
Chapter 10
Model Complexity of Distributed Parameter
Systems: An Energy-Based Approach

L.S. Louca

10.1 Introduction

Modeling and simulation have yet to achieve wide utilization as commonplace
engineering tools. One reason for this is that current modeling and simulation
techniques are inadequate. Specifically, a major disadvantage is that they require
sophisticated users who are often not domain experts and thus lack the ability to
effectively utilize the model and simulation tools to uncover the important design
trade-offs. Another drawback is that models are often large and complicated with
many parameters, making the physical interpretation of the model outputs, even by
domain experts, difficult. This is particularly true when “unnecessary” features are
included in the model.

A variety of algorithms have been developed and implemented to help auto-
mate the production of proper models of dynamic systems. Wilson and Stein
developed Model Order Deduction Algorithm (MODA) that deduces the required
system model complexity from subsystem models of variable complexity using a
frequency-based metric [25]. They also defined proper models as the models with
physically meaningful states and parameters that are of necessary but sufficient
complexity to meet the engineering and accuracy objectives. Additional work on
deduction algorithms for generating proper models in an automated fashion has
been reported by previous research [4, 5, 24]. The above algorithms have also been
implemented in an automated modeling computer environment [22].

In an attempt to overcome the limitations of the frequency-based metrics, the
author introduced a new model reduction technique that also generates proper
models [16]. This approach uses an energy-based metric (element activity) that
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in general can be applied to nonlinear systems, and considers the importance of
all energetic elements (generalized inductance, capacitance, and resistance) [17].
The contribution of each energy element in the model is ranked according to the
activity metric under specific excitation. Elements with small contributions are
eliminated in order to produce a reduced model using a systematic methodology
called Model Order Reduction Algorithm (MORA). The activity metric was also
used as a basis for even further reduction, through partitioning the model into
smaller and decoupled submodels [19].

Such modeling approaches should be able to handle real mechanical systems
that typically include distributed parameter (continuous) components, e.g., rods,
beams, plates, etc. Frequently, modeling objectives and assumptions allow the
lumping of continuous component properties into ideal energy elements that lead
to a dynamic model described by a set of ordinary differential equations. However,
when property lumping is not acceptable, modeling of a continuous component
requires a different approach since its inertial, compliance, and resistive properties
are spatially distributed and cannot be lumped into single equivalent elements.
The dynamic behavior of continuous components is thus described by partial
differential equations with derivatives in both time and space. Another approach
that is considered in this work is the modeling of a continuous component with
finite segments that are spatially distributed. This is an approximation for which the
accuracy is a function of the number of segments. The model accuracy improves
as the number of segments increases. Model accuracy and the required number of
segments can be addressed using a frequency-based metric [5].

Beyond the physical-based modeling, modal decomposition is also used to
model and analyze continuous and discrete systems [18]. One of the advantages of
modal decomposition is the ability to straightforwardly adjust (i.e., reduce) model
complexity since all modes are orthogonal to each other. The reduction of such
modal decomposition models is mostly based on frequency, and the user-defined
Frequency Range Of Interest (FROI) determines the frequencies that are important
for a specific scenario. In this case, modes with frequencies within the FROI are
retained in the reduced model and modes outside this range are eliminated. As
expected, mode truncation introduces error in the predictions that can be measured
and adjusted based on the accuracy requirements [9, 10].

Element activity is another metric that has more flexibility than frequency-based
metrics, which address the issue of model complexity by only adding compliant
elements, leaving unaccounted the importance of inertial and resistive elements. In
contrast, the activity metric considers the importance of all energetic elements, and
therefore, the significance of all energy elements in the model can be quantified.
It is the purpose of this work to develop a new methodology using the activity
metric for addressing the model complexity of distributed parameter systems and
specifically cantilever beams. The methodology is specifically developed using the
finite segment approximation and the goal is to identify the physical phenomena to
be included in each segment in order to accurately predict the dynamic behavior.

The chapter starts with providing background on the energy-based activity metric
along with the reduction algorithm. Next, the equation formulation for a finite
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segment Timoshenko beam is presented along with the closed form expressions for
steady state element activities. Then, the complexity of a cantilever beam is analyzed
under various conditions using MORA. Finally, in the last section, discussion and
conclusions are provided.

10.2 Background

The original work on the energy-based metric for model reduction is briefly
described here for convenience. More details, extensions, and applications of this
methodology can be found in previous publications [13–15, 17]. The main idea
behind this model reduction technique is to evaluate the “element activity” of
individual energy elements in a full system model under a stereotypical set of inputs
and initial conditions. The activity of each energy element establishes a hierarchy
of importance for all elements in a system. Those below a user-defined threshold of
acceptable level of activity are eliminated from the model. A reduced model is then
generated and a new set of governing differential equations is derived.

The activity metric has been formulated originally for systems with nonlinearities
in both the element constitutive laws and kinematics. In this work, the activity metric
is applied to linear systems for which analytical expressions for the activity can
be derived, and therefore, avoid the use of numerical time integration that could
be cumbersome. The analysis is further simplified if, in addition to the linearity
assumption, the system is assumed to have a single sinusoidal excitation, and only
the steady state response is studied. These assumptions are motivated from Fourier
analysis where an arbitrary function can be decomposed into a series of harmonics.
Using this frequency decomposition, the activity analysis can be performed as a
function of frequency in order to study the frequency dependency of element activity
in a dynamic system.

10.2.1 Element Activity for Linear Systems

A measure of the power response of a dynamic system, which has physical meaning
and a simple definition, is used to develop the modeling metric, element activity (or
simply “activity”). Element activity, A, is defined for each energy element as:

A D
Z �

0

jP.t/jdt (10.1)

where P(t) is the element power and � is the time over which the model has to
accurately predict the system behavior. The activity has units of energy, representing
the amount of energy that flows in and out of the element over the given time � . The
energy that flows in and out of an element is a measure of how active this element
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is (how much energy passes through it), and consequently the quantity in (10.1) is
termed activity. Activity can be defined independent of the energy domain, type of
energy element, or nonlinearities.

The activity is calculated for each energy element based on the system response
that is calculated from the system’s state equations. In the case that the system is
modeled using a bond graph formulation, the state equations are derived using the
multi-port bond graph representation [2, 3, 7, 21]. In addition, when the system has
linear junction structure and constitutive laws and a single input, the state equations
are linear time invariant and have the following general form:

:
x D Ax C bu (10.2)

where, A 2 R
m�m; b 2 R

m are the state space matrices, x 2 R
m is the state variable

vector, u 2 R is the input, and m is the number of independent states.
For the above system appropriate outputs are defined in order to effortlessly

calculate the power of each energy element in the model using the constitutive law
of each element. For convenience, the outputs are selected to be the generalized
flow, effort, and flow for inertial, compliant, and resistive elements, respectively.
The dual effort or flow variables needed for calculating the power are derived from
the output variables and constitutive laws. The output vector for this set of variables
has the form:

y D
8<
:

fI

eC

fR

9=
; (10.3)

where y 2 R
k and fI 2 R

kI ; eC 2 R
kC ; and fR 2 R

kR . The variables kI , kC, and kR

represent the number of inertial, compliant, and resistive elements, respectively. The
total number of energy elements is k D kI C kC C kR. Note that the output vector is
defined such that the required variables of the inertial elements are first followed by
the variables of compliant and then resistive elements.

Each output variable is a linear function of the state variables, and possibly input,
given that they have linear constitutive laws. Using the output variables set in (10.3),
the output equations are written as:

y D Cx C du (10.4)

where C 2 R
k�m; d 2 R

k are the output state space matrices.
Given this set of output variables the missing efforts or flows, needed for

calculating the element power, are computed from the linear constitutive laws of
each type of energy element as shown below:

I W pI D rIfI () eI D :
pI D rI

:

f I

C W qC D rCeC () fC D :
qC D rC

:
eC

R W eR D rRfR

(10.5)
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where rI , rC, rR are known constants representing the linear constitutive law
coefficients of inductance, compliance, and resistance, respectively. For deriving
compact expressions in the analysis, a vector, r 2 R

k, with all the linear constitutive
law coefficients is introduced as shown below:

r D
8<
:

rI

rC

rR

9=
; (10.6)

where rI 2 R
kI , rC 2 R

kC , and rR 2 R
kR are the constant constitutive law

coefficients.
Finally, the power needed for calculating the activity of each element, as defined

in (10.1), is computed as the product of generalized effort and flow. By using (10.5)
the following expressions for the power of each element type are derived:

I W PI D eIfI D rIfI
:

f I

C W PC D eCfC D rCeC
:
eC

R W PR D eRfR D rRfRfR D rRf 2
R

(10.7)

The expressions for element power in (10.7) are generalized with the use of the
defined structure of the output vector in (10.3) and parameter vector in (10.6). Thus,
the power for energy storage elements (inertial and compliant) is given by (10.8)
and for energy dissipation elements (resistive) in (10.9).

Pi D riyi
:
yi; i D 1; : : : ; kI C kC (10.8)

Pi D riy
2
i ; i D kI C kC C 1; : : : ; k (10.9)

The above element power is then used to calculate the element activity based
on its definition in (10.1). Element parameters are assumed to be constant thus the
activity for the energy storage elements is given in (10.10) and for energy dissipation
element in (10.11).

Ai D
Z �

0

jPij D ri

Z �

0

ˇ̌
yi

:
yi

ˇ̌
dt; i D 1; : : : ; kI C kC (10.10)

Ai D
Z �

0

jPij D ri

Z �

0

ˇ̌
y2

i

ˇ̌
dt D ri

Z �

0

y2
i dt; i D kI C kC C 1; : : : ; k (10.11)

10.2.2 Activity for Single Harmonic Excitation

The time response of the output vector, y(t), in (10.3) and (10.10) is required in order
to complete the calculation of element power. For nonlinear systems, numerical
integration is typically used to calculate the system response; however, in this case
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linear system analysis can be used to obtain closed form expressions. In addition,
for the purposes of this work, the excitation is assumed to be a single harmonic
given by:

u.t/ D U sin .!t/ (10.12)

where U 2 R is the amplitude of the excitation and ! is the excitation frequency.
The steady state response of the linear system in (10.2) and (10.4) under the
harmonic excitation in (10.12) is calculated using linear system analysis theory. The
response is given by the following closed form expression:

yi .t; !/ D UYi .!/ � sin .!t C 'i .!// ; i D 1; : : : ; k (10.13)

where Yi(!) and ®i(!) are the steady state amplitude and phase shift, respectively,
that can be easily calculated using linear system analysis.

Within the context of this analysis, the output yi(t, !) in (10.13) is either an
effort or a flow that is used for calculating the power of each element in (10.8)
and (10.9). Finally, the activity can be calculated by (10.10) and (10.11), but first
the upper bound, � , of this integral must be specified. For this case, the steady state
and periodicity features of the response are exploited. A periodic function repeats
itself every T seconds, and therefore, a single period of this function contains the
necessary information about the response. Thus, the upper bound of the integral is
set to one period of the excitation, � D T D 2�=!. Therefore, the steady state
activity for energy storage elements is given by:

Ass
i .!/ D ri

Z T

0

ˇ̌
yi

:
yi

ˇ̌
dt

D 1

2
riU

2Y2
i .!/ !

Z T

0

jsin .2 .!t C 'i .!///jdt

) Ass
i .!/ D 2riU

2Y2
i .!/

(10.14)

and for energy dissipation elements by:

Ass
i .!/ D ri

Z T

0

y2
i dt

D riU
2Y2

i .!/

Z T

0

sin2 .!t C 'i .!//dt

) Ass
i .!/ D �riU2Y2

i .!/

!

(10.15)

The above simple closed form expressions can be used to calculate the activity
of energy elements for a given single harmonic excitation. These expressions are
proportional to the square of the amplitude; however, they have no dependency on
the phase shift that is eliminated through the integration. The superscript “ss” in
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(10.14) and (10.15) denotes the activity under a steady state harmonic response.
Note that the activity for both energy storage and energy dissipation elements is a
function of the excitation frequency but not the phase shift.

10.2.3 Activity Index and MORA

The activity as defined in (10.1) is a measure of the absolute importance of an
element as it represents the amount of energy that flows through the element over
a given time period. In order to obtain a relative measure of the importance, the
element activity is compared to a quantity that represents the “overall activity” of
the system. This “overall activity” is defined as the sum of all the element activities
of the system, is termed total activity (ATotal), and is given by:

ATotal .!/ D
kX

iD1

Ai .!/ (10.16)

where Ai is the activity of the ith element given by (10.14) and (10.15). Thus a
normalized measure of element importance, called element activity index or just
activity index, is defined as:

AIss
i .!/ D Ass

i .!/

ATotal .!/
D Ass

i .!/

kX
iD1

Ass
i .!/

(10.17)

The activity index, AIss
i (!), is calculated for each element in the model and it

represents the portion of the total system energy that flows through a specific
element. The input amplitude, U, does not appear in any of the element activity
indices since all element activities are proportional to the square of the amplitude.

With the activity index defined as a relative metric for addressing element
importance, the Model Order Reduction Algorithm (MORA) is constructed. The
first step of MORA is to calculate the activity index for each element in the system
as defined in (10.17). Next, the activity indices are sorted to identify the elements
with high activity (most important) and low activity (least important). With the
activity indices sorted, the model reduction proceeds given the desired engineering
specifications. These specifications are defined by the modeler who then converts
them into a threshold ˇ of the total activity (e.g., 99 %) that he or she wants to
include in the reduced model. This threshold defines the borderline between the
eliminated and retained elements in the model. The elimination process is shown
in Fig. 10.1 where the sorted activity indices are summed starting from the most
important element until the specified threshold is reached. The element which, when
included, increments the cumulative activity index above the threshold, is the last
element to be included in the reduced model. The elements that are above this
threshold are removed from the model, e.g., when using the bond graph formulation,
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β

Fig. 10.1 Activity index sorting and elimination

delete the corresponding low activity energy element. The junction structure of the
bond graph is retained in the reduced model, and therefore, the reduced model
realization is the same as the full model, so its physical meaning and relation to
the physical system are retained.

10.3 Cantilever Beam Model

The state space model used in the previous section assumes a lumped parameter
system representation, where individual components exhibit only inertial, compli-
ant, or resistive behavior. This means that the dynamic behavior of a component
can be lumped and modeled as a single inertial, compliant, or resistive energy
element. This can be a valid assumption for many components; however, real system
components can possess all dynamic properties (inertial, compliant, and resistive)
simultaneously. In addition, these properties may vary or be distributed spatially.
In these cases, a lumped parameter modeling approach cannot be used since it will
result in an incorrect model and produce inaccurate predictions. An example of such
component is a beam and more specifically a cantilever beam that is widely used
in engineering applications. Therefore, these components must be considered as
distributed parameter or continuous, which require a different modeling approach.

Models of continuous systems are developed using solid mechanics theory,
which instead of Ordinary Differential Equations, lead to Partial Differential
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Fig. 10.2 Cantilever beam transverse vibration

Equations (PDE) with derivatives in both space and time [1, 6, 8, 23]. The
continuous cantilever beam used in this work is shown in Fig. 10.2, where its
transverse motion is considered when excited by a vertical load at its free end. The
motion of a given gross section, w(x, t) and ®(x, t), from its undeformed state varies
with time and location thus having a set of PDEs describing its motion. Note that due
to the rotation ®, a cross section does not remain normal to the neutral axis according
to the Timoshenko beam theory. One method for solving these PDEs is separation of
variables, which produces a modal expansion solution [18]. This approach can also
be combined with other lumped parameter elements in order to model a real system
that consists of both lumped and distributed parameter components [7]. An analysis
of the advantages and disadvantages of this approach is beyond the scope of this
work, however, it is safe to say that the solution of PDEs is more cumbersome than
the solution of ordinary differential equations that describe the behavior of lumped
parameters system.

A different approach for modeling the transverse vibration of a cantilever beam
is to divide it into segments of equal length. This approach is motivated by
the procedure for deriving the PDEs describing the motion of a beam. Each of
these segments has linear inertial and compliant properties that can be determined
from solid mechanics theory. Shear effects and rotational inertial effects are also
considered, which results in a more generic model that is valid for a larger range
of geometric parameters. This is known as the Timoshenko beam model, which
is usually used for non-slender beams in order to get accurate model predictions.
The use of this more complex model using the Timoshenko beam theory is also
mandated from the use of MORA in the process of determining the appropriate
model complexity. In this approach the most complex model is first developed, and
then MORA is used to identify what is actually needed in order to reach a reduced
model with accurate predictions.

The ideal physical model of a cantilever beam under these assumptions is
shown in Fig. 10.3 where the beam is divided into n equal segments. This model
approaches the partial differential equations of the continuous system, as the number
of segments approaches infinity. However, it is difficult to predict the number of
segments required to achieve a given level of accuracy. It is well known that a large
number of segments are required for accurately predicting low frequency dynamics.
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Fig. 10.3 Ideal physical model of a Timoshenko beam

For the purposes of this work the number of segments is chosen based on previous
research, such that the model accurately predicts low frequency dynamics that are
considered in this work [11, 12]. With the given number of segments, the physical
phenomena to be included in each segment, for the model to accurately predict the
dynamic behavior, will then be identified using the proposed methodology in this
chapter.

For calculating the constitutive law parameters of the energy storage elements,
the beam is assumed to have density �, Young’s modulus E, shear modulus G,
length L, cross sectional area A, and cross sectional moment of inertia I. Given
these physical parameters of the beam, the element parameters in the above linear
model are given by the expressions below:

mi D �A�x; i D 1; : : : ; n
Ii D �I�x;

ci D �x
EI

csi D �x
�GA

(10.18)

where �x D L=n is the length of each segment, � is a dimensionless constant that
accounts for the non-uniform distribution of the shear stress and depends on the
shape of the cross section. The inertial parameters mi and Ii represent the linear and
rotational inertia of each segment, respectively. The parameters ci and csi represent
the bending and shear compliance between two segments, respectively. The beam
is assumed to have no energy losses therefore there are no damping elements in the
model. These parameters are used to define the parameter vector as defined in (10.6).

For developing the dynamic equations, the bond graph formulation is used. Bond
graphs provide the power topography of the system and it is a natural selection
for implementing the power-based activity metric. The bond graph model of the
ideal physical model as shown in Fig. 10.3 is developed and given in Fig. 10.4.
The bond graph has 4n independent state variables since each segment is modeled
by four independent energy storage elements and the state vector has the form
x D fp1; : : : ; pn; pI1; : : : ; pIn; q1; : : : ; qn; qs1; : : : ; qsngT . The variable p represents
the momentum of inertial elements and q the displacement of compliant elements.
The velocity of the each mass, vi, represents the transverse velocity at a given
location of the continuous beam and (10.19) expresses the relation between the
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Fig. 10.4 Bond graph model of a Timoshenko beam

discrete and continuous variables. The other kinematic variable of the model, ! i,
is the rotation at a given location and its relation to the continuous variable is given
in (10.20).

vi.t/ D :
wi D :

w .i�x; t/ (10.19)

!i.t/ D :
' i D :

' .i�x; t/ (10.20)

The state and output equations in matrix form are derived using the multi-port
approach, which provides easy derivations of the state matrices [20]. According to
this approach, most of the junction structure matrices are zero, and the state space
and input matrices are given by:

A D JSS S; b D JSU (10.21)

where S 2 R
4n�4n is a diagonal matrix with the inertial and compliant parameters

of each element, and JSS 2 R
4n�4n, JSU 2 R

4n are the junction structure matrices
describing the interconnections between the energy elements, and they are given in
the Appendix.

The output vector as define in the previous section in (10.3) becomes y D
ff1; : : : ; f2n; e1; : : : ; e2ngT . Thus, the output matrices as defined in (10.4), which are
required for calculating the power flow into the energy elements, are given by:

C D S; d D 0 (10.22)

The dimensions of the state space matrices as defined in the previous section are
m D 4n and k D 4n.

For the above model with n segments the steady state response is first calculated
using (10.13) and based on the state space equations in (10.21) and (10.22). Then
the element activity is calculated from (10.14), which gives the following expression
for the energy storage elements of the model:

Ass
i .!/ D 2riU

2Y2
i .!/ ; i D 1; : : : ; 4n (10.23)
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The above analysis enables the calculation of the element activity for a given
single harmonic excitation. The activity index that is used by MORA is independent
of the excitation amplitude, as shown in (10.17), and therefore can be set to an
arbitrary value, e.g., set to one (1) for simplicity. Model complexity and which
physical phenomena need to be included, can be determined given the element
activity in (10.23) and MORA. The complexity of the beam is investigated in the
next section in order to identify the significant elements based on beam length and
element location. A series of analysis is performed in order to get more insight into
the important beam dynamics under different scenarios.

10.4 Beam Complexity Based on Activity

The activity metric and MORA is applied to a steel cantilever beam with parameters
� D 7860 kg=m3, E D 210 GPa, G D 80 GPa, A D 3 � 10�3 m2,
I D 2:5 � 10�6 m4, � D 0:85. The length of the beam is varied, L D 0.2–2.0 m,
in order to study the variation of element significance. The methodology is easy
and computationally inexpensive to implement due to the simple and closed form
expressions used for calculating the state space matrices, frequency response, and
activity.

First, the beam length is set to 2.0 m such that the beam is considered to be
slender. The number of segments is set to n D 30 and therefore there are a total of
120 energy storage elements modeling the beam. In this case the modeling target
is set to accurately predict static behavior of low frequency dynamics, thus, the
excitation frequency is set to 95 % of the first natural frequency (122.7 rad/s).

The results of the activity analysis using (10.23) and under these assumptions
are shown in Fig. 10.5 where the activity index of all 120 elements is shown.
Element numbers 1–30 represent the activity index of the linear inertia (mi) and
31–60 the activity index of the rotational inertia (Ii) of each segment. Next, element
numbers 61–90 and 91–120 represent the activity index of the bending (ci) and shear
(csi) compliance, respectively. For each range of elements the smallest numbers
represent elements that are next to the fixed end of the beam. It is clear from the
activity analysis that the most important elements are related to the linear inertia
and the bending stiffness of the beam. On the contrary, the elements related with
the rotary inertia and shear stiffness have very low activity and thus are insignificant
under these conditions. This initial activity analysis agrees with common practice,
in which a slender beam is modeled using the Euler–Bernoulli theory that neglects
rotational inertia and shear stress effects.

Model complexity is systematically addressed using MORA as it is described
in Sect. 10.2.3. Elements are ranked according to their activity index as shown
in Fig. 10.6 where the sorted activity indices along with the cumulative activity
index are plotted. According to the activity analysis, 40 of the 120 elements account
for almost 99 % of the energy flows through the model. This is a significant result
verifying that unnecessary complexity is included in the model; however, the figure
does not directly depicts the elements that are insignificant and could be eliminated
from the model.
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Fig. 10.5 Element activity indices for slender beam
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The important elements are next identified using MORA. Using a reduction
threshold, ˇ D 99:5 %, MORA identifies the elements that have a significant
contribution to the system dynamic behavior. The results of this analysis are
shown in Fig. 10.7 where both the activity and elimination/inclusion in the reduced
model are depicted. The “C” symbol identifies the elements with significant
contribution and must be included, where the “o” symbol identifies that an element
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Fig. 10.7 Model reduction for slender beam, L D 2 m

is insignificant and must be eliminated from the full model in order to generate the
reduced model. Out of the 120 elements only 46 are important and the remaining 74
can be eliminated. More specifically, MORA identifies that all rotational inertia and
shear stiffness elements must be eliminated from the model. Linear inertia elements
that are close to the support have low activity and can be eliminated from the model,
where inertial elements towards the free end of the beam have high activity and
must be retained. The reverse is true for the bending stiffness elements, where the
elements towards the free end can be eliminated and the ones near the support must
be retained. More specifically, 23 of the linear inertia and 23 of the bending stiffness
elements have high activity and must be included in the reduced model.

The same reduction using MORA is performed with different beam lengths
in order to study how element importance changes as the length is reduced. The
reduction for a beam length of 0.7 m is shown in Fig. 10.8. The same trend
is observed for the elimination of linear inertia and bending stiffness elements.
The activity index of all rotational inertia elements (31–60) is higher than before
(L D 2 m) but still very low, and therefore, they are eliminated from the model.
The activity of shear stiffness (91–120) also increases and some of these elements
become important. The shear stiffness elements that are close to the support have
higher activity index and have to be included in the reduced model, while the ones
towards the free end are eliminated. A total of 71 elements are included in the
reduced model with 25 linear inertia, 25 bending stiffness, and 21 shear stiffness
elements.
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Fig. 10.8 Model reduction for L D 0:7 m
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Fig. 10.9 Model reduction for L D 0:2 m

The beam length is further reduced to 0.2 m in order to examine if more elements
become important. The activity index of the linear inertia and bending stiffness
remains almost unchanged as shown in Fig. 10.9. However, the activity index of
the rotational inertia and shear stiffness is further increased such that some of the
rotational inertia elements also become important. More specifically the rotational
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Fig. 10.10 Model reduction for length variation

inertia elements that are towards the free end are important and the ones near the
fixed end are eliminated. A total of 96 elements out of 120 are included in the
reduced model with 24 linear inertia, 21 rotational inertia, 24 bending stiffness,
and 27 shear stiffness elements.

The variation of beam length showed that the total number of important elements
increases as the beam length decreases. This variation is investigated in more
detail by varying the beam length from 0.2 to 2 m with a step of 20 mm. The
number of included linear and rotational inertia, and bending and shear stiffness
is recorded along with the total number of elements. The results of this analysis are
shown in Fig. 10.10. The total number of elements is monotonically increasing as
the beam length is decreased. The number of linear inertia and bending stiffness
remains almost constant as the length changes. On the contrary, the number of shear
stiffness elements is zero until about 1.2 m where it becomes important and starts
increasing. Further reduction in length results in a monotonic increase in the number
of included shear stiffness element. A similar behavior is observed for the number
of the rotational inertia elements; however, they become important at a lower beam
length of about 0.6 m.

The validity of the generated reduced models is verified by analyzing the
accuracy of the model. Specifically the steady state response amplitude for the
velocity at the free end and the torque at the fixed end are calculated. The
comparison is made with the corresponding response of the full model and over
the range of beam lengths used before. The accuracy for both variables, as shown
in Fig. 10.11, varies as the beam length is changed, with averages around 91.5 %.
The discrete variation in accuracy is due to the change of model complexity as
different elements are added or removed in the reduced model according to the
activity metric.
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Fig. 10.11 Model accuracy

Next, a similar experiment is performed with the same conditions except the
excitation frequency, which is increased to 95 % of the second natural frequency
and more specifically at 722.8 rad/s. Given that the number of segments remains
the same, it is expected that the number of important elements will increase. This
is a known feature of finite segment models that require an increased number
of segments in order to accurately predict higher frequency dynamics. Model
reduction and identification of significant dynamics is performed for a slender beam
(L D 2:0 m). The results of the activity analysis are shown in Fig. 10.12 and in
general a higher number of elements are required in order to achieve a similar level
of accuracy. Again, some elements at the ends of the beam can be eliminated due to
their low activity. Another general observation is that low activity elements appear
also within the span of the beam, in addition to the ones at the ends of the beam.
The drop in activity appears around the nodes of the second mode where there is a
stationary point. For example, for the linear inertia there is one very low activity
element that coincides with the node of the second transverse vibration mode.
Similar behavior is observed for the other energy elements as shown in Fig. 10.12.
More specifically a total of 68 elements out of 120 are included in the reduced
model with 27 linear inertia, two rotational inertia, 28 bending stiffness, and 11
shear stiffness elements. Similar reduction patterns, as with the excitation near the
first mode, are observed for various beam lengths but not shown here for brevity.

The effect of beam length on element importance is studied next by varying the
beam length (L D 0:2 � 2:0 m) and performing model reduction using MORA.
The results of this analysis are shown in Fig. 10.13 where the number of each type
of element, that needs to be included in the reduced model, is shown as a function
of the beam length. The number of important linear inertia and bending stiffness
elements is remains almost constant as the beam length is varied. On the contrary,
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Fig. 10.12 Model reduction for slender beam, excitation near second mode, L D 2:0 m
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Fig. 10.13 Model reduction for length variation, excitation near second mode

the number of rotational inertia and shear stiffness elements reduces as the length
of the beam increases, in accordance with the Timoshenko beam theory. However,
rotational inertia and shear stiffness elements are important and have to be included
in the reduced model even when the beam is slender, i.e., L D 2:0 m. The total
number of important elements is overall higher, as compared to the total number of
elements when the excitation is near the first natural frequency.
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Fig. 10.14 Reduced model accuracy, excitation near second mode

The accuracy of the reduced model is also calculated for the linear velocity at the
free end and the torque at the fixed end (Fig. 10.14). The comparison is made with
the initial full model that includes all elements, i.e., 30 segments and 120 energy
storage elements. The two variables have similar accuracy throughout the whole
range of beam lengths. Also, the overall accuracy of there reduced models is similar
to the accuracy of the reduced models when the excitation is near the first natural
frequency.

10.5 Discussion and Conclusions

A new methodology is developed that reduces the complexity of a Timoshenko or
Euler–Bernoulli beam model, by providing more insight into the beam dynamic
behavior at the same time. The proposed methodology provides a systematic
modeling procedure for cantilever beams that are modeled through the finite
segment approach. The previously developed activity metric is used as the basis
for determining the physical phenomena that need to be included in each segment
in order for a reduced model to accurately predict the dynamic behavior of a beam.
The procedure starts with the most complicated model, Timoshenko in this case, and
then eliminates insignificant elements that do not contribute to the dynamic behavior
according to the activity metric.
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The results presented in this work are in agreement with the assumptions of beam
theories, which suggest that the Timoshenko beam model must be used for shorter
rather than slender beams. The proposed methodology can be used when modeling
beams, in order to decide which of the two models to use, Timoshenko or Euler–
Bernoulli. In addition, the activity metric can refine the modeling assumptions by
identifying what physical phenomena need to be included in each segment, i.e.,
linear and rotational inertia, bending and shear stiffness. This results in a non-
uniform reduced model where different physical phenomena are included along the
length of the beam.

The number of segments is a significant parameter when it comes to modeling
using the finite segment approach but it was considered constant in the analysis of
the presented results. The methodology was also performed with various, lower and
higher, number of segments; however, these results are not presented in this chapter
for brevity. The reduced models for different number of segments are identical with
the ones presented in this work as shown in Fig. 10.10. The only difference is the
actual number of included elements; however, the ratio of included elements to the
total number of elements remains the same.

The activity analysis is performed for two excitation frequencies that are around
the first and second natural frequencies. These excitations are chosen by making
the assumption that the model will be used with low frequency excitations. The
analysis showed that a higher number of elements are needed as the excitation
frequency increases; however, the overall accuracy of the reduced model remains
the same. A similar analysis can be performed for even higher excitation frequencies
or range of frequencies in order to account for more realistic excitations. However,
this procedure has to be formalized and this remains as an item for future research.

Because this work uses an energy-based modeling metric, it is convenient to
use a model representation and formulation approach from which energy can be
easily extracted/calculated. The bond graph approach explicitly represents the power
topography of a dynamic system, and therefore, it is used in this work for calculating
the necessary variables required for the power calculations. To be clear, the use
of this methodology is not limited to systems represented by bond graphs. It can
also be applied when the continuous system is modeled using any other modeling
methodology, e.g., Lagrange’s equations, Newton’s Law, etc. However, in this case
the calculation of power that is required for the proposed methodology might not be
as trivial as using the bond graph formulation.

The activity metric effectively addresses the model complexity of distributed
parameter components and in addition provides physical insight into the model.
The results of this chapter provide more insight into the nature of the reduced
models produced by MORA, and therefore, demonstrate that MORA is an even
more useful tool than previously realized for the production of proper models of
nonlinear systems.
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Appendix: Junction Structure Matrices
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