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Abbreviations

AVP Angular velocity propagation
CG Center of gravity
CTF Coordinate transformation block
DOF Degree of freedom
EJS Euler Junction Structure
LL Leg lift
PL Prismatic link
PI Proportion-integral controller
PID Proportional-integral-derivative controller
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RP Revolute-prismatic
SL Step length
TVP Translational velocity propagation
ZMP Zero moment point

14.1 Historical Survey of Modeling and Control
of Quadruped Robot

Legged robot offers many advantages over wheeled robots including greater
adaptability to terrain irregularities and superior off-road mobility [30, 41]. Legged
systems require only a series of discrete footholds along the pathway for off-road
locomotion. This property enables legged robots to traverse surfaces inaccessible
to wheeled mobile robots. Compliance in the leg improves locomotion of legged
robot [40]. Variable compliance in the legs [16] overcomes the size, weight,
fragility, and efficiency problem. Basically, legged robots are discrete systems
in which joints of each leg have to operate in particular fashion. So, dynamics
plays an important role in the operation and control of a walking robot. Recently,
there has been a noteworthy increase in the use of computational dynamics for
design, analysis, simulation, and control of various robotic systems. This is due to
availability of various multi-body dynamic analysis tools and faster computational
resources. To this end, various researchers used different dynamic analysis methods
for multi-body systems, such as the methods based on Lagrangian equation [23],
Newton–Euler equation [3, 43], Kane’s equation [2, 5, 33], variational methods [4],
and bond graph method [26].

Benani and Giri [6] presented a dynamic model approach of quadruped consid-
ering open and/or closed kinematic chain mechanisms. It is based on Newton–Euler
approach and the explicit formulation of kinematic holonomic constraints for the
closed loop mechanism. Mahapatra and Roy [27] developed a dynamic model
of six legged in CATIA solid modeler, SimDesigner, and ADAMS multi-body
dynamic solver and kinematic and dynamic simulation is performed based on virtual
prototyping technology. Krishnan et al. [26] presented a bond graph model of
compliant legged quadruped robot in a sagittal plane. The sagittal plane dynamics
have been tested through experimental set-up. Soyguder and Ali [39] solved the
stance and flight phase dynamic structures in a sequential closed loop for quadruped
and obtained the equation of motion for pronking gait. Shah et al. [36] presented a
concept of kinematic modules for the development of the dynamic model of the
four legged robots where each module is considered as a set of serially connected
links. Module-level Decoupled Natural Orthogonal Complement (DeNOC) matrices
were introduced which help to analyze the large number of links as a system with
a smaller number of modules. Recursive kinematic relationships were obtained
between two adjoining modules. Ganesh and Pathak [17] developed a dynamic
model of four legged in a sagittal plane by formulating kinetic and potential energy
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equation of body and leg. These were used to derive Lagrangian function and then
equation of motion. A locomotion control strategy for quadruped robot has been
presented in [20]. Dynamic modeling and analysis of quadruped robot through bond
graph technique has been presented in [19].

Many of the quadruped robots developed worldwide are biologically inspired.
Process of natural selection governing evolution of species forces animals adapt to
their specific physical features and environment by optimizing their locomotion.
Some animals are better at doing certain things in comparison to others. Thus,
keeping the required task or operation features in the view, more and more
specialized biologically inspired quadrupeds are being developed now-a-days. Some
of them are Baby Elephant [11], BigDog [31], Cheetah-cub [40], HyQ [35],
LittleDog [10, 37], and Tekken [14, 25]. Hydraulically actuated Baby Elephant
[11] was designed to work as mechanical carrier. It has 12 DOFs and compliant
legs. Multi-body dynamic simulation was used in [11] for its design and the
results were experimentally validated. BigDog [31] was developed with the goal
to move in rough terrain without human assistance. It has 20 DOFs and about
50 sensors. Four joints of each leg are operated by hydraulic actuator. It uses a
two-stroke internal combustion engine that delivers up to 15 hp power. Electrically
actuated Cheetah-cub [40] was designed for high-speed locomotion. Cheetah-cub’s
legs are spring loaded and pantograph mechanism with multiple segments is used
for shock absorption during running. This robot’s self-stabilizing properties were
demonstrated in hardware model and in simulation carried out in Webots software.
HyQ [35] developed at IIT Genova was designed to perform highly dynamic tasks
like jumping and running. It has 12 DOFs and both hydraulic and electrical actuation
systems. During running and jumping, generated impact forces were absorbed by
hydraulic actuation mounted on hip and knee joints in the flexion/extension plane of
the leg. The hip abduction/adduction joint was actuated by brushless electric motor
which provides constant output torque. LittleDog [10, 37] has 12 DOFs and each
joint is operated by a high-gain servo motor. Sensors mounted on the robot measure
body orientation, joint angles, and ground-foot contact. Sensing, communication,
and actuators are controlled by onboard PC-level computer. Tekken [14, 25] is a light
weight (4.3 kg) manually operated power autonomous compliant legged quadruped
robot. It has 16 DOFs, three joints around pitch axis (ankle, knee, and hip), and one
hip joint around yaw axis at each leg. At ETH Zurich, two quadrupeds have been
developed having similar structure, size, and morphology, but different concept of
actuation [32]. The first, ALoF, is a classically stiff actuated robot that is controlled
kinematically; whereas the second, StarlETH, uses a soft actuation scheme based
on highly compliant series elastic actuators.

In this chapter, three dimensional dynamic model of compliant legged quadruped
robot using bond graph has been developed. A quadruped robot configuration used
for analysis is two links legged robot in which upper link is rigid and a lower
link is compliant. Lower link is considered similar to a prismatic link in which,
piston and piston rod is sliding inside the cylinder and movement is restricted by
the spring which generates compliance in the leg. The strategy for locomotion
control in joint space as well as workspace is discussed. To validate the same,
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simulation and animation of the trot gait performed by the quadruped is carried
out which is further verified by experiment results. Since trot gait is dynamically
stable gait thus successful validation of model in trot gait ensures the model validity
in other gaits also. To prove the versatility of the three dimensional model generated
a turning motion of the robot is demonstrated by varying the leg speed in amble
gait. Influence of compliance on quadruped locomotion and posture disturbance
is studied. Performance analysis is carried out considering energy efficiency as
deciding criteria. Performance analysis on rigid and compliant legged robots, static
and dynamic gaits, and foot trajectory is carried out. Nomenclature used throughout
this chapter is listed below.

Nomenclature

fAg Inertial frame
fBg Robot body frame
ci, si cos(� i), sin(� i)
D Width of a piston of a prismatic link
F Force
Fxc, Fyc, Fzc External force acting at the cylinder body fixed x, y, and z axes
H Angular momentum
I Link number, frame number
Irot Rotor inertia
Ixb, Iyb, Izb Moment of inertia of the robot body about x, y, and z axes
Ixx1, Iyy1, Izz1 Moment of inertia of the upper link of robot leg about x, y, and z axes
Ixxc, Iyyc, Izzc Moment of inertia of the cylinder part of a prismatic link about x, y, and z axes
Ixxp, Iyyp, Izzp Moment of inertia of the piston part of a prismatic link about x, y, and z axes
kb Contact point stiffness at the piston cylinder of prismatic link
kf Flexibility due to hydraulic pressure inside the cylinder of prismatic link
Kgx, Kgy, Kgz Ground contact stiffness in x, y, and z direction
KP, KI,KD Proportional, integral, and derivative gain of controller
Kpb, Kib, Kdb Proportional, integral, and derivative gain of controller for body forward
lc Contemporary length of prismatic link
lcg Distance of cylinder CG from a cylinder end frame of prismatic link
li Length of link i

lp Length of a piston and piston rod of prismatic link
lpg Distance of piston CG from a piston end frame of prismatic link
Lm Motor inductance
mb Mass of the body
mc Mass of cylinder part of the prismatic link
mli Mass of link i

mp Mass of a piston and piston rod of a prismatic link
Mxc, Myc, Mzc External moment acting at the cylinder body fixed x, y, and z axes
n Gear ratio
p Translational momentum
A
BR Transformation from body frame fBg to inertial frame fAg



14 Bond graph Modeling and Control of Compliant Legged Quadruped Robot 501

Rb Contact point resistance at the piston cylinder of prismatic link
Rf Damping between piston and cylinder of prismatic link
Rgx, Rgy, Rgz Ground contact resistance in x, y, and z direction
rix, riy, riz Position of the frame f0g of ith leg with respect to the body CG
Rm Motor resistance
t Time
vx, vy, vz Translational velocities of the body
� i Angular displacement of frame i
� Torque
 , � , � Euler angles representing a robot body rotation about x, y, z axis of the body

fixed frame
 c, � c, �c, Cardan angles about x, y, z axis of the moving fixed frame
! Angular velocity
!xc, !yc, !zc Angular velocities of the mass center of the cylinder in the body fixed frame

14.2 Modeling of a Quadruped Robot

Modeling of a quadruped robot consists of modeling of angular and translational
dynamics of robot body and legs. Figure 14.1a shows physical model of quadruped
robot, while Fig. 14.1b shows the schematic diagram of a quadruped robot model in
which fAg is an inertial frame and fBg is the body frame attached to body center of
gravity (CG).

Frame f0g is fixed at the hip joint of each leg which is fixed on the robot body.
Each leg of the quadruped robot has two degree of freedom (DOF) with two revolute

Fig. 14.1 (a) Physical model of quadruped robot [21]. (b) Schematic representation of quadruped
robot with compliant legs [19, 21]
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joints per leg. The joint between links i and i C 1 is numbered as i C 1. A coordinate
frame fi C 1g is attached to (i C 1) joint. Frame f1g is attached to joint 1 of each leg.
Frame f0g is coinciding with frame f1g. Frame f2g is attached to joint f2g, while
frame f3g is attached to leg tip. The rotational inertias are defined about frames
fixed at the CG of the link. The CG frame is fixed along the principal directions in
the link or body. The surface on which the robot is walking is assumed as a hard
surface.

14.2.1 Dynamics of a Robot Body

For a given instant, any rigid body has absolute translational velocity �!v and absolute
angular velocity �!! . The translational velocity and angular velocity vectors have
been resolved into three mutually perpendicular components vx, vy, vz and !x, !y,

!z. The net force
�!
F acting on the body and the linear momentum �!p can be related

with respect to rotating frame as [24],

�!
F D

 
d�!p
dt

!
rel

C �!! � �!p (14.1)

where
�

d�!p
dt

�
rel

is the rate of change of momentum relative to the moving frame.

Similarly, the relationship between the net torque �!� acting on the body and the

angular momentum
�!
h can be written as,

�!� D
 

d
�!
h

dt

!
rel

C �!! � �!
h (14.2)

Using the right-hand rule for Eqs. (14.1) and (14.2), the component equations can
be written as,

Fx D mb
:
vx C mb!yvz � mb!zvy (14.3)

Fy D mb
:
vy C mb!zvx � mb!xvz (14.4)

Fz D mb
:
vz C mb!xvy � mb!yvx (14.5)

and

�x D Ixx
:
!x C �

Izz � Iyy
�
!y!z (14.6)

�y D Iyy
:
!Y C .Ixx � Izz/ !z!x (14.7)



14 Bond graph Modeling and Control of Compliant Legged Quadruped Robot 503

�z D Izz
:
!z C �

Iyy � Ixx
�
!x!y (14.8)

These nonlinear differential equations are known as Newton–Euler‘s equations [28].
The cross product terms can be treated as forces in a set of Eqs. (14.3), (14.4), and
(14.5) and as torques in a set of Eqs. (14.6), (14.7), and (14.8). The forces and
torques can be added at the respective 1-junctions and using gyrator-ring structures
bond graph is generated as presented in [28]. Generated structure is known as Euler
Junction Structures (EJS).

14.2.2 Dynamics of an Upper Link of Leg

Translational velocity of frame f0g of each leg with reference to frame fAg and
expressed in term of frame fAg is given by [12],

A
�

A�!
V 0

�
D A

�
A�!

V B

�
C B

AR
h
�B
�

B�!
P 0

�
� B

�
A�!! B

�i
(14.9)

where A
�

A�!
V B

�
represents the translational velocity of body frame fBg with respect

to an inertial frame fAg and expressed in frame fAg; B
�

A�!! B

�
represents the angular

velocity of body frame fBg with respect to inertial frame fAg and expressed in frame

fBg; B
�

B�!
P 0

�
i

represents the position vector of frame f0g of ith leg with respect

to the body CG frame fBg and expressed in frame fBg. It can be expressed as
B
�

B�!
P 0

�
i
D �

rix riy riz

�T
where i denotes legs 1–4. Here r denotes position of frame

f0g with respect to body CG frame. In Eq. (14.9), A
BR represent the transformation

from body frame fBg to inertial frame fAg and can be expressed as,

A
BR D

0
@ c� c� s s� c� � c s� c s� c� C s s�

c� s� s s� s� C c c� c s� s� � s c�
� s� s c� c c�

1
A (14.10)

where c� is shorthand for cos� , s� for sin� , and so on. �, � and  are the Z-Y-X
Euler angles. Governing equation for an angular velocity propagation (AVP) of links
of a leg can be given as [12],

iC1 �A�!! iC1
�

DiC1
i Ri

�
A�!! i

�
C iC1 �i�!! iC1

�
(14.11)

where iC1
�

A�!! iC1
�

is the angular velocity of (i C 1) link with respect to inertial

frame fAg and expressed in (i C 1)th frame, i
�

A�!! i

�
is the angular velocity of

the ith link with respect to the inertial frame fAg and expressed in ith frame, and
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iC1
�

i�!! iC1
�

is the angular velocity of (i C 1) link as observed from ith link and

expressed in (i C 1)th frame. The term can be expressed for link 1 and 2, respectively

as, 1
�
0�!! 1

�
D
h :

�1 0 0

iT
, 2
�
1�!! 2

�
D
h :

�2 0 0

iT
where

:

�1 represents angular

velocity of frame f1g with respect to frame f0g expressed in frame f1g and similarly
:

�2 represents the angular velocity of frame f2g with respect to frame f1g expressed
in frame f2g.

For translational velocity propagation (TVP), governing equation for the link tip
velocity and link CG velocity are given as,

A
�

A�!
V iC1

�
D A

�
A�!

V i

�
CA

i R
h

i
�

A�!! i

�
� i
�

i�!P iC1
�i

(14.12)

where A
�

A�!
V iC1

�
represents the translational velocity of body frame fi C 1g with

respect to an inertial frame fAg and expressed in frame fAg, A
�

A�!
V i

�
represents

the translational velocity of body frame fig with respect to an inertial frame fAg
and expressed in frame fAg, i

�
i�!P iC1

�
represents position of frame fi C 1g with

respect to frame fig and expressed in frame fig. Link lengths l1 and l2 are taken
along the principal Y-axis of the links and hence represented in vector form as,
0�!P 1 D �

0 0 0
�T

, 1
�!
P 2 D �

0 l1 0
�T

, 2
�!
P 3 D �

0 l2 0
�T

Equation (14.12) can be simplified as,

A
�

A�!
V iC1

�
D A

�
A�!

V i

�
CA

i R
h
�i
�

i�!P iC1
�

�
i h

i
�

A�!!i

�i
(14.13)

For position of a link CG, i
�

i�!P Gi

�
D �

0 lGi 0
�T

A
�

A�!
V Gi

�
D A

�
A�!

V i

�
CA

i R
h
�i
�

i�!P Gi

�
�
i h

i
�

A�!!i

�i
(14.14)

Equations (14.12), (14.13), and (14.14) represent the TVP of link in each leg of the
robot. The CG velocity of links depends on link inertia. In the bond graph model “I”
elements (representing mass of a link) are attached at flow junctions. They yield the
CG velocities of links. The starting point of the current link is same as the previous
link tip. Hence, the tip velocity of the previous link and the angular velocity of the
current link are used to find the tip velocity and the CG velocity of the current link.
i
�

A�!!i

�
in above equations can be obtained from the AVP for the current link.

The EJS to represent angular dynamics of the link can be constructed similarly
as discussed in Sect. 14.2.1. In case of link, torque is provided in x direction only.
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Fig. 14.2 Schematic diagram of prismatic link [7, 9]

14.2.3 Dynamics of the Prismatic Link

Lower link of the quadruped leg can be considered as a prismatic link, in which
piston and piston rod is sliding inside cylinder. The movement is restricted by the
internal hydraulic pressure of the cylinder and helical compression spring attached
at the piston rod. This arrangement generates compliance in the leg. The sliding
of piston is one of the most difficult multi-body components which give rise to
nonlinear equations of motion. It is important to develop bond graph model of
prismatic link with proper mass distribution. Incorrect modeling of entire prismatic
link generates improper inertial forces. Thus, utmost care should be taken at the
time of generating bond graph model of the three dimensional prismatic link. Bond
graph modeling of prismatic link is developed from the concept presented in [7–9,
13, 28]. The schematic drawing of prismatic link is shown in Fig. 14.2.

Local coordinate frame is attached at the center of mass of piston (xp, yp, zp) and
cylinder (xc, yc, zc) and they are assumed to be aligned with the inertial principal
axes. Piston and cylinder motions are described with reference to this body fixed
coordinate system which rotate and translate with the respective rigid bodies. The
end of the cylinder part will be fixed with the link 1 of quadruped robot and piston
end will touch the ground. X2, Y2, Z2 and X3, Y3, Z3 are the inertial coordinate system
while x2, y2, z2 and x3, y3, z3 are body fixed or non-inertial coordinate system of the
cylinder and piston end, respectively. The contemporary length lc is the distance
between the two end points. The center of gravity of the cylinder is located at a
distance of lcg from the fixed end. The combined center of gravity of the piston and
the rod is located at a distance of lpg from the rod end. The length of the piston is d.
The center of the piston is located at a distance lp from the rod end.

The velocity vector of the cylinder in the inertial frame is represented as �!v Xc;Yc;Zc

and in the body fixed frame as �!v xc;yc;zc. The angular velocity vector in the body fixed
frame is �!! xc;yc;zc. Then, Euler equation for translatory motion of the cylinder can be
given as,

Fxc D Mc Rxc C Mc
� :
zc!yc � :

yc!zc
�

(14.15)
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Fyc D Mc Ryc C Mc
� :
xc!zc � :

zc!xc
�

(14.16)

Fzc D McRzc C Mc
� :
yc!xc � :

xc!yc
�

(14.17)

where Fxc, Fyc, Fzc are external forces acting in body fixed xc, yc, and zc directions,
respectively, !xc, !yc, and !zc are angular velocities of the mass center of the
cylinder in the body fixed frame.

:
xc;

:
yc and

:
zc are velocities of the mass center in the

body fixed frame, Rxc; Ryc and Rzc are accelerations of the mass center in the body fixed
frame. Similarly, Euler equations for rotary motion of the cylinder can be given as,

Mxc D Ixc
:
!xc � �

Iyc � Izc
�
!yc!zc (14.18)

Myc D Iyc
:
!yc � .Izc � Ixc/ !zc!xc (14.19)

Mzc D Izc
:
!zc � �

Ixc � Iyc
�
!xc!yc (14.20)

where Ixc, Iyc, and Izc are second moment of inertia about the principal axes, Mxc,
Myc, and Mzc are components of resultant moment due to external forces and couples
about the non-rotating coordinate frame whose axes are momentarily aligned with
the principal axes of the body.

Above Euler equations can be represented by the double gyrator rings where the
gyrators are modulated by the angular velocities in the body fixed frame. Similarly,
Euler equations can be generated for the piston also and it can be represented by the
double gyrator rings. Generated bond graph model of above equations are shown in
Fig. 14.3 in which G1–G12 are the gyrator moduli taken from above equations.

The position of the fixed point in the body fixed frame is x2, y2, z2. The velocity
of the cylinder in the body fixed frame is

:
x2 D :

xc C z2!yc � y2!zc (14.21)
:
y2 D :

yc C x2!zc � z2!xc (14.22)
:
z2 D :

zc C y2!xc � x2!yc (14.23)

Equations (14.21), (14.22), and (14.23) are body fixed velocities. So, it is necessary
to convert it into the inertial frame by coordinate transformation block (CTF). CTF
block is generated using successive multiplication of rotation matrices as follows:

8̂<
:̂

:

X2
:

Y2
:

Z2

9>=
>; D T�c;�c; c

8<
:

:
x2
:
y2
:
z2

9=
; (14.24)

where
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Fig. 14.3 Bond graph model sub-model of prismatic link (PL)

T�c;�c; c D
2
4 c�c �s�c 0

s�c c�c 0

0 0 1

3
5
2
4 c�c 0 s�c

0 1 0

� s�c 0 c�c

3
5
2
4 1 0 0

0 c c �s c

0 s c c c

3
5 (14.25)

c� c is shorthand for cos� c, s� c for sin� c, and so on and �c, � c and  c are the Z-Y-X
Cardan angles. Components of T�c,�c, c are used to construct CTF block. Similarly,
the velocity of the piston in the body fixed frame can be written and it can be
converted into an inertial frame. It is to be noted that the required angle for CTF
block is derived from the inverse transformation from body fixed angular velocities
to Euler angle rates [28].

The normal fixed velocities at the contact point 4 and 5 on the cylinder and piston
along x and z directions by assuming a thin but long piston can be given as [7]
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:
x4c D :

xc C
�

l � lp � lcg � d

2

	
!zc (14.26)

:
z4c D :

zc C
�

l � lp � lcg � d

2

	
!xc (14.27)

:
x4p D :

xp �
�

lp � lpg C d

2

	
!zp (14.28)

:
z4p D :

zp �
�

lp � lpg C d

2

	
!xp (14.29)

:
x5c D :

xc C
�

l � lp � lcg C d

2

	
!zc (14.30)

:
z5c D :

zc C
�

l � lp � lcg C d

2

	
!xc (14.31)

:
x5p D :

xp �
�

lp � lpg � d

2

	
!zp (14.32)

:
z5p D :

zp �
�

lp � lpg � d

2

	
!xp (14.33)

where �!! indicates the body fixed angular velocity about the axis indicated in
subscript. Subscript c has been used for cylinder while p has been used for the
piston. Above discussed contact point mechanism is model as shown in Fig. 14.4.

The rate of change of contemporary length between two end points of prismatic
link can be expressed as

:

lc D �x

� :
X

0
2 � :

X
0
3

�
C �y

� :
Y

0
2 � :

Y
0
3

�
C �z

� :
Z

0
2 � :

Z
0
3

�
(14.34)

where X
0

2, Y
0

2, Z
0

2 and X
0

3, Y
0

3, Z
0

3 are coordinates of cylinder end and piston end,

respectively, in the inertial frame, �x D .X0

2�X0

3/
lc

, �y D .Y0

2�Y0

3/
lc

, and �z D .Z0

2�Z0

3/
lc

are moduli used to derive the relative sliding velocity between piston and cylinder
at “0” junction. Compliance in the link is modeled by “C” and “R” element. For
contact point mechanics, to compute contact point velocities in body fixed frame
moduli ˇ1–ˇ4 and ˇ5–ˇ8 are determined from kinematic analysis of the cylinder
and piston, respectively. Through a set of transformer moduli �1–�12 similar to an
expanded form of CTF block, body fixed velocities are transformed into inertial
velocities and then they are implicitly constrained. The relative normal velocity
between the contact point on the cylinder and the normal velocity at the contact point
on the piston is implicitly constrained by contact stiffness and damping parameters,
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Fig. 14.4 Bond graph sub-model of contact of point mechanism (CPM) for prismatic link
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Fig. 14.5 Multibond graph of a quadruped robot

kb and Rb, respectively. The three external effort inputs are from the motor. Since
the motor applies torque about body fixed x-axis on the cylinder, two of these effort
inputs are zero.

14.2.4 Dynamics of Combined Body and Leg Links

The bond graph model is developed using above discussed body and leg dynamics.
A compact and a simple presentation of a bond graph model can be carried out in
multibond graph form. Here also developed three dimensional model of quadruped
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robot is presented in multibond graph form as shown in Fig. 14.5. TVP sub-model of
the “Body” part is shown in the multibond graph. It takes the angular velocity from

a body B
�

A�!! B

�
(obtained from EJS) and translational velocity A

�
A�!

V B

�
(decided

by body mass) as input and gives out the velocity of f0g frame to the link 1 of each
leg. Frames f0g and f1g are coincident for each leg. Hence, the velocity of frame
f1g is same as the frame f0g. “Leg” sub-model in the multibond graph represents a
two DOF leg. It takes the angular and linear velocity of body and joint torques about
x-axis as input. It uses AVP and TVP sub-models of links 1 and 2 and gives out leg
tip velocity as output. This sub-model furnishes complete dynamics of a two link
leg. The various sub-models shown in Fig. 14.5 for leg 1 can also be used to model
legs 2, 3, and 4. The leg tip sub-model in Fig. 14.5 represents the modeling of leg
tip-ground interaction. An R element is appended to “1” junction of each leg in the
X and Y direction, to model the frictional resistance offered by ground. Similarly,
C and R elements are attached in Z direction to model the normal reaction force
from the ground. Leg tip position sensors in each direction yield the leg tip position
coordinates.

A systematic construction of bond graph model yields a dynamics expression
that can be written in matrix form as

�!� i D
h
A .�/ R� C B

�
�;

:

�
�

C C .�/
i

i
� JT

i
�!
F i (14.35)

where �!� is the 2 � 1 matrix of joint torque and
�!
F is the 3 � 1 vector of the ground

contact force of leg i, J is the Jacobian matrix, A(� ) is the 3 � 3 mass matrix, B
is a 3 � 1 matrix of centrifugal and Coriolis terms, and C(� ) is a 3 � 1 matrix
of gravity terms. A pad is used to avoid differential causality. Pads are artificial
compliances/lumped flexibilities that can be used in bond graph [18, 29]. Bond
graph model of above discussed body and leg dynamics is developed in SYMBOLS
software [34].

Compliance in the link improves locomotion of quadruped robot. But over
compliance reduces locomotion speed and also affects posture disturbance. So,
most suitable value of compliance is must for specific robot configuration. This
objective can be achieved by simulating bond graph model of quadruped. Number
of simulations can be carried out by varying the compliance (which is discussed
in coming section), and its values can be finalized for maximum locomotion speed
of robot. This stiffness and load coming on each leg becomes the key parameters
for designing the spring used in prismatic link. Number of turns of spring n can be
decided as

n D ıGd

8WC3
(14.36)

where W is load, ı is axial deflection derived from load(W)/stiffness(K), C is
spring index derived from coil diameter(D)/wire diameter(d), and G is the Modulus
of rigidity of the spring material. Here, W is the dynamic load estimated from
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simulations and the spring design is valid only when the inertial effects of the spring
are neglected, i.e., when the rigid-body acceleration is not very large.

14.3 Locomotion Control of Quadruped Robot

A quadruped robot can be considered as a multi-arm industrial manipulator with a
mobile base. As a consequence, its control is considerably difficult as compared to
that of a terrestrial manipulator. Also, each leg has to pass through stand and motion
phases depending upon the gait pattern. In such a situation, the locomotion control
is a difficult problem which demands accurate kinematic and dynamic analyses.
Walk can be classified as “static walk” and “dynamic walk.” In static walk stability
is maintained by keeping at least three feet planted on the ground and maintaining
the center of gravity within the support of polygon. In dynamic walk stability is
maintained by continuously moving either the feet or the body to maintain balance.
Alexander [1] shows various gait patterns followed by four legged animals. Here
statically stable gait “Amble” and dynamically stable gait “Trot” are considered. In
case of trot gait one pair of diagonal legs moves forward while other pair remains on
the ground, which reverses in next phase of locomotion. In case of statically stable
amble gait, at a time only one leg moves forward while remaining legs maintain
contact with the ground. Here, legs are operated one by one in 1-4-2-3 sequence.
Both the gaits are shown in Fig. 14.6, where dark line indicates corresponding leg
contact with the ground.

Quadruped locomotion can be controlled either in joint space or in workspace. In
joint space control commands are directly given for specific joint rotation, while in
workspace control, based on the need of feet trajectory joints movements are derived
and commands are given to actuators for the same.

Fig. 14.6 Trot and amble gait
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Fig. 14.7 Graphical representation of leg and body movement

Table 14.1 Joint position for trot gait

Leg 1 Leg 2 Leg 3 Leg 4
Joint position correspon-
ding to time interval Joint 1 Joint 2 Joint 1 Joint 2 Joint 1 Joint 2 Joint 1 Joint 2

Initial joint angle �1.871 0.622 �1.671 0.537 �1.271 �0.622 �1.471 �0.537
T0 � t < T1/2 �1.962 0.944 �1.781 0.602 �1.361 �0.602 �1.179 �0.944
T1/2 � t < T1 �1.671 0.537 �1.871 0.622 �1.471 �0.537 �1.271 �0.622
T1 � t < T2/2 �1.781 0.602 �1.962 0.944 �1.179 �0.944 �1.361 �0.602
T2/2 � t < T2 �1.871 0.622 �1.671 0.537 �1.271 �0.622 �1.471 �0.537

14.3.1 Joint Space Control

In joint space control, commands are directly given to the joint based on the required
gait pattern. To simulate the bond graph model in any of the gait, it is necessary
to know rotation required at each joint so that a required voltage can be supplied
to get the desired rotation of a joint. Thus, to determine a joint rotation, for leg
forward and body forward movement, graphical analysis is carried out. Graphical
analysis as shown in Fig. 14.7 gives an idea about a joint rotation required for the
said movement.

From Fig. 14.7, joint position with reference to time is listed in Table 14.1 for
trot gait. Here, cubic curve is fitted for smooth joint rotation. The required voltage
for the said movement is supplied by actuator which is controlled by Proportional-
Integral-Derivative (PID) controller and can be represented as,

V D KP .�d � �a/C KD

� :
�d �

:

�a

�
C KI

Z
.�d � �/dt (14.37)

where V is the input voltage supplied to the joint actuator of leg; KP, KD, and KI

are the proportional, derivative, and integral gains, respectively; �d is the desired

position, �a is the actual measured angular position,
:

�d is the desired joint velocity,

and
:

�a is the actual measured joint velocity.
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14.3.2 Workspace Control

To control the quadruped locomotion in the workspace two distinct control steps are
executed in sequence as per the selected gait pattern:

1. Leg forward motion control where the desired leg tip trajectory in the forward
direction is obtained by fitting a cubic curve in the path to be followed and the
leg vertical motion in Z direction is obtained by fitting two cubic curves. The
trajectory error is fed to a PI controller whose output is then transformed through
Jacobian to generate the corrective joint torques.

2. Body forward motion control where the leg tips remain fixed on the ground and
the joints are actuated in order to align leg segments to their initial positions.
Here, the required torque is directly supplied to the joints by the actuators, which
are controlled by PID controller.

14.3.2.1 Reference Tip Velocity Generation

In this control strategy authors assumed joint motions such that leg tip has horizontal
and vertical translation. The entire trajectory generation process consisting of
various steps has been explained in Fig. 14.8.

If the robot joints are powered in the sequence as discussed in Sect. 14.3.1, the leg
tip position for leg 1 in Y and Z directions as obtained from a dynamic model turns
out to be as shown in Fig. 14.9. However, such actuation of joints is a joint space
control and the problem it is that the complicated trajectories with constraints, such
as obstacles, cannot be achieved easily due to nonlinear kinematics of the system. If
similar kind of motion is required through workspace control, tip trajectory should
be taken as input.

Here, cubic curve equation is used for fitting the leg tip movement in Y direction
shown in Fig. 14.9.

y.t/ D y1 C 3 .y2 � y1/

tf 2
t2 C �2 .y2 � y1/

tf 3
t3 (14.38)

where y1 is initial position of leg tip, y2 is final position of leg tip, and tf is trajectory
end time. In generation of trajectory given by Eq. (14.38), it is assumed that at
t D 0I y.t/ D y1;

:
y.t/ D 0 and at t D tf I y.t/ D y2;

:
y.t/ D 0: For Z direction,

Fig. 14.8 Leg tip trajectory generation
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Fig. 14.9 Leg 1 tip displacement in (a) Y and (b) Z directions; (c) initial position of legs and (d)
position of the legs at the end of first phase

the trajectory is divided into two segments. For the smooth motion of quadruped,
the reference tip velocity and its derivative should be continuous. There are several
ways in which desired velocities at via points can be specified [12]. For Z direction,
cubic polynomials are fitted with constraints that the accelerations at via points have
to be continuous. The first and second cubic interpolation polynomials are

z1.t/ D zi C
�
12zv � 3zf � 9zi

�
4tf12

t2 C
��8zv C 3zf C 5zi

�
4tf13

t3 (14.39)

z2.t/ D zv C
�
3zf � 3zi

�
4tf2

t C
��12zv C 6zf C 6zi

�
4tf22

t2 C
�
8zv � 5zf � 3zi

�
4tf23

t3

(14.40)

where zi is initial position, zf is final position, zv is via point, and t D tf 1 is trajectory
end time for first segment and t D tf 2 is trajectory end time for second segment. In
generation of trajectories given by (14.39) and (14.40), it is assumed that

at t D 0I z1.t/ D zi;
:
z1.t/ D 0;

at t D tf1I z1.t/ D zv; z2.t/ D zv;
:
z1.t/ D :

z2.t/; Rz1.t/ D Rz2.t/;
and at t D tf2I z2.t/ D zf ;

:
z2.t/ D 0:
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:
y.t/ D 6 .y2 � y1/

tf 2
t C �6 .y2 � y1/

tf 3
t2 (14.41)

:
z1.t/ D 2

�
12zv � 3zf � 9zi

�
4tf12

t C 3
��8zv C 3zf C 5zi

�
4tf13

t2 (14.42)

:
z2.t/ D

�
3zf � 3zi

�
4tf2

C 2
��12zv C 6zf C 6zi

�
4tf22

t C 3
�
8zv � 5zf � 3zi

�
4tf23

t2 (14.43)

Use of Eqs. (14.38), (14.39), (14.40), (14.41), (14.42), and (14.43) with required
gait patterns yields the reference profile for leg as shown in Figs. 14.10 and 14.11.
Thus, Fig. 14.9a, b has been faithfully mathematically represented by Fig. 14.10a, b.
Similarly, reference profile for remaining legs can also be obtained. These reference
profiles are used to operate the model in workspace. The velocities are fed in the
bond graph model by using SF elements.

Fig. 14.10 Displacement profile through cubic polynomial: (a) displacement in Y, (b) displace-
ment in Z directions

Fig. 14.11 Trajectory through cubic polynomial: (a) velocity in Y and (b) velocity in Z directions
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14.3.2.2 Proportional Integral Controller

A PI controller is used here to achieve the leg forward movement according to a
desired trajectory profile. Here, the joint input torque is controlled by calculating an
error value as the difference between the measured and reference velocities at a leg
tip. The PI controller gives a control signal gives a control signal

V1 D KPe C KI

Z
edt (14.44)

where V1 is the output from the controller when there is an error e which is changing
with time t, KP is the proportionality constant, and KI is the integral constant.

14.3.2.3 Jacobian

Jacobian is a mapping from velocities in joint space to Cartesian space. The inverse
problem, where the joint velocities are to be determined for a given tip velocity,
requires the inverse of the Jacobian. For quadruped robot working in workspace,
one needs to evaluate the Jacobian for joint control through a controller. Considering
compliance in the lower links of the leg and velocity propagation, the velocity of the

leg tip A
�

A�!
V 3

�
represents the translational velocity of frame f3g with respect to the

inertial frame fAg and expressed in frame fAg. A
�

A�!
V 3

�
can be written as,

A
�

A�!
V 3

�
D A

�
A�!

V 2

�
C 2

AR
h
�2
�
2�!P 3

�
�
i h

2
�

A�!! 2

�i
C 2

AR
:

d3
3bZ3 (14.45)

where A
�

A�!
V 2

�
is the translational velocity of frame f2g with respect to inertial

frame fAg and expressed in frame fAg, A
2 R is the rotation matrix which describes f2g

relative to fAg, 2
�
2�!P 3

�
is the position vector of frame f3g with respect to frame

f2g and expressed in frame f2g, and 2
�

A�!! 2

�
is the angular velocity of link 2 with

respect to the inertial frame fAg and expressed in frame f2g.
Using Eq. (14.45), leg tip velocity of each leg can be derived; the expanded form

of this equation is shown in (14.46).



518 M.M. Gor et al.

:

Xitip
:

Yitip
:

Zitip

D

2
6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

:

XCG C
��� s s�c¿s1il1 C c s¿s1il1 C c s�c¿c1il1 C s s¿c1il1

�s s�c¿c1is2il2 C c s¿c1is2il2 � c s�c¿s1is2il2 � s s¿s1is2il2
�s s�c¿s1ic2il2 C c s¿s1ic2il2 C c s�c¿c1ic2il2 C s s¿c1ic2il2

� :
�1

C �� s s�c¿c1is2il2 C c s¿c1is2il2 � c s�c¿s1is2il2
�s s¿s1is2il2 � s s�c¿s1ic2il2 C c s¿s1ic2il2
Cc s�c¿c1ic2il2 C s s¿c1ic2il2

� :
�2

C �
c s�c¿ryi C s s¿ryi � s s�c¿rzi C c s¿rzi � s s�c¿s1il1

Cc s¿s1il1 C c s�c¿c1il1 C s s¿c1il1 � s s�c¿c1is2il2 C c s¿c1is2il2
�c s�c¿s1is2il2 � s s¿s1is2il2 � s s�c¿s1ic2il2 C c s¿s1ic2il2
Cc s�c¿c1ic2il2 C s s¿c1ic2il2

�
!x

C �� c s�c¿rxi � s s¿rxi C c�c¿rzi C c�c¿l1s1i

Cc�c¿l2s2ic1i C c�c¿l2c2is1i
�
!y

C �
s s�c¿rxi � c s¿rxi � c�c¿ryi � c�c¿l1c1i

Cc�c¿l2s2is1i � c�c¿l2c2ic1i
�
!z

C �
..s s�c¿ � c s¿/ c1i C .c s�c¿ C s s¿/ s1i/ c2i

C .� .s s�c¿ � c s¿/ s1i C .c s�c¿ � s s¿/ c1i/ s2i
�:
l2i

�

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;8̂̂

ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂:

:

YCG C
��� s s�s¿s1il1 � c c¿s1il1 C c s�s¿c1il1

�s c¿c1il1 � s s�s¿c1is2il2 � c c¿c1is2il2 � c s�s¿s1is2il2
Cs c¿s1is2il2 � s s�s¿s1ic2il2 � c c¿s1ic2il2 C c s�s¿c1ic2il2 � s c¿c1ic2il2

� :
�1

C �� s s�s¿c1is2il2 � c c¿c1is2il2 � c s�s¿s1is2il2
Cs c¿s1is2il2 � s s�s¿s1ic2il2 � c c¿s1ic2il2
Cc s�s¿c1ic2il2 � s c¿c1ic2il2

� :
�2

C �
c s�s¿ryi � s c¿ryi � s s�s¿rzi � c c¿rzi � s s�s¿s1il1 C c c¿s1il1

Cc s�s¿c1il1 � s c¿c1il1 � s s�s¿c1is2il2 � c c¿c1is2il2
�c s�s¿s1is2il2 C s c¿s1is2il2 � s s�s¿s1ic2il2 � c c¿s1ic2il2
Cc s�s¿c1ic2il2 � s c¿c1ic2il2

�
!x

C �� c s�s¿rxi C s c¿rxi C c�s¿rzi C c�s¿l1s1i

Cs2ic1ic�s¿l2 C c2is1ic�s¿l2
�
!y

C �
s s�s¿rxi C c c¿rxi � c�s¿ryi � c�s¿l1c1i

Cs2is1ic�s¿l2 � c2ic1ic�s¿l2
�
!z

C �
..s s�s¿ � c c¿/ c1i C .c s�s¿ � s c¿/ s1i/ c2i

C .� .s s�s¿ C c c¿/ s1i C .c s�s¿ � s c¿/ c1i/ s2i
�:
l2i

�

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;8̂̂

ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂:

:

ZCG C
��� s c�s1il1 C c c�c1il1 � s c�c1is2il2

�c c�s1is2il1 � s c�s1ic2il2 C c c�c1ic2il2
� :
�1

C �� s c�c1is2il2 � c c�s1is2il2 � s c�s1ic2il2
Cc c�c1ic2il2

� :
�2

C �
c c�ryi � s c�rzi � s c�s1il1 C c c�c1il1 � s c�c1is2il2

�c c�s1is2il2 � s c�s1ic2il2 C c c�c1ic2il2
�
!x

C .�c c�rxi � s�rzi � s1is� l1 � s2ic1is� l2 � c2is1is� l2/ !y

C �
s�ryi C s c�rxi C c1is� l1 � s2is1is� l2 C c2ic1is� l2

�
!z

C ..s c�c1i C c c�s1i/ c2i C .�s c�s1i C c c�c1i/ s2i/ i2i

�

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

3
7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777775

(14.46)



14 Bond graph Modeling and Control of Compliant Legged Quadruped Robot 519

Using these equations, a sub-model of the Jacobian is prepared in bond graph form
as a conservative transformer junction structure. For the leg tip velocity control,
reference velocity is compared with the actual leg tip velocity and error values are
sent to PI controller. PI controller sends corrective signals to the Jacobian. Jacobian
decides required efforts at the joints for leg forward movement, which is supplied to
the motor in terms of voltage. The equations for the voltage supplied to the motor
can be given as,

V1 D sX˛12 C sY˛11 C sZ˛10 (14.47)

V2 D sX˛15 C sY˛14 C sZ˛13 (14.48)

where sX , sY , and sZ are the corrective signals from PI controllers in X, Y, and Z
directions, respectively. The detailed description of coefficients ˛ij used in Eqs.
(14.47) and (14.48) are obtained from leg tip velocity expressions. Figure 14.12
shows signal flow diagram of three dimensional model of Jacobian

14.3.2.4 Body Forward Motion Control

Body forward motion is achieved by actuating joints 1 and 2 of those legs which are
in contact with the ground so that joint angles are restored to their initial positions.
The voltage supplied to the joints through a PID controller is given as

V2 D Kpb .�d � �a/C Kdb

� :
�d �

:

�a

�
C Kib

Z
.�d � �a/ dt (14.49)

Fig. 14.12 Signal flow diagram of three dimensional model of Jacobian
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where V2 is the input voltage supplied to the joint actuator of leg; Kpb, Kdb, and Kib

are the proportional, derivative, and integral gains, respectively; �d is the desired

position, �a is the actual position,
:

�d is the desired joint velocity, and
:

�a is the
actual joint velocity.

14.3.2.5 Combined Control Law

Combined form of the two control laws is entered in bond graph and since both the
controllers do not work simultaneously for same joint, a switching is used to operate
a particular control law. Combined control law can be presented as

V D a1V1 C a2V2 (14.50)

where

a1 D 1 during leg forward motion and 0 during body forward motion, and
a2 D 1 during body forward motion and 0 during leg forward motion

14.3.2.6 Three Dimensional Model of Quadruped Robot for Workspace
Control

Three dimensional model of quadruped robot presented in Sect. 14.2 is modified
to control in workspace. In this model, joint actuation torque is evaluated as per
the given reference tip trajectory through Jacobian and PI controller. The word
bond graph of quadruped robot control in workspace is shown in Fig. 14.13. While
multibond graph presentation of the model is shown in Fig. 14.14.

14.4 Results and Discussions

Above discussed bond graph model can be used for various research aspects
pertaining to quadruped robot. Discussed joint space control and workspace control
strategies are simulated using developed bond graph model, and its results are
verified through animation and experimental results. Gait pattern considered for
locomotion control is trot gait. In trot gait, diagonally opposite pairs of legs are
actuated together to move forward. This is inspired from the way a horse moves.
This two-beat diagonal gait minimizes the shift in body centroid and ensures
good dynamic stability. Therefore, the quadruped can achieve higher locomotion
speed with this gait. The usefulness of a dynamic model comes when dynamic
forces are significant. Therefore, trot gait has been considered in this chapter for
model validation. Influence of compliance is studied on locomotion parameter. The
performance measure is evaluated based on energy efficiency.
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Fig. 14.13 Multibond graph of quadruped robot for locomotion control in workspace

14.4.1 Simulation, Animation, and Experiment Results
of Locomotion Control in Joint Space

In this section, locomotion control strategy discussed in Sect. 14.3.1 is validated
using simulation and animation of bond graph dynamic model and also through
experiment result.
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Fig. 14.14 Word bond graph of quadruped robot control in workspace

14.4.1.1 Simulation Results for Locomotion Control in Joint Space

Bond graph model is simulated for trot gait, for which controlled efforts are supplied
to the actuators, to reach to required joint position as shown in Table 14.1. Input
parameters considered for the simulation are listed in Table 14.2.

Positive Y direction is considered as forward direction. Time duration for each
cycle is 1.7 s. Simulation is carried out for five cycles. Figure 14.15 shows leg tip
displacement in Y direction, while Fig. 14.16 shows body CG movement in X, Y,
and Z directions. It shows robot moves in a forward Y direction. Legs joint rotations
for the said motion are shown in Fig. 14.17a, b for joint 1 and 2, respectively.
Figure 14.18 shows leg tip displacement in Z direction. Similar way, simulation
can be carried out for other gait also.

14.4.1.2 Animation Results for Locomotion Control in Joint Space

Animation of above discussed locomotion strategy of quadruped robot is carried out
in SYMBOLS Shakti Animator [34]. The physical characteristics of certain selected
aspects of bond graph model can be directly visualized in this animator, for a better
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Table 14.2 Input parameters

Parameters Value

Leg parameters

First link length of leg (l1) 0.225 m
Mass of first link (Ml1) 1.11 kg
Mass of cylinder part of the prismatic link (Mc) 0.3 kg
Mass of piston part of the prismatic link (Mp) 0.2 kg
Inertia of link 1
Ixx1 0.013346 kg m2

Iyy1 0.0073965 kg m2

Izz1 0.011563 kg m2

Inertia of cylinder part of prismatic link
Ixxc D Izzc 0.005144 kg m2

Iyyc 0.0000487 kg m2

Inertia of piston and piston rod of prismatic link
Ixxp D Izzp 0.00168 kg m2

Iyyp 0.000025 kg m2

Stiffness of spring in compliant link (kf ) 5000 N/m
Friction between the piston and cylinder of a prismatic link (Rf ) 274 Ns/m
Contact point stiffness at the piston cylinder of prismatic link (kb) 108 N/m
Contact point resistance at the piston and cylinder of prismatic link (Rb) 103 Ns/m
Length of piston and piston rod of prismatic link lp 0.1 m
Distance of cylinder CG from a cylinder end frame of a prismatic link (lcg) 0.05 m
Distance of piston CG from a piston end frame of a prismatic link (lpg) 0.07 m
Mass of piston and piston rod of the prismatic link (mp) 0.2 kg
Mass of cylinder part of the prismatic link (mc) 0.3 kg
Position of the cylinder end point with respect to the body fixed frame at
the mass center in meter (x2, y2, z2)

(0.0, �0.05, 0.0)

Position of the piston end point with respect to the body fixed frame at the
mass center in meter (x3, y3, z3)

(0.0, 0.07, 0.0)

Common parameter

Mass of body (Mb) 6.94 kg
Inertia of body
Ixb 0.1470 kg m2

Iyb 0.1045 kg m2

Izb 0.2466 kg m2

Ground damping in x, y, z direction (Rgx, Rgy, Rgz) 1000 Ns/m
Ground stiffness in z direction (Kgz) 106 N/m
Controller parameter

Proportional gain of controller (KP) 100
Derivative gain of controller (KD) 80
Integral gain of controller (KI) 50
Actuator parameter

Motor constant (Km) 0.0276 Nm/A
Motor armature resistance (Rm) 0.386 �
Motor inductance (Lm) 0.001 H
Gear ratio (n) 230
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Fig. 14.15 Legs tip
movement in Y direction

Fig. 14.16 Body CG movement; (a) X and Z direction, (b) Y direction

Fig. 14.17 Joints rotation: (a) Joint 1 and (b) Joint 2
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Fig. 14.18 Legs tip Z displacement; (a) leg 1, (b) leg 2, (c) leg 3, (d) leg 4

Fig. 14.19 Animation frames of quadruped robot locomotion control in joint space

understanding of intrinsic behavior of quadruped robot. Animation of quadruped
robot is created from the simulation results. Figure 14.19 shows animation frames
of quadruped robot walking.
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To maintain neatness of the figure only two frames of animations are shown.
First frame indicates starting position and second frame indicates final position of
quadruped robot at the end of five cycles. Path traced by tip of leg 1 is also shown
in this figure.

14.4.1.3 Experiment Result for Locomotion Control in Joint Space

Above presented simulation and animation results show that quadruped robot travels
0.61 m in five cycles with the help of the developed locomotion strategy. The same
strategy is implemented in the physical model. As shown in Fig. 14.1a, the physical
model of quadruped robot contains total eight number of Maxon brushless DC
motors. To control these motors, eight Maxon (EPOS) controllers are used. One
of those acts as master and the remaining seven act as slave controllers. This robot
has approximately 15 kg weight and its body length and width are 0.5 m and 0.42 m,
respectively. Its height is 0.479 m. Above discussed locomotion strategy is applied
on physical model and it is observed that it travels 0.55 m in five cycles. Figure 14.19
shows few snaps taken during locomotion of quadruped robot. Figure 14.20a shows
beginning of a cycle, Fig. 14.20b, c shows leg motion in intermediate stages, and
Fig. 14.20d shows end of a cycle. For the movements detailed above, the joint
rotations performed by all legs are shown in Fig. 14.21.

The pattern of joint rotations during the experiments is almost the same as
simulation. There are always some assumptions made for numerical modeling of
any system. Here, the assumptions for quadruped modeling are mass center of link
is located at the mid of its length, center of gravity of top body is located at the
center of body, top body and upper links are rigid, joint rotation allows rotation
of link about one axis only, robot is walking on hard surface and on even terrain,
and external force and moment effects are negligible. Condition of the surface, on
which physical robot walks, affects robot locomotion. It seems from our simulation,
animation, and experimental results that little deviations observed in experiments
are because of the assumptions considered during modeling and uncertain surface
conditions like its roughness, friction, and elevation. These experimental results
support the correctness of the dynamic model generated in bond graph.

14.4.2 Simulation, Animation, and Experiment Results
of Locomotion Control in Workspace

In this section, the control strategy developed in Sect. 14.3.2 is validated. Simulation
error 5 � 10�6 and the step size 10 are considered for numerical integration in bond
graph simulation environment. Input parameters used for simulation are same as
shown in Table 14.2.
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Fig. 14.20 Experiment on physical model, (a) initial position, (b) and (c) intermediate positions,
(d) end of cycle

14.4.2.1 Simulation and Animation Results for Locomotion Control
in Workspace

This dynamic model is simulated for trot gait. Simulations and animations have
been carried out for six cycles. In case of trot gait, each cycle takes 1.7 s time.
Figure 14.22 shows few animation frames of quadruped motion in trot gait. To
maintain neatness of the figure only a few animation frames are shown from the
entire simulation results. It shows that quadruped locomotion is achieved in the
position Y direction.

Figure 14.23a shows the reference tip displacement (as per the prescribed
reference velocity) and the actual tip displacement of legs 1 and 4, while Fig. 14.23b
shows those of legs 2 and 3. These results show that the leg tips follow the
corresponding reference trajectories. Error in legs displacement in Y direction of
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Fig. 14.21 Joints rotations during experiment and simulation, (a) leg 1 joint 1, (b) leg 1 joint 2,
(c) leg 2 joint 1, (d) leg 2 joint 2, (e) leg 3 joint 1, (f) leg 3 joint 2, (g) leg 4 joint 1, and (h) leg 4
joint 2

legs 1–4 are shown in Fig. 14.24a–d, respectively. The robot body movement in Y
direction is shown in Fig. 14.25a while that in Z direction is shown in Fig. 14.25b.
For the executed locomotion, the joint rotations in joints 1 and 2 of all legs are
shown in Fig. 14.26a, b, respectively.
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Fig. 14.22 Animation frames of quadruped locomotion control in workspace

Fig. 14.23 Actual and reference leg tip displacements in forward direction for trot gait (a) legs 1
and 4, (b) legs 2 and 3

The trot gait in quadruped robot is a dynamic gait where the robot is supported
by either of the diagonally opposite pairs of legs during which the body moves
forward. In order to prevent robot falling down, the resultant of gravitational and
inertial forces passes through a point on the line joining the tips of the supporting
legs. This ensures dynamic stability. Here, Zero Moment Point (ZMP) introduced
in [42] is evaluated to ensure the dynamic stability. By having the ZMP on the
diagonal line which connects tips of two legs in contact with the ground, stability
can be assured. The ZMP can be calculated as in [44]

Xzmp D

nX
iD1

mi
� RZi C g

�
Xi �

nX
iD1

mi RXiZi �
nX

iD1
Iiy

R�iy

nX
iD1

mi
� RZi C g

� (14.51)
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Fig. 14.24 Error in legs forward movement for trot gait: (a) leg 1, (b) leg 2, (c) leg 3 and (d) leg 4

Fig. 14.25 Body CG displacement for trot gait: (a) Y and (b) Z direction
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Fig. 14.26 Joints rotation for trot gait: (a) joint 1 and (b) joint 2

Fig. 14.27 ZMP movement for trot gait: (a) X-Y plane for two cycles and (b) in Y direction

where (Xzmp, Yzmp) are coordinates of the ZMP, n is the number of links, i is an
enumerator, mi is mass of i-th link, g is gravitational acceleration, Ii is rotary inertia
of i-th link, (Xi, Yi, Zi) are coordinates of the mass center of link i, and R�i is the
angular acceleration of link i. Figure 14.27a presents the change in the location of
the ZMP as the locomotion is executed. For maintaining the clarity of presentation,
only the steps followed by the legs during the first two cycles are shown. During
the first cycle, legs 2 and 3 are in contact with the ground and the ZMP lies on the
line connecting the tips of legs 2 and 3, while during the second cycle, legs 1 and 4
are in contact with the ground and the ZMP lies on the line connecting the tips of
legs1 and 4. For six numbers of cycles, the shift of the ZMP in X direction is found
to be in the range �0.020 m to C0.001 m. Figure 14.27b shows the ZMP drift in Y
direction due to robot locomotion.
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14.4.2.2 Experiment Results for Locomotion Control in Workspace

Input to the Physical Model

According to the proposed locomotion control strategy, reference leg tip velocity
should be given as input which is continuously compared with actual velocity.
The error should be used to send correcting signal to the actuators. To know leg
tip velocity/position, sensors (motion trackers) are required. These sensors were
not available with the author at the time of experiment. So, data obtained through
simulation results are used to perform experiment. Here, joint positions obtained
during simulation are fed to the physical model. Maxon controllers operate all the
actuators as per the data fed.

Experiment Results

As per the simulation results when quadruped walk with trot gait (control in
workspace), it travels 0.79 m distance. When same data are used to operate the
physical model it travels around 0.75 m distance for six cycles. Few snaps are taken
during these movements which are shown in Fig. 14.28. Figure 14.29 shows joints
position of physical model while walking with trot gait along with simulation results
which shows that both are matching with each other. To perform this experiment,

Fig. 14.28 Snaps taken during quadruped walk with trot gait control in workspace: (a) initial
position, (b) and (c) intermediate position, (d) final position
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Fig. 14.29 Joints rotation of quadruped walk with trot gait control in workspace: (a) leg 1 joint 1,
(b) leg 1 joint 2, (c) leg 2 joint 1, (d) leg 2 joint 2, (e) leg 3 joint 1, (f) leg 3 joint 2, (g) leg 4 joint
1, and (h) leg 4 joint 2

required code is prepared in OPEN-PCS using the joint angles obtained through
simulation results. Then, it is fed to Maxon controller. While executing this code, it
is found that physical model travels perfectly.

14.4.3 Simulation of Turning Motion

It is understood that if robot leg has more than one degree of freedom with joint
rotation about different axis, then only other than straight line motion is possible.
The discussed robot configuration has two DOF per leg but both axes of rotation are
same, i.e., about X. Thus each leg tip travels same distance while in motion during
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Fig. 14.30 Animation
frames in top view of
quadruped robot in turning
motion

Table 14.3 Joint position of amble gait for turning motion

Leg 1 Leg 2 Leg 3 Leg 4
Joint position correspon-
ding to time interval Joint 1 Joint 2 Joint 1 Joint 2 Joint 1 Joint 2 Joint 1 Joint 2

Initial joint angle �1.871 0.622 �1.747 0.586 �1.271 �0.622 �1.395 �0.586
To � t < T1/2 �1.979 1.199 �1.781 0.602 �1.323 �0.615 �1.431 �0.564
T1/2 � t < T1 �1.417 0.265 �1.813 0.613 �1.381 �0.593 �1.471 �0.537
T1 � t < T2/2 �1.530 0.407 �1.843 0.620 �1.448 �0.554 �1.179 �0.994
T2/2 � t < T2 �1.618 0.494 �1.871 0.622 �1.523 �0.494 �1.271 �0.622
T2 � t < T3/2 �1.694 0.554 �1.962 0.944 �1.611 �0.407 �1.299 �0.620
T3/2 � t < T3 �1.760 0.593 �1.671 0.537 �1.725 �0.265 �1.328 �0.613
T3 � t < T4/2 �1.819 0.615 �1.710 0.564 �1.162 �1.199 �1.361 �0.602
T4/2 � t < T5 �1.871 0.622 �1.747 0.586 �1.271 �0.622 �1.395 �0.586

one cycle and robot has straight line motion. If one side of both the leg tips travels
same distance but different from opposite side of leg tips (i.e., legs 1 and 3 tip travels
same distance but they are different from legs 2 and 4 tip travels), then this motion
gives a turn instead of moving in straight line. This concept has been demonstrated
using amble gait. Simulation and animation is carried out for 20 cycles. Each cycle
takes 0.9 s. Figure 14.30 shows animation frames of quadruped locomotion which
moves straight for initial five cycles (A) then it takes turn for next ten cycles (B)
and finally moves straight for remaining five cycles (C). In this figure path traced by
hip joints and body CG are shown. Joint position corresponding to time interval is
shown in Table 14.3.

Figure 14.31 shows body CG X motion while Figs. 14.32 and 14.33 show body
CG Y and Z motions, respectively. Leg tip motion in X and Y directions are shown
in Figs. 14.34 and 14.35, respectively. As discussed above, it is necessary to have
different joint rotations for this kind of locomotion. Joints 1 and 2 rotations carried
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Fig. 14.31 Body CG movement in X direction

Fig. 14.32 Body CG movement in Y direction

out of all legs for the said motions are shown in Figs. 14.36 and 14.37, respectively.
Thus, by having combination of different joint angles, motion other than straight
line is possible.
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Fig. 14.33 Body CG movement in Z direction

Fig. 14.34 Leg tip movement in X direction

14.4.4 Influence of Compliance on locomotion Parameter

Compliance affects locomotion speed and posture disturbance. In this section,
attempt is made to study influence of compliance on both these locomotion
parameters. Developed bond graph model is simulated for various compliance and
damping value of the same damping ratio. The body CG travels (indicating motion
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Fig. 14.35 Leg tip movement in Y direction

Fig. 14.36 Joint 1 rotation of legs

of robot in forward direction) and posture disturbance are analyzed. Figure 14.38a
shows body CG travels by quadruped robot and Fig. 14.38b shows range of posture
disturbance in roll and pitch during the locomotion.

It is concluded from the results that as the stiffness decreases, the body CG
travel reduces. Body CG travel does not increase noticeably after increasing the
stiffness further than about 7000 N/m. It is also seen from the results that the posture
disturbance range at roll and pitch becomes higher at higher stiffness. It is always



538 M.M. Gor et al.

Fig. 14.37 Joint 2 rotation of legs

Fig. 14.38 Influence of compliance on (a) body CG travels and (b) posture disturbance

desirable to have minimum posture disturbance with maximum body CG travel.
Thus, for our robot configuration we have chosen 5000 N/m stiffness as a trade-off,
which gives good locomotion with relatively low range of posture disturbances in
roll and pitch.

14.4.5 Performance Measures Through Energy Efficiency

Robot walk may be evaluated by stability, maximum speed, and energy consump-
tion. Parameters like a type of gait, stride length, duty factor, length of leg, joint
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angle, and rotation are deciding the above-mentioned performance criteria. To
discuss advantage and disadvantage of different designs and control strategies, it is
necessary to evaluate and compare robot performance and abilities with respect to
common criteria. A common measure to evaluate and compare the energy efficiency
of vehicles is the energy consumption per unit distance. To justify the comparison,
mass moved, and velocity obtained should also be considered with the cost of
locomotion. We are comparing here quadruped walk with specific resistance (").
The specific resistance [15, 22] is a dimensionless number describing the energy
efficiency of a mobile system. The specific resistance is defined as

" D P.v/

mgv
D E

mgd
(14.53)

where P(v) is the power needed to move the body with velocity v, m is the mass of
the system, g is the acceleration due to gravity, d is the distance travelled, and E is
the energy spent. Since velocity is not constant in a cycle, energy spent to move unit
weight by unit distance is preferred as the performance measure. Sufficient number
of cycles of motion till steady-state is reached should be considered for evaluation
of specific resistance. Lower specific resistance implies higher energy efficient.

14.4.5.1 Energy Efficient Structure of Quadruped Robot

In this section, energy efficiency of rigid legged and compliant legged robots are
evaluated and compared. Locomotion gait is considered as trot for both the cases.
The above developed bond graph model for compliant legged robot was modified
to generate the model of rigid legged robot. This is done by locking the sliding
motion of the piston within the prismatic link; thereby retaining the same mass
parameters in both the models. The locking is performed through a high-stiffness
virtual spring which is called a pad in bond graph terminology. Both rigid legged
and compliant legged models are simulated for same speed which is fixed at 0.42 m
distance travelled in 4.5 s., i.e., with an average locomotion speed of 0.093 m/s. The
same speed requirement is satisfied by manually tuning the controller parameters
and the cycle time durations. Figure 14.39a shows body CG travels by rigid legged
quadruped robot in trot gait. Figure 14.39b shows body CG travels by compliant
legged robot in trot gait. Sensors are placed at the actuators in bond graph models to
extract the power consumption data. The specific resistance defined in Eq. (14.53)
is evaluated for both these cases considering robot mass as 15 kg and gravitational
acceleration as 9.81 m/s2. It was found that the specific resistance for the compliance
legged model is 0.925 while it is 1.10 for rigid legged model. It is known that smaller
the specific resistance, higher the energy efficiency [15, 22, 38]. So from the above
results, smaller specific resistance of compliant legged robot implies that it is energy
efficient than rigid legged robot. Leg compliance reduces impact induced bounce
and allows for better grip; thereby improving the locomotion efficiency. However,
it may be noted that too low or too high-stiffness reduce grip and increase losses
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Fig. 14.39 Body CG Y displacement in various conditions: (a) rigid legged model with trot gait,
(b) compliant legged model with trot gait, (c) compliant legged model with amble gait

due to sliding between the piston and cylinder of the prismatic pairs. Thus, there
is an optimum value of compliance where lowest specific resistance is possible.
That optimum value has not been obtained here. We have merely compared the
performance of the compliant legged robot with design parameters chosen from
Fig. 14.38 with a rigid legged robot.

14.4.5.2 Energy Efficient Locomotion Gait

In this section, energy efficient locomotion gait is evaluated from the static and
dynamic gaits. The trot gait is considered as a dynamically stable gait, while the
amble gait is considered as a statically stable gait. Specific resistance of trot gait
of compliant legged structure is just evaluated. Thus, it is only need to evaluate
specific resistance of quadruped walking with amble gait for comparison. Model
is simulated for amble gait. Here also results are compared for the same speed
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which is obtained by tuning controller parameters and cycle duty times. Body CG
displacement obtained in Y direction (along the longitudinal axis) for amble gait
is shown in Fig. 14.39c. Results obtained are used to evaluate Eq. (14.53) which
gives the specific resistance of the amble gait as 6.71. From this result it seems that
specific resistance of the trot gait is smaller. Thus the trot gait is energy efficient
than the amble gait.

14.4.5.3 Energy Efficient Foot Trajectory

Foot trajectory in case of walking robot has two main parameters: leg lift (LL) and
step length (SL), which almost decides the foot trajectory of leg tip. However, the
way leg tip reach to LL decides exact curve. Here, numbers of simulations are
carried out to analyze the effect of LL and SL. For this analysis dynamic model
should be controlled in workspace mode. Assumptions considered for the analysis
are robot walks in straight line and on even terrain with trot gait.

First, simulations are carried out for different SL by keeping LL fixed as 0.033 m.
Figure 14.40 shows given leg tip motion in Y and Z directions. Specific resistance
for this run is plotted in Fig. 14.41 which indicates that for fixed LL as SL increases
the specific energy decreases thus walk becomes more and more energy efficient.

Next, simulations are carried out for different LL by keeping SL fixed. Here, two
sets of simulations are performed for SL as 0.099 and 0.132 m. Figure 14.42 shows
given leg tip trajectory while Fig. 14.43 shows specific resistance. In both the cases
it is observed that as LL increases specific resistance increases thus walk becomes
less energy efficient. At the same time too much low LL also reports less energy
efficient as its specific resistance goes high.

Fig. 14.40 Leg tip motion in YZ plane for different step length with same leg lift
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Fig. 14.41 Specific resistance for different step length with same leg lift

Fig. 14.42 Leg tip motion in YZ plane for different foot height with same step length

Thus from all these analysis it can be concluded that for energy efficient walk, SL
should be as high as possible and LL should be low if it walks on even terrain. For
0.033 m LL, 0.200 m SL gives most energy efficient walks as its specific resistance
is lowest. However, for different size of robot best combination will be differing.
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Fig. 14.43 Specific resistance for different leg lift with same step length

14.5 Conclusions

A three dimensional model of compliant legged quadruped robot using bond graph
has been developed. The legs contain telescopic tubes with axial compliance and the
model considers its detailed dynamics. The developed model is simulated for loco-
motion control in joint space as well as in workspace, and the obtained simulation
and animation results are compared with the experimental results for validation.
The developed model is useful for the various research activities pertaining to
quadruped control. Its versatility is demonstrated by performance analysis, which
shows that the compliant legged robot (specific resistance 0.925) is more energy
efficient than rigid legged robot (specific resistance 1.10), a dynamically stable trot
gait (specific resistance 0.925) is more energy efficient than a statically stable amble
gait (specific resistance 6.71), and a foot trajectory consisting of maximum possible
step length with minimum leg lift gives energy efficient performance. Influence of
compliance on locomotion parameters is studied and best suitable compliance value,
i.e., 5000 N/m for the robot is obtained. Turning motion of the robot is demonstrated
by differential leg tip velocity of robot. In future, it is envisaged to use this model
for workspace control, posture control, and fault accommodation of the quadruped
robot.
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