
Efficient Dynamic Provable Data Possession
from Dynamic Binary Tree

Changfeng Li1 and Huaqun Wang2(B)

1 Nanjing University of Finance and Economics, Nanjing, China
2 Nangjing University of Posts and Telecommunications, Nanjing, China

wanghuaqun@aliyun.com

Abstract. In order to ensure the remote data integrity in cloud stor-
age, provable data possession (PDP) is of crucial importance. For most
clients, dynamic data operations are indispensable. This paper proposes
an efficient dynamic PDP scheme for verifying the remote dynamic data
integrity in an untrusted cloud storage. Our dynamic PDP scheme is
constructed from dynamic binary tree and bilinear pairings, supporting
the dynamic data operations, such as, insertion, deletion, modification.
From the computation cost, communication cost, and storage cost, our
proposed dynamic PDP scheme is efficient. On the other hand, our pro-
posed concrete dynamic PDP scheme is provably secure.

Keywords: Cloud computing · Dynamic provable data possession ·
Binary tree

1 Introduction

By using cloud computing, the clients are relieved of the burden for storage
management and data processing. Thus, the clients save the capital expenditure
on hardware, software, and personnel maintenances, etc. In cloud computing,
the clients outsource their computing and storage to remote cloud server (CS).
At the same time, the clients also face the risks of confidentiality, integrity and
availability of data and service. Since the clients do not store these data locally,
it is especially vital to ensure their remote data integrity. In 2007, Ateniese
et al. proposed an important remote data integrity checking primitive: PDP [1]. It
is a probabilistic remote data integrity checking primitive. For PDP, the verifier
can efficiently check remote data integrity with a high probability. Following
Ateniese et al.’s pioneering work, Shacham and Waters presented the proof of
retrievability (POR) scheme [2].

For most clients, their stored data is dynamic. The clients may frequently
insert or delete or modify their remote data. Thus, dynamic PDP is indispens-
able to ensure remote dynamic data integrity. On the other hand, the dynamic

H. Wang—This work is partly supported by the Natural Science Foundation of
China through projects (61272522), by the Program for Liaoning Excellent Talents
in University through project (LR2014021), and by the Natural Science Foundation
of Liaoning Province (2014020147).

c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 101–111, 2016.
DOI: 10.1007/978-3-319-47422-9 6

102 C. Li and H. Wang

PDP scheme must be efficient for capacity-limited end devices. Zheng et al. pro-
posed the fair and dynamic POR [3]. Then, Ateniese et al. proposed dynamic
PDP model and designed the concrete scheme although it does not support insert
operation [4]. In 2009, based on the skip list, Erway et al. designed a full-dynamic
PDP scheme which supports the insert operation [5]. In 2013, Etemad et al. pro-
posed the transparent, distributed, and replicated dynamic PDP scheme [6].
Cash et al. proposed the dynamic proofs of retrievability via oblivious RAM [7].
On the other hand, dynamic remote data public auditability has also been stud-
ied [8–10].

Tree is an important storage structure for the remote block data. In 2013,
Zhang et al. propose a dynamic provable scheme via balanced update tree [11].
Zhang et al. propose a verifiable dynamic provable data possession scheme by
developing a variant authenticated 2–3 tree [12]. Shi et al. pointed out that Cash
et al.’s scheme [7] is mostly of theoretical interest because it employs oblivious
RAM as a black box. They also pointed out Stefanov et al.’s scheme has a large
audit cost. Finally, they proposed a dynamic proof of retrievability scheme with
constant client storage whose bandwidth cost is comparable to a Merkle hash
tree [13]. Tate et al. proposed multi-user dynamic proofs of data possession by
using trusted hardware [14].

Until now, the proposed dynamic PDP schemes are inefficient. When a novel
block is inserted, many blocks have to change their index and create novel tags.
It will incur heavy cost. It is an open problem to keep the other block-tag pairs
unchanged even if the novel block is inserted.

1.1 Contributions

The main contributions of this work are summarized below: (1) We present a
dynamic binary tree construction method which yields an efficient dynamic PDP
scheme; (2) Based on the bilinear pairing and our proposed dynamic binary tree,
a concrete private dynamic PDP scheme is designed. (3) Our private dynamic
PDP scheme can detect the dishonest client’s invalid data.

1.2 Paper Organization

This paper is organized below. Section 2 presents the construction method of
dynamic binary tree. It comprises of insertion and deletion. Section 3 gives the
models of dynamic PDP: system model, security model and the definition of
dynamic PDP scheme. Based on the dynamic binary tree, Sect. 4 propose a
concrete dynamic PDP scheme. The performance analysis is also given in this
section. Section 5 analyzes the proposed dynamic PDP scheme’s security. Finally,
Sect. 6 gives the conclusion.

2 Dynamic Binary Tree

In order to realize the remote data integrity checking, the corresponding tag
Ti must be generated and uploaded for every block mi. In our scheme, the

Efficient Dynamic Provable Data Possession 103

tag Ti relates to mi and the leaf node index li. From the procedures Insertion
and Deletion, the leaf nodes’ index will keep constant after dynamic operations.
When the data blocks are stored on the leaf nodes, these blocks’ leaf node index
will also keep constant after the dynamic operations. Thus, when some blocks
are inserted, the other block-tag pairs will be unchanged. This dynamic binary
tree can be used to support our private dynamic PDP scheme.

2.1 Binary Tree

A simple binary tree can be depicted in Fig. 1. The top node R (level 0) is the
root of the tree. R has two children 1L and 1R (level 1). Continuously, 1L has
two children 1 and 2; 1R has two children 3 and 4 (level 2). The level 2 is the
bottom level which will store the clients’ remote data. Specially, denote R’s left
child as 0 and right child as 1. 0’s left child is 00 and right child is 01. 1’s left
child is 10 and right child is 11. Generally, every node’s index is its parent’s
index plus 0 if it is the left child or plus 1 if it is the right child. Thus, Fig. 1 can
be rewritten as Fig. 2. In the Fig. 2, every inner node has two elements: index
and leaf node number. For example, the root node R has 4 children which lie on
the bottom level. R’s left child has 2 children which lie on the bottom level. R’s
right child has 2 children which lie on the bottom level. In the dynamic binary
tree, the bottom nodes may be deleted or modified. On the other hand, some
novel nodes can be inserted at any place on the bottom level. On the bottom
level, the 4 leaf nodes’s indexes are 00, 01, 10, 11, respectively.

Fig. 1. Binary tree Fig. 2. Binary tree with index and leaf
node number

2.2 Insertion

When a leaf node Ni is inserted after another leaf node N , the binary tree can
be updated below:

1. From the node N , the left child and the right child are created and become
the leaf nodes. Their parent node N becomes the inner-node.

2. The inner node N ’s index keeps unchanged and N ’s left child has the same
index as the node N . N ’s right child’s index is N ’s index plus 1.

3. The inner node N ’s leaf node number is 2. N ’s parent, grandfather, until to
the root R, add their original leaf node number to 1 which is their new leaf
node number.

4. The other nodes’ index and leaf node number keep unchanged.

104 C. Li and H. Wang

An inner node < l, v > is associated with its index l and its leaf node number v.
The leaf node only has the index, i.e., it is denoted as l.

2.3 Deletion

Let a leaf node N ’s index be l′. Let N ’s parent node Np be < l, v >. Let N ’s
brother leaf node be l′′. When l′ is deleted, the binary tree can be updated below:

1. The parent node < l, v > is substituted by the index l′′ without the leaf node
number. The parent node becomes the leaf node.

2. The two leaf nodes l′ and l′′ are deleted.
3. Np’s parent, grandfather, until to the root R, subtract 1 from their original

leaf node number. The difference values are their new leaf node number.
4. The other inner nodes’ index and leaf node number keep unchanged. The

other leaf nodes’ index keeps unchanged.

3 Model of Dynamic PDP

In our dynamic PDP, there exist two different entities: client and CS. Client’s
massive data will be stored in CS. CS has significant storage space and compu-
tation resource which are used to process the clients’ data.

Definition 1 (Dynamic PDP). Dynamic PDP scheme consists of the phases
below. They can be performed in the PPT (probabilistic polynomial time).

1. KeyGen(1k) → (sk, pk). Input a security parameter 1k, it outputs the
secret/public key pair (sk, pk). By using KeyGen(1k), the client gets his
secret/public key pair (skc, pkc) and CS gets his secret/public key pair
(sks, pks).

2. TagGen(skc, pkc, pks,m) → Tm. Input (skc, pkc), pks and the message block
m, it outputs the tag Tm.

3. VryTag(sks, pks, pkc,m, Tm) → accept or reject. Input the block-tag pair
(m,Tm), CS’s secret/public key pair (sks, pks), the client’s public key pkc,
it outputs accept or reject. accept denotes the block-tag pair is valid and
reject denotes the block-tag pair is invalid.

4. PreUpdate(skc, pkc, pks, F, info,Me) → {e(F), e(info), e(M ′
e)}. Input (skc,

pkc), pks, the file block F, the update information info, the previous metadata
Me, it outputs the encoded version of the file e(F), e(info), and the new
metadata e(M ′

e). At last, the client sends e(F), e(info) to CS and stores M ′
e

locally.
5. PerUpdate(sks, pkc, pks, Fi−1,Mi−1, e(F), e(info)) → {U, PU , Fi,Mi}. Input

pkc, (sks, pks), the previous version of the stored file Fi−1, the metadata Mi−1

and the query (e(F), e(info)), it outputs the new version of the file Fi and
the metadata Mi, along with the update report U and its proof PU . CS stores
Fi,Mi and sends (U,PU) to the client.

Efficient Dynamic Provable Data Possession 105

6. VryUpdate(skc, pkc, pks, F, info,Me, U, PU) → accept or reject. Input (skc,
pkc), pks, (F, info), Me and (U,PU), it outputs accept or reject. accept
denotes CS’s update response is valid. reject denotes CS’s update response is
invalid.

7. Challenge(skc, pkc, pks,Me) → chal. Input (skc, pkc), pks, Me, it outputs the
challenge chal to CS.

8. Prove(sks, pks, pkc, Fi,Mi, chal) → V. Input (sks, pks), pkc, the latest version
of the file Fi and the metadata Mi, and chal, it outputs the proof V to the
client.

9. Verify(skc, pkc, pks,Me, chal, V) → accept or reject. Input (skc, pkc), pks,
Me, chal, and the proof V , it outputs accept or reject. accept means that CS
still keeps the file intact. reject means some challenged blocks are corrupted.

Definition 2. A dynamic PDP scheme is secure against any untrusted PPT
CS if the probability that any such CS wins the dynamic PDP game below is
negligible. The untrusted CS is the adversary A. The client is the challenger C.
The dynamic PDP game is played between C and A below:

1. KeyGen: C runs KeyGen(1k) → (skc, pkc) and gets its own secret/public
key pair (skc, pkc). A runs KeyGen(1k) → (sks, pks) and gets its own
secret/public key pair (sks, pks). The public keys pkc and pks are made public.

2. First-phase Queries: A adaptively makes a lot of different queries to C. Each
query can be one of the following:
(a) Update queries. A sends the update query to C adaptively. C responds A

according to the query.
(b) Hash queries. A can make hash queries adaptively. C returns the corre-

sponding hash values to A.
(c) Tag queries. A makes block-tag pair queries adaptively. For a block query

mi, C computes the tag Ti ← TagGen(skc,mi) and sends it to A.
Without loss of generality, let (mi, Ti) be the queried block-tag pair or updated
block-tag pair where i ∈ I1.

3. Challenge: C generates a challenge chal for A. Let the challenged block sub-
script set satisfy {i1, i2, · · · , il} � I1, where l is a positive integer. A is
required to provide a possession proof for the blocks mi1 ,mi2 , · · · ,mil .

4. Second-Phase Queries. Similar to the First-Phase Queries. Let (mi, Ti) be the
queried (Update queries or Tag queries) and responded block-tag pairs where
the subscript i ∈ I2 and I2 is the queried and responded block-tag pair subscript
set in Second-Phase. The restriction is that {i1, i2, · · · , il} � I1 ∪ I2.

5. Forge: A computes the remote data possession proof V for the blocks indicated
by chal and outputs V.

We say that a dynamic PDP scheme satisfies unforgeability against the untrusted
CS if the adversary A wins the dynamic PDP game with negligible probability.

106 C. Li and H. Wang

4 The Proposed Dynamic PDP Scheme

4.1 Bilinear Pairings

Let G1 and G2 be two cyclic multiplicative groups with the same prime order q.
Let e : G1 × G1 → G2 be a bilinear map [15,16] which satisfies the following
properties:

1. Bilinearity: ∀g1, g2 ∈ G1 and a, b ∈ Zq, e(g1a, g2b) = e(g1, g2)ab.
2. Non-degeneracy: ∃g4, g5 ∈ G1 such that e(g4, g5) �= 1G2 .
3. Computability: ∀g6, g7 ∈ G1, there is an efficient algorithm to calculate

e(g6, g7).

Definition 3 (CDH problem). Let g be the generator of G1. Given g, ga, gb ∈
G1 for randomly chosen a, b ∈ Zq, calculate gab ∈ G1.

Definition 4 (DDH problem). Let g be the generator of G1. Given (g, ga,

gb, ĝ) ∈ G4
1 for randomly chosen a, b ∈ Z∗

q , decide whether gab
?= ĝ.

In the paper, the chosen group G1 satisfies that CDH problem is difficult but
DDH problem is easy. The DDH problem can be solved by using the bilinear
pairings. Thus, (G1,G2) are also defined as GDH (Gap Diffie-Hellman) groups.

4.2 The Concrete Dynamic PDP Scheme

Initially, suppose the maximum number of the stored block-tag pairs is n̂. Let f
be a pseudo-random function, Ω be a trapdoor function whose first parameter
is the trapdoor, π be a pseudo-random permutation, and h be a cryptographic
hash function which are given below.

f : Z∗
q × {1, 2, · · · , n̂} → Z∗

q , Ω : G∗
1 × {1, 2, · · · , n̂} → Z∗

q

h : Z∗
q → G∗

1 , πn̄ : Z∗
q × {1, 2, · · · , n̄} → {1, 2, · · · , n̄}

The client will upload the large message M to CS. In order to generate
the corresponding tags, M (maybe encoded by using error-correcting code or
encryption algorithm) is divided into n blocks (m1,m2, · · · ,mn) where mi ∈ Z∗

q .
Without loss of generality, we denote M = (m1,m2, · · · ,mn). CS picks a random
number sks ∈ Z∗

q as its secret key and computes its public key pks = gsks . The
client picks a random number skc ∈ Z∗

q as its secret key and computes its public
key pkc = gskc . The client also picks a random point u ∈ G1 and makes u public.

TagGen(skc, pkc, pks,mi): The client creates the full binary tree with the
depth 	log2 n
. From the left, we denote the i-th leaf node index as li. For the
block mi which will be stored on the i-th leaf node, the client computes Wi =
Ω(pkskc

s , li), Ti = (h(Wi)umi)skc . Client outputs the block-tag pair (mi, Ti).
The above procedure is performed n times and all the block-tag pairs are

generated. The client uploads Σ = {(m1, T1), · · · , (mn, Tn)} to CS. CS creates
the full binary tree with the depth 	log2 n
 which is the same as the client’s full

Efficient Dynamic Provable Data Possession 107

binary tree. CS stores the block-tag pair (mi, Ti) on the i-th leaf node from the
left whose index is li.

VryTag(sks, pks, pkc,mi, Ti): CS searches for the i-th leaf node from the left
and gets its index li.

1. CS computes Ŵi = Ω(pksks
c , li);

2. CS verifies whether e(Ti, g) = e(h(Ŵi)umi , pkc) holds: if it holds, CS accepts
and stores it on the i-th leaf node from the left; otherwise, CS rejects it.

PreUpdate(skc, pkc, F, info,Me): The client prepares to update the block. The
update information is denoted as info (e.g., delete block, insert block, modify
block). In order to simplify the procedure, the encoding and encrypting are
omitted. Then, the client performs the procedures below:

1. If the update is insertion, the client updates its dynamic binary tree according
to Sect. 2.B: insertion. Suppose F is inserted after the leaf node lN . From the
updated dynamic binary tree, the client gets the index lN+1 which is after
the leaf node lN . The client computes

WN+1 = Ω(pkskc
s , lN+1), TN+1 = (h(WN+1)uF)skc

The client outputs the block-tag pair (F, TF). The original metadata Me is
also modified into the latest metadata M ′

e. The client uploads (F, TF , info)
to CS.

2. If the update is deletion, the client updates its dynamic binary tree according
to Sect. 2.C: deletion. The original metadata Me is updated into the latest
metadata M ′

e. The client uploads (F, info) to CS.
3. If the update is modification, i.e., the block-tag pair (mi, Ti) is modified into

(F, TF) on the same leaf node with the same index li. The client computes

Wi = Ω(pkskc
s , li), TF = (h(Wi)uF)skc

The client outputs the block-tag pair (F, TF). The original metadata Me is
also updated into the latest metadata M ′

e. The client uploads (F, TF , info)
to CS.

PerUpdate(pkc, pks, sks, F, info, TF): Upon receiving the updating query, the
corresponding leaf node (which will be inserted or modified or deleted) can be
fleetly searched by using the inner node’s parameter v (i.e., the number of the leaf
node which are the inner node’s children), CS performs the procedures below:

1. If the update is insertion, CS updates its dynamic binary tree according to
Sect. 2.B: insertion. Suppose F is inserted after the leaf node with the index
lN . CS gets the index lN+1 which is after the leaf node lN .
(a) If (F, TF) can pass VryTag, CS stores them on the leaf node with the

index lN+1. Then, CS sends the insertion verification information and
the corresponding signature (InfoU , Signsks

(InfoU)) to the client.
(b) If (F, TF) can not pass the insertion verification VryTag, CS rejects them.

108 C. Li and H. Wang

2. If the update is modification and (F, TF) can pass VryTag, CS substitutes
(F, TT) for (mi, Ti) whose index is li. Then, CS sends the modification verifi-
cation information and the corresponding signature (InfoU , Signsks

(InfoU))
to the client.

3. If the update is deletion, CS updates its dynamic binary tree according to
Sect. 2.B: deletion. Then, CS deletes the corresponding block-tag pair. CS
sends the deletion verification information and the corresponding signature
(InfoU , Signsks

(InfoU)) to the client.

VryUpdate({(InfoU , Signsks
(InfoU))}): Upon receiving the CS’s update

response (InfoU , Signsks
(InfoU)) on the update query (F, TF , info), where TF

is empty for the deletion, the client verifies CS’s signature for the update. If it
can pass the verification, the client accepts CS’s update response; otherwise, the
client rejects CS’s update response and sends the same query again.

Challenge(skc, pkc, pks,Mc): In order to check the remote data integrity, the
client sends the challenge chal = (c, k1, k2) to CS, where 1 ≤ c ≤ n̂, k1, k2 ∈ Zq.

Prove(sks, pks, pkc, Σ, chal): Suppose that n̂ block-tag pairs are stored in CS.
Upon receiving the challenge chal = (c, k1, k2), CS computes: vi = πn̂(k1, i), ai =
f(k2, i), for 1 ≤ i ≤ c; T =

∏c
i=1 T ai

vi
, m̂ =

∑c
i=1 aimvi

. CS outputs V = (m̂, T)
and sends V to the client.

V erify(skc, pkc, pks,Me, chal, V): Upon receiving the response V from CS,
based on the challenge chal and the stored metadata, the client performs the
procedures below:

1. For 1 ≤ i ≤ c, the client computes: vi = πn̂(k1, i), ai = f(k2, i);
2. From the left, the client searches for the vi-th (1 ≤ i ≤ c) leaf node from the

stored dynamic binary tree. Then, the client gets the corresponding leaf node
index lvi

for all vi (1 ≤ i ≤ c);
3. For all vi (1 ≤ i ≤ c), the client computes Wvi

= Ω(pkskc
s , lvi

) and checks

e(T, g) ?= e(
c∏

i=1

h(Wvi
)aium̂, pkc)

If it holds, the client outputs “accept”; otherwise the client outputs “reject”.
4. When CS’s response can not pass the client’s verification, the client will per-

form the same challenge many times. If the responses still cannot pass the
verification, the client will connect the CS provider to inform it this situation.
CS provider will censor the client’s stored data and retrieve the lost data from
the offline backup. If CS provider fails, the client and the CS provider will
evaluate the loss and discuss the reparation according to the loss severity.

Correctness: A dynamic PDP scheme must be workable and correct. That is, if
the client and CS are honest and follow the specified procedures, the response
V can pass the client’s verification. The correctness is given below:

e(T, g) = e(
∏c

i=1 T ai
vi

, g) = e(
∏c

i=1(h(Wvi
)umi)skcf(k2,i), g)

= e((
∏c

i=1 h(Wvi
)ai)um̂, pkc)

Efficient Dynamic Provable Data Possession 109

4.3 Performance Analysis

First, we analyze the performance of our proposed dynamic PDP scheme from
the computation cost and communication cost. We compare our dynamic PDP
scheme with the other up-to-date dynamic PDP schemes.

Table 1. Comparison of computation cost

Protocols Wang [9] Zhu [10] Ours

TagGen n̂(2Cexp + 1Cmul) (s + 2n̂)Cexp + n̂Cmul 2n̂Cexp + n̂Cmul

Prove cCexp + (c− 1)Cmul cCexp + (c− 1)Cmul cCexp + (c− 1)Cmul

Verify 4Ce + (c + 1)Cexp 3Ce + (c + s)Cexp+ 2Ce + (c + 1)Cexp+

+cCmul (c + s− 2)Cmul cCmul

Computation: Suppose there are n̂ block-tag pairs will be stored in CS. The
challenged block number is c. We will consider the computation overhead in the
different phases. The multiplication, exponentiation and bilinear pairings con-
tribute most computation cost on the group G1. Compared with them, the other
operations are faster and computation cost is small, such as Hash function, per-
mutation, etc. Thus, we only consider the multiplication, exponentiation and
bilinear pairings on the group G1. In the phase TagGen, the client performs 2n̂
exponentiation (pkskc

s can be finished in the precomputation once for all) and
n̂ multiplication on G1. In the phase of V ryTag, CS will perform 1 exponenti-
ation, n̂ multiplication and 2n̂ bilinear pairing on G1. In the phase PreUpdate,
for one time, the average computation cost is 1

4 (3+3) = 1.5 exponentiation and
1
4 (1+1) = 0.5 multiplication. In the phase PerUpdate, for one time, CS performs
1 signature operation and a VryTag operation. In the phase VryUpdate, the client
needs to verify a signature. In the phase of Prove, CS will perform c exponentia-
tion on G1. In the phase of V erify, the client will perform c multiplication, c+1
exponentiation and 2 pairings (pkskc

s can be finished in the precomputation). On
the other hand, in 2011, Wang et al. proposed the first dynamic remote data
public auditability scheme in cloud computing [9]. In 2013, Zhu et al. proposed
the dynamic audit services for outsourced storages in clouds [10]. The compu-
tation comparison can be summarized in Table 1. In Table 1, Cmul denotes the
time cost of multiplication, Cexp denotes the time cost of exponentiation on the
group G1, and Ce denotes the time cost of bilinear pairing. In the above com-
parison, we omit the computation cost in the phase VryTag. In order to guard
against the dishonest clients to upload invalid block-tag pairs, CS verifies every
block-tag pair. Our scheme has this property while Wang et al.’s scheme [9] and
Zhu et al.’s scheme [10] have not this property. Thus, we omit VryTag in the
above comparison. Our dynamic PDP scheme has lower computation cost.

Communication: In dynamic PDP scheme, the communication cost mainly comes
from the block-tag uploading, remote data integrity query and response. We

110 C. Li and H. Wang

give our dynamic PDP scheme’s communication overhead below. For n̂ blocks,
all the block-tag pairs length is n̂(|G1| + log2 q). In the phase Prove, the client
sends the challenge chal = (c, k1, k2) to CS, i.e., the communication overhead is
log2 n̂+2 log2 q. In the response, CS responds 1 element in G1 and 1 element in Z∗

q

to the client, i.e., the communication overhead is |G1|+log2 q. On the other hand,
Wang et al. [9] and Zhu et al. [10] proposed two different dynamic provable data
possession scheme. Compared with these two schemes, our dynamic PDP scheme
is more efficient in the communication cost. The communication comparison can
be summarized in Table 2. In Table 2, 1|G1| denotes the bit length of one element
in G1, 1|G2| denotes the bit length of one element in G2 and 1|Zq| denotes the bit
length of one element in Zq. Our dynamic PDP scheme has lower communication
cost.

Table 2. Comparison of communication cost (bits)

Protocols Wang [9] Zhu [10] Ours

Tag (n̂ + 1)|G1| (n̂ + 1) log2 n̂ + (s + n̂)|G1| n̂|G1|
+n̂(k + 1)

Chal c(log2 n̂ + log2 q c(log2 n̂ + log2 q) log2 n̂ + 2 log2 q

Response log2 n̂+(c+2)|G1|+O(c) 2|G1| + 1|G2| + s log2 q 1|G1| + 1Zq

Private PDP and Convertibility: From the phase VryTag, we know CS can iden-
tify the invalid block-tag pairs. On the other hand, in the phase Verify, the
client’s secret key skc is needed. Thus, only the client can perform his own
data’s PDP. Our proposed dynamic PDP scheme is private PDP scheme. In the
verification, the crucial element is pkskc

s which can only be computed by the
client and the cloud server. When the client makes the crucial element pkskc

s

public, every entity can perform the process of verification. Thus, our scheme
can be converted into public PDP scheme.

5 Security Analysis

Theorem 1. The proposed dynamic PDP scheme is existentially unforgeable in
the random oracle model if the CDH problem on G1 is hard.

The detailed proof process is omitted due to the page limit.

Theorem 2. Suppose that n̂ block-tag pairs are stored, d̄ block-tag pairs are
modified or are not correctly updated, and c block-tag pairs are challenged. Then,
our proposed dynamic PDP scheme is (d̄

n̂ , 1 − (n̂−d̄
n̂)c)-secure, i.e.,

1 − (
n̂ − d̄

n̂
)c ≤ PX ≤ 1 − (

n̂ − c + 1 − d̄

n̂ − c + 1
)c

where PX denotes the probability of detecting the dishonest CS.

The detailed proof process is omitted due to the page limit.

Efficient Dynamic Provable Data Possession 111

6 Conclusion

Based on the dynamic binary tree, this paper proposes a private dynamic PDP
scheme. From the comparison of communication cost and computation cost, our
proposed private dynamic PDP scheme is efficient.

References

1. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Capitani, D., di Vimercati,
S., Syverson, P. (eds.) CCS 2007, pp. 598–609. ACM Press, New York (2007)

2. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

3. Zheng, Q., Xu, S.: Fair and dynamic proofs of retrievability. In: CODASPY 2011,
pp. 237–248. ACM Press, New York (2011)

4. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: Liu, P., Molva, R. (eds.) SecureComm 2008, pp. 9:1–9:10.
ACM Press, New York (2008)

5. Erway, C.C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. ACM Trans. Inf. Syst. Secur. 17(4), 15 (2015)

6. Etemad, M., Küpçü, A.: Transparent, distributed, and replicated dynamic provable
data possession. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.)
ACNS 2013. LNCS, vol. 7954, pp. 1–18. Springer, Heidelberg (2013)

7. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious
RAM. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 279–295. Springer, Heidelberg (2013)

8. Yang, K., Jia, X.: An efficient and secure dynamic auditing protocol for data storage
in cloud computing. IEEE Trans. Parallel Distrib. Syst. 24(9), 1717–1726 (2013)

9. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and
data dynamics for storage security in cloud computing. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009)

10. Zhu, Y., Ahn, G., Hu, H., Yau, S., An, H., Chen, S.: Dynamic audit services for
outsourced storages in clouds. IEEE Trans. Serv. Comput. 99, 1 (2011)

11. Zhang, Y., Marina, B.: Efficient dynamic provable possession of remote data via
balanced update trees. In: ASIA CCS 2013, pp. 183–194. ACM Press, New York
(2013)

12. Wang, J., Liu, S.: Dynamic provable data possession with batch-update verifiabil-
ity. In: ICADE 2012, pp. 108–113. IEEE Press, New Jersey (2012)

13. Shi, E., Stefanov, E., Papamanthou, C.: Practical dynamic proofs of retrievability.
In: ACM CCS, pp. 325–336 (2013)

14. Tate, S.R., Vishwanathan, R., Everhart, L.: Multi-user dynamic proofs of data
possession using trusted hardware. In: 3rd ACM CODASPY, pp. 353–364. ACM
Press, San Antonio (2013)

15. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

16. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

	Efficient Dynamic Provable Data Possession from Dynamic Binary Tree
	1 Introduction
	1.1 Contributions
	1.2 Paper Organization

	2 Dynamic Binary Tree
	2.1 Binary Tree
	2.2 Insertion
	2.3 Deletion

	3 Model of Dynamic PDP
	4 The Proposed Dynamic PDP Scheme
	4.1 Bilinear Pairings
	4.2 The Concrete Dynamic PDP Scheme
	4.3 Performance Analysis

	5 Security Analysis
	6 Conclusion
	References

