
Integrity Preserving Multi-keyword
Searchable Encryption for Cloud Computing

Fucai Zhou1(&), Yuxi Li1, Alex X. Liu2, Muqing Lin3,
and Zifeng Xu1

1 Software College, Northeastern University,
Shenyang 110819, Liaoning, China
fczhou@mail.neu.edu.cn

2 The Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824, USA

3 The College of Information Science and Engineering, Northeastern University,
Shenyang 110819, Liaoning, China

Abstract. Searchable symmetric encryption is an efficient way to perform
keyword search over encrypted data in cloud storage. However, most existing
methods do not take into account the integrity verification of the search result.
Moreover, existing methods can only verify the integrity of single-keyword
search results, which cannot meet the requirements of multi-keyword conjunc-
tive search. To address this problem, we proposed a multi-keyword searchable
encryption scheme with an authentication mechanism that can efficiently verify
the integrity of search results. The proposed scheme is based on the searchable
symmetric encryption and adopts the bilinear map accumulator to prove the
correctness of set operations. It supports multiple keywords as input for con-
junctive search and gives the server the ability to prove the integrity of the
search result to the user. Formal proofs show that the proposed scheme is
unforgeable and adaptive secure against chosen-keyword attacks. To the best of
our knowledge, this is the first work that can authenticate the multi-keyword
search result over encrypted data.

Keywords: Conjunctive keyword search � Integrity authentication � Searchable
encryption � Secure cloud storage

1 Introduction

Cloud computing is an innovative Internet-based computing paradigm that enables
cloud users to move out their data and applications to a remote cloud in order to deploy
scalable and elastic services on demand without having to provision a data center.
However, while cloud computing has many advantages, it has not been widely used.
According to a survey lunched by Twin Strata in 2015, only 38 % of organizations
would like to put their inactive data stored in public cloud; about 24 % of users were
using cloud storage for data backup, archiving and disaster recovery. This shows that
the issue of data security [1, 2] is one of the major obstacles to the promotion of cloud

© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 153–172, 2016.
DOI: 10.1007/978-3-319-47422-9_9

storage. Since the user’s data is outsourced to distributed cloud servers, the service
provider can easily access the data.

To prevent data from being maliciously accessed by cloud providers, data owners
tend to encrypt their private data before outsourcing to the cloud, and they only share
the decryption key to other authorized users. Although this method can protect the
privacy of the data, it brings the data retrieve problems. This limitation has motivated
many researches on advanced searchable encryption schemes that enable searching on
the encrypted data while protecting the confidentiality of the data and queries.

The solution of searchable encryption that first proposed by Song et al. [3] provides
a way to perform efficient keyword searches over encrypted data. Promoted by Song’s
pioneering work, many efforts have been devoted to construct more efficient searchable
symmetric encryption (SSE) schemes, such as [4–8] and [9]. A SSE scheme allows
users to encrypt their data using symmetric encryption, and then uses files and key-
words to create the encrypted index for further searches. When the user wants to
retrieve some files, he needs to choose a keyword and use it to generate a search
request. After that, the server uses this special request to search over its internal data
structure. At last, the server finds all the files related to that keyword and returns the file
collection to the user. Besides performing successful searches, the privacy feature of
the SSE also ensures that, given encrypted files, encrypted indexes and a series of
search requests, the server cannot learn any useful information about the files and the
keywords.

The solutions above are single-keyword oriented, which are inefficient in practice
since the searches may return a very large number of files, such as when searching in a
remote-stored email archive. The works in [10–12] and [13] extend the search primitive
to the multi-keyword conjunctive search, which avoid this limitation and are more
practical for real world scenarios.

To the best of our knowledge, few works consider the searchable encryption and
the search authentication together. Kamara et al. [14] presented a cryptographic cloud
storage system which combines an adaptive secure searchable symmetric encryption
scheme with a search authenticate mechanism to allow the user to verify the integrity of
the search result. They used a simple Merkle tree structure [15] and a pre-computed
basis to authenticate the given dataset. Kurosawa and Ohtaki [16] introduced the
definition of UC-security and proposed a verifiable SSE scheme that allows the user to
detect search result’s integrity.

Our Contribution. In this paper, we present a dynamic integrity preserving
multi-keyword searchable encryption scheme, enabling search authentication in
multi-keyword searchable encryption schemes to fulfill the practical needs. We reduce
the multi-keyword search (MSE) problem to the single-keyword case by performing a
search for each individual keyword and doing the intersection between each resultant
file sets to get the final result. To lower the communication overhead during a search,
the intersection of each keyword’s search result is computed at the server side. The
only thing that the user needs to do is to receive the final result and verify its integrity.

Thus, our approach should meet the following requirements: (1) the server is able to
take multiple keywords as input, and give the final result directly; (2) for the server that

154 F. Zhou et al.

honestly executes the search algorithm, a valid proof can be formed and pass the
verification; no one can generate a valid proof for a maliciously modified search result
and still pass the verification. Theoretical basis of proposed solution is inspired by the
authenticated data structure in [17] to verify set operations on out sourced sets.

We use dynamic SSE to realize the single-keyword search and use Merkle tree as
the base data structure to prove the correctness of the intersection. Based on them, our
scheme maintains the adaptive chosen-keyword security and is unforgeable against
adaptive adversaries.

2 Definition and Security Model

2.1 Definitions

We consider the scenario that consists of two types of entities. One of them is the user
that owns the data, and the other is the cloud storage provider, as known as the server,
which provides storage services to the user. The dynamic MSE scheme allows a user to
encrypt his data and outsource the encrypted data to the server. After uploading the
encrypted data, the user only needs to store a secret key and an authenticated data state,
regardless of the file number and size, i.e., the user’s storage overhead is constant size.
User can later generate search requests using single or multiple keywords and submit to
the server. Given a search request, the server searches over the encrypted data and
returns the set of encrypted files and a corresponding proof. The correctness of this
search result can be verified by the user, using this result and proof. User can also
dynamically update the file set on demand after the first uploading. The main system
architecture is showed in Fig. 1.

While using multiple keywords in a search, we define the search result to be the
intersection of the sets generated by searching for each individual keyword. Concretely
speaking, the question we discussed in this paper is the conjunctive keyword search.
We use “token” to describe the request sent by user. Since our scheme is dynamic,
there are two additional tokens, the add token and the delete token. The formal defi-
nition of our scheme is defined as follows.

Fig. 1. Integrity preserving search over encrypted data

Integrity Preserving Multi-keyword Searchable Encryption 155

Definition 1. A dynamic MSE scheme is a tuple of eight polynomial-time algorithms
and protocols MSE ¼ ðGen; Setup; SrchToken; Search;Verify, Dec;Add/Update;Del/
Update) such that:

K Genð1kÞ: is a probabilistic algorithm run by the user that takes a security
parameter 1k as input, outputs a secret key K.
ðc; c; st; aÞ SetupðK; d; fÞ: is a probabilistic algorithm run by the user that takes

the secret key K, an index d and a set of files f as input, outputs an encrypted index c, a
set of ciphertexts c, a data state st and an authenticated structure a.

ss SrchTokenðK;WÞ: is a deterministic algorithm run by the user that takes as
input the secret key K and a set of words W, outputs search token ss.
ðIW ; pÞ Searchða; c; c; ssÞ: is a deterministic algorithm run by the server that

takes as input the authenticated structure a, the encrypted index c, the set of ciphertexts
c and the search token ss, outputs a set of file identifiers IW, and a proof p.

b VerifyðK; st; ss; I0; pÞ: is a deterministic algorithm run by the user that takes
as input the secret key K, the data state st, a search token ss, a set of file identifiers I0

and a proof p, outputs 1 as accept or 0 as reject.
f DecðK; cÞ: is a deterministic algorithm run by the user to decrypt a ciphertext

c, outputs a plaintext file f .
ðU : st0; S : a0; c0; c0Þ Add/Update(U : K; df ; f ; st; S : a; c; cÞ: is an interactive

protocol run between the user U and the server S to add file to the file set.
ðU : st0; S : a0; c0; c0Þ Del/Update(U : K; df ; f ; st; S : a; c; cÞ: is an interactive

protocol run between the user U and the server S to delete file from the file set.

2.2 Security Model

We consider the server to be an un-trusted entity, which may deliberately steal or
sabotage the user’s data, or ignore some special files in the search result. Intuitively, an
integrity preserving searchable encryption scheme should meet the following security
features: (1) the encrypted files and data structures on the server side should not leak
any information about the files to the server; (2) the search requests generated by the
user should not leak any information about the keywords he uses; (3) for a fallacious
result, the server cannot produce a valid proof and pass the user’s verification.

Dynamic CKA2-Secure. This security requirement characterizes the feature that the
scheme does not leak any information to the adversary except those defined in the
leakage functions. The security definition will be parameterized by the four leakage
functions L1�L4. The adversary is allowed to be adaptive, i.e., its queries could base
on the previous results. Let A be a stateful adversary that executes the server-side
algorithm, “game” represent the interaction between A and user or simulator, “view”
represent all the information thatA can collect during the game. We assume that,A can
choose the encrypted message, and then generates the queries by interacting with the
user adaptively. Therefore, in our security definition, the “view” of A should only
contain the information specified by L1, L2, L3 and L4 in a simulated way.

156 F. Zhou et al.

Definition 2. Given the dynamic MSE scheme described in Definition 1, describe A as
a stateful adversary, S as a stateful simulator, L1, L2, L3, L4 as stateful leakage
functions. Consider the following games:

The dynamic MSE scheme is ðL1;L2;L3;L4Þ-secure against adaptive dynamic
chosen-keyword attacks if for all PPT adversary A, there exist a probabilistic poly-
nomial time simulator S such that:

Pr RealAð1kÞ ¼ 1
� �

� Pr IdealA;Sð1kÞ ¼ 1
� ��� ��� neglð1kÞ;

where neglð1kÞ is a negligible function with input 1k.

Unforgeability. We use game ForgeAð1kÞ to describe our scheme’s unforgeability. In
the unforgeability game, the adversary interacts with a user that honestly executes the
scheme. User initializes his data structures using the data provided by the adversary.
After making polynomial times queries, the adversary produces a set of keywords, a
wrong search result and a proof to this result. If these outputs pass the user’s verifi-
cation algorithm, the game outputs 1, otherwise it outputs 0. The unforgeability
requires that, all PPT adversaries have at most negligible probability to let the game
output 1. We give the formal definition as follow.

Definition 3. Given the dynamic MSE scheme described in Definition 1, for a stateful
adversary A, consider the following game:

Integrity Preserving Multi-keyword Searchable Encryption 157

where the set I0 6¼ IW. We say the dynamic MSE scheme is unforgeable if for all
PPT adversary A, the probability: Pr½ForgeAð1kÞ ¼ 1� � neglð1kÞ, where neglð1kÞ is a
negligible function with input 1k.

3 Integrity Preserving Multi-keyword Searchable Encryption
Scheme

In this section, we first construct a multi-keyword searchable encryption scheme, and
then add the search authentication mechanism to it to make the search result’s integrity
verifiable.

In our construction, the set of files f along with the inverted indexes d are the initial
input. In contrast to the file index, an inverted index is a set of lists that lead by
keywords, and each keyword is followed by a set of files that contain that keyword. The
keywords of each file are pre-selected, and can be considered as the outputs of some
other algorithms, which won’t be discussed here.

3.1 Dynamic Searchable Encryption

In the literature, most searchable encryption schemes use symmetric encryption to
improve performance. We follow the prior constructions and build our scheme upon
the CPA secure private key encryption [18].

The Fig. 2 shows our dynamic searchable encryption structure that is constructed
based on the inverted index. Generally speaking, the lookup table contains all the
keywords in the system, and each keyword in the table leads a list that stored in the
search array. For example, the list of keyword w2 starts at address 4 in the array, and
the node at address 4 has a pointer that points to address 7, and then address 8. By
traversing this list, all files that contain the keyword w2 can be retrieved. All the nodes
are stored at random location in the search array. To support efficient file updating,

158 F. Zhou et al.

there are also a deletion table and a deletion array. They work the same way, except
those lists are led by files.

In order to prevent the server from learning the data, all the tables’ entry, all the
pointers in the table, and all the nodes in those arrays are encrypted. During a search,
given the encrypted keywords, the server first decrypts the pointers in the lookup table
and then uses the pointers to find the corresponding file identifiers in the search array.
Those keywords remain encrypted throughout the search. Even if the server has
searched all those keywords, it can only learn the relationship between the encrypted
keywords and the related file identifiers but cannot obtain any useful knowledge about
the keywords itself. This could prevent the curious server from learning the files and
keywords. A more detailed analysis about this security model will be presented in
Sect. 4.

3.2 Making Result Verifiable

In the following content, we discuss the method to make result verifiable. This method
can allow a server to prove to a client that it answered a multi-keyword search query
correctly.

The method proposed in [14] is a Merkle tree based solution that it computes the
accumulated value for each word w, and uses these values as leaves to construct the
tree. In a search, the server returns a file set S, and a Merkle tree proof to this set. The
user can compute his own accumulated value using the files in S, and use it to perform
the Merkle tree verification. If the newly computed root equals to the original one, then
the result is correct and can be accepted by the user.

However, while switching to the multiple keywords setting, this solution is obsolete
to prove the correctness of the intersection of the results. The server could only gen-
erate the proof for each set separately. These sets and proofs must be transferred to the
user side to be verified, and subsequently the intersection of these sets could be
computed by the user. Obviously, the communication complexity is linear and may
have performance problems when the sets are very large.

Fig. 2. The schematic search structure

Integrity Preserving Multi-keyword Searchable Encryption 159

The reasonable way to address this problem is to let the server compute the inter-
section, and give the user final result directly. In this case, the correctness of the
intersection operation should be proved. We use the bilinear-map accumulator to realize
this functionality. The bilinear-map accumulator [19] is an efficient tool to provide
proofs of membership for elements that belong to a set. Let s 2 Z

�
p be a randomly chosen

trapdoor. The accumulator accumulates elements in Zp, and outputs an element in G.
For a set of elements X in Zp, the accumulation value accðXÞ is defined as:

accðXÞ ¼ g
Q

x2X ðxþ sÞ ð1Þ

Without knowing the trapdoor s, the value accðXÞ can also be constructed using X
and the pre-computed ðg; gs; . . .; gsqÞ, where q�#X . The proof of subset containment
of a set S	X is the witness ðS;WS;XÞ where:

WS;X ¼ g
Q

x2X�S ðxþ sÞ ð2Þ

Subset containment of S in X can be verified by checking:

e WS;X ; g
Q

x2S ðxþ sÞ
� �

¼ e accðXÞ; gð Þ ð3Þ

The security of the bilinear-map accumulator relies on the bilinear q-Strong
Diffie-Hellman assumption.

Intuitively, the correctness of the intersection could be defined as follows: given a
set I and a series of sets S1; . . .; Sn, I is the correct intersection of S1; . . .; Sn if and only
if the following conditions hold:

1. The subset condition: ðI	S1Þ ^ � � � ^ ðI	SnÞ.
2. The completeness condition: ðS1 � IÞ \ � � � \ ðSn � IÞ ¼ ;.

The subset condition is easy to understand, because as the intersection, the set I
must be included in each set Si. We use Merkle tree to authenticate the value accðSiÞ.
For all w 2 w, the values accðfwÞ are computed according to (1), then the tree is
constructed using these values as leaves.

Since the user does not store those accumulated values, the server should first
generates Merkle tree proofs for each accðSiÞ. It’s then straight forward to produce the
subset witness ðI;W I;SiÞ in (2) for each set Si. Given the accðSiÞ and the witness
ðI;W I;SiÞ, the validity of the value accðSiÞ should be first verified using Merkle tree
proofs, then the subset containment relationship could be checked by performing the
verifications according to the equation in (3).

The completeness condition is also necessary since the set I must contain all the
common elements. To construct the completeness proof, we define the polynomial:

PiðsÞ ¼
Y

f2Si�I
sþ idðf Þð Þ

160 F. Zhou et al.

The following result is based on the extended Euclidean algorithm over polyno-
mials and provides verification for checking the completeness of set intersection.

Lemma 1. The set I is complete if and only if there exist polynomials q1ðsÞ; . . .; qnðsÞ
such that q1ðsÞP1ðsÞþ � � � þ qnðsÞPnðsÞ ¼ 1 where PiðsÞ is defined above. Suppose I is
not the complete set, then there exist at least one common factor in P1ðsÞ; . . .;PnðsÞ. Thus
there are no polynomials q1ðsÞ; . . .; qnðsÞ to satisfy q1ðsÞP1ðsÞ þ � � � þ qnðsÞPnðsÞ ¼ 1.

The formal analysis will be given in Sect. 4.

3.3 Explicit Construction

Let P ¼ ðGen;Enc;DecÞ be a private-key encryption system. F : f0; 1gk
 f0; 1g�

! f0; 1gk, G : f0; 1gk
 f0; 1g� ! f0; 1g�, P : f0; 1gk
 f0; 1g� ! f0; 1gk be
pseudo-random functions. Let H1 : f0; 1g� ! f0; 1g�, H2 : f0; 1g� ! f0; 1g� and H3 :

f0; 1g� ! f0; 1gk be collision-resistant hash functions. Let z 2 N be the initial size of
the free list, and 0 be a series of 0’s. Choose bilinear pairing parameters ðp;G;G; e; gÞ.

Gen(1k) : Randomly choose three k - bit strings K1;K2;K3 and generate
K4 P:Genð1kÞ. Choose s 2 Z

�
p at random and output K ¼ ðK1;K2;K3;K4; sÞ as the

private keys. Compute ðg; gs; gs2 ; . . .; gsqÞ as public parameters where q should be large
enough, i.e., should at least satisfy q�maxf#fwgw2w.

SetupðK; d; f Þ :

1. Let As and Ad be arrays of size jcj=8þ z and let Ts and Td be dictionaries of size
#w and #f , respectively. Use “free” to represent a k - length word not in w.The
following step 2 and step 3 should be performed synchronously to set up As and Ad

at the same time.
2. For every keyword w 2 w,

• Generate a list Lw of #fw nodes ðN1; . . .;N#fwÞ randomly stored in As, set
Ni ¼ idi; addrsðNi�1Þ; addrsðNiþ 1Þh i � H1ðPK3ðwÞ; riÞ; rið Þ, where idi is the
identity of the ith file in fw, ri is a k - bit random string, and
addrsðN#fw þ 1Þ ¼ addrsðN0Þ ¼ 0log#As

• Set Ts FK1ðwÞ½ � ¼ addrsðN1Þ; addrdðN01Þ
� �

� GK2ðwÞ, where N01 is the dual of
N1, which has the same ðf1;wÞ pair as node N1.

3. For each file f in f,

• Create a list Lf of #f dual nodes ðD1; . . .;D#f Þ ðN1; . . .;N#fwÞ randomly stored
in the deletion array Ad . Each node Di is associated with a word w, and a
corresponding node N in Lw. Let Nþ 1 be the node after N in Lw, and N�1 be the
node before N in Lw. Define Di as:

Integrity Preserving Multi-keyword Searchable Encryption 161

Di ¼
addrdðDiþ 1Þ; addrdðN0�1Þ; addrdðN0þ 1Þ;
addrsðNÞ; addrsðN�1Þ; addrsðNþ 1Þ

	

� H2ðPK3ðf Þ; r0iÞ; r0i

� �
;

where r0i is a random k - bit string, addrdðD#f þ 1Þ ¼ 0log#Ad

• Store a pointer to the first node of Lf in the deletion table by setting:

Td FK1ðf Þ½ � ¼ addrdðD1Þ � GK2ðf Þ

4. Generate the free list Lfree by choosing z at random in As and in Ad . Let ðF1; . . .; FzÞ
and ðF01; . . .; F0zÞ be the free nodes in As and Ad , respectively. Set: Ts free½ � ¼
addrsðF1Þ; 0log#As
� �

, and for 1� i� z, set As addrsðFiÞ½ � ¼ 0log#f ;
�

addrsðFiþ 1Þ;
addrdðF0iÞ; 0ki, where addrsðFzþ 1Þ ¼ 0log#As .

5. Fill the remaining entries of As and Ad with random strings.
6. For 1� i�#f, let ci P:EncK4ðfiÞ.
7. For all w 2 w, form the leaf node by letting hw ¼ FK1ðwÞ; g

Q
f2fw

sþ idðf Þð Þ
D E

.

Construct a Merkle tree using H3 with leaves L ¼ fhwgw2w permuted in a random
order.

8. Output ðc; c; st; aÞ, where c ¼ ðAs;Ts;Ad ;TdÞ, c ¼ ðc1; . . .; c#fÞ, st is the root of
the tree, and a is the tree itself.

SrchTokenðK;WÞ: For W ¼ ðw1; . . .;wnÞ, compute each si ¼ ðFK1ðwiÞ;GK2ðwiÞ;
PK3ðwiÞÞ, then output ss ¼ s1; . . .snð Þ.

Searchða; c; c; ssÞ :

1. For each si in ss, parse si as ðsi;1; si;2; si;3Þ,

• Recover a pointer to the first node of the list by computing
ða1; a01Þ ¼ Ts½si;1� � si;2.

• Lookup node N1 ¼ A½a1� and decrypt it using si;3, i.e., parse N1 as ðv1; r1Þ and
compute ðid1; 0; addrsðN2ÞÞ ¼ v1 � H1ðsi;3; r1Þ. Let a2 ¼ addrsðN2Þ.

• For j� 2, decrypt node Nj as above until ajþ 1 ¼ 0.
• Let Si ¼ fid1; . . .; idtg be the file identifiers revealed in the previous steps.

2. For the sets S1; � � � ; Sn generated in step 1, let IW ¼ fid1; . . .; idmg be the inter-
section, i.e., IW ¼ S1 \ S2 \ . . .\ Sn. Compute the proofs in the following steps:

• For 1� i� n, find the leaf hi in a whose first element is si;1 and generate the
proof ti. The ti includes hi and all the sibling nodes in the path from the leaf hi to
the root. Let T ¼ ft1; . . .; tng.

• For 1� i� n, form the polynomial: Pi ¼
Q

f2Si�IW sþ idðf Þð Þ,
then use the public parameters ðg; gs; gs2 ; . . .; gsqÞ to compute the value gPi . Let
S ¼ fgP1 ; . . .; gPng be the subset witness.

162 F. Zhou et al.

• Giving the polynomials fP1; . . .;Png generated in step 2, find the polynomials
fq1; . . .; qng that satisfying q1P1þ q2P2þ � � � þ qnPn ¼ 1 . This can be done
using extended Euclidean algorithm over polynomials. Let C ¼ fgq1 ; . . .; gqng be
the completeness witness.

3. Output the result IW and the proof p ¼ fT ;S; Cg.

VerifyðK; st; ss; I0; pÞ :

1. Parse p as fT ;S; Cg and verify these proofs in the following steps:

• For each proof ti in T , let hi be the corresponding leaf node in ti. Parse hi as

ðhi;1; hi;2Þ, i.e. hi;1 ¼ FK1ðwiÞ and hi;2 ¼ g
Q

f2fwi
sþ idðf Þð Þ

.Verify if the value hi;1
equals to si;1, where si;1 is the first element of si in ss. Then verify the proof ti
using the root st.

• For 1� i� n, parse the leaf node hi as ðhi;1; hi;2Þ, then perform the subset

condition verification by checking: eðg
Qm

k¼1 ðsþ idkÞ; gPiÞ¼? eðhi;2; gÞ, where
ðid1; . . .idmÞ is from I0 and gPi is element in S.

• Verify the completeness condition by checking:
Qn

i¼1 eðgPi ; gqiÞ¼? eðg; gÞ, where
gPi is element in S and gqi is the corresponding element in C.

2. If all the verifications succeed, then output 1, otherwise output 0.

DecðK; cÞ: Output f ¼ P:DecK4ðcÞ.
Add=UpdateðU : K; df ; f ; st; S : a; c; cÞ:
User:
Recover the unique sequence of words ðw1; . . .;w#f Þ from df and compute the set

fFK1ðwiÞg1� i�#f and send to the server.
Server:

1. For 1� i�#f , traverse the Merkel tree a and:

• Find the leaf hi in a whose first element is FK1ðwiÞ.
• Let ti be the proof in a from hi to the root. The proof includes the leaf hi, and all

the sibling nodes from hi to the root.

2. Let q ¼ ðt1; . . .; t#f Þ and send it to the user.

User:

1. Verify the proofs in ðt1; . . .; t#f Þ using st, if fails, output ? and terminate.
2. For 1� i�#f ,

• Let hi be the leaf in ti, parse hi as ðhi;1; hi;2Þ.
• Compute the new leaf node h0i ¼ ðhi;1; ðhi;2Þ

sþ idðf ÞÞ.

3. Update the root hash st using ðh01; . . .; h
0
#f Þ and the information in ðt1; . . .; t#f Þ.

4. Compute sa ¼ ðFK1ðf Þ;GK2ðf Þ; k1; . . .k#f Þ, where for all 1� i�#f ::

Integrity Preserving Multi-keyword Searchable Encryption 163

ki ¼
h0i;1; h

0
i;2;GK2 wið Þ; id fð Þ; 0; 0;h i � H1 PK3 Wið Þ; rið Þ;

ri; 0; 0; 0; 0; 0; 0h i � H2 PK3 fð Þ; r0i

 �

; r0i

� �
;

where ri and r0i are random k - bit strings.

5. Let cf SKE:EncK4ðf Þ and send ðsa; cf Þ to the server, then output the new root st0.

Server:

1. Parse sa as ðs1; s2; k1; . . .; k#f Þ and return ? if s1 is already in Td .
2. For 1� i�#f ,

• Find the first free location u in As, second free location uþ 1 in As, first free
location u0 in Ad , and second free location u0þ 1 in Ad , by computing
ðu; 0Þ ¼ Ts½free], ð0;uþ 1;u

0Þ ¼ As½u� and ð0;uþ 2;u
0
þ 1Þ ¼ As½uþ 1�.

• Update the search table by setting Ts½free� ¼ ðuþ 1; 0Þ.
• Recover N1’s address a1 by computing ða1; a01Þ ¼ Ts½ki½1�� � ki½3�.
• Parse N1 ¼ As½a1� as ðv1; r1Þ, then update N1’s back pointer point by setting:

As½a1� ¼ v1 � h0;u; 0i; r1ð Þ.
• Store the new node at location u and modify its forward pointer to N1 by

setting:As½u� ¼ ki½4� � h0; 0; a1i; ki½5�ð Þ .
• Update the search table by setting:Ts ki½1�½ � ¼ ðu;u0Þ � ki½3� .
• Parse D1 ¼ Ad ½a01� as ðv01; r01Þ, set Ad ½a01� ¼ ðv01 � h0;u0; 0; 0;u; 0i; r01Þ.
• If i\#f , set Ad ½u0� ¼ ki½6� � hu0þ 1; 0; a

0
1;u; 0; a1i; ki½7�

 �
.

• If i ¼ #f , set Ad½u0� ¼ ki½6� � h0; 0; a01;u; 0; a1i; ki½7�

 �

.
• If i ¼ 1, then update the deletion table by setting Td½s1� ¼ u0 � s2.

3. Update the cipher texts by adding c to c.
4. Let h0i ¼ ðki½1�; ki½2�Þ, update the tree a by replacing the leaves ðh1; . . .; h#f Þ with
ðh01; . . .; h

0
#f Þ.

5. Output ða0; c0; c0Þ, where a0 is the updated tree.

Del=UpdateðU : K; df ; f ; st; S : a; c; cÞ :
User:
Recover the unique sequence of words ðw1; . . .;w#f Þ from df and compute the set

fFK1ðwiÞg1� i�#f and send to the server.
Server:

1. For 1� i�#f , traverse the Merkel tree a and:

• Find the leaf hi in a whose first element is FK1ðwiÞ.
• Let ti be the proof in a from hi to the root. The proof includes the leaf hi, and all

the sibling nodes from hi to the root.

2. Let q ¼ ðt1; . . .; t#f Þ and send it to the user.

User:

1. Verify the proofs in ðt1; . . .; t#f Þ using st, if fails, output ? and terminate.
2. For 1� i�#f ,

164 F. Zhou et al.

• Let hi be the leaf in ti, parse hi as ðhi;1; hi;2Þ.
• Compute the new leaf node h0i ¼ ðhi;1; ðhi;2Þ

1=ðsþ idðf ÞÞÞ.

3. Update the root hash st using ðh01; . . .; h
0
#f Þ and the information in ðt1; . . .; t#f Þ.

4. Compute sd ¼ ðFK1ðf Þ;GK2ðf Þ;PK3ðf Þ; idðf Þ; h01; . . .; h
0
#f Þ.

5. Send sd to the server, then output the new root st0.

Server:

1. Parse sd as ðs1; s2; s3; id; h01; . . .; h
0
#f Þ.

2. Find the first node of Lf by computing a0i ¼ Td½s1� � s2.
3. While a0i 6¼ 0,

• Parse Di ¼ Ad ½a0i� as ðv0i; r0iÞ, decrypt Di by computing ða1; . . .; a6Þ ¼
v0i�H2ðs3; r0iÞ.

• Delete Di by setting Ad½a0i� to a random string.
• Find address of the first free node by computing ðu; 0Þ ¼ Ts½free].
• Update the first node of the free list in the Ts point to Di’s dual by setting

Ts½free] ¼ ða4; 0Þ.
• Free Di’s dual by setting As½a4� ¼ ð0;u; a0iÞ.
• Let N�1 be the node before Di’s dual. Update N�1’s next pointer by setting

As½a5� ¼ ðb1;b2; b3 � a4 � a6; r�1Þ, where ðb1; b2; b3; r�1Þ ¼ As½a5�. Also,
update the pointers of N�1 ’s dual by setting:Ad a2½ � ¼ ðb1; b2; b3 � a0i � a3;
b4; b5; b6�a4 � a6; r0�1Þ,where ðb1; . . .;b6; r0�1Þ ¼ Ad½a2�.

• Let Nþ 1 be the node after Di’s dual. Update Nþ 1’s previous pointer by setting
As½a6� ¼ ðb1;b2 � a4 � a5; b3; rþ 1Þ, where ðb1; b2; b3; rþ 1Þ ¼ As½a6�. Also,
update Nþ 1’s dual’s pointers by setting: Ad a3½ � ¼ ðb1; b2 � a0i � a2; b3;
b4; b5 � a4 � a5;b6; r

0
þ 1Þ, where ðb1; . . .; b6; r0þ 1Þ ¼ Ad ½a3�.

• Set a0i ¼ a1.

4. Remove the cipher text corresponding to id from c.
5. Remove s1 from Td .
6. Update the tree a by replacing the leaves ðh1; . . .; h#f Þ with ðh01; . . .; h

0
#f Þ.

7. Output ða0; c0; c0Þ, where a0 is the updated tree.

4 Security Analysis

4.1 Dynamic CKA2-Secure

In the following, we analyze our dynamic MSE scheme and investigate which infor-
mation has been leaked during the execution of these algorithms and protocols. The
formal definition will be given afterwards.

In our scheme, for each word wi, the value FK1ðwiÞ can be treated as a unique
identifier, and we denote it by idðwiÞ. For each file fi, there are two identifiers, the idðfiÞ
in the array As and the FK1ðfiÞ in the table Td . Both of them can uniquely represent a
file, so for convenience, we do not distinguish between them.

Integrity Preserving Multi-keyword Searchable Encryption 165

Given the encrypted index c ¼ ðTs;As;Td;AdÞ, the Merkle tree a and the cipher-
texts c, the server can learn the size of As, the set ½idðwÞ�w2w from Ts, the set ½idðf Þ�f2f
and the length of each file ½jf j�f2f . We denote these by L1, i.e.,

L1ðd; fÞ ¼ #As; idðwÞ½ �w2w; idðf Þ½ �f2f ; fj j½ �f2f
� �

:

The search operation reveals to the server idðwÞ for all w 2 W , and the relationship
between idðwÞ and the identifiers of all files that contains w. We denote these by L2, i.e.,

L2ðd; f;WÞ ¼ ½idðf Þ�f2fw ; idðwÞ
� �

for allw2W
:

In the add protocol, the server can learn the identifier of the file to be added, the
length of the file, and the identifiers of the words that belong to the file. In addition, it
can tell whether the word w contained in the file is a new word by checking the table
Ts. We denote these by L3, i.e.,

L3ðd; f; f Þ ¼ idðf Þ; idðwÞ; apprsðwÞ½ �w2wf
; fj j

� �
;

where apprsðwÞ is a one bit flag set to 1 if the word w exists in the index before the file
f is added, otherwise, it is set to 0.

Similarly, in the delete protocol, the server can learn the identifier of the file to be
deleted, and know the relationship between idðf Þ and those word identifiers. In addi-
tion, for each w 2 wf , by removing the word pair ðf ;wÞ from the list Lw, the server
learns the locations of the pair’s neighbors in Lw. We denote these by L4.

L4ðd; f; f Þ ¼ idðf Þ; idðwÞ; prevðf ;wÞ; nextðf ;wÞ½ �w2wf

� �
;

where prevðf ;wÞ and nextðf ;wÞ are the file identifiers of the file before and after f in
the word list Lw. For the head and the tail of the list, the corresponding value is set ? to
indicate that there are no more nodes before or after this one.

Now we use the following theorem to claim that the construction in Sect. 4 is
dynamic CKA2-secure in the random oracle model with the leakage functions
described above.

Theorem 1. If the private-key encryption system P is CPA-secure, and the F, G and P
are pseudo-random functions, then the dynamic MSE scheme is ðL1;L2;L3;L4Þ-se-
cure against adaptive chosen-keyword attacks in the random oracle model.

Proof: The primary goal of providing this proof is to construct a PPT simulator S that
can generate the simulated values in the ideal game using the information given in
these leakage functions. Those simulated values should be indistinguishable from ones
in the real game to any PPT adversary.

Given the information received from L1, the simulator could determine the length
and the structure of encrypted index c, ciphertexts c and tree a. Then it can use

166 F. Zhou et al.

randomly chosen strings to construct these structures and produce these values as the
simulated one ð~c;~c; ~aÞ. If a PPT adversary can distinguish the tuple ð~c;~c; ~aÞ from
ðc; c; aÞ with non-negligible probability then it can break at least one of these properties
with non-negligible probability: the CPA security of the encryption scheme; the
pseudo-randomness of the PRFs and the elliptic curve discrete logarithm assumption.

Given the information received from L2, L3 and L4, the simulator should respond
the simulated search token, the simulated add token and the simulated delete token
during the adversary’s queries. These steps become more complex due to the fact that
simulator needs to track the dependencies between the information revealed by these
queries to ensure consistency among these simulated tokens. We define additional
assisting structures iAs, iAd , iTs and iTd in the simulator side to maintain consistency
during updation. The simulator uses these assisted structures to record those depen-
dencies that are revealed by L2, L3 and L4 in the queries, and builds internal rela-
tionship in iAs, iAd , iTs and iTd , while the values in ~c ¼ ð~As; ~Ts; ~Ad; ~TdÞ remain
random. This gives the simulator the ability to respond the adversary’s queries like a
real user, except using those simulated values.

Analyze.

1. If the pseudo-randomness of F, G and P holds, then for all PPT adversaries A, there
exist negligible value e1 such that:

Pr 1 A d; f;As;Ts;Ad ;Tdð Þ½ � � Pr 1 A d; f; ~As; ~Ts; ~Ad ; ~Td

 �� ��� ��� e1:

Because each cell in ~As can be recognized as the form h~N;~ri where ~N
�� �� ¼

2 log#Asþ log#f and ~rj j ¼ k. The cell in As is Ni ¼ idi; addrsðNi�1Þ;hð
addrsðNiþ 1Þi � H1ðPK3ðwÞ; riÞ; riÞ, due to the pseudo-randomness of P and the random
oracle H1, all PPT adversaries A� cannot distinguish ~As from As. Similarly, it cannot
distinguish Ts;Ad;Td with ~Ts; ~Ad ; ~Td if the pseudo-randomness of F, G and P holds. It
means the adversary can distinguish the real index As;Ts;Ad;Td from the simulated
index ~As; ~Ts; ~Ad ; ~Td . Therefore, the probability e1 is negligible.

2. Based on the elliptic curve discrete logarithm assumption and the
pseudo-randomness of F; any PPT adversary A cannot distinguish the real leaf
nodes L from the simulated one ~L, therefore cannot distinguish the tree ~a from a,
since they are generated by these leaves. i.e. there exist negligible value e2 such
that:

Pr 1 A d; f; að Þ½ � � Pr 1 A d; f; ~að Þ½ �j j � e2:

Because the pseudo-randomness of F holds, any PPT adversary cannot distinguish
the random bits from the output of PRF F. So it cannot distinguish the random bits
cs idðwiÞð Þ with FK1ðwiÞ. In addition, due to the discrete logarithm assumptions, any

PPT adversary cannot can distinguish gxi with g
Q

f2fwi
sþ idðf Þð Þ

. As we know, the real

Integrity Preserving Multi-keyword Searchable Encryption 167

leaf nodes L from the simulated one ~L are: ~L ¼ f~hwgw2w ¼ fð~hw;1; ~hw;2Þgw2w ¼ðcs idð

ðwiÞÞ; gxiÞ;L ¼ fhwgw2w ¼ fðhw;1; hw;2Þgw2w ¼ ðFK1ðwiÞ; g
Q

f2fwi
sþ idðf Þð ÞÞ,

So A cannot distinguish L from ~L. The tree ~a and a are build by the
collision-resistant hash function H3 of the leaf nodes, so the adversary cannot distin-
guish the tree ~a and a, then e2 is negligible.

3. If the private-key encryption system P is CPA-secure, then for all PPT adversaries
A, there exists negligible value e3 such that:

Pr 1 A f; cð Þ½ � � Pr 1 A f;~cð Þ½ �j j � e3:

Because the private-key encryption system P is proved to be CPA secure, so the
ciphertexts it produces do not reveal any partial information about the plaintext. So any
PPT adversary A cannot distinguish the ciphertexts that generated by two different
inputs using the SKE encryption. As we know, ~c and c are:c ¼ ðc1; . . .; c#fÞ, in which
ci ¼ P:EncK4ðfiÞ; ~c ¼ ð~c1; . . .;~c#fÞ, in which ~ci ¼ P:EncK4ð0 fj jÞ. So A cannot dis-
tinguish ~c from c. Therefore, e3 is negligible.

In addition, there exists negligible value e4 such that:

Pr 1 A d; f; ssð Þ½ � � Pr 1 A d; f;~ssð Þ½ �j j � e4

Because the pseudo-randomness of F;G;P holds, any PPT adversary cannot dis-
tinguish the random bits from the output of PRF F;G;P. So it cannot distinguish

~si ¼ cs idðwiÞð Þ; ~T0s cs idðwiÞð Þ½ � � iTs idðwiÞð Þ;KidðwiÞ

� �
with si ¼ ðFK1ðwiÞ;GK2ðwiÞ;

PK3ðwiÞÞ, so as ss ¼ s1; . . .snð Þ and ss ¼ ~s1; . . .~snð Þ. Therefore, e4 is negligible.
In the same way, based on the elliptic curve discrete logarithm assumption and the

pseudo-randomness of F;G;P, we have:

Pr 1 A d; f; sa; cf

 �� �

� Pr 1 A d; f;~sa;~cf

 �� ��� ��� e5;

Pr 1 A d; f; sdð Þ½ � � Pr 1 A d; f;~sdð Þ½ �j j � e6;

where e5; e6 are all negligible values.
To sum up, we have the conclusion that for all PPT adversaries A, the output of

RealAð1kÞ and IdealA;Sð1kÞ are identical, except with negligible probability neglð1kÞ, i.e.:

Pr RealAð1kÞ ¼ 1
� �

� Pr IdealA;Sð1kÞ ¼ 1
� ��� ��� neglð1kÞ:

Therefore our dynamic MSE scheme is ðL1;L2;L3;L4Þ-secure against adaptive
chosen-keyword attacks in random oracle model. □

168 F. Zhou et al.

4.2 Unforgeability

Theorem 2. If H3 is collision-resistant hash function and the bilinear q-SDH
assumption holds then the dynamic MSE scheme is unforgeable.

Proof: The main idea to give the proof is that, if there exists a PPT adversary A such
that ForgeAð1kÞ ¼ 1, then there exist a PPT simulator S that breaks at least one of the
assumptions : The collision-resistance property of H3 and the Bilinear q-SDH
assumption.

During the game, the simulator S interacts with A using real algorithm. Assume after q
times queries, A outputs a set of file identifiers I0 6¼ IW and a valid proof p. This means
the proof p ¼ T ;S; Cf g he produces under query W passes all three steps of the
verification phase. We categorize the forgery into three types:

Type I forgery: For some word wi 2 W , the adversary outputs a different leaf

value h
_

wi in Merkle tree proof t
_

i and passes the verification step 1.
Type II forgery: For some word wi 2 W , I0 6
 Si. The adversary gives the simu-

lator the real accumulation value in the proof ti, and outputs a subset witness g_
Pi that

passes the verification step 2.
Type III forgery: The set I0 is a proper subset of IW . The adversary gives the

simulator the real S ¼ fgP1 ; . . .; gPng, and outputs a completeness witness C
_

which
passes the verification step 3.

It is clear that if I0 6¼ IW and proof p is valid then one of the above mentioned
forgeries must occur. Next we show that the simulator S can use type I forgery to break
the collision-resistance property of H3, and use type II or III forgeries to break the
bilinear q-SDH assumption.

1. The collision-resistance property of H3

The hash function H3 is collision-resistance if it is difficult for all PPT adversaries
to find two different messages m1 and m2, such that H3ðm1Þ ¼ H3ðm2Þ.

First, given the hash function H3, the simulator S interacts with the adversary A
according to the game ForgeAð1kÞ. If A wins the game and the Type I forgery occurs,

that means for some word wi 2 W , A outputs a different leaf value h
_

wi in Merkle tree

proof t
_

i.. Then, the simulator S verifies the value A outputs, which passes the veri-

fication step 1. Let h
_

wi ¼ ðh
_

wi;1; h
_

wi;2Þ. Passing the verification step 1 means the
following two conditions hold:

• The search key FK1ðwiÞ ¼ h
_

wi;1.

• The Merkle tree verification using the leaf h
_

wi succeeds.

According to the verification step 1, the adversary A may only forge the h
_

wi;2. Then
passing the Merkle tree verification implies that the adversary is able to find the
collision of H3, because it can generate the same root with the modified leaf.

Integrity Preserving Multi-keyword Searchable Encryption 169

2. Bilinear q-SDH assumption
Given the simulator S an instance of bilinear q-SDH problem: ðp;G;G; e; gÞ and a

ðqþ 1Þ-tuple ðg; gs; . . .; gsqÞ. S interacts with the adversary A in the following way.
First, since S doesn’t know the value s in the given bilinear q-SDH instance, it

needs to reconstruct the following algorithms which related to s in the game
ForgeAð1kÞ:

In the algorithm Gen, the simulator S directly uses ðg; gs; . . .; gsqÞ as the public
parameters without knowing s, and sends them to the adversary.

And in the algorithm Setup, for the leaf nodes: hw ¼ FK1ðwÞ; g
Q

f2fw
sþ idðf Þð Þ

� �
, the

simulator S computes the value using ðg; gs; . . .; gsqÞ:g
Q

f2fw
sþ idðf Þð Þ.

It is worth mentioning that, the simulator S needs to construct an extra auxiliary
data structure N . It stores for each leaf nodes hw the polynomial:nw ¼Q

f2fw ðsþ idðf ÞÞ, which is used to form the add/delete tokens later.
Simulator S cannot directly compute the value of sa in Add/Update protocol. In the

Add/Update protocol’s user’s step 2, when computing the value of the new leaf node h0i
in sa, it first finds N to find the polynomials ni that equals hi;2, then computes the value
gni�ðsþ idðf ÞÞ using ðg; gs; . . .; gsqÞ. The value h0i ¼ ðhi;1; gni�ðsþ idðf ÞÞÞ is the updated leaf
node.

Similarly, in the Del/Update protocol, S finds the ni in N and removes the factor
sþ idðf Þ from ni and then computes the value gni=ðsþ idðf ÞÞ using ðg; gs; . . .; gsqÞ and gets
a new leaf node h0i ¼ ðhi;1; gni=ðsþ idðf ÞÞÞ.

In this modified game, the values that related to s are computed in a new way.
However, it produces same output as it was produced by earlier version of algorithm.
So in the adversary A’s view, these values are still valid, it cannot distinguish this game
with the original one.

If A wins the game, and the following two types of forgeries occur, then the
simulator S may solve the given bilinear q-SDH instance.

• If the Type II forgery occurs, i.e., the adversaryA outputs a set I0 ¼ fx1; . . .; xmg and
a witness g_

Pi
for some wi 2 W . Let Si ¼ fid1; . . .; idqg be the file identifier set related

to the word wi, then gðsþ id1Þðsþ id2Þ���ðsþ idqÞ is the corresponding accumulation value.
Since I0 6
 Si, there exists some 1� j�m, such that xj 62 Si. This means in the

equation: eðg
Q

x2I0 ðsþ xÞ; g_
PiÞ ¼ eðgðsþ id1Þðsþ id2Þ���ðsþ idqÞ; gÞ, ðsþ xjÞ does not divide

ðsþ id1Þðsþ id2Þ � � � ðsþ idqÞ. Therefore there exists polynomial QðsÞ of degree q�
1 and constant c 6¼ 0, such that:ðsþ id1Þðsþ id2Þ � � � ðsþ idqÞ ¼ QðsÞðsþ xjÞ þ c.

Then the simulator S has eðg; g_PiÞðsþ xjÞ
Q

x2I0^x6¼xj
ðsþ xÞ ¼ eðg; gÞQðsÞðsþ xjÞþ c.

After transformation, it can finally have eðg; gÞ1=sþ xj ¼eðg; g_PiÞ
Q

x2I0^x 6¼xj
ðsþ xÞ

eðg; gÞ�QðsÞÞ1=c. This means the simulator S can solve the instance of bilinear q-SDH
problem in polynomial time.

170 F. Zhou et al.

• If the Type III forgery occurs, i.e., the adversaryA outputs a set I0 ¼ fx1; . . .; xmg and
the completeness witness C

_

. Since the set I0 is the proper subset of IW , there exists at
least one common factor in polynomials P1; . . .;Pn. We use ðsþ xÞ to denote the
factor, where x 62 I0. These values can pass the verification step 3 means the fol-
lowing holds:

Qn
i¼1 eðgPi ; gqiÞ ¼ eðg; gÞ. And extract ðsþ xÞ from each Pi by com-

puting gP
0
i ¼ ðgPiÞ1=ðsþ xÞ, then

Qn
i¼1 eðgPi ; gqiÞ ¼ð

Qn
i¼1eðgP

0
i ; gqiÞÞsþ x ¼ eðg; gÞ:

Thus the simulator S can easily form the solution of the instance of bilinear q-SDH

problem by computing: eðg; gÞ1=ðsþ xÞ ¼
Qn

i¼1 eðgP
0
i ; gqiÞ. This means the simulator can

also solve the instance of bilinear q-SDH problem in polynomial time.
The above analyses show that, if the adversary A could successfully forge a proof,

it must have the ability to break at least one of these assumptions above. Therefore we
have the conclusion that for all PPT adversaries A, the probability

Pr½ForgeAð1kÞ ¼ 1� � neglð1kÞ;

where neglð1kÞ is a negligible function with input 1k . Thus our dynamic MSE scheme
is unforgeable. □

5 Conclusion

Searchable encryption is an important cryptographic primitive for cloud storage
environment. It is well motivated by the popularity of cloud storage services. At the
same time, the authentication methods utilized for the search results’ verification is a
significant supplement that makes the search more reliable and it would greatly pro-
mote the development of cloud storage service.

In this paper, we described a searchable encryption scheme which supports multiple
keywords search and authentication. The scheme can greatly reduce the communication
cost during the search. We demonstrated that, taking into account the security chal-
lenges in the cloud storage, our scheme can withstand the chosen-keyword attack
carried out by the adaptive adversaries. Proposed scheme also prevents the result from
being maliciously altered by those adversaries.

In the future, we will perform a detailed analysis of the security aspects in this
paper and investigate the feasibility of designing improved security model to enhance
the scheme’s security features. Moreover, we will give consideration to the authenticate
techniques to achieve more efficiency to meet practical needs.

Acknowledgement. This work was supported in part by the National Science and Technology
Major Project under Grant No. 2013ZX03002006, the Liaoning Province Science and Tech-
nology Projects under Grant No. 2013217004, the Liaoning Province Doctor Startup Fund under
Grant NO. 20141012, the Fundamental Research Funds for the Central Universities under Grant
No. N130317002, the Shenyang Province Science and Technology Projects under Grant
No. F14-231-1-08, and the National Natural Science Foundation of China under Grant Numbers
61472184, 61321491, 61272546.

Integrity Preserving Multi-keyword Searchable Encryption 171

References

1. Cachin, C., Keidar, I., Shraer, A.: Trusting the cloud. ACM SIGACT News. 40(2), 81–86
(2009)

2. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., Curtmola, R., Dietrich, S.,
Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) RLCPS, WECSR, and WLC 2010. LNCS,
vol. 6054, pp. 136–149. Springer, Heidelberg (2010)

3. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In:
IEEE Symposium on Security and Privacy (S&P 2010), Oakland, California, USA, pp. 44–
55. IEEE Computer Society (2010)

4. Goh, E.J.: Secure indexes. cryptology. ePrint Archive, Report 2003/216
5. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted

data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp. 442–455. Springer, Heidelberg (2005)

6. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption:
improved definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)

7. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In:
Proceedings of CCS 2012, pp. 965–976. ACM (2012)

8. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., Steiner, M.: Dynamic
searchable encryption in very-large databases: data structures and implementation.
I Cryptology ePrint Archive, Report 2014/853

9. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small
leakage. In: Proceedings of the Network and Distributed System Security Symposium
(NDSS 2011), 23–26 February 2011, San Diego, California, USA. The Internet Society
(2011)

10. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over encrypted data.
In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 31–45.
Springer, Heidelberg (2004)

11. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword searches over
encrypted data. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol.
3783, pp. 414–426. Springer, Heidelberg (2005)

12. Byun, J.W., Lee, D.-H., Lim, J.-I.: Efficient conjunctive keyword search on encrypted data
storage system. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp. 184–
196. Springer, Heidelberg (2006)

13. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword ranked
search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1), 222–233 (2014)

14. Kamara, S., Papamanthou, C., Roeder, T.: CS2: a searchable cryptographic cloud storage
system. TechReport MSR-TR-2011-58, Microsoft Research (2011)

15. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol.
435, pp. 218–238. Springer, Heidelberg (1990)

16. Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In: Keromytis, A.D.
(ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg (2012)

17. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of operations on
dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 91–110.
Springer, Heidelberg (2011)

18. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca Raton (2014)
19. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.)

CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

172 F. Zhou et al.

	Integrity Preserving Multi-keyword Searchable Encryption for Cloud Computing
	Abstract
	1 Introduction
	2 Definition and Security Model
	2.1 Definitions
	2.2 Security Model

	3 Integrity Preserving Multi-keyword Searchable Encryption Scheme
	3.1 Dynamic Searchable Encryption
	3.2 Making Result Verifiable
	3.3 Explicit Construction

	4 Security Analysis
	4.1 Dynamic CKA2-Secure
	4.2 Unforgeability

	5 Conclusion
	Acknowledgement
	References

