
Chapter 16
Bond-Graph Modelling and Causal Analysis
of Biomolecular Systems

Peter J. Gawthrop

16.1 Introduction

Bond graphs were introduced by Paynter [32] and their engineering application is
described in number of textbooks [15, 21, 25, 44] and a tutorial for control engineers
[10]. Bond graphs were first used to model chemical reaction networks by Oster
et al. [28] and a detailed account is given by Oster et al. [29]. Subsequent to this, the
bond graph approach to chemical reactions has been extended by Cellier [7], Thoma
and Mocellin [42] and Greifeneder and Cellier [16]. In 1993, the inventor of bond
graphs, Henry Paynter, said [33]1:

Katchalsky’s breakthroughs in extending bond graphs to biochemistry are very much on
my own mind. I remain convinced that BG models will play an increasingly important role
in the upcoming century, applied to chemistry, electrochemistry and biochemistry, fields
whose practical consequences will have a significance comparable to that of electronics in
this century. This will occur both in device form, say as chemfets, biochips, etc., as well as
in the basic sciences of biology, genetics, etc.

Based on the work of Katchalsky and coworkers [28, 29], and the more recent
work of Gawthrop and Crampin [11, 12] and Gawthrop et al. [13], this chapter
presents an introduction to the bond graph modelling of the biomolecular systems
of living organisms. In particular, the approach is based on the transduction of Gibbs
energy and the corresponding chemical potential/molar flow covariables appropriate
to isothermal and isobaric thermodynamic systems [3, 5]. Molecular species are
represented by non-linear C components and reactions by non-linear two-port

1This was pointed out to me by the Editor of this volume, Wolfgang Borutzky.
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R components. As living systems are neither at thermodynamic equilibrium nor
closed, open and non-equilibrium systems are considered and illustrated using
examples of biomolecular systems. The bond graph representation of biomolecular
systems is complicated by the fact that the R and C components are fundamentally
nonlinear; however the bond graph representation of biomolecular systems is
simplified by the fact that there are no I or GY components.

In addition to their role in ensuring that models are energetically correct, bond
graphs provide a powerful and natural way of representing and analysing causality.
Causality is used in this chapter to examine the properties of the junction structures
of biomolecular systems. Junction structures define the behaviour of the systems
and thus the analysis of junction structures can reveal hidden information about a
biomolecular system. Ort and Martens [26] and Perelson [34] give a basic analysis
of junction structures and Sueur and Dauphin-Tanguy [38, 39, 40] show how basic
system properties such as structural controllability can be derived from the bond
graph junction structure by applying both integral and derivative causality.

For the purposes of simulating a biomolecular system, the C components are all
in integral causality. As will be seen in this chapter, different causal patterns can be
used to probe the fundamental properties of the junction structure. Stoichiometric
analysis of biomolecular systems [18, 22, 30, 31] looks at the null spaces of the
stoichiometric matrix to derive fundamental properties of the systems expressed
as conserved moieties2 and flux paths. This chapter shows how these results are
related to the causal properties of the bond graph junction structure and provides
new insights into the dynamics of biomolecular systems.

Section 16.2 introduces bond graph modelling of biomolecular systems and
Sect. 16.3 describes structural analysis of biomolecular systems using the junction
structure concept. Section 16.4 gives a bond graph model of a classical biomolecular
cycle described by Hill [17] and provides a junction structure based analysis of the
system. Section 16.5 gives a bond graph model of a simplified model of glycolysis,
an important component of the metabolism of living systems. Section 16.6 gives
similar modelling and analysis of a key component of living systems: the phos-
phorylation/dephosphorylation reaction system. Section 16.7 contains concluding
remarks and suggestions for further work.

16.2 Bond Graph Modelling of Biomolecular Systems

Section 16.2.1 gives some background thermodynamics based on the textbook of
Atkins and de Paula [3]. Following the exposition of Gawthrop and Crampin [11],
Sect. 16.2.2 defines the pair of energy covariables used for biomolecular modelling:
chemical potential and molar flow rate. Section 16.2.3 looks at the bond graph C

2In this context, a moiety is a part of a molecule; in some reactions, such moieties are conserved
across different molecules.
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component which, in this context, corresponds to a chemical species. The effort
variable is chemical potential which is also discussed by Fuchs [9] and Job and
Herrmann [19]. Section 16.2.4 looks at the two-port R component (given the special
name Re here) introduced by Oster et al. [29] to model a chemical reaction. A one-
port R with associated 1 junction is also used to model reactions as discussed
by Karnopp [20]. The corresponding effort variable is affinity, the weighted sum
of chemical potentials, and the flow variable is molar flow. As discussed by Oster
et al. [28, 29] and Gawthrop and Crampin [11] it is possible to model biomolecular
systems without the use of inertial I or gyrator GY components. Some fundamental
ideas related to this point are discussed by Breedveld [6].

The discussion here is restricted to single-compartment systems and a simple
illustrative example is given in Sect. 16.2.5.

16.2.1 Basic Thermodynamics

The following definitions and results are drawn from [3, Sect. F2]; the adjectives
isobaric and isothermal mean constant pressure and temperature respectively.

Molar amount. The number of moles nA of a substance A is the ratio of the number
of entities NA to the Avogadro constant NAvo

nA D NA

NAvo
mol (16.1)

Mole fraction. In a mixture of substances the mole fraction�A
3 of substance A is

the ratio of the molar amount nA of A to the total molar amount of all substances
in the mixture ntotal

�A D nA

ntotal
(16.2)

By definition: 0 � �A � 1.
Molar concentration. In a mixture of substances the molar concentration ŒA� of

substance A is the ratio of the molar amount nA of A to the total volume Vtotal m3

ŒA� D nA

Vtotal
mol m�3 (16.3)

Confusingly, the symbol ŒA� is also used to represent the non-dimensional
quantity

ŒA�

c¿
D nA

Vc¿
D �Antotal

Vc¿
(16.4)

where c¿ is the standard concentration of 1 mol dm�3.

3The standard notation would be xA but this clashes with our bond graph notation.
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Molar volume. The molar volume VA of substance A is the volume that it occupies
per mole

VA D Vtotal

nA
m3 mol

�1
(16.5)

Gibbs energy. The Gibbs energy G J (also called Gibbs free energy or just free
energy) is defined as in terms of enthalpy H J, temperature T K and entropy
S J K�1 as

G D H � TS J (16.6)

Molar enthalpy. The molar enthalpy4 HA of substance A is the enthalpy per mole

HA D H

nA
J mol�1 (16.7)

Partial molar property. A partial molar property of a substance A forming part of
a mixture is the contribution of that (extensive) property to the overall property
of the mixture. The partial molar property depends not only on the substance but
also on the other substances forming the mixture.

Chemical potential. The partial molar Gibbs energy of substance A is given the
evocative title of chemical potential �A

�A D GAm D Gm

nA
J mol�1 (16.8)

where Gm is the Gibbs energy of A within the current mixture. Alternatively, �A

may be defined as @G
@nA

where G is the total Gibbs energy of the mixture.5

Entropy exchange. When the enthalpy of an isobaric system changes by �H J, the
entropy of the environment Senv J K�1 (assumed to be infinite and at a constant
temperature T) changes by

�Senv D ��H

T
J K�1 (16.9)

Total entropy. If the system is isothermal (temperature T K) and isobaric, the total
entropy change �Stotal is given by

�Stotal D �S � �H

T
(16.10)

4Other extensive quantities such as internal energy, entropy, Gibbs energy also have molar versions.
5Michael Pan, private communication.
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Change in Gibbs energy. For isothermal (temperature T K) and isobaric systems

�G D �H � T�S D �T�Stotal J (16.11)

Chemical potential of substance in an ideal solution. If Henry’s law holds
(equivalent to a dilute solution) and substance A is dilute

�A D �?
A C RT ln �A J mol�1 (16.12)

where �A is the chemical potential of A, �A is the mole fraction of A (16.2) and
�?

A is the value of �A when it is pure (�A D 1). Defining xA as the number of
moles of substance A:

xA D nA mol (16.13)

and xtotal as the total number of moles of all substances in the mixture, Eq. (16.12)
becomes

�A D �?
A C RT ln

xA

xtotal
J mol�1 (16.14)

It is convenient to reformulate Eq. (16.14) as

�A D RT ln KAxA J mol�1 (16.15)

where KA D exp �?
A

RT

xtotal
mol�1 (16.16)

16.2.2 Bond Graph Covariables

This chapter considers isothermal isobaric systems. In this context, an appropriate
pair of energy covariables for substance A is

Effort. Chemical potential � as expressed in Eq. (16.15) with units of J mol�1.
Flow. Molar flow rate v with units of mol s�1.

The product of the effort and flow variables is p D �v with units of J s�1 or W.

16.2.3 The Bond Graph C Component

The C component has one port with flow variable v mol s�1 and associated effort
variables the chemical potential � J mol�1 given by Eq. (16.15). The component
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Fig. 16.1 Reaction component. (a) The Re:rj component relates the jth reaction flow rate vj to

the forward Af
j and reverse Ar

j affinities. (b) The simplified version emphasises the common flow

rate vj by using the single port R:rj and the net affinity Aj D Af
j � Ar

j

state xA D nA, the number of moles of substance A. Thus for substance A the
corresponding C component has the equations

PxA D v mol s�1 (16.17)

�A D RT ln KAxA J mol�1 (16.18)

The sole parameter is the thermodynamic constant KA given by Eq. (16.16) with
units of mol�1; thus the argument of KAxA of ln is dimensionless. The constant RT
has units of J mol�1.

16.2.4 The Bond Graph Re Component

The jth Re component of Fig. 16.1a has two ports with a common flow variable
vj and the associated effort variables are the forward and backward affinities Af

j
and Ar

j . As discussed by Gawthrop and Crampin [11] and based on the work of
Van Rysselberghe [43] and Oster et al. [29, Sect. 5.1], the molar flow (or reaction
rate) vj is given by the Marcelin–de Donder formula in terms of Af and Ar by

vj D vC
j � v�

j (16.19)

where vC
j D �je

A
f
j

RT and v�
j D �je

Ar
j

RT (16.20)

where the reaction constant �j � 0. The exponential term in Eq. (16.19) of the Re
component, coupled with the logarithmic term in Eq. (16.18) of the C component
gives rise to sums of states being converted into products of states and gives rise to
the mass-action form of the reaction flows.

An Re component with net affinity Aj D Af
j � Ar

j and molar flow vj dissipates

Gibbs energy at a rate PGj given by

PGj D vj

�
Af

j � Ar
j

�
D
�
vC

j � v�
j

� �
Af

j � Ar
j

�
(16.21)



16 Biomolecular Systems: Modelling and Causal Analysis 593

Note that when Aj D 0 both vj D 0 and PGj D 0. Thus, to show that Re is dissipative,
it is necessary to show that PGj is positive for all vj ¤ 0.

Using Eq. (16.20)

Af
j D RT ln

vC
j

�j
and Ar

j D RT ln
v�

j

�j
(16.22)

and so PGj D RT
�
vC

j � v�
j

�
ln

vC
j

v�
j

(16.23)

Equation (16.23) is given by Qian and Beard [36, Eq. (5)] and Polettini and Esposito
[35].

From Eq. (16.20), both vC
j and v�

j are positive and so it is possible to write

vC
j D �v�

j where � is positive. Hence Eq. (16.23) can be rewritten as

PGj D RTv�
j .� � 1/ ln � (16.24)

There are three possibilities: if � > 1 then both .� � 1/ > 0 and ln � > 0 and so, as
v�

j > 0, PGj > 0; if � < 1 then both .� � 1/ < 0 and ln � < 0 and so, as v�
j > 0,

PGj > 0; and, if � D 1, both .� � 1/ D 0 and ln � D 0 and PGj D 0. Hence if vj ¤ 0,
PGj > 0 and if vj D 0, PGj D 0.

From Eqs. (16.10) and (16.11), the enthalpy dissipated by the resistor reappears
as external entropy and the remainder of the Gibbs energy (T�S) represents a
change of internal entropy. Thus only the enthalpy portion of the Gibbs energy is
dissipated as “heat of reaction”—more properly called enthalpy of reaction. This
phenomenon has been called entropy stripping [41, 42].

The two ports of the reaction component Re of Fig. 16.1a are needed to
separately convey the affinities Af

j and Ar
j to Eq. (16.19). However, as pointed out

by Karnopp [20], the one port R and 1 junction version of Fig. 16.1b more clearly
shows that the molar flow vj is common to both ports and thus mass is conserved.
The R component can be suitably modulated to have the same effect as the Re
component. The one port version of Fig. 16.1b will be used for the structural analysis
of Sect. 16.3.

16.2.5 Example

Figure 16.2a corresponds to a biomolecular system with three species (A, B, C) and
three reactions (r1, r2, r3) given by the chemical formulae

A
1�*)� B

2�*)� C
3�*)� A (16.25)
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Fig. 16.2 Simple example. (a) A
1�*)� B

2�*)� C
3�*)� A. The three C components represent the

chemical species A, B and C respectively and the three Re components represent the corresponding
reactions. These components are connected by bonds and 0 and 1 junctions which clearly show
the cyclic nature of the reaction system. (b) Two additional species F and R are introduced and the

third reaction of (a) is replaced by C C F
3�*)� A C R. Causality has been completed with integral

causality on the C components

Causality has been completed with integral causality on the C components using
the sequential causality assignment procedure (SCAP) [21].6

The three C components correspond to the three species and are associated with
states xA, xB and xC and chemical potentials �A, �B and �C. The three reaction flows
are v1, v2 and v3 and are driven by the forward affinities Af

1 D �A, Af
2 D �B and

Af
3 D �C and by the reverse affinities Ar

1 D �B, Ar
2 D �C and Ar

3 D �A. The state
derivatives are

PxA D v3 � v1 (16.26)

PxB D v1 � v2 (16.27)

PxC D v2 � v3 (16.28)

and the chemical potentials are

�A D RT ln KAxA (16.29)

�B D RT ln KBxB (16.30)

�C D RT ln KCxC (16.31)

6SCAP is used for all the examples in this chapter. Unless otherwise stated, all C components
have integral causality.
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and the reaction flows are

v1 D �1

 
e

A
f
1

RT � e
Ar

1
RT

!
D �1 .KAxA � KBxB/ (16.32)

v2 D �2

 
e

A
f
2

RT � e
Ar

2
RT

!
D �2 .KBxB � KCxC/ (16.33)

v3 D �3

 
e

A
f
3

RT � e
Ar

3
RT

!
D �3 .KCxC � KAxA/ (16.34)

These equations are linear because there is only one species on each side of each
reaction.

Because of this linearity, the bond graph of Fig. 16.2a could have been repre-
sented using linear C components and replacing Re of Fig. 16.1a by the one port
R and 1 junction version of Fig. 16.1b. Such an approach has two disadvantages:
the resultant bond graph has no energy properties and would thus be a pseudo bond
graph and such an approach is not scalable to more complex systems.

In particular, the extended system of Fig. 16.2b has the chemical equation of the
third reaction replaced by

C C F
3�*)� A C R (16.35)

which has two species on each side of the reaction; and hence Af
3 D �C C �f and

Ar
3 D �A C �r. Thus the reaction flow v3 becomes

v3 D �3

 
e

A
f
3

RT � e
Ar

3
RT

!
D �3 .KCKFxCxF � KAKRxAxR/ (16.36)

This equation contains the product of states and is thus a nonlinear equation. This
essential nonlinearity is a feature of biomolecular systems.

16.3 Structural Analysis

Although the properties of biomolecular systems arise from the non-linear
behaviour of the C and Re components, the characteristics of each individual
system depend on how these components are interconnected via the linear junction
structure formed from bonds, 0 and 1 junctions.7 Thus the analysis of such

7TF components representing reaction stoichiometry also occur—see example in Sect. 16.5.
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junction structures reveals generic system properties which are independent of the
parameters of the C and Re components.

Section 16.3.1 motivates the analysis using a hydraulic analogy of the simple
biomolecular systems of Fig. 16.2. Section 16.3.2 looks at properties of closed
systems where the junction structure transmits, but does not inject or consume
energy. However, living systems are not closed systems but need to interact with the
environment to replenish dissipated energy; hence Sect. 16.3.3 extends the analysis
to open systems where such environmental interactions are modelled by chemostats.
Section 16.3.4 shows how stoichiometric information can be deduced from the
junction structure.

16.3.1 Motivation

Analogies are central to scientific thinking by providing a way for results and
intuition form one physical domain to be transferred to another [24]. Bond
graphs provide a formalism to discussing analogies. Thus, for example, the bond
graph representing a network of biomolecular reactions has an electrical circuit
representation [27]. Unfortunately, these circuits are quite complicated when more
than one species is involved as substrate or product of a reaction—see Oster and
Perelson [27, Fig. 6] for an example. However, for the purposes of motivation, the
simple network of three reactions (16.25), modelled by the bond graph of Fig. 16.2a,
is used as it does have simple analogies. Figure 16.3a gives an electrical circuit
analogy and Fig. 16.3b gives a hydraulic analogy; the latter is used as a simple
intuitive motivational example.

Consider the analogy of three open tanks of liquid Fig. 16.3b represented by the
three C components connected by three narrow pipes represented by the three Re

r1

a b

cAµA cB µB

r2
cc µC

i2i1

r3

i3

µA µB µC

v1 v2

v3

Fig. 16.3 Analogues of simple system. (a) An electric circuit analogue has three capacitors
representing the three species and three resistors representing the three reactions; voltage is the
analogue of chemical potential and current the analogue of molar flow rate. (b) A hydraulic analogy
has three tanks of liquid representing the three species and three pipes representing the three
reactions; pressure is the analogue of chemical potential and volumetric flow rate the analogue
of molar flow rate. Linear analogies are only possible in simple cases such as this



16 Biomolecular Systems: Modelling and Causal Analysis 597

components. �A, �B and �C then represent the pressures associated with the tanks
and v1, v2 and v3 the volumetric flow rates though the pipes.

In the linear case, the C components become linear and the Re components
can be replaced by an R component and 1 junction as in Fig. 16.1 where in the case
of Re:r1 the forward “affinity” or pressure Af

1 D �A and the reverse “affinity” or
pressure Ar

1 D �B; the pressure drop across r1 is A1 D Af
1 � Ar

1. The following
statements can be made about this particular system

1. The sum of the volumes of liquid in the three tanks (xtot) is constant

xA.t/ C xB.t/ C xC.t/ D xtot (16.37)

This is analogous to a conserved moiety in biochemistry.
2. As A1 C A2 C A3 D .�A � �B/ C .�B � �C/ C .�C � �A/ D 0, the sum of the

three pressure drops is zero

A1.t/ C A2.t/ C A3.t/ D 0 (16.38)

3. In the steady state of this closed system, there is no energy dissipation and so all
flows are zero and thus the pressures are equal

�A.1/ D �B.1/ D �C.1/ (16.39)

4. If the third pipe were replaced by a constant-flow pump with flow rate v0, then in
the steady state ( PX D 0)

v1.1/ D v2.1/ D v0 (16.40)

These four statements are illustrated by the simulation of Fig. 16.4. Here all reaction
constants and thermodynamics constants are unity (�1 D �2 D �3 D KA D KB D
KC D 1) and the initial states are xA D 3, xB D 2:5 and xC D 0:5.

These four statements are obvious in the context of this simple system, the
purpose of the next section is to show how these statements generalise to arbitrary
biomolecular networks. The fourth statement involves the use of a pump. This
requires an external source of energy and thus the resultant system is no longer
closed. Thus the analysis is extended to include open as well as closed systems. The
design of biomolecular pumps, and the source of their energy requirement, is key to
understanding living systems. As will be discussed in Sect. 16.3.3, such pumps can
be modelled using chemostats which are closely related to the bond graph effort
source Se. Such pumps make use of the inherent non-linearity of biomolecular
systems when multiple substrates and products of a reaction are present; in particular
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Fig. 16.4 Simulation of simple system. (a) The system states become constant in the steady state
and their sum remains at the value 6 for all time: this corresponds to a conserved moiety. (b)
The reaction affinities become zero in the steady state and their sum is 0 for all time. (c) The
chemical potentials equalise in the steady state. (d) The reaction flows become zero in the steady
state because this is a closed system

ATP �*)�ADP C P8 can be coupled multiplicatively to an underlying reaction to
produce a pump; this is discussed further in Sect. 16.6.

16.3.2 Junction Structure of Closed Systems

This section is concerned with structural principles rather than details of component
behaviour; hence, following Sect. 16.3.1, the Re component is replaced by a single-
port R component and an associated 1 junction as in Fig. 16.1. The choice between

8ATP (Adenosine triphosphate) is the “fuel” which drives many biomolecular processes via its
conversion to ADP (Adenosine diphosphate) and P inorganic phosphate [1].
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Fig. 16.5 General closed system with integral causality. (a) The general representation of a closed
biomolecular system used by Gawthrop and Crampin [12]. (b) Simplified version with the two-port
Re replaced by one-port R and 1 junction as in Fig. 16.1. (c) The C and R components are
replaced by source-sensor (SS ) components and integral causality is shown

the two representations is discussed by Karnopp [20]; in the context of this chapter,
the R representation has the advantage that, via the 1 junction, it ensures continuity
of flow.

The abstract representation of a closed system of Gawthrop et al. [13] and
Gawthrop and Crampin [12] is given in Fig. 16.5a in terms of the Re reaction
representation of Fig. 16.1a. The bond symbols + correspond to vectors of bonds;
C ;Re and O correspond to arrays of C, Re and 0 components; the two T F
components represent the intervening junction structure comprising bonds, 0 and 1
junctions and TF components. Nf and Nr are the forward and reverse stoichiometric
matrices. Using the R reaction representation of Fig. 16.1b gives the simplified
Fig. 16.5b where the stoichiometric matrix N D Nr � Nf .

The multiport transformer T F WN has the nX vector � as the effort variable
paired with the nX vector PX as flow variable on one port and the nV vector �A as
the effort variable paired with the nV vector V as flow variable on the other port. It
follows that

PX D NV (16.41)

A D �NT� (16.42)

This multiport transformer abstracts the connections between the nX C components
and the nV R components; it is independent of the properties of the C and R
components. It represents the junction structure of the underlying bond graph. In this
paper, the junction structure is revealed by replacing each C and R component by
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a source-sensor SS component [14, 15].9 For example, the bond graph of Fig. 16.2a
becomes the junction structure bond graph of Fig. 16.6a. The SS components
have now preferred causality; in Fig. 16.6a the SS causality has been chosen to
correspond to the preferred causality of Fig. 16.2a where the C components have
integral causality (effort output) leading to flow output on each R component.

16.3.2.1 Structure Matrices

With the integral causality shown in Fig. 16.5c the junction structure outputs are the
nX C flows (rate of species change, PX mol s�1/ and the nV R efforts (affinities,
A J mol�1). and the junction structure inputs are the nX C efforts (chemical
potentials, � mol s�1) and the nV R flows (molar reaction flows, V mol s�1).
Combining the junction structure outputs into the vector Y, and combining the
junction structure inputs into the vector U, Eqs. (16.41) and (16.42) can be rewritten
in a more compact form as

Y D SU (16.43)

where Y D
 PX

A

!
; U D

 
�

V

!
(16.44)

and S D
 

0nX�nX N
�NT 0nV �nV

!
(16.45)

The structure matrix S has two notable features:

1. As discussed, for example, by Karnopp et al. [21, Sect. 7.4] the junction structure
matrix S is skew symmetric; this arises from the energy transmission properties
of the multiport transformer.

2. The two block zero elements 0nX�nX and 0nV �nV arise because, in the junction
structure, the effort and flow variables do not interact: biomolecular systems do
not contain gyrators.

16.3.2.2 Derivative Causality

As was noted by Sueur and Dauphin-Tanguy [38, 39], investigating the junction
structure with C and I components in derivative causality is the key to determining
system properties. With this in mind, and noting that the only dynamic components
are C components, the integral causality leading to S is replaced by maximising the

9The SS component is equivalent to the EN (environment) component introduced by Rosenberg
and Andry [37].
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number of C components in derivative causality. As noted by Sueur and Dauphin-
Tanguy [39] with reference to their Fig. 2, the presence of causal loops requires
a modification of this procedure; in particular, the causal loop must be broken by
leaving a C component in integral causality.

This procedure will be referred to as maximising derivative causality in the
sequel and leads to the concept of derivative structure matrices.

16.3.2.3 Derivative Structure Matrices

The vector Yd contains the outputs of the network with maximum derivative
causality and has four partitions:

1. �D the chemical potential of the SS components corresponding to C in
derivative causality.

2. PXI
the flow of the SS components corresponding to C remaining in integral

causality.
3. VD the flows of the SS components corresponding to R in derivative causality.
4. AI the affinity of the SS components corresponding to R remaining in integral

causality.

Yd contains the same variables as Y but they may be in a different order. The vector
Ud contains the covariables of Yd.

Yd and Ud are related by the derivative structure matrix Sd where

Yd D SdUd (16.46)

where Yd D

0
BBB@

�D

PXI

VD

AI

1
CCCA ; Ud D

0
BBB@

PXD

�I

AD

VI

1
CCCA (16.47)

and Sd D

0
BBB@

0 S�� S�A 0

Sxx 0 0 Sxv

Svx 0 0 Svv

0 SA� SAA 0

1
CCCA (16.48)

As with S, Sd is skew symmetric because of energy considerations and the
eight block zero elements arise as the effort and flow variables do not interact:
biomolecular systems do not contain gyrators.

Example. In the case of the junction structure of Fig. 16.6a

N D
0
@

�1 0 1

1 �1 0

0 1 �1

1
A (16.49)
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Fig. 16.6 Simple Closed System junction structure. (a) and (b) The junction structure correspond-
ing to the bond graph of Fig. 16.2a with integral and maximum derivative causality respectively. (c)
and (d) Alternative representation of the structure matrices S (16.43) and Sd (16.48) where filled
circle indicates a non-zero entry and i and j the row and column indices respectively

and:

Y D

0
BBBBBBB@

PxA

PxB

PxC

A1

A2

A3

1
CCCCCCCA

; S D

0
BBBBBBB@

0 0 0 �1 0 1

0 0 0 1 �1 0

0 0 0 0 1 �1

1 �1 0 0 0 0

0 1 �1 0 0 0

�1 0 1 0 0 0

1
CCCCCCCA

; U D

0
BBBBBBB@

�A

�B

�C

v1

v2

v3

1
CCCCCCCA

(16.50)

In the case of the junction structure of Fig. 16.6b with maximum derivative
causality

Yd D

0
BBBBBBB@

�A

�B

PxC

v1

v2

A3

1
CCCCCCCA

; Sd D

0
BBBBBBB@

0 0 1 1 1 0

0 0 1 0 1 0

�1 �1 0 0 0 0

�1 0 0 0 0 1

�1 �1 0 0 0 1

0 0 0 �1 �1 0

1
CCCCCCCA

; Ud D

0
BBBBBBB@

PxA

PxB

�C

A1

A2

v3

1
CCCCCCCA

(16.51)
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As an alternative to Eqs. (16.50) and (16.51), the structure matrices S and Sd can be
visualised by the diagrams of Fig. 16.6c, d where the ij non-zero matrix elements are
plotted as � in the ij location. The partition lines separating PX from A and � from
V have been included for clarity along with the diagonal about which the matrix is
skew symmetric. This representation is particularly useful for large systems when
the matrix expression becomes unwieldy.

The four observations of Sect. 16.3.1 can now be explained in terms of the
partitions of the Sd matrix (16.48) and (16.51).

1. From the second row partition

Sxx D ��1 �1
�

(16.52)

hence PxC D �PxA � PxB (16.53)

and PxA C PxB C PxC D 0 (16.54)

Integrating (16.54) with respect to time gives Eq. (16.37).
2. From the fourth row partition

SAA D ��1 �1
�

(16.55)

hence A3 D �A1 � A2 (16.56)

Rearranging Eq. (16.56) gives Eq. (16.38).
3. From the first row partition

S�� D
�

1

1

�
; S�A D

�
1 1

0 1

�
(16.57)

hence �A D A1 C A2 C �C (16.58)

�B D A2 C �C (16.59)

In the steady state, the flows are zero v1 D v2 D v3 D 0 and thus the affinities
are also zero A1 D A2 D A3 D 0; substituting into Eqs. (16.58) and (16.59) gives
Eq. (16.39).

4. From the third row partition

Svv D
�

1

1

�
; Svx D

��1 0

�1 �1

�
(16.60)

hence v1 D �PxA C v3 (16.61)

v2 D �PxA � PxB C v3 (16.62)
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Setting PxA D PxB D 0 gives Eq. (16.40). Of course, in this closed system, the three
steady-state flows are actually zero; to obtain “pumping” and non-zero flows we
now turn to consideration of open systems.

16.3.3 Junction Structure of Open Systems

All living systems are connected to their environment: mass and energy can
enter and leave the system. Thus living systems are open systems and, for this
reason, this section considers the junction structures of open systems. Following
Gawthrop and Crampin [12], thermodynamically closed systems are converted to
thermodynamically open systems using chemostats.10

Gawthrop and Crampin [12] also use flowstats.11 But this idea is not pursued in
this chapter.

As discussed by Gawthrop and Crampin [12], a chemostat generates a chemical
potential � which is not dependent on the flow covariable Px and may be modelled
as a C component with a fixed state. For the purposes of junction structure analysis
it is convenient to represent the chemostat by a C component and a unit effort
amplifier AE [15] component where the AE component has unit gain and infinite
input impedance thus drawing zero flow from the C component; see Fig. 16.7a. The
AE component has fixed causality as indicated in Fig. 16.7b; the input and output
of the AE are explicitly indicated to avoid ambiguity. The AE component is active
and thus represents the power source of an open system.

As in Sect. 16.3.2, the junction structure is obtained from the system bond graph
by replacing each C and R component by a source-sensor SS component; this
leaves the AE components associated with chemostats as part of the junction
structure. This has a number of consequences:

1. The junction structure is no longer energy conserving; the chemostats insert
energy into the system.

2. Equations (16.41) and (16.42) are replaced by:

PX D NcdV (16.63)

A D �NT� (16.64)

10The term chemostat was used by Polettini and Esposito [35] and is equivalent to the “concentra-
tion clamping” of Qian and Beard [36].
11The term flowstat is equivalent to “boundary flux injection” [36].
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Fig. 16.7 Chemostats. (a) A chemostat is modelled by a C component and a AE effort amplifier;
this means that the corresponding chemical potential � is imposed on the rest of the system but the
corresponding flow Px does not effect the C component. (b) The simple example of Fig. 16.2b is
modified with AE components to turn C:F and C:R into chemostats thus creating an open system
from a closed system

where Ncd is N with rows corresponding to the chemostats removed
[12, Sect. 3.4]. The structure matrix S is no longer of the skew symmetric form
of Eq. (16.45) but is rather of the form

S D
 

0 Ncd

�NT 0

!
(16.65)

3. When maximising derivative causality, the possible causal patterns of the
junction structure are constrained by the fixed causality of the AE components.

16.3.3.1 Example (Chemostats)

The closed system of Fig. 16.6 is turned into the open system of Fig. 16.7b where
the flow v3 is “pumped” by the addition of a forward-driving chemostat C:F and a
reverse-driving chemostat C:R arranged so that there is no net mass inflow to the
system. This is the chemostatic version of the chemical equation (16.35) with the
bond graph of Fig. 16.2b. Figure 16.8a shows the corresponding junction structure
in integral causality and Fig. 16.8b with maximum derivative causality.
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Fig. 16.8 Simple open system junction structure. (a) and (b) The junction structure corresponding
to the bond graph of Fig. 16.7b with integral and maximum derivative causality respectively. (c)
and (d) Alternative representation of the structure matrices S (16.43) and Sd (16.48) where filled
circle indicates a non-zero entry and i and j the row and column indices respectively. Note that
these matrices are no longer skew-symmetric due to the AE components and that the driving term
SA� is no longer zero

The corresponding structure matrix S is

Y D

0
BBBBBBBBBBB@

PxA

PxB

PxC

PxF

PxR

A1

A2

A3

1
CCCCCCCCCCCA

; S D

0
BBBBBBBBBBB@

0 0 0 0 0 �1 0 1

0 0 0 0 0 1 �1 0

0 0 0 0 0 0 1 �1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 �1 0 0 0 0 0 0

0 1 �1 0 0 0 0 0

�1 0 1 1 �1 0 0 0

1
CCCCCCCCCCCA

; U D

0
BBBBBBBBBBB@

�A

�B

�C

�F

�R

v1

v2

v3

1
CCCCCCCCCCCA

(16.66)
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The corresponding derivative-causality structure matrix Sd is

Yd D

0
BBBBBBBBBBB@

�A

�B

PxC

PxF

PxR

v1

v2

A3

1
CCCCCCCCCCCA

; Sd D

0
BBBBBBBBBBB@

0 0 1 0 0 1 1 0

0 0 1 0 0 0 1 0

�1 �1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

�1 0 0 0 0 0 0 1

�1 �1 0 0 0 0 0 1

0 0 0 1 �1 �1 �1 0

1
CCCCCCCCCCCA

; Ud D

0
BBBBBBBBBBB@

PxA

PxB

�C

�F

�R

A1

A2

v3

1
CCCCCCCCCCCA

(16.67)

Again, S (16.66) and Sd (16.67) can be visualised using Fig. 16.8c, d.
Sd for the open system (16.67) differs from that from the closed system (16.51)

in a number of ways.

1. The fourth row partition contains the driving term �f � �r in the second column
partition.

2. The two zero rows in the second row partition correspond to the two chemostats;
in addition to the conserved moiety of Eq. (16.37), the two chemostats correspond
to the two conserved moieties xF and xR.

Figure 16.9 gives a simulation of the simple system with chemostatic pump. Like
the simulation shown in Fig. 16.4, all quantities tend to constant values; but, unlike
the simulation shown in Fig. 16.4, the flows (v) and affinities (A) tend to non-zero
constant values: the two chemostats C:F and C:R act as a pump.

16.3.4 Stoichiometric Information and Simulation

The stoichiometric matrix N of a biomolecular network is the matrix that relates
the reaction flows described by the vector V to the rate of change of species
described by the vector PX as in Eq. (16.41). As discussed in the text books of Palsson
[30], Alon [2] and Klipp et al. [22], analysis of the stoichiometric matrix yields
useful information about the properties of the underlying biomolecular network.
In particular the null space or kernel space of both N and NT are of interest and
are defined by the corresponding kernel, or subspace, matrices. The null space of N
relates to those linear combinations of reaction flows which can be non-zero when PX
is zero; the null space of NT relates to conserved moieties: those linear combinations
of X which remain constant.

The structure matrix Sd (16.48), corresponding to maximum derivative causality,
contains eight non-zero submatrices. This section provides interpretations of these
matrices and how they relate to the kernel matrices of the stoichiometric matrix.
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Fig. 16.9 Simulation of simple system with chemostatic pump. KF D KR D 1, xF D 4 and
xR D 1 (a) As in the closed case, the system states become constant in the steady state and their
is sum 6 for all time. (b) The reaction affinities become constant in the steady state and their sum
is ln KFxF � ln KRxR D 1:386 for all time. (c) The chemical potentials no longer equalise in the
steady state. (d) The reaction flows are not zero in the steady state as this is an open system with F
and R acting as a pump

16.3.4.1 State Reconstruction

The vectors Yd and Ud (16.47) partition the state vector derivative PX into PXI
and PXD

and the flow vector V into VI and VD. This decomposition process can be written as

PXI D Txi PX; PXD D Txd PX (16.68)

VI D TviV; VD D TvdV (16.69)

Equations (16.68) and (16.69) can be rewritten as:

 PXI

PXd

!
D Tx PX where Tx D

 
Txi

Txd

!
(16.70)
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and

 
VI

Vd

!
D TvV where Tv D

 
Tvi

Tvd

!
(16.71)

Because Tx and Tv permute the elements of PX and V, they are unitary matrices and
therefore

T�1
x D TT

x D �
TT

xi TT
xd

�
(16.72)

and T�1
v D TT

v D �
TT

vi TT
vd

�
(16.73)

It follows that PX and V can be recomposed as

PX D TT
xi

PXI C TT
xd

PXD
(16.74)

V D TT
viV

I C TT
vdVD (16.75)

Using (16.74) and the second partition of structure matrix Sd (16.48), PX can be

expressed in terms of PXD
as

PX D TT
xi

�
Sxx PXD C SxvVI

�
C TT

xd
PXD

D LXx Px C LXvVI (16.76)

where Px D PXD
; LXx D �

TT
xiSxx C TT

xd

�
; LXv D TT

xiSxv (16.77)

When LXv D 0 (as in all the examples in this chapter)

PX D LXx Px (16.78)

Integrating with respect to time gives

X D LXxx C GXX0 (16.79)

where GX D InX�nX � LXxTxd (16.80)

and X0 D X.0/ (16.81)

As discussed by Gawthrop and Crampin [11, Sect. 4(c)], Eq. (16.79) is useful
because it allows the system ODE to be solved for x which is of lower dimension
than X and avoids issues with conserved moieties. For compatibility with previous
work, and with reference to Eq. (16.68), it is convenient to define

LxX D Txd (16.82)

so that x D LxXX (16.83)



610 P.J. Gawthrop

16.3.4.2 Kernel Matrices

In the particular case that Sxv D 0, it follows from Eq. (16.47) and the second row
partition of (16.48) that

PXI � Sxx PXD D 0 (16.84)

Using the decomposition equations (16.68), (16.84) gives

Gcd PX D 0 (16.85)

where Gcd D Txi � SxxTxd (16.86)

Using Eq. (16.63), it follows from Eq. (16.85) that:

GcdNcdV D 0 (16.87)

As Eq. (16.87) must be true for all V, it follows that

GcdNcd D 0 (16.88)

Hence Gcd is the left kernel matrix of Ncd.
In the steady state, PXD D 0 and so, using the third row partition of (16.48)

VD D SvvVI (16.89)

hence, using the recomposition equation (16.75):

V D KcdVI (16.90)

where Kcd D TT
vi C TT

vdSvv (16.91)

Using Eq. (16.90), the steady-state condition also implies that

PX D NcdV D NcdKcdVI D 0 (16.92)

As this must be true for all VI it follows that

NcdKcd D 0 (16.93)

and thus Kcd is the right kernel matrix of Ncd.
Kernel matrices can be found numerically from Ncd using Gaussian elimination.

However, the approach here gives a clear physical derivation of the kernel matrices
using causality arguments.
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Example. The open system of Sect. 16.3.3 with the junction structure of Fig. 16.8
has structure matrices S and Sd given by Eqs. (16.66) and (16.67). In this case

Txi D
0
@

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1
A ; Txd D

�
1 0 0 0 0

0 1 0 0 0

�
; LxX D

�
1 0 0 0 0

0 1 0 0 0

�
(16.94)

LXx D

0
BBBBB@

1 0

0 1

�1 �1

0 0

0 0

1
CCCCCA

; GX D

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

1 1 1 0 0

0 0 0 1 0

0 0 0 0 1

1
CCCCCA

(16.95)

LxX (16.94) reflects the fact that x contains the first two states xA and xB of X
and LxX (16.95) reflects the fact that the third state xC is related to the first two
via a conserved moiety as does the third row of GX (16.95). The last two rows of
GX (16.95) correspond to the constant states of the two chemostats.

The two kernel matrices are

Gcd D
0
@

1 1 1 0 0

0 0 0 1 0

0 0 0 0 1

1
A (16.96)

Kcd D
0
@

1

1

1

1
A (16.97)

The first row of Gcd (16.96) again reflects the conserved moiety and the last two rows
correspond to the two chemostats. The single column of Kcd (16.97) corresponds to
the pathway though the three reaction components.

16.4 Example: Biomolecular Cycle

In his classic monograph, “Free energy transduction and biochemical cycle kinetics”
Hill [17] discusses how the concentration difference of a species M existing both
outside (Mo) and inside (Mi) a membrane can be used to pump another species
L from inside (Li) to outside (Lo) the membrane. This cycle uses a large protein
molecule with two con formations E and E�12 the former allowing successive

12A protein molecule with a given chemical composition may have many different geometric
“shapes” or conformations with different Gibbs energy—this is the basis of much cell biology [1].
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binding to Mi and Li and the latter to Mo and Lo. This is represented by seven
reactions

Mi C E
em�*)� EM (16.98)

Li C EM
lem��*)�� LEM (16.99)

LEM
lesm��*)�� LE?M (16.100)

LE?M
esm��*)�� Lo C E?M (16.101)

E?M
es�*)� Mo C E? (16.102)

E?
e�*)� E (16.103)

EM
slip��*)�� E?M (16.104)

where the last reaction is the so-called slip term. The corresponding bond graph
appears in Fig. 16.10a where E? is replaced by Es. The bond graph clearly shows
the cyclic structure of the chemical reactions (16.98)–(16.104) and is topologically
similar to the diagram of Hill [17, Fig. 1.2(a)]. As discussed by Hill [17], the four
species Mo, Mi, Lo and Li are assumed to have constant concentration: therefore they
are modelled by four chemostats with the corresponding AE components.

The partitions of Y corresponding to Eq. (16.43) are

PX D �PxEM PxLEM PxEs PxEsM PxLEsM PxLi PxLo PxMi PxMo PxE

�T
(16.105)

A D �
Aem Alem Aes Aesm Aslip Ae Alesm

�T
(16.106)

and the partitions of U corresponding to Eq. (16.43) are

� D �
�EM �LEM �Es �EsM �LEsM �Li �Lo �Mi �Mo �E

�T
(16.107)

V D �
vem vlem ves vesm vslip ve vlesm

�T
(16.108)

The partitions of Yd corresponding to Eq. (16.47) are

�D D �
�EM �LEM �Es �EsM �LEsM

�T
(16.109)

PXI D �PxLi PxLo PxMi PxMo PxE

�T
(16.110)

VD D �
vem vlem ves vesm vslip

�T
(16.111)

AI D �
Ae Alesm

�T
(16.112)
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Fig. 16.10 Biomolecular Cycle. This example is taken from Hill [17] and shows how one species
can pump another across a membrane. (a) System bond graph. (b) Junction structure with
maximum derivative causality. (c) and (d) Alternative representation of the structure matrices S
(16.43) and Sd (16.48) where filled circle indicates a non-zero entry and i and j the row and column
indices respectively

and the partitions of Ud corresponding to Eq. (16.47) are

PXD D �PxEM PxLEM PxEs PxEsM PxLEsM

�T
(16.113)

�I D �
�Li �Lo �Mi �Mo �E

�T
(16.114)

AD D �
Aem Alem Aes Aesm Aslip

�T
(16.115)

VI D �
ve vlesm

�T
(16.116)
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The 17 � 17 matrix Sd is summarised in Fig. 16.10d. The relevance of the
submatrices Sxx, SAA, SA� and Svv are now examined in turn.

1. From the second row partition

Sxx D

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

�1 �1 �1 �1 �1

1
CCCCCA

(16.117)

the first four rows of Sxx correspond to the four chemostats Li, Lo, Mi and Mo.

PxLi D PxLo D PxMi D PxMo D 0 (16.118)

The fifth row of Sxx corresponds to the conserved moiety

Pxe C Pxem C Pxlem C Pxes C Pxesm C Pxlesm D 0 (16.119)

2. From the fourth row partition

SAA D
��1 0 �1 0 �1

0 �1 0 �1 1

�
and SA� D

�
0 0 1 �1 0

1 �1 0 0 0

�
(16.120)

the first row of SAA, together with the first row of SA�, corresponds to the sum
of the affinities around the upper loop of the biomolecular cycle of Fig. 16.10a
being equal to the weighted sum of the relevant chemostat potentials

Ae C Aem C Aes C Aslip D �Mi � �Mo (16.121)

the second row of SAA, together with the second row of SA�, corresponds to the
weighted sum of the affinities around the lower loop of the biomolecular cycle of
Fig. 16.10a being equal to the weighted sum of the relevant chemostat potentials

Alesm C Alem C Aesm � Aslip D �li � �lo (16.122)

3. From the third row partition

Svv D

0
BBBBB@

1 0

0 1

1 0

0 1

1 �1

1
CCCCCA

(16.123)

In the steady state ( PX D 0). In this case the first four rows of the first column
of Svv correspond to the three steady-state reaction flows in the upper loop being
equal
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vem D ves D ve (16.124)

Similarly, the first four rows of the second column of Svv correspond to the three
steady-state reaction flows in the lower loop being equal

vlem D vesm D vlesm (16.125)

and the fifth row of Svv corresponds to the slip flow being the difference of the
two loop flows

vslip D ve � vlesm (16.126)

16.5 Example: Glycolysis

Metabolism converts energy from the environment into the fuel that drives living
processes. One example of metabolism is glycolysis which converts the chemical
energy stored in glucose to the chemical energy stored in ATP (which, as discussed
in Footnote 8, fuels biomolecular systems) and NADH.13 Detailed mathematical
models of glycolysis are given by Lambeth and Kushmerick [23] and Beard [4].

As bond graphs focus on energy transduction, it follows that bond graphs provide
a natural method to model metabolism. Gawthrop et al. [13] develop a hierarchical
bond graph model of metabolism based on that of Lambeth and Kushmerick [23]
and highlight the advantages of the bond graph approach. This example looks
at a simplified model of glycolysis used by Cloutier et al. [8] in the context of
metabolism in the human brain and illustrates the junction structure approach to
analysing the key properties of glycolysis.

The partitions of Y are

PX D �PxG6P PxF6P PxGAP PxPEP PxATP PxADP PxNAD PxNADH PxGLC PxPYR

�T
(16.127)

A D �
APGI APFK APGK APK AHK

�T
(16.128)

and the partitions of U are

� D �
�G6P �F6P �GAP �PEP �ATP �ADP �NAD �NADH �GLC �PYR

�T
(16.129)

V D �
vPGI vPFK vPGK vPK vHK

�T
(16.130)

13NADH (reduced nicotinamide adenine dinucleotide) is an electron transporter within biomolec-
ular processes [1].
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The partitions of Yd are

�D D �
�G6P �F6P �GAP �PEP

�T
(16.131)

PXI D �PxATP PxADP PxNAD PxNADH PxGLC PxPYR

�T
(16.132)

VD D �
vPGI vPFK vPGK vPK

�T
(16.133)

AI D �
AHK

�T
(16.134)

and the partitions of Ud are

PXD D �PxG6P PxF6P PxGAP PxPEP

�T
(16.135)

�I D �
�ATP �ADP �NAD �NADH �GLC �PYR

�T
(16.136)

AD D �
APGI APFK APGK APK

�T
(16.137)

VI D �
vHK

�T
(16.138)

The 15 � 15 matrix Sd summarised in Fig. 16.11d. The relevance of the
submatrices Sxx, SAA, SA� and Svv are now examined in turn.

1. From the second row partition, Sxx has six zero-valued rows corresponding to the
six chemostats ATP, ADP, NAD, NADH, GLY and PYR

PxATP D PxADP D PxNAD D PxNADH D PxGLY D PxPYR D 0 (16.139)

Unlike Example 16.4, there are no other conserved moieties in this open system.
2. From the fourth row partition

SAA D ��1 �1 �2 �2
�

(16.140)

and SA� D ��2 2 2 �2 1 �2
�

(16.141)

SAA, together with SA�, corresponds to the sum of the affinities along the
glycolytic pathway being equal to the weighted sum of the relevant chemostat
potentials

APGI C APFK C 2APGK C 2APK D�GLC � 2�PYR

� 2.�ATP � �ADP/ � 2.�NADH � �NAD/

(16.142)

The right-hand side of this equation must be positive for glycolysis to proceed;
thus the difference of the chemical potential of GLC (�GLC) and twice that of PYR
(2�PYR) must be sufficient to drive the creation of ATP from ADP and NADH
from NAD.
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Fig. 16.11 Glycolysis. This simplified model of glycolysis corresponds to that of Cloutier et al.
[8]. (a) System bond graph. (b) Junction structure with maximum derivative causality. (c) and (d)
Alternative representation of the structure matrices S (16.43) and Sd (16.48) where filled circle
indicates a non-zero entry and i and j the row and column indices respectively
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3. From the third row partition

Svv D �
1 1 2 2

�T
(16.143)

In the steady state ( PX D 0). In this case Svv implies that, in the steady state, the
reaction flows are related by

vPGI D vPFK D vHK and vPGK D vPK D 2vHK (16.144)

16.6 Example: Phosphorylation/Dephosphorylation

The phosphorylation/dephosphorylation reaction network is a standard building
block of biomolecular systems. It is treated in detail by Beard and Qian [5,
Sect. 5.1.1] and discussed by Gawthrop and Crampin [11, 12]. It comprises four
reactions

M C ATP C E1

1�*)� C1 C1

2�*)� C ADP C MP C E1

MP C E2

3�*)� C2 C2

4�*)� M C P C E2 (16.145)

In this example there are three chemostats corresponding to ATP, ADP and P; these
act as the driver of the system.

The bond graph junction structure representation is given in Fig. 16.12b which is
shown with derivative causality. The corresponding structure matrices S and Sd can
be visualised using Fig. 16.12c, d. Note that the last three rows of Ncd correspond to
the three chemostats and are zero.

The partitions of Yd are

�D D �
�C1 �C2 �MP

�T
(16.146)

PXI D �PxE1 PxE2 PxM PxATP PxADP PxP

�T
(16.147)

VD D �
v1 v2 v3

�T
(16.148)

AI D A4 (16.149)

and the partitions of Ud are

PXD D �PxC1 PxC2 PxMP

�T
(16.150)

�I D �
�E1 �E2 �M �ATP �ADP �P

�T
(16.151)

AD D �
A1 A2 A3

�T
(16.152)

VI D v4 (16.153)
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Fig. 16.12 Phosphorylation/dephosphorylation. This example is taken from Beard and Qian [5]
and shows how driven by ATP hydrolysis, M is phosphorylated to MP, and MP dephosphorylated
to M. (a) System bond graph. (b) Junction structure with maximum derivative causality. (c) and
(d) Alternative representation of the structure matrices S (16.43) and Sd (16.48) where filled circle
indicates a non-zero entry and i and j the row and column indices respectively

The 13�13 matrix Sd is summarised in Fig. 16.12d. The relevance of the submatrices
Sxx, SAA, SA� and Svv are now examined in turn.

1. From the second row partition

Sxx D

0
BBBBBBB@

�1 0 0

0 �1 0

�1 �1 �1

0 0 0

0 0 0

0 0 0

1
CCCCCCCA

(16.154)
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the first and second rows of Sxx correspond to the conserved moieties xe1 C
xc1 D xtot1 and xe2Cxc2 D xtot2. The third row of Sxx corresponds to the conserved
moiety xmp C xc1 C xc2 C xm D xtot. The fourth, fifth and sixth rows of Sxx

correspond to the three constant chemostat states: xATP, xADP and xP.

PxATP D PxADP D PxP D 0 (16.155)

2. From the fourth row partition

SAA D ��1 �1 �1
�

and SA� D �
0 0 0 1 �1 �1

�
(16.156)

the first row of SAA, together with the first row of SA�, corresponds to the sum
of the affinities around the central loop being equal to the weighted sum of the
chemostat potentials

A1 C A2 C A3 C A4 D �ATP � �ADP � �P (16.157)

Thus the flow around the loop comprising r1 : : : r4 is driven by the ATP �*)�ADPC
P reaction.

3. From the third row partition

Svv D
0
@

1

1

1

1
A (16.158)

In the steady state ( PX D 0). In this case Svv corresponds to the four reaction flows
being equal

v1 D v2 D v3 D v4 (16.159)

16.7 Conclusion

The causal properties of the bond graph junctions structures representing biomolec-
ular systems have been examined and shown to provide an alternative approach to
generating the related stoichiometric matrices. As a graphical approach, the bond
graph method gives more intuitive insight than purely numerical approaches.

The bond graph approach uses causality arguments and the sequential causality
assignment procedure (SCAP); the numerical approach uses Gaussian elimination.
It follows that the bond graph approach must, in some sense, be equivalent to the
Gaussian elimination approach; this deserves further investigation.

As discussed in this chapter, it can be more convenient to represent reactions
by a one-port R component and associated 1 junction rather than a two-port Re



16 Biomolecular Systems: Modelling and Causal Analysis 621

component. This raises the question as to whether it is always possible to model
in this way. The key issue here is under what circumstances forward and reverse
stoichiometric matrices Nf and Nr can be deduced from the stoichiometric matrix
N D Nr � Nf .

This chapter focuses on turning closed biomolecular systems into open systems
using the chemostat (constant chemical potential) concept previously used by
Polettini and Esposito [35] and Gawthrop and Crampin [12]. It would be interesting
to examine the use of the dual concept of flowstats (constant molar flow) [12] in the
context of this chapter.

Gawthrop et al. [13] use hierarchical bond graph models to allow large models
to be built out of submodels and use the notion of a port component to do this. It
would be interesting to develop a hierarchical version of the methods presented in
this chapter.
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