
Chapter 7
Particle Filter Based Integrated Health
Monitoring in Bond Graph Framework

Mayank S. Jha, G. Dauphin-Tanguy, and B. Ould-Bouamama

7.1 Introduction

Besides the abrupt faults that have been considered in the previous chapters,
incipient system faults and degradations of the system parameters pose significant
hurdles in efficient maintenance of the system. For example, fatigue enabled wear in
turbine blades, incipient leakage in valves of process engineering systems, friction
induced jamming of rod in aircraft actuators, etc., pose great threat to system
reliability and safety. Such problems are efficiently resolved when addressed under
the realm of the so-called condition based maintenance (CBM) and prognostics
and health management (PHM) [34]. The latter represent a predictive maintenance
philosophy that has emerged only recently on contrary to the traditional strategies
based upon preventive and corrective maintenance.

The main feature of CBM is the consideration of the “actual” condition of system
component for designing maintenance actions rather than on an elapsed time or
running hours’ basis. Thus, CBM primarily depends upon current assessment of
system health or state and involves real time data monitoring and processing. The
two basic aspects of CBM are diagnostics and prognostics. As seen in the previous
chapters, Diagnostics involves detection of fault and thereby, identification and
quantification of the root cause of a problem. Prognostics involves prediction of
the future health of the equipment either before or after a problem occurred [34,
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60]. As stated in [33], prognostics is “estimation of time to failure and risk for one
or more existing and future failure modes.”

The Remaining Useful Life (RUL) becomes a reliable estimate of the time to
failure; it denotes how long system can function safely/reliably and within the
prescribed limits of system functionalities. Thus, assessment of RUL involves
predictions in future. In this context, the major motivation remains in providing
sufficient lead-time between detection of a fault (diagnostic step) and occurrence
of the system/component failure so that pro-active maintenance actions can be
strategized in advance [62].

RUL prediction is not a trivial task as it involves future predictions which
not only require precise information of current health, but also remain sensitive
to various types of uncertainties to a large degree. These uncertainties involve
stochastic evolution of incipient degradations, failure modes, varying operational
conditions, measurement noise, etc. In face of all such uncertainties, the prognostic
procedure must be able to accurately assess the rapidity of system degradation
till failure and novel events that may significantly influence the assumed/learnt
degradation trend. Due to inherent stochastic phenomena and uncertainty involved,
evaluation of confidence on RUL predictions is given a significant weightage. In
fact, several business decisions are based upon confidence limits associated with
RUL predictions rather than the specific value of RUL itself [59]. In essence,
determination of accurate and precise RUL estimate forms the core objective of
any prognostics procedure.

On the other hand, the term PHM describes the systems that implement a CBM
philosophy [62]. However, in the context of PHM, prognostics gains a wider mean-
ing encompassing the tasks of fault detection, fault-identification, current health
assessments, performance monitoring, and RUL predictions [34]. Thus, diagnostics
and prognostics form building blocks of any CBM enabled PHM architecture. When
these two essential tasks are achieved in an integrated manner, such a common
paradigm may be given the designation of integrated health monitoring framework
[9, 35].

In BG framework, diagnostics and prognostics task can be achieved in an inte-
grated way by exploiting the properties of Analytical Redundancy Relations (ARRs)
and their numerical evaluations or residuals. In this context, due to deterministic
nature of ARRs, most of the existing works have neglected the inherent randomness
in damage progression [20, 23, 48, 49], which in turn has led to RUL predictions
that do not incorporate associated uncertainties and inherent stochasticity.

This chapter details ARR based integrated health monitoring methodology where
the benefits of BG in Linear Fractional Transformations (BG-LFTs) have been
integrated with advantages of Bayesian inference techniques to obtain accurate
and precise estimate of parametric health in probabilistic domain. The inherent
randomness in degradation progression is effectively managed by using sequential
Monte Carlo based particle filters (PF) for estimation of state of a system parameter
and subsequent RUL prediction in probabilistic domain.

After this introduction, Sect. 7.2 details various approaches of prognostics, BG-
LFT method, and non-linear Bayesian inference technique using PFs. Section 7.3
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discusses degradation models (DM). The method of prognostics is described in
the next section. Sections 7.4 and 7.5 discuss the integrated health monitoring
strategy and evaluation metrics, respectively. Section 7.6 details the application
of methodology on a mechatronic system in real system. Section 7.7 draws
conclusions.

7.2 Background and Techniques

This section discusses different techniques of prognostics. Moreover, BG-LFT
technique of modelling uncertain systems and associated fault detection technique
is discussed briefly. The latter is employed for detection of degradation initiation
for the integrated health monitoring purposes. Additionally, non-linear Bayesian
filtering using particle filters (PF) is described as it plays a significant role in the
prognostics method presented in this chapter.

7.2.1 Approaches of Prognostics

Last decade has witnessed an extensive surge in development of various prognostics
techniques and its application in diverse technical domains. Due to the inherent
versatility, approaches of prognostics have been attempted to be classified in
different ways [33, 34, 43, 45, 62], etc. Here, the authors have preferred to adapt
the classification presented in [60].

Probabilistic Life-Usage Models These approaches depend upon the statistical
information collected to assess the historical failure rate of the components and
develop life-usage models [6, 30, 53]. Various functions can be applied to model
statistical failure data such as exponential, normal, lognormal, and Weibull functions
[39]. Moreover, the RUL is described as a probability density function (PDF)
[60, 62]. Accurate assessment of RUL demands huge sets of failure database and
extensive testing.

Data-Driven Prognostics The data associated with system functionality, degrada-
tion patterns, etc., are exploited using machine learning techniques to extract system
signals and features which can be used to obtain behavior of damage progression,
health index, etc. Broadly, two major strategies can be identified as discussed below.

Degradation Trend Extrapolation and Time Series Predictions In broad terms, the
signals that indicate the state of the system are mapped as function of time and
extrapolated in future using various techniques until a prefixed failure threshold
is reached/crossed [27]. Mainly time series forecasting techniques are borrowed
for this purpose such as: linear/non-linear regression techniques, autoregressive
models [63], exponential smoothing techniques [10], autoregressive moving average
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(ARMA), and autoregressive integrated moving average (ARIMA) [8]. The ARMA
models and associated variants prove efficient for short-term predictions. Due to
noise and inefficient uncertainty management, they prove less reliable for long term
predictions.

Learning Damage Progression The degradation trends, failure patterns, etc., are
learnt for training mathematical models. The latter in turn is used to model the
relationship between damage progression and RUL. Employment of artificial neural
networks (ANNs) and their numerous variants fall under this category. Feed-forward
ANNs are extensively employed to estimate the current degradation index (state) by
using system features (extracted signals, feature pattern, etc.) as inputs. Then, one
step ahead prediction is generated by using previous state of degradation values
(degradation index). The next iteration uses this prediction to produce long term
predictions [31]. Major drawback in this context is that the efficiency of predictions
remain limited in face of variable degradation trends, novel failure modes, etc. As
such, accurate RUL predictions are not obtained on individual component unit to
unit basis, but rather over large sets of component population. A comprehensive
updated review of data-driven techniques can be found in [3, 61].

Model Based Prognostics Under this category, physics-of-failure models or degra-
dation models (DM) are typically used to assess the damage progression and state of
health (SOH). These DMs are derived from the first principles of physics. As such,
they possess the capability of attaining maximum accuracy and versatility (scope of
adaptation under varying degradation trend). There is a clear understanding of the
underlying degradation process. There exists vast literature such as fatigue models
for modelling initiation and propagation of cracks in structural components [65],
electrolytic overstress aging [12], Arrhenius equation for prediction of resistance
drift [41], physics-inspired power model [47] or log-linear model for degradation
of current drain [46], and physics-inspired exponential degradation model for
aluminum electrolytic capacitors [42].

Given the behavioral model of damage progression, the current SOH is popularly
obtained in probabilistic domain with the help of Bayesian estimation techniques.
Based upon the current SOH estimate, prediction of RUL is done. Such a prob-
abilistic framework involving recursive Bayesian techniques efficiently addresses
the main issues related to SOH under variable degradation; efficient management
of uncertainty, environmental noise, future loading conditions, and associated
confidence limits for RUL predictions [15, 16, 18, 54]. Filter for estimation and
prediction process is chosen based upon the modelling hypothesis and desired
performances [19]. Well-known Kalman filter, an optimal estimator for linear
systems, has been used for prognostics in [12]. Extended Kalman filter (EKF)
or unscented Kalman filter may also be used for joint state-parameter estimation
as presented in [13, 52], respectively. However, they remain restricted to additive
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Gaussian noise. Additionally, EKF being sub-optimal diverges quickly if the initial
estimate of state is different from the reality by big measure or the model considered
for estimation is not correct [57].

Set in Monte Carlo framework, PFs form a suitable filter choice in this context [4,
25]. PF can be applied to non-linear systems corrupted with non-Gaussian noises,
for which optimal solutions may be unavailable or intractable. Comprehensive com-
parison of filters for prognostic purposes is found in [3, 19, 57]. Recently, PFs have
been extensively for prognostic purposes [50]. Significant works include prediction
of end of life (EOL) in lithium-ion batteries [55], battery health monitoring [56],
prediction of battery grid corrosion [1], estimation and prediction of crack growth
[11], fuel cell prognostics [37], application to damage prognostics in pneumatic
valve [15, 17], estimation–prediction of wear as concurrent damage problem in
centrifugal pumps with a variance control algorithm [18], employment in distributed
prognosis [54], and uncertainty management for prognostics [5]. Particle filters
attract considerable attention [2], owing to the ever growing efforts being made
for betterment in performances and computational efficiency, such as the use of
correction loops [51], fixed–lag filters [14], and kernel smoothing method [32].

The major issue in this type of approach is the accurate and reliable modelling
of underlying degradation progression. Often, such accurate degradation models are
not available.

Hybrid Prognostics The problem of non-availability of highly accurate degradation
models is alleviated by fusing the advantages of model based and data-driven tech-
niques. This way, there is significant amelioration in the overall prognostic approach
[36, 37]. The basic philosophy remains in capturing the damage progression using
DMs that can be: (1) based upon physics of failure, first principles of behavioral
physics (2) derived using machine learning techniques, and (3) obtained statistically
by finding a mathematical model that best fits a given set of degradation data such
as linear model D.t/ D at C b, logarithmic model D.t/ D a ln.t/C b, power model
D.t/ D bta, exponential model D.t/ D b � eat with D(t) as an index representing the
degradation (change, percentage change, etc.), and a and b as the model parameters.
In this context, significant works are obtaining capacitance loss DM using non-linear
least square regression [12], relevance vector machine regression performed over
aging tests data [57], DM approximated by a linear part and logarithmic/exponential
part [37], and residual based statistical DM [36]. Once the DM has been obtained
with acceptable accuracy, recursive Bayesian techniques as discussed previously
can be employed to estimate SOH and obtain subsequent RUL predictions. This
way, benefits of Bayesian estimators are integrated with data-driven approaches to
learn the DM as the current information arrives sequentially.
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7.2.2 Prognostics in BG Framework

Almost all of the existing attempts in BG framework for prognostics have been ARR
based and deterministic in nature. Moreover, DMs are considered deterministic
so that the SOH and subsequent RUL predictions are obtained deterministically
[20, 23, 35, 48, 49, 64]. Being restricted in deterministic domain, the randomness
associated with variable damage progression, novel events, noises, etc., are simply
ignored. As such, this leads to an inefficient management of the uncertainty in
prognostication process and renders the RUL predictions without confidence limits.
Recently, Jha et al. [36] proposed a methodology of hybrid prognostics where the
benefits of Bayesian filtering techniques and BG enabled ARRs are integrated for
efficient prognostics in probabilistic domain. In fact, this chapter is inspired by the
work detailed in [36].

7.2.3 Bond Graph in Linear Fractional Transformations

BG-LFT is an efficient and systematic way of representing parametric uncertainty
over nominal models. An uncertainty on a parameter value � can be introduced
under either an additive form or a multiplicative one, as shown in (7.1) and (7.2),
respectively.

� D �n ˙�� I �� � 0 (7.1)

� D �n . 1˙ ı� / I ı� D ��

�n
(7.2)

where �� and ı� are, respectively, the absolute and relative deviations around the
nominal parametric value �n. When the element characteristic law is written in terms
of 1

�
, (7.2) becomes:

1

�
D 1

�n
� �1C ı1=�

� I ı1=� D –��

�n C��
(7.3)

7.2.3.1 Representation on BG

The representation technique is illustrated briefly by taking a pedagogical example
of R-element in resistance causality. The characteristic law corresponding to R-
element in the linear case (see Fig. 7.1) is given as,

eR D R � fR (7.4)
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Fig. 7.1 (a) R-element in resistance causality. (b) Uncertain R-element in resistance causality in
LFT form

In case of uncertainty on R, (7.4) becomes

eR D Rn .1C ıR/ � fR D Rn � fR C ıR � Rn � fR D eRn C eRunc (7.5)

Constitutive Eq. (7.5) can be represented as uncertain R-element as shown in
Fig. 7.1b, wherein a modulated source MSe is introduced. The latter is associated
with auxiliary input wR and a virtual effort sensor which is associated with
auxiliary output zR. It must be noted that negative (�) sign appears in the BG-
LFT representation (see Fig. 7.1) due to the convention of power conservation.
Moreover, the symbol De * represent virtual detectors. The virtual detectors are used
to represent the information exchange/transfer.

Similarly, parametric uncertainty on the other passive elements can be repre-
sented. The technique remains similar for various other BG elements.

7.2.3.2 BG-LFT Based Robust Fault Detection

Fault diagnosis in BG-LFT framework is mainly dependent upon ARR generation
[22]. ARRs are constraint relationships involving only known variables. In the
context of BG modelling, an ARR W f

�
SSe.t/;SSf.t/;Se.t/;Sf.t/; ™) D 0, where ™

is vector of system parameters.

Generation of Uncertain ARRs The generation of robust analytical redundancy
relations from an observable bond graph model is explained by the following steps:

First Step: Preferred derivative causality is assigned to the nominal model and
detectors De (Df) are dualized to SSe (SSf); wherever possible. The BG-LFT
model is constructed.
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Second Step: The candidate ARRs are generated from “1” or “0” junction, where
power conservation equation dictates that sum of efforts or flows, respectively, is
equal to zero, as:

• For 0-junction:

X
si � fi;n C

X
Sf C

X
siwi D 0 (7.6)

• For 1-junction:

X
si � ei;n C

X
Se C

X
siwi D 0 (7.7)

with s being the sign rendered to the bond due to energy convention, wi is the
uncertain effort (flow) brought by the multiplicative parametric uncertainty ı�i

associated with ith system parameter � i, at 1(0) junction.

Third Step: The unknown effort or flow variables are eliminated using covering
causal paths from unknown variables to known (measured) variables (dualized
detectors), to obtain the ARRs which are sensitive to known variables as,

R D ˚
nX

Se;
X

Sf;SSe;SSf;Rn;Cn; In;TFn;GYn;RSn;
X

wi

o
(7.8)

where subscript n represents the nominal value of the corresponding BG element.

Generation of Adaptive Thresholds The ARR derived in (7.8) consists of two
perfectly separable parts due to the properties of the BG-LFT model: a nominal
part noted r shown in (7.9) and an uncertain part noted b D

X
wi shown in (7.10).

r D ˚ fSe;Sf;SSe;SSf;Rn;Cn; In;TFn;GYn;RSng (7.9)

b D
X

wi

wi D ˚ fSe;Sf;SSe;SSf;Rn;Cn; In;TFn;GYn;RSn; ıR; ıI ; ıC; ıTF; ıGY; ıRSg
(7.10)

The uncertain part generates the adaptive threshold over the nominal part. From
(7.8), (7.9), and (7.10), following may be obtained:

r C b D 0

r D �b D �
X

wi
(7.11)

The thresholds are formed in form of envelop as:

�a < r < a (7.12)
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where

a D
X

jwij (7.13)

The use of absolute values to generate the thresholds of normal operation ensures the
robustness of this algorithm to false alarms. BG-LFT technique is well developed
and detailed in literature. Readers are referred to [21, 22] for details.

7.2.4 Non-Linear Bayesian Inference Using Particle Filters

Consider a dynamic system whose state at time step tk is represented by the vector
xk. The evolution of the system state is described by a state space model,

xk D f k .xk�1; vk�1/ (7.14)

yk D hk .xk;wk/ (7.15)

where

• fk W R
Nx � R

Nv ! R
Nx is a non-linear state transition function.

• hk W R
Nx � R

Nw ! R
Ny is observation function describing the sequence of

measurements yk, obtained sequentially at successive time steps tk.
• vk 2 R

Nv is the process noise sequence of known distribution assumed
independent and identically distributed (i.i.d).

• wk 2 R
Nw is i.i.d measurement noise sequence of known distribution.

Equations (7.14) and (7.15) can be equivalently represented as,

xk D f k .xk�1; vk�1/ $ p
�

xk

ˇ̌
ˇxk�1

�
(7.16)

yk D hk .xk;wk/ $ p
�

yk

ˇ̌
ˇxk�1

�
(7.17)

where p
�

xk

ˇ
ˇ̌xk�1

�
represents the state transition probability, p

�
yk

ˇ
ˇ̌xk�1

�
is the

likelihood function which signifies the probability of the observation of yk, given
the current estimate of xk.

Objective of filtering procedure is to obtain estimates of xk, based upon all
of the available measurement sequences y1Wk D fyk; k D 1; 2; ::::kg. From the
perspectives of Bayesian inference, the objective remains in recursive calculation
of state distribution xk, given the set of observations y1 : k up to time tk, with some

degree of belief. Construction of PDF p
�

xk

ˇ̌
ˇy1Wk

�
, known as the filtered posterior

state PDF, provides all the information about xk, inferred from the measurements
y1 : k and the initial state PDF p(x0). The latter p(x0) is assumed to be known. Given
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p
�

xk�1
ˇ̌
ˇy1 k�1

�
at time tk�1, theoretically, the posterior state can be estimated in a

recursive way via two sequential steps: prediction and update.

Prediction Application of Chapman–Kolmogorov equation over p
�

xk�1
ˇ
ˇ̌y1 W k�1

�

at time k–1 gives the estimation of prior state PDF p
�

xk

ˇ̌
ˇy1 W k�1

�
at time tk as,

p
�

xk

ˇ
ˇ̌y1 W k�1

�
D
Z

p
�

xk

ˇ
ˇ̌xk�1; y1 W k�1

�
p
�

xk�1
ˇ
ˇ̌y1 W k�1

�

D
Z

p
�

xk

ˇ̌
ˇxk�1

�
p
�

xk�1
ˇ̌
ˇy1 W k�1

�
dxk�1

(7.18)

Here, p
�

xk

ˇ̌
ˇxk�1

�
is obtained from (7.16), where the system is assumed to follow

first order Markov dynamics.

Update Bayes rule is used to update the prior as the new measurement yk arrives,
to obtain the posterior distribution of xk as,

p
�

xk

ˇ̌
ˇy1 W k

�
D

p
�

xk

ˇ̌
ˇy1 W k�1

�
p
�

yk

ˇ̌
ˇxk

�

p
�

yk

ˇ̌
ˇy1 W k�1

� (7.19)

with the normalizing constant being,

p
�

yk

ˇ̌
ˇy1 W k�1

�
D
Z

p
�

xk

ˇ̌
ˇy1 W k�1

�
p
�

yk

ˇ̌
ˇxk

�
dxk (7.20)

This step incorporates the latest measurement into a priori state PDF p
�

xk

ˇ̌
ˇy1 W k�1

�

to estimate the posterior state PDF p
�

xk

ˇ̌
ˇy1 W k

�
. The exact Bayesian solution

obtained from recurrence relations (7.18) and (7.19) forms the basis of optimal
Bayesian inference. This procedure remains tractable and produces best results for
ideal systems such as linear Gaussian state space models. For the latter, it leads
to the formation of classical Kalman filter. In general, optimal and closed form
solutions for non-linear systems with non-Gaussian noises cannot be analytically
determined. For non-linear state space models with additive Gaussian noises, sub-
optimal Extended Kalman filter (EKF) has been developed. To obtain optimal
solutions for non-linear systems, one resorts to Monte Carlo Methods. One such
popular method is described below.

Particle filter (PF) is a type of Sequential Monte Carlo method [25], used
for obtaining recursive Bayesian inferences via Monte Carlo simulations. Basic
philosophy rests in representing the posterior state PDF by a set of random samples
or “particles” where each of the particles has an associated weight based upon which
the stateestimates are computed [26]. Sequential importance sampling (SIS) PF is
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one of the most popular PFs in which posterior state PDF p
�

x0Wk
ˇ̌
ˇy1Wk

�
by a set of N

number of weighted particles [4],

˚�
xi
0Wk
�
;wi

k

�N

iD1 (7.21)

where
˚
xi
0Wk; i D 1; : : :N

�
is the set of particles representing the state value with

corresponding associated importance weights as
˚
wi

k; i D 1; : : :N
�
. Moreover,

x0 W k D ˚
xj; j D 0; ::::; k

�
is the set of all states up to time k. It should be noted

that these weights are the approximations of relative posterior probabilities of the
particles normalized such that,

X

i

wi
k D 1 (7.22)

The posterior PDF is approximated as,

p
�

x0Wk
ˇ̌
ˇy1 W k

�
�

NX

iD1
wi

k � ı �x0Wk � xi
0Wk
�

(7.23)

where ı denotes the Dirac delta function. This gives discrete weighted approxi-

mation to the true posterior state distribution p
�

x0Wk
ˇ̌
ˇy1 W k

�
. As N tends to large

numbers, the Monte Carlo approximation becomes an equivalent representation to
the posterior state PDF.

7.2.5 Importance Sampling

Obtaining the particle weight(s) is not a trivial task. It becomes virtually impossible

to sample from a posterior state p
�

x0Wk
ˇ̌
ˇy1 W k

�
without a closed form distribution.

To resolve this issue, principle of importance sampling is used [4]. Here, a proposal
distribution q(x), known as importance density, is chosen such that p.x/ / q.x/ and
q(x) is a PDF from which samples can be easily drawn. For example, if a set of
samples xi � q.x/; i D 1; : : : ;N is generated from the proposal distribution q(x),
then the weighted approximation of the density p(x) is given as,

p.x/ �
NX

iD1
wi � ı �x � xi

�
(7.24)
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where normalized weight can be obtained as,

wi � p
�
xi
�

q .xi/
(7.25)

For a set of samples
˚
xi
0Wk; i D 1; : : :N

�
, this leads to weights being defined as,

wi
k /

p
�

x0Wk
ˇ̌
ˇy1Wk

�

q
�

x0Wk
ˇ̌
ˇy1Wk

� (7.26)

For online implementation, a recursive estimation procedure is sought. In other

words, distribution p
�

x0Wk
ˇ
ˇ̌y1Wk

�
at time tk must be estimated from p

�
x0Wk�1

ˇ
ˇ̌y1Wk�1

�

at time tk�1, in a sequential manner. To this end, a constraint on importance density
is placed so that it is factorable as,

q
�

x0Wk
ˇ̌
ˇy1 W k

�
D q

�
xk

ˇ̌
ˇx0Wk�1; y1 W k

�
q .x0Wk�1; y1 W k�1/ (7.27)

Then, the new state xi
0Wk � q

�
xk

ˇ
ˇ̌x0Wk�1; y1Wk

�
can be appended with existing samples

xi
0Wk�1 � q

�
x0Wk�1

ˇ̌
ˇy1Wk�1

�
to obtain new sets of samples xi

0Wk � q
�

x0Wk
ˇ̌
ˇy1Wk

�
. This

is followed by update of particle weights. The posterior state PDF is expressed as,

p
�

x0Wk
ˇ̌
ˇy1 W k

�
D p

�
x0Wk�1

ˇ̌
ˇy0 W k�1

� p
�

yk

ˇ̌
ˇxk

�
p
�

xk

ˇ̌
ˇxk�1

�

p .yk; y1 W k�1/
(7.28)

Then, using (7.26), (7.27), and (7.28), particles are updated recursively as,

wi
k /

p
�

x0Wk
ˇ̌
ˇy1Wk

�

q
�

x0Wk
ˇ̌
ˇy1Wk

�

/
p
�

x0Wk�1
ˇ̌
ˇy0 W k�1

�
p
�

yk

ˇ̌
ˇxk

�
p
�

xk

ˇ̌
ˇxk�1

�

q
�

xk

ˇ̌
ˇx0Wk�1; y1 W k

�
q .x0Wk�1; y1 W k�1/

/ wi
k�1

p
�

yk

ˇ
ˇ̌xk

�
p
�

xk

ˇ
ˇ̌xk�1

�

q
�

xk

ˇ
ˇ̌x0Wk�1; y1 W k

�

(7.29)

In SIS PF, the importance density is set equal to a priori PDF of state, i.e.,

q
�

x0 W k

ˇ̌
ˇx0 W k�1

�
D p

�
xk

ˇ̌
ˇxk�1

�
D fk

�
xk

ˇ̌
ˇxk�1

�
. This translates to the fact that
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new particles can be generated from the previous set of particle by simulating the

state transition function fk
�

xk

ˇ̌
ˇxk�1

�
. Moreover, assumption of Markov dynamics

implies that q
�

xi
k

ˇ̌
ˇxi
0Wk�1; y1 W k

�
D q

�
xi

k

ˇ̌
ˇxi

k�1; yk

�
. This renders the whole proce-

dure suitable for online implementation as only the filtered estimate p
�

xk

ˇ̌
ˇy1Wk

�
is

required at each step. Thus, only xi
k and y1 : k should be stored and the previous state

path up to xi
0Wk�1 can be neglected. Weight update step (7.29) can be modified as,

wi
k / wi

k�1
p
�

yk

ˇ̌
ˇxi

k

�
p
�

xi
k

ˇ̌
ˇxi

k�1
�

q
�

xi
k

ˇ̌
ˇxi
0Wk�1; y1 W k

�

/ wi
k�1 p

�
yk

ˇ̌
ˇxi

k

�
(7.30)

Then, the posterior filtered PDF p
�

xk

ˇ
ˇ̌y1Wk

�
is approximated as,

p
�

xk

ˇ
ˇ̌y1 W k

�
�

NX

iD1
wi

k � ı �x0Wk � xi
0Wk
�

(7.31)

This simplified algorithm can be used for recursive estimation of state as the
observations arrive sequentially. The likelihood functions of the new observations

p
�

yk

ˇ
ˇ̌xi

k

�
result in evaluation of weights of particles constituting the next state

estimate.

7.2.6 Particle Degeneracy and Resampling

During the propagation steps, the approximation density is adjusted through re-
weighting of the particles. Previous steps lead to an inevitable situation where
due to increase in weight variance, the importance weights become increasingly
skewed. After few iterations, all but one particle have negligible weights (particle
degeneracy) [26]. To avoid the latter, a new swarm of particles are resampled from
the approximate posterior distribution obtained previously in the update stage,
constructed upon the weighted particles [44]. The probability for a particle to be
sampled remains proportional to its weight. This way, particles with smaller weights
(signifying less contribution to estimation process) are discarded and particles with
large weights are used for resampling. To resolve this issue, the standard SIS is
accompanied by a resampling step (referred to as Sampling-Importance resampling)
(SIR) PF [4]. The different ways of resampling can be referred in [24]. In this work,
SIR PF is employed for estimation of SOH and RUL predictions. In general, the
particles are forced in the region of high likelihood by multiplying high weighted
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particles and abandoning low weighted particles. In other words, resampling step
involves elimination of those particles that have small weights so that focus shifts
on the particles with large weight. This step results in generation of a new set
of particles

˚�
xi�
0Wk
�
;wi

k

�N

iD1 by resampling N times without replacement from the

discrete approximation of p
�

xk

ˇ̌
ˇy1 W k

�
as,

p
�

xk

ˇ̌
ˇy1 W k

�
�

NX

iD1
wi

k � ı.x0Wk/ .dx0 W k/ (7.32)

such that Pr
�
xi�

k D xi
k

� D wi
k. The new set of particles represents i.i.d from (7.32)

and thus, the particle weights are reset again as wi
k D 1=N.

7.3 Degradation Models

DMs capture the underlying degradation of a given component/subsystem with
time, environmental and operational conditions, etc. DMs can be obtained based
upon physics of degradation or statistical approaches [28, 29]. Given a prognostic
candidate (system parameter) �d, the associated DM can be expressed as,

�d.t/ D gd
�
”d.t/; v™

d
.t/
�

I �d .t D 0/ D �d
n (7.33)

where gd(.) denotes the linear/non-linear degradation progression function (DPF)
obtained from the corresponding DM. It models the degradation progression of
�d(t). Moreover, ”d.t/ 2 R

N�d presents the vector of degradation progression
parameters (DPP), v�

d
.t/ 2 R

N�d is the associated process noise vector and �d
n

denotes nominal value of �d.

7.3.1 Obtaining Degradation Model in BG Framework

In BG framework, the DM of a system parameter �d 2 ™, ™ 2 R
N� can be obtained

from the time evolution profile of the respective ARR to which it is sensitive,
assuming that the rest of the system parameters sensitive to the same ARR do not
undergo any kind of progressive fault or degradation [7, 49]. Here, consider the point
valued part of the dth I-ARR, rd(t) such that with ™0 D ™n�d.t/, t > 0; rd.t/ ¤ 0,

rd.t/ D ‰d
1

�
�d.t/; ™0n;SSe.t/;SSf.t/;Se.t/;Sf .t/

�
(7.34)

where subscript n denotes nominal value. The computed values of rd(t) at time
sample points gives an implicit relation of the degradation profile of �d(t) in time.
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Assuming that implicit function theorem is satisfied [40], (7.34) gives a real valued
function  d such that,

�d.t/ D  d
�
rd.t/; ™0n;SSe.t/;SSf.t/;Se.t/;Sf .t/

�
(7.35)

Equation (7.35) is a function of system measurements inputs (known variables),
signal derivative(s), etc., it is always corrupted with noise. It should be noted that
residual based DM should be obtained prior to prognostics. This routine can be
performed offline, i.e., prior to the phase when system’s health monitoring is of
interest.

7.3.2 Methodology of Hybrid Prognostics

In this section, the methodology for prognostics is described. Following assump-
tions are made:

• Only system parameters are considered uncertain. Sensors are considered non-
faulty.

• A single system parameter (prognostics candidate) is assumed to be under
progressive degradation. In fact, it is assumed that single mode of degradation
affects the system parameter.

• The system parameter (prognostics candidate) that undergoes degradation is
assumed to be known a priori. The issue of isolation or isolability of the
prognostic (faulty) candidate is assumed resolved. Let �d.t/ 2 ™ be such
prognostic candidate.

• Degradation model (DM) of �d.t/ 2 ™ is assumed to be known a priori.
• For an ARR derived, only one system parameter sensitive to it (known a priori)

varies with time.
• Noise associated with measurements (residuals) is assumed normally distributed

Gaussian in nature.
Objectives are

• Reliable estimation of prognostic candidate’s SOH and state of hidden degrada-
tion parameters that accelerate or vary the degradation progression.

• Reliable prediction of the RUL of the prognostic candidate.

7.3.3 Robust Detection of Degradation Initiation

The problem of detecting the degradation beginning is treated as robust fault
detection problem. The BG-LFT enabled fault detection method presented in
Sect. 7.2.3 is exploited in the form of an efficient diagnostic module. To this end,
following steps are taken.
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Table 7.1 Detection of
degradation

Algorithm 1: Detection of degradation initiation

Input: rd(k),
X jwi.t/j

Output: degradation detection

if rd.k/ � �X jwi.t/j and rd.k/ �X jwi.t/j
degradation detection false
else
degradation detection true

end if

Step 1: Preferred derivative causality is assigned to nominal model and sensors are
dualized.

Step 2: BG-LFT model of the nominal system is obtained.
Step 3: ARR sensitive to �d is derived. Let the ARR be R(t) and the associated

residual (numerical evaluation of ARR) be rd(t).
Step 4: Robust thresholds are derived as explained in Sect. 7.2.3. Degradation

initiation is detected when the residual goes out of the BG-LFT thresholds. The
corresponding pseudo algorithm is given in Table 7.1.

7.3.4 Fault Model Construction

This section describes the fault model constructed for estimating the state of the
prognostic candidate which denotes the state of health of the parameter.

7.3.4.1 State Equation

The parameter under degradation �d(t) is included as a tuple (�d, ”d, gd) to model
the damage progression in state space form. Here, ”d.t/ 2 R

N�d is the vector of
hidden parameters (DPP) that influence the speed of degradation significantly. The
fault model for is constructed in state space form by considering the parameter �d

as the state variable augmented with the DPP vector as,

:
x

d
.t/ D f d

�
xd.t/; vxd .t/

�
(7.36)

where xd.t/ D �
�d.t/; ”d.t/

�T
is the augmented state vector, fd is state transition

function following the Markov dynamics, and vxd 2 R
Nvd is the process noise vector.
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7.3.4.2 ARR Based Observation Equation

The nominal residual used for detection of degradation initiation can be further
exploited used for SOH estimation if the corresponding ARR expression is altered
to obtain the observation equation. To this end, following theorem is enunciated:

Theorem Under the single degradation hypothesis, assuming that the nominal part
rd

n(t) of an ARR derived from the BG-LFT model can be expressed as a linear
combination of non-linear functions of degradation candidate parameter �d(t), the
measurement of the �d(t) can be obtained from rd

n(t).

Proof Let �d(t) be the degradation candidate and ™0 D ™n�d.t/. Assuming the
nominal part rd

n(t) can be expressed as,

rd
n.t/ D �

�
™0n;SSe.t/;SSf .t/;Se.t/;Sf .t/

�C AT®
�
�d

n

�
(7.37)

where 8i
ˇ̌
ˇi D 1; 2 : : :m, Am�1 D Œa1 a2 : : : am�

T is a vector of known (measured sys-

tem variables) with ai D �i
�
™n
0;SSe.t/;SSf .t/;Se.t/;Sf .t/

�
and ®m�1 ��d.t/

� D
�
'1
�
�d.t/

�
; '2

�
�d.t/

�
; ::::'m

�
�d.t/

��T
is the vector of non-linear functions of �d(t).

Then, 8t � 0 power conservation at the BG junction where the corresponding ARR
is derived, gives

ARR W rd.t/ D „
�
� 0n; SSe.t/;SSf .t/;Se.t/;Sf .t/

�C AT®
�
�d.t/

� D 0 (7.38)

or,

rd.t/ D „
�
™0n;SSe.t/;SSf.t/;

X
Se;

X
Sf ;
�

C AT®
�
�d

n

�C �
AT®

�
�d.t/

� � AT®
�
�d

n

�� D 0

rd.t/ D rd
n.t/C AT

�
®
�
�d.t/

� � ®
�
�d

n

�� D 0

rd
n.t/ D � AT

�
®
�
�d.t/

� � ®
�
�d

n

��
(7.39)

Thus, state of �d(t) can be linked implicitly with measurements obtained by the
nominal part rd

n(t).

Corollary When ®
�
�d

n

� D '
�
�d

n

� D �d
n , the vector A D a1, a1 D

�1

�
™0n;SSe.t/;SSf.t/;

X
Se;

X
Sf
�

, can be understood as a coefficient function

linking the fault value to the residual. It can be found as,

a1 D @
�
rd

n.t/
�

@ .�d.t//
(7.40)

Thus, observation equation can be formed as,
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yd.t/ D rd
n.t/ D �AT

�
®
�
�d.t/

� � ®
�
�d

n

��
(7.41)

In this work noise is considered additive, i.i.d., drawn from a zero mean normal
distribution and is assumed uncorrelated to xd(t). Observation equation is formed
from (7.41) as,

yd.t/ D hd
�
xd.t/

�C wd.t/ (7.42)

where hd .�/ is a non-linear observation function obtained from (7.41) and wd.t/ �
N �

0; �2
wd

�
. Moreover, the standard deviation �wd is approximated from residual

measurements during the degradation tests.
Thus, the nominal residual can provide information of damage and SOH of the

prognostic candidate.

7.3.5 State of Health Estimation

In discrete time step k 2 N, the fault model can be described as,

xd
k D f d

k

�
xd

k�1; v
xd
k�1
�

(7.43)

yd
k D hd

k

�
xd

k

�C wd
k (7.44)

The initial state PDF p
�
™d

k�1;”d
k�1
ˇ
ˇ̌
yd

k�1
�

is assumed to be known a priori. Esti-

mations of ™d
k , ”d

k are obtained Bayesian framework as explained in Sect. 7.2.4.

The latter is obtained as PDF p
�
™d

k ;”
d
k

ˇ̌
ˇyd

0W k

�
, at discrete time k, based upon the

history of measurements till time k, yd
0 : k.The arriving measurement yd

k is assumed
conditionally independent of the state process. The likelihood function becomes as,

p
�

yd
k

ˇ̌
ˇ™d

k ; ”d
k

�
D 1

�wd
k

p
2	

exp
�
��yd

k � hd
�
xd

k

��2
=2�2

wd
k

�
(7.45)

Estimation procedure using PF (see Sect. 7.2.4) is carried out such that the
state PDF is approximated by set of discrete weighted samples or particles,n�
™d

k
;i
; ”d

k
;i
�
;wi

k

oN

iD1, where N is the total number of particles. For ith particle at

time k, �d
k

,i ”d
k

,i are the joint estimate of the state. In PF, the posterior density at any
time step k is approximated as,

p
�
�d

k ;”
d
k

ˇ̌
ˇyd
0 W k

�
�

NX

iD1
wi

k � ı.�d
k ;”

d
k/
�
d™d

k d”d
k

�
(7.46)
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Fig. 7.2 Illustration of estimation process in particle filters

where ı.™d
k ;”

d
k/
�
d�d

k d”d
k

�
denotes the Dirac delta function located at (�d

k , ”d
k ) and

sum of the weights
NX

iD1
wi

k D 1. In this work, SIR PF is employed, owing to

the easiness of importance weight evaluation [4]. Firstly, it is assumed that the

set of random samples (particles)
n�
�

d;i
k�1; ”

d;i
k�1
�
;wi

k�1
oN

iD1 are available as the

realizations of posterior probability p
�
�d

k�1;”d
k�1
ˇ
ˇ̌
yd
0 W k�1

�
at time k � 1. Then,

three significant steps are followed as illustrated in Fig. 7.2.

Prediction The particles are propagated through system model by: sampling from
the system noise v

xd
k�1 and simulation of system dynamics shown in (7.43).

This leads to new set of particles which are nothing but the realizations of

prediction distribution p
�
�d

k ;”
d
k

ˇ
ˇ̌
yd
0 W k�1

�
.

Update As the new measurement yd
k arrives, a weight wi

k is associated with each of
the particles based on the likelihood of observation yd

k made at time k as,

wi
k D p

�
yd

k

ˇ̌
ˇ�d;i

k ;”
d;i
k

�
=

NX

jD1
p
�

yd
k

ˇ̌
ˇ�d;j

k ;”
d;j
k

�
(7.47)

Resampling There exist many types of resampling techniques [24]. In this work,
systematic resampling is preferred owing to its simplicity in implementation, O(N)
computational time, and modular nature. The resampling method is well detailed in
literature and thus, not described here.

The prediction, update, and resample procedures form a single iteration step;
they are applied at each time step k.
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Table 7.2 SIR particle filter
for SOH estimation

Algorithm 2: estimation using SIR filter

Inputs:
n�
�d

k�1

;i
; ”d

k�1

;i
�
;wi

k�1

oN

iD1
, yd

k

Output:
n�
�d

k
;i
; ”d

k
;i
�
;wi

k

oN

iD1

for iD 1 to N do

”d
k
;i � p

�
”d

k
;i
ˇ
ˇ̌
”

d;i
k�1

�

�d
k
;i � p

�
�d

k
;i
ˇ̌
ˇ�d;i

k�1;”
d;i
k�1

�

wi
k � p

�
yd

k

ˇ
ˇ̌
�

d;i
k ;”

d;i
k

�

end for

W  
NX

iD1

wi
k

for iD 1 to N do
wi

k  wi
k=W

end for
n�
�d

k
;i
; ”d

k
;i
�
;wi

k

oN

iD1
 RESAMPLE

n�
�d

k
;i
; ”d

k
;i
�
;wi

k

oN

iD1

The pseudo algorithm is provided in Table 7.2.

7.3.6 RUL Prediction

The critical/failure value �d
fail of �d(t) must be fixed beforehand. Once the posterior

PDF p
�
�d

k ;”
d
k

ˇ̌
ˇyd
0 W k

�
has been estimated at time step k, it should be projected in

future in such a way that information about EOL at time step k, EOLk, is obtained
depending upon the actual SOH. Then, RUL at time k can be obtained as,

RULk D EOLk � k (7.48)

Obviously, such a projection of degradation trajectory in future has to be done
in absence of measurements. Thus, this process remains outside the domain of
traditional Bayesian filtering techniques. In practice, one of the efficient ways to

achieve such a projection is to propagate the posterior PDF p
�
�d

k ;”
d
k

ˇ̌
ˇyd
0 W k

�
using

the DM inspired state model (7.43) until the failure horizon �d
fail is reached. The

latter may take ld time steps so that �d D �d
fail at a time t C ld. This calls for

computation of the predicted degradation state p
�
�d

kCld
;”d

kCld

ˇ̌
ˇyd
0 W k

�
as [25],
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p
�
�d

kCld
;”d

kCld

ˇ̌
ˇyd
0 W k

�

D
Z
: : :

Z kCldY

jDkC1
p
��
�d

j ;”
d
j

� ˇ̌
ˇ
�
�d

j�1;”d
j�1
��

p
�
�d

k ;”
d
k

ˇ̌
ˇyd
0 W k

� kCld�1Y

jDk

d
�
�d

j ;”
d
j

�

(7.49)

Obtaining the numerical value of this integral is computationally very expensive.
PFs can be employed for optimal estimation of such integrals under certain

assumptions [51] reviews various methods for computation of (7.49). In [25], it
is proposed that weights of the particles from time step k until kC ld can be kept
constant for ld step ahead computation. This is based on the assumption that error
generated/accumulated by keeping the weights same is negligible compared to other
error sources, such as settings of process noise, measurement noise, random walk
variance, and model inaccuracy [50].

In our context, as illustrated in Fig. 7.3, RUL predictions can be achieved
by projecting the current SOH estimation into future [15, 16, 18, 37]. Once the

particles
n�
�d

k
;i
; ”d

k
;i
�
;wi

k

oN

iD1, constituting the realizations of the current joint

state-parameter estimate p
�
�d

k ;”
d
k

ˇ
ˇ̌
yd
0 W k

�
are obtained, each of the particles is

propagated into future to obtain a ld-step ahead state distribution with ld D
1; : : : Td � k, where Td is the time until SOH remains less than failure value, i.e.,
time until �d

kCld
� �d

fail. For ld-step ahead state distribution, each of the particles
is propagated using the state equation of the fault model. Here, for the ith particle,
the corresponding weight during the ld,i-step propagation is kept equal to weight wi

k
at time of prediction k. Then, for ith particle, RULi

k D k C ld;i � k D ld;i and the
corresponding PDF is obtained as,

Fig. 7.3 Schematic illustration of RUL prediction process
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Table 7.3 RUL prediction Algorithm 3: RUL prediction

Inputs:
n�
�d

k
;i
; ”d

k
;i
�
;wi

k

oN

iD1

Variable: l

Outputs:
˚
RULi

k;w
i
k

�N

iD1

for iD 1 to N do
lD 0

while �d;i
kCl � �d

fail do

”
d;i
kC1 � p

�
”

d;i
kC1

ˇ
ˇ̌
”

d;i
k

�

�
d;i
kC1 � p

�
�

d;i
kC1

ˇ̌
ˇ�d;i

k ;”
d;i
k

�
l lC 1

end while
RULi

k  l

end for
˚
RULi

k;w
i
k

�N

iD1
� p

�
RULk

ˇ̌
ˇyd
0 W k

�

p
�

RULk

ˇ̌
ˇyd
0 W k

�
�

NX

iD1
wi

k ı.RULi
k/

�
dRUL

i

k

�
(7.50)

The associated pseudo algorithm is provided in Table 7.3.

7.4 Integrated Health Monitoring

The degradation initiation is detected by BG-LFT based robust fault detection
technique, as discussed in Sect. 7.3.3. The initial value of SOH of prognostic
candidate is set as:

�d
tDtd � U

�
�d

n ���l; �
d
n C��u

� I t D td (7.51)

where td is the time when degradation is detected as fault. The associated uncertainty
interval limits Œ���l; ��u� decide the bounds of the uniform distribution.

The complete algorithm is shown in Table 7.4. Figure 7.4 shows the schematic
description of the methodology presented in this chapter.

7.5 Evaluation Metrics

In this section, evaluation metrics are provided to assess prognostic performance.
For details, readers referred to [18, 59].
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Table 7.4 Integrated health
monitoring of prognostic
candidate

Algorithm 4: Health monitoring of �d
0

while system is running do
Detect the beginning of degradation using Algorithm 1
if fault detectionD true then
//set initial conditions

�d
0 � U

�
�d

n ���l; �
d
n C��u

�

”d
0 D 0

yd
0 D rd

n.k/

do SOH Estimation using Algorithm 2
do RUL prediction using Algorithm 3
end if
end while

Fig. 7.4 Schematic description of the Health Monitoring Methodology

Root mean square error (RMSE) metric expresses the relative estimation accu-
racy as:

RMSEX D
vu
utMeank

"	
mean.X/ � X�

X�


2#

(7.52)
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where for a specie X, X* denotes its corresponding true value. Meank denotes
the mean over all values of k. This metric is useful in assessing the estimation
performance.

On the other hand, assessment of RUL predictions is possible if the actual RUL
or RUL ground truth is known. The terms RUL ground truth and true RUL are used
interchangeably in this chapter. A fairly good idea of true RUL can be obtained
beforehand from the corresponding DM, under the assumption that degradation
proceeds with uniform speed. Obviously, the hidden DPPs influence the actual speed
and SOH. As such, in reality, true RUL can only be estimated with certain degree
of belief. In this chapter, it is assumed that degradation progresses with uniform
speed. As such, for evaluation purposes, true RUL is assessed from DM. A detailed
discussion on this subject and RUL evaluation metrics can be found in [58, 59].

Alpha–Lambda (’ � œ) Metric [59] An accuracy cone is formed by choosing ˛
such that ˛ 2 Œ0; 1�, followed by generation of accuracy cone (envelope) over true
RUL at time instant k, RUL*

k , as
�
.1 � ˛/RUL�k ; .1C ˛/RUL�k

�
. Clearly, value of ˛

signifies the degree of uncertainty associated with RUL*
k , allowed for assessment of

RUL predictions. Figure 7.5 shows ground truth RUL line and ˛ cone that envelopes
it. The estimated RUL PDFs must have significant amount of probability mass
within the ˛-cone, to be accepted as “true” predictions. Then, accuracy of RUL
predictions can be efficiently assessed by relative accuracy (RA) metric. The latter
is explained by first recalling the fact that RUL predictions are obtained as PDFs (see
Fig. 7.3). In this work, RUL PDFs are represented using box plot representation. As
shown in Fig. 7.5, the box plot representation is capable of denoting the PDF’s
mean, median, 5th and 95th percentiles of distribution data, and the associated
outliers. At a particular prediction instant k, the RUL prediction accuracy for �d

is evaluated by relative accuracy (RA) metric as,

RAk D
 

1 �
ˇ̌
RUL�k � Median p .RULk/

ˇ̌

RUL�k

!

(7.53)

RA D Meankp .RAk/ (7.54)

Fig. 7.5 Illustration of box plot representation and ’� 
 accuracy cone
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where RUL*
k denotes the true RUL at time k for �d. The overall accuracy is

determined by RA as shown in (7.53), where RAk is averaged over all the prediction
points.

7.6 Application on Mechatronic System in Real Time

This section describes the application of the method over a mechatronic system [36]
shown in Fig. 7.6. Real time implementation is achieved through 20 SIM 4C 2.1.
The SOH estimation and RUL prediction algorithms are written in Matlab Function
Block in Simulink. The embedded code is generated through Simulink Coder in
Matlab2013a

®
.

7.6.1 Nominal System

The functional schematic model of the mechatronic system [38] is shown in Fig. 7.6.
The designation of system variables and associated values are listed in Table 7.5.
The system consists of the Maxon

®
servo motor that provides the controlled

actuation (rotation) to disks (Fig. 7.7). The high stiffness transmission belt provides
torque the transmission ratio of kbelt to the motor disk. The motor disk is connected
to load disk through a flexible shaft that constitutes the drive train. The shaft is
modelled as spring-damper element. The friction in the bearings of the motor disk
and load disk are modelled as viscous friction. Friction arising due to belt is lumped
with viscous friction coefficient at motor disk bMd. The setup is equipped with motor
encoder and load encoder that measure angular position of motor shaft and load disk
(2000 pulses per revolution), respectively (Fig. 7.8). Angular position motor disk is
obtained by dividing the motor encoder counts by belt ratio. The BG model of the

Fig. 7.6 Mechatronic torsion bar 1.0 system
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Table 7.5 Details of system variables

Parameter � Designation Nominal value �n Multiplicative uncertainty ı�
ks Spring constant of the

shaft
1.786 N m/rad 10 %

bs Damping coefficient of
shaft

5:11� 10�4 N m/rad 10 %

km Torque constant 3:89� 10�4 N m/A –
kbelt Teeth ratio (motor disk

and motor shaft)
3.75 –

La Rotor inductance 1:34� 10�3 H –
Ra Rotor resistance 1.23˝ –
Jm Rotor inertia 6:76� 10�6kg m2=rad 20 %
fm Motor friction

coefficient
2� 10�6 N m s/rad 20 %

JMd Motor disk rotational
inertia

9:07� 10�4kg m2=rad 10 %

bMd Viscous friction in
motor disk

5:025� 10�3 N m s/rad 20 %

JLd Load disk rotational
inertia

1:37� 10�3kg m2=rad 20 %

bLd Viscous friction in load
disk

2:5� 10�5N m s/rad 20 %

SSf1 :!m Motor velocity
measurement

– –

SSf2 :!Ld Load disk velocity
measurement

– –

� Friction coefficient 0.27 10 %

nominal system in integral causality is given in Fig. 7.9. Only the monitorable part
is used for analysis. The system is considered operating in feedback closed loop
with Proportional-Integral (PI) controlled input voltage. The control input from
PI controller (controlled variable: motor speed !m) modulates the input voltage
MSe: UPI.

For experiments, a mechanical lever type arrangement is fabricated as shown in
Fig. 7.7 which introduces frictional torque �Mech over the motor disk by suspension
of load in form of sand. The associated frictional torque is due to Coulomb friction
existing between the surfaces (� being friction coefficient). It is modulated by the
suspended load M as,

�Mech D fmech � rMd

fmech D � Mg .!Md= j!Mdj/ (7.55)

with rMd as the radius of the motor disk. In the BG model, it is incorporated as
non-linear resistance element R: bMd. The corresponding characteristic equation
becomes as,
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Fig. 7.7 Fabricated
mechanical lever type
arrangement for load (mass)
suspension

Fig. 7.8 Schematic model of the mechatronic system

Fig. 7.9 BG model (preferred integral causality) of the nominal system

R D bMd C � � M.t/ � rMdg= j!j (7.56)

e8 D R .f8/ D bMd!Md C � � M.t/ � rMdg � .!Md= j!Mdj/ (7.57)

Involving only non-destructive experiments, � is assumed undergoing no wear.
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Fig. 7.10 BG-LFT model of monitorable part of the system

7.6.2 BG-LFT Model and ARR Generation

The BG-LFT model constructed in preferred derivative causality is shown in
Fig. 7.10. Both the sensors are dualized and impose corresponding flows as Y.t/ D
ŒSSf1 W !m;SSf2 W !Ld�

T . C element remains in integral causality with the initial
condition given by the flow at respective 0-junction, provided by encoder readings
as f10 D f9 � f13 D .!m=kbelt/ � !Ld. Moreover, electrical torque MSe : �PI is the PI
controlled input to the monitorable part of the system and is given as:

MSe W �PI D km � im D km � .UPI � km � !m/

Ra

�
1 � e�.Ra=La/�t

�
(7.58)

where UPI is the PI controlled voltage input and im is the motor stator current.
Following the steps described in Sect. 7.2.3, an ARR can be generated from the

detectable junction 11 of Fig. 7.10 as,

R1 D r1.t/C
X

wi (7.59)

where

r1.t/ D �in � Jm;n
:
!m � fm;n!m

� 1
kbelt

0

@
JMd;n

:
!m
kbelt

C bMd;n
!m
kbelt

C �nMng rMd sgn .!m=kbelt/

C ks;n

Z 	
!m

kbelt
� !Ld



dt C bs;n

	
!m

kbelt
� !Ld



1

A
(7.60)
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X
wi D wJm C wfm C wJMd C wbMd C wks C wbs

wJm D �•Jm Jm;n
:
!mI wfm D �•fm fm;n:!mI

wJMd D � 1
kbelt
•JMd JMd;n

:
!m
kbelt

I
wbMd D � 1

kbelt
•bMd;bMd;n

!m
kbelt

C •��nMngrMdsgn .!m=kbelt/

wks D � 1
kbelt
•ks ks;n

Z 	
!m

kbelt
� !Ld



dtI

wbs D � 1
kbelt
•bs bs;n

�
!m
kbelt

� !Ld

�

(7.61)

Robust thresholds over the residual can be formed as (see Sect. 7.2.3),

�a1 < r1.t/ < a1 (7.62)

where

a1 D
X

jwij (7.63)

Remark Only one I-ARR has been derived in this work. This serves the purpose
of demonstration. Following similar steps, another independent ARR(s) can be
derived.

Figure 7.11 shows the residual profile under nominal conditions, wherein the
residual is well within the envelope formed by thresholds. Figure 7.12 shows
the effect of adding load (or frictional toque) in a discrete way on the system.
!Md is controlled at 30 rad/s. Addition of load leads increase in frictional torque
and degradation in speed. Due to action of PI controller, the motor disk speed is
maintained at set reference value of 30 rad/s. However, the residual r1(t) is sensitive
to the variation in PI enabled input voltage UPI. As such, the residual captures
the variation of disk speed due to load suspension. Saturation limit UPI is reached
around t D 65 s when the total load suspended is 1.6 Kg. Thereafter, controller is
unable to compensate the change in !Md. With addition of more load thereafter
(t > 65 s), motor disk speed decreases rapidly and stops at around t D 70 s. For safety
reasons, the disk is stopped momentarily, after which the suspended load is removed.

7.6.3 Degradation Model: Offline Phase

The experiments performed are non-destructive in nature. Here, load in form of
sand of M Kg is suspended in a uniform manner until a prefixed limit of Mfail is
reached. In this context, M(t) is treated as a system parameter under degradation,
the prognostic candidate.

The experiments were conducted in two distinct phases:
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Fig. 7.11 Residual r1(t)
under nominal conditions

Fig. 7.12 (a) Addition of load (b). Motor disk speed (c) Nominal residual r1(t) (d) Input voltage
(PI controlled)

• Offline Phase: Mass is suspended uniformly. As explained in Sect. 7.3.1,
variations of M(t) are obtained from the evolution of r1(t). Then, statistical
techniques such as (curve fitting) are used to obtain DM of M(t).

• Online health monitoring: In real time, load is added in a similar manner under
similar environmental conditions as offline phase, until the prefixed failure value
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Fig. 7.13 Exponential variation of mass. (a) Experimental data. (b) Exponential fit over experi-
mental data mean

M(t) is reached. In real time, estimation of M(t) and associated DPPs, and
subsequent RUL predictions are obtained.

7.6.3.1 Exponential Variation of Load

Load is varied uniformly in an exponential manner. Eight experiments are carried
out in total. Figure 7.13a shows the experimental data and Fig. 7.13b shows the
exponential fit over the experimental data mean. This way, an exponential DM is
obtained as,

bMd.t/ D g1 .M; �1/C vM1

D Mn e�1.t/ C vM1

(7.64)

where g1(.) is the DM, �d D M.t/, DPP vector ”d D �
�d
� D �1, and normally

distributed process noise vM1.t/ � N �
0; �2M1

�
.

The DM provides an approximate true value of DPP, ��1 D 0:05 Kg=s.
Regression residuals provide standard deviation of the process noise vM1, �M1 D
8 � 10�4 Kg.

7.6.4 Health Monitoring: Online Phase

In the online phase, environmental conditions are kept unaltered. It is recalled that
M(t) is treated as a system parameter under degradation, the prognostic candidate.
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Failure value is prefixed at Mfail D 1:8 Kg. Load is varied in the similar manner
until Mfail is reached.

7.6.5 Fault Model

In discrete time step k, the tuple (g1, M(t), �1) is formulated in state space as,

Mk D Mk�1 � e�1;k�1�t C vM1;k�1
�1;k D �1;k�1 C 
1;k�1

(7.65)

where 
1;k � N
�
0; �2
1

�
is a normally distributed artificial random walk noise added

to the DPP �1,k for a suitable convergence. The magnitude of this noise should be
sufficiently large for a desirable convergence of estimations and small enough for a
good estimation accuracy. Usually, this noise is tuned with the help of simulations
or multiple offline testing. Readers are referred to [36] for a simplified variance
adaption scheme proposed in this context.

Observation equation is constructed from the ARR derived (Sect. 7.6.2) using
the Theorem given in Sect. 7.3.4. The ARR : R1 can be decomposed as,

R1 W r1.t/ D r1;n.t/C .M.t/ � Mn/ � @ .r1;n.t//

@.M/
D 0 (7.66)

Then, observation equation can be constructed as,

y1;k D r1;n;k C w1;k.t/ D .Mk � Mn/

	
�ng rMd sgn .!Md;k/

kbelt



C w1;k (7.67)

so that the nominal part of the ARR r1,n(t) can be used to obtain the measurement
of the state variables. Here, w1;k � N �

0; �2w1
�

models noise manifesting in the
residual measurements. Approximate value of �w1 is determined from r1(t) values
during degradation tests.

7.6.5.1 State of Health Estimation

Figure 7.14 shows the profile of residual under exponential degradation. The
degradation initiation is detected when the residual goes outside the threshold
envelope at around t D 22 s, after which prognostic module is triggered.

Estimation of SOH The estimation of suspended load bM is shown in Fig. 7.15.
The estimation of SOH is performed with number of particles N D 50, sample
time �t D 0:1 s, initial random walk variance noise �2
1;kD0 D 4 � 10–6, and

standard deviation �w1 D 5�10�3 V. For estimation of SOH, particle filter assumes
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Fig. 7.14 Nominal residual
�r2;n.t/ while system is
under degradation
(exponential case)

Fig. 7.15 Estimation of SOH of prognostic candidate

measurement noise variance nine times that of measurement variance �2
w1

. This
is done to counter sample impoverishment problem during the estimation process
[17, 24]. The estimation is achieved with RMSEM D 3:78%. This indicates a high
accuracy in estimation performance.

Figure 7.16 shows the estimation of DPP �1, achieved with RMSE�1 D 7:6 %.
The convergence is achieved very quickly with large initial estimation spread. This
is due to a high artificial noise variance set for the desirable quick convergence. It
should be noted that RMSE� obtained via experiments is higher than those obtained
via simulations, as the true speed of degradation �*

1 does not remain perfectly
constant in reality. Also, lesser number of particles are employed here used so that
RUL predictions may be achieved in real time without significant data loss. With
higher number of particles, greater accuracy may be achieved.



266 M.S. Jha et al.

Fig. 7.16 Estimation of DPP

Fig. 7.17 RUL predictions

Figure 7.17 shows the RUL prediction with ˛ D 0:2.The RUL distributions
obtained until t D 32 s are not good predictions and suffer with large variance spread
due to a large corresponding spread in b�1 (see Fig. 7.16). This makes their utility
virtually null. However, after t D 32 s, with significant improvement in estimation
of DPP, the RUL distributions are well within accuracy cone such that more than
50 % of RUL probability mass lies within accuracy cone. Ignoring the initial period
of convergence, the overall prediction performance is obtained with RA D 97:02%.

7.7 Conclusions

Prognostics is the science of assessing the end of life of a system/component
and prediction of the remaining useful life of the same. Due to various kinds
of uncertainties that manifest in form of parametric uncertainties, environmental
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conditions, sensor noises, uncertain future conditions, etc., RUL prediction becomes
a very challenging issue. In this work, benefits of BG-LFT modelling based
robust fault detection are integrated with the advantages of Bayesian estimation
method for efficient prognostics. In particular, particle filters are exploited for
optimal estimations of actual state of the prognostic candidate and subsequent RUL
predictions. In this chapter, a single system parameter is chosen as the prognostic
candidate and RULs are obtained with respect to that parameter. As such, the
work presented here paves the future path for development of efficient system level
prognostics in BG framework.

The ARR based BG-LFT technique is employed for robust detection of degra-
dation beginning. The same ARR is then exploited for prognostic purposes. Being
sensitive to the control inputs, nominal residual is able to capture the parametric
degradation profile even while the system outputs remain in feedback closed
loop regime. This aspect renders the approach appropriate for system level health
management. Approximation of noise distribution present in residuals can be
difficult or impossible, due to presence of derivative or integral terms in the ARR
function arguments. As such, particle filter algorithms form the best choice in this
regard as they are not restricted by non-Gaussian noises. Moreover, degradation of
non-linear nature can be efficiently estimated using particle filters. Additionally,
this method also demonstrates that fusion of BG-LFT framework and Monte
Carlo framework leads to efficient management of various types of uncertainties.
While parametric uncertainties are modelled and managed by using BG-LFT for
efficient detection of degradation initiation; degradation process noise, measurement
(residual) noise, etc., are efficiently accounted for, by PF for estimation of SOH and
RUL predictions.
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