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Abstract. We outline a novel method for defining robot personality
for the purposes of individual differentiation. Rather than a designer-
developed set of behaviors where a users’ preferences are learned and
inserted into pre-written scripts, our approach allows for each robot to
have and express a unique personality. This uniqueness reduces the fun-
gibility of the robots, which may lead to increased user engagement.
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1 Introduction

Robots that co-exist with non-specialized, untrained users are more and more
frequently being developed to leverage ‘social’ capabilities to smooth their inter-
actions. Beyond the basic technologies such as natural-language processing, gaze
tracking, and theory of mind, there are two concepts of interest that have proven
popular in the industry. The first, personality, seeks to imbue a social robot with
a coherent entity-hood, described with vague but human-understandable terms
such as ‘helpful,’ ‘whimsical,’ ‘sassy,’ or ‘sparkling.’ This goal is often achieved
by hand-crafting robot behaviors based on a designer’s understanding of how
the desired personality would be expressed, and this personality and the robot’s
expression thereof is fixed for the life of the robot.

To be more enticing to a wider audience, multiple different personalities may
be developed, and consumers enabled to select from within this fixed set. To
further differentiate between individual robots (which may share the same phys-
ical form and base personality), the second concept, personalization, aims to let
individual users make the robot’s form and behavior more unique. Users are
often able to (and do) modify the surface characteristics of their robot via paint,
stickers, markers, etc., or even via use and wear. The software on the robot is gen-
erally not as malleable, but developers often allow for some user customization by
selecting similarly ‘surface’ characteristics such as voice, gender pronoun, graph-
ical avatar, etc. The available options define a restricted, often discrete space of
robot ‘characters,’ which can still be somewhat easily replicated between users.
(We ignore here the relatively small, but robust, ‘hacker’ or ‘maker’ communities
that delve much deeper and change the hardware and software of robots in ways
unintended or unimagined by the producing company.)
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These available characters are often further personalized over the the life of
interaction between a user and their robot, by having the robot learn preferences
of the former and adjust its behavior. For example, a user’s affinity for pizza
could be learned (by mining past food orders) and pizza could be suggested
as a solution when the user expresses hunger. We characterize these sorts of
adaptations as ‘slotting in’ the user’s preference into a pre-scripted response
(offering preferred food when hungry).

(a) Standard Approach (b) Our Approach

Fig. 1. Differing approaches to robot personality and personalization. In the standard
approach (left), a set of robot personalities are developed by designers with explicit
customization options that can be selected by the user. Additionally, verbal or behav-
ioral ‘scripts’ can have slots for utilizing learned preferences. In our approach (right),
a developed set of robot ‘drives’ defines an infinite personality space. Drive parameters
are used in the stochastic selection of robot actions, resulting in differentiated, unique
behavior over time.

We claim that these approaches (illustrated in Fig. 1a) are non-scalable due
to their reliance on developer and designer time to create both the personalities
and the myriad scripts required for personalization. While adaptive learning
can lead to differentiated robots, these robots aren’t truly unique, as they are
still following the same script, with only shallow changes. Instead, we propose a
method (outlined in Fig. 1b) for defining an infinite personality space that a robot
can occupy, leading to truly unique robots. This approach is complementary to
current personalization techniques, and could be even made adaptive, where the
robot’s personality adjusts over time in a way not currently possible.
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2 Related Work

As robots move beyond the traditional niches of industrialized automation, where
they are often segregated from humans, and military uses, where the users can
be heavily trained, they are increasingly expected to operate side by side with
untrained, naive users, who may have minimal exposure to technology, let alone
autonomous robots. Several strands of research have indicated that social inter-
action cues can be used to facilitate interaction between these humans and
robots, by enabling robots to conform to expected roles and processes familiar
from human-human, or human-animal interaction [10]. For example, exaggerated
motions, which may be sub-optimal from a robot energy expenditure point of
view, can aid humans in better recalling, enjoying, and understanding the intent
of a robot’s reaching gesture [3]. This approach is related to the concepts of
transparency, legebility and predictability [2], which states that it is important
that a robot make its internal state (goals, ‘thinking process’) intelligible to its
human counterparts, in order to speed collaboration.

Likewise, attending to human social norms is an area of active work. Several
groups are investigating ways to have robots learn the ‘rules of the road’ that
govern human navigation, both vehicular [11] and pedestrian [7]. Note that these
rules are often implicit, hard to articulate, and culturally dependent, and so
cannot be pre-programmed, and instead are often learned from demonstration.
Some work has instead looked at recognizing human reactions to violations of
these rules, in an effort to have a robot self-adjust [13].

Beyond collaborative benefits such as improved task performance [4], social
behaviors on robots have been shown to impact a human’s trust and compliance
with a robot [6]. Robots with social behaviors such as politeness are also deemed
more intelligent, capable and approachable than their non-social counterparts [9].
Thus, these behaviors can be used to counteract a general negative perception
of robots due to their portrayal in popular media [12], as well as compensate for
errors in their actual behaviors [1].

Socially active robots have further been shown to have positive impacts on
the humans themselves, beyond any functional task the robot is made to perform.
Sometimes, this impact is the point, such as in diet-assistance [5] or fitness coach
robots, whose whole purpose is to use social skills to help people modify their
behavior. Similarly, social companion robots have been shown to have positive
health benefits such as stress reduction and increased tolerance for pain [14].

While the full range of impact of robot social behaviors on human interac-
tants is still unknown, the commercial robot industry has embraced this app-
roach whole-heartedly. The number of robots purporting social interaction capa-
bilities on the market has soared, with the most recognizable perhaps being
Jibo (Fig. 2a) and Pepper (Fig. 2b), both of which have been marketed more
as friends and companions than appliances. Other products, such as the ZARO
hospital assistance robot are built upon common platforms, such as the Nao
(Fig. 2c). The possibility of multiple companies developing different applications
and personalities for the same robot raises the specter of physically identical
systems behaving in wildly different ways, and no research that we are aware of
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(a) Jibo (b) Pepper (c) Nao

Fig. 2. Forerunners of the coming social robot deluge. Jibo (left) is one of a number of
home robot companions marketed almost more for their character and personality than
their functional utility. Pepper (center) is marketed as the first robot that recognizes
and reacts to its users emotional needs. The Nao robot (right) is used as the base for
a number of different social robots.

addresses how humans may react to this. To a lesser extent, company-developed
social robots may face similar issues, as their personalities are tweaked to meet
cultural and geographic norms for different markets.1

In contrast to research robots, which generally only interact with humans for
relatively short periods of time, commercial robots are designed to have a long-
term presence in the user’s life. Industry development has adopted the concept
of personality to encompass all of the social capabilities of a robot, beyond the
mere functional ones. While academic work on robot personality is somewhat
thin, the concept of personality (and associated concepts of attitudes, emotions,
and moods) are well studied in the psychological literature, although a generally
agreed-upon unified model is still lacking [8].

We take ‘personality’ as commonly used to mean a sense of a unifying gestalt
behind an entities’ behavior. Industrial robot personalities will likely be heavily
influenced by those already in use in the gaming industry, where non-player char-
acters are often designed to be engaging and social. These interactions are highly
scripted and require many hours of designer, developer, and potentially actor
time and effort. More dynamic behaviors are achieved via hand-crafted behavior
trees, a variant of Finite State Machines, where several underlying behaviors
are switched between based on context and user input. Similar approaches will
likely be used to develop new, embodied robot characters, but note that all of
the resulting characters are fixed. Research has yet to be carried out to examine
human reaction to long-term interaction with the resulting characters, but anec-
dotal evidence suggests that without massive amounts of programmed variation

1 “Pepper, the emotional robot, learns how to feel like an American” Wired, 6/7/16.
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and adaptability, users will find repeated interaction at best dull, and at worst
annoying.

3 Approach

Most social robot systems are developed by taking a desired, perhaps already
implemented, functionality and layering social behaviors on top of it. We take
an opposing view and argue that in order for the robot’s personality to be really
unified and ‘shine through,’ it needs to be developed first, and functional utility
added later. Accordingly, we focus here on developing the core personality system
of a robot, and leave functional utility for future work.

Our basic model considers a robot that has some set of continuous sensors
(S) and actuators (A), that together determine what the robot can do in the
world. We concern ourselves with a model for the robot’s personality (P ), which
determines what the robot opts to do. In order for the robot to do anything at
all, we must consider some drives (D) that define what the robot needs to do.

To achieve infinite diversity in personality, we consider a continuous, bounded
personality space. A robot’s personality is represented by a point in this space,
and as it is infinite, all robots can have different (albeit perhaps similar2) person-
alities. The robot’s personality is then used to drive the robot’s decision making
and behaving. Adaptation could be achieved by moving the robot’s personality
in this space, which will in turn change how the robot reacts to changes in its
environment. For convenience, we take P ∈ {0, 1}K , where K is the dimension-
ality of the personality space.

We define a drive D as a behavior that takes in a state of the world and a
potential action and produces an acceptability of performing that action in that
state, dependent upon the robot’s personality. That is D(S,A, P ) → [0, 1], where
0 indicates that the action is not acceptable to this drive in this state with this
personality, and 1 indicates that it is, with differing acceptabilities in-between.

Given a set of drives ({Dk}Kk=1) and a current state st, the total acceptability
(α) of a proposed action (a) is

αa =
K∏

k=1

Dk(st, a, pk) (1)

which defines a pseudo-distribution (values in [0, 1], un-normalized) over the
entire action space of the robot. Even without the normalization constant, we
can sample from the underlying distribution using rejection sampling (with a
uniform proposal distribution) to find an action that is more-or-less acceptable
to all of the robot’s drives. The use of sampling (rather than a MAP estimate)
is deliberate, as it brings randomness into the robot’s behavior, which makes it
seem more ‘alive.’

2 An open question is how different two personalitites must be in order to be perceived
as different by humans, we leave this for future work.
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Note that the number of drives and the dimensionality of the personality
space are the same, K. That is, the drives implicitly define the personality space
of the robot. In essence, each drive defines a continuum of behaviors, dependent
on the personality parameter pk that smoothly changes the drive’s behavior
between two extremes as we will show in the next section.

3.1 Implementation

We implement our personality system on a simple robot, shown in Fig. 3a. The
robot has three time-of-flight sensors and two sonar range finders facing forward
to detect obstacles, and measures the ambient light level at three locations (again
forward facing). A color camera on a tilt motor is used to locate human faces in
front of the robot (range, bearing and height), and a custom IR board provides
the range and bearing to the charging dock, as well as its current battery charge.
The robot has a treaded drive system controlled by linear and angular velocities,
and can tilt the camera. The input space is variable-dimensional (11+3N , N =
number of visible humans) and the action space is 3D.

We implement four drives on this system, with an associated 4-dimensional
personality space. Each drive defines acceptability as a Gaussian distribution
over the action space (Dk(st, pk, a) = N (a|μ,Σ)) with μl, μa, μt being the centers
of the distribution in linear, angular, and camera tilt space, and σl, σa, σt being
the corresponding entries in the diagonal covariance matrix (Σ). For simplicity,
we do not consider cross-covariance terms in this work, and leave out scaling
constants in the following.

(a) Marz (b) PiecewiseLinear

Fig. 3. Left: Our robot platform senses obstacles in front of it with sonar and time-of-
flight and can drive via a treaded system. The camera tilts, and is used to locate human
faces. Right: The piecewise linear function maps battery charge and gluttonous-ness to
variance in the food drive.
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Food Drive. The food drive serves to keep the robot charged by placing the
center of acceptability on linear and angular velocities that will drive the robot
towards the charger. It considers the range and bearing to the charger (rc, bc)
and the current charge level (c) and computes μl = rc cos(bc), μa = bc. The
robot’s personality space for this drive runs from food-seeking or gluttonous
(pfood = 1) to food-ignoring (pfood = 0) and is reflected in the computed variances
σl = σa = pl(c, pfood), where pl is the piecewise-linear function in Fig. 3b.

Comfort Drive. Depending on personality, the comfort drive makes the robot
seek out and stay in comfortable, well-lit areas. It takes in the three ambient light
levels (ll, lc, lr - left, center, right) and sets μl = 1−max(lr, lc, ll), μa = ll − lr to
slow the robot as brightness reaches a maximum, and turn towards the brighter
side. Again, we use the personality to set the variance, where σl = σa = 1 −
pcomfort. As the robot’s laziness increases, it tends to more often seek out and
bask in the light.

Obstacle Drive. While the robot will not deliberately collide with obsta-
cles, the distance to which it is willing to approach them depends on the
personality dimension of cautiousness. Considering the three time of flight
sensors (tl, tc, tr) and the two sonar sensors (sl, sr), the obstacle drive sets
μl = (1−pobstacle)min(tl, tc, tr, sl, sr) to slow the robot as it approaches an obsta-
cle, and μa = sign(tl − tr)(1 − min(tl, tc, tr, sl, sr)) to turn the robot towards
the freer side, faster when it is closer to an obstacle. Note that this drive uses
the personality to change the mean of the distribution (slowing down faster as
cautiousness increases), and the variance is set σl = σa = min(tl, tc, tr, sl, sr) to
decrease as an obstacle is neared, to ensure the robot does not collide.

Human Drive. The only drive to consider camera tilt, the human drive guides
the robot to approach humans and look them in the face. Given the range,
bearing, and height of the N visible people ({r

(n)
h , b

(n)
h , h

(n)
h }Nn=1), the drive con-

siders each human individually and returns the average acceptability αhuman =
1
N

∑N
n=1 N (A|μ(n), Σ(n)) where μ

(n)
t = h

(n)
h , μ

(n)
l = r

(n)
h , μ

(n)
a = b

(n)
h , and the

variances depend on the robots friendliness, as σ
(n)
t = σ

(n)
l = σ

(n)
a = 1 − phuman.

4 Experiments and Results

Our experiments aimed at determining whether or not our infinite personality
space and drive-centric system gave rise to recognizable and measurable differ-
ences in robot behavior. To do so we not only interviewed humans who interacted
with our physical robot platform, but also replicated the robot’s functionality in
a web-based simulator to examine longer-term behavioral differences. The per-
sonalities we examined were hand-picked to highlight the differences achievable
with this system.
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4.1 Quantitative

We examine here the impact of one personality dimension on robot behavior.
Specifically, with other personality traits held constant, we expect the person-
ality trait of gluttony to impact the amount of time the robot spends charging,
with more gluttounous robots spending more time accumulating charge. In our
multi-robot simulator, we simulate several identical robots with the same initial
conditions (location, orientation, and charge) that only differ in their value of
pfood and track the number of times they dock, and the total amount of time
they spend docked over several hours.

(a) Initial (b) Divergent behavior (c) Time spent charging

Fig. 4. Effect of gluttonous personality trait on charging time and frequency. (a) All
robots start with the same initial conditions but quickly diverge by choosing to app-
roach the dock or not (b). After 33 h, differences in behaviors are apparent, as gluttony
directly impacts total time spent charging (c).

Initially (Fig. 4a) all of the robots are at the same location, but as they begin to
get range and bearing readings on the dock, they quickly diverge (Fig. 4b). After
33 h of simulated time, the differences in behavior have become apparent, as shown
in Fig. 4c. The most gluttonous robots spend around 12.5 times more time charging
than the least gluttonous. Additionally, while all robots began with 5 % state of
charge (to stimulate charging), during the simulation the least gluttonous robot
(pfood = 0.05) was observed to keep its battery at 1 %, while the most gluttonous
(pfood = 0.95) increased its to 96 %.

4.2 Qualitative

While our qualitative results indicate that changes in personality do, in fact, lead
to changes in behavior, we also wish to examine the perception of the robot’s
personality by interacting humans. To do so we performed a series of informal
demonstrations for naive users (N < 20, not part of the team that developed
the robot) comparing various personalities. The robot was exhibited in both
our office space and a dedicated ‘living room’ environment, with a couch, chair,
lamps, etc. While no statistical conclusions can be drawn from such a casual
study, different personalities were anecdotally visible, as described below:
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– Robots with ‘friendliness’ turned down were seen to be indifferent to the pres-
ence of humans, while those with ‘friendliness’ turned up were seen as more
engaging, and elicited more interaction.

– Robots with ‘cautiousness’ turned down were seen as less skilled, due to their
increased likelihood of getting stuck in corners

– Robots with ‘laziness’ turned up were seen as “falling in love” with the lamp,
as they would approach the light and stop, while those with ‘laziness’ turned
down would ignore it.

Note that users often did not interact with the robot long enough for it to
charge, so differences in behavior related to ‘gluttony’ are not discussed, but
were covered in Sect. 4.1.

5 Future Work

There are some limitations to our current approach that can be investigated in
future work. While the system does scale to additional drives (the personality
space grows linearly), our use of rejection sampling to find acceptable actions
may not be a tenable solution in higher dimensions. Even with only 4 dimensions
our robot was, at times, unable to find an acceptable action in the time allotted.
This issue becomes particularly acute when one drive has low acceptability over
much of the action space (i.e., when near a wall, the obstacle drive only accepts a
small portion of available actions). Likewise, as the dimensionality of the output
space grows, the computational limits of our system may be taxed.

We specifically worked with a deliberately simple robot system, in order to
focus on our ability to represent personality and demonstrate differences via
behavior. For example, we did not utilize any memory or time-extended actions,
and built an entirely reactive system. However, there is nothing in our frame-
work that precludes these capabilities from being included, and doing so will
undoubtedly be necessary to achieve functional utility.

On that note, our robot is personable and entertaining, but as yet serves no
functional goal. While there are markets and use cases for purely entertainment
robots, greater acceptance may be achieved by having the robot have some
functional utility. In our framework, these uses may take the form of drives (to
deliver mail, for example), which would then interact with the other drives and
personality to give rise to a unique, functional and personable robot.

Lastly, the work presented here focused on defining an infinite personality
space that can give rise to an infinite number of unique robots. Still, however,
we take the personality as fixed for the lifetime of the robot. An interesting
possibility is, however, to allow the personality of the robot to change over time,
perhaps through interaction with a human. For example, reinforcement learning
techniques could be used to reward observed behavior, which could then be used
to change the robot’s personality to make the good behavior more likely to occur.
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6 Conclusions

By taking a personality-first view of robot behavior and operating in an infinite
personality space, we have defined a novel way of developing a social robot.
Our main goal of developing non-fungible robots that truly differ is achieved, as
each robot’s personality can be unique, and will result in idiosyncratic behavior.
These differences in behavior are both measurable and observable to humans.

Acknowledements. Many thanks to Michael Gielniak for writing the simlutator and
running studies, and to Dave Hygh, Quentin Michelet, and Patrick Martin for making
the robots and keeping them running.

References

1. Cha, E., Dragan, A.D., Srinivasa, S.S.: Perceived robot capability. In: Robot and
Human Interactive Communication, pp. 541–548 (2015)

2. Dragan, A.D., Lee, K.C.T., Srinivasa, S.S.: Legibility and predictability of robot
motion. In: International Conference on Human-Robot Interaction, pp. 301–308
(2013)

3. Gielniak, M.J., Thomaz, A.L.: Enhancing interaction through exaggerated motion
synthesis. In: International Conference on Human-Robot Interaction, pp. 375–382
(2012)

4. Jung, M.F., Lee, J.J., DePalma, N., Adalgeirsson, S.O., Hinds, P.J., Breazeal, C.:
Engaging robots: easing complex human-robot teamwork using backchanneling. In:
Computer Supported Cooperative Work, pp. 1555–1566 (2013)

5. Kidd, C.: Designing for long-term human-robot interaction and application to
weight loss. Ph.D. thesis, MIT (2008)

6. Kiesler, S., Goetz, J.: Mental models of robotic assistants. In: CHI 2002 Extended
Abstracts on Human Factors in Computing Systems, pp. 576–577 (2002)

7. Kirby, R.: Social robot navigation. Ph.D. thesis, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, May 2010

8. Moshkina, L.V.: An integrative framework of time-varying affective robotic behav-
ior. Ph.D. thesis, Atlanta, GA, USA, AAI3464090 (2011)

9. Mumm, J., Mutlu, B.: Human-robot proxemics: physical and psychological dis-
tancing in human-robot interaction. In: International Conference on Human-Robot
Interaction, pp. 331–338 (2011)

10. Phillips, E.K., Schaefer, K., Billings, D.R., Jentsch, F., Hancock, P.A.: Journal of
Human-Robot Interaction 5(1) (2016)

11. Sheh, R.K.M., Hengst, B., Sammut, C.: Behavioural cloning for driving robots
over rough terrain. In: International Conference on Robotic Systems, pp. 732–737
(2011)

12. Sundar, S.S., Waddell, T.F., Jung, E.H.: The hollywood robot syndrome: media
effects on older adults’ attitudes toward robots and adoption intentions. In: Inter-
national Conference on Human Robot Interaction, pp. 343–350 (2016)

13. Sutcliffe, A., Grollman, D., Pineau, J.: Estimating people’s subjective experiences
of robot behavior. In: AAAI Fall Symposium on AI for HRI (2014)

14. Wada, K., Shibata, T.: Robot therapy in a care house - its sociopsychological and
physiological effects on the residents. In: International Conference on Robotics and
Automation (2006)


	Infinite Personality Space for Non-fungible Robots
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Implementation

	4 Experiments and Results
	4.1 Quantitative
	4.2 Qualitative

	5 Future Work
	6 Conclusions
	References


