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Abstract. This paper examines the use of game-theoretic representations as a
means of representing and learning both interactive games and patterns of inter‐
action in general between a human and a robot. The paper explores the means by
which a robot could generate the structure of a game. In addition to offering the
formal underpinnings necessary for reasoning about strategy, game theory affords
a method for representing the interactive structure of a game computationally.
We investigate the possibility of teaching a robot the structure of a game via
instructions, question and answer sessions led by the robot, and a mix of instruc‐
tion and question and answer. Our results demonstrate that the use of game-theo‐
retic representations may offer new advantages in terms of guided social learning.
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1 Introduction

Social interaction often involves stylized patterns of interaction [1]. These patterns may
dictate how and when a person interacts, what actions they choose, and how their goals
and motivations change. Interactive games, such as Rock-Paper-Scissors and poker,
often structure a person’s interactive behavior in a predetermined manner conducive to
the game. Recently artificial systems have become adept at both playing and learning
how to play many different games [2]. Comparatively little attention, however, has been
paid to the social aspects of game playing and game learning. For instance, how can a
social robot or agent learn to play a game from a person offering only disorganized verbal
instructions? How can a system teach a person to play a game using subtle social cues
and questions to determine if and to what extent they understand? How can such a system
be developed to cope with the differences in play, instructions, and learning that occur
across ages and cultures?

This paper constitutes a preliminary examination of these questions. The overarching
goal of this work is to develop a system that could learn a wide variety of games from
the type of interactive instructions provided by a typical person. Hence, we strive for
generality both with respect to the game and the instructor. Moreover, we believe that
our approach can also work when the robot acts as the instructor, explaining how to play
a game. An important initial step towards creating such a system is to determine how to
computationally represent interactive games.
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Game theory researchers have extensively studied the representations and strategies
used in games [3]. The types of games examined as part of game theory, however, tend
to differ from our common notion of interactive games. Games in game theory tend to
encompass limited interactions over a small range of behaviors and are focused on a
small number of well-defined interactions. The Ultimatum Game, for example, requires
one individual to divide a valuable resource while the other individual in the game can
accept the division and receive a share or reject the division and both players receive
nothing. Moreover, game theory focuses on conceptualizations for strategic interaction.
In contrast, interactive games like Monopoly and poker offer players several different
actions as part of a sequential ongoing interaction in which a player’s motives may
change as the game proceeds or depend on who is playing.

We contend that learning a pattern of interactions, such as those used in most inter‐
active games, is a critical component for human-robot interaction because many inter‐
personal interactions follow prescribed patterns [4]. Methods developed for learning the
structure of an interactive game could potentially be applied to the human-robot inter‐
action scenarios encountered in a wide variety of social environments. For example, in
most western cultures when meeting a new person the expected pattern of interaction is
to introduce oneself, to shake the other person’s hand, and to then wait for the other
person to state their name.

This paper investigates methods by which a robot could learn the structure of an
interactive game from a person. We focus on direct instruction. In particular, this article
demonstrates the use of written instructions and the use of questions by the robot that,
when answered by a person, convey the structure of the game. Further, we show that
the robot can use a game-theoretic representation to reason about and select specific
probing questions with the intention of learning about unknown aspects of the game.
Overall, our immediate goal is to highlight the potential advantages of this approach in
terms of teaching a robot these stylized patterns of interaction. Our long-term goal is to
develop the computational underpinnings that will allow a robot to learn new patterns
of interaction from an inexperienced person’s instructions. The remainder of the paper
begins with a brief background discussion of game theory and interactive games,
followed by experiments and results.

2 Background and Related Work

Game theory has been the dominant approach for formally representing strategic inter‐
action for more than 80 years [3]. Game theory assumes that the players of a game will
pursue a rational strategy. A game is a formal representation of a strategic interaction
among a set of players. A solution to a game describes classes of strategies for how best
to play a game. There are many different types of solution concepts in game theory, the
Nash Equilibrium being the most famous example of a solution concept.

Several different categories of games exist [3]. Games in which players select actions
simultaneously are typically represented as a normal-form game (Fig. 1 center).
Formally, a normal-form game is defined as a tuple 

(
N, A1,…, N , R1,…, N

)
 where N is the

set of players, Ai is the action space of individual i, and Ri
(
a1,… , aN

)
→ ℜ is a payoff
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function. Games in which players select actions sequentially are generally represented
as extensive-form games (Fig. 1 left). In addition to the formal elements of a normal-
form game, extensive-form games include a set of histories H for each player and func‐
tion P(h) for selecting the player whose turn is next. Perfect information games are a
class of extensive-form games in which each player knows every player’s history. In
imperfect information games players do not know the actions chosen by other players.
A stochastic game is a series of normal-form games in which the actions selected in one
game probabilistically determine the subsequent game. Stochastic games include a tran‐
sition function T

(
q, a1,… , aN , q

′
)
→ [0, 1]. These games are generalizations of both

normal-form and extended-form games. They also generalize Markov Decision
Processes (MDPs) for multiple individuals. Stochastic games start at initial state s0 and
are played with each player selecting an action and possibly receiving a payoff. The
game moves to stage si+1 with probability determined by the distribution Q until reaching
a termination state. A stochastic game may last either a finite or infinite number of stages.

Fig. 1. Computational representations for the Ultimatum game, Rock-paper-scissors-lizard-
Spock and Kuhn’s poker are depicted above. The Ultimatum game is a sequential game between
two players represented as an extensive-form game. Rock-paper-scissors-lizard-Spock is a
simultaneous game represented as a normal-form game. Kuhn’s poker is represented as a mixture
of normal and extensive-form games. The selection of an action by a player results in a transition
to the next stage of the game.

Most robotics related applications of game theory have focused on game theory’s
traditional strategy specific solution concepts [5]. Often, the structure of the game is
preprogrammed and a game theory based controller is used to select the agent’s actions.
Recently this approach has resulted in tremendous advances in the quality of play in
information imperfect games such as poker [6]. Nevertheless, this research is narrowly
tailored to the development of agents that play optimally. In contrast, the work here is
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not concerned with how well an agent or robot plays, but rather its ability to learn and
represent different, unknown games.

Game theory has also been used as a means for controlling a robot [5, 7]. Game
theory based robot control has similarly focused on optimization of strategic behavior
by a robot in multi-robot scenarios. In particular, the use of Partially Observable
Stochastic Games has been used as a means to control a robot team. In contrast to the
prior work, we explore methods that will allow a human to teach a robot the structure
of an interactive game such as Rock-Paper-Scissors and poker. Significant research has
also explored the development of robots that learn games such as air hockey [8]. In
contrast to strategic games, games such as air hockey tend to emphasize the physical
and perceptual demands of play. Robot soccer, because of its dual physical and strategic
demands, arguably represents the most challenging category of game. Research related
to this game has explored both the physical demands [9] and the strategic demands [10].

Very little work has examined the use of game theory as a means for controlling a
robot’s interactive behavior with a human. Lee and Hwang attempt to develop a concep‐
tual bridge from game theory to interactive control of a social robot [11]. Our own work
has centered on the use of the normal-form game as a representation and means of control
for human-robot interaction [12]. Yet, in this prior work we focused only on the use of
the representation to control a robot’s behavior and not the direct learning a game’s
interactive structure.

3 Representing Interactive Games

Game-theory representations have been used to formally represent and reason about a
number of interactive games [13]. Games such as Snakes and Ladders, Tic-Tac-Toe,
and versions of Chess have all been explored from a game theory perspective. The
methods used to represent these games are well known.

The normal-form game and the extensive-form game serve as building blocks to
represent a complete interactive game. Simultaneous stages of an interactive game are
represented in normal-form as a matrix (Fig. 2). Each player’s potential actions are listed
along the dimensions of the matrix. Payoffs for selecting a particular set of actions are
included as values within the matrix. Sequential stages of an interactive game are repre‐
sented in extensive-form as a tree. A player’s potential actions are denoted by the
branches of the tree. Nodes of the tree indicate which player makes a decision at each
particular stage of the game. Payoffs for selecting a particular set of actions are depicts
at the stage in which the payoffs are received.

The cells in a normal-form game and the terminating branches of an extensive-form
game direct the players to the subsequent stages of the game. Resembling a probabilistic-
finite-state automaton (FSA), each state is a normal-form or extensive-form game repre‐
sentation and each transition occurs when arriving at a cell or a terminal tree node.
Represented in this manner, the challenge of learning a new interactive game is reduced
to learning the structure and underlying components of the game-theoretic representa‐
tion. The section that follows investigates this challenge.
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4 Teaching a Robot an Interactive Game

The primary contribution of this work is to examine, present, and demonstrate techniques
for learning the types of game-theoretic representations described above from the infor‐
mation provided by a human teacher. The most obvious and applicable methods for
learning the structure of an interactive game are direct instruction and question and
answer.

Direct instruction describes the explicit teaching of skills needed for some purpose.
Some psychologists argue that direct instruction represents the most effective way to
teach and to learn [14]. To directly instruct a robot to play a game, the human teacher
simply communicates the underlying structure of the interactive game to be learned.
This communication can be in the form of a list of spoken, written, or demonstrated
instructions necessary for performing a task. Written instructions can be used in place
of verbal instructions. In this case, an interactive game’s set of instructions can be used
to learn a new game.

The use of a game-theoretic representation requires that specific information is
communicated to the robot. In general, for each stage of the game, the robot must know
who is playing, what actions are available to each player, what reward or cost is asso‐
ciated with the selection of each action pair, whether actions are selected simultaneously
or sequentially by the players, and which stage of the game results from the selection of
an action pair. When direct instruction is used, these questions are addressed directly as
a list of spoken, written, or demonstrated instructions.

A less obvious means for teaching a robot an interactive game is to allow the robot
to ask questions about the game that the person answers. In this case, the robot acts as
an inquisitor asking questions that allow it to build the game representation from the
ground up. The evolving game representation in this case determines what questions
the robot must ask in order to flesh out the representation. The first question asks
how many players are participating. For each stage of the game, the robot then asks
whether the players act sequentially or simultaneously. Next, the robot inquiries about

Fig. 2. Normal and extensive form games are used to represent the components of an interactive
game. Sequential stages are represented in extensive form. Numbers are used to indicate a player’s
turn. Simultaneous stages are represented as a normal form game. Transitions connect components
and denote the selection of an action.
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the actions available to each individual at that stage. For each cell in a normal form game
or terminal node in an extensive form game, the robot inquiries about the reward received
and which, if any, subsequent stage results from the selection of the action pair.
Figure 3 depicts an example of a question and answer session used to learn the first stage
of the interactive game depicted in Fig. 2. We contend that a similar series of questions
can be used in either a depth first or breadth first manner to learn the interactive structure
of most games.

The proceeding techniques can be combined resulting in a system in which the robot
builds the game representation from the instructions and then asks questions about any
unknown or unclear parts of the representation. In this case the robot must determine
which portions of the representation are unclear or unknown. In some cases the presen‐
tation of the instructions may afford measures of confidence with respect to the instruc‐
tions. For instance, many natural-language-processing (NLP) algorithms provide confi‐
dence measures reflecting the system’s estimation of accuracy. We conjecture that such
a system could potential be used to assist the robot in determine if and what portions of
the representation require follow up questions.

In some cases, the representation itself may suggest information that is missing. For
example, the absence of reward or cost values in a matrix (e.g. the numbers 2; 5 from
Fig. 2) is easily tested. In this case, the absence of expected reward values can prompt
the robot to inquire about the value or cost of selecting particular actions during a stage
of the game.

5 Experiments

Most applications of game theory evaluate the system’s performance in terms of winning
(e.g. [15]) or win related tasks such as scoring goals (e.g. [8]). In contrast, we argue that
the best evaluation of game learning is to measure the system’s ability to play a game

Fig. 3. An example of a question and answer session for learning the first stage of the interactive
game from Fig. 2.
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after being taught, regardless of whether it wins. Metrics such as illegal moves
attempted, measure the accuracy of the robot’s model of the game structure.

We evaluated the number of illegal moves attempted by the robot in three different
games (Fig. 1): the Ultimatum game, Rock-paper-scissors-lizard-Spock, and Kuhn’s
poker. The Ultimatum game is a single stage sequential game in which one player
chooses either a fair or unfair division of a resource and a second player either accepts
or rejects the division. If the division is accepted then both players receive reward
proportional to the division. Alternatively, if the division is rejected then both players
receive nothing. Rock-paper-scissors-lizard-Spock is similar to the classic game rock-
paper-scissors except with two additional actions. The lizard action defeats Spock and
paper and is defeated by scissors and rock. The Spock action defeats scissors and rock
and is defeated by paper and lizard. Figure 1 delineates which actions dominate other
actions. In this game all players simultaneously make a hand sign representing one of
the five namesakes. Finally, Kuhn’s poker is a simplified version of Texas Hold’em
poker. This game is played with only a jack, a queen, and a king. The game begins when
each player bets 1 as an ante. Next each player receives a single card. Player 1 may check
or bet. As depicted in Fig. 1 the actions available to player 2 depend on player 1’s action.
Each round of the game ends when a player either folds (resigns and forfeits their bets)
or during a showdown stage each player’s cards are revealed and the player with the
higher card wins.

The robot learned each of the three games by direct instruction and mixed-direct
instruction and question and answer. In the direct instruction condition, the robot was
given a set of instructions (e.g. Fig. 3) describing how to play the game. The instructions
were not in a natural-language format. Although, the challenge of translating from
natural language to a game theory format is beyond the scope on this article, random
errors were added to the instructions in an effort to roughly simulate the errors that would
occur during translation. Each game instruction had a 15 % chance of being incorrect
(translation error rate). This level of error was arbitrarily selected. Three different types
of error occurred. Incorrect stage transitions occurred when the robot’s representation
erroneously indicated the stage that would result when a pair of actions was selected.
Incorrect reward values inaccurately specified the amount of reward to be received at a
stage of the when a pair of actions is selected. Finally, incorrect actions erroneously
indicated which actions were available to the robot at a particular stage of the game.

The experimenter served as the robot’s opponent. All of the experimenter’s instruc‐
tion and responses were predetermined to avoid bias. When the robot asked the human
for missing information, the correct information was provided. The quantitative results
that follow were obtained from an experiment conducted in simulation.

The data from the direct learning from instructions condition (Fig. 4) demonstrates
that the robot selected illegal moves at a rate of 16, 11, and 17 % for the Ultimatum
game, Rock-paper-scissors-lizard-Spock game, and Kuhn’s poker respectively. These
results indicate a rate of illegal moves which is approximately equal to the translation
error rate. This rate is higher than expected. We hypothesized that translation errors
related to the amount of reward would only impact strategy and not whether or not a
move was illegal. We therefore believed that, in the first condition, the number of illegal
moves would be significantly less than the translation error rate. We found, however,
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that incorrect reward values can impact game structure by consistently guiding the robot
towards illegal moves. In other words, translation errors can cause the robot to believe
that it will obtain a large reward by performing an illegal move. This results in a strategy
of using illegal moves which predominates. The data also shows that certain game
structures appear to be more impacted by translation errors than other games. The Rock-
paper-scissors-lizard-Spock game, for instance, was consistently found to result in fewer
illegal moves when compared to the other games. Because this game consists of a single
simultaneous stage, most errors do not result in illegal moves. Sequential games, on the
other hand, afford multiple opportunities for selecting illegal moves.

In the second condition, the robot received instructions that had missing information
in the form of reward values, potential moves, and game stage transitions. The robot
then had the opportunity to ask the person questions about any information that it could
identify as missing. Missing stage transitions could typically be inferred from the pres‐
ence of stages not connected to the start state or some later stage of the game. Similarly,
missing actions were often indicated by stage transitions without a requisite action pair.
Missing reward values were easily inferred from the game-theoretic representation. The
robot then asked the human to provide the missing information. The robot used question
and answer to generate error-free representations of the game Ultimatum game and
Rock-paper-scissors-lizard-Spock game. Because these games consisted of a single
sequential or simultaneous stage, the robot could accurately infer which information
was missing. Kuhn’s poker, however, presented unique challenges in terms of inferring

Fig. 4. Results from an experiment examining the possibility of a robot learning a game-theoretic
representation of a game. The blue (left) columns depict a condition in which the robot learns the
game from a set of imperfectly translated instructions. The red (right) columns depict a condition
in which the robot is provided with instructions describing how to play the game which are missing
information. The robot infers which information is missing and then asks the person to questions
which allows it to complete the representation. (Color figure online)
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missing information. Although missing reward values and transitions were identified,
missing actions were seldom noticed. If a stage transition and an action during the stage
were both missing, then inference that an action was missing was not possible. Actions
that did not result in transitions were similarly not identified as missing. Overall, the
results demonstrate that the game theoretic information does assist with inferring which
information is missing from the game structure. Asking a person to provide missing
information improves the robot’s ability to play the game.

We tested the ability to learn and play these games on the NAO robot from Aldebaran.
During this testing, the robot learned each of the games from written instructions and
question and answer sessions with the experimenter. Question and answer sessions were
conducted by typing answers to the robot’s questions. The games were then played with
the robot. The robot verbalized its actions instead of making physical actions. Each game
was played 10 times with the robot. The NAO selected actions that were believed to be
reward maximizing. We recorded each of the NAO’s action selections. The robot was
able to learn each of the games using both written instructions and question and answer
session. However, because no error was introduced, game play was structurally perfect.
Hence the robot’s ability to play the learned games was confirmed although no quanti‐
tative results from these robot experiments are reported.

6 Conclusion

This article has examined the use of game-theoretic representations as a means of repre‐
senting and learning interactive games involving a human and a robot. Our experiments
demonstrate that written instructions and mixed instruction and question and answer can
be used to learn different types of interactive games. We have shown that the use of
game-theoretic representations of interaction offer several important features. First, and
perhaps most importantly, the game representation affords a means for organizing the
information needed by the robot to learn an interactive game. The computational repre‐
sentation of a game can be used to structure the information being received by a person
and guide the robot when asking questions.

The research presented here could be an important step towards the development of
a system for human-robot guided learning. Such a system might one day allow people
to teach a robot the games that the person would like to play with the robot Before a
fielded application could be realized, some assumptions would need to be addressed.
For instance, we assumed that the robot already possessed the knowledge of how to
perform all game related actions. We believe that learning these actions is related to
game learning but best achieved by using learning from demonstration.

This work represents an initial investigation into the possibility of using game-theo‐
retic representations to structure an interactive game. An important next step is to
develop a system that learns a game from a naïve human subject. Such a system would
require some competence in natural language understanding. Spoken or read instructions
[16] would be used to broadly develop the interactive structure of the game, socially
guided questions would then be used to rectify unclear or unknown portions of the game,
learning by demonstration would be used to learn how to perform the actions, and
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practice would result in the refinement of strategy. Although this paper has focused on
learning how to represent these games, we believe that these representations could be
used in many different interactive situations.
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