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Abstract. Prompts are used by therapists to help children with autism spectrum
disorder learn and acquire desirable skills and behaviors. As social robots are
more regularly translated into similar therapy settings, a critical part of ensuring
effectiveness of these robot therapy system is providing them with the ability to
detect engagement/disengagement states of the child in order to provide prompts
at the right time. In this paper, we examine the various features related to body
movement that can be utilized to define engagement levels and develop a model
using these features for identifying engagement/disengagement states. The
model was validated in a pilot study with child participants. Results show that
our engagement model can achieve a recognition rate of 97 %.
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1 Introduction

According to the Centers for Disease Control and Prevention, it is estimated that
approximately 1 in 68 children in the US are diagnosed with autism spectrum disorder
(ASD). For children with ASD, early intervention has been shown to be critical as the
younger a child enters an early intervention program, the larger gain (s)he may have in
developmental skills [1]. Furthermore, it has been shown that the effects of intervention
(including acquisition of new skills) increases as the duration of treatment increases
without diminishing returns [2]. However, therapy services and interventions offered
by professionals are often expensive or inaccessible [3].

To increase the availability of intervention services offered to children with ASD,
alternative technologies have been evaluated for their efficacy in the therapy setting in
recent years. One such technology involves the inclusion of social robots with children
with ASD. Examples of such systems include humanoids used in [4] as both therapist
and interactive toy, designed to help children with ASD learn and practice social skills.

In the traditional therapy setting, prompts are a method of intervention in which
cues or instructions are issued before or after a child’s action in an effort to reengage
his/her attention and help gain/eliminate desired/undesired behaviors [5]. For example,
a therapist may issue prompts when a child loses his or her temper or stops concen-
trating on the task at hand during a therapy session. Prompts are essential since children
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with ASD usually does not respond to social cues in the same manner as
typically-developing children do. Therapists thus utilize prompts as extra stimulus that
correspond to some particular response [5]. In [6], it was shown that when interacting
with a therapist and a robot at the same time, children with ASD and typically-
developing children both spend more time looking at the robot than the human ther-
apist. As this is one of the primary conditions for providing effective prompts, it seems
appropriate that an autonomous robot platform for ASD intervention should be able to
use this type of intervention method. For example, as pointed out by [7], robots can
provide consistent, repeatable and standardized stimuli. This inherent characteristics of
a robotic system would also enable a robot to provide consistent, repeatable and
standardized prompts.

In this paper, we look at the first step required to provide prompts - the ability to
detect engagement/disengagement states of the child in order to provide prompts at the
right time. In our experiment, we define engagement as “concentrating on the task at
hand and willing to remain focused”. We discuss our method for modeling engagement
levels based on features extracted from body movements, namely we focus on
detecting if a child is concentrating on a given task by extracting engagement levels
from joint kinematics data. We show that by carefully selecting features from joint
kinematics data, we can achieve good performance for detecting engagement levels.

2 Related Work

There has been a number of prior research efforts focused on developing algorithms to
detect user disengagement or engagement states. Some features used by past research
efforts include: body posture [8], gestures [8], facial expression [9], eye gaze [8, 9],
EEG [10], contextual information [9] and spatial relationship between the robot and
human [11].

In [8, 9], the feature sets included eye gaze directions, gestures and head directions,
which were extracted from human observations. In such a scenario, a robotic system
would need to employ modeling methods that can run autonomously, without any
human intervention. In [9], researchers also discussed using contextual information
obtained from the log file of a storytelling app on a tablet. This kind of information
though may not always be available to the robot, since robot interventions should occur
in real-time, during the therapy session, rather than after the child has completed the
task.

With respect to EEG applications such as in [10], even though EEG is considered
noninvasive, placing electrodes on some children with ASD might be intolerable. In
addition, using EEG devices limits the naturalness of the session and thus behaviors
learned in the session may not be transferrable to the child’s natural environment.

The spatial model in [11] uses the relative location of robot and human for a
receptionist robot to detect engagement levels. However, in the case of a therapy robot
for children with ASD, relative location information gives very little information about
the engagement level of the child since children are typically engaged within a local
zone of proximity to the therapist during the therapy session.
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Beyond the ones mentioned, there are a number of other challenges associated with
the process of selecting features that enable the modeling of engagement levels in
children with ASD. Using eye gaze to analyze engagement, such as in [12] and in the
ASD study by [13], requires the tracked face to be directly aligned towards the sensor.
In our previous studies [14], we have seen that in most therapy sessions, the face is not
always orientated toward the sensor, and, in fact, is just as likely to be orientated
toward the task, the therapist, or, in some cases, towards the floor/table.

Using voice and verbal recognition has also been shown as a feasible option, such
as in [15], where acoustic features from speech were used to model and detect
engagement levels in daily conversations. However, depending on the therapy, a child
with ASD may or may not talk during the session and certain children with ASD are
nonverbal.

Other work, such as in [16], monitors user input through tablet interaction in order
to assess engagement. However, children with ASD may not always be interacting with
a tablet during a therapy session, thus features for modeling engagement should be
extracted from interactions outside the tablet.

3 Approach

In this paper, we discuss our approach for detecting child engagement and disen-
gagement states. Our approach for modeling engagement levels is based on extracting
features from body movements, namely we focus on detecting if a child is concen-
trating on a given task by extracting engagement levels from joint kinematics data. In
this work, we utilized a RGB-D camera, namely the Kinect 2.0 by Microsoft, to detect
a user’s skeleton and analyze the skeleton’s pose relative to the task. This provides
decent objective measures to detect engagement levels. Another benefit of using the
Kinect/RGB-D camera is that the camera can recognize the human skeleton without
requiring attaching markers to the body, which may be intolerable to children with
developmental challenges.

A typical autism therapy session usually involves a therapist, a child (patient) and a
task. While the child works on the task, the therapist provides instructions or prompts
to help the child complete the task. To mimic a typical therapy session, the task we
employ is a turn-taking game played on a Samsung Android tablet involving the
matching of cards (Fig. 1). During the therapy session, a Kinect camera mounted on a
tripod is located in front of the therapist and child in order to capture as much
movement associated with their interaction as possible. There is also another camera in
the room which serves as a backup source and provides a different viewing angle of the
session.

3.1 Body Movement Features

Given a typical therapy session, our first step is to extract the relevant features, which
can be used to identity engagement state. As skeletal data is directly extracted from the
RGB-D data set and thus represents the movement profiles associated with the
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interaction, we first define a number of relevant features that can be derived from
skeletal data. For this work, we classify these features as leaning angle, planar distance
to therapist, mean joint to joint distance, distance of joints traveled within task ball,
mean joint coordinates, mean joint distance to task and mean joint to joint distance.

a. Leaning angle
The leaning angle is the angle between the vertical y-axis in the camera’s view and the
vector constructed from the midpoint of the spine and neck of the child. Leaning angle
is chosen to represent the scenario correlated with an individual concentrating on a
task. In such cases, it has been observed that individuals tend to lean towards the object
of interest associated with achieving a task. For example, in our experimental case, the
tablet device becomes the object of interest. The leaning angle θ for the spine joint
vector~jmidspine and neck joing vector~jneck is calculated as:

h ¼ cos�1ð

0
1
0

 !
: ~jmidspine �~jneck
� �

0
1
0

�����
����� ~jmidspine �~jneck
�� �� Þ ð1Þ

b. Planar distance to therapist
The planar distance to therapist feature is one measure used to calculate the distance
measured between two people interacting with a task’s common object of interest.
A plane is constructed by using the middle point of the spine, neck and head of the
therapist. Distances between this plane and the child’s skeleton joints are then

Fig. 1. Left: Child interaction session; Right/Bottom: Imaging and resulting skeleton of session
using RGB-D camera
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calculated. For the therapist mid-spine joint vector~jmidspine, neck~jneck and head~jhead , the
plane P and planar distance D can be derived using the following equations:

P ¼ ~jmidspine �~jneck
� �� ~jmidspine �~jhead

� � ð2Þ

D ¼~ci � P
~ci

for child joint vector ~ci ð3Þ

c. Mean joint to joint distance
The mean joint to joint distance records the average distance between each joint of the
therapist and each joint of the child. This feature reflects the relative pose and distance
between the therapist and child during an interactive session. For each child’s joint i
and their joint vector ci

! and therapist’s joint vector ti
! at the f th frame of F frames,

where F is the number of recorded Kinect frames associated with a movement profile,
the mean joint to joint distance di is determined as:

di ¼ 1
F

XF

f¼0
ci
!� ti

!�� �� ð4Þ

d. Distance traveled within task ball
The distance traveled feature measures the distance traveled by each joint inside a
sphere whose center is located at the task’s object of interest and has radius r. For a
sphere with radius r and centered at ~b, if joint vector ~j fi at the f th frame satisfies
~b�~ji\r, then dt ¼

PF
f¼1

~ji �~ji�1
�� ��

e. Mean joint coordinates
The mean joint coordinates, associated with either an engagement or disengagement
state, reflects the absolute pose of the child during a therapy session measured in the 3D
world. It is obvious that in order to make this feature meaningful across various
intervention sessions, it has to be normalized to eliminate overfitting to a specific
session setup (for example how far the child sits away from the camera should not

effect the performance of the system). As such, for each joint vector ji
!

and F frames,
the mean joint coordinates mi is calculated as:

mi ¼ 1
F

XF

f¼0
ji
!��� ��� ð5Þ

f. Mean joint distance to task
The mean joint distance to task calculates the average distance between each joint and
the location of the task object of interest. This feature reflects how far away a child is
from the task during a therapy session. For each child joint vector ci

! at the f th of F
frames, the mean joint distance ni to task T is:

ni ¼ 1
F

XF

f¼0
ci
!�~T
�� �� ð6Þ
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Once determined, these relevant features can then be utilized to identify engage-
ment state. It is worth noting that some of these features require the presence of two
skeletons during the therapy interaction, i.e. a child and a therapist/caregiver. However,
the robot would not be autonomous if it requires the presence of a professorial ther-
apist. Therefore, to classify engagement state in this paper, we will mainly focus only
on those features that are derived solely from the child’s skeletal data.

3.2 Classification of Engagement/Disengagement

In this work, we define two states – engagement/engaged and disengagement/
disengaged. Engagement is defined as focused or concentration on the task at hand.
Disengagement is therefore just defined as the contrasting state, i.e. not engaged. We
therefore define our problem as a two-class pattern recognition problem and examine
those classification methods that are most appropriate to these types of problem. For
this work, we evaluate the performance of three classification methods that can be used
to distinguish between the two different states, namely SVM, Random Forest, and
AdaBoost [17]. Support vector machines (SVMs) is a supervised learning method in
which, given a set of training examples, each sample is marked as belonging to one of
two classes. In this paper, our two classes correspond to Engaged or Disengaged.
Given a set of labeled examples, the SVM training algorithm is able to build a model
that then assigns new examples to one of the two defined classes. Random forests, on
the other hand, represent the classification problem as a group of decision trees in
which a new example is first classified based on an input vector that, as it descends
down the branches of the tree, gets parsed into smaller and smaller sets. Each tree then
provides a classification, and the forest chooses the classification having the most votes
(over all the trees in the forest). The other method examined was AdaBoost, which
solves the two-class pattern recognition problem by weighting the outputs given a large
pool of weak classifiers.

In this work, these methods were trained and tested using a “hold-one-child-out
method” based on the Scikit-learn methodology [18]. In the “hold-one-child-out”
method, we pick data recorded with one child as the test data, and train the classifier
with data from all other children. In this process, the following procedure was followed
for each of the classifiers:

• A model using one of the respective training algorithms (SVM, Random Forest and
AdaBoost) was trained using clips from all the children except the test one.

• The resulting model was then validated for classification accuracy using the
remaining hold out part of the data as the test set.

• This process was repeated for each set of children and the final accuracy value
computed as the average of the computed accuracy values for each round.
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4 Experimental Setup

The goal of the classifier is to accurately detect engagement/disengagement states of a
child in order for a therapy robot to provide prompts at the right time. As such, given
our set of possible body movement features and classifiers, our goal was to determine
the accuracy rates for each model in order to select the set with the greatest ability to
discriminate between states. For this experiment, a pilot study was conducted at the
Kid’s Creek Therapy Center. The parents of each participant signed the IRB (Institu-
tional Review Board) approved consent form allowing their child to engage in the
testing sessions. Children diagnosed with developmental disabilities were recruited for
this experiment with 3 boys, mean(age) = 12.3 and r(age) = 1.5 (Table 1).

The child study consisted of sessions where, in each session, the experimenter and
the child played a turn-taking game on the tablet (Fig. 2). There was one session hosted
per child. During interaction, the experimenter asked a series of questions to distract the
child during the child’s turn such as “Do you remember my name?” A total of three
sessions of approximately 28 min in length were recorded and processed. During the
experiment, the real world coordinates of all joints of the human upper body skeleton
were recorded as well as color video and audio streams from the Kinect camera. For
each participant, a total of 17 components (i.e. joints) were captured by the Kinect.
Since the camera was fixed on a tripod across all sessions, the classifier trained using
data from one session was able to be applied to another session without normalization.
For training, we did not select the features, planar distance to therapist and mean joint
to joint distance, since these features required two skeletons to be present. As the goal
of a therapy robot is to allow children to receive intervention without a therapist closely
present, we determined that our model should only be built from skeletal data based on
the child’s movement profile. As such, the skeleton was selected manually in order to
ensure that the analysis was performed with the child’s movement profile and not the
therapist’s.

Lastly, when calculating the feature vectors associated with the child and task, we
also needed to know the location of the task’s object of interest (i.e. the tablet). To
obtain this information, we calculated the real world coordinates of the tablet by first
reconstructing the 3D scene using the depth image obtained by the Kinect camera and
manually selecting the 3D point corresponding to the tablet in the image scene.

Table 1. Demographic data of child participants

Participant Primary diagnosis Gender Age

1 ASD Male 12
2 Down syndrome Male 14
3 ASD Male 11
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5 Results

5.1 Ground Truth

Once collected, the stream of data from the pilot study was annotated by a human
annotator with timestamps indicating the start and end of both engagement and dis-
engagement states. Timestamps were annotated based on the identified behaviors in the
videos. For example, some typical disengagement behaviors included standing up and
walking away from the tablet and talking to others about things unrelated to the
session. Disengagement states were also associated to those instances of time when the
experimenter asked the series of questions designed to expressly distract the child.

Once the timestamps associated with the start and end times for the different states
were obtained, clips were then segmented into smaller ones, each lasting for 2 s with a
1 s overlap. This was done in order to provide us with a sufficient number of training
and testing instances to validate the model. From this annotation process, 22, 14 and 47
clips were labeled as disengagement clips for the three sessions respectively and 2,14,
and 21 clips were labeled as engagement clips.

5.2 Performance

Data from the various child interaction sessions were used to evaluate the performance
of the different classifiers and feature sets using the “hold-one-child-out” cross vali-
dation method as discussed previously. As shown in Table 2, the best performing body
movement feature was identified as Mean Joint Distance. Figure 3 expands on the
corresponding table results. Based on this assessment, using AdaBoost with Mean Joint

Fig. 2. Left: Experimenter interacting with child with ASD; Right: Turn-taking matching game
on the tablet.

Table 2. Percent accuracy of different classifiers with respect to body movement features

Classifier Mean joint
coordinates

Mean joint
distance to task

Distance traveled
within Task Ball

All three
features

SVM 88 % 70 % 70 % 88 %
Random
forest

96 % 65 % 60 % 96 %

AdaBoost 96 % 93 % 66 % 97 %
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Coordinates achieved the best single-feature performance at 96 % accuracy while
AdaBoost with all the features gives an accuracy of 97 %. This combination appears to
provide the best performing results.

6 Conclusion and Future Work

We have discussed several features extracted from skeletal data recognized by a
RGB-D camera, namely the Microsoft Kinect 2.0 that can be used for detecting
engagement and disengagement states during therapy sessions. By carefully selecting
the features, we demonstrated that without using contextual or voice features, we can
still achieve decent performance.

An extension to this paper would be recruiting more participants and applying the
algorithm to a real robot system to validate the engagement/disengagement model in a
real robot-child therapy setting (as shown in Fig. 4) and/or compare the performance
between the robot system and an actual ASD therapist.

Fig. 3. Mean and standard deviation on performance accuracy associated with classifiers using
different feature sets

Fig. 4. Children with ASD interacting with therapy robot during a turn-taking matching game
on the tablet. In future work, the results from this study will be used to evaluate if the same
performance can be achieved for identifying engagement/disengagement in child-robot
interaction scenarios such as these.
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