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Abstract. Autonomous robots are moving out of research labs and factory cages
into public spaces; people’s homes, workplaces, and lives. A key design challenge
in this migration is how to build autonomous robots that people want to use and
can safely collaborate with in undertaking complex tasks. In order for people to
work closely and productively with robots, robots must behave in way that people
can predict and anticipate. Robots chose their next action using the classical sense-
think-act processing cycle. Robotists design actions and action choice mecha‐
nisms for robots. This design process determines robot behaviors, and how well
people are able to interact with the robot. Crafting how a robot will choose its
next action is critical in designing social robots for interaction and collaboration.
This paper identifies reasonableness and rationality, two key concepts that are
well known in Choice Theory, that can be used to guide the robot design process
so that the resulting robot behaviors are easier for humans to predict, and as a
result it is more enjoyable for humans to interact and collaborate. Designers can
use the notions of reasonableness and rationality to design action selection mech‐
anisms to achieve better robot designs for human-robot interaction. We show how
Choice Theory can be used to prove that specific robot behaviors are reasonable
and/or rational, thus providing a formal, useful and powerful design guide for
developing robot behaviors that people find more intuitive, predictable and fun,
resulting in more reliable and safe human-robot interaction and collaboration.

Keywords: Human-robot interaction · Designing robot behavior · Legible robot
behavior · Predictable robot behavior · Choice theory

1 Introduction

There is a quiet revolution taking place. Robots have been moving from research labs
and cages on factory floors into spaces inhabited by people over the last decade. As the
service robot industry continues to seek new opportunities that generate value in people’s
lives, homes and workplaces there is a pressing need to design robots whose behavior
people find intuitive so that their interaction and collaboration are enjoyable.

By enjoyable we mean legible [4], predictable [6, 8], safe, fluent, and effective. A
robot that behaves unintuitive, unpredictably, unsafely, awkwardly or ineffectively is
not enjoyable to be near. To be enjoyable robot interactions need to be easy, seamless
and natural for humans. We should expect that some training might be needed but that
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after being trained a human can work with a robot safely without being surprised, irri‐
tated or frustrated.

The current trend in robotics sees robots taking on increasingly expansive roles in
society as slave, enabler, protector, companion, entertainer, collaborator and partner.
Robot behaviors and social intelligence are fast becoming hot research topics in the
field of robotics as researchers frantically seek to develop new scientific methods to:
(i) assist in the design of intuitive robot behaviours for complex human-robot inter‐
actions and (ii) support synchronized and flexible human-robot real-time joint actions
for collaboration.

The challenge for social robot design is to create robot behaviors that people can
anticipate because when people work closely with robots they must be able to predict
what a robot will do next in order to know how best to respond while undertaking coop‐
erative action with a robot in real-time.

Robots are distributed computer systems that chose what actions they will enact in
real-time numerous times a second. Robot behaviour designers craft robot actions and
specify the action choice mechanism that determine how a robot will choose its next
action: autonomous robots spend their entire life gathering sensor data and creating
perceptions of their own body (proprioception) and the external environment (extero‐
ception) that they then use to execute the action choice mechanisms.

There are no widely accepted principles that can be used to guide designers on how
best to build action choice mechanisms, and as a result robot systems can be difficult to
work with, unsafe and unintuitive because their behaviors are hard to interpret, predict,
anticipate and explain. It is time to explore how we can introduce more rigorous methods
into the design of robot action choice mechanisms, particularly in human-robot inter‐
action and social robot applications.

This paper uses ideas from behavioral Choice Theory [7] to develop a new approach
to robot behavior design that leads to reasonable and rational behaviors that people can
understand more easily, and importantly, predict. As a result human-robot interaction
and collaboration can be designed to be more enjoyable and productive. Section 2
describes state-of-the-art in robot design. Section 3 discusses the importance of people
being able to interpret and predict robot behavior in human robot interaction and collab‐
oration. Section 4 introduces Choice Theory as a formal tool for describing and analysing
the robot action choice problem, and explores the idea of what it would mean for a robot
to act reasonably or rationally. Section 5 shows how robot designers can develop
reasonable and rational behaviors for robots, thus creating robots that people find easier
and more enjoyable to work with during interactions and collaboration. Section 6
summarizes the contribution.

2 State-of-the-Art Robot Behavior Design and Interpretation

A robot is a real-time distributed computer system that essentially executes the classical
robot sense-think-act processing cycle. During this cycle a robot gathers and interprets
sensor data from its body and the environment to build high-level perceptions. Using
perceptions and knowledge about the available resources, like body parts, the robot
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“thinks” and chooses an action to perform next. As an example, if a robot wants to lift
a coffee cup and its left arm is busy undertaking another action, the robot could chose
to wait or use its idle right arm to lift the cup. The final stage of the cycle is the enaction
or performance of the chosen action.

During the time it takes a robot to gather sensor data, select the next action and
execute it, there are typically changes within the robot, and in environment. The robot
will gather and analyze new data to choose the next action to execute, and so it continues.
Robots typically complete the sense-think-act cycle many times a second.

Robots are real-time distributed systems, coordination of their body parts and actua‐
tors is complex. A robot’s behavior arises from its action choices, the set of available
actions and a choice mechanism.

Robot designers play a critical role. They design and develop the set of possible robot
actions and craft the robot’s action choice mechanism that robots use to select the next
action to execute in real-time. Once deployed autonomous robots essentially spend their
life making sense of their perceptions and choosing their next action.

Designing action choice mechanisms so that the robot makes autonomous and
appropriate next action selections is a serious challenge. It is important to note that many
robots are reactive and do not have explicit goals, plans or intentions. Even robot soccer
players do not typically have intentions, however, people regularly attribute intention
to robots. For example, they say the robot is “going after the ball”, “trying to kick a
goal”, “looking for a team member to pass to”. Studies of human understanding show
that if a person fully understands a system they are able to explain it in terms of under‐
lying mechanisms e.g. “the robot can calculate how far away the ball is with only one
camera using the size of the ball in the image because it knows the size of the ball”. If
a person is not sure how a system works they often provide a functional description e.g.
“robots have cameras to see where the ball is”. If a person has little idea how a system
works then they tend to attribute intention as a means to explain behavior, e.g. “the robot
goalie dived because it wanted to stop the other team from scoring a goal”. There is a
tendency for people to anthropomorphise robots as a means to explain and predict their
behaviour as intelligent machines.

The action choice mechanism ultimately determines robot behavior. Robotists
develop system architectures and designs that enable robots to make the critical decision
of what action to perform next. Robot decisions are complex and always involve uncer‐
tainty and risk because a robot’s sensor data is noisy; its knowledge and ability to reason
is limited; its understanding of its environment and the real world is superficial and often
flawed; its perceptions are crude and not always faithful to reality; the robot may not
have a clear understanding of its goals, roles, objectives or specific deployment tasks;
situations become even more complex for robots when interacting with people.

The field of social robot design is full of ad hoc procedures, folk philosophy and folk
psychology, and as a result robot behaviors do not follow any guidelines or principles.
A designer simply develops behaviors based on their experience regarding what they
know “works”. It is difficult to scientifically analyse and compare robot behaviors and
action selection mechanisms because they are typically idiosyncratic and/or incredibly
complex as they attempt to mimic the human brain.
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3 Importance of Legible and Predictable Robot Behavior

In human social settings and during collaborative activities it is critically important to
be able to interpret, explain, predict, and anticipate other people’s behavior. Of course,
it is impossible for people to explain or predict every aspect of another person’s behavior.
However, since people have similar morphologies and use similar communicative
signals, and tend to act in roughly “rational” ways it is certainly possible to predict other
people’s behavior to a large extent such that society can function reasonably effectively.

People do not behave entirely randomly, instead they exhibit predictable patterns of
behavior that other people take into account when they plan and execute joint/collabo‐
rative actions. People are also able to develop strategies to mitigate the risk of failing to
predict other people’s behavior, and to respond in real-time when collaborative action
goes awry. People tend to mostly behave reasonably and rationally, thus making working
together easier and more enjoyable than if they acted unreasonably and irrationally. By
contrast, unreasonable or irrational people are hard to understand, difficult to predict and
typically not enjoyable to work with.

As robots become increasingly prevalent in society and their tasks require increas‐
ingly complex human-robot interactions there is a pressing need to design and develop
robots that are easy for people to understand and predict, so that interactions and collab‐
orations are more legible, predictable, safe, fluent, and effective, i.e. enjoyable. Sharing
the same physiology helps people interpret and predict each other’s behavior because
similar sensory stimuli have similar effects on human brains. For example, we all know
that a flash of light or loud noise will typically attract a person’s attention when it is in
their sensor range, we can imagine and explain other people’s behavior by introspection
and a study of ourselves. Most people make an audible sound when they experience
sharp strong pain, and when someone falls over and cries, we know why. Some people
are easier to predict than others, and people can adopt deceptive behaviors to mask their
action choices and intentions.

Robots do not share the same morphology as people, and our bodily experiences are
entirely different, and yet, they can still exhibit behaviors that people can understand
and predict. By way of comparison, people are able to predict and control certain aspects
of other biological species behavior and can work with some animals in highly produc‐
tive ways. Not all animals can be tamed and trained. Consider, horse riding where a
human controls much of the behavior of a horse: people and horses can work seamlessly
together. In contrast, zebras are difficult to harness and work with. Horse riding comes
with risk: no matter how skilled a rider, if a horse is surprised or afraid it can react in
unpredictable ways. Just as people are able to “predict” animal behavior, there is a need
to deploy robots with behaviors that people can predict to an appropriate degree and
interact with in an enjoyable way.

It is easier for people to predict certain animals like horses and dogs, than it is for
them to predict robots of today: partly because people have little experience with robots,
they are not sure what to expect. However, there is a critical difference between animals
and robots: robots are designed, and the quality of the design can have a massive impact
on how well and how easily humans can predict them.
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People should not expect to predict robot behavior all the time, however, they should
absolutely expect to be able to predict robot behavior most of the time [5] particularly
in circumstances when deviations from expectations are dangerous. Determining when
the behavior of a robot is unpredictable is crucial; as this is when it is time to give a
robot more physical space to undertake its maneuvers.

Having to deal with unpredictable robots is not enjoyable, and it will be costly for
society in the same way dealing with unpredictable people can be time consuming and
exhausting. Not only are unpredictable robots unsafe, difficult and unpleasant to be
around, the lack of predictability is a major obstacle to technological innovation adoption
and the expansion of the robot market.

In addition, to the need to be predictable, robots should be able to help people under‐
stand some of their actions and to explain their action choices. Choice designers in
disciplines like marketing have been able to improve prediction by learning more about
how people perceive and make choices. Robotists and robot users will also benefit if
they can learn robot choice patterns and interrogate robots to discover their preferences
as an explanation for their action choices and subsequent behavior.

We define a robot to be unpredictable if its action choices do not have a predictable
pattern from a human perspective. Apart from being annoying and irritating, an unpre‐
dictable robot may threaten people’s well being and cause all kinds of havoc, and so
there is a pressing need to develop robot systems that people can predict.

Unfortunately, designing and developing predictable robots has proved to be a major
challenge and has led to the design of highly deterministic robot designs with limited
scripted robot behaviors, which are predictable but hopelessly inflexible, not adaptive
and not scalable, thus restricting the range of tasks that robots can be deployed to under‐
take. The real challenge though lies in building robots that can work closely with people
in enjoyable ways. On one hand, people must be able to anticipate robot behaviors, and
on the other hand, robots must be able to interpret people’s behavior and anticipate them
as well.

4 Rational and Reasonable Action Choices

Choice Theory provides a sound approach to reasonable and rational decision-making.
It turns out that all rational choices are reasonable, but there are some reasonable choices
that are not rational. So rational choices are a subclass of reasonable choices. Rational
and reasonable action choices can be used to design more predictable and legible robot
behaviors. In this section we describe how robot action choice mechanisms can be
described in a Choice Theory framework. In the following section we show how this
allows robot behaviors to be designed so that they are reasonable or rational.

Robot behavior can be specified as a combination of desires, intentions, perceptions,
beliefs, skills, actions and action choices: goals/desires are explicit representations of
what a robot is aiming to do; plans/intentions are series of actions that can be performed
to achieve a goal; perceptions are created from interpreting and combining sensor data;
actions are processes that the robot can execute and/or enact; beliefs include facts and
rules; skills involve information about when an action can be undertaken; action choice
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mechanisms determine the action choices for the robot to select the next action to
execute and enact.

Choice Theory focuses on the set of actions that a decision maker, in this case a
robot, can choose to enact. It formalizes the use of a preference relation/ordering to
encapsulate goals and plans, and drive action choices. Choice Theory explores the
selections that underlie patterns of choice and it can be used to prove that robot action
choices are reasonable or rational.

A robot action choice model comprises a set of all possible actions, A, that the robot
can perform. A robot action choice function, c is used to determine the set of actions
that a robot could execute c(A) at a given time under certain circumstances. For example,
a robot might be able to execute any of the actions in its set of possible actions:
A = {rotate_head_left, evaluate(x*6), rotate_head_right} but not all of them simulta‐
neous. At any given time when in a specific state the robot must chose an applicable set
of actions, called the choice set, that it can actually execute: c(A) = {rotate_head_left),
evaluate(x*6)}.

A robot action choice function for a binary relation > and a set of actions A is a
function c(A, >) defined by {x∈A: for all y∈A and y not > x} where the ordering, > ,
is a preference relation. a > b is read as a is at least as good as b, and if it were the case
then the robot in a particular state essentially prefers action a over action b.

It turns out that if the preference relation, > , over actions is acyclic then the robot
action function c(A, >) gives rise to a simple choice function c(A). Preference relations
can be designed and used by robots to prefer action a over action b, or vice versa, or to
be indifferent. Choice Theory provides a number of basic conditions that allow us to
classify different kinds of choice functions that are useful in robot design.

In order to define what it would mean for a robot to make reasonable or rational
choices we introduce three key conditions. They govern how choices are made across
subsets and supersets of choices and impose forms of consistency across these choices:
Given a set of robot actions A:

i. Choice function c satisfies the contraction condition if for any choice, c(A), then
c(A) is chosen if c(A) is available.

ii. Choice function c satisfies the expansion condition if actions a, b ∈ c(A) A⊆ B and
b ∈c(B), then a∈ c(B).

iii. Choice function c satisfies the revelation condition if actions a, b are in A and
a ∈ c(A) then for all A’⊆ A whenever b∈c(A’) we have a ∈ c(A’).

Robot choices satisfy the contraction condition if whenever the robot chooses a partic‐
ular action, say a, from a set of possible actions, if the possible actions were fewer and
action a is still available, then the robot should choose action a again. It turns out that
the contraction and expansion conditions are consistent and independent, and revelation
entails both contraction and expansion, but not conversely. These three properties are
used in the next section to show how to construct rational and reasonable robot choices.
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5 Designing Reasonable and Rational Robot Behaviors

In this section we consider several important conditions that the action choice mech‐
anism can be designed to satisfy in order to make robot behavior rational and/or
reasonable.

Decision makers’ appetite for risk often influences the choices selected. Choice
Theory uses a notion of “rationality” to mean that an individual acts as if balancing costs
against benefits to arrive at an action that maximizes personal advantage [24] Applying
Choice Theory to robots raises the question of what constitutes “personal advantage”
for robots. But for robot designers it is clear, we want robots to achieve their specific
deployment tasks.

Proposition 1: Let AS denote the set of all actions available to a robot in state S. Robot
action choices satisfy the contraction condition iff the robot action choice c(AS) ⊆ A’
and c(AS) ⊆ c(A’) whenever AS ⊆ A’.

In other words, if a robot’s action choices satisfy the contraction condition then
reducing the size of the possible set of actions in state S does not change the robot’s
choice if the selected actions are still available, and conversely.

Proposition 2: Let a robot be in state S and let AS denote the set of actions available to
the robot in state S from the set of all actions A. If there is an additional set of actions
B, then robot action choices satisfy the expansion condition iff the robot chooses c(AS)
among AS ∪ b for each action b∈B.

Expansion says that if a robot chooses the same set of actions, say. c(AS), from an
expanded set of actions from B that includes c(AS) and any b∈B then it will chose c(AS)
from the expanded set.

If a robot’s action choices satisfy the contraction and expansion conditions, then
Choice Theory says its behavior is defined to be reasonable.

The following simple proposition relating choices to preferences is immediate from
standard results in Choice Theory, however it is a striking claim in robotics. The notion
that a robot’s behavior could be classified as “reasonable” is novel in robotics.

Proposition 3: If a robot exhibits reasonable behavior then it has a preference relation
over its set of actions, A, for every state S.

If a robot is in state S and AS is the set of actions available to the robot in state S.
Robot action choices satisfy the revelation condition iff the robot chooses Ai when Ai⊆A,
and whenever the robot chooses Ai it also choses Aj⊆A. In other words, if the robot
chooses action Ai over a second action Aj, then whenever it chooses Aj, then it also
chooses Ai whenever it is available.

If a robot’s choices satisfy the revelation condition, then Choice Theory says its
actions are defined to be rational.

Reasonable action choices are weaker than rational action choices, i.e. rational
choices are stricter than reasonable choices as they must satisfy the much stronger reve‐
lation condition. As noted earlier rational choices are a special case of reasonable
choices.
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If a robot acts reasonably people could predict its actions some of the time, but if it
acts rationally then it would be possible to predict the robot all the time. In order to
achieve this level of perspicuity a robot’s preferences would need to be known.

A choice function based on a preference ordering is utility maximizing if for some
assignment of utilities the actions chosen are precisely those whose utility is at least the
utility of every action.

A robot action choice is rational if and only if it can be explained by a preference
ordering; an action choice is rational if and only if it is utility maximizing. Choice gives
rise to utility, and utility is a measure of preference [1].

There is an important difference between using choice models to describe behavior
as reasonable or rational, and choice models that can be used to make predictions about
actual behavior. Since robots are designed decision makers, it is possible to use prefer‐
ence relations to describe and explain robot behavior.

Proposition 4: If a robot exhibits reasonable behavior then it has a preference ordering
over the power set of its actions.

Proposition 5: If a robot’s actions are rational, then they are reasonable.
Propositions 1–5, above, show that in order for robots to exhibit reasonable or

rational behavior their choices must be disciplined. This will not happen without proac‐
tive design steps.

Value-based action selection naturally aligns with Choice Theory because the robot
action selection can be described using ordinal or cardinal ranking of actions based on
a set of criteria [25]. Hoffman and Breazel [6] aggregate values of actions from several
sources to drive robot behavior using a variety of explicit and implicit feedback mech‐
anisms: (i) the strength of the sensory input, (ii) the strength of the motivation, (iii) level
of interest to model boredom or behavior-specific fatigue, and (iv) various forms of
inhibition. Value-based approaches have also been used to guide action selection in robot
teams. Stroupe and Balch [13] used probabilistic values to direct next-step movements
of robot teams as they map objects in their environment. It turns out that these methods
resulted in robot paths that found vantage points that maximized information gain by
reducing the uncertainty of each robot team member’s next observation.

6 Improving Human-Robot Interaction

Henzinger and Sifakis (2006) and many others have identified a major chasm between
analytical and computational models, and the gap between safety critical and best effort
engineering practices. This chasm is particularly disturbing in the robot-human inter‐
action space where people increasingly work in close proximity with robotic technolo‐
gies, e.g. manufacturing robots, robotic surgery, exoskeletons, and underwater robots.
Unless robots are safe and easy to work with, their utility and adoption as a technology
will be limited. Unfortunately, the prevailing approach to developing robots that are safe
and easy to work with has delivered robot designs that are not adaptable or suitable for
open, complex or dynamic environments. This typically means that robots can only
achieve structured tasks in predictable and scripted ways; their ability to adapt to new
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circumstances or achieve complex tasks in dynamic open environments is severely
limited.

Robot design delivers a set of actions and a mechanism that allows a robot to choose
the next action to execute and enact. Actions are computational processes that robots
can execute and enact. Actions can be general computation processes, e.g. pause/wait,
arithmetic, database manipulation, or control programs that involve physical actuation
such as actuator control. Actions involving actuation require appropriate access to rele‐
vant actuators, and in order to be deemed successful they may require certain expecta‐
tions to be filled, e.g. at the end of the lift_cup action, the robot should have lifted a cup.

There are several basic action choice mechanisms widely used in robot systems,
which include reactive mechanisms that rely on look-up tables in which each stimuli is
linked with an explicit response action. Reactive mechanisms are highly deterministic
and generate inflexible behaviors: they encapsulate skills with a fixed set of stimulus-
response relationships that govern robots behavior. Reactive mechanisms can be imple‐
mented as finite state machines. Behavior-based mechanisms build on Brook’s idea of
subsumption [22], which is essentially a layered reactive model. Other kinds of action
selection mechanisms include rule-based selection [21]; blackboard architectures [23];
and value based selection using ordinal and cardinal measures of value like cost and risk
[6] and concepts of attention competitions [9–11].

7 Discussion

As robots become increasingly prevalent in society and their tasks involve more complex
human-robot interactions there is a pressing need to design and develop robot behaviours
that are easy for people to understand and predict, so that interactions and collaborations
are more legible, predictable, safe, fluent, and effective, i.e. enjoyable.

There are no widely accepted design principles that can be used to guide action
selection for social robots that engage in human interaction and collaboration. We
addressed this gap by approaching the robot design as a problem of designing an action
choice mechanism: robots spend their entire life interpreting their sensor data and using
it to choose their next action to execute. Action choice mechanisms are fundamental to
robot capability and behaviours. Robots behaviours need to be legible and predictable
in order for humans to find working with robots to enjoyable. In this paper we used a
decision-theoretic approach to argue that the Choice Theory concepts of reasonable and
rational choices can be used to show that designed robot behavior is more predictable
and legible. The robots that will be the most successful working with people will be the
ones that people find enjoyable to work with, and that means those that people can
understand and anticipate.

Future work will explore three key research questions (i) how to extend the use of
Choice Theory for robots in changing and uncertain circumstances in complex social
settings and human-robot interaction scenarios, (ii) how to incorporate theory of mind
reasoning mechanisms to enrich robot choices of action in social settings and human-
robot interaction scenarios, and (iii) explore the tension between rationality and insanity,
where insanity is defined as making the same choices but expecting a different outcome.
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