
	2.3 Negative Situations

	3 From Failure Negativity to Fault Criticality
	3.1 Solving MDPs
	3.2 Q-learning

	4 Deriving Tests with High Risk-Based Impact
	4.1 Relevance Functions
	4.2 Deriving Logical Test Cases

	5 Evaluation Within a Mobile Payment Application
	5.1 Inputs and Implications for an Optimal Test Suite
	5.2 Application and Results

	6 Related Work
	7 Conclusions and Future Work
	References

	A Combinatorial Approach to Analyzing Cross-Site Scripting (XSS) Vulnerabilities in Web Application Security Testing
	1 Introduction
	2 Related Work
	3 Combinatorial Testing for Web Security Testing
	4 Penetration Testing Execution Methods
	5 Fault Localization Based on Combinatorial Methods
	6 Methodology
	6.1 Modifications of BEN for XSS Detection
	6.2 Model Refinement

	7 Experimental Evaluation
	7.1 Design of the Experiment
	7.2 Results and Analysis

	8 Conclusion and Future Work
	References

	Heuristics and Non-determinism in Testing
	Controllability Through Nondeterminism in Distributed Testing
	1 Introduction
	2 Preliminaries
	3 Extending the Graph G(M)
	4 Bounding Convergent Test Sections
	5 Conclusions
	References

	Parallelizing Heuristics for Generating Synchronizing Sequences
	1 Introduction
	2 Preliminaries
	3 Eppstein's Algorithm
	4 Parallelization Approach and Improvements
	4.1 Computing a PMF in Parallel
	4.2 Another Approach for BFS Steps
	4.3 A Hybrid Approach to Construct the Next Frontier
	4.4 Implementation Details

	5 Experimental Results
	5.1 Multicore Parallelization of PMF Construction

	6 Conclusion and Future Work
	References

	Resolving the Equivalent Mutant Problem in the Presence of Non-determinism and Coincidental Correctness
	1 Introduction
	2 Related Work
	2.1 The Equivalent Mutant Problem and Coincidental Correctness
	2.2 The Equivalent Mutant Problem and Non-deterministic Systems

	3 Interlocutory Mutation Testing
	3.1 Interlocutory Mutation Testing and Coincidental Correctness
	3.2 Interlocutory Mutation Testing and Non-determinism
	3.3 Applying IMT

	4 Experimental Set-Up
	4.1 Subject Program
	4.2 Interlocutory Relations
	4.3 Mutants
	4.4 Test Cases

	5 Results and Discussion
	5.1 Non-equivalent Mutants
	5.2 Equivalent Mutants

	6 Threats to Validity
	7 Conclusion
	References

	On-the-Fly Construction of Adaptive Checking Sequences for Testing Deterministic Implementations of Nondeterministic Specifications
	Abstract
	1 Introduction
	2 Preliminaries
	3 Fault Model for Deriving an Adaptive Checking Sequence
	4 Deriving an Adaptive Checking Sequence
	5 Conclusion
	Acknowledgment
	References

	Practical Applications
	Mutation-Based Test Generation for PLC Embedded Software Using Model Checking
	1 Introduction
	2 Background and Related Work
	2.1 PLC Embedded Software
	2.2 Automated Test Generation for PLC Embedded Software
	2.3 Mutation Testing

	3 Mutation Test Generation for PLC Embedded Software
	3.1 Mutation Generation
	3.2 Model Aggregation
	3.3 Mutant Annotation
	3.4 Test Generation

	4 Experimental Evaluation
	5 Experimental Results and Discussion
	5.1 Discussion

	6 Conclusions
	References

	STIPI: Using Search to Prioritize Test Cases Based on Multi-objectives Derived from Industrial Practice
	Abstract
	1 Introduction
	2 Context, Running Example and Motivation
	3 STIPI: Search-Based Test Case Prioritization Based on Incremental Unique Coverage and Position Impact
	3.1 Basic Notations and Problem Representation
	3.2 Fitness Function
	3.3 Solution Representation

	4 Empirical Study Design
	4.1 Research Questions
	4.2 Experiment Tasks
	4.3 Evaluation Metrics
	4.4 Quality Indicator, Statistical Tests and Parameter Settings

	5 Results, Analyses and Discussion
	5.1 RQ1: Sanity Check (STIPI vs. RS)
	5.2 RQ2: Comparison with the Selected Approaches
	5.3 Overall Discussion
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgements
	References

	From Simulation Data to Test Cases for Fully Automated Driving and ADAS
	1 Introduction
	2 Related Work
	3 Traffic Conflict Techniques for Fully Automated Driving
	4 Concept
	4.1 Environment-Sensitive Behaviour Simulation
	4.2 Extracting Relevant Situations
	4.3 Describing Executed Situations
	4.4 Build up Test Catalogue

	5 Conclusion and Future Work
	References

	Short Contributions
	Searching Critical Values for Floating-Point Programs
	1 Introduction
	2 Motivating Example
	3 Framework for Generating Test Cases
	4 Preliminary Experiments
	4.1 Strategies and Solvers
	4.2 Results

	5 Discussion
	5.1 Results Analysis
	5.2 Related and Further Work

	References

	UTTOS: A Tool for Testing UEFI Code in OS Environment
	1 Introduction
	2 Related Work
	3 The UTTOS Solution
	4 Case Study
	5 Conclusion and Future Works
	References

	Towards Model Construction Based on Test Cases and GUI Extraction
	1 Introduction
	2 Automated Model Construction
	2.1 Synthesis from Test Cases
	2.2 Extraction from GUI

	3 Combined Methodology
	4 Potential Applications
	5 Discussion
	References

	Set-Based Algorithms for Combinatorial Test Set Generation
	1 Introduction
	2 Problems and Algorithms for Covering Arrays
	2.1 Preliminaries for Covering Arrays
	2.2 Algorithms for Covering Arrays

	3 A Set-Based Method for Constructing CAs
	4 A New Family of IFS Algorithms
	4.1 IFS-Origin
	4.2 IFS-Greedy
	4.3 IFS-Score

	5 Results
	6 Conclusion and Future Work
	References

	Automated Localisation Testing in Industry with Test*
	1 Introduction
	2 Test*
	3 Indenova and the SUT eSigna
	4 The Industrial Experience
	4.1 Planning the Testing: What Do We Want to Test
	4.2 Implementing the Test* protocol
	4.3 Testing and Evaluation

	5 Conclusions and Further Work
	References

	Distribution Visualization for User Behavior Analysis on LTE Network
	Abstract
	1 Introduction
	2 Related Works
	3 Implementation
	3.1 Capture of C-Plane Signals and Signal Analysis
	3.2 Statistics Monitor
	3.3 Distribution Visualizer

	4 Case Study
	5 Conclusion and Future Works
	References

	Author Index



