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Abstract. For effective Human-Robot Interaction (HRI), a robot
should be human and human-environment aware. Perspective taking,
effort analysis and affordance analysis are some of the core components
in such human-centered reasoning. This paper is concerned with the need
for benchmarking scenarios to assess the resultant intelligence, when
such reasoning blocks function together. Despite the various competitions
involving robots, there is a lack of approaches considering the human in
their scenarios and in the reasoning processes, especially those targeting
HRI. We present a game that is centered upon a human-robot compe-
tition, and motivate how our scenario, and the idea of a robot and a
human competing, can serve as a benchmark test for both human-aware
reasoning as well as inter-robot social intelligence. Based on subjective
feedback from participants, we also provide some pointers and ingredi-
ents for evaluation matrices.

1 Introduction

Research in child development and human behavioral psychology clearly indi-
cates that perspective taking, i.e., reasoning from others’ perspectives, is one
of the key components for social interaction and social intelligence. Perspective
taking starts in children from as early as 12–15 months, in the form of under-
standing the occlusion of others’ line-of-sight, and that an adult might be seeing
something that the child is not able to see, due to it being hidden behind some
barrier; this applies to both places and objects (e.g. [1]). Studies on reachabil-
ity analysis (e.g. [2]) have suggested that from the age of 3, children are able
to perceive which places are reachable to them and to others as they start to
develop allocentrism—spatial decentration and perspective taking. In robotics,
perspective taking has been used for learning from ambiguous demonstration [3],
grounding ambiguous references [4], sharing attention [5], etc.

An object’s affordance, specifically, its action possibilities (Gibson [6]) is
another crucial aspect for shaping our day-to-day interaction with the envi-
ronment and with others. Affordance is also a central organizing construct for
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action differentiation and selection [7]. In robotics, the notion of affordance has
been used in domains involving tool use [8], for checking traversability [9], for
learning action selection [10], etc.

The Turing Test is a well-known test for evaluating the intelligence of a
machine relative to that of a human. In the standard interpretation, the test
involves a machine and human competing with each other over a conversation
with another human. The design of our game was inspired by the Turing Test in
the sense that a robot and human competes with each other to infer and describe
environmental changes, which is judged by another human(s). However, some
aspects of the Turing Test were not suitable for the kind of intelligence that
we wanted to test, because the standard Turing Test (i) encourages making
mistakes in order to look more natural and human like, and (ii) is more focused
on carrying out a conversation. We do not advocate the robot making such
mistakes, but instead identify and “penalize” them. Furthermore, because we
focus on human-aware reasoning, we have based the scenario around physical
changes in the environment. Another characteristic of our setting is that the
ground truth is always available. Hence, one can derive two sets of evaluation
criteria: (a) a “comparative” one, based on the competing human’s and robot’s
reasoning abilities, and (b) an “absolute” one with respect to the ground truth.

Many related competitions exist in the literature, such as Robocup [11],
the DARPA Robotics Challenge (DRC) [12], the European Land-Robot Trial
(ELROB) [13], and the HUMABOT robot competition [14]. However, in all these
applications, a robot must be created for a specific mission and target scenario,
but potentially ones with no humans involved; therefore, these applications have
no direct link to HRI. From the HRI literature, the AAAI Challenge [15] is
relevant in that it proposes scenarios in which a robot attends and delivers a
conference talk. Likewise, a variant of Robocup, called Robocup@Home [16], also
seems relevant, as does the RoCKIn competition, which focuses on service robots
in a real home environment. Like our proposal, the latter two competitions are
also aimed at benchmarking robot systems: a set of benchmark tests is used to
evaluate the robots’ abilities and performance in realistic home environments.
Thus, there is a clear need for HRI-oriented robot competitions, evaluation, and
specialized benchmark tests. The competition that we present in this paper is
another step in this direction: it provides a means by which the robot’s “human-
centered intelligence” (or “social intelligence”) could be evaluated. More specif-
ically, we present a competition scenario and methodology for its use, as well as
an analysis of data gathered from the competition, which we believe will serve
toward developing benchmark tests for evaluating a robot’s combined intelligence
based on perspective taking, reachability, and affordance analysis abilities. Our
scenario is fully implemented on a PR2 robot, and it has been demonstrated live
at an EU event, as well as to numerous visitors. Our preliminary work in this
direction was presented in [17]. The current paper extends our earlier work with
a detailed description of the methodology and framework; a subjective analy-
sis of user feedback; and with pointers toward evaluation criteria, an evaluation
matrix, and potential quantitative measures.
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2 Competition Scenario

The scenario that we propose involves observing, analyzing, grounding, and
explaining environmental changes. The setting for the scenario is a “living room”
of a realistic apartment, with typical furniture (that was never moved) such as
sofas, tables, and shelves, and movable objects including books, cans, and boxes.

Figure 1 summarizes the steps in the game, which are as follows. Two
(human) volunteers h1 and h2 are asked to take a seat in the living room, and
a third one h3 is asked to stand next to the robot. Following this, the robot
and h3 inspect the living room from where they stand. Then, h3 and the robot
turn away from the scene, and h1 and h2 are asked to independently and/or
cooperatively make manual changes to the state of the room (while the robot
and h3 are looking away). Finally, h3 and the robot are asked to re-inspect the
room, and identify any changes that might have been made. The competition
concludes with a manual comparison of the responses of h3 and the robot, with
each other as well as with what h1 and h2 actually did—the ground truth—and
by asking h3 for his/her (subjective) assessment of the robot’s “intelligence”.
Finally, a winner(s) between the robot and h3 is determined (at this stage just
for fun).

During the game, the robot and h3 compete to answer the following ques-
tions: What has changed physically? How might those changes affect the agents’
abilities to see and reach objects? Who might have done those changes and with
which (possibly joint) actions? Where might any missing objects be?

A key requirement in the game, from both the robot and h3, is the ability
to ground changes in the environment. We define this process as follows. Given
a couple 〈s0, s1〉, which is respectively the initial and final states of the environ-
ment, find a suitable triple 〈Δ,E,A〉, where Δ represents the physical changes
in s1 compared to s0; E represents the effect of changes in Δ for h1 and h2;
and A represents the probable sequence of (possibly cooperative) actions that
were executed by h1 and h2 in order to bring about the change Δ. In this sense,
the grounding process, among other things, needs to reason about perspectives,
reachabilities, affordances, and action possibilities.

Observe
initial scene

Turn away
from scene

h1 and h2

changes the
environment

Turn toward
scene

Observe
new scene

Compare
scenes for
physical
changes (via
3D models)

Ground
changes (via
Affordance
Graph)

Changes

Effect

Actions

Verbalize (via
TCL controller)

Compare
explanations
of the robot
and h3

Fig. 1. Framework of the proposed Human-Robot competition between the robot and
a human h3, who observe the initial scene, and then ground the changes.
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3 Instantiation

This section outlines the scientific and technical foundations on which the above
reasoning capabilities were instantiated for the robot.

Scientific Foundations. We have integrated concepts from existing robotics
frameworks that address issues related to perspective taking, affordance analysis,
and effort analysis [18], where “effort” here is an abstraction of body-movement
based effort levels for reaching objects and places, inspired by the taxonomy of
reach affordances in human behavioral psychology [19]. The overarching notion
that we exploit from these works is the Affordance Graph, which merges various
kinds of human-aware reasoning into a single, unified graph. Figure 2c shows an
affordance graph instantiated with respect to a specific environmental state. The
graph enables the robot to reason about action possibilities among agents, and
among objects distributed in the environment.

More specifically, the affordance graph is the aggregation of a Manipulabil-
ity Graph and a Taskability Graph. A manipulability graph combines perspec-
tive taking, i.e., analyzing visibility and reachability of agents, with affordances
between agents and objects, for the purpose of grounding symbolic notions such
as grasping, picking, and placing objects to their corresponding geometric enti-
ties. Figure 2a shows an example of such a graph. The size of a sphere associated
with an edge in the graph depicts the effort level required to see (Green sphere)
and reach (Blue sphere) the object or place. Similarly, a Taskability Graph, shown
in Fig. 2b, encodes relations between agents and other agents, in order to ground
symbolic notions such as giving, showing, hiding, taking, and making an object
accessible to their corresponding geometric entities.

Using an affordance graph as the underlying reasoning tool is appealing in
that it could be analyzed using standard graph search algorithms, though in
principle any other reasoning mechanism could be used. Multiple instances of the
graph, such as one before and one after an environmental change, are constructed
by the robot in order to infer and ground changes in the environment.

Technical Foundation. Our instantiation of the competition scenario is imple-
mented within the LAAS robotics architecture [20]: an interconnected set of

(a) Manipulability Graph (b) Taskability Graph (c) Affordance Graph

Fig. 2. Different kinds of graphs representing affordances in the environment [18].



142 A.K. Pandey et al.

diverse components responsible for distinct functionalities within the system.
The implementation uses Move3D [21] to represent the robot’s version of the
real world in 3D, which is used as input for geometric reasoning. The robot
updates its 3D world state in real-time via various sensors; for example, a tag-
based stereovision system is used for object identification and localization, and
a Kinect (Microsoft) sensor for localizing and tracking humans.

Execution control is achieved via Tcl programs, which are grouped into three
distinct sets of capabilities. The first performs tasks related to keeping the geo-
metric 3D model of the world up to date. The second set of capabilities basically
requests the geometric component to create an affordance graph for the current
world state, and to compare it against the graph corresponding to the previously
observed state (if any). The third set is responsible for natural human-robot
interaction, i.e., for making speech more intelligible by synthesizing complete
sentences out of the output generated by the geometric reasoning component,
and for looking at relevant objects, places, and humans while speaking.

One example of the output produced by the geometric reasoning component
is the set of couples {(object, gt), (action,mv)}, where the first element in each
couple identifies whether the second element is an action or an object. This par-
ticular set is mapped to the sentence “The grey-tape has been moved”, where
the symbols grey-tape and move are obtained essentially via two user-supplied
mapping functions fobj and fact, which respectively map object and action sym-
bols used within the geometric component into the corresponding symbols used
within the (“symbolic”) execution controller; thus, grey-tape = fobj(gt) and
moved = fact(mv). Similarly, plans (sequences of ground actions) found by the
geometric reasoning component, such as pick(h2, gt)·give(h2, h1, gt)·place(h2, p),
where h1 and h2 are the volunteers and p is a new position, are mapped into
sentences such as “As for the grey tape, the second human picked it up and gave
it to the first human, who then placed it at its current position”.

4 Observations Reported by the Competitors

In this section, we describe one run of a competition between the robot and a
human, and in particular, the observations reported by the human competitor
and the robot. The competition was carried out 12 times in total, while it was
demonstrated live at an EU event, and to numerous visitors. Initially, all partic-
ipants were briefed about the game, with information including the kind of data
that was expected from the competitor. Later, the competitor was also guided
by the cameraman, with questions such as “where was the object before it was
moved?”, “do you think that it was likely the object was moved jointly?”, “who
do you think moved the object?”, and “where might the object be now” (if an
object was reported missing), in order to gather as much relevant observations
from the competitor as possible.

Figure 3 illustrates one run of the competition. Figure 3a shows the initial
state of the environment that was examined by the robot and the human com-
petitor before they were asked to look away. Figures 3(d) to (i) show one facet of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Images (a) to (c) illustrate one run of the competition, and (d) to (i) show the
sequence of changes that were made.

the ground truth—the sequence of steps that were discussed and jointly carried
out by the other two humans in order to change the state of the environment.
Figure 3b shows the competitor moving around to look behind a white box, where
she suspects that an object is hidden. Figure 3c shows the robot and the human
competitors describing their beliefs about what might have changed and their
impact on the two sitting humans, in terms of what objects are now visible and
reachable to them (or no longer so). The large flat panel display in this figure
shows the current 3D environmental model maintained by the robot.

The key points that were made by the human competitor are listed below
(after editing for clarity), along with our auxiliary comments inside parenthesis.

– Initially, the grey tape was here, but it has now moved there. (This was uttered
while pointing to the correct initial and final locations of the object.)

– I cannot see the Jido tape from where I am. It used to be there. (This was
uttered while pointing to the correct initial location of the object.)

– The white box has not moved.
– (She then moved to look behind the white box on the table and saw the missing

tape, which she correctly suspected to be hidden there.)
– The grey tape is no longer visible to Romain, and it is now visible to Filip; I

also think that it is reachable to the robot.
– The Jido tape is neither visible to the robot nor to me, but I am not sure

whether it is visible to Filip. The tape is both visible and reachable to Romain.
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– I think that Filip took both tapes from here and handed them over to Romain,
who then placed them on the table and rotated them. (This was uttered while
correctly pointing to the initial locations of the two objects.)

Next, we list the key points that were made by the robot (after editing for
clarity) regarding the environmental changes that might have occurred, together
with our auxiliary comments inside parenthesis.

– The Jido tape has moved, and I cannot see it anymore. (The robot also cor-
rectly guessed where the tape is hidden via mechanisms used by our framework
[18], as outlined in Sect. 3.)

– The grey tape has moved.
– Regarding the grey tape: the first human (Romain) will now find it more dif-

ficult to see it (compared to before).
– the first human can reach it now (although it was unreachable to him before).
– the second human (Filip) can now see it more easily (i.e., with less effort than

before).
– the second human cannot reach it anymore (although it was reachable to him

before).
– the robot can now see it more easily.
– the tape was picked up by the second human, given to the first human, and then

placed by the first human. (This was deduced using the geometric reasoner,
which assumes that humans will try to balance the overall effort required
for a joint task, whenever the amount of individual effort needed amounts to
standing up from the seated position [18].)

– Regarding the Jido tape: it was picked up by the second human and it was then
placed. (Like the human competitor, this was deduced based on the previous
and current positions of the Jido tape.)

5 Subjective Analysis

We performed 12 runs of the competition, each of which took approximately
10 min. We noticed interesting similarities in the analyses performed by the robot
and the human competitors h3, e.g., the descriptions about how the objects
might have been moved, and where an object, which was visible to them earlier,
might now be hidden. There were also runs in which both competitors guessed
incorrectly, or missed out on certain observations.

We also asked competitors for their (subjective) opinions about the robot’s
reasoning capabilities, with questions such as “how was the robot’s perfor-
mance?” and “how was the robot as a competitor?”. Some of their key remarks
were: (1) “The robot showed good interaction with its environment and intel-
ligence in its responses and behavior”; (2) “I was better than the robot”; (3) “It
(the robot) performed better”; (4) “The robot must have cheated through that
reflection in the glass window”; (5) “It guessed (correctly) most of the time”;
(6) “We were equally good”; (7) “Oh, I missed that—what the robot said was
correct”; and (8) “I think it has a good memory”. While still preliminary, these
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comments show potential for the use of such competitions for evaluating a robot’s
reasoning abilities in HRI, particularly because competitors (from the public)
tended to compare the robot’s reasoning abilities with their own.

Data from multiple runs of the competition can be used to establish criteria
for evaluating a robot’s reasoning abilities, as well as derive evaluation matri-
ces. For example, feedback from the 12 competitors suggested at least three
evaluation criteria: (i) adjectives as comparative measures, such as “good”,
“better”, and “equal”, which competitors used to qualify the robot’s reasoning
abilities; (ii) quantitative measures such as the “number of times” an obser-
vation was correct, as competitors tended to use phrases such as “most of the
time”; and (iii) observations that were missed, since competitors tended to
use phrases such as “I missed that”. In addition, we could take into account the
ground truth, i.e., actual changes that were made by participants h1 and h2.
Interestingly, our scenario always allows for the ground truth to be available.

The evaluation criteria established above can be further used to derive eval-
uation matrices, such as the one we derived in Fig. 4. This matrix relies on com-
paring observations reported by the human and the robot competitor against
the ground truth, i.e., input from the participants who made the changes. The
matrix qualifies the robot’s intelligence relative to the human competitor as
being highest (i.e., entry “(High,High)” in the matrix) when the human com-
petitor guesses incorrectly and the robot guesses correctly, and as being lowest
(i.e., entry “(Low,Low)”) when the opposite happens. Missed observations are
placed in the middle of the matrix and the agent who failed to observe the change
is given the “benefit of the doubt”, as such failures do not necessarily mean that
the agent was incapable of making the correct deduction, nor that the agent has
made an incorrect one. One can also come up with quantitative measures based
on the matrix, e.g. RI = Σm

j=1Σ
n
i=1((valxi + valyi )), where valxi , valyi ∈ [1, 3] (1 is

the lowest) are the x and y axes values from Fig. 4, n is the number of environ-
mental changes that needed to be observed in the game, and m is the number of
competition runs. Hence, RI can indicate the “relative intelligence” of the robot.
Below we illustrate interesting instances of some of the criteria in the evaluation
matrix.

Incorrect deductions by the robot. The robot’s deduction regarding how
the Jido tape was moved was incorrect, whereas the human’s was correct: Filip
handed over the object to Romain, who then placed it on the table.

Incorrect deductions by the human. The human thought that the grey tape
was not visible from the perspectives of the two seated participants, whereas in
reality Filip was able to see it, which the robot deduced correctly.

Correct deductions by both. The robot correctly deduced the position of
the missing object (Jido tape) as being behind the white box. This was done by
analyzing the Taskability Graph for hiding an object, with the assumption that
humans place objects on flat horizontal surfaces. The human also provided the
same symbolic position description of the missing object.
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Fig. 4. A possible evaluation matrix for qualifying the robot’s intelligence relative to
the human competitor. Darker and happier faces denote higher intelligence.

Missed observations. Sometimes the human failed to notice when the object
was moved by only a small amount, e.g. 5 cm, whereas the robot was able to
notice such small changes, because it stores a precise geometric model of the
environment. On the other hand, in certain other runs, the robot failed to notice
the presence of an object, because it had been placed in an orientation that
prevented its tag from being detected by the robot. Consequently, the robot
assumed that the object was hidden and tried to deduce its position.

6 Conclusion and Future Work

We have presented a novel human-robot competition scenario and methodology
for evaluating the resulting relative intelligence of the robot (with respect to the
human competitor), when certain basic building blocks of HRI reasoning, i.e.,
perspective taking, reachability, affordance, and effort analyses need to function
together. This paper sets the stage for benchmarking and evaluation of such
human-aware reasoning capabilities, which we think is now crucial. We cannot
yet claim to have a conclusive set of evaluation metrics, nor do we want to impose
one so early, as we believe that this has to be based on community feedback,
and driven by extensive benchmarking competitions. We have only pointed out
the feasibility of having such metrics, based on user studies and through the
scenario presented in this paper. We have also extracted a set of criteria via the
subjective evaluation and judgment of users, in order to stimulate interest in
evaluation criteria for high-level intelligence.

In the near future, we aim to work in close collaboration with various com-
petition organizers, e.g. RoboCup@Home, in order to enhance the proposed
framework and the evaluation metrics, in the context of the proof of concept
system presented here. It might also be interesting to develop a similar game for
robot-robot competitions, to evaluate and compare the levels of human-aware
reasoning capabilities of different robots, and thereby contribute to a standard
competition for evaluating such capabilities, and a standard benchmark test for
socially intelligent robots of the future.
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