
Formalizing Normative Robot Behavior

Billy Okal1(B) and Kai O. Arras1,2

1 Department of Computer Science, University of Freiburg, Freiburg, Germany
okal@cs.uni-freiburg.de

2 Bosch Corporate Research, Robert-Bosch GmbH, Gerlingen, Germany

Abstract. We address the task of modeling, generating and evaluating
normative behavior for interactive robots. Normative behavior is essen-
tial for coherent deployment of these robots in human populated spaces.
We develop a first unifying, intuitive and general formalism of the task
that subsumes most previous approaches which have focused mainly on
specific tasks. We present concrete and practical definitions of norms and
show how to generate and evaluate behavior that adheres to such norms.
We then demonstrate the formalism on a socially normative navigation
task for service robots. Further, we discuss the key challenges in realizing
such behaviors, and in particular, the role of perception and uncertainty.

1 Introduction

As more service robots are deployed for various functions in public spaces such
as hotel lobbies, airports, hospitals, care homes, etc.; the need to demonstrate
additional social, cultural capabilities beyond primary functionality arises. This
is because having such robots in human populated spaces change the under-
lying dynamics of social and cultural interactions [13,18]. Additionally, most
human interactions often influenced by deeper social and cultural standards
or norms which vary across environments, making it hard to explicitly model
them. Robots operating in these spaces nonetheless need to exhibit behavior
that takes into account such social and cultural aspects. We call such behav-
ior a normative behavior although other terminology such as compliance in the
case of “socially compliant navigation” or human-awareness are also commonly
used. In this paper, normative is taken to mean according to a set of norms,
which can be either formal such as traffic rules, or social-cultural such as polite-
ness when navigating. The behavior resulting from adherence to the norms may
not be efficient in terms of classical task metrics like path length in planning,
but may sometimes lead to efficiencies in other regimes. For example a norm
requiring a robot to execute a slipstream maneuver (tailing a person heading in
similar direction in a dense crowd) may generate longer paths; but in the process
also improve reliability in reaching goal by avoiding situations leading to getting
stuck. These norms are often characterized by the entities the robot is interacting
with and the structure of the environment. For example Kruse et al. [10,17] pro-
vide a summary of navigation behaviors with respect to human-awareness norm
generated by considering various geometric relations in the robot’s environment.
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The key task therefore, is figuring out how to equip robots with decision mak-
ing capabilities that result in normative behavior. By taking care of norms in the
decision making stage, we can build anticipatory behavior as opposed to reactive
one. Anticipatory behavior is better suited for coordination and can avoid dam-
ages [1]. Incorporating norms into decision making involves the following key
steps: (i) a formal and practical understanding of norms, (ii) techniques to gen-
erate behavior that adheres to the norms and (iii) effective evaluation methods
for assessing the result. There has been a growing interest in various instantia-
tions of this task, especially with respect to social navigation norms for service
robots. For example [7,16] all seek to develop normative behavior for navigating
in crowded scenes, while [4,9,21,22] focus on normative pairwise interactions
such as passing one another on either side. Most of these approaches focus of
different aspects of the task, defining their own metrics and understanding of
norms, thereby making it difficult to compare, evaluate and select methods to
deploy in practice. It is with this realization that we develop a unified formalism
for addressing this task in this paper. It is our hope that this new formalism will
help organize the efforts to tackle this task under a common setup.

While developing the new formalism, we highlight some key challenges associ-
ated with realizing normative behavior. As a concrete example, consider a robot
providing service in a hotel lobby; the robot’s normative navigation decision mak-
ing capabilities are highly dependent on the performance perception components,
that is, if people cannot be reliably detected, planning around them normatively
is rendered impossible. In general, the more properties of the environment that
can be reliably perceived, the more norms can be taken into account in decision
making. Additionally, predictions of future states and actions of other agents in
the environment is also crucial. Finally, uncertainty arising from action execu-
tion using noisy controllers also needs to be considered. Altogether, these chal-
lenges form a tightly coupled perception-action-control loop that requires clear
interfaces between components when developing a wholesome solution. Conse-
quently, the proposed formalism should be able to define such interfaces clearly
on a common framework. Thus, the main contribution in this paper is a first
unifying formalism for modeling norms and normative behavior for interactive
robots. The presented formalism also admits natural ways of generating and
evaluating resulting normative behavior.

2 Modeling Normative Robot Behavior

In order to have a concise yet flexible formalism for normative behavior, we
discuss three key components that are needed to realize such behavior. These
components will then enable us to make formal definitions of norms and norma-
tive behavior, and lead to what we think of as natural ways of generating such
behavior. We also emphasize that in all of these components, uncertainty plays
a key role in the success of any endeavor, hence the formalism needs to admit
possibility to reason about uncertainly at all levels.
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2.1 Environment

The environment C that the robot is operating in is made up of the space and all
the entities E = {ei} present in it, which together define the structure of the envi-
ronment. These entities could be interactive and even adversarial like humans
or simply artifacts like general obstacles in the scene. Each entity’s anchoring in
the environment is summarized using a pose vector xi. Additionally, each entity
possesses a set of attributes A = {ai}, any subset of which is represented using
a vector ai = (aj , . . . , aj+k)

T ⊆ A. For example, a person i can be represented
using a pose xi = (x, y, ẋ, ẏ)T and may have simple attributes such as age, gen-
der, carrying-luggage, etc. given in a vector ai = (25.0,M,T)T . Further, there
are pairwise relations f : E × E �−→ [0, 1] between some of the entities. Such
pairing can be as a result of attributes. For example two people may belong
to a group like a couple, to which their gender attributes as well as geometric
reasoning may generate a pairing probability of say fgroup(e1, e2) = 0.7, which is
interpreted as the strength of the relation. We eschew the details how to define
and detect such relations to the designer, and only emphasize that the formalism
presented is general enough to admit many choices. Figure 1 shows a example of
such an environment in the case of a navigation task. We argue that this min-
imalistic representation is sufficient to capture all aspects needed for decision
making that culminates in normative behavior of any complexity.

Fig. 1. A normative navigation example setup. Entities shown include people, desk,
queues and general obstacles (in black). Potential perceptual attributes are shown
alongside people. Pairwise relations between people and between person (e. g. grouping)
and other objects (e. g. looking at a screen) are also illustrated with dotted red and
blue lines. A sample socially normative navigation path is shown in blue curve. (Color
figure online)

2.2 Perception

A crucial component for realizing any normative behavior in the environment
we just described above, is the ability of observe the different aspects of the
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said environment with reasonable accuracy. In fact, we argue that the difference
between normative behavior and non-normative counterpart lies solely in which
of the perceived aspects of the environment are taken into account in decision
making. In this work, we require that any robot intending to exhibit normative
behaviors be equipped perception modules for observing entities in the environ-
ment, a subset of their attributes and relations. The richness of this perceived
subset of attributes directly affects how complex a normative behavior may be
realized. For example, we cannot develop a behavior adhering to norms relating
to gender if we cannot reliably perceive gender attribute.

Concretely, for every entity in the scene, a perception module produces tuples
of poses and associated uncertainty estimates (xi, δ

p
i ). For example, this could

be a people detector module for persons or a localization module for provid-
ing obstacle poses. Similarly, another high level perception module would pro-
vide attributes values and associated uncertainty (ai, δa

i ). An example of such
attribute detectors in practice is given in [11] for age groups, gender and cloth-
ing related attributes. Finally, the pairwise relations can be perceived using
relational reasoning modules so as to provide relation probabilities for every
pair of entities. Altogether, the perception modules are seen as black boxes P
which produce signals for each entity, attributes and relations in the environ-
ment. The exact form of these uncertainty estimates δp

i , δ
a
i depend on the sensor

instrumentation used and algorithms for the various perception tasks involved.

2.3 Execution

Normative behavior is usually targeted at robots which interact with humans
or other robots. As such, these robots modify the environment they operate in
and potentially alter future percepts, thus we need to also formalize the nature
of their effects through their actions U . Concretely, for most decisions made by
the robot, a series of actions are performed, but executions are often imperfect
hence the need to explicitly model uncertainty. We argue that the execution of a
series of actions can be effectively assessed by examining the trajectory ξ = {xt}
resulting for such execution. Such a trajectory can have a ‘band’ in the space of
poses, capturing the uncertainty in the execution. This simplistic formulation is
sufficient for purposes of normative behavior realization.

Finally, using the three components above, we can now formally define norms
and normative behavior before we set about on finding techniques to generate
and evaluate them.

Definition 1 (Norm). A norm Nµ in the context of robot behavior is a property
of the robot’s environment C, percepts P and actions U with an associated set of
M tests μ = {μ1, . . . , μM} for assessing adherence.

Definition 2 (Norm Test). Given a norm Nµ over some environment and a
trajectory ξj ∈ Ξ, a norm test μi : C × P × Ξ �−→ {0, 1} is a function that
evaluates adherence of the trajectory to the norm.
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The adherence to a norm is collectively assessed by all the norm’s tests, mean-
ing all norm tests must pass. This formulation of norms ensures that practical
assessment is algorithmically possible.

Definition 3 (Normative Robot Behavior). Given a collection of K norms
N
µ1
1 , . . . , N

µk

k ; a behavior exhibited by a trajectory ξ is said to normative if and
only if the application of all the norm tests to the trajectory pass. i. e. Given C ∈
C, P ∈ P, the behavior is normative if and only if

∧K
k=1

∧M
m=1 μm,k(C,P, ξ) = 1.

3 Generating Normative Behavior

In this section, we provide the technical means for realizing the normative behav-
ior defined in Sect. 2. This entails specification of decision making approaches
which are incorporated in task and motion planning modules of such robots. The
most common approach is formulate a cost function which encodes the desired
normative behavior, and then use such function to guide solution search in plan-
ning algorithms. However, it is often very difficult to manually design such cost
functions, especially because of inherent ambiguity in the specification of these
behaviors due to dependence on social and cultural aspects of involved parties.
A common simplification used in practice is to model the cost functions are mix-
tures of basis features of the environment and the entities in it. The formalism
presented here is particularly well suited for such endeavor as these features can
simply be based on the poses, attributes and relations of entities. This also helps
lighten the burden of coming up with features. However, the mixing ratios of
such features still need to be figured out.

A promising technique for learning the mixing of features is learning from
demonstration (LFD). In particular, inverse reinforcement learning (IRL) for-
mally introduced in [14] has been used successfully in many applications such as
crowd navigation [7,9,16]. The IRL approach assumes the robot’s decision mak-
ing is carried out using a Markov decision process (MDP) with an unknown cost
function (equivalently reward function), usually assumed to encode the behavior.
In practice IRL involves demonstrating the desired behavior, usually by man-
ually driving the robot say using a joystick, and then using typically iterative
algorithms to recover cost function that “explains” the demonstration. This cost
function can then be used to either generate costmaps over planning domains or
is integrated directly into a planning algorithms objective function. The main
challenge in using IRL approaches is lack of computationally and data efficient
algorithms used to recover the cost function and practical representations suited
for most real world tasks.

Regardless of the procedure used for realizing the normative behaviors, it
is imperative that uncertainty in both perception and execution be taken into
account in decision making. For example, when cost functions, this could mean
inflating cost regions around potential configurations by a factor proportional to
the uncertainty in say people detection. Finally, for successful normative behav-
ior generation, it is imperative to predict and take into account the future actions
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of other decision making agents in the same environment. These could entail
predicting future positions of people and then generating costmaps that already
take the prediction into account, resulting in anticipatory behavior. For certain
tasks such as navigation, this often reduces stop-and-go motions caused by too
reactive a planner which acts myopically.

4 Evaluating Normative Behavior

Normative robot behavior can be evaluated in two different ways; firstly by
checking the adherence of behavior to norms using the associated norm tests,
and secondly using task specific metrics. The evaluation based on norm tests is
fully dependent on the specification of the norms. Evaluation using task specific
metrics could lead to discoveries of potential trade-offs between say task effi-
ciency and normativeness. These trade-offs, if any, could be helpful to service
robot designers who are often confronted with choosing either functionality or
normativeness in practical settings.

A number of task metrics have been proposed in the past including these
human robot interaction metrics [2,20]. These include path lengths, time to goal,
idle operating time, human comfort as measured by qualitative questionnaires.
We defer the exact choice of such task metrics to the designer as it is difficult to
list a complete set of metrics for all possible tasks.

5 Case Study: Socially Normative Crowd Navigation

In order to demonstrate how to use the formalism practically, we show how to
define simple social norms for a mobile service robot navigating in a crowded
space and generate the required socially normative navigation behaviors. The
environment is a place C � R

2, entities are people, shops, walls, etc. Some of
the people in the scene are engaged in groups, others are engaged with various
activities such as queuing or looking at information boards. Our service robot is
required to efficiently navigate in this scene while respecting the various social
norms, and in effect treat people as more than just dynamic obstacles.

We define the following basic norms for our case study.

–Personal spaces, NµP

P : Always minimize intrusions into personal spaces around
people. These personal spaces are derived from Proxemics theory [6] with
these radii (Personal: 0.45 m to 1.2 m, Social: 1.2 m to 3.6 m). We define μP =
{μP , μS}, where test μP = ζP ≤ αP and ζP =

∑
t

∑
i 1

(‖xt
r − xi

p‖2 ≤ 1.2
)

for some appropriate threshold αP which can be experimentally identified.
xt
r,x

i
p denote robot pose and person i respectively at time t, while 1(·) is the

indicator function. Other test, μS are defined analogously.
–Interaction spaces, NµI

I : While interacting with people, minimize disturbance
on the relations between them, e. g. do not cross through a group. We define
μI = {μr} with μr = ζr ≤ αR and ζr =

∑
t

∑
k dist(x

t
r,x

k
s), where dist(·) is

shortest distance to an interaction area (which can be represented as polygon),
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αR is a threshold and xk
s is the pose of k-th interaction area. For a pairwise

relation, this is a line.

The requirements for perception include; reliable detection of people, detection
of pairwise relations, in particular grouping affiliations and engagements such
as looking at something in the scene. Because there are not many reliable and
practical perception modules that can deliver the required attributes for our
norms, we first perform experiments using an open source pedestrian simulator1

described in [15]. We then later deploy the robot in the wild at an airport with
the learned socially normative behaviors.

We use the LFD approach presented in [16] to learn behaviors for this task
from expert demonstrations. We represent the target cost function as linear com-
bination of features, which we derive from the attributes of entities i. e. distance
to persons, distance to pairwise relation lines and relative goal heading. Learning
of the cost function is done using an extension of the Bayesian inverse reinforce-
ment learning (BIRL) algorithm that works well in practice as described in [16].
We use 10 trajectories demonstrated by driving the robot using a joystick for
learning the cost function. We use the found cost function to generate costmaps
which are then used by navigation planners.

We evaluate the learned behaviors by having the robot plan and navigate
between a total of 25 different start and goal pairs, and perform the above spec-
ified norm tests on the resulting paths plus run additional task specific metrics.
These task metrics are: path length, time to goal and cumulative heading changes
(CHC); in all of which smaller quantities are preferred. We use classical naviga-
tion planning where all entities in the scene are simple obstacles as the baseline
and compare it to our normative navigation case. In the implementation, we use
the move base framework from ros and add a costmap layer for normative nav-
igation behaviors. We run A∗ global planner on the generated costmap at 2 Hz,
and an elastic band local planner at 12 Hz, with local rolling window costmap of
size 8 m2. In simulation we use a sensor radius of 8 m; meaning we only consider
people tracks within this region for updating the costmap.

Table 1. Evaluation results from the normative and classical behavior trajectories
averaged over 25 runs. The norm tests are all statistically significant. RD is the relation
disturbance assessed using µr norm test.

Personal Social RD Path Length CHC Time

Normative 29.8± 32.2 2056.4± 523.5 14.9± 35.3 22.5± 7.3 5.2± 1.8 38.9± 6.8

Classical 123.1± 69.4 2470.8± 629.8 82.9± 45.4 19.6± 6.1 4.5± 1.2 37.4± 7.3

p-value 1.2×10−4 1.49×10−2 4.14×10−7 0.1276 0.1018 0.4537

As illustrated in Table 1, the resulting learned socially normative behavior
performs passes all the norm test with significant difference. The statistical test
1 https://github.com/srl-freiburg/pedsim ros.

https://github.com/srl-freiburg/pedsim_ros
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Fig. 2. Left: Example paths realized by the socially normative behavior vs classical
(simple obstacle avoidance) behavior in a 30 m2 crowded area. People are shown in top-
view with head and shoulders, Relations between people are shown in black lines. Start
locations are filled circles while goals are filled squares. Right: Socially normative
costmap using the learned cost function. Jet colored (red — highest, blue — lowest).
Arrows indicate velocity vectors while lines connecting people are pairwise relations.
(Color figure online)

was done using t-test with null hypothesis being; no difference in norm tests
between normative and classical behaviors. This null hypothesis is successfully
rejected as shown in Table 1 in the first three columns. Additionally, the norma-
tive path takes longer paths and make more heading changes as expected but
this difference is not statistically significant. While this does not necessarily con-
firm or deny that normative behavior results in similar performance with respect
to task metrics, our intuition tells us that this maybe the case. Figure 2 (right)
shows example paths from the two behaviors, and (left) the resulting costmap of
the computed using the learned cost function, which enables the robot to drive
in a socially normative manner.

6 Related Work

Efforts to generate normative behaviors for robots have only recently began,
and as such, most attempts focus of very specific aspects of the task. To the
best of our knowledge, this is the first comprehensive attempt at unifying these
disparate approaches into one formalism. Nevertheless, we highlight here some
of the recent works touching on the different aspects of the task. Learning cost
functions for normative behavior is most studied, especially using LFD tech-
niques as in [7,9,16,23], and also manually designed cost functions [12,19]. The
formalism presented here subsumes the approaches in [7,12,16] among others,
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while still providing a general picture of the task. Other attempts to realize a
framework for robot behavior such as [8] are very limited to simple interaction
experiments. The framework of [5] is the closest our formalism, though it is a
very preliminary effort, and is limited to robot navigation tasks with no explicit
treatment of norms. Other works like [3] are seen as too broad, leaving practical
implementation aspects still undefined.

7 Conclusions

We have presented a unified formalism for normative robot behaviors, giving
practical yet precise definitions for norms and normative behaviors while also
the technical means for generating and evaluating such behaviors. We highlighted
the key technical requirements needed to realize normative behavior and in par-
ticular the dependence on perception and uncertainty reasoning. We have also
demonstrated in a case study, how the formalism can be used to model, generate
and evaluate socially normative behaviors for a mobile service robot operating in
public spaces. In the future, we plan to incorporate the formalism into life-long
learning systems for automatic learning of these normative behaviors.
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