
Chapter 6
Model-Based Diagnosis and Prognosis of Hybrid
Dynamical Systems with Dynamically Updated
Parameters

Om Prakash and A.K. Samantaray

6.1 Introduction

Fault detection and isolation (FDI) and prognosis for large complex process
engineering systems are important research areas of industrial importance in order
to improve the safety, reliability and availability of critical machineries/processes.
In condition-based maintenance (CBM), FDI is intended for prompt detection,
isolation and classification of any fault in a system and to quantify the severity
of fault; whereas prognosis is intended to predict the remaining useful life (RUL)
of faulty component or subsystem based on the current health status of the system
and its past degradation profile or trend provided by diagnosis. Precise prediction of
RUL assists the plant technicians to plan the future maintenance activities. Since
diagnosis and prognosis both are concerned with the health monitoring of the
industrial system, subsystems or components; it is logical to integrate them in a
common framework for process supervision. There are generally two types of fault
situations, namely anticipated or unanticipated types. An anticipated fault situation
is generally known in advance based upon the history of system behaviour and
past experience; but, the unanticipated or unexpected fault situation is generally not
known in advance and that must be detected during process monitoring to maintain
the safety and reliability of the system. Nowadays, many modern integrated systems
or processes such as chemical plants, automobiles and airplanes use embedded
system architecture where electronics and communication systems play important
roles. These systems contain various dynamical components or subsystems which
exhibit both continuous and discrete dynamics and are hence called hybrid systems.
In a hybrid dynamical system, faulty discrete events may occur in addition to
parametric faults and occurrence of these may be unknown in advance. Most of the
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model-based diagnosis and prognosis methods available in literature are intended
for continuous systems and these approaches cannot be easily applied to hybrid
dynamical systems as the supervision of such systems need tracking of continuous
as well as discrete state variables.

Generally two types of fault sources may occur in a hybrid dynamical system.
The first one is a parametric fault related to some component degradation and the
second one is due to some unexpected transition of nominal mode of the system, i.e.,
discrete fault (e.g., valve stuck on or stuck off fault, controller transition command
failure, etc.). Hybrid dynamics contain two types of discrete transitions: supervisory
controlled discrete transition and autonomous mode discrete transition. Usually, the
supervisory controlled discrete input to the plant is implemented in software and it is
possible to measure the discrete input signals issued by the controller at the interface
between the supervisory controller and the plant. So, we assume that the supervisory
controlled discrete input signals to the plant are directly observed and known to
us. Another way to determine controlled mode transitions is to use the model of
the supervisory controller to predict such transitions. Even when the supervisory
controlled mode change information is known to us; a discrete fault may be possible
like valve stuck on or stuck off fault and pump stuck on or pump stuck off fault,
etc., and such faults should also be detected and isolated. In contrast to supervised
controlled discrete transition, autonomous mode discrete transitions are usually not
known and may not be directly measurable. However, the conditions for autonomous
mode transitions are known either in terms of measured plant output variables or
in terms of state variables. So, the autonomous mode transitions can be known to
diagnosis module based on the measurement of the outputs.

Most of the existing diagnosis and prognosis approaches are based on single fault
hypothesis. These assume that the system or subsystem is immediately repaired
once a fault is detected and isolated. However, a simple fault can lead to a sequence
of other catastrophic faults and it may not be possible to repair each fault within
available time. Moreover, some faults may be tolerated and the process operation
may be continued in the presence of one or more known faults and RUL of
such faults should be known to plant technician so that maintenance activities can
be scheduled accordingly. Detection of mode transition and any subsequent fault
(which may be serious) after a few known minor faults should also be possible. FDI
method based on single fault hypothesis fails to predict the actual fault candidates
when next fault occurs after the first fault because effects of one fault may be
concealed or compensated by the effects of another fault. One solution to this
problem is to use a lot of sensors to decouple fault effects. However, this is a costly
approach and each process variable may not be measurable. Other approaches rely
on building observers or a bank of observers (including unknown input observers) of
the system and tapping measurements/inconsistencies from the observer. However,
observer-based approaches cannot be easily applied to hybrid and often non-linear
dynamical systems.

For better planning and scheduling of maintenance activities, a good supervision
system should detect and isolate small faults and should predict the RUL of
faulty/degraded components. Without isolation of correct faults and their types,
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RUL estimation is not possible. Hence, it is needed to develop a method having
ability to correctly detect and isolate the actual fault of unknown type and unknown
degradation behaviour and at the same time, it should provide some information
about the severity of the fault and predict the RUL of the faulty components keeping
the system level performance constraints in the view.

In a hybrid dynamical system, various components or subsystems operate in
different modes or environmental conditions. This results in varying degradation
rate of the components throughout the system’s life cycle. In fact, the prognosis of
hybrid systems is challenging due to the fact that the same component can exhibit
different degradation behaviours in different operating modes. Traditionally, RUL
estimation is performed by utilizing a single degradation model which assumes that
degradation rate parameters used in the degradation model are constants. Although
a single degradation model may be enough for a particular degradation pattern, it
does not suffice when components or subsystems have different operational profiles.
Utilization of multiple degradation models which include operational modes as
additional control parameter and evolve through degradation model identification
is suggested in this chapter. Note that identifying appropriate multiple degradation
models is a challenging task when components have dynamic degradation patterns.

This chapter precisely deals with the afore-mentioned problem faced in diagnosis
and prognosis of hybrid systems. The premise of the solution proposed in this
chapter is a basic assumption that there is a very rare chance of occurrence of
simultaneous faults. Even apparent simultaneous faults are separated by a small time
interval and we assume that time interval is large enough to carry out the necessary
parametric fault or mode identification, degradation pattern identification and model
updating steps. We assume that infinite mode transitions in a finite time do not occur
and only partial parametric faults occur in a system. For RUL estimation, it is also
assumed that mode of operation of each hybrid component is known in advance.

Different approaches for model-based diagnosis and prognosis have been devel-
oped depending on the kind of knowledge used to describe the process model.
Usually, a specific methodology is applied for a specific process. Diagnosis methods
may be broadly classified into two types: model-based methods and data-driven-
based methods. Likewise, prognosis methods intended for RUL estimation can also
be classified into three types: model-based prognosis, data-driven prognosis and
experience or probability-based prognosis [1]. Every method has its own advantages
and disadvantages. In the present chapter, bond graph model-based diagnosis and
prognosis (MBDP) scheme is proposed.

For model-based process supervision, a precise and reliable mathematical model
of the actual plant behaviour is required. A unified multi-energy domain Bond Graph
(BG) [2, 3] and its extended form Hybrid Bond Graph (HBG) [4–6] are well-suited
for modelling of continuous and hybrid dynamical behaviours, respectively. BG
tool is also useful in the design and development of model-based FDI for both
continuous and hybrid dynamical systems [6, 7]. A considerable amount of literature
can be found related to model-based FDI for hybrid dynamical systems [8–11];
but, very few works are reported on integration of both diagnosis and prognosis of
hybrid dynamical system in a common framework. Also, very few literatures are
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available for prognosis of hybrid dynamical systems. In model-based diagnosis, the
BG model is used to derive a set of consistency rules called analytical redundancy
relations (ARRs). ARRs are constraints expressed in terms of measurable process
variables and nominal parameters of plant [7]. These constraints remain valid until
a system operates according to its normal operation model. A fault is detected
by monitoring the trend of the residuals. For consistency checking, residual must
be tested with predetermined fixed threshold value or an adaptive threshold value
[6–8]. Diagnostic Bond Graph (DBG) method has been introduced in [12], so that
residuals are directly obtained by making use of the current and few past measured
sample data even when ARRs cannot be obtained in explicit symbolic form. DBG
has been extended to Diagnostic Hybrid Bond Graph (DHBG) and adapted for FDI
of hybrid systems [6, 8]. Few works related to the prognosis, which are based on BG
approach, can be found in [13–16]. In [13, 14], it is assumed that degradation models
of the faulty components are known beforehand and RUL estimation is performed
by incorporating the degradation model into constrained ARRs equation. Further,
it is assumed that a single component’s parameter value continuously drifts with
the evolution of time and all other components behave normally. In [15, 16], a
BG framework is utilized for FDI but the RUL estimation is performed by using
the Monte Carlo framework (particle filter technique). The existing model-based
prognosis methods are intended for continuous systems and those cannot be easily
applied to hybrid dynamical systems.

Components may degrade due to both internal stresses (load, torque, speed,
etc.) and external stresses (wind, temperature, humidity, etc.). In order to accu-
rately predict the RUL, it is necessary to take into account how and where the
components will be used and what will be the mode of operation. According to
domain knowledge about the considered system and its components, and known
environmental and operational conditions, degradation model of the deteriorating
components can be identified by understanding the physics of degradation in a
model-based prognosis framework. A degradation model of a component may be
obtained by accelerated life tests method and then that degradation model may be
used to track the degradation of component once an incipient fault is detected by FDI
module; whereupon only the coefficients of model need to be estimated and RUL
can be predicted [14]. Thus, identification of precise dynamic degradation model
and specification of a well-defined failure threshold for RUL estimation are the main
challenges in model-based prognosis of hybrid system. In this regard, this chapter
makes the following contributions:

• A unified sequential multiple fault diagnosis and prognosis method based on
DHBG approach is developed for hybrid dynamical systems by introducing the
concept of model updating after each fault identification. The proposed method
is able to diagnose faults whose effect may be masked due to previously existing
faults and also predicts the RUL of the faulty component if the isolated fault is
of progressive type.

• RUL estimation uses the common framework, i.e., BG modelling approach, that
has been used for system modelling, virtual prototyping, fault diagnosis rule
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development, and parameter and system identification. Utilization of multiple
degradation models for RUL estimation is suggested which include operational
modes as additional control parameter and evolve through degradation model
identification. Same DHBG model of the system as used in FDI module is
used in a modified form to identify the degradation pattern of the components
after detection of parametric fault. Models are continually evolved with time by
adapting to the new information of the state of degradation of the monitored
system to provide accurate RUL with bounded uncertainty value.

• Instantaneous fault sensitivity signature for both parametric and discrete faults
is used for minimizing the set of suspected faults (SSF), which also provides
the expected directions of corresponding parameter deviations. Accordingly,
constrained parameter estimation is proposed for improving the diagnosis and
prognosis tasks of hybrid system.

• The proposed approach can detect and isolate both parametric and discrete faults
and can diagnose different types of fault like abrupt, incipient and progressive
faults. However, the method may also detect and isolate the intermittent faults
if there is a sufficient time window for parameter estimation. The proposed
approach can also track the discrete mode transitions even in presence of one
or more faults in a system.

6.2 Model-Based Diagnosis and Prognosis
for Hybrid Systems

The performance of model-based diagnosis and prognosis (MBDP) approaches
depend on the accuracy or quality of the model of the considered system. Models
serve as knowledge representation of a large amount of structural, functional and
behavioural information and their relationship. This knowledge representation is
capitalized to create complex cause-effect reasoning leading to construction of
powerful and robust automatic process supervision tools. The model development
for a large complex system is a challenging task, especially for a hybrid dynamical
system whose dynamical behaviour changes with the change of operating mode
of the system. Assumptions taken during modelling, exclusion of minor dynamics
and inclusion of major dynamics and the used modelling technique always affect
the accuracy or quality of diagnosis and prognosis outcomes. If an appropriate
model of a system which provides the expected behaviour of the real system in
normal healthy condition is developed, then it can be utilized for the process
supervision of the system. However, there is always some mismatch between the
outputs of the behavioural model with the real system measurements even if there
is no fault present in the real system. This generally happens because of mod-
elling uncertainties, parameter uncertainties, unknown disturbances, measurement
uncertainties, etc. For robust supervision, these factors must be taken into account.
BG modelling is a good approach to deal with a multi-energy domain system
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which may have continuous and discrete dynamical behaviours with different
uncertainties. Also, BG modelling can be used as a common framework for system
modelling, virtual prototyping, fault diagnosis rule development, parameter and
system identification, and RUL estimation.

Generally, BG model-based diagnosis is broadly classified into qualitative and
quantitative approaches [7]. In qualitative model-based method, model considers
the cause and effect relationships, and the functional relationships between the
outputs and inputs of a system are represented in terms of qualitative functions.
In quantitative model-based method, dynamic behaviour of a system is generally
obtained from the first principles and the functional relationships between the
outputs and inputs of a system are represented in terms of mathematical equations.
However, for MBDP, quantitative method is preferred as it provides the common
framework for both diagnosis and prognosis module development. Further, this
quantitative method may be classified as observer-based, parity relation-based,
parameter estimation-based and ARRs-based [8]. These methods can be used to
generate the residuals which are the primary step in the process supervision of
a system. Among these methods, ARR-based methods are more popular for the
development of process supervision. ARRs are constraints expressed in terms of
measurable process variables and nominal parameters of plant [7]. These constraints
remain valid until a system operates according to its normal operation model.
A fault is detected by monitoring the trend of the residuals. Quantitative ARRs-
based methods can be further classified as symbolic and numerical methods. In
symbolic methods, symbolic ARRs are obtained from BG model to evaluate the
residuals; whereas, in numerical methods, residuals can be numerically evaluated
using the DBG/DHBG model approach.

Quantitative BG model-based fault diagnosis method consists of two main steps:
generation of residual or a DBG/DHBG model and evaluation of residual. The
generation of residual is a technique for constructing ARRs using the BG model of
the system. In the residual evaluation step, the trends of the residuals are interpreted
to check any inconsistency. The inconsistency which indicates presence of one or
more faults is detected by testing whether each residual is enveloped by a prescribed
adaptive threshold, which in turn is defined based on the known uncertainties
in parameter estimation, operating mode information and statistical parameters
of measurement noise and unknown disturbances. Once any inconsistency in the
residuals is found, the fault identification module is triggered to determine the
severity of the fault and its nature/type. After information of severity of fault is
obtained, the system may be reconfigured or fault may be accommodated. In case of
incipient fault, RUL must be estimated to assists the plant technicians for planning
the future maintenance activities. In the following sections, basic concepts in model-
based diagnosis and prognosis are introduced.
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6.2.1 Basic Framework of Fault Diagnosis

The global ARR, GARR(MD,� , U, Y), of an uncertain hybrid system may be
written as

GARRn ˙ � D 0 (6.1)

where MD represents the controlled junction mode vector, � represents a known
parameter vector, U represents known control or input vector and Y represents
sensor output vector. Online evaluation of each nominal part, GARRn, and uncertain
part, �, using MD, � , U and Y provides residual r and adaptive threshold " D j�j,
respectively. The usual approach to detect fault induced inconsistencies is to test
whether the numerical value of GARRn at corresponding mode remains bounded
between ˙". Residual (r) and adaptive threshold (") may be evaluated directly
from DBG [12] or DHBG model in linear fractional transformation (LFT) form
[6–8]. A binary coherence vector (C) is used to represent the signature for a
fault; whose standard form is C D Œc1; c2; : : : ; cn� where ci (i D 1; 2; : : : ; n)
are obtained from a decision procedure, ‚, which is used to generate the alarms,
i.e., C D Œ‚.r1/; ‚.r2/; : : : ; ‚.rn/�. For robust FDI, each residual ri(t) is checked
against the time varying adaptive threshold "i(t) as follows:

ci D � .ri/ D
�

0; if � "i.t/ � ri.t/ � "i.t/
1; otherwise

(6.2)

During online monitoring, the coherence vector (C) is obtained at each and every
sampled time for consistency checking. An alarm is raised if one or more than one
elements of the coherence vector show nonzero value, i.e., C ¤ Œ0; 0 : : : 0�. After
detection of fault, the coherence vector is matched with the fault signature matrix
(FSM) at corresponding mode for isolation of actual fault candidate [7]. A fault in a
component is detectable/monitorable, if at least one of the residual is sensitive to this
fault, i.e., its monitorability index represented by Mb D 1. A fault in a component
can be isolated only when it is monitorable and its fault signature (a corresponding
row in FSM) is unique; which is represented by isolability index Ib D 1.

6.2.1.1 FSM, GFSM, GFSSM and MCSM, MCSSM

An FSM, S, represents the relation between a set of parametric faults and their
assumed signatures. It is used to detect and isolate the actual faults. The elements of
FSM are either 1 or 0 as determined from

Sji D
�

1; if ri is a function of Pj

0; otherwise
(6.3)
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where ri is the residual of the ith column, Pj is the parameter of the jth row in FSM,
and i D .1; 2 : : : n/, j D .1; 2 : : : p/, n is number of residuals and p is number of
parameters.

Hybrid system dynamics contains both continuous and discrete modes. So, FSMs
for such system are mode dependent and need to be separately derived for each
mode. Global fault signature matrix (GFSM), GS, is derived in a global form [6, 8],
whose elements are obtained from

GSji D
8<
:

f .a1; : : : ; am/; if ri is a function of Pj depending on the values a1; : : : ; am;

1; if ri is a function of Pj at all modes;
0; otherwise

(6.4)

where f represents a logical function of controlled junction in a bond graph model
and a1; : : : ; am; represent the controlled junction state variables, and m is the number
of controlled junctions.

Global fault sensitivity signature matrix (GFSSM) is an extension of GFSM,
which has capability to differentiate between increasing .Pj "/ and decreasing
.Pj #/ parametric fault. Its elements are updated at each and every instant by using
the instantaneous sign of each residual sensitivity with respect to the component
parameters [9]. The elements of the GFSSM, GSS, are determined from

GSSji D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

�sign.@ri=@Pj/; if ri is a function of Pj and Pj is expected to
increase due to fault;

Csign.@ri=@Pj/; if ri is a function of Pj and Pj is expected to
decrease due to fault;

0; otherwise

(6.5)

This new kind of signature is termed here sensitivity signature as it can be anal-
ysed by sensitivity theory and this residual sensitivity can be derived numerically
by using Sensitivity Bond Graph (SBG) approach as in [17–19], where GARRs in
closed symbolic form may or may not be derivable.

Residuals are also sensitive to discrete mode fault in a hybrid system and any
inconsistency in actual mode may be identified by using mode change signature
matrix (MCSM). The elements of the MCSM are determined from

MCSMki D
�

1; if ri is a function of ak

0; otherwise
(6.6)

Mode change sensitivity signature matrix (MCSSM) is an extension of MCSM
with capability to differentiate between of an increasing .ak "/ and decreasing
.ak #/ mode fault. Its elements are updated at each and every instant by using the
instantaneous sign of each residual sensitivity with respect to the mode [9]. The
elements of the MCSSM are determined from
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MCSSMki D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

�sign.@ri=@ak/; if ri is a function of ak and ak is expected
to change from 0 to 1;

Csign.@ri=@ak/; if ri is a function of ak and ak is expected
to change from 1 to 0;

0; otherwise

(6.7)

where ak represents the controlled junction state variables of the kth row of MCSM
or MCSSM, and ak 2 .0; 1/, k 2 .1; 2; : : : m/.

6.2.1.2 Adaptive Thresholds for Robust FDI

Adaptive thresholds are used to achieve robustness in FDI by accounting for
the process and measurement uncertainties and also the mode transitions so that
supervision system can minimize false alarms and misdetections. An uncertainty on
a particular parameter value �j can be introduced as

�j D �jn.1 C ı�j/ (6.8)

or �j D �jn C ��j (6.9)

where �j 2 .I; C; R; TF; GY/ corresponds to parameters associated with the model,
and ı�j D .��j=�jn/ and ��j are the relative and the absolute deviations of nominal
parameter value �jn.

Adaptive thresholds using BG-LFT method [7, 8] can be used, in which system
uncertainties in parameters are detached from their nominal parameters model
and modelled as feedback loops of internal variables. For instance, when the real
parameter value of a capacitance C is not accurately identified, it can be expressed
as Cn ˙ �C D Cn.1 ˙ ıC/, where Cn is represented as nominal parameter value
and ˙�C D ˙ıCCn is the uncertainty part of the parameter. If the C element is
modelled in derivative causality, then its constitutive relation is given as

f D 1

Cn ˙ �C
Pe D 1

Cn

�
1 � ı1=C

� Pe D Pe
Cn

� w1=C (6.10)

where .�ı1=C=Cn/Pe D � w1=C is the extra contribution of flow because of uncertain
part of parameter and may be treated as a disturbance. Note that ı1=C is the
uncertainty in estimating the value of 1=C. The C element in derivative causality
and parameter uncertainty can be modelled in BG-LFT form as given in Fig. 6.1.

Similarly, for the non-linear resistive R element modelled in conductive causality
for representing the flow through a non-linear valve, the constitutive relation
including uncertainty is written as

f D 1

Rn ˙ �R

p
e D 1

Rn

�
1 � ı1=R

� p
e

D .Cd � �Cd/
p

e D Cd.1 � ı1=R/
p

e D Cd
p

e � w1=R (6.11)
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Fig. 6.1 Capacitance (C)
element in derivative
causality modeled in LFT
form 1/CMsf:

+−

w
0

1/Cδ 1

nC : C C± Δ

nC : C

≅e
f

e
f

Fig. 6.2 Resistive (R)
element in conductive
causality modeled in LFT
form

0

1/Rδ 1

nR : R R± Δ

VR : R

≅ 1/RMsf:w
e
f

e
f

+−

where ı1=R D �Cd=Cd, e is the difference of pressure across the non-linear valve,
Cd is the nominal value of discharge coefficient of valve, �Cd is the uncertainty
part of the parameter Cd and �w1=R D �ı1=R Cd

p
e is the extra contribution of

flow because of uncertain part of parameter and may be treated as a disturbance.
The R element in conductive causality and parameter uncertainty can be modelled
in BG-LFT form as shown in Fig. 6.2. Likewise, other parameters (I-element, and
TF and GY two-ports) with uncertainties can be modelled [20].

6.2.2 Basic Framework of Prognosis

The term prognosis is often used in medical domain to describe the prediction
of poor health of a patient by considering the actual diagnosis of one or more
symptoms and their evolution compared with other similar observed cases. In
industrial domain, the same reasoning of prognosis can be transposed to machines
and components to answer the question about the RUL of a machine or a component
once an impending failure condition is detected, isolated and identified by diagnosis
module.

RUL, also called time to failure (TTF), is the time left before observing a failure
of a component or subsystem given the current health status of system and its
past degradation profile. Once the degradation trend of component’s parameter is
obtained, then that can be extrapolated with some set value of failure threshold to
predict the RUL of faulty component [6].

RUL.t; z/ D tfl � t0j tfl > t0; D.t/ (6.12)

where tfl indicates the random variable of TTF, t0 represents the current age of the
component or system, D.t/ represents the past degradation profile up to the current
time and z is the operating mode of the system.

Component’s degradation may be captured by a continuous drift of its parameter
value in its life cycle as reported in most of the existing literature on prognosis.
However, in a hybrid dynamical system, various components or subsystems operate
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at different modes or environmental conditions which result in varying degradation
rate of the components throughout the system’s life cycle. Utilization of multiple
degradation models which include operational modes as additional control parame-
ter and evolve through degradation model identification is suggested in this chapter.
Models are continually evolved with time by adapting to the new information of the
state of degradation of the monitored system to provide accurate RUL with bounded
uncertainty value. This overcomes the drawback of other similar models, where the
parameters of the model are estimated only once and then the estimated degradation
pattern is kept fixed irrespective of subsequent new available observations. RUL
estimation and scheduling maintenance activities of component/subsystem based
on single pre-identified degraded state are not an optimal solution, especially for
hybrid systems that operate under variable modes. Intelligent prognosis must adapt
according to change of the state of degradation of the constantly monitored system.

The proposed approach for RUL prediction requires simultaneous monitoring
of both degradation and operating modes of the system. Let �j.t; z/ 2 � be
the parameter associated with jth component of a system which has started to
degrade detectably at time t0, as determined (detected and isolated) by FDI module.
Figure 6.3 shows the different known operating modes (z) of the system and the
jth component’s (�j) degradation behaviour evolution in response to the operating
mode changes. It is shown that the change points, denoted by t.i/, (i = 1, 2,. . . )

z
a

b

(t)

Time (t)t(1) t(2)

z(1)

z(2)

….t0

….

θj(k+Δ)

Time (t)t(1) t(2)

M(1)

M(2) M(3)

t0 t1 tk tk+Δ

Δ
θj

fl

Degradation measurement

Time to change operating mode

θj(t, z)

θj(k)

tfl

z(3)

….

….

z(i)

M(i)

t(i)

…. t(i)

Fig. 6.3 (a) Different operating mode (b) degradation behaviour evolution at various operating
mode of the component (�j)
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of the operating mode are known and the operating mode is shifted to new mode
z.i/ 2 z after t.i/. After the shift, the state of degradation of the component changes at
new mode (z.i/) and degradation model is identified as M.i/. Finally, the degradation
curve of the component (�j) crosses a predefined failure threshold �fl

j at time tfl. Thus
the mode dependent RUL of the component (�j) as per defined performance (�fl

j ) is
estimated as

RUL.t; z/ D tfl � t0 (6.13)

Such a case of transition of operating condition from one mode to another is
very common in hybrid dynamical systems. For instance, performance of an on–off
valve which is generally used in processing plants may degrade because of fouling,
which decreases the coefficient of discharge .Cd/ of water flow. But the coefficient
of discharge .Cd/ does not continuously decrease at all times because of discrete
operating nature of valve. When the valve is in open condition, fluid flow through
the unit results in increased fouling such as due to sediment/lime scale deposition;
but when the valve is in closed condition there is no such fouling. So, this operating
condition pattern should be considered for RUL prediction.

6.2.2.1 An Integrated Framework of Diagnosis and Prognosis
for Multiple Faults in Hybrid Dynamical System

Since diagnosis and prognosis both are concerned with the health monitoring of the
industrial system, subsystems or components; it is reasonable to integrate them in a
common framework for process supervision. Moreover, hybrid system contains both
discrete and continuous dynamics; thus, discrete mode faults may occur in addition
to parametric fault (abrupt or progressive type) and the occurrence of these faults
are generally unknown in advance. In case of abrupt parametric fault or discrete
fault, there is a step-like deviation in the corresponding component’s parameter
and it generally persists with the evolution of time. However in case of incipient
or progressive fault, there is a slow change in the component’s parameter with
some dynamic degradation pattern which may be unknown beforehand. In abrupt
or discrete fault, it is essential that the diagnosis scheme detects the faults quickly
to avoid catastrophic consequences. In such cases, prompt fault detection and fault
accommodation are the main aim of fault diagnosis. On the other hand, incipient
faults are more significant in maintenance activities where it is necessary that
slowly evolving faults are detected early enough to avoid more severe consequences.
Once the nature of degradation pattern of incipient fault is obtained, RUL can be
predicted by using the degradation model. In a large complex hybrid system, the
occurrence of sequential multiple faults are much more likely, while the occurrence
of simultaneous faults may be very rare and this is taken as a key assumption in the
developments presented in this chapter. In this section, an integrated approach to
BG-MBDP in a hybrid dynamical system for sequential multiple fault of unknown
nature or type is proposed. The main goal of this section is to show how the same
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DHBG model that is used for FDI of hybrid system can be further used to identify
the degradation pattern of the faulty components and to estimate their RUL.

For estimation of component’s degradation pattern in hybrid dynamical system,
the fault magnitude of degrading parameter �j.t; z/ is estimated with a fixed window
of sample data collected at different time instants at various operating modes (z).
As a result, a set of estimates of parameter values of degrading component is
obtained at different time instances at various operating modes. Then degradation
model, M.i/

�j
(z), which is best fit equation of parameter value evolution at any

operating mode, is identified through curve fitting tool. Consequently, the obtained
degradation models corresponding to various operating modes can be used for RUL
estimation based on well-defined failure thresholds and known future operating
modes of the component.

A complete flow chart of the proposed integrated MBDP for hybrid dynamical
system is represented in Fig. 6.4. In a hybrid dynamical system, GARRs are used
to detect any inconsistency in the nominal behaviour of the monitoring system at
any mode. The general form of GARR which is obtained from DHBG model can be
written as

GARRi D GARRi.MD;�; U; Y/ (6.14)
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where MD D Œa1; a2; : : : ; ak; : : : ; am�T represents the controlled junction mode
vector, � D Œ�1; �2; : : : ; �j; : : : ; �p�T represents a known parameter vector which
includes p number of component’s nominal parameters, U represents known input
vector and is formed by U 2 .Sf ; Msf ; Se; Mse/ where Sf or Msf represents
flow or modulated flow input vector and Se or Mse represents effort or modulated
effort input vector, Y denotes sensor output vector and is formed by Y 2 .Df ; De/

where Df and De represent flow and effort sensor output vector, respectively, and
i 2 .1; 2; : : : n/ is the number of residuals of the system.

Online evaluation of GARRi D GARRi.MD; �; U; Y/ using MD, � , U and Y in
normal operation may be written as

GARRni ˙ �i D 0 (6.15)

where GARRni is nominal part and �i is the uncertain part of GARRi, respectively,
whose evaluations provide nominal residual rni and adaptive threshold "i D j�ij,
respectively:

rni.t/ D Eval fGARRni.MD;�; U; Y/g and "i.t/ D ˙Eval f�i g (6.16)

During normal operation of the system, "i.t/ � ri.t/ � �"i.t/ is satisfied. The
residuals .rni/ are sensitive to both parametric and discrete faults. Some of the
residuals which are sensitive to a particular discrete or parametric fault in a system
cross either upper or lower threshold when any type of the fault occurs. If any one
of the nominal parameter (say �j) of � changes (more than uncertainty value) or any
one of the nominal mode of MD (say ak) is inconsistent, then only a set of particular
residuals which are sensitive to the change of this parameter �j or ak cross the
threshold in due time. When any threshold violation occurs, we initially hypothesize
that this inconsistency is due to a discrete fault. If the sensitivity signature obtained
corresponding to threshold violations (C1 for crossing upper threshold, �1 for
crossing lower threshold and 0 for lying within thresholds) has unique match in
MCSSM, then the component related to ak is declared as a faulty one. If this discrete
fault (ak) cannot be isolated because more than one components share the same
signature in MCSSM, then the ARR-based mode tracking [6] is followed in which
all inconsistent ARRs are evaluated with each hypothesized mode fault and the
actual faulty mode, if any, is identified as the one that gives consistent residuals.
Then, the current discrete fault information of ak is fed into the DHBG model to
update the GARRs and adaptive thresholds for the isolation of subsequent faults.
Once discrete fault is identified, we assume that it persists indefinitely thereafter if
the plant is not allowed to shut down. The ARR-based mode tracking can also be
used to track the initial mode of the system if it is unknown [6].

If the inconsistency in the residuals is not due to a particular discrete fault,
i.e., the initial hypothesis could not be validated, then it is hypothesized that the
inconsistency is due to a parametric fault only. If the sensitivity signature obtained
corresponding to threshold violations has unique match in GFSSM corresponding
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to component (�j), then the FDI module detects the degradation of component (�j)
(say at time t0) and component (�j) is isolated as degrading component at mode
z D z.i/ (say). On the other hand, if the degrading component (�j) cannot be isolated
because of more than one components share the same signature in GFSSM, then a
set of suspected fault (SSF) is hypothesized for further course of action.

After postulation of faults candidates in SSF, a targeted parameter estimation
technique is triggered for identification of true fault and its degradation pattern. This
module tries to quickly estimate only a few possible parameters from which the true
fault candidate (�j) can be isolated [7, 8, 17, 18, 21]. Now the parameter �j is finally
declared as a degrading faulty parameter and is represented by �j.t; z.i// at mode z.i/.
The estimated fault magnitude of degrading parameter �j.t; z.i// at kth instant of time
is represented by �

f
j .k; z.i//. If the nominal part of each GARRni is evaluated again

with the estimated fault magnitude �
f
j .k; z.i// (real value of degrading parameter

of plant/system at that instance), and adaptive thresholds are also updated, then
the corresponding evaluated residuals do not cross the corresponding residual
thresholds [8]. So, the original vector � is updated by replacing the nominal �j

by the estimated fault magnitude, �
f
j .k; z.i// of the real plant. Now updated � at

kth instant is assumed to be the new nominal parameter vector that is used to
update DHBG model in LFT form to predict further degradation pattern of faulty
component �j.t; z.i//. Note that a large deviation in a parameter value is considered
as an abrupt fault. Likewise, any discrete (mode) fault is also treated as abrupt fault.

If the detected parametric fault (�j) is of progressive type, then the component’s
parameter �j.t; z.i// is degrading slowly according to operating mode z.i/. Thus, the
same set of residuals which are sensitive to the change of this parameter �j.t; z.i//

would cross the adaptive threshold again after some more time. Again, parameter
(�j) is estimated and its estimated value at .kC�/th instant of time is represented by
�

f
j .k C �; z.i//. Since up to the current time only two data points of fault magnitude

of degrading parameter are known, a linear degradation model may be assumed for
the initial estimation of RUL which alerts the maintenance engineer for scheduling
the maintenance activities or other tasks. This initial linear degradation model is
further adapted with modified model when more parameter estimates are obtained
during monitoring. For accurate estimation of degradation pattern, sufficient number
of data points should be obtained at particular mode z.i/ and then the degradation
model is identified by using the curve fitting tools at corresponding mode z.i/. If
the jth operating change point occurs at time instant t.j/ corresponding to new mode
z.j/ during data collection for estimating the parameter value in previous operating
mode z.i/, then the fresh data of a fixed window size corresponding to new mode z.j/

are collected and fault magnitude is estimated in this new mode z.j/. This process is
repeated until the true degradation model, M.i/

�j
(z), is obtained for parameter �j.t; z/

at different operating modes. Then the obtained true model M.i/
�j

(z) is further used
in prognosis module to predict RUL of faulty component (�j) with the future known

operating mode by extrapolating the model M.i/
�j

(z). Also, the finally obtained true
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degradation model M.i/
�j

(z) of the component (�j) is fed into the DHBG model, so that
the subsequent faults can be detected and isolated. In the case of sequential multiple
progressive faults, RUL is estimated for each progressive fault component and the
RUL of the component which has least value is the significant for the maintenance
engineer.

6.3 Application to a Two-Tank Benchmark System

6.3.1 Description of a Two-Tank Hybrid System

The benchmark hybrid two-tank system is adapted from [11]. Its process and
instrumentation diagram and hybrid bond graph (HBG) model are shown in Figs. 6.5
and 6.6, respectively. This system consists of two tanks (T1 and T2) that are
connected with pipes and valves (V1 and V2). Cdvi is the coefficient of discharge
of non-linear valve Vi, i D 1; 2. The liquid level in tank T1 is regulated by a
hydraulic pump which is controlled by a PI-controller installed in this system and
tries to maintain water level of 0.5 m. The flow of pump (QP) is proportional to the
output of the PI-controller (UPI). Two drainage pipes (L1 and L2) with coefficients of
discharge CdL1 and CdL2, respectively, showing linear behaviour are also used. This
system shows the hybrid dynamics and includes both autonomous and supervisory
controller transition modes. Valve V1 is switched to on and then off state according
to command input given by the supervisory controller. When water level in tank
T1 exceeds level HL1 then the water starts flowing from tank T1 to tank T2 through
drainage pipe L1 (autonomous mode, a1). Similarly, when water level in tank T2

exceeds level HL2 then the water starts flowing from tank T2 to atmosphere through

HL1 HL2

T1 T2

H1 H2

PI

Qp V1

VLeak1 VLeak2

L1

γ

V2
Qo

L2

Supervisory Controller

ON-OFF

Fig. 6.5 Schematic diagram of a two-tank hybrid system
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Fig. 6.6 HBG model of a two-tank hybrid system

drainage pipe L2 (autonomous mode, a2). Leakage fault can be introduced in tank
Ti using imaginary valve VLeaki having coefficient of discharge CdLeaki, i D 1; 2.

Two level sensors H1 and H2 and one flow sensor QP are installed in the system
for measuring the water levels in tanks T1 and T2 and water input flow by pump,
respectively. The atmospheric pressure is assumed to be the reference pressure. The
small angle � , volume of water in the drainage pipe and inertia effect of water flow
are neglected in this system; with the former two being considered as part of the
uncertainties in tank capacities. This way of simplified model building by neglecting
minor dynamics improves the speed of diagnosis without unduly complicating the
process of development of the supervision system.

Pump saturation characteristic (QP) and PI-controller output law (ˆPI) are,
respectively, given as

QP D
8<
:

UPI; 0 � UPI � fmax

0; UPI � 0

fmax; UPI � fmax

D ˆP .UPI/ (6.17)

UPI D KP.Spt � � � g � H1.t// C KI

Z
.Spt � � � g � H1.t//dt

D ˆPI .H1.t// (6.18)

where fmax is the maximum flow from the pump, Spt is a pressure (or level) set point
and KP and KI are the proportional and integral gains, respectively. In this work, we
do not consider the actuator, controller and sensor faults; they may be diagnosed
with additional hardware/sensor redundancies and hence are not relevant for this
study.
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6.3.2 DHBG Model and GARRs Generation

Diagnostic hybrid bond graph (DHBG) model is obtained from HBG model of a
system, in which all controlled junctions and storage elements are assigned with
appropriate causalities so that all active BG elements remain active at all operating
modes. This permits consistent causal description and generation of GARRs for a
hybrid dynamical system from its DHBG model. The DHBG of the considered two-
tank hybrid system in LFT form is shown in Fig. 6.7. Two virtual flow sensors .Df �/

are used to derive two constraints GARR3 and GARR4.
The ARRs for the actuators and the controllers (which will not be used in this

study) are simply obtained from comparisons of input and output relationships as

ARR1 W QP � ˆP .UPI/ D 0 (6.19)

ARR2 W UPI � ˆPI .H1.t// D 0 (6.20)

GARR3 W QP � CT1 � d

dt
.� � g � H1.t// � av1 � Cdv1 �

p
j� � g � .H1.t/ � H2.t//j

�sign.� � g � .H1.t/ � H2.t/// � a1 � CdL1 � � � g � .H1.t/ � HL1/

�CdLeak1 �
p

j� � g � H1.t/j ˙ �3 D 0 (6.21)

GARR4 W av1 � Cdv1 �
p

j� � g � .H1.t/ � H2.t//j � sign.� � g � .H1.t/ � H2.t//

Ca1 � CdL1 � � � g � .H1.t/ � HL1/ � a2 � CdL2 � � � g � .H2.t/ � HL2/

�CT2 � d

dt
.� � g � H2.t// � Cdv2 �

p
j� � g � H2.t/j � CdLeak2:

p
j� � g � H2.t/j ˙ �4 D 0 (6.22)
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where CT1 D A1=g, CT2 D A2=g, a1 D
�

0; H1.t/ � HL1

1; H1.t/ > HL1
and a2 D

�
0; H2.t/ � HL2

1; H2.t/ > HL2

GARR3 and GARR4, as presented in (6.21) and (6.22), respectively, contain the
uncertain parts �3 and �4. The effects of uncertainties in various parameters on
a GARR are un-correlated with possibility of cancelling out each other. Hence,
absolute values of the individual effects are considered for adaptive threshold
evaluation as follows:

�3 D jıC1 � CT1 � d

dt
.� � g � H1.t//j C jav1 � ıCdv1 � Cdv1 �

p
j� � g � .H1.t/ � H2.t//jj

Cja1 � ıCdL1 � CdL1 � � � g � .H1.t/ � HL1/j C jıCdLeak1 � CdLeak1 �
p

� � g � H1.t/j
(6.23)

�4 D jıC2 � CT2 � d

dt
.� � g � H2.t//j C jav1 � ıCdv1 � Cdv1 �

p
j� � g � .H1.t/ � H2.t//jj

Cja1 � ıCdL1 � CdL1 � � � g � .H1.t/ � HL1/j C ja2 � ıCdL2 � CdL2 � � � g � .H2.t/ � HL2/j
CjıCdv2 � Cdv2 �

p
� � g � H2.t/j C jıCdLeak2 � CdLeak2 �

p
� � g � H2.t/j (6.24)

Using (6.4) and (6.6) on (6.21) and (6.22), the GFSM and MCSM for two-tank
hybrid system are obtained as shown in Tables 6.1 and 6.2, respectively; whereas
using (6.5) and (6.7) on (6.21) and (6.22), the GFSSM and MCSSM are found
as shown in Tables 6.3 and 6.4, respectively. The parameters related to leakage
fault in tank T1 and T2, i.e., CdLeak1 and CdLeak2, respectively, have only increasing
possibility (i.e., leakage), while for other parameters (i.e., Cdv1, Cdv2, CdL1, CdL2),
both increasing (i.e., leakage) and decreasing faults (i.e., blockage) are possible.
Likewise, discrete stuck on and off faults for av1 of valve V1 are also possible.

Table 6.1 GFSM (GS) for the two-tank hybrid system

Parameter GARR3 .r3/ GARR4 .r4/ Mb Ib Single fault

Cdv1 av1 av1 1 Nav1 D .1 � a1/av1

Cdv2 0 1 1 0

CdL1 a1 a1 a1 Na1 D .1 � av1/a1

CdL2 0 a2 a2 0

CdLeak1 1 0 1 1

CdLeak2 0 1 1 0

Table 6.2 MCSM for the two-tank hybrid system

Parameter GARR3 .r3/ GARR4 .r4/ Mb Ib Single fault

av1 1 1 1 1
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Table 6.3 GFSSM (GSS) for the two-tank hybrid system

Parameter GARR3 .r3/ GARR4 .r4/

Cdv1 " av1sign.H1.t/ � H2.t// �av1sign.H1.t/ � H2.t//

Cdv1 # �av1sign.H1.t/ � H2.t// av1sign.H1.t/ � H2.t//

Cdv2 " 0 C1

Cdv2 # 0 �1

CdL1 " a1 �a1

CdL1 # �a1 a1

CdL2 " 0 a2

CdL2 # 0 �a2

CdLeak1 " C1 0

CdLeak2 # 0 C1

Table 6.4 MCSSM for the two-tank hybrid system

Parameter GARR3 .r3/ GARR4 .r4/

av1 " sign.H1.t/ � H2.t// �sign.H1.t/ � H2.t//

av1 # �sign.H1.t/ � H2.t// sign.H1.t/ � H2.t//

These possibilities, called technological specifications which are derived from deep
knowledge of the system, are considered in Tables 6.3 and 6.4, respectively.

Note that the sensitivity signatures presented in GFSSM and MCSSM [9] are
simplified expressions derived from GARRs. These can be numerically obtained
from SBG model if GARRs cannot be symbolically derived. For example, if we
consider the sensitivity signature element GSS Cdv1"

1;1 due to the fault Cdv1 ", then the
corresponding element in the GFSSM is calculated as

GSS Cdv1"
1;1 D �sign.@GARR3=@Cdv1/

D �sign
� � av1Cdv1

p
j�g.H1.t/ � H2.t//j �

D av1sign.H1.t/ � H2.t// (6.25)

6.3.3 Simulation Study and Results

In this section, an integrated MBDP method for sequential multiple faults of
unknown nature/type in a hybrid dynamical system is tested through simulation.
Also, model-based process supervision scheme using the most recent existing
approach [9] which considers single fault hypothesis and the newly proposed
approach which considers sequential multiple faults hypotheses, along with com-
parison between these two approaches are presented. This section also shows that
the methods which are based on single fault hypothesis fail to predict the actual fault
candidates in case of sequential multiple faults and without correct isolation of fault
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Fig. 6.8 Simulink model of two-tank system with provisions to introduce faults

candidates, prognosis is irrelevant. It is also shown that the newly proposed method
gives improved fault isolation capabilities in both single and multiple fault scenarios
and also improves the RUL estimation if the identified fault is of progressive type.

The HBG model of the two-tank hybrid system (shown in Fig. 6.6) is converted
into MATLAB-SIMULINK model (with provisions of faults introduction in model
as shown in Fig. 6.8) to generate the process data through simulation for the
validation of the proposed method. In Fig. 6.8, Cdv1.t; z/ block represents the
progressive fault function block for valve V1 and K2 D Cdv2, K3 D CdL1, K4 D CdL2,
K5 D CdLeak1, K6 D CdLeak2, K7 D 1=�g, K8 D g=A1, K9 D g=A2 are the
corresponding gains blocks. Similarly, the DHBG-LFT model (shown in Fig. 6.7)
can be converted into MATLAB-SIMULINK model for residuals and adaptive
thresholds evaluation [11]. Here, the residuals and thresholds evaluation are done in
a simple MATLAB program that evaluates, respectively, the nominal GARR3 and
GARR4 in (6.21) and (6.22), and the uncertain parts �3 and �4 in (6.23) and (6.23).
These, correspondingly, provide the residuals r3 and r4, and adaptive thresholds
"3 D ˙�3 and "4 D ˙�4. Sensor’s measurements data, parameter’s nominal values
and parameter’s uncertainty values are the inputs to the program [7, 11]. The overall
threshold may be evaluated to account for the sensor’s noise as, "i D ˙.�i C ki/,
i D 3; 4, where ki is the static threshold which is chosen based on the sensor
characteristics or with the model of additive sensor biases presented in [8]. In the
simulations, we have assumed ki D 0.

The two-tank hybrid system is simulated for duration of 1800 s using a fixed
step size of 0.02 s by initializing all state variables to zero. The nominal value of
system’s parameters used in the model are given in Table 6.5. Two types of faults
are introduced in the simulation. The first one is a progressive fault in valve V1

(see Table 6.6). The parameter Cdv1 of on–off valve V1 (nominal value = 1:593 �
10�2 kg1=2 m1=2 in on state) is considered to drift slowly with time according to
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Table 6.5 Nominal parameters of the hybrid two-tank

Symbol Description Nominal value

KP Proportional gain of controller 1 ms

KI Integral gain of controller 5 � 10�2 m

Spt Set point of the PI-controller 0.5 m

fmax Maximum outflow from pump 1 kg/s

Ai Cross-sectional area of tank Ti.i D
1; 2/

1:472 � 10�2 m2

Cdvi Discharge coefficient of valve Vi

including connected pipe (i D 1; 2)
1:593 � 10�2 kg1=2 m1=2

CdLi Discharge coefficient of drainage
pipe Li (i D 1; 2)

1 � 10�3 ms

CdLeaki Discharge coefficient of VLeaki.i D
1; 2/

0 kg1=2 m1=2

HL1 Height of the drainage pipe L1 of
tank T1 from datum

0.58 m

HL2 Height of the drainage pipe L2 of
tank T2 from datum

0.40 m

P0 Atmospheric pressure 0 N=m2

� Density of water 1000 kg=m3

g Acceleration due to gravity 9:81 m=s2

Table 6.6 Simulated faults in the model

Parameter Description Degradation nature Start time, tfi (s) End time

Cdv1 Valve blockage Progressive type as per (6.26) 225 1800

Cdv2 Valve blockage Abrupt type as per (6.27) 1475 1800

operating mode (z D z.i/ D av1) as shown in Fig. 6.9b. Second one is an abrupt fault
in valve V2. In the simulation, we have introduced the fault in parameters Cdv1 and
Cdv2 at a time instants tf1 D 225 s and tf2 D 1475 s, respectively, as defined through
the functions given in (6.26) and (6.27), respectively.

Cdv1.t; z/ D
�

Cdv1n.z/ � av1; t < tf1
Cdv1n.z/

�
e�r.z/�ton

� � av1; t � tf1
(6.26)

Cdv2.t; z/ D
�

Cdv2n.z/; t < tf2
0:9Cdv2n.z/; t � tf2

(6.27)

where Cdvin.z/ is the nominal parameter value of valve Vi.i D 1; 2/ at corresponding
operating mode .z/; r.z/ D 1:0 � 10�4 s�1 at z D z.1/ D av1 D 1, with each
z.1/ for 80 s and r.z/ D 0 s�1 at z D z.2/ D av1 D 0, with each z.2/ for 30 s,

ton D
tR

tf1

av1 � dt, and tf1 and tf2 are the time instances when the first and second

faults start, respectively.
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Fig. 6.10 Time responses of measurements (a) Pump flow (b) Water level in tank T1 (c) Water
level in tank T2 and (d) Autonomous mode of drainage pipe L1

Note that parameter Cdv1 is considered to drift slowly only in on state of the
valve, while there is no drift of parameter Cdv1 during off state as the flow is zero in
that state. The drifting of parameter Cdv1 just after tf1 D 225 s is clearly shown in
enlarged view of a portion of Fig. 6.9b. The failure threshold (Cfl

dv1) is considered as
half of the nominal value in on state.

The measurements (i.e., QP, H1 and H2) from the simulated model at a sampling
rate of 0.02 s are fed to the residuals and thresholds evaluation program. The time
responses of measured input (QP), outputs (H1, H2) and obtained autonomous mode
(a1) are shown in Fig. 6.10. The transition of mode a1 from 0 to 1 subjected to given
conditions (when H1.t/ exceeds HL1 D 0:58 m) corresponding to drainage pipe L1

is clearly noticeable. However, no autonomous mode change is found for drainage
pipe L2; hence a2 D 0 throughout the simulation period.
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Table 6.7 GFSSM (GSS) for the two-tank hybrid system

Parameter GARR3 .r3/ GARR4 .r4/ Mb Ib Single fault

Cdv1 " av1 �av1 av1 Nav1 D .1 � a1/av1

Cdv1 # �av1 av1 av1 Nav1 D .1 � a1/av1

Cdv2 " 0 C1 1 0

Cdv2 # 0 �1 1 Na2 D .1 � a2/

CdL1 " a1 �a1 a1 Na1 D .1 � av1/a1

CdL1 # �a1 a1 a1 Na1 D .1 � av1/a1

CdL2 " 0 a2 a2 0

CdL2 # 0 �a2 a2 0

CdLeak1 " C1 0 1 1

CdLeak2 " 0 C1 1 0

Table 6.8 MCSSM for the two-tank hybrid system

Parameter GARR3 .r3/ GARR4 .r4/ Mb Ib Single fault

av1 " C1 �1 1 1

av1 # �1 C1 1 1

6.3.3.1 Implementation of Integrated Diagnosis and Prognosis Approach

In practice, the elements of GFSSM and MCSSM have to be updated at each and
every instant by using the instantaneous measurement data. It is observed from
Fig. 6.10 that the measurement H1 is always greater than H2, so the obtained GFSSM
and MCSSM during the duration of observation (0–1800 s) for the considered two-
tank hybrid system can be simplified to the forms given in Tables 6.7 and 6.8,
respectively. The response of residuals (r3 and r4) and adaptive thresholds obtained
from DHBG-LFT model using previously existing method [9] and the newly pro-
posed method with dynamically updated parameter and updated adaptive thresholds
are shown in Figs. 6.11 and 6.12, respectively (solid lines indicate residuals and
dashed/dotted lines indicate adaptive thresholds). The response of residuals (r3 and
r4) and adaptive thresholds during normal operation (up to t D 225 s) and during
identification of degradation behaviour of valves V1 and V2 using proposed method
(after t D 225 s) is clearly shown in Fig. 6.12. Note that the first two columns of
the coherence vector related to actuator and controller faults, which are irrelevant in
this study, have been dropped from the analysis.

A discussion on fault isolation capabilities using existing FDI methods consid-
ering single fault hypothesis is presented here. From the simulated faults listed in
Table 6.6, both valves V1 and V2 are faulty between 1475 and 1800 s as the fault in
valve V1 is not repaired. The observed coherence vector (C) just after 225 s (after
initiation of blockage fault in V1) is obtained from Fig. 6.11a, b as C D Œ1 1� (if
not considering residual sensitivity signature) or C D Œ�1 C 1� (if considering
the residual sensitivity signature). According to coherence vector C D Œ1 1� or
C D Œ�1C1�, the set of suspected faults (SSF) is Cdv1 and av1 using GFSM/GFSSM
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Fig. 6.12 Response of residuals (a) r3 and (b) r4 using proposed method with dynamically updated
parameter and adaptive threshold

and MCSM/MCSSM at mode a1 D 0; and if mode a1 D 1, SSF is Cdv1, CdL1 and
av1 (see Tables 6.1, 6.2 and Tables 6.7, 6.8). In both modes, i.e., at mode a1 D 1

and a1 D 0, fault is non-isolatable as signature of Cdv1, CdL1 and av1 are same. As
the dynamics of valve V1 is mode dependent, the residuals lie within the thresholds
even after fault for av0 D 0 (See Fig. 6.11) and under such situation, fault cannot be
detected and isolated until the system moves into a different mode (av1 D 1).

When the next fault in valve V2 is introduced at 1475 s, the coherence vector is
observed as C D Œ1 0� (if not considering residual sensitivity signature) and C D
Œ�1 0� (if considering the residual sensitivity signature) Fig. 6.11a, b. According
to coherence vector C D Œ1 0�, possible SSF may be CdLeak1 at mode av1 D 1

and this lead to a wrong fault isolation. On the other hand, C D Œ�1 0� does not
have any match in GFSSM and MCSSM and the fault is not isolated. While the
fault is detected through both approaches (GFSM/MCSM and GFSSM/MCSSM)
in this case of sequential multiple faults, the misdiagnosis is natural because the
residuals are not diagonal or structured and thus, not suitable for multiple fault
diagnosis [7]. Here, one fault effect hides the other fault effect that results in wrong
fault signatures.
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To identify the actual fault candidates in such cases, it is needed to estimate all the
parameters simultaneously by using the non-linear parameter estimation techniques
[7, 8, 17, 18, 21] and tracking the real mode using ARR-based mode identification
technique [6]. However, this is a very tough and computationally complex task for
a large complex system; especially considering the fact that prompt detection and
true faults isolation are the main objectives in diagnosis task. Under the assumptions
stated beforehand for sequential multiple faults, we need to estimate only a few
postulated fault candidates or possible conflicts [17]. The parameter estimation can
be done with least squares response matching or minimization of residuals (see
[7, 8, 17, 18, 21] for details). Here, we will use least squares response matching
approach for parameter estimation. This approach gives best performance when
there are few parameters to estimate (as detected from GFSSM) and there are
constraints on parameter values (expressed in terms of penalty functions added to
the objective function to be minimized). For example, to estimate value of Cdv1,
the parameter value is constrained between specified minimum (in this case 0) and
maximum values. For the considered fault scenario (Table 6.6), GFSSM indicates a
possible decrease in value of Cdv1 and thus its value may be constrained between 0
and the earlier known value (nominal value). This way, the search zone is reduced.
In addition, parameter estimation requires initial guess values of parameters. For
discharge coefficient of valve V1, it may be assigned as ˛Cdv1, where 0 < ˛ < 1. In
fact, value of ˛ can be approximately obtained from the rate of change of residuals.
The reduced search zone and closer guess values improve the convergence of the
optimization process. The estimation procedure requires transient data after the
fault. Therefore, a small delay amounting to a chosen window length is present
between fault detection and its isolation. We assume that no more faults occur within
this chosen window length after detection of a fault event.

A discussion on fault isolation capabilities using the new proposed integrated
MBDP method, considering sequential multiple faults hypotheses using GFSSM
and MCSSM, is presented here. When the simulated fault (progressive type) for
valve V1 is introduced at 225 s as shown in Fig. 6.9b, the coherence vector (for a
short time just after 225 s) is obtained from Fig. 6.12a, b as C D Œ�1C1�. According
to coherence vector C D Œ�1 C 1�, the possible SSF can be Cdv1 # and av1 # using
GFSSM and MCSSM at mode a1 D 0; otherwise, the possible SSF can be Cdv1 #,
CdL1 # and av1 # if mode a1 D 1 (see Tables 6.7 and 6.8). In both cases, i.e., at
mode a1 D 0 and a1 D 1, fault is non-isolatable as signature of Cdv1 #, CdL1 #
and av1 # are same. Since we assume the discrete mode fault occurs first, the ARR-
based mode identification algorithm [6] is triggered. Whether the discrete mode
fault av1 # (valve V1 stuck off) occurs or not is checked by evaluating all sensitive
ARRs at current mode information and it is found that mode av1 D 1 is consistent.
This indicates that the inconsistency is due to parametric faults and elements of SSF
are refined as Cdv1 # only at a1 D 0, otherwise elements of SSF are Cdv1 # and
CdL1 # at a1 D 1. Then the parameter estimation technique is triggered and Cdv1 #
is isolated as a true fault in both modes, i.e., a1 D 0 and a1 D 1. This blockage
fault in valve V1.Cdv1 #/ is detected at time instant t Cdv1

d1 D 277:68 s at its on state
(z D z.1/ D av1 D 1 and a1 D 0). There is some time delay between fault detection
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and its occurrence because of slow evolution of fault and the uncertainties included
in residual threshold evaluation.

Since the direction of parameter variation of Cdv1 is known by GFSSM (decrease
in value of Cdv1), this information is used in constrained parameter estimation
technique for degradation model identification. This makes degradation model
identification fast, which is one of the main requirements in CBM. For the
estimation of fault magnitude of Cdv1, a small time window of 7 s transient data
after the fault has been selected. Now the fault magnitude of degrading parameter
Cdv1 is estimated after detecting the fault at time instant t Cdv1

d1 D 277:68 s. The
estimated parameter value is known at time instant t Cdv1

u1 D 277:68 s C 7 s D
284:68 s and is represented by Cf

dv1.t Cdv1
u1 ; z.1//, whose value is Cf

dv1.t Cdv1
u1 ; z.1// D

1:584 � 10�2 kg1=2 m1=2. Now, the DHBG model is updated by replacing the
nominal value Cdv1 D 1:593 � 10�2 kg1=2 m1=2 by the estimated fault magnitude
Cf

dv1.t Cdv1
u1 ; z.1// D 1:584 � 10�2 kg1=2 m1=2 of the real plant. Now the residuals and

adaptive thresholds evaluation obtained through updated nominal part of GARRs
and updated uncertainties parts obtained from the updated DHBG model in LFT
form force the residuals to lie within the updated adaptive thresholds (see Fig. 6.12
where this updated time instant is denoted as t Cdv1

u1 ). Since, the parameter Cdv1 is
degrading progressively at mode z D z.1/ D av1 D 1, again a set of residuals (r3 and
r4) which are sensitive to the change of this parameter, Cdv1, cross the adaptive
threshold with the evolution of time (marked as t Cdv1

d2 D 364:02 s in Fig. 6.12)
and again the new fault magnitude of degrading parameter Cdv1 is estimated and
known at new time instant t Cdv1

u2 D 364:02 s C 7 s D 371:02 s and represented by
Cf

dv1.t Cdv1
u2 ; z.1//, whose value is Cf

dv1.t Cdv1
u2 ; z.1// D 1:575 � 10�2 kg1=2 m1=2. Since

only two data points are known up to the current time a linear degradation model
is assumed for the initial estimation of RUL to alert the maintenance engineer. The
obtained data points at different time instances .t Cdv1

u1 and t Cdv1
u2 / corresponding to

mode z D z.1/ D av1 D 1 are used to find the linear degradation mathematical model
for the parameter Cdv1 using the curve fitting tool in Matlab-Simulink and is shown
in Fig. 6.13a. For curve fitting, ton is used as a time reference in abscissa. Initial
estimated value of RUL using the linear degradation model at on state of valve V1

and no degradation at off state based on defined failure threshold .Cfl
dv1 D 0:5Cdv1/

and known future operating modes of valve V1 is found as 6822.19 s (see Fig. 6.14a).
This initial degradation model is further adapted with modified model when more
new information of data points are obtained during monitoring. In Fig. 6.14, t Cdv1

u1 is
considered as a zero time reference for RUL estimation.

Note that at different time instances, the valve V1 is switched to off state as per
the command input given by the controller. In this duration, there is no flow through
the valve V1. Although valve V1 is isolated as a faulty element, residuals r3 and r4

become zero (see Fig. 6.12) at the corresponding off state (z D z.2/ D av1 D 0)
which provides Cdv1.t; z.2// D 0 kg1=2 m1=2.

For accurate estimation of degradation pattern, sufficient data points should
be used. As the monitoring is continued, newer information of degradation data
is obtained. Estimated magnitude of degrading parameter Cdv1 at the same mode
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Fig. 6.13 (a) Linear degradation model at mode av1 D 1 as two data points are known (b)–(d)
Identification of degradation model at mode av1 D 1 with new information of data points
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Fig. 6.14 Estimated RUL of parameter Cdv1 (a) Initially assumed linear degradation model when
only two data points are known (b) Finally confirmed exponential degradation model with the new
information of degradation state at on state of the valve V1 and no degradation at off state

z D z.1/ D av1 D 1 at different time instances t Cdv1
ui .i D 3; 4; : : : ; 7/ are shown in

Table 6.9. The new obtained data points at different time instances with previous
known data points are used to refine the degradation behaviour of parameter
Cdv1. Various degradation models of second order, third order polynomial fit and
exponential fit, etc., are tried and shown in Fig. 6.13b–d along with root mean square
error (RMSE) values. Exponential fit model is found as a best degradation model
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Table 6.9 Estimated data points at different time instances

Detected time (s) Updated time (s) Estimated magnitude

Parameter .t
Cdvj

di / .t
Cdvj

ui / ton (s) Cf
dvj.t

Cdvj

ui ; z/ .kg1=2 m1=2 )

Cdv1 # 277:68 284:68 284:68 1:584 � 10�2

364:02 371:02 341:02 1:575 � 10�2

453:56 460:56 400:56 1:566 � 10�2

509:50 516:50 456:50 1:557 � 10�2

595:78 602:78 512:78 1:548 � 10�2

679:76 686:76 566:76 1:539 � 10�2

780:04 787:04 637:04 1:529 � 10�2

Cdv2 # 1475:02 1482:02 – 1:434 � 10�2

at on state of the valve V1.av1 D 1/ according to its goodness of fit (RMSE D
6:03 � 10�7) which is the actual degradation pattern as per simulated fault. The
obtained exponential model having coefficient a and b with 95 % confidence bound
is represented as

Mz.1/

Cdv1
D a � exp.b.ton � t Cdv1

u1 // (6.28)

where; a D 1:583 � 10�2 and b D �1:001 � 10�4

Using the above degradation model RUL is estimated as 9397.4 s (see Fig. 6.14b)
according to set failure threshold .Cfl

dv1 D 0:5Cdv1/. Note that in the simulation,
we have inserted a fast rate of progressive degradation, but in real situation the
degradation rate may be very slow.

When the abrupt fault in valve V2 (blockage) at 1475 s is inserted, the coherence
vector (C) just after 1475 s, i.e., after blockage fault initiation in V2, is obtained from
Fig. 6.12a, b as C D Œ0 � 1�. This gives the possible SSF as Cdv2 # (i.e., blockage
fault in V2) using GFSSM since a2 D 0 at all times for the considered system. If the
mode a2 D 1 for some other system configuration, then the SSF would be obtained
from GFSSM as Cdv2 # and CdL2 #; and parameter estimation technique can be used
for the suspected parameters Cdv2 and CdL2 to isolate the actual fault (Cdv2 #) and its
magnitude. In the current configuration, the fault Cdv2 # is directly isolatable at a2 D
0. Still we need to estimate the fault magnitude for updating the DHBG model for
diagnosis of subsequent faults. In this case, Cdv2 # is found as actual fault parameter
with estimated fault magnitude of Cf

dv2 � 0:9Cdv2 and this estimated parameter
value is then onwards considered as the new nominal parameter value. Now the
residuals and adaptive thresholds evaluation obtained through updated nominal part
of GARRs and updated uncertainties parts obtained from the updated DHBG model
in LFT form (i.e., Cdv2 is replaced by Cf

dv2) force the residuals to lie within the
updated adaptive thresholds (see Fig. 6.12b after time tCdv2

u1 D 1482:02 s). Now the
residuals (r3 and r4) remain inside the adaptive threshold until the next fault occurs.
This way, subsequent parametric faults and their degradation pattern can be isolated
and RUL can be estimated for progressive faults.
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6.4 Equivalent Hybrid Electrical System

A great range of equivalent systems can be derived from a given system by using
the equivalences of various BG elements and also transformer .TF/ and gyrator
.GY/ equivalences of BG theory. A linear hydraulic system can be modeled by its
analogous linear electrical system because of the similarities in their dynamics or
governing differential equations. In the present work, an equivalent electrical system
is modelled for the considered two-tank system and is further scaled down for easy
and low cost experimental implementation. Note that while the equivalent electrical
model is linear, the hybrid nature (mode dependent changes) are retained in it.

6.4.1 Circuit Layout

An equivalent electrical circuit of the two-tank hybrid system is shown in Fig. 6.15,
whose HBG and DHBG models are similar to the two-tank hybrid system as shown
in Figs. 6.6 and 6.7, respectively. In the electrical domain, power variables current
and voltage, respectively, are equivalent to the flow rate and pressure in hydraulic
domain. In the circuit, two electrical capacitors C1 and C2 are considered instead of
two tanks T1 and T2, respectively. Resistors R1, R2 corresponding to valves V1, V2,
and Rd1, Rd2 corresponding to drainage pipes L1, L2 are considered, respectively.
Diodes D1 and D2 are considered as switches to permit the current in equivalent
drainage pipe resistors Rd1 and Rd2 corresponding to set threshold voltages Vset1 and
Vset2, respectively. Id1 is considered as a drainage current source flowing through
resistor Rd1 and it charges the capacitor C2 only if the corresponding set condition
is reached. A modulated current source Iin is used in place of modulated pump

Vset1

C2C1

+ -

+ -

Vs2Vs1

Iin

Vin

Controlled 
Voltage

+
-

R R1

Rd1

Rd2

Iin
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Sw2

R2

D2

D1

Sw1

Controlled 
switch

Fig. 6.15 Schematic diagram of equivalent electrical circuit of two-tank
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flow QP. The modulated current source Iin is achieved by controlling the input
voltage Vin which is the PI-controller’s output and by using a known resistor R. The
PI-controller, whose output is the modulated voltage Vin, is constructed by using
various operational amplifiers (op-amps), resistors and capacitor combinations. The
objective of PI-controller is to maintain a constant set voltage (Vset D 5 V) across
the capacitor C1 which is equivalent to level or pressure set point in tank T1. A
microcontroller (Arduino Uno) is used to open and close the relay switch Sw1, which
sets resistor R1 at on and off state as per the command given by the controller.
Switch Sw2 is used to introduce the abrupt fault in resistors R2 by using parallel
connection of resistors where due to parallel connection, the resistance is low when
the switch is on (nominal state) and high when it is off (simulated faulty state). Also,
a series connection of a fixed resistor and a variable resistor is used to introduce the
progressive fault in equivalent resistor R1 at a particular instance according to its
operating mode (see Table 6.13 for different time instances of introduced faults and
their nature). A controlled servomotor is used to vary the resistance value of resistor
R1 at a particular rate at on state of resistor R1. For controlling the servomotor,
another microcontroller board (Arduino Uno) is used. The flow sensor (QP) and
level sensors .H1, H2/ in the hydraulic system are replaced by current sensor (Iin)
and voltage sensors .Vs1, Vs2/, respectively, in the electrical domain.

The PI-controller law as used for the modulated voltage source, Vin, and the
modulated current source Iin are given as

Vin.t/ D KP.Vset � Vs1.t// C KI

Z
.Vset � Vs1.t//dt (6.29)

Iin.t/ D Vin.t/ � Vs1.t/

R
(6.30)

The values of pump input flow QP and the pressures P1, P2 of linear hydraulic
two-tank system at steady state were measured by doing a simulation in Matlab-
Simulink and obtained as follow:

QP D 0:8 kg=s (6.31)

P1 D � � g � H1 D 1000 � 9:81 � 0:5 D 4905 N=m2

P2 D � � g � H2 D 1000 � 9:81 � 0:25 D 2452:5 N=m2

A hydraulic-electrical analogy technique is used to determine the nominal
parameters of the equivalent electrical circuit. For example, linear resistances R1

and R2 corresponding to the two valves V1 and V2 are obtained as

R1 D P1�P2

QP
D 4905�2452:5

0:8
D 3065:625 	

R2 D P2

QP
D 2452:5

0:8
D 3065:625 	

(6.32)
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In the similar manner, the rounded off values of all parameters of the equivalent
electrical system are obtained as follows: R D R1 D R2 D 3066 	, Rd1 D Rd2 D
1000 	, C1 D C2 D 1500 
F.

The op-amps, capacitances, resistances and other electronic/electrical compo-
nents purchased from the market come with uncertainties. Thus, the rounding-off
errors may be considered as uncertainties in corresponding parameters.

6.4.2 Model Scaling

For conducting the experiment, the voltage and capacitance values were found to be
out of range. For instance, as per (6.31), we need to operate the circuit around 5 kV
electrical voltage range. Thus, a dual time and amplitude scaling was performed.
For linear systems, the response x.t/ of the original system may be scaled as

xs.ts/ D ˛x.ˇt/ (6.33)

where ˛ and ˇ are the constants for amplitude and time scaling, respectively.
We have considered ˛ D 1=981 which means the input current is reduced or
equivalently, the voltage set point for PI-controller is set at 4905=981 D 5 V. The
hydraulic system has a slow response. We reduced the response time by ˇ D 10

times. For that, the time constant (� D RC) was adjusted by retaining the value of R
and reducing the value of C by ten times. The PI-controller’s gains are adjusted to
match with time constant of the modified system. The final scaled parameter values
given in Table 6.10 are considered for developing an experimental setup.

Table 6.10 Nominal parameters of the scaled equivalent electrical circuit

Symbol Description Nominal value

KP Proportional gain of controller 0.3066

KI Integral gain of controller 1

Vset Set point of the PI-controller 5 V

Iin.max/ Maximum input electrical current 5 mA

Ci Electrical capacitance value of ith capacitor (i D 1; 2) 150 
F

Ri Electrical resistance corresponding to valve Ri.i D 1; 2/ 3066 	

Rdi Electrical resistance corresponding to drainage pipe Rdi.i D 1; 2/ 1000 	

Vset1 Switch threshold voltage for Rd1 5.1 V

Vset2 Switch threshold voltage for Rd2 2.8 V
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6.5 Experimental Study

An experimental setup of equivalent electrical hybrid system is shown in Fig. 6.16a.
The circuit in the breadboard is the equivalent electrical hybrid system of the
simulated two-tank hybrid system in reduced scale whose dynamics is nearly similar
to the two-tank hybrid system dynamics. The schematic diagram of equivalent
electrical circuit of two-tank hybrid system is already shown in Fig. 6.15. The
various components of the circuit including PI-controller and the microcontroller
are marked in Fig. 6.16b.

The experimental data were collected at a fixed sampling rate of 0.002 s from
the current sensor Iin and voltage sensors Vs1 and Vs2 using a data-acquisition card
(NI-USB6211). For computation of residuals, thresholds, mode identification and
parameter estimation, LabVIEW-Matlab interface was used. The experimentally
collected data were fed into the DHBG-LFT model of the electrical hybrid system
for evaluation of residuals and adaptive thresholds. The GFSSM and MCSSM of
the equivalent electrical system presented in Tables 6.11 and 6.12, respectively,
are nearly same as that of the hydraulic two-tank system; only the corresponding
parameter’s nomenclature is changed. The coefficient of discharge parameter Cdi #
is considered equivalent to 1/Ri #, where Ri is the linear resistance in electrical
domain, i.e., the signature of Cdi # is replaced by Ri ". Similarly, the signature of
Cdi " is replaced by Ri #.

As in the simulation, two types of faults were introduced in the experimental
model. First one is a progressive fault in resistor R1 as per Eq. (6.34) in its on state.
The second one is an abrupt fault in resistor R1 as per Eq. (6.35) (see Table 6.13).
The failure threshold (Rfl

1) of resistor R1 is considered as twice of its nominal value
at on state for RUL estimation.

Fig. 6.16 (a) An experimental setup of electrical hybrid system (b) Enlarge view of breadboard
showing different components within dotted boxes: (1) PI-controller, (2) R, (3) C1, (4) C2, (5)
Variable resistor (R1) with microcontroller, (6) R2, (7) Relay switch (Sw1) with microcontroller,
(8) Sw2, (9) Id1, (10) D1, Rd1 and Vset1, (11) D2, Rd2 and Vset2, (12) Buffers



228 O. Prakash and A.K. Samantaray

Table 6.11 GFSSM (GSS) for the electrical hybrid system

Parameter GARR3 .r3/ GARR4 .r4/ Mb Ib Single fault

R1 # aR1 �aR1 aR1 NaR1 D .1 � a1/aR1

R1 " �aR1 aR1 aR1 NaR1 D .1 � a1/aR1

R2 # 0 C1 1 0

R2 " 0 �1 1 Na2 D .1 � a2/

Rd1 # a1 �a1 a1 Na1 D .1 � aR1/a1

Rd1 " �a1 a1 a1 Na1 D .1 � aR1/a1

Rd2 # 0 a2 a2 0

Rd2 " 0 �a2 a2 0

RLeak1 # C1 0 1 1

RLeak2 # 0 C1 1 0

Table 6.12 MCSSM for the electrical hybrid system

Parameter GARR3 .r3/ GARR4 .r4/ Mb Ib Single fault

aR1 " +1 -1 1 1

aR1 # -1 +1 1 1

Table 6.13 Introduced faults in the experimental model

Parameter Description Degradation nature Start time, tfi, (s)

R1 Resistance increase Progressive type as per (6.34) 323.5

R2 Resistance increase Abrupt type as per (6.35) 1249.7

R1.t; z/ D
�

R1n.z/ � .1=aR1/; t < tf1
.R1n.z/ C k.z/ton/ � .1=aR1/; t � tf1

(6.34)

R2.t; z/ D
�

R2n.z/; t < tf2
1:2R2n.z/; t � tf2

(6.35)

where Rin.z/ is the nominal parameter value of resistor Ri.i D 1; 2/ at corresponding
operating mode (z/; k.z/ D 2:35 	=s if z D z.1/ D aR1 D 1, each z.1/ is for 8 s and

k.z/ D 0 	=s if z D z.2/ D aR1 D 0, each z.2/ is for 3 s, ton D
tR

tf1

aR1 � dt, and tf1 and

tf2 are the time instances when the first and second faults start, respectively.
In a similar way as done in simulation (Sect. 6.3.3.1), sequential multiple faults

are detected and isolated by the new proposed method using the experimental
data of the electrical hybrid system and RUL is predicted for progressive faults.
The evaluated residuals and adaptive thresholds with the real measurement data
collected from the experimental setup are shown in Fig. 6.17. Note that due to
discrete derivatives, residuals show spikes that appear during mode transitions. The
observed coherence vector just after 323.5 s is C D Œ�1 C 1� which gives R1 "
and aR1 # as SSF elements at a1 D 0; otherwise R1 ", Rd1 " and aR1 # are
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Fig. 6.17 Response of residuals (a) r3 and (b) r4 using proposed method with dynamically updated
parameter and adaptive threshold

Table 6.14 Estimated data points at different time instances

Estimated magnitude

Parameter Detected time (s) .t
Rj

ui / Updated time (s) .t
Rj

ui / ton (s) Rf
j .t

Rj

ui ; z/ .	/

R1 " 399.768 402.768 402.768 3326.53

565.572 568.572 523.572 3605.01

749.380 752.380 656.380 3917.57

938.692 941.692 794.692 4250.02

R2 " 1249.702 1252.702 – 3740.5

SSF elements at a1 D 1. Consistency in mode aR1 D 1 is found by evaluating
the all sensitive ARRs at current mode information which indicates the observed
inconsistency is due to parametric fault. Upon parameter estimation and successive
updation of DHBG model at various time instances, it is confirmed that the fault
R1 " is of progressive nature (see Fig. 6.17 where residuals r3 and r4 are updated
at various time instances during degradation pattern identification of R1). The
estimated magnitude of degrading resistance R1 at the mode z D z.1/ D aR1 D 1 at
different time instances tR1

ui .i D 1; 2; 3; 4/ is shown in Table 6.14.
Initially, the obtained data points at time instances .tR1

u1 / and .tR1

u2 / corresponding
to mode z D z.1/ D aR1 D 1 are used to find the linear degradation model for
the resistor R1 as presented in Fig. 6.18a. Initial estimated value of RUL using the
linear degradation model at on state of resistor R1 and infinite resistance value at off
state is found as 1672.92 s (see Fig. 6.19a). This initial degradation model is further
updated with modified model when newer information of parameter estimates are
obtained during monitoring.

As the monitoring is continued, the new information of degradation data of
resistor R1.t; z/ is obtained via parameter estimation at time instances tR1

ui , (i D 3; 4)
at the same mode z D z.1/ D aR1 D 1, which are presented in Table 6.14. Various
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Fig. 6.18 (a) Linear degradation model at mode aR1 D 1 as two data points are known, (b) finally
identified degradation model at mode aR1 D 1 with new information of data points

0 400 800 1200 1600 2000
3000
3500
4000
4500
5000
5500

6132

a b

Time (s)

R 1
(t,

 z)
 (Ω

)

RUL = 1672.92s
Linear degradation model at on state

1630 1672.92
6075

6132
1
flR

1
flR

0 400 800 1200 1600 20003000
3500
4000
4500
5000
5500

6132

Time (s)

RUL = 1635.77s
Linear degradation model at on state

1
flR

1595 1635.77

6132
1
flR

Fig. 6.19 Estimated RUL of parameter R1 (a) With initially assumed linear degradation model
when only two data points are known (b) with finally confirmed linear degradation model with the
new information of degradation state at on state of resistor R1, and considering infinite resistance
in off state

degradation models are tried and linear degradation model was found as a best fit
model for on state of the resistor R1.aR1 D 1) according to goodness of fit (RMSE =
4.49). Indeed, this is the actual degradation introduced in the experiment. The final
linear degradation model having coefficient P1 and P2 with 95 % confidence bound
is given as

Mz.1/

R1
D P1.ton � t R1

u1 / C P2 (6.36)

where P1 D 2:357 and P2 D 3323.
Using the degradation model (6.36), the RUL is estimated as 1635.77 s (see

Fig. 6.19b) according to set failure threshold (Rfl
1 D 2R1).

When the abrupt fault in resistor R2 at 1249.7 s is inserted, the coherence vector
(C) just after 1249.7 s, i.e., after fault initiation in resistor R2, is obtained from
Fig. 6.17a, b as C D Œ0�1�. This gives the possible SSF as R2 " (i.e., increasing fault
in resistor R2) using GFSSM since a2 D 0. Even though the fault R2 " is directly
isolable at a2 D 0, we still need to estimate the fault magnitude for updating the
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DHBG model for diagnosis of subsequent faults. In this case, R2 " is found as actual
fault parameter with estimated fault magnitude of Rf

2 � 1:2R2 at .tR2

u1 / D 1252:702 s
and this estimated parameter value is then onwards considered as the new nominal
parameter value.

6.6 Conclusions

This chapter proposes a strategy for fault diagnosis and prognosis of hybrid
dynamical system by using bond graph modelling as a common framework for
system modelling, virtual prototyping, fault diagnosis rule development, parameter
and system identification, and RUL estimation. The proposed approach detects and
isolates sequential multiple faults of different types, i.e., discrete mode faults, abrupt
and progressive parametric faults; and also predicts the RUL if the detected fault
is due to progressive parameter drift. The developed method is first applied to a
simulated benchmark problem and then it is experimentally validated on a scaled
equivalent electrical circuit model.

The response time (time constant) of the system and the time taken for
degradation model are the two critical parameters that govern the applicability of
this diagnosis and prognosis scheme. For processes or systems with slow response
time, the time spent for parameter estimation is not significant. However, for fast
systems like the equivalent electrical system considered in this study, the parameter
estimation needs to be faster. This is achieved by narrowing down the number
of suspected faults and using sensitivity signature for information regarding fault
direction. Global fault sensitivity signatures of the hybrid dynamical system are used
to identify the possible fault directions from the residual responses. The information
of operating mode, possible fault candidates and directions of corresponding
parameter deviations are used in a constrained least square error minimization-
based estimation of fault parameters. It was found that richer information gleaned
from sensitivity signatures allows quicker and reliable identification of faults and
degradation model for RUL estimation.

For RUL estimation, use of multiple degradation models which include opera-
tional modes as additional control parameter and evolve through degradation model
identification is considered in this study for hybrid dynamical system. Models are
continually evolved with time by adapting to the new information of the state
of degradation of the monitored system to provide accurate RUL with bounded
uncertainty value. This overcomes the drawbacks of various existing methods.
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