
Liqun Chen
Jinguang Han (Eds.)

 123

LN
CS

 1
00

05

10th International Conference, ProvSec 2016
Nanjing, China, November 10–11, 2016
Proceedings

Provable Security

Lecture Notes in Computer Science 10005

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Liqun Chen • Jinguang Han (Eds.)

Provable Security
10th International Conference, ProvSec 2016
Nanjing, China, November 10–11, 2016
Proceedings

123

Editors
Liqun Chen
University of Surrey
Guildford
UK

Jinguang Han
Nanjing University of Finance
and Economics

Nanjing
China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-47421-2 ISBN 978-3-319-47422-9 (eBook)
DOI 10.1007/978-3-319-47422-9

Library of Congress Control Number: 2016953218

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 10th International Conference on Provable Security (ProvSec 2016) was held in
Nanjing, P.R. China, November 10–11, 2016. The conference was organized by
Nanjing University of Finance and Economics.

The conference program consisted of two invited talks and 23 contributed papers.
We would like to express our special thanks to the distinguished keynote speakers,
Colin Boyd from the Norwegian University of Science and Technology and Jens Groth
from University College London, who gave very enlightening talks.

Out of 79 submissions from 16 countries, 23 papers were selected, presented at the
conference, and are included in these proceedings. The accepted papers cover a range
of topics in the field of provable security research, including attribute/role-based
cryptography, data in cloud, searchable encryption, key management, encryption,
leakage analysis, and homomorphic encryption.

The success of this event depended critically on the help and hard work of many
people, whose help we gratefully acknowledge. First, we heartily thank the Program
Committee and the additional reviewers, listed on the following pages, for their careful
and thorough reviews. Most of the papers were reviewed by at least three people, and
many by four or five. Significant time was spent discussing the papers. Thanks must
also go to the hard-working shepherds for their guidance and helpful advice on
improving a number of papers. We also thank the general chair for the excellent
organization of the conference.

We also sincerely thank the authors of all submitted papers. We further thank the
authors of accepted papers for revising papers according to the various reviewer
suggestions and for returning the source files in good time. The revised versions were
not checked by the Program Committee, and so authors bear final responsibility for
their contents. We would also like to thank the Steering Committee and local Orga-
nizing Committee.

Thanks are due to the staff at Springer for their help in producing the proceedings.
We further thank the developers and maintainers of the EasyChair software, which
greatly helped simplify the submission and review process.

November 2016 Liqun Chen
Jinguang Han

Organization
Provable Security 2016

Nanjing, P.R. China
November 10–11, 2016

General Chair

Jie Cao Nanjing University of Finance and Economics, China

Program Chairs

Liqun Chen University of Surrey, UK
Jinguang Han Nanjing University of Finance and Economics, China

Steering Committee

Feng Bao Huawei, Singapore
Xavier Boyen Queensland University of Technology, Australia
Joseph K. Liu Monash University, Australia
Yi Mu University of Wollongong, Australia
Josef Pieprzyk Queensland University of Technology, Australia
Willy Susilo University of Wollongong, Australia

Program Committee

Man Ho Au Hong Kong Polytechnic University, SAR China
Joonsang Baek Khalifa University of Science,

Technology and Research, UAE
Zhenfu Cao East China Normal University, China
Aniello Castiglione University of Salerno, Italy
Liqun Chen University of Surrey, UK
Xiaofeng Chen Xidian University, China
Yu Chen Chinese Academy of Sciences, China
Céline Chevalier Université Panthéon-Assas Paris II, France
Kim-Kwang

Raymond Choo
University of Texas at San Antonio, USA

Sherman S.M. Chow Chinese University of Hong Kong, SAR China
Nico Döttling University of California, Berkeley, USA
Georg Fuchsbauer École normale supérieure, France
David Galindo University of Birmingham, UK
Jinguang Han Nanjing University of Finance and Economics, China
Qiong Huang South China Agricultural University, China

Xinyi Huang Fujian Normal University, China
Sorina Ionica University of Picardie Jules Verne, France
Kwangjo Kim KAIST, Republic of Korea
Alptekin Küpçü Koç University, Turkey
Jiguo Li Hohai University, China
Yingjiu Li Singapore Management University, Singapore
Kaitai Liang Manchester Metropolitan University, UK
Xiaodong Lin University of Ontario Institute of Technology, Canada
Joseph Liu Monash University, Australia
Zhe Liu University of Waterloo, Canada
Rongxing Lu University of New Brunswick, Canada
Masahiro Mambo Kanazawa University, Japan
Mark Manulis University of Surrey, UK
Bart Mennink KU Leuven, Belgium
Chris Mitchell Royal Holloway, University of London, UK
Atsuko Miyaji Osaka University, Japan
Yi Mu University of Wollongong, Australia
Tatsuaki Okamoto NTT, Japan
Thomas Peters École normale supérieure, France
Christophe Petit University of Oxford, UK
Josef Pieprzyk Queensland University of Technology, Australia
Yogachandran

Rahulamathavan
Loughborough University in London, UK

Kui Ren State University of New York at Buffalo, USA
Reza Reyhanitabar NEC Laboratories Europe, Germany
Dominique Schröder Saarland University, Germany
Willy Susilo University of Wollongong, Australia
Qiang Tang University of Luxembourg, Luxembourg
Cong Wang City University of Hong Kong, SAR China
Huaxiong Wang Nanyang Technological University, Singapore
Jian Weng Jinan University, China
Qianhong Wu Beihang University, China
Shouhuai Xu University of Texas at San Antonio, USA
Chung-Huang Yang National Kaohsiung Normal University, Taiwan
Guomin Yang University of Wollongong, Australia
Wun-She Yap Universiti Tunku Abdul Rahman, Malaysia
Xun Yi RMIT University, Australia
Siu Ming Yiu The University of Hong Kong, SAR China
Yong Yu Shaanxi Normal University, China
Tsz Hon Yuen Huawei, Singapore
Fangguo Zhang Sun Yat-sen University, China
Futai Zhang Nanjing Normal University, China
Rui Zhang Chinese Academy of Sciences, China
Yuan Zhang Nanjing University, China
Zongyang Zhang AIST, Japan
Jianying Zhou Institute for Infocomm Research, Singapore

VIII Organization

Organizing Chairs

Zhiang Wu Nanjing University of Finance and Economics, China
Futai Zhang Nanjing Normal University, China
Jiguo Li Hohai University, China

Publication Chairs

Zhan Bu Nanjing University of Finance and Economics, China
Muhammad Khurram Khan King Saud University, Kingdom of Saudi Arabia

Publicity Chairs

Jiageng Chen Huazhong Normal University, China
Ali El Kaafarani University of Oxford, UK

Registration Chair

Changjian Fang Nanjing University of Finance and Economics, China

Additional Reviewers

Ang, Yang
Arita, Seiko
Biswas, Bhaskar
Blazy, Olivier
Dong, Changyu
Dong, Xiaolei
Dupont, Pierre-Alain
El Kaafarani, Ali
Etemad, Mohammad
Ezerman, Martianus Frederic
Ferrara, Anna Lisa
Fleischhacker, Nils
Futa, Yuichi
Gong, Junqing
Haiyang, Xue
Hassanzadeh-Nazarabadi, Yahya
Hou, Lin
Huang, Jianye
Huang, Yan
Jiang, Peng
Kai, He
Kuwakado, Hidenori
Lai, Jianchang

Lai, Russell W.F.
Lee, Hyung Tae
Li, Hongbo
Li, Huige
Li, Ximing
Lin, Changlu
Liu, Jia-Nan
Liu, Jianghua
Liu, Ximing
Liu, Yuejun
Liu, Yunwen
Mamun, Mohammad
Michel, Christoph
Minelli, Michele
Ning, Jianting
Nguyen, Khoa
Omote, Kazumasa
Pellegrino, Giancarlo
Russell, Paulet
Sasaki, Yu
Su, Chunhua
Taheri-Boshrooyeh, Sanaz
Tan, Gaosheng

Organization IX

Tan, Syh-Yuan
Tan, Xiao
Vizár, Damian
Wang, Hao
Wang, Jianfeng
Wang, Licheng
Wang, Qin
Wang, Wei
Wang, Xiuhua
Wang, Yilei
Wang, Yuyu
Xiao, Yuting
Xie, Congge
Xie, Shaohao
Xue, Haiyang
Yang, Rupeng
Yang, Wenjie

Yang, Xu
Yang, Xuechao
Yau, Wei-Chuen
Yu, Gang
Yu, Jingyue
Zhang, Huang
Zhang, Kai
Zhang, Liting
Zhang, Shiwei
Zhang, Tao
Zhang, Yinghui
Zhao, Yongjun
Zheng, Haibin
Zhong, Lin
Zhou, Jun
Zhou, Xingguang

X Organization

Contents

Attribute/Role-Based Cryptography

Accountable Ciphertext-Policy Attribute-Based Encryption
Scheme Supporting Public Verifiability and Nonrepudiation 3

Gang Yu, Zhenfu Cao, Guang Zeng, and Wenbao Han

An Efficient and Expressive Ciphertext-Policy Attribute-Based Encryption
Scheme with Partially Hidden Access Structures . 19

Hui Cui, Robert H. Deng, Guowei Wu, and Junzuo Lai

Ciphertext-Policy Attribute Based Encryption Supporting Access Policy
Update. 39

Yinhao Jiang, Willy Susilo, Yi Mu, and Fuchun Guo

Universally Composable Cryptographic Role-Based Access Control 61
Bin Liu and Bogdan Warinschi

Data in Cloud

ID-based Data Integrity Auditing Scheme from RSA with Resisting Key
Exposure . 83

Jianhong Zhang, Pengyan Li, Zhibin Sun, and Jian Mao

Efficient Dynamic Provable Data Possession from Dynamic Binary Tree 101
Changfeng Li and Huaqun Wang

Identity-Based Batch Provable Data Possession. 112
Fucai Zhou, Su Peng, Jian Xu, and Zifeng Xu

Secure Naïve Bayesian Classification over Encrypted Data in Cloud 130
Xingxin Li, Youwen Zhu, and Jian Wang

Searchable Encryption

Integrity Preserving Multi-keyword Searchable Encryption for Cloud
Computing . 153

Fucai Zhou, Yuxi Li, Alex X. Liu, Muqing Lin, and Zifeng Xu

Oblivious Keyword Search with Authorization . 173
Peng Jiang, Xiaofen Wang, Jianchang Lai, Fuchun Guo,
and Rongmao Chen

http://dx.doi.org/10.1007/978-3-319-47422-9_1
http://dx.doi.org/10.1007/978-3-319-47422-9_1
http://dx.doi.org/10.1007/978-3-319-47422-9_2
http://dx.doi.org/10.1007/978-3-319-47422-9_2
http://dx.doi.org/10.1007/978-3-319-47422-9_3
http://dx.doi.org/10.1007/978-3-319-47422-9_3
http://dx.doi.org/10.1007/978-3-319-47422-9_4
http://dx.doi.org/10.1007/978-3-319-47422-9_5
http://dx.doi.org/10.1007/978-3-319-47422-9_5
http://dx.doi.org/10.1007/978-3-319-47422-9_6
http://dx.doi.org/10.1007/978-3-319-47422-9_7
http://dx.doi.org/10.1007/978-3-319-47422-9_8
http://dx.doi.org/10.1007/978-3-319-47422-9_9
http://dx.doi.org/10.1007/978-3-319-47422-9_9
http://dx.doi.org/10.1007/978-3-319-47422-9_10

Efficient Asymmetric Index Encapsulation Scheme for Named Data 191
Rong Ma and Zhenfu Cao

Key Management

Multi-cast Key Distribution: Scalable, Dynamic and Provably Secure
Construction . 207

Kazuki Yoneyama, Reo Yoshida, Yuto Kawahara, Tetsutaro Kobayashi,
Hitoshi Fuji, and Tomohide Yamamoto

One-Round Attribute-Based Key Exchange in the Multi-party Setting 227
Yangguang Tian, Guomin Yang, Yi Mu, Kaitai Liang, and Yong Yu

Strongly Secure Two-Party Certificateless Key Agreement Protocol
with Short Message . 244

Yong Xie, Libing Wu, Yubo Zhang, and Zhiyan Xu

Encryption

Integrity Analysis of Authenticated Encryption Based on Stream Ciphers 257
Kazuya Imamura, Kazuhiko Minematsu, and Tetsu Iwata

Secure and Efficient Construction of Broadcast Encryption with Dealership . . . 277
Kamalesh Acharya and Ratna Dutta

Towards Certificate-Based Group Encryption . 296
Yili Ren, Xiling Luo, Qianhong Wu, Joseph K. Liu, and Peng Zhang

Leakage Analysis

Updatable Lossy Trapdoor Functions and Its Application in Continuous
Leakage . 309

Sujuan Li, Yi Mu, Mingwu Zhang, and Futai Zhang

A Black-Box Construction of Strongly Unforgeable Signature Schemes
in the Bounded Leakage Model . 320

Jianye Huang, Qiong Huang, and Chunhua Pan

Towards Proofs of Ownership Beyond Bounded Leakage. 340
Yongjun Zhao and Sherman S.M. Chow

Homomorphic Encryption

A Homomorphic Proxy Re-encryption from Lattices 353
Chunguang Ma, Juyan Li, and Weiping Ouyang

XII Contents

http://dx.doi.org/10.1007/978-3-319-47422-9_11
http://dx.doi.org/10.1007/978-3-319-47422-9_12
http://dx.doi.org/10.1007/978-3-319-47422-9_12
http://dx.doi.org/10.1007/978-3-319-47422-9_13
http://dx.doi.org/10.1007/978-3-319-47422-9_14
http://dx.doi.org/10.1007/978-3-319-47422-9_14
http://dx.doi.org/10.1007/978-3-319-47422-9_15
http://dx.doi.org/10.1007/978-3-319-47422-9_16
http://dx.doi.org/10.1007/978-3-319-47422-9_17
http://dx.doi.org/10.1007/978-3-319-47422-9_18
http://dx.doi.org/10.1007/978-3-319-47422-9_18
http://dx.doi.org/10.1007/978-3-319-47422-9_19
http://dx.doi.org/10.1007/978-3-319-47422-9_19
http://dx.doi.org/10.1007/978-3-319-47422-9_20
http://dx.doi.org/10.1007/978-3-319-47422-9_21

Preventing Adaptive Key Recovery Attacks on the GSW Levelled
Homomorphic Encryption Scheme . 373

Zengpeng Li, Steven D. Galbraith, and Chunguang Ma

A Secure Reverse Multi-Attribute First-Price E-Auction Mechanism
Using Multiple Auctioneer Servers (Work in Progress) 384

Jun Gao, Jiaqi Wang, Ning Lu, Fang Zhu, and Wenbo Shi

Author Index . 393

Contents XIII

http://dx.doi.org/10.1007/978-3-319-47422-9_22
http://dx.doi.org/10.1007/978-3-319-47422-9_22
http://dx.doi.org/10.1007/978-3-319-47422-9_23
http://dx.doi.org/10.1007/978-3-319-47422-9_23

Attribute/Role-Based Cryptography

Accountable Ciphertext-Policy Attribute-Based
Encryption Scheme Supporting Public

Verifiability and Nonrepudiation

Gang Yu1,2,3(&), Zhenfu Cao1(&), Guang Zeng2,3,
and Wenbao Han2,3

1 School of Computer Science and Software Engineering,
East China Normal University, Shanghai, China

gyu1010@126.com, zfcao@sei.ecnu.edu.cn
2 State Key Laboratory of Mathematical Engineering

and Advanced Computing, Zhengzhou, China
sunshine_zeng@sina.com, wbhan@netease.net

3 Information Science and Technology Institute, Zhengzhou, China

Abstract. Ciphertext-policy attribute-based encryption, denoted by CP-ABE,
is a promising extension of identity-based encryption which enables fine-grained
data access control by taking a set of attributes as users’ public key. However,
owing to the fact that an attribute set may be shared by multiple users, malicious
users dare to share their decryption keys to others for profits. Furthermore, the
central authority is able to issue arbitrary decryption keys for any unauthorized
users. To prevent these two kinds of key abuses in CP-ABE system, we propose
an accountable CP-ABE scheme which allows any third party to publicly verify
the identity embedded in a leaked decryption key, allows an auditor to publicly
check whether a malicious user or the authority should be responsible for an
exposed decryption key, and the malicious user or the authority can’t deny it.
The proposed accountable CP-ABE scheme supports any LSSS realizable
access structures. At last, the confidentiality and public verifiability of the
proposed scheme can be proved to be tightly related to the atomic CP-ABE
scheme and the signature scheme that it composed from.

Keywords: Attribute-based encryption � Accountability � White-box
traceability � Key abuse

1 Introduction

Cloud computing has emerged as a promising enterprise IT architecture which is
attracting more and more enterprises and individuals to move their applications and
database into the public cloud for remote data sharing or outsourced delegation com-
putation. While the convenient provided by cloud storage, concerns on the privacy of
sensitive data are hindering its large scale applications in industry. Encryption before
outsourcing has been considered as an essential method to protect privacy from inside
and outside attack. However, due to complex key management mechanism and poor

© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-47422-9_1

scalability, traditional data encryption cannot meet the requirements for various online
applications that own a large amount of users.

To protect the privacy of data shared on a cloud storage platform with fine-grained
access control, Sahai and Waters [1] introduced the concept of attribute-based
encryption (ABE), which is envisioned as a promising one-to-many public key
encryption primitive. Depending on where the access policy is embedded, ABE can be
divided into two types: key-policy attribute-based encryption (KP-ABE) and
ciphertext-policy attribute-based encryption (CP-ABE). This paper deals with CP-ABE
where access policies are embedded into ciphertexts and decryption keys are associated
with attributes.

In CP-ABE, a user can decrypt a ciphertext only if the attribute set associated with
his/her decryption key satisfies the access structure embedded in the ciphertext.
However, due to the fact that an attribute set may be shared by multiple users which
means a decryption key may be shared by multiple users, it is difficult to find out who
shares decryption privileges to others. Without worrying about being traced, a mali-
cious user is willing to share his decryption key to get illegal profits. On the other hand,
a semi-trusted authority may illegally generate and distribute a valid decryption key
that associated with an honest user to other unauthorized users.

Thus, the key abuse problem in CP-ABE includes two kinds: illegal key sharing
among users and illegal key distribution of a semi-trust authority. To securely deploy
an ABE-based access control systems, the property of accountability, which should
guarantee that the identity of a shared decryption key can be publicly verified and the
authority’s misbehavior should be prevented, is essential.

1.1 A Motivating Story

Take a video on demand (VOD) company for example, it employs a cloud storage
system and encrypts the database using a CP-ABE scheme before outsourcing. Each
user that pays fees for bundles of channels is assigned with attributes, such as {“NBC”,
“CCTV”, “BBC”, etc.}. And a user whose attributes satisfy the access policy over the
outsourced data could decrypt the ciphertext and get access to the videos in the cloud.
A CP-ABE system is enough for this scenario if all the parties are honest. However, for
profits a user with attributes {“NBC”, “CCTV”} may want to share his decryption key
with other unauthorized users; on the other hand, the cloud storage service provider
may issue illegal decryption keys that related to an honest user with attributes {“NBC”,
“CCTV”} to unauthorized users. In such cases, the VOD Company will suffer severe
financial loss without effective ways to forbid these two kinds of key abuses.
Accountable CP-ABE, in which a third party can publicly trace the identity of a shared
decryption key and an auditor can rule that a malicious user or the authority shared
the decryption key, rather than a pure CP-ABE scheme is more suitable for such a
scenario.

4 G. Yu et al.

1.2 Our Contribution

In this paper, we propose an accountable CP-ABE scheme, denoted by CP-AABE, with
public verifiability and nonrepudiation. The main features of the CP-AABE scheme can
be described as follows.

(1) Direct traceability. The identity of a user is embedded into the decryption key
which is essential for the decryption process. Thus, the identity is regarded as an
essential part of the decryption key, and anybody can easily learn the identity of
an exposed decryption key, i.e. the proposed CP-AABE scheme can achieve
direct white-box traceability.

(2) Public verifiability. The signature of identity signed by the authority is also
embedded into the decryption key. Thus, any third party can easily check whether
an exposed decryption key relates to an identity or not by verifying the validity of
the authority’s signature only with public parameters, i.e. the proposed scheme
can provide the property of public verifiability.

(3) Nonrepudiation. The proposed CP-AABE scheme can also provide the property
of nonrepudiation that a malicious user or the authority can’t deny his/her mis-
behavior. Based on a short signature of partial decryption key signed by the user,
an auditor can check whether a leaked decryption key is shared by a malicious
user or illegally distributed by the semi-trust authority.

1.3 Related Works

Since Goyal et al. [2] gave the definition and security notions of KP-ABE, many
KP-ABE and CP-ABE schemes have been proposed [3–13] aiming at better expres-
siveness, efficiency or security.

Depending on whether a decryption key or decryption equipment is shared,
traceability can be divided into two types: white-box traceability and black-box
traceability. In 2013, Liu et al. [14] gave a white-box traceable CP-ABE supporting any
monotone access structures. Based on the large universe ABE scheme proposed by
[10], in 2015 Ning et al. [15] gave a white-box traceable CP-ABE supporting flexible
attributes. Besides these white-box traceable CP-ABE, in 2011, Li et al. [16] gave a
multi-authority black-box traceable ABE supporting AND gate with wildcards access
policy; in 2013, Liu, Cao and Wong [17] proposed a black-box traceable CP-ABE
system which supports any monotone access structures.

Above ABE schemes with white-box traceability or black-box traceability can only
trace the identity of an exposed decryption key and can’t prove whether it is shared by a
malicious user or the central authority. Thus ABE with traceability is still not sufficient
for application in industry. In 2009, to prevent key abuse of both user and the central
authority, Li et al. [18] gave an accountable ABE to prevent illegal key sharing among
colluding users supporting AND gate with wildcards access policy. However, we show
that it fails to prevent a malicious user to share his/her decryption privileges to others.
In 2015, Ning et al. [19] proposed an accountable ABE supporting white-box trace-
ability and public auditing based on ZK-POK of the discrete log of a random element

Accountable Ciphertext-Policy Attribute-Based Encryption Scheme 5

RU . Owning to no essential binding between the random RU and a user, a user still can
deny the random RU doesn’t belong to him/her.

Another branch of ABE research considers the applications in concrete systems
such as cloud computing [20] and personal health record [21]. Recently, Li et al. [22]
and Li et al. [23] proposed two searchable ABE schemes.

In this paper, based on the signature of partial decryption key signed by user and
the signature of the identity signed by the authority, we give an accountable CP-ABE
scheme with the property of public traceability and nonrepudiation.

1.4 Main Techniques

To realize accountability, the main idea of our construction is to embed undeniable
information of both user and the authority into the decryption key. On one hand, to
realize public verifiability of user, a signature scheme inspired by [24] is used to embed
a signature of user’s identity into the decryption key. On the other hand, to achieve
nonrepudiation, a signature [25] of partial decryption key signed by user is also
embedded into the decryption key. Additional user information embedded in the
decryption key will lead to unsuccessful decryption because no user information is
included in the ciphertexts. We use the orthogonal property of bilinear pairing in
composite order groups to offset the user information embedded in the decryption key.

In detail, the decryption key is in the form of U, r;K ¼ gs, K 0 ¼ gahgas,
K 00 ¼ gb2ðu0

Q
i2l

uiÞsrs, Ki ¼ Hs
i ; 8atti 2 S, where h ¼ Hðr;K;UÞ, U denotes a user’s

identity, r denotes a short signature for K. The purpose of the additional one-way Hash
function h ¼ Hðr;K;UÞ is to bind the identity U, signature r; and partial decryption K

together and prevent an adversary from modifying the identity embedded in K 00 ¼

gb2ðu0
Q
i2l

uiÞsrs using a random mask.

The orthogonal property of bilinear pairing in composite order groups such that
8hi 2 Gi; hj 2 Gj; i 6¼ j, eðhi; hjÞ ¼ 1 is used to offset the identity embedded in the

decryption key, such as K 00 ¼ gb2ðu0
Q
i2l

uiÞsrs, which will never appear in the

ciphertexts.

1.5 Organizations

Section 2 introduces the preliminaries, including the linear secret sharing scheme
(LSSS), and the CDH assumption in composite order bilinear groups. Section 3 gives
the formal definition of CP-AABE with public verifiability and nonrepudiation and its
security model. Section 4 gives a concrete construction of CP-AABE. Section 5 gives
the security results and performance analyses. Finally, Sect. 6 presents a brief
conclusion.

6 G. Yu et al.

2 Preliminaries

2.1 Linear Secret Sharing Schemes

Definition 1. Let P be a set of parties and W be a matrix of size l� k. Let q :
f1; � � � ; lg ! P be a map that maps a row of W to a party in P for labeling. A secret
sharing scheme for access structure ðW; qÞ over a set of parties P is a linear secret
sharing scheme, if it consists of following two polynomial-time algorithms.

Share ðW; qÞ: inputting a secret s 2 Zp to be shared, it sets v* ¼ ðs; y2; � � � ykÞ, where
y2; � � � yk 2R Zp, and it outputs shares kqðiÞ ¼Wi � v* belonging to party qðiÞ for i ¼ 1 to l,
where Wi is the i-th row of W.

Recon ðW; qÞ: inputting S that satisfies ðW; qÞ, it outputs reconstruction constants
fði;wiÞgi2I such that

P
i2I

wikqðiÞ ¼ s, where I ¼ fijqðiÞ 2 Sg.

2.2 Bilinear Pairings in Composite Order Groups

Let G;GT be two cyclic groups of order N ¼ p1p2, where p1; p2 are two big primes.
A bilinear pairings e : G�G! GT is a map such that: (1) Bilinear: 8g; h 2 G,
a; b 2 ZN , eðga; hbÞ ¼ eðg; hÞab. (2) Non-degenerate: 9g 2 G such that eðg; gÞ has
order N in GT . (3) e can be efficiently computed.

Note. Let Gp1 , Gp2 denote two subgroups of order p1; p2 in G. These subgroups are
“orthogonal” to each other under the bilinear pairings e, i.e. 8hi 2 Gpi ; hj 2 Gpj ; i 6¼ j,
there is eðhi; hjÞ ¼ 1GT , where 1GT is the identity element of GT .

2.3 CDH Problem in Composite Order Bilinear Group

Let G be a cyclic group of order N ¼ p1p2, Gp1 , Gp2 denote two subgroups of order
p1; p2 in G and g1, g2 denote two random generators of Gp1 , Gp2 respectively, the CDH

problem in G is: input gc1; g
c
2; g

d
1; g

d
2, where c; d 2R Z

�
N , output ðg1g2Þcd .

3 Accountable Ciphertext-Policy Attribute-Based Encryption

3.1 Definition

An accountable ciphertext-policy attribute-based encryption scheme, denoted by
CP-AABE, consists of following seven polynomial time algorithms.

Setup. Inputting a security parameter k, the central authority (CA) generates the
master secret key MSK and system public parameters PK including the description of
attribute universe U.

sExtract. Inputting system public parameters PK, identity U generates a signing secret
key xU and public key PU , it keeps xU secretly and publishes public key PU .

Accountable Ciphertext-Policy Attribute-Based Encryption Scheme 7

dExtract. Interaction between the CA and user is needed in this algorithm. Given the
master keyMSK, public parameters PK and an attributes set S�U for an identity U, CA
generates partial decryption key K for identity U and secretly distributes it to U. U
generates a signature r of K using its signing secret key xU , and sends r to CA secretly.
At last, CA outputs the full decryption key SKU;S.

Encrypt. Inputting public parameters PK, a message M and an access structure W

over U, it outputs a ciphertext CTW.

Decrypt. Inputting public parameters PK, a decryption key SKU;S, and a ciphertext
CTW along with access structure W, it outputs a plaintext M or a reject symbol ?.
Verify. Inputting public parameters PK and a decryption key SKU;S, it outputs an
identity U or an invalid symbol ?.
Audit. Inputting public parameters PK, a leaked decryption key SKU;S and a
decryption key SK 0U;S provided by user U, an auditor returns an identity (U or CA) or a
reject symbol ?.

3.2 Security Models for CP-AABE

Confidentiality for ciphertext. The indistinguishability under adaptive chosen
plaintext attack in the selective model (denoted by IND-s-CPA), of CP-AABE is
defined through the following game between a challenger C and an adversary A.
Init. A outputs the target access structure W� that will be used to create the challenge
ciphertext.

Setup. C executes the Setup (k) algorithm, gives the public key PK to A and keeps the
master secret key MSK to itself.

Phase 1. A is given access to the following oracles which will be simulated by C.
– sExtract oracle: Given an identity U, C returns secret key xU to A.
– dExtract oracle: Given an attributes set S and identity U, C returns SKU;S to A.

Challenge. A outputs two messages M0;M1 of equal length. C flips a random coin
b 2R f0; 1g and generates CT� EncryptðPK;Mb;W

�Þ for W
� and Mb. At last, C

returns the challenge ciphertext CT� to A.
Phase 2. A1 continues adaptively to make queries as in Phase 1 except the Extract
queries for anySsatisfying S 2W

�, and Decrypt oracle queries for CT� with any W

satisfying W
� �W. C returns corresponding answers as in Phase 1.

Guess. A outputs a guess bit b0 2 f0; 1g and wins the game if b0 ¼ b. The advantage
of A is defined to be AdvðAÞ ¼ Pr½b0 ¼ b� � 1=2j j.

8 G. Yu et al.

Public verifiability for the identity of a decryption key (dishonest user game)
The public verifiability for identity of a decryption key of CP-AABE is defined

through following game between a challenger C and an adversary A.
Setup. C executes the Setup (k) algorithm, gives the public key PK to A and keeps the
master secret key MSK to itself.

Query Phase. A is allowed to make polynomial time of sExtract and dExtract queries.

– sExtract oracle: Given an identity U, C returns secret key xU to A.
– dExtract oracle: Given an attributes set S and identity U, C returns SKU;S to A.

Forgery Phase. A outputs a decryption key SKU�;S� for some U�, S�. A wins if SKU�;S�

can pass through the verify algorithm and SKU�;S� isn’t from a dExtract query on S�,
U�. The advantage of A is defined as AdvðAÞ ¼ Pr½Awins�.

Nonrepudiation for a decryption key (dishonest authority game)
The nonrepudiation for a decryption key in CP-AABE is defined by following

game between a challenger C and an adversary A.
Setup. C executes the Setup (k) algorithm, gives the public key PK to A and keeps the
master secret key MSK to itself.

Query Phase. A is allowed to make polynomial sExtract and dExtract queries.

– sExtract oracle: Given an identity U, C returns secret key xU to A.
– dExtract oracle: Given an attributes set S and identity U, C returns SKU;S to A.

Forgery Phase. A outputs a decryption key SKU�;S� for some U�, S�. A is not allowed
to make a sExtract query for U�. A wins if SKU�;S� can pass through the audit algo-
rithm. The advantage of A is defined as AdvðAÞ ¼ Pr½Awins�.

4 A Concrete CP-AABE Construction

Setup: Given a security parameter k, CA selects two cyclic groups G;GT of order
N ¼ p1p2, where p1; p2 are two distinct primes; CA selects a random generator g of
Gp1 , where Gp1 is a subgroup of order p1 in G; CA chooses a bilinear pairings
e : G�G! GT . For each attribute atti 2 U, CA chooses hi 2R Z

�
N and sets Hi ¼ ghi .

CA chooses a; a 2R Z
�
p1 ;b 2R Z

�
p2 , g2 2R Gp2 , u

0 2R Gp1 and a nu-dimensional vector
V ¼ ðuiÞnu , where ui 2R Gp1 and nu 2 ZN is the bit length of identity; CA chooses two
secure Hash functions G : Gp1 �Gp1 ! Gp1 , H : Gp1 �Gp1 � f0; 1g� ! Z

�
p1 . At last,

CA keeps MSK ¼ ðga; bÞ secretly as the master key, and publishes system public key:
PK ¼ ðG;GT ;N; e; g; g2; ga; eðg; gÞa; eðg2; g2Þb; u0;V; fHi ¼ ghi ; 8atti 2 Ug;G;HÞ.
sExtract: Identity U randomly chooses xU 2R ZN as his private key, and computes
PU ¼ gxU as his public key.

Accountable Ciphertext-Policy Attribute-Based Encryption Scheme 9

dExtract: Let U be a bit string of length nu representing an identity id and u½i� denote
the i-th bit of U. Let l � f1; � � � ; nug be the set of indices i such that u½i� ¼ 1. The full
decryption key SKU;S ¼ ðU; r;K;K 0;K 00; fKi : 8atti 2 SgÞ of identity U with attributes
S can be generated as follows.

• CA chooses s 2R ZN and computes K ¼ gs; if K ¼ gs hasn’t been issued for
identity U, CA secretly sends K to identity U.

• Receiving K, U computes a short signature r ¼ GðK;PUÞxU and sends r to CA
secretly.

• CA verifies the validity of r by eðr; gÞ ¼ eðGðK;PUÞ;PUÞ. If it holds, CA com-
putes K 0 ¼ gahgas, K 00 ¼ gb2ðu0

Q
i2l

uiÞsrs, Ki ¼ Hs
i ; 8atti 2 S, where h ¼ Hðr;K;UÞ.

Encrypt: Given a plaintext M 2 GT and an access structure ðW; qÞ, where W is a
l� k matrix and q is a map from each row Wj of W to an attribute attqðjÞ. The
ciphertext CTðW;qÞ ¼ ðC;C0;C00; fCi;Digi2½l�Þ can be generated as follows.

• randomly chooses a vector v* ¼ ðr; y2; � � � ; ykÞ 2R ðZ�NÞk , and r1; � � � ; rl 2R Z
�
N ;

• computes C ¼ M � eðg; gÞar � eðg2; g2Þbr, C0 ¼ gr; C00 ¼ ggr2;
• for i ¼ 1 to l, computes ki ¼Wi � v*, Ci ¼ gakiH�riqðiÞ;Di ¼ gri .

Decrypt: Given CTðW;qÞ, a user U with attributes set S0 that satisfies the access
structure ðW; qÞ can get fxi : i 2 Ig such that

P
i2I

xiWi ¼ ð1; 0; . . .; 0Þk , where

I ¼ fi : attqðiÞ 2 S0g, and then it retrieves the message as follows.

M ¼ Cð
ðQ
i2Ie

eðCi;KÞeðDi;KqðiÞÞÞ
xi
h eðK; ðu0Q

i2l
uiÞrÞ

eðC0;K 0Þ1heðC00;K 00Þ
Þ; where h ¼ Hðr;K;UÞ;

Verify: Given a decryption key SKU;S ¼ ðU; r;K;K 0;K 00; fKi : 8atti 2 SgÞ and public
parameters PK, any third party can verify whether SKU;S associates with U or not as
follows.

• checks equations eðK 00; gÞ ¼ eðK; ðu0Q
i2l

uiÞrÞ, eðK 00; g2Þ ¼ eðg2; g2Þb and

eðK 0; gÞ ¼ eðg; gÞaheðga;KÞ hold or not, where h ¼ Hðr;K;UÞ. If one of them
doesn’t hold, returns a reject symbol ?;

• else, lets S0 � S denote the set of attributes that satisfy eðKi; gÞ ¼ eðK;HiÞ. If S0 is
empty, then returns a reject symbol ?; else returns the identity U that SKU;S0 ¼
ðU; r;K;K 0;K 00; fKi : 8atti 2 S0gÞ related to.

Audit: If identity U denies the ownership of SKU;S0 which could pass the Public verify
algorithm.

10 G. Yu et al.

• an auditor checks whether the equation eðr; gÞ ¼ eðGðK;PUÞ;PUÞ holds or not, if it
doesn’t hold, returns a reject symbol ?;

• else, identity U is asked to submit his decryption key SK 0U;S ¼ ðU; r;K;
~K 0; ~K 00; f~Ki : 8atti 2 SgÞ¼ ðU; r;K; ~K 0; ~K 00; f~Ki : 8atti 2 SgÞ that is related toK. The
auditor runs the verify algorithm to check whether SK 0U;S associates with U or not. If
so, the auditor ruled that SKU;S0 is illegally distributed by CA; else, ruled that SKU;S0 is
shared by U.

5 Discussion

5.1 Security Results

The proposed CP-AABE scheme can be proved IND-s-CPA secure based on the
security of the atomic CP-ABE scheme [6] by Theorem 1, and can provide the public
verifiability based on the unforgeability of the atomic signature scheme [24] in The-
orem 2, and can provide nonrepudiation based on the unforgeability of a short signature
[25] by Theorem 3

Theorem 1. If there is an adversary A that can break IND-s-CPA security of the CP-
AABE scheme with advantage e, there will be an adversary A1 with the same
advantage e that can break the encryption scheme proposed by B. Waters [6].

Proof. We will prove that an adversary A1 against BW-CPABE can be used to con-
struct an adversary A against CP-AABE as follows, the challenger C needs to simulate
the queries from A or A1.

Setup. C selects two cyclic groups Gp2 , GT2 of prime order p2, a generator h of Gp2 ; C
chooses an efficient bilinear pairings e2 : Gp2 �Gp2 ! GT2 ; C chooses b 2R Z

�
p2 ,

g2 2R Gp2 . C chooses u0 2R Gp1 and a vector V ¼ ðuiÞnu where ui 2R Gp1 , nu 2 ZN is
the bit length of an identity U. C also gets the public parameters ðGp1 ;GT1 ; p1;
e1; g; e1ðg; gÞa; ga;fHi ¼ ghi ; 8atti 2 UegÞ of scheme BW-CPABE generated by run-
ning the Setup algorithm of BW-CPABE. Then C sets N ¼ p1p2, G¼Gp1 	Gp2 ,
GT ¼ GT1 	GT2 , e ¼ e1
 e2 : G�G! GT such that eðPQ;P0Q0Þ¼ e1ðP;P0Þ �
e2ðQ;Q0Þ for 8P;P0 2 Gp1 ;Q;Q

0 2 Gp2 . C chooses two hash functions: G :
Gp1 �Gp1 ! Gp1 , H : Gp1 �Gp1 �Gp1 ! Z

�
p1 . C gives PK ¼ ðG;GT ;N; e; g;

g2;eðg; gÞa; eðg2; g2Þb; ga; u0;V; fHi ¼ ghi ; 8atti 2 Ug;G;HÞ to A and keeps a; b
secretly. C also gives ðGp1 ;GT1 ; p1; e1; g; e1ðg; gÞa; ga; fHi ¼ ghi ; 8atti 2 UegÞ to A1.

Phase 1. A1 is given access to the following oracle which will be simulated by C.

– dExtract oracle: Given a set of attributes set S � U with U ¼ u0
Q
i2l

ui from A1, C
first generates SKU;S ¼ ðU; r;K;K 0;K 00; fKi : 8atti 2 SgÞ by running the dExtract
algorithm and returns �K ¼ K, �K 0 ¼ K 0ga�ah, �Ki ¼ Ki; 8atti 2 S, where h ¼ Hðr;K;UÞ
to A1.

Accountable Ciphertext-Policy Attribute-Based Encryption Scheme 11

Challenge. A1 outputs two messages M0;M1 of equal length along with target access
structure W

�, C flips a random coin b 2R f0; 1g, and generates the ciphertext
CTðW�;qÞ ¼ ðC;C0;C00; fCi;Digi2½l�Þ of Mb by running the Encrypt algorithm and C
returns C�TðW�;qÞ ¼ ð�C ¼ C

eðg2;g2Þbr,
�C0 ¼ C0, �Ci ¼ Ci;�Di ¼ DiÞ to A1.

Phase 2. A1 continues adaptively to make queries as in Phase 1 except the Extract
queries for any S satisfying S 2W

�, and Decrypt oracle queries for CT� with any W

satisfying W
� �W. C returns corresponding answers as in Phase 1.

Guess. A outputs b0, then A1 also outputs b0.

As can be seen from above simulation, a challenger C can indistinguishably sim-
ulate all the queries asked from A1. Thus, if there is an adversary A that has advantage
e to have a correct guess b0 ¼ b then, A1 similarly has advantage e to break the
BW-CPABE scheme.

Theorem 2. If adversary A against the CP-AABE, which makes at most qe dExtract
oracle queries, can generate a forged decryption key with advantage e, there is a
challenger C can solve the CDH problem in the composite order group with advantage
at least: 1

4qeðnu þ 1Þ e.

Proof. The public verifiability of CP-AABE is based on the unforgeability of the
signature of identity embedded in the decryption key. We will prove that a more
general signature scheme is unforgeable, and the signature scheme used in CP-AABE
is one of its special cases.

Setup. Given a security parameter k, CA selects two cyclic groups G;GT of order
N ¼ p1p2, where p1; p2 are two distinct primes; CA selects two random generators g; g0

of Gp1 ;Gp2 respectively, where Gp1 ;Gp2 are subgroups of order p1; p2 in G; CA
chooses an efficient bilinear pairings e : G�G! GT . For each atti 2 U, CA chooses
hi 2R Z

�
N randomly and sets Hi ¼ ghi . CA chooses a; a; b 2R Z

�
N , g1; u0 2R Gp1 ,

g2; v0 2R Gp2 and two vectors V1 ¼ ðuiÞnu 2 ðGp1Þnu ;V2 ¼ ðviÞnu 2 ðGp2Þnu , where nu
denotes the bit length of identity U. CA chooses a secure hash function
H : Gp1 �Gp1 �Gp1 ! Z

�
N . The master key MSK ¼ ga; ðg1g2Þb; a, the system public

key is: PK ¼ ðG;GT ;N; e; g; g0; g1; g2; eðg; gÞa; eðg1; gÞb; eðg2; g0Þb; ga; u0; v0;V1;V2;
fHi; 8atti 2 Ug;HÞ.

Sign. Let u½i� denote the i-th bit of U and l � f1; � � � ; nug be the set of indices i such
that u½i� ¼ 1. To generate the decryption key SKU;S of U with attributes set S, it
randomly chooses s 2R ZN , r 2R Gp1 , and computes:

K ¼ gsg0s, K 0 ¼ gahgas, K 00 ¼ ðg1g2Þbðu0v0
Q
i2l

uiviÞsrs, Ki ¼ Hs
i ; 8atti 2 S, where

h ¼ Hðr;K;UÞ.
Verify. Given a signature SKU;S of identity U with attributes S, any party can verify its
validity as follows.

12 G. Yu et al.

eðK 00; gÞ ¼ eðg1; gÞbeðK; ðu0
Y

i2l
uiÞrÞ; eðK 00; g0Þ ¼ eðg2; g0ÞbeðK; v0

Y

i2l
viÞ;

eðK 0; gÞ ¼ eðg; gÞaheðga;KÞ; eðKi; gÞ ¼ eðK;HiÞ; 8atti 2 S:

If g1 ¼ 1Gp1
; v0 ¼ vi ¼ g0 ¼ 1Gp2

, it is the same as that in CP-AABE.
The unforgeability of above signature is based on the CDH problem in composite

order bilinear groups. Let g; g0; gc; g0c; gd ; g0d , where c; d 2R Z
�
N , is a CDH instance in

G, the challenger C tries to compute ðgg0Þcd .
Setup. C sets lu ¼ 2qe, chooses an integer ku such that 0� ku� nu, luðnuþ 1Þ\N. C
chooses x0 2R Z

�
lu and a vector Vx ¼ ðxiÞ of length nu 2 ZN , with xi 2R Zlu for all i. C

chooses y0 2R Z
�
lu and a vector Vy ¼ ðyiÞ of length nu 2 ZN , with yi 2R ZN for all i. C

sets u0 ¼ ðg1Þ�luku þ x0gy
0
; ui ¼ ðg1Þxigyi , v0 ¼ ðg2Þ�luku þ x0 ðg0Þy0 ;vi ¼ ðg2Þxiðg0Þyi , g1g2 ¼

ðgg0Þc; ðgg0Þb ¼ ðgg0Þd . The system public key PK ¼ ðG;GT ;N; e; g; g0; g1; g2;
eðg; gÞa; eðg1; gdÞ; eðg2; g0dÞ; ga;u0; v0;V1;V2; fHi; 8atti 2 UgÞ. The master secret key is
ga; ðgg0Þcd ; a. C sends public parameters to A.

For simplicity, two functions are defined: FðUÞ ¼ x0 þ Q
i2l

xi � luku, JðUÞ ¼ y0 þ
Q
i2l

yi. Then ðu0v0
Q
i2l

uiviÞ ¼ ðg1g2ÞFðUÞðgg0ÞJðUÞ.

Extract queries. C does as follows without knowing ðgg0Þcd .

- If FðUÞ 6¼ 0 mod N, C can choose ru; rr 2R Z
�
N and compute:

K ¼ ððgg0ÞcÞ�1=FðUÞðgg0Þru ;K 0 ¼ gahððgÞcÞ� a
FðUÞgaru ;

K 00 ¼ ððgg0ÞcÞ�JðUÞ
FðUÞðu0v0

Y

i2l
uiviÞrugcrrg

�rr
FðUÞ;

Ki ¼ ððgÞcÞ�hi=FðUÞghiru ; where, h ¼ Hðr;K;UÞ

It can be verified that SKU;S generated in such a way is valid and is indistin-
guishable from the keys generated by a true challenger to adversary A, since

K ¼ ððgg0ÞcÞ�1=FðUÞðgg0Þru ¼ ðgg0Þru�c=FðUÞ

K 0 ¼ gahððgÞcÞ�a=FðUÞgaru ¼ gahðgaÞru�c=FðUÞ

K 00 ¼ ððgg0ÞcÞ�JðUÞFðUÞ ðu0v0
Y

i2l
uiviÞrugrurrðgcÞ

�rr
FðUÞ

¼ ðg1g2Þcðu0v0
Y

i2l
uiviÞru�

c
FðUÞðgrrÞru� c

FðUÞ

Ki ¼ ððgÞcÞ�hi=FðUÞghiru ¼ ðghiÞru�c=FðUÞ

Accountable Ciphertext-Policy Attribute-Based Encryption Scheme 13

- If FðUÞ ¼ 0 mod N, C will abort.
Because the assumption luðnuþ 1Þ\N implies 0� luku\N and 0� x0 þ Q

i2l
xi\N,

then FðUÞ ¼ 0 mod N implies that FðUÞ ¼ 0 mod lu. To make the analysis of the
simulation easier, C will abort whenever FðUÞ ¼ 0 mod lu. Hence, FðUÞ 6¼ 0 mod lu
implies FðUÞ 6¼ 0 mod N, so FðUÞ 6¼ 0 mod lu will be a sufficient requirement to
ensure that a private key for U can be constructed.

Forgery. If C does not abort, A will with probability at least e return an identity U�,
and a valid forgery SKU�;S� . If FðU�Þ 6¼ 0 mod N, C will abort; else FðU�Þ ¼ 0 modN,
C computes the solution to the given CDH problem as follows.

K 00

ðKÞJðU�Þ
¼
ðg1g2Þcðu0v0

Q
i2l

uiviÞrurru

ðgg0Þru�JðU�Þrru
¼ ðgg0Þcd:

For the simulation without aborting, all qe identities of dExtract query should
satisfy FðUÞ 6¼ 0 mod lu, and the challenged identity U� should satisfy
FðU�Þ ¼ 0 mod N.

Let U1; � � �Uqe be the identities appearing in dExtract queries except the challenge
identity U�. Define events Ai;A�; i ¼ 1; � � � ; qe as Ai : FðUiÞ 6¼ 0 mod lu,
A� : FðU�Þ ¼ 0 mod N. Then:

Pr½A�� ¼ Pr½FðU�Þ ¼ 0 mod N�
¼ Pr½FðU�Þ ¼ 0 mod lu� Pr½FðU�Þ ¼ 0 mod NjFðU�Þ ¼ 0 mod lu� ¼ 1

lu

1
nuþ 1

Pr½
\qe

i¼1
AijA�� ¼ 1� Pr½

[qe

i¼1
:AijA�� � 1�

Xqe

i¼1
Pr½:AijA�� � 1� qe

lu
¼ 1

2

Thus:

Pr½:abort� ¼ Pr½
\qe

i¼1
Ai \A�� ¼ Pr½

\qe

i¼1
AijA�� Pr½A�� � 1

2
1
lu

1
nuþ 1

¼ 1
4qeðnuþ 1Þ

If the simulation doesn’t abort, A will generate a valid forgery on identity U� with
probability at least e. Then C can compute ðgg0Þcd with advantage at least e

4qeðnu þ 1Þ.

Theorem 3. Based on the unforgeability of the short signature scheme [25], the
proposed CP-AABE can provide nonrepudiation.

Proof. From Theorem 2, an auditor can prove that a leaked decryption key SKU;S ¼
ðU; r;K;K 0;K 00; fKi : 8atti 2 SgÞ relates to identity U. Then, the auditor needs to show
whether SKU;S is issued by CA or shared by U. If U denies sharing SKU;S, the auditor

14 G. Yu et al.

will ask U to submit his/her decryption key. To prove its innocence, U submits
S�KU;S ¼ ðU; r;K; �K 0; �K 00; f�Ki : 8atti 2 SgÞ to the auditor. The auditor checks whether
S�KU;S can pass through the verify algorithm. If it does, the auditor will rule that SKU;S is
illegally distributed by CA owing to the one-time use of K. Otherwise, if U can’t
provide such a decryption key, he can’t deny his misbehavior based on the unforge-
ability of U ’s short signature of K.

5.2 Comparison

In Table 1, we give the comparison between CP-AABE and related ABE schemes [14,
15, 18, 19]. Firstly, the scheme [14, 15] can’t support public verifiability because the
relationship between the random elements embedded into decryption key and identity
can’t be publicly verified; the scheme [18] cannot support white-box traceability as

they claimed. A malicious user can easily mask his decryption key such as d00 ¼
ga2ðuIDþ ID0

0 uHðL1Þ0 � � � uHðLnÞ0 g3Þr; d01 ¼ gr; d02 ¼ IDþ ID0; d03 ¼ ½L1; � � � Ln� using a ran-
dom identity ID0. Clearly, the masked decryption keys have the same decryption
privileges with original decryption keys. Secondly, in the scheme [14–19], a user can
deny that a shared decryption key belongs to him/her because there isn’t any evidence
that can prove the leaked decryption key isn’t illegally distributed by the authority.
Thus, the proposed CP-AABE scheme is the only scheme that can simultaneously
support public verifiability and nonrepudiation.

At below, jUj denotes the size of attribute universe; jSj denotes the size of attribute
set of a decryption key; jIj denotes the size of attribute set involved in decryption; l
denotes the row number of an LSSS matrix; jVIDj denotes the size of identities set in the
system; nu denotes the bit length of an identity; np denotes the bit length of an element
in group Zp; nk denotes the bit length of the secret key of a symmetric cryptography
used in [15].

In Table 2, We give the storage cost comparison between CP-AABE and related
ABE schemes [14, 15, 19] in terms of length of public key (denoted by PKL), the
length of decryption key (denoted by SKL), the length of ciphertext (denoted by CTL)

Table 1. Features comparison with other related works

Scheme White-box trace Public verify Nonrepudiation Access structure Security

[18] � � � AND Selective
[14] ✓ � � LSSS Selective
[15] ✓ � � LSSS Selective
[19] ✓ ✓ � LSSS Full
CP-AABE ✓ ✓ ✓ LSSS Selective

Accountable Ciphertext-Policy Attribute-Based Encryption Scheme 15

and the storage cost of public verifiability (denoted by PVL) which doesn’t include the
storage cost of public parameters.

In Table 3, we give the efficiency comparison between CP-AABE and related ABE
schemes [14, 15, 19] in terms of pairings computation during decryption (denoted by
DE), white-box traceability (denoted by WT), public verifiability (denoted by PV) and
nonrepudiation (denoted by NR) stage.

6 Conclusion

In this paper, we propose an accountable ABE scheme supporting public verifiability
and nonrepudiation. The identity related to an exposed decryption key can be publicly
verified only with the system parameters. A malicious user cannot deny if he/she shared
his/her decryption privileges for profits. The authority also cannot deny if he/she
illegally issued a decryption key for unauthorized user. We prove that the proposed
CP-AABE scheme is IND-s-CPA secure in the standard model.

Acknowledgment. This work was supported in part by China Postdoctoral Science Foundation
2016M591629, in part by the National Natural Science Foundation of China under Grant
61373154, 61371083, 61411146001, 6163000206 and 6160060473, in part by the Prioritized
Development Projects through the Specialized Research Fund for the Doctoral Program of
Higher Education of China under Grant 20130073130004, in part by Shanghai High-tech field
project under Grant 16511101400, and in part by Natural Science Foundation of Shanghai under
Grant 16ZR1409200. The authors would like to thank the anonymous reviewers of this paper for
their valuable comments and suggestions.

Table 2. Storage cost comparison with other related works

Scheme PKL(G) SKL(G) CTL(G) PVL(bit)

[14] jUj þ 4 jSj þ 4 2lþ 3 jVIDjðnuþ 1Þ
[15] 7 2jSj þ 4 3lþ 3 2ðt � 1Þnpþ 2nk
[19] jUj þ 6 jSj þ 4 2lþ 5 0
CP-AABE jUj þ 7 jSj þ 5 2lþ 3 0

Table 3. Efficiency comparison with other related works

Scheme DE(e) WT(e) PV(e) NR(e)

[14] 2jIj þ 1 2jSj þ 4 - -
[15] 3jIj þ 1 4jSj þ 4 - -
[19] 2jIj þ 3 2jSj þ 6 2jSj þ 6 -
CP-AABE 2jIj þ 3 jSj þ 3 jSj þ 3 2ðjSj þ 3Þ

16 G. Yu et al.

References

1. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

2. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine grained
access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer
and Communications Security, pp. 89–98. ACM (2006)

3. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access
structures. In: Proceedings of ACM Conference on Computer and Communication Security,
pp. 195–203. ACM (2007)

4. Cheung, L., Newport, C.: Provably secure ciphertext-policy ABE. In: Proceedings of ACM
Conference on Computer and Communication Security, pp. 456–465. ACM Press (2007)

5. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional
encryption: attribute-based encryption and (hierarchical) inner product encryption. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg
(2010)

6. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and
provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

7. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achieving full
security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

8. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits
from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 479–499. Springer, Heidelberg (2013)

9. Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryption. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179. Springer, Heidelberg
(2013)

10. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large universe
attribute-based encryption. In: Proceedings of the 2013 ACM SIGSAC Conference on
Computer and Communications Security, pp. 463–474. ACM Press (2013)

11. Hohenberger, S., Waters, B.: Online/Offline attribute-based encryption. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 293–310. Springer, Heidelberg (2014)

12. Horváth, M.: Attribute-based encryption optimized for cloud computing. In: Italiano, G.F.,
Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM
2015-Testing. LNCS, vol. 8939, pp. 566–577. Springer, Heidelberg (2015)

13. Qin, B., Deng, H., Wu, Q., et al.: Flexible attribute-based encryption applicable to secure
e-healthcare records. Int. J. Inf. Secur. 14(6), 499–511 (2015)

14. Liu, Z., Cao, Z., Wong, D.: White-box traceable ciphertext-policy attribute-based encryption
supporting any monotone access structures. IEEE Trans. Inf. Forensics Secur. 8(1), 76–88
(2013)

15. Ning, J., Dong, X., Cao, Z., et al.: White-box traceable ciphertext-policy attribute-based
encryption supporting flexible attributes. IEEE Trans. Inf. Forensics Secur. 10(6), 1274–
1288 (2015)

16. Li, J., Huang, Q., Chen, X., Chow, S., Wong, D., Xie, D.: Multi-authority ciphertext-policy
attribute-based encryption with accountability. In: Proceedings of the 6th ACM Symposium
Information, Computer and Communication Security, pp. 386–390. ACM Press (2011)

Accountable Ciphertext-Policy Attribute-Based Encryption Scheme 17

17. Liu, Z., Cao, Z., Wong, D.: Black-box traceable CP-ABE: how to catch people leaking their
keys by selling decryption devices on ebay. In: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, pp. 475–486. ACM Press (2013)

18. Li, J., Ren, K., Kim, K.: A2BE: Accountable attribute-based encryption for abuse free access
control. IACR Cryptology ePrint Archive, 2009:118

19. Ning, J., Dong, X., Cao, Z., Wei, L.: Accountable authority ciphertext-policy attribute-based
encryption with white-box traceability and public auditing in the cloud. In: Pernul, G., et al.
(eds.) ESORICS. LNCS, vol. 9327, pp. 270–289. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24177-7_14

20. Li, J., Yao, W., Zhang, Y., Qian, H., Han, J.: Flexible and fine-grained attribute-based data
storage in cloud computing. IEEE Trans. Serv. Comput. doi:10.1109/TSC.2016.2520932

21. Qian, H., Li, J., Zhang, Y., Han, J.: Privacy preserving personal health record using
multi-authority attribute-based encryption with revocation. Int. J. Inf. Secur. 14(6), 487–497
(2015)

22. Li, J., Shi, Y., Zhang, Y.: Searchable ciphertext-policy attribute-based encryption with
revocation in cloud storage. Int. J. Commun. Syst. doi:10.1002/dac.2942

23. Li, J., Lin, X., Zhang Y., Han, J.: KSF-OABE: outsourced attribute-based encryption with
keyword search function for cloud storage. IEEE Trans. Service Comput. doi:10.1109/TSC.
2016.2542813

24. Paterson, K.G., Schuldt, J.C.: Efficient identity-based signatures secure in the standard
model. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 207–
222. Springer, Heidelberg (2006)

25. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

18 G. Yu et al.

http://dx.doi.org/10.1007/978-3-319-24177-7_14
http://dx.doi.org/10.1007/978-3-319-24177-7_14
http://dx.doi.org/10.1109/TSC.2016.2520932
http://dx.doi.org/10.1002/dac.2942
http://dx.doi.org/10.1109/TSC.2016.2542813
http://dx.doi.org/10.1109/TSC.2016.2542813

An Efficient and Expressive Ciphertext-Policy
Attribute-Based Encryption Scheme

with Partially Hidden Access Structures

Hui Cui1(B), Robert H. Deng1, Guowei Wu1, and Junzuo Lai2

1 School of Information Systems,
Singapore Management University, Singapore, Singapore

{hcui,robertdeng,gwwu}@smu.edu.sg
2 Department of Computer Science, Jinan University, Guangzhou, China

pwdlaijunzuo@163.com

Abstract. A promising solution to protect data privacy in cloud stor-
age services is known as ciphertext-policy attribute-based encryption
(CP-ABE). However, in a traditional CP-ABE scheme, a ciphertext is
bound with an explicit access structure, which may leak private informa-
tion about the underlying plaintext in that anyone having access to the
ciphertexts can tell the attributes of the privileged recipients by looking
at the access structures. A notion called CP-ABE with partially hidden
access structures [14,15,18,19,24] was put forth to address this problem,
in which each attribute consists of an attribute name and an attribute
value and the specific attribute values of an access structure are hidden
in the ciphertext. However, previous CP-ABE schemes with partially
hidden access structures only support access structures in AND gates,
whereas a few other schemes supporting expressive access structures are
computationally inefficient since they are built from bilinear pairings
over the composite-order groups. In this paper, we focus on addressing
this problem, and present an expressive CP-ABE scheme with partially
hidden access structures in prime-order groups.

Keywords: Cloud storage · Ciphertext-policy attribute-based encryp-
tion · Access structures · Data privacy · Access control

1 Introduction

With the explosive growth of information, there is an increasing demand for
outsourcing data to cloud storage services due to its economical scale. However,
no user would like to store documents containing sensitive information to a public
cloud with no guarantee for security or privacy. A promising solution to provide
data privacy while sharing data in cloud is using an encryption mechanism such
that data owners upload their data in encrypted forms to the cloud and share
them with users having the required credentials (or attributes). One encryption
technique that meets this requirement is called ciphertext-policy attribute-based
c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 19–38, 2016.
DOI: 10.1007/978-3-319-47422-9 2

20 H. Cui et al.

Table 1. Comparisons of CP-ABE schemes with partially hidden access structures

Schemes Anonymity of Expressiveness of Type of Security Unbounded

hidden access access bilinear attribute

structures structures group names

[19] partially hidden AND gates prime selective no

[18] partially hidden AND gates prime selective yes

[14] partially hidden AND gates composite full no

[15] partially hidden LSSS composite full no

[24] partially hidden AND gates prime selective yes

Our scheme partially hidden LSSS prime selective yes

encryption (CP-ABE) [3], in which a user’s private key issued by an attribute
authority (AA) is associated with a set of attributes, a message is encrypted
under an access structure (or access policy) over a set of attributes by the data
owner, and a user can decrypt the ciphertext using his/her private key if and
only if his/her attributes satisfy the access policy ascribed to this ciphertext.

Though a ciphertext in a traditional CP-ABE scheme (e.g., [3,7,16,23]) does
not directly tell the identities of its recipients, an access structure in the cleartext
is attached to the ciphertext, and thus anyone who sees a ciphertext may be able to
deduce certain private information about the encrypted message or the privileged
recipients of the message. Let us consider the cloud storage system, which is used
by a hospital to store electrical medical records (EMRs) of patients. In this system,
the hospital encrypts an EMR using CP-ABE under an access structure “(Patient:
NR005289ANDHospital: CityHospital)OR (Doctor:CardiologistANDHospital:
General Hospital)”, and then uploads the ciphertext together with the access pol-
icy to the cloud. The access policy requires that a patient identified by NR005289
at City Hospital or any Cardiologist at General Hospital can decrypt the cipher-
text to obtain the EMR, from which it can be easily inferred that a person in City
Hospital with a patient number NR005289 is suffering a heart problem. This infor-
mation leakage is definitely not expected by the cloud users, and thus it is necessary
to design CP-ABE schemes that can hide access structures.

It is known from [15] that a CP-ABE scheme with hidden access structures
can be built from attribute-hiding Inner-product Predicate Encryption (IPE) [13],
but this will result in an increase in the size for an arbitrary access structure in the
transformation.Also, it is inefficient to implementCP-ABE schemeswith fully hid-
den access structure fromattribute-hiding IPE [16].With the goal of having a trade
off between fully hidden access structures and efficiency of CP-ABE, partially hid-
den access structures [14,15,18,19,24] were embedded in CP-ABE schemes to mit-
igate the computational cost. However, the schemes in [14,18,19,24] can only be
applied to access structures expressed in AND gates. The construction in [15] sup-
ports expressive access structures but is built from pairings over the composite-
order groups, and “a Tate pairing on a 1024-bit composite-order elliptic curve is
roughly 50 times slower than the same pairing on a comparable prime-order curve,

CP-ABE with Partially Hidden Access Structures 21

and this performance gap will only get worse at higher security levels” [9]. Though
there exist several techniques [9] to convert pairing-based schemes from composite-
order groups to prime-order groups, there is still a significant performance degra-
dation due to the required size of the special vectors [21]. Therefore, it is desirable
to construct an expressive CP-ABE scheme with partially hidden access structures
using pairings in the prime-order groups.

In this paper, we focus on designing an expressive CP-ABE scheme in the
prime-order groups which can hide attribute values from access structures. We
compare our CP-ABE scheme with partially hidden access structures to others
in the literature in Table 1. It is straightforward to see that our construction is
comparable to the existing ones in that it allows unbounded attribute names,
supports expressive access structures and is built in the prime-order groups.

1.1 Challenges and Our Contributions

In the real world, the attribute values always contain more sensitive information
than the generic attribute names. For example, the attribute values “Cardiol-
ogist” and “NR005289” are more sensitive than the attribute names “Doctor”
and “Patient”, respectively. Due to this observation, a notion called CP-ABE
with partially hidden access structures [15,19] was proposed which divides each
attribute into an attribute name and an attribute value, and hides attribute val-
ues associated with an access structure included in a ciphertext. That is, instead
of a full access structure, a partially hidden access structure (e.g., “(Patient:
* AND Hospital: *) OR (Doctor: * AND Hospital: *)”) which consists of only
attribute names without attribute values is attached to a ciphertext.

We build a CP-ABE scheme with partially hidden access structures from
the large universe CP-ABE scheme proposed by Rouselakis and Waters [21],
which is an unbounded CP-ABE scheme supporting expressive access policies
in the prime-order groups. A naive approach to construct a CP-ABE scheme
with partially hidden access structures is simply removing the attribute names
from the access structure in the Rouselakis-Waters scheme. However, the result-
ing scheme suffers off-line dictionary attacks1. Therefore, the key challenge here
is to modify the Rouselakis-Waters scheme [21] such that its access structure
is partially hidden and secure against off-line dictionary attacks. Thanks to the
“randomness splitting” technique [6], we build a CP-ABE scheme where the sen-
sitive attribute values are hidden to a computationally bounded adversary by
performing some sort of blinding through splitting each attribute value into two
randomized complementary components. Thus, though the ciphertext and access
structure still contain information about generic attribute names, attribute val-
ues are protected from off-line dictionary attacks.

However, since an attribute name in practice may correspond to a number of
attribute values, a ciphertext with hidden attribute values raises another issue:
given solely attribute names associated with an access structure in a ciphertext,
how could a user know he/she is a privileged recipient or not? One solution to this

1 We will show how an off-line dictionary attack works in Sect. 4.

22 H. Cui et al.

problem is to also encrypt a publicly known message such as the unity element
“1” in addition to the encryption of the real data, all under the same access
structure [15,24], but this almost doubles the size of the original ciphertext,
which is undesirable to a cloud storage system who prefers to save storage space.
To reduce the storage cost of cloud services, we simply make a commitment to
the encrypted message, and thus a user can know whether he/she has access to
the encrypted data by checking whether the decryption result is consistent with
the given commitment of the underlying message.

In a nutshell, the differences between our construction of CP-ABE with par-
tially hidden access structure and the Rouselakis-Waters CP-ABE scheme are
threefold. Firstly, we perform a “linear splitting” technique [6] on various por-
tions of a ciphertext to overcome the off-line dictionary attacks. Secondly, we
re-randomize the key components upon each attribute to make the linear split-
ting methodology feasible for all attribute values appearing in the ciphertext.
Thirdly, we make a commitment to the message to allow a user to check whether
he/she is a privileged recipient of a ciphertext without knowing the attribute val-
ues ascribed to the ciphertext.

1.2 Related Work

Sahai and Waters [22] introduced a notion called attribute-based encryption
(ABE), and then Goyal et al. [11] formulated key-policy ABE (KP-ABE) and
CP-ABE as two complimentary forms of ABE. In a CP-ABE system, the private
keys are associated with the sets of attributes and the ciphertexts are associated
with the access policies, while the situation is reversed in a KP-ABE system.
Nevertheless, we believe that KP-ABE is less flexible than CP-ABE because the
access policy is determined once the user’s attribute-based private key is issued.
Bethencourt, Sahai and Waters [3] proposed the first CP-ABE construction, but
it was secure under the generic group model. Cheung and Newport [7] presented
a CP-ABE scheme that was proved to be secure under the standard model, but
it only supported the AND access structures. A CP-ABE system under more
advanced access structures was proposed by Goyal et al. [10] based on the number
theoretic assumption. Rouselakis and Waters [21] built a large universe CP-ABE
system under the prime-order groups to overcome the limitation that the size
of the attribute space is polynomially bounded. The cryptographic primitive of
CP-ABE with partially hidden access structures was introduced by Nishide et al.
[19], but their construction only admitted admissible access structures expressed
in AND gates and is selectively secure. Following the work in [19], Li et al. [18]
extended the construction with an additional property as user accountability.
With the aim of improving efficiency in [18,19], Zhang et al. [24] presented a
methodology to reduce the computational overhead in the decryption, but their
construction still did not support advanced access structures. Lai, Deng and
Li [14] put forth a fully secure CP-ABE scheme with partially hidden access
structures, but it only supports restricted access structures as in [18,19]. Later,
Lai, Deng and Li proposed [15] a fully secure CP-ABE scheme which can partially

CP-ABE with Partially Hidden Access Structures 23

hide access structures of any boolean formulas, but it was built from bilinear
pairings in the composite-order groups.

1.3 Organization

The remainder of this paper is organized as follows. In Sect. 2, we briefly review
the notions and definitions relevant to this paper. In Sect. 3, after depicting the
framework for CP-ABE with partially hidden access structures, we present its
security model. In Sect. 4, we give a concrete expressive and unbounded CP-
ABE scheme with partially hidden access policies and analyze its security and
performance. We conclude the paper in Sect. 5.

2 Preliminaries

In this section, we review some basic cryptographic notions and definitions that
are to be used in this paper.

2.1 Bilinear Pairings and Complexity Assumptions

Let G be a group of prime order p that is generated from g. We define ê : G×G
→ G1 to be a bilinear map if it has the following properties [5]:

– Bilinear such that for all g ∈ G, and a, b ∈ Zp, we have ê(ga, gb) = ê(g, g)ab

– Non-degenerate such that ê(g, g) �= 1.

We say that G is a bilinear group if the group operation in G is efficiently
computable and there exists a group G1 and an efficiently computable bilinear
map ê : G × G → G1 as above.

Decisional (q −1) Assumption [21]. The decisional (q −1) problem is that for
any probabilistic polynomial-time algorithm, given −→y =

g, gμ,

gai

, gbj , gμ·bj , gaibj , gai/b2j ∀ (i, j) ∈ [q, q],
gai/bj ∀ (i, j) ∈ [2q, q] with i �= q + 1,

gaibj/b2
j′ ∀ (i, j, j′) ∈ [2q, q, q] with j �= j′,

gμaibj/bj′ , gμaibj/b2
j′ ∀ (i, j, j′) ∈ [q, q, q] with j �= j′,

it is difficult to distinguish (−→y , ê(g, g)aq+1μ) from (−→y , Z), where g ∈ G, Z ∈ G1,
a, μ, b1, ..., bq ∈ Zp are chosen independently and uniformly at random.

Decisional Linear Assumption [4]. The decisional linear problem is that for
any probabilistic polynomial-time algorithm, given g, gx1 , gx2 , gx1x3 , gx2x4 , it
is difficult to distinguish (g, gx1 , gx2 , gx1x3 , gx2x4 , gx3+x4) from (g, gx1 , gx2 ,
gx1x3 , gx2x4 , Z), where g, Z ∈ G, x1, x2, x3, x4 ∈ Zp chosen independently and
uniformly at random.

24 H. Cui et al.

2.2 Access Structures and Linear Secret Sharing

We review the the notions of access structures and linear secret sharing schemes
[17,23] as follows.

Access Structures. Let {P1, ..., Pn} be a set of parties. A collection A ⊆
2{P1,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C, then C ⊆ A. An
(monotone) access structure is a (monotone) collection A of non-empty subsets
of {P1, ..., Pn}, i.e., A ⊆ 2{P1,...,Pn} \{∅}. The sets in A are called the authorized
sets, and the sets that are not in A are called the unauthorized sets.

Linear Secret Sharing Schemes (LSSSs). Let P be a set of parties. Let M

be a matrix of size l × n. Let ρ : {1, ..., l} → P be a function that maps a row
to a party for labeling. A secret sharing scheme Π over a set of parties P is a
linear secret-sharing scheme over Zp if

1. the shares for each party form a vector over Zp;
2. there exists a matrix M which has l rows and n columns called the share-

generating matrix for Π. For x = 1, ..., l, the x-th row of matrix M is labeled
by a party ρ(i), where ρ : {1, ..., l} → P is a function that maps a row to
a party for labeling. Considering that the column vector v = (μ, r2, ..., rn),
where μ ∈ Zp is the secret to be shared and r2, ..., rn ∈ Zp are randomly
chosen, then Mv is the vector of l shares of the secret μ according to Π. The
share (Mv)i belongs to party ρ(i).

It has been noted in [17] that every LSSS also enjoys the linear reconstruction
property. Suppose that Π is an LSSS for access structure A. Let A be an autho-
rized set, and define I ⊆ {1, ..., l} as I = {i|ρ(i) ∈ A}. Then the vector (1, 0,
..., 0) is in the span of rows of matrix M indexed by I, and there exist constants
{wi ∈ Zp}i∈I such that, for any valid shares {vi} of a secret μ according to Π,
we have

∑
i∈I wivi = μ. These constants {wi} can be found in polynomial time

with respect to the size of the share-generating matrix M [2].
On the other hand, for an unauthorized set A′, no such constants {wi} exist.

Moreover, in this case it is also true that if I ′ = {i|ρ(i) ∈ A′}, there exists a
vector −→w such that its first component w1 is any non zero element in Zp and
< Mi,

−→w > = 0 for all i ∈ I ′, where Mi is the i-th row of M [21].

Boolean Formulas [17]. Access policies can also be described in terms of
monotonic boolean formulas. LSSS access structures are more general, and can be
derived from representations as boolean formulas. There are standard techniques
to convert any monotonic boolean formula into a corresponding LSSS matrix.
The boolean formula can be represented as an access tree, where the interior
nodes are AND and OR gates, and the leaf nodes correspond to attributes. The
number of rows in the corresponding LSSS matrix will be the same as the number
of leaf nodes in the access tree.

CP-ABE with Partially Hidden Access Structures 25

3 System Architecture and Security Model

In this section, we describe the framework and security model of ciphertext-
policy attribute-based encryption with partially hidden access structures.

3.1 Framework

A CP-ABE scheme with partially hidden access structures consists of four algo-
rithms: setup algorithm Setup, attribute-based private key generation algorithm
KeyGen, encryption algorithm Encrypt and decryption algorithm Decrypt.

– Setup(1λ) → (pars, msk). Taking the security parameter λ as the input, this
algorithm outputs the public parameter pars and the master private key msk
for the system. This algorithm is run by the AA.

– KeyGen(pars, msk, A) → KA. Taking the public parameter pars, the master
private key msk and an attribute set A as the input, this algorithm outputs
an attribute-based private key KA over the attribute set A. This algorithm
is run by the AA.

– Encrypt(pars, M , (M, ρ, {Aρ(i)})) → CT. Taking the public parameter pars,
a message M and an access structure (M, ρ, {Aρ(i)}) where the function
ρ associates the rows of M to generic attribute names, and {Aρ(i)} are the
corresponding attribute values as the input. Let M be an l × n matrix as the
input, this algorithm outputs a ciphertext CT. This algorithm is run by the
data owner.

– Decrypt(pars, CT, A, KA) → M/⊥. Taking the public parameter pars,
a ciphertext CT and an attribute-based private key KA associated to an
attribute set A as the input, this algorithm outputs either the message M
when the private key KA satisfies the access structure, or a symbol ⊥ other-
wise. This algorithm is run by the user.

We require that a CP-ABE scheme with partially hidden access structures
is correct, meaning that for all messages M , all attribute sets A and access
structures (M, ρ, {Aρ(i)}) with authorized A satisfying (M, ρ, {Aρ(i)}), if (pars,
msk) ← Setup(1λ), KA ← KeyGen(pars, msk, A), CT ← Encrypt(pars, M ,
(M, ρ, {Aρ(i)})), then Decrypt(pars, CT, A, KA) = M .

3.2 Security Definitions

A CP-ABE scheme with partially hidden access structures should ensure confi-
dentiality and anonymity. Below we elaborately describe the security definitions
for these two requirements one by one.

Confidentiality. Assuming that the adversary makes the key generation queries
adaptively, we define the security model for confidentiality by the following game
between a challenger algorithm C and an adversary algorithm A, based on the
security model of indistinguishability under chosen-plaintext attacks (IND-CPA)
for CP-ABE [23].

26 H. Cui et al.

– Setup. Algorithm C runs the setup algorithm, and gives the public parameter
pars to algorithm A and keeps the master private key msk.

– Phase 1. Algorithm A makes the key generation queries to algorithm C. Algo-
rithm A sends an attribute set Ai to algorithm C. Algorithm C responds by
returning the corresponding key KAi

to algorithm A.
– Challenge. Algorithm A chooses two messages M∗

0 and M∗
1 of the same size,

and an access structure (M∗, ρ∗, {A∗
ρ(i)}) with the constraint that the key

generation queries {KAi
} in Phase 1 do not satisfy the access structure (M∗,

ρ∗, {A∗
ρ(i)}). The challenger chooses a random bit β ∈ {0, 1}, and sends

algorithm A a challenge ciphertext CT∗ which is an encryption of M∗
β under

the access structure (M∗, ρ∗, {A∗
ρ(i)}).

– Phase 2. Algorithm A continues issuing the key generation queries on
attribute sets Ai with the constraint that they do not satisfy the access
structure in the challenge phase. Algorithm C responds as in Phase 1.

– Guess. Algorithm A makes a guess β′ for β, and it wins the game if β′ = β.

Anonymity. Anonymity prevents an adversary from distinguishing a ciphertext
under one access matrix associated with one attribute set from a ciphertext under
the same access matrix associated with another attribute set. In the anonymity
game, the adversary is given the public parameter, as well as the access to
the key generation oracle, and its goal is to guess which of two attribute sets
satisfying the same access matrix generates the ciphertext in the challenge phase,
without being given either of the private keys associated with the two attribute
sets. Below we define the the game of anonymity under chosen-plaintext attacks
(ANON-CPA) between a challenger algorithm C and an adversary algorithm A.

– Setup. Algorithm C runs the setup algorithm, and gives the public parameter
pars to algorithm A and keeps the master private key msk.

– Phase 1. Algorithm A makes the key generation query to algorithm C. Algo-
rithm A sends an attribute set Ai to algorithm C. Algorithm C responds by
returning the corresponding key KAi

to algorithm A.
– Challenge. Algorithm A chooses a message M∗ and an access matrix (M∗,

ρ∗) which can be satisfied by attribute sets {A∗
ρ(i)}0 and {A∗

ρ(i)}1 with the
constraint that there are no key generation queries {KAi

} in Phase 1 that
can satisfy (M∗, ρ∗, {A∗

ρ(i)}0) and (M∗, ρ∗, {A∗
ρ(i)}1). The challenger chooses

a random bit β ∈ {0, 1}, and sends algorithm A a challenge ciphertext CT∗

which is an encryption of M∗ under the access structure (M∗, ρ∗, {A∗
ρ(i)}β).

– Phase 2. Algorithm A continues issuing the key generation queries to algo-
rithm C. Algorithm C responds as in Phase 1 with the constraint that the
attributes of the key generation queries satisfying (M∗, ρ∗, {A∗

ρ(i)}0) and
(M∗, ρ∗, {A∗

ρ(i)}1) are disallowed. Algorithm C responds as in Phase 1.
– Guess. Algorithm A makes a guess β′ for β, and it wins the game if β′ = β.

Algorithm A’s advantage in the above two games are defined as Pr[β =
β′] − 1/2. We say that a CP-ABE scheme with partially hidden access struc-
tures is indistinguishable (or anonymous) under the chosen-plaintext attacks if

CP-ABE with Partially Hidden Access Structures 27

all probabilistic polynomial time (PPT) adversaries have at most a negligible
advantage in the security parameter λ. In addition, a CP-ABE scheme with
partially hidden access structures is said to be selectively indistinguishable (or
anonymous) if an Init stage is added before the Setup phase where algorithm A
commits to the challenge access structure (M, ρ, {Aρ(i)}).

4 Ciphertext-Policy Attribute-Based Encryption Scheme
with Partially Hidden Access Structures

In this section, we give a concrete construction of a CP-ABE scheme with par-
tially hidden access structures, and analyze its security and performance.

4.1 Attribute Value Guessing Attack

Below we briefly review the encryption algorithm of the CP-ABE scheme in [21],
and show that there is an attribute value guessing attack to such a construction.

Encrypt. This algorithm takes the public parameter pars, a message M and
an LSSS access structure (M, ρ) where the function ρ associates the rows of M to
attributes as the input. Let M be an l × n matrix. It randomly chooses a vector−→v = (μ, y2, ..., yn) ∈ Zn

p . These values will be used to share the encryption
exponent μ. For i = 1 to l, it calculates vi = −→v · Mi, where Mi is the vector
corresponding to the i-th row of M. In addition, it randomly chooses β, z1, ...,
zl ∈ Zp, and outputs a ciphertext CT =

(
C, D, {(Ci, Di, Ei)}i∈[1,l]

)
.

C = ê(g, g)αμ, D = gμ, Ci = wvivzi , Di = gzi , Ei = (uρ(i)h)−zi ,

where g, u, h, v, w, ê(g, g)α belong to the public parameter pars.

Attack. Given a ciphertext CT =
(
C, D, {(Ci, Di, Ei)}i∈[1,l]

)
, an adversary

can easily determine whether an attribute value Ai used in the ciphertext by
checking whether ê(Ei, g) = ê(uAih,Di

−1) holds. Clearly, this scheme cannot
achieve anonymity.

4.2 Construction

On the basis of the large universe CP-ABE scheme proposed in [21], we present
a CP-ABE scheme which can partially hide the access structures in the prime-
order groups. Let G be a bilinear group of a prime order p with a generator g.
Denote ê : G × G → G1 by the bilinear map.

– Setup. This algorithm takes the security parameter λ as the input. It ran-
domly chooses a group G of prime order p with a generator g. Also, it ran-
domly chooses u, h, v, w ∈ G, d1, d2, d3, d4, α ∈ Zp, and computes g1 = gd1 ,
g2 = gd2 , g3 = gd3 , g4 = gd4 . The public parameter is pars = (H, g, u, h,
w, v, g1, g2, g3, g4, ê(g, g)α) where H is a collision resistent hash function
that maps an element in G1 to an element in {0, 1}t with t being the security
parameter such that the concatenate elements in Zp are represented in t bits,
and the master private key is msk = (d1, d2, d3, d4, gα).

28 H. Cui et al.

– KeyGen. This algorithm takes the public parameter pars, the master private
key msk and an attribute set A2 as the input. Let k be the size of A, and A1,
..., Ak ∈ Zp be the attribute values of A. It randomly chooses r, r′, r1, ...,
rk, r′

1, ..., r′
k ∈ Zp, and outputs the attribute-based private key KA = (K1,

K2, {Ki,1, Ki,2, Ki,3, Ki,4, Ki,5}i∈[1,k]) over a set of attributes A as

K1 = gαwd1d2r+d3d4r′
, K2 = grd1d2+r′d3d4 ,

Ki,1 = ((uAih)riv−r)d2 , Ki,2 = ((uAih)riv−r)d1 , Ki,3 = gd1d2ri+d3d4r′
i ,

Ki,4 = ((uAih)r′
iv−r′

)d4 , Ki,5 = ((uAih)r′
iv−r′

)d3 .

– Encrypt. This algorithm takes the public parameter pars, a message M ∈ Zp

and an LSSS access structure (M, ρ, {Aρ(i)})3 as the input. It randomly
chooses a vector −→v = (μ, y2, ..., yn) ∈ Zn

p . These values will be used to share
the encryption exponent μ. For i = 1 to l, it calculates vi = −→v ·Mi, where Mi

is the vector corresponding to the i-th row of M. Then, it randomly chooses
γ, si,1, ..., si,l, s1,2, ..., sl,2, z1, ..., zl ∈ Zp, and outputs a ciphertext CT =(
(M, ρ), C, D, E, {(Ci, Di,1, Di,2, Ei,1, Ei,2, Fi)}i∈[1,l]

)
, where

C = (M ||γ) ⊕ H(ê(g, g)αμ), D = gμ, E = gMhγ ,

Ci = wvivzi , Di,1 = g1
zi−si,1 , Di,2 = g3

zi−si,2 ,

Ei,1 = g2
si,1 , Ei,2 = g4

si,2 , Fi = (uAρ(i)h)−zi .

– Decrypt. This algorithm takes the public parameter pars, a ciphertext
(
(M,

ρ), C, D, E, {(Ci, Di,1, Di,2, Ei,1, Ei,2, Fi)}i∈[1,l]

)
and a private key KA for

an attribute set A as the input. It calculates IM,ρ from (M, ρ), which is a set
of minimum subsets of attributes satisfying (M, ρ). Denote by {wi ∈ Zp}i∈I
a set of constants such that if {vi} are valid shares of any secret μ according
to M, then

∑
i∈I wivi = μ. For an I ∈ IM,ρ, it computes

ê(D,K1)∏
i∈I(ê(Ci,K2)ê(Di,1,Ki,1)ê(Ei,1,Ki,2)ê(Fi,Ki,3)ê(Di,2,Ki,4)ê(Ei,2,Ki,5))wi

=
ê(g, g)αμê(gμ, w)r1d1d2 ê(gμ, w)r2d3d4

∏
i∈I(ê(g, wvi)d1d2r1+d3d4r2)wi

= ê(g, g)αμ,
C

H(ê(g, g)αμ)
= M ||γ.

If gMhγ = E, it outputs M . Otherwise, it outputs ⊥.

Remarks. In the above construction, the term E, computed using a commit-
ment scheme [20], is added to the ciphertext such that a user can easily ascertain
whether he/she is a privileged recipient by checking the decryption result via
the given E. Note that according to the binding property of the commitment
scheme [8], each E can only be obtained from a unique pair of M and γ, which
2 Note that each attribute is denoted as Ni = Ai, where Ni is the generic name of an

attribute and Ai is the corresponding attribute value.
3 For the details about how to convert a boolean formula into an equivalent LSSS

matrix, please refer to [17].

CP-ABE with Partially Hidden Access Structures 29

guarantees the correctness of decryption, in spite of the fact that the user has
no idea whether his/her attribute set satisfies the access structure ascribed the
ciphertext before performing decryption.

4.3 Security Proof

Theorem 1. Assuming that the (q − 1) assumption holds in G, and the deci-
sional linear assumption holds in G, then the above system is selectively indis-
tinguishable and anonymous.

Proof. At a hight level, the proof is reduced via a sequence of games by concluding
that these games are computationally indistinguishable from each other. For suc-
cinct description, we remove the access structure related elements from the cipher-
text. Denote

(
C∗, D∗, E∗, {(C∗

i , D∗
i,1, D

∗
i,2, E

∗
i,1, E

∗
i,2, F

∗
i)}i∈[1,l]

)
by the challenge

ciphertext given to the adversary during an attack in the real world. Let Z be a
random element of G1, and {Zi,1}, {Z ′

i,1} be sets of random elements of G. We
define a sequence of games Game0, Game1, ..., Gamel, Gamel+1, ..., Game2l+1 that
differ on which challenge ciphertext is given by the challenger to the adversary,
where Game0 is the original game, Game1 changes the term C∗ to Z, and Game2
to Gamel+1 change the D∗

i,1 term to Zi,1 one by one for i ∈ [1, l], and Gamel+2 to
Game2l+1 change the E∗

i,1 term to Z ′
i,1 one by one for i ∈ [1, l].

– Game0: The challenge ciphertext is CT∗
0 =

(
C∗, D∗, E∗, {(C∗

i , D∗
i,1, D∗

i,2,
E∗

i,1, E∗
i,2, F ∗

i)}i∈[1,l]

)
.

– Game1: The challenge ciphertext is CT∗
1 =

(
Z, D∗, E∗, {(C∗

i , D∗
i,1, D∗

i,2, Ei,1,
Ei,2, F ∗

i)}i∈[1,l]

)
.

– Game2: The challenge ciphertext is CT∗
2 =

(
Z, D∗, E∗, (C1, Z1,1, D∗

1,2, E∗
1,1,

E∗
1,2, F ∗

1), {(C∗
i , D∗

i,1, D∗
i,2, E∗

i,1, E∗
i,2, F ∗

i)}i∈[2,l]

)
.

– · · · · · ·
– Gamel+1: The challenge ciphertext is CT∗

l+1 =
(
Z, D∗, E∗, {(Ci, Zi,1, D∗

i,2,
E∗

i,1, E∗
i,2, F ∗

i)}i∈[1,l]

)
.

– Gamel+2: The challenge ciphertext is CT∗
l+2 =

(
Z, D∗, E∗, (C∗

1 , Z1,1, Z ′
1,1,

E∗
1,1, E∗

1,2, F ∗
1), {(C∗

i , Zi,1, D∗
i,2, E∗

i,1, E∗
i,2, F ∗

i)}i∈[2,l]

)
.

– · · · · · ·
– Game2l+1: The challenge ciphertext is CT∗

2l+1 =
(
Z, D∗, E∗, {(C∗

i , Zi,1, Z ′
i,1,

E∗
i,1, E∗

i,2, F ∗
i)}i∈[1,l]

)
.

To complete the proof, we will show that the games Game0, Game1, ..., Game2l+1

are computationally indistinguishable.

Lemma 1. Assuming that the (q − 1) assumption holds in G, then there is no
adversary that distinguishes between the games Game0 and Game1.

Proof. Assume that there exists an adversary algorithm A that can distinguish
Game0 from Game1. Then we can build a challenger algorithm C that solves the
(q − 1) problem.

30 H. Cui et al.

– Init. Algorithm A gives algorithm C a challenge access structure (M∗, ρ∗,
{ρ(i)∗})4, where M

∗ is an l × n matrix.
– Setup. Algorithm C randomly chooses d1, d2, d3, d4 ∈ Zp, and computes g1 =

gd1 , g2 = gd2 , g3 = gd3 , g4 = gd4 . Then, it randomly chooses a hash function
H: G1 → {0, 1}t, α̃, ũ, ṽ, h̃ ∈ Zp, In addition, it implicitly sets α = aq+1 + α̃,
and outputs the rest of the public parameter as g = g, w = ga,

v = gṽ ·
∏

(j,j′)∈[l,n]

(gaj′
/bj)M

∗
j,j′ , u = gũ ·

∏

(j,j′)∈[l,n]

(gaj′
/bj

2
)M

∗
j,j′ ,

h = gh̃ ·
∏

(j,j′)∈[l,n]

(gaj′
/bj

2
)−ρ∗(j)M∗

j,j′ , ê(g, g)α = ê(ga, gaq

) · ê(g, g)α̃.

– Phase 1 and Phase 2. In both phases, algorithm C has to output the private
keys for attribute sets A = {A1, ..., A|A|} issued by algorithm A.

Since A does not satisfy (M∗, ρ∗, {ρ(i)∗}), there exists a vector −→w =
(w1, ..., wn)⊥ ∈ Zn

p such that w1 = −1, (M∗
i ,

−→w) = 0 for all i ∈ I =
{i|i ∈ [l] ∧ ρ(i)∗ ∈ A}. Algorithm B computes −→w using linear algebra. In
addition, it randomly chooses r̃, r̃′ ∈ Zp, implicitly sets

r = r̃ + w1a
q + w2a

q−1 + ... + wnaq+1−n = r̃ +
∑

i∈[n]

wia
q+1−i,

r′ = r̃′ + w1a
q + w2a

q−1 + ... + wnaq+1−n = r̃ +
∑

i∈[n]

wia
q+1−i,

and computes

K1 = gαwd1d2r+d3d4r′

= (gaq+1
gα̃)(gar̃

∏

i∈[n]

gwia
q+2−i

)d1d2(gar̃′ ∏

i∈[n]

gwia
q+2−i

)d3d4 ,

K2 = gd1d2r+d3d4r′

= (gr̃
∏

i∈[n]

(gaq+1−i

)wi)d1d2(gr̃′ ∏

i∈[n]

(gaq+1−i

)wi)d3d4 .

Then it computes

v−r = v−r̃ ·
∏

i∈[n]

(gaq+1−i

)−ṽwi

·
∏

(i,j,j′)∈[n,l,n]
i�=j′

(
gaq+1+j′−i/bj

)−wiM
∗
j,j′

∏

j∈[l]
ρ(j)/∈A

g(
−→w ·M∗

j)a
q+1/bj ,

v−r′
= v−r̃′ ·

∏

i∈[n]

(gaq+1−i

)−ṽwi

·
∏

(i,j,j′)∈[n,l,n]
i�=j′

(
gaq+1+j′−i/bj

)−wiM
∗
j,j′

∏

j∈[l]
ρ(j)/∈A

g(
−→w ·M∗

j)a
q+1/bj ,

4 For notation simplicity, we use {ρ(i)∗} to replace {A∗
ρ(i)} in the rest of the proof.

CP-ABE with Partially Hidden Access Structures 31

where the last parts cannot be directly calculated, so it must be canceled by
the (uAih)ri , (uAih)r′

i parts.
Therefore, for all i ∈ [|A|], algorithm C randomly chooses r̃i ∈ Zp, and

implicitly sets

ri = r̃i + (r̃ ·
∑

i′∈[l]
ρ∗(i′)/∈A

bj

Ai − ρ∗(i′)
+

∑

j,i′∈[n,l]
ρ∗(i′)/∈A

wjbi′aq+1−j

Ai − ρ∗(i′)
),

r′
i = r̃′

i + (r̃′ ·
∑

i′∈[l]
ρ∗(i′)/∈A

bj

Ai − ρ∗(i′)
+

∑

j,i′∈[n,l]
ρ∗(i′)/∈A

wjbi′aq+1−j

Ai − ρ∗(i′)
).

and computes

gri = gr̃i ·
∏

i′∈[l]

ρ∗(i′)/∈A

(gbi′)
r̃

Ai−ρ∗(i) ·
∏

(k′,i′)∈[n,l]

ρ∗(i′)/∈A

(gbi′ aq+1−k′
)

w
k′

Ai−ρ∗(i′) ,

(uAih)ri = (uAih)r̃i · (
gri

gr̃i
)ũAi+h̃ ·

∏

(i′,j,j′)∈[l,l,n]
ρ∗(i)/∈A

(
gbi′ aj′

/bj
2) r̃(Ai−ρ∗(j))M∗

j,j′
Ai−ρ∗(i′)

·
∏

(k′,i′,j,j′)∈[n,l,l,n]

ρ∗(i′)/∈A,(j �=i′,k′ �=j′)

(
g

b
i′ aq+1+j′−k′

bj
2

)Ai−ρ∗(j)w
k′M∗

j,j′
Ai−ρ∗(i′)

·
∏

j∈[l]
ρ∗(j)/∈A

g

(−→w ·M∗
j)aq+1

bj ,

(uAih)r′
i = (uAih)r̃′

i · (
gr′

i

gr̃′
i

)ũAi+h̃ ·
∏

(i′,j,j′)∈[l,l,n]
ρ∗(i)/∈A

(
gbi′ aj′

/bj
2) r̃(Ai−ρ∗(j))M∗

j,j′
Ai−ρ∗(i′)

·
∏

(k′,i′,j,j′)∈[n,l,l,n]

ρ∗(i′)/∈A,(j �=i′,k′ �=j′)

(
g

b
i′ aq+1+j′−k′

bj
2

)Ai−ρ∗(j)w
k′M∗

j,j′
Ai−ρ∗(i′)

·
∏

j∈[l]
ρ∗(j)/∈A

g

(−→w ·M∗
j)aq+1

bj .

Therefore, algorithm C can output the private key KA = (K1, K2, {Ki,1,
Ki,2, Ki,3, Ki,4, Ki,5}i∈[1,k]) for an attribute set A as required.

– Challenge. Algorithm A sends algorithm C a message M∗. Algorithm C ran-
domly chooses γ ∈ Zp, computes

C∗ = (M∗||γ) ⊕ H(Z · ê(g, gs)α̃), D∗ = gs, E∗ = gM∗
hγ .

32 H. Cui et al.

Then it implicitly sets −→v = (s, sa + ỹ2, sa2 + ỹ3, ..., san−1 + ỹn), where ỹ2,
..., ỹn ∈ Zp, and

vi =
∑

j∈[n]

M
∗
i,jsa

j−1 +
n∑

j=2

M
∗
i,j ỹj =

∑

j∈[n]

M
∗
i,jsa

j−1 + ṽi

for each row i ∈ [l].

Additionally, it implicitly sets zi = −sbi, and computes

C∗
i = wvivzi = wṽi ·

∏

j∈[n]

gM
∗
i,jsaj · (gsbi)−ṽ ·

∏

(i′,j′)∈[l,n]

g
−M

∗
i′,j′ aj′

sbi

b
i′

= wṽi · (gsbi)ṽ ·
∏

(i′,j′)∈[l,n]
i′ �=i

(gsaj′
bi/bi′)−M

∗
i′,j′ ,

F ∗
i = (uρ∗(i)h)zi = (gsbi)−(ũρ∗(i)+h̃) ·

(∏

(i′,j′)∈[l,n]

g

(ρ∗(i)−ρ∗(i′))M∗
i′,j′ aj′

b
i′2

)−sbi

= (gsbi)−(ũρ∗(i)+h̃) ·
∏

(i′,j′)∈[l,n]
i′ �=i

(g
saj′

bi
b
i′2)−(ρ∗(i)−ρ∗(i′))M∗

i′,j′ ,

D∗
i,1 = g1

zi−si,1 = (g−sbi)d1 · g−d1si,1 , E∗
i,1 = g2

si,1 = gd2si,1 ,

D∗
i,2 = g3

zi−si,2 = (g−sbi)d3 · g−d3si,2 , E∗
i,2 = g4

si,2 = gd4si,2 ,

where si,1, si,2 ∈ Z∗
p . Therefore, algorithm C outputs the ciphertext CT∗ =

(
C∗, D∗, E∗, {(C∗

i , D∗
i,1, D∗

i,2, E∗
i,1, E∗

i,2, F ∗
i)}i∈[1,l]

)
as required.

– Guess. Algorithm A outputs a guess β′ for β to guess which game algorithm
C has been playing, and algorithm C forwards β′ as its own answer to the
(q − 1) assumption.

If Z = ê(g, g)sαaq+1

, then algorithm A’s view of this simulation is identical
to the original game, because C∗ = (M∗||γ)⊕H(Z · ê(g, gs)α̃) = (M∗||γ)⊕H(Z ·
ê(g, g)αs). On the other hand, if Z is a random term of G1, then all the informa-
tion about the message M∗ is hidden in the challenge ciphertext. Therefore the
advantage of algorithm A is 0. As a result, if algorithm A distinguishes game
Game0 from game Game1 with a non-negligible probability, then algorithm C
has a non-negligible advantage in breaking the (q − 1) assumption.

Lemma 2. Assuming that the decisional linear assumption holds in G, then
there is no adversary that distinguishes between the games Gamej+1 and Gamej

for j ∈ [1, l].

Proof. Assume that there exists an adversary algorithm A that can distinguish
Gamej from Gamej+1. Then we can build a challenger algorithm C that solves
the decisional linear assumption.

CP-ABE with Partially Hidden Access Structures 33

• Init. Algorithm A gives algorithm C a challenge access structure (M∗, ρ∗,
{ρ(i)∗}), where M

∗ is an l × n matrix.
• Setup. Algorithm C randomly chooses d3, d4, y, w̃, ṽ, α ∈ Zp, and computes

g3 = gd3 , g4 = gd4 . Then, it sets d1 = x2, d2 = x1, and outputs the public
parameter as pars = (H, g, u, h, w, g1, g2, g3, g4, ê(g, g)α) where H is hash
function that maps from G1 to {0, 1}t as follows.

g = g, w = gw̃, g1 = gx2 , g2 = gx1 , g3 = gx3 , g4 = gx4 ,

v = gṽ, u = gx2α, h = g−x2αA∗
l′ gy, ê(g, g)α = ê(g, g)α.

• Phase 1 and Phase 2. To answer an attribute-based private key query on a
set of attributes A = {A1, ..., Ak}, algorithm C randomly chooses r, r′, r1,
..., rk, r′

1, ..., r′
k ∈ Zp, implicitly sets

r̃ =
rα(Ai − A∗

l′)
α(Ai − A∗

l′)x2 + y
, r̃′ = r′ +

yx1r

d3d4(α(Ai − A∗
l′)x2 + y)

,

ri =
r̃i(α(Ai − A∗

l′)x2 + y) − ṽr̃

α(Ai − A∗
l′)

, r′
i = r̃′

i − yx1r̃i − x1r̃ṽ

d3d4(α(Ai − A∗
l′))

,

and computes

K1 = gαK2
w̃ = gαwd1d2r̃+d3d4r̃′

, K2 = (gx1)rgr′d3d4 = gd1d2r̃+d3d4r̃′
,

Ki,1 = (gx1)α(Ai−A∗
l′)ri = ((uAih)r̃iv−r̃)d2 ,

Ki,2 = (gx2)α(Ai−A∗
l′)ri = ((uAih)r̃iv−r̃)d1 ,

Ki,4 = g
yx1ri−x1rṽ

d3 (uAih)d4r′
i(v−r′

)d4 = ((uAih)r̃′
iv−r̃′

)d4 ,

Ki,5 = g
yx1ri−x1rṽ

d4 (uAih)d3r′
i(v−r′

)d3 = ((uAih)r̃′
iv−r̃′

)d3 ,

Ki,3 = (gx1)rigr′
id3d4 = gd1d2r̃i+d3d4r̃′

i .

• Challenge. Algorithm A sends algorithm C a message M∗. Algorithm C ran-
domly chooses a vector −→v = (μ, y2, ..., yn) ∈ Zn

p . Also, for i ∈ [1, l] and
i �= l, algorithm C randomly chooses γ, si,1, si,2, zi ∈ Zp, μ ∈ Zp. Algorithm
C implicitly sets zl = x3 + x4, sl,1 = x3, and computes

C∗ = H(ê(g, g)αμ) ⊕ (M∗||γ), D∗ = gμ, E∗ = gM∗
hγ ,

C∗
l = wvlZ ṽ = wvlvzl , D∗

l,1 = gx2x4 = g1
zl−sl,1 ,

D∗
l,2 = Zd3g−d3sl,2 = g3

zl−sl,2 , E∗
l,1 = gx1x3 = g2

sl,1 ,

E∗
l,2 = g4

sl,2 , F ∗
l = Zy = (uρ(l)h)−zl ,

∀i �= l ∈ [1, l] C∗
i = wvivzi , D∗

i,1 = g1
zi−si,1 , E∗

i,2 = g4
si,2 ,

E∗
i,1 = g2

si,1 , D∗
i,2 = g3

zi−si,2 , F ∗
i = (uρ(i)h)−zi ,

where vl = −→v · Ml, vi = −→v · Mi, sl,2 ∈ Zp. Therefore, algorithm C outputs
the ciphertext CT∗ =

(
C∗, D∗, E∗, {(C∗

i , D∗
i,1, D∗

i,2, E∗
i,1, E∗

i,2, F ∗
i)}i∈[1,l]

)

as required.

34 H. Cui et al.

• Guess. Algorithm A outputs a guess β′ for β.

On the one hand, if Z = gx3+x4 , then algorithm A’s view of this simulation is
identical to the original game. On the other hand, if Z is randomly chosen from
G, then algorithm A’s advantage is nil. Therefore, if algorithm A can distinguish
game Gamej from game Gamej+1 with a non-negligible probability, algorithm
B has a non-negligible probability in breaking the decisional linear assumption.

Lemma 3. Assuming that the decisional linear assumption holds in G, then the
advantage of an adversary that can distinguish between the games Gamej+l+1

and Gamej+l for j ∈ [1, l] is negligible.

Proof. This proof follows almost the same as that of Lemma 2, except that the
simulation is done over the parameters g3 and g4 instead of g1 and g2.

This completes the proof of Theorem 1.

4.4 Performance Evaluation and Implementation

Denote l by the number of attributes in an access structure, k by the size of
an attribute set possessed by each user, χ1 by the number of elements in IM,ρ

= {I1, ..., Iχ1}, χ2 by |I1| + ... + |Iχ1 |. Table 2 shows the sizes of the public
parameter, the master private key, the ciphertext, the attribute-based private key
(i.e., storage complexity) of our expressive CP-ABE scheme supporting partially
hidden access structures, where |A| is the size of the access structure. Note that
our scheme is measured in terms of the number of elements in the prime-order
groups. According to the analysis in [12], in terms of the pairing-friendly elliptic
curves, prime-order groups have a clear advantage in the parameter sizes over
composite-order groups. Table 3 gives the computational costs incurred by the
encryption and decryption algorithms in the scheme proposed in this paper. Since
regarding the same security level, composite-order groups are several orders of
magnitude slower than the prime-order groups [21], and the performance gap
will get worse with the increase of security level [9], it is not difficult to see that
our expressive CP-ABE scheme with partially hidden access structures in the
prime-order groups becomes very competitive.

Table 2. The storage overheads in our proposed scheme.

Public parameter Master private key Private key Ciphertext Group oder

11 5 5k + 3 6l + 3 + |A| prime

We implement the proposed CP-ABE scheme with partially hidden access
structures in Charm [1]5, which is a framework developed to facilitate rapid
5 For the explicit information on Charm, please refer to [1]. Note that since it has been

clearly shown in [12,21] that the efficiency of schemes in composite-order groups is
much worse than that of schemes in prime-order groups, we will not implement those
schemes in composite-order groups (e.g., [15]).

CP-ABE with Partially Hidden Access Structures 35

Table 3. The computational costs in our proposed scheme, “Expo” and “Multi” denote
the exponentiation and multiplication calculation, respectively.

Encrypt Decrypt

Multi Expo Pairing Multi Expo Pairing

2l + 1 8l + 4 0 ≤ 5χ2 + 2χ1 ≤ χ2 + 2χ1 ≤ 6χ2 + χ1

prototyping of cryptographic schemes and protocols. Since all Charm routines
are designed under the asymmetric groups, our construction is transformed into
the asymmetric setting before the implementation. That is, three groups G, Ĝ
and G1 are used and the pairing ê is a function from G × Ĝ to G1. Notice that
it has been stated in [21] that the assumptions and the security proofs in the
symmetric groups can be converted to the asymmetric setting in a generic way.
Our experiments are run on a desktop computer with Intel Core i5 − 3470T
CPU (4 core 3.20 GHz) and 4 GB RAM running Linux Kernel 3.13.0, which
is installed with Charm-0.43 and Python 3.4 for the implementation. Also, we
install the PBC library of version 0.5.14 and OpenSSL library of version 1.02 for
underlying cryptographic operations.

We simulate the algorithms of the proposed scheme over four elliptic curves:
SS512 (a symmetric curve with a 512-bit base field), MNT159 (an asymmetric
curve with a 159-bit base field), MNT201 (an asymmetric curve with a 201-bit

Fig. 1. Performance of our expressive CP-ABE scheme with partially hidden access
structures

36 H. Cui et al.

base field) and MNT224 (an asymmetric curve with a 224-bit base field), which
provide security levels of 80-bit, 80-bit, 100-bit and 112-bit, respectively.

In Fig. 1, the performance of the proposed CP-ABE scheme with partially
access structures is shown in terms of four algorithms: the setup algorithm
Setup (Fig. 1-(a)), the attribute-based private key generation algorithm KeyGen
(Fig. 1-(b)), the encryption algorithm Encrypt (Fig. 1-(c)) and the decryption
algorithm Decrypt (Fig. 1-(d)). It is not difficult to see from Fig. 1 that SS512
has the best performance, while MNT224 has the most expensive computational
cost among all four curves. For each curve, the computation time for the setup
algorithm is immutable with the maximum number of attributes allowed in the
system, the computation time for the key generation algorithm increases linearly
with the size of attribute set, whilst the computation time for the encryption and
decryption algorithms grows linearly with the complexity of the access policy.
In addition, in our experiments, the computation time of decrypting a cipher-
text ranges from 0.30 s to 0.80 s for a ciphertext with an access policy of 20
attributes and a private key with 20 attributes, and this result is acceptable to
most applications in practice.

5 Conclusions

A promising solution for preserving data privacy in cloud services is called
ciphertext-policy attribute-based encryption (CP-ABE) [22], where data own-
ers upload their data in encrypted forms to the cloud and share them with
users with the specified credentials or attributes. In a standard CP-ABE scheme,
every ciphertext is attached with an access structure in a cleartext which may
leak sensitive information about the recipients and the encrypted message. To
address this problem, the notion of CP-ABE with partially hidden access struc-
tures [14,15,18,19,24] was introduced such that the concrete attribute values
in access structures are hidden from the public view. Unfortunately, existing
CP-ABE schemes with partially hidden access structures [14,15,18,19,24] either
only support restricted access structures or are built in the inefficient composite-
order bilinear groups. Motivated by this observation, in this paper, we presented
a CP-ABE scheme with partially hidden access structures in the prime-order
groups, supporting access structures in monotonic boolean formulas expressed
as LSSSs. Also, we formally proved its security, and evaluated its efficiency.

Acknowledgments. This research work is supported by the Singapore National
Research Foundation under the NCR Award No. NRF2014NCR-NCR001-012.

References

1. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M.,
Rubin, A.D.: Charm: a framework for rapidly prototyping cryptosystems. J. Cryp-
tographic Eng. 3(2), 111–128 (2013)

2. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D. thesis,
Israel Institute of Technology, Israel Institute of Technology, June 1996

CP-ABE with Partially Hidden Access Structures 37

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (S&P 2007), 20–23,
Oakland, California, USA, pp. 321–334. IEEE Computer Society, May 2007

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

6. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

7. Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: Proceed-
ings of the ACM Conference on Computer and Communications Security, CCS ,
Alexandria, Virginia, USA, October 28–31, pp. 456–465. ACM (2007)

8. Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. J. Cryp-
tology 24(1), 203–244 (2011)

9. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

10. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
579–591. Springer, Heidelberg (2008)

11. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS, Alexandria, VA, USA,
October 30 - November 3, vol. 5126. LNCS, pp. 89–98. Springer (2006)

12. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R.
(eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013)

13. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. J. Cryptology 26(2), 191–224 (2013)

14. Lai, J., Deng, R.H., Li, Y.: Fully secure cipertext-policy hiding CP-ABE. In: Bao,
F., Weng, J. (eds.) ISPEC 2011. LNCS, vol. 6672, pp. 24–39. Springer, Heidelberg
(2011)

15. Lai, J., Deng, R.H., Li, Y.: Expressive CP-ABE with partially hidden access struc-
tures. In: 7th ACM Symposium on Information, Compuer and Communications
Security, ASIACCS 2012, pp. 18–19. ACM, Seoul, Korea, May 2–4 2012

16. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

17. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

18. Li, J., Ren, K., Zhu, B., Wan, Z.: Privacy-aware attribute-based encryption with
user accountability. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.)
ISC 2009. LNCS, vol. 5735, pp. 347–362. Springer, Heidelberg (2009)

19. Nishide, T., Yoneyama, K., Ohta, K.: Attribute-based encryption with partially
hidden encryptor-specified access structures. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 111–129.
Springer, Heidelberg (2008)

38 H. Cui et al.

20. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

21. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large
universe attribute-based encryption. In: ACM SIGSAC Conference on Computer
and Communications Security, CCS 2013, pp. 463–474. ACM, Berlin, Germany,
November 4–8 2013

22. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

23. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

24. Zhang, Y., Chen, X., Li, J., Wong, D.S., Li, H.: Anonymous attribute-based encryp-
tion supporting efficient decryption test. In: 8th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS 2013, pp. 511–516. ACM,
Hangzhou, China - May 08–10 2013

Ciphertext-Policy Attribute Based Encryption
Supporting Access Policy Update

Yinhao Jiang(B), Willy Susilo, Yi Mu, and Fuchun Guo

Centre for Computer and Information Security Research,
School of Computing and Information Technology,
University of Wollongong, Wollongong, Australia

{yj971,wsusilo,ymu,fuchun}@uow.edu.au

Abstract. Attribute-based encryption (ABE) allows one-to-many
encryption with static access control. In many occasions, the access con-
trol policy must be updated and the original encryptor might be required
to re-encrypt the message, which is impractical, since the encryptor might
be unavailable. Unfortunately, to date the work in ABE does not consider
this issue yet, and hence this hinders the adoption of ABE in practice.
In this work, we consider how to efficiently update access policies in
Ciphertext-policy Attribute-based Encryption (CP-ABE) systems with-
out re-encryption. We introduce a new notion of CP-ABE supporting
access policy update that captures the functionalities of attribute addi-
tion and revocation to access policies. We formalize the security require-
ments for this notion, and subsequently construct two provably secure
CP-ABE schemes supporting AND-gate access policy with constant-size
ciphertext for user decryption. The security of our schemes are proved
under the Augmented Multi-sequences of Exponents Decisional Diffie-
Hellman assumption.

Keywords: Attribute-based encryption · Access policy update ·
Ciphertext-policy

1 Introduction

Attribute-based encryption (ABE) enforces encrypted data to be decrypted
with a secure access control mechanism that the assigned attributes must sat-
isfy the access policies associated with ciphertext and private keys. ABE has
become a promising cryptographic primitive providing one-to-many encryption.
The notion of ABE was put forth by Sahai and Waters [22] with the original
notion called fuzzy IBE, and subsequently followed by many othere works. In the
notion of ABE, there are two variants, namely Ciphertext-policy Attribute-based
Encryption (CP-ABE) and Key-policy Attribute-based Encryption (KP-ABE),
depending on the location of the access policy. In the former, the access policy
is embedded in the ciphertext, whilst in the latter, the access policy is embed-
ded in the private keys. We note that KP-ABE is less flexible than CP-ABE
because in KP-ABE, once a users private key is issued the access policy is also
c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 39–60, 2016.
DOI: 10.1007/978-3-319-47422-9 3

40 Y. Jiang et al.

determined, which makes the encryption more difficult as the encryptor needs
to compare recipients access policies to all other users to choose a proper set
of attributes for the ciphertext. In a CP-ABE system, users’ keys are labelled
with sets of descriptive attributes and distributed from a trusted key generation
authority. Ciphertexts in the system are assigned specific access policies stating
what attributes are required for its decryption. In such a system, a ciphertext
can be decrypted by a user’s key only if the set of attributes associated with the
user’s key satisfies its access policy.

When using CP-ABE to distribute a message to a specific set of users, the
encryptor simply constructs an access policy such that the receivers can only
decrypt the ciphertext if they have the set of attributes that satisfy the access
policy. The encryptor can just merely encrypt the message with the access policy,
and then upload it to the storage server. The storage server does not need to be
trusted by receivers but it functions as a proxy, which performs the task that
is assigned a priori. Unfortunately, to date, there is no CP-ABE that supports
changes of access policies of ciphertexts. We note that this is a highly desirable
feature as situation can change from time to time, and without the ability to
update the access policy, CP-ABE cannot be adopted in practice. Hence, an
efficient update mechanism over access policies of ciphertexts must be enabled.

One may think that the above question can be solved trivially by requesting
encryptors to re-encrypt the messages when the access policies are updated.
Unfortunately, this approach is very impractical and unusable, since encryptors
may not even be available during the access policy update. Alternatively, the
Ciphertext-policy Attribute-based Proxy Re-encryption (CP-AB-PRE) system
may be employed for access policy update as showed in Fig. 1. The CP-AB-PRE
works as follows. When an access control authority has decided to update access
policies of certain range of ciphertexts, he uses his own private key to generate a
re-encryption key for each ciphertext from the old access policy to a new access
policy, and uploads all the re-encryption keys to a proxy to modify the ciphertext.
When the proxy receives the re-encryption key, it first checks if the attribute set
of the owner of the re-encryption key satisfies the access policy of the ciphertext
needed to be re-encrypted. If it does, then it proceeds with the re-encryption. We
note that much effort have been put into developing and enhancing Attribute-
based Proxy Re-encryption (AB-PRE) including CP-AB-PRE, and this solution
is powerful and strong. What AB-PRE provides is an efficient mechanism of
re-encryption, to wit to output the result of decrypting and encrypting to a
new access policy without actually decrypting the ciphertext or knowing the
plaintext, which can provide access policy update but with the restriction that
the re-encryptor needs to generate valid re-encryption keys. Nevertheless, when
the amount of involved ciphertexts rises, it becomes inefficient for the update
initiator to generate all re-encryption keys and the upload bandwidth may also be
limited, let alone it is unnecessarily that the initiator’s private key should be able
to decrypt all involved ciphertexts which then require some other users whose
private key can decrypt to help re-encrypting. It can be seen that to update

Ciphertext-Policy Attribute Based Encryption Supporting Access 41

Fig. 1. An example of user updating access policies of ciphertexts employing PRE

access policies for a large amount of ciphertexts will exceeds the capability of
AB-PRE who specializes in re-encryption.

1.1 Our Contribution

In this work, we aim to equip the notion of Attribute-based Encryption (ABE)
with access policy update. We present the notion of Ciphertext-policy Attribute
Based Encryption supporting Access Policy Update (CP-ABE-APU). In our
setting, the encryptor will produce encrypted data together with components
used for access policy update and send them to a third party, which provides
distributed storage servers and functions as access policy update proxy. This
third party does not need to be trusted; it will store encrypted data for users
accessing and execute access policy update algorithm as requested, which does
not give it the ability of decrypting any ciphertexts. We present a new security
model to capture these requirements, together with two constructions support-
ing AND-gate access policy provably secure under augmented assumptions. In
our CP-ABE-APU constructions, the ciphertext consists of 3 group elements
and the components used for access policy update consist of n − s − 1 and
t group elements for attribute addition and revocation, respectively, where in
the construction for attribute addition the AND-gate access policy consists of s
attributes in a ciphertext and there are n attributes in total, and in the construc-
tion for attribute revocation the maximum revocation number for a ciphertext
is t (Table 1). The components for access policy update will only be stored in
storage servers, which makes the ciphertext sent to users for decryption of con-
stant size of 3. We also present the proofs of security of our constructions as well
as proofs of intractability of augmented assumptions.

1.2 Related Work

After the notion of Attribute-based Encryption (ABE) was introduced by Sahai
and Waters [22], Goyal et al. [9] proposed the first KP-ABE system, in which

42 Y. Jiang et al.

Table 1. Comparison between two constructions supporting access policy update

Scheme Update
operation

Attr.
universe

Attr. in
policy/Max.
revocation

Ciphertext for
user

Ciphertext for
server

Con. 1 Addition n s 3 n− s+ 2

Con. 2 Revocation n t 3 t+ 3

ciphertexts are associated with attributes, and secret keys are associated with
access policies. Later, Bethencourt, Sahai and Waters [2] defined a complemen-
tary notion indicated in [22], i.e. CP-ABE, but it is proven to be secure in generic
group models. Cheung and Newport [6] presented the first CP-ABE construction
whose security proof was given in the standard model, which allows the access
policies to be a single AND-gate of attributes with values of positive, negative
and wildcards. Goyal et al. [8] constructed a CP-ABE scheme but with large
key size. Waters [25] designed efficient and expressive CP-ABE systems sup-
porting any monotonic access structure. Attrapadung et al. [1] proposed an effi-
cient CP-ABE for threshold access policy with constant-size ciphertexts, which
adopted an algorithm Aggregate from [7] for their decryption algorithm. Later
on, Waters [26] proposed the first deterministic finite automata-based functional
encryption system in which access policy can be expressed by arbitrary-size reg-
ular language. Note that there are also some variants of traditional ABE in the
literature, such as [13,20,21,27].

The above schemes are only selectively secure except for [2] being proven in
the generic group model. Lewko et al. [11] introduced the dual system encryption
technology into the ABE cryptographic setting to convert one of the CP-ABE
systems proposed in [25] to achieve fully security with some loss of expressive-
ness. Later, Lewko and Waters [12] introduced a new method to capture full
security without jeopardizing the expressiveness by employing the selective proof
technique into the dual system encryption technology.

The proxy re-encryption scheme was first formalized by Blaze, Bleumer, and
Strauss [3]. With the concept of ABE and PRE combined, Liang et al. [17]
proposed the first CP-AB-PRE scheme based on the CP-ABE scheme [21] sup-
porting non-monotonic access structures. Then Luo et al. [18] proposed another
CP-AB-PRE scheme with multi-value positive attributes. Aside from this, Seo
et al. [23] proposed a CP-AB-PRE scheme which has constant paring operation
latency. Liang et al. constructed CP-AB-PRE schemes [14–16] proven secure in
CCA security model.

Recently, Susilo et al. [24] introduced a new notion of recipient-revocable
identity-based broadcast encryption scheme. In their scheme, the encryptor pro-
duces and sends ciphertexts to a proxy for broadcasting, which will also be able
to revoke some identities from the original set of recipients without the knowl-
edge the plaintext.

Ciphertext-Policy Attribute Based Encryption Supporting Access 43

1.3 Roadmap

The rest of this paper is organized as follows. In Sect. 2, we present some def-
initions and background that will be used throughout this paper. In Sect. 3,
we briefly review bilinear groups and complexity assumption that are used in
this paper. We present our CP-ABE scheme that supports attribute addition
in Sect. 4, together with its security analysis. Sect. 5 deals with CP-ABE that
supports attribute revocation, as well as its security analysis. We presented the
analysis of the intractability of the hard problem that is used to analyze our
schemes in Sect. 6. The analysis is done in the generic group model. Finally, we
conclude the work in Sect. 7.

2 Definitions

We first give formal definitions for the security of Ciphertext-policy Attribute
Based Encryption supporting Access Policy Update. Then we give background
information on pairings and complexity assumptions.

2.1 Access Structure [6]

Generally speaking, an access structure on attributes is a rule A that returns
either 0 or 1 given an attribute set W . We say that W satisfies A iff A answers
1 on W . Access structures may be Boolean expressions, threshold trees, etc.

In this paper, we focus on access structures that consist of a single AND
gate whose inputs are attributes. This is denoted A =

∧
at∈S at, where S is a

subset of the attribute universe P and every at is an attribute in P. Given an
attribute set W , A answers 1 iff for all at ∈ S, at ∈ W . Thus, W satisfies A

iff S ⊆ W . Since AND-gates are sufficient in many application scenarios, our
approach retains significant potential.

2.2 CP-ABE Supporting Access Policy Update Definition

A ciphertext-policy attribute-based encryption system supporting attribute
addition consists of five algorithms: Setup, Encrypt, KeyGen, Update and
Decrypt.

Setup(1λ,P). The setup algorithm takes input the attribute universe P as well
as the implicit security parameter. It outputs the public parameters params
and a master secret key msk.

Enc(params, M , A). The encryption algorithm takes in the public parameters
params, the message M , and an access structure A over the universe of
attributes. It will output a ciphertext CT such that only users whose pri-
vate keys associated with attribute sets which satisfy the access structure A

can decrypt M . We assume that the ciphertext implicitly contains A.

44 Y. Jiang et al.

KeyGen(msk, W). The key generation algorithm takes as input the master secret
msk and a set of attributes W . It outputs a private key sk associated with W .

Update(params, CT , opt, U). The addition algorithm takes as input the public
parameters params, a ciphertext CT for an access policy A =

∧
at∈S at, an

operation indicator opt = Add or Revoke and a set of attributes U with
U ∩ S = ∅ if opt = Add or U ⊂ S if opt = Revoke. It outputs a new ciphertext
CT ′ for the new access policy A

′ =
∧

at∈S∪U or
∧

at∈S\U according to opt.
Dec(params, CT , sk). The decryption algorithm takes as input the public para-

meters PK, a ciphertext CT for an access structure A, and a private key sk
associated with a set of attributes W . If the attribute set W satisfies the
access structure A then the algorithm will decrypt the ciphertext and return
a message M .

Selective CPA Security Model for CP-ABE Supporting Access Pol-
icy Update. We now give the security definition for CP-ABE system – Indis-
tinguishability under selective chosen plaintext attacks (IND-sCPA security, for
short). This is described by a security game between a challenger and an adver-
sary for a security parameter λ ∈ N. The game proceeds as follows:

Init. The challenger defines an attribute universe P of size n and gives it to the
adversary A. A chooses a challenge access structure A

∗ of one attribute set
S ⊂ P with s = |S|, and gives it to the challenger.

Setup. The challenger runs the Setup algorithm and gives the public parameters
params to the adversary.

Phase 1. The adversary queries the challenger for private keys corresponding
to sets of attributes W1, . . . , Wq1 with the restriction that none of these
satisfies the access policy A

∗.
Challenge. The adversary declares two equal length messages M0 and M1

as well as a attribute set U∗ with t = |U∗| and U∗ ⊂ S or U∗ ∩ S = ∅
according to “opt” = Add or “opt” = Revoke respectively. The challenger
flips a random coin β ∈ {0, 1}, and encrypts Mβ with A

′ =
∧

at∈S\U∗ at

for “opt” = Add or A
′ =

∧
at∈S∪U∗ at for “opt” = Revoke, producing

CT ∗ = Enc(params,A∗,Mβ). It gives CT ∗ to the adversary if U∗ = ∅, other-
wise CT ′ = Update(params, CT ∗, opt,U∗).

Phase 2. The adversary queries the challenger for private keys corresponding
to sets of attributes Wq1+1, . . . , Wq with the same restriction that none of
these satisfies the access policy A

∗.
Guess. The adversary outputs a guess β′ for β.

The advantage of an adversary in winning this game is defined to be

AdvIND-sCPA
A,CP-ABE-AA = |Pr[β′ = β] − 1

2
|.

Definition 1. A ciphertext-policy attribute-based encryption system supporting
access policy update is selective chosen-plaintext attack secure if all polynomial
time adversaries have at most a negligible advantage in this security game.

Ciphertext-Policy Attribute Based Encryption Supporting Access 45

It is worth noticing that our newly defined security model has two different
types of attackers considered.

1. When U∗ = ∅, the challenge ciphertext CT ∗ is the direct result of encryption
algorithm without any involvement of access policy update algorithm. It can
be seen that this is essentially the property of IND-sCPA security for CP-ABE
schemes that an adversary who does not hold a private key associated with
a set of attributes satisfying the challenge access policy cannot distinguish
which submitted message was encrypted as the challenge ciphertext.

2. When U∗ �= ∅, the challenge ciphertext CT ′ is the result of updating U∗ from
A

′ of the ciphertext of encrypted Mβ . It can be seen that in this situation it
prevents the type of attackers who obtain private keys associated with any
attributes satisfying access policy before update from learning anything about
the plaintext.

3 Pairings and Complexity Assumption

Our construction will make use of groups with bilinear maps [5], and two new
computational assumptions, that fit into the General Diffie-Hellman Exponent
framework proposed by Boneh, Boyen and Goh [4].

3.1 Bilinear Maps

Let G1, G2 and GT be three cyclic groups of prime order p. A bilinear map e(·, ·)
is a map G1 × G2 → GT such that for any generators g1 ∈ G1, g2 ∈ G2 and
a, b ∈ Zp, the following three conditions hold:

1. Bilinearity. e(ga
1 , gb

2) = e(g1, g2)ab.
2. Non-degeneracy. e(g1, g2) �= 1.
3. Computability. There exists efficient algorithms to compute all group opera-

tions as well as the bilinear map e(·, ·).
A bilinear map group system is a tuple S = (p,G1,G2,GT , e(·, ·)), composed of
objects as described above.

In our construction, an arbitrary bilinear map group system is adopted, with-
out any specific additional property. In particular, it does not require G1 and
G2 to be distinct or equal. Neither does it need an efficient isomorphism from
G1 to G2, and vice versa.

3.2 Complexity Assumption

The security of our schemes are reduced to the hardness of a problem, which we
called the augmented multi-sequence of exponents decisional Diffie-Hellman prob-
lem. The problems are modified from the (l,m, t)-aMSE-DDH problem defined
in [10], of which the generic complexity is covered by the general Diffie-Hellman

46 Y. Jiang et al.

exponent theorem due to Boneh, Boyen and Goh [4], as the problem lies in the
scope of their framework.

First we introduce the assumption which our CP-ABE-AA scheme is reduced
to. Let S = (p,G1,G2,GT , e(·, ·)) be a bilinear map group system. Let g0 be a
generator of G1 and h0 be a generator of G2. Let n, s be two integers. The first
(n, s)-augmented multi-sequence of exponents decisional Diffie-Hellman ((n, s)-
aMSE-DDHA) problem related to S is as follows:

Input. The vector −→x n = (x1, . . . , xn) defines the coprime polynomials, of which
the components are pairwise distinct elements of Zp,

f(X) =
n−s∏

i=1

(X + xi), g(X) =
n∏

i=n−s+1

(X + xi),

the values
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0, g
γ
0 , . . . , gγn−2

0 , g
κ·γ·f(γ)
0 , (1.1)

gα
0 , gα·γ

0 , . . . , gα·γn−s+1

0 , (1.2)
gω·γ
0 , . . . , gω·γn−1

0 , (1.3)
h0, h

γ
0 , . . . , hγs−2

0 , (1.4)
h

κ·g(γ)
0 , h

κ·γ·g(γ)
0 , . . . , h

κ·γn−s·g(γ)
0 , (1.5)

hα
0 , hα·γ

0 , . . . , hα·γn

0 , (1.6)
hω
0 , hω·γ

0 , . . . , hω·γs−1

0 , (1.7)

where κ, ω, α, γ are unknown random elements of Zp, element Tb =
e(g0, h0)κ·f(γ) ∈ GT and a random group element T1−b ∈ GT while b is a
fair coin.

Output. a bit b′. The problem is correctly solved if the output is b′ = b.

The following statement is a corollary of Theorem A.2 in [4]. It provides an
intractability bound in the generic model, but in groups equipped with pairings.
We emphasize on the fact that, whereas the assumption has several parameters,
it is non-interactive, and thus easily falsifiable [19].

Corollary 1 (Generic Security). For any probabilistic algorithm B that
makes at most qG queries to the oracles performing group operations in
G1,G2,GT and the bilinear map e(·, ·), its advantage in solving (n, s)-aMSE-
DDHA problem is bounded as

Adv
(n,s)-aMSE-DDHA

B (λ) ≤ (qG + 5n + 3)2 · d

2p

where d = 2n.

Second, we introduce the assumption for our CP-ABE-AR scheme. Let S =
(p, G1, G2, GT , e(·, ·)) be a bilinear map group system. Let g0 be a generator
of G1 and h0 be a generator of G2. Let n, s be two integers. The second (n, s)-
augmented multi-sequence of exponents decisional Diffie-Hellman ((n, s)-aMSE-
DDHB) problem related to S is as follows:

Ciphertext-Policy Attribute Based Encryption Supporting Access 47

Input. The vector −→x n = (x1, . . . , xn) defines the coprime polynomials, of which
the components are pairwise distinct elements of Zp,

f(X) =
n−s∏

i=1

(X + xi), g(X) =
n∏

i=n−s+1

(X + xi),

the values
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0, g
γ
0 , . . . , gγn−2

0 , g
κ·γ·f(γ)
0 , (2.1)

gα
0 , gα·γ

0 , . . . , gα·γ2n−s

0 , (2.2)
gω·γ
0 , . . . , gω·γn−1

0 , (2.3)
h0, h

γ
0 , . . . , hγs−2

0 , (2.4)
h

κ·g(γ)
0 , (2.5)

hα
0 , hα·γ

0 , . . . , hα·γn

0 , (2.6)
hω
0 , hω·γ

0 , . . . , hω·γs−1

0 , (2.7)

where κ, ω, α, γ are unknown random elements of Zp, element Tb =
e(g0, h0)κ·f(γ) ∈ GT and a random group element T1−b ∈ GT while b is a
fair coin.

Output. a bit b′. The problem is correctly solved if the output is b′ = b.

Corollary 2 (Generic Security). For any probabilistic algorithm B that
makes at most qG queries to the oracles performing group operations in
G1,G2,GT and the bilinear map e(·, ·), its advantage in solving (n, s)-aMSE-
DDHB problem is bounded as

Adv
(n,s)-aMSE-DDHB

B (λ) ≤ (qG + 5n + s + 4)2 · d

2p

where d = 2(2n − s).

4 CP-ABE Supporting Attribute Addition Construction

In this section, we shall present our ciphertext-policy attribute-based encryption
scheme that supports access policy update with operation indicator opt = Add.

Before presenting the description of our scheme, we introduce the adopted
algorithm Aggregate of [7] for the decryption process. This algorithm is given for
group elements in GT [7], but it can be seen that it works in any group of prime
order.

Aggregate({g
r

γ+xi , xi}1≤i≤n). The algorithm takes in values {g
r

γ+xi , xi}1≤i≤n,
where g

r
γ+xi ∈ G1, r, γ ∈ Zp are unknown and xi’s are pairwise distinct. It

outputs the value Aggregate({g
r

γ+xi , xi}1≤i≤n) = g
r∏n

i=1(γ+xi) ∈ G1.

48 Y. Jiang et al.

4.1 Description

Setup(1λ,P). The PKG chooses a suitable encoding τ sending each attribute in
P onto (different) elements τ(at) = δ ∈ Zp. It also chooses a bilinear group
system S = (p,G1,G2,GT , e(·, ·)). It picks at random two generators g of G1

and h of G2. Then, the PKG picks at random α, γ ∈ Zp and sets u = gαγ ,
and v = e(gα, h).
The master secret key is then msk = (g, α, γ) and the public parameters are

params =
(
P, n, u, v, h, {hαγi}i=0,...,n, τ

)
.

KeyGen(params,W,msk). Given any subset W ⊂ P of attributes, the PKG picks
r ∈ Zp at random, computes skW =

(
{g

r
γ+τ(ati) }ati∈W , h

r−1
γ

)
.

Enc(params,M,A). Given an AND-gate access structure of a set of attributes
S ⊂ P with s = |S|, and a message M ∈ GT , the sender picks at random
κ ∈ Zp and computes

⎧
⎨

⎩

E0 = hκ·α·∏at∈S(γ+τ(at)), E1 = Eγ
0 , . . . , En−s = Eγ

n−s−1

C1 = u−κ,
CM = vκ · M

The ciphertext sent from its encryptor to the storage server is then CTserver =
(E0, . . . , En−s, C1, CM) while the part of CT = (E0, C1, CM) will be accessed
by users for decryption.

Update(params, CT, “add”,U). Given a ciphertext CT with an AND-gate access
structure of attribute set S and a set of attributes U = {at′1, . . . , at′t} with
t = |U| and U ∩S = ∅, the proxy adds attributes in U to the AND-gate access
structure of the ciphtertext CT as follows.

Let F (x) be the polynomial in x as F (x) =
∏

at′∈U (x + τ(at′)) = ftx
t +

ft−1x
t−1 + · · · + f0.

Compute E′
0 = E

F (γ)
0 =

∏t
i=0 Efi

i . Then new ciphertext is then CT ′ = (E′
0,

C1, CM) with its AND-gate access structure A
′ of attribute set S ∪ U .

Dec(params, CT, skW). Any user with a set of attributes W such that W |= A

can use the private key to decrypt the ciphertext.

First, the user computes e(g, h)κ·α·r as follows. The user computes

Aggregate({g
r

γ+τ(ati) , τ(ati)}ati∈S) = g
r∏

ati∈S1
γ+τ(ati) .

With the output the user then computes e(g, h)κ·α·r = e(g
r∏

ati∈S1
γ+τ(ati) , E0).

After that, the user computes e(g, h)κ·α = e(C1, h
r−1

γ) · e(g, h)κ·α·r. Finally,
the user recovers the message M = CM

e(g,h)κ·α .

Ciphertext-Policy Attribute Based Encryption Supporting Access 49

4.2 Security Analysis

In this section, we are going to prove that our CP-ABE-AA scheme is secure
against selective chosen-ciphertext attack, assuming that the (n, s)-aMSE-DDHA

problem is hard to solve.

Theorem 1. Let λ be an integer. For any adversary A against the IND-sCPA
security of our CP-ABE-AA encryption scheme SAA, for an attribute universe
P of size n, and a challenge setS with s = |S|, there exists an algorithm B of
the (n, s)-aMSE-DDHA problem, such that

Adv
(n,s)-aMSE-DDHA

B (λ) ≥ AdvIND-sCPA
A,SAA

(λ).

Proof. We now give the details of the simulation. From now on, we will denote
by WS the subset W ∩ S.

Init. B defines an attribute universe P = {at1, . . . , atn} of cardinal n. A gives B
the challenge access structure A

∗ defined by an AND-gate policy
∧

at∈S at where
S ⊂ P of respective cardinal s. Here we assume S = {atn−s+1, . . . , atn}.

Setup. The algorithm B defines g := g
f(γ)
0 , h := h0. B then can compute

– the value u = gαγ = g
αγ·f(γ)
0 with line (1.2) of its input values, since the

exponent α · γ · f(γ) is a linear combination of {α, α · γ, . . . , α · γn−s+1} and
B knows the coefficients of the exponent polynomial.

– the value v = e(g, h)α = e(gα·f(γ)
0 , h0) with line (1.2) and line (1.4).

– elements in {hαγi

= hα·γi

0 }i=0,...,n with line (1.6).
– The encoding τ is defined as τ(ati) = xi for i = 1, . . . , n. It can be seen that

the encodings of the first n−s elements are the opposite of the roots of f(X),
the encodings of the attributes in S are the opposite of roots of g(X).

Finally, B sends to A the simulated public parameters:(
u, v, h, {hαγi}i=0,...,n, τ

)
.

Phase 1. The adversary A makes private key queries. To respond to a query on
attribute set W ⊂ P, where W �|= A

∗, the algorithm B must produce a tuple of
the form

(
{g

r
γ+τ(at) }at∈W , h

r−1
γ

)
.

Observe that since W �|= A
∗ all allowed queries must satisfy |WS | < s. B

defines the polynomial QWS
(X) =

{
1 |WS | = 0
λi · ∏

at∈WS
(X + τ(at)) |WS | > 0

, where

λ =
(∏

A∈ωS
τ(at)

)−1, and simulates a private key for W as follows:
B picks at random yW in Zp, and defines r := (1 + ωyW γ)QWS

(γ). B then
computes the elements for skW :

– For any attribute at ∈ W , g
r

γ+τ(at) = g
ωγyW · f(γ)QWS

(γ)

γ+τ(at)
0 · g

f(γ)QWS
(γ)

γ+τ(at)
0 . Since an

attribute at ∈ W can be in WS or P \ S, (γ + τ(at))|f(γ)QWS
(γ). The first

50 Y. Jiang et al.

factor can be computed with line (1.3) as its exponent is a polynomial in γ of
degree at most n − 1, and the second factor can be computed with line (1.1)
as its exponent is a polynomial in γ of degree at most n − 2.

– The value h
r−1

γ = h
ωyW QWS

(γ)

0 · h
QWS

(γ)−1

γ

0 , where the first factor can be
computed from line (1.7) and the second factor can be computed from line
(1.4), since QWS

(γ) is a polynomial with independent term 1 by its definition,
thus QWS

(γ)−1

γ is a linear combination of {1, γ, . . . , γs−2}.

Challenge. Once A sends to B the two messages M0 and M1 as well as an
update attribute set U∗, B flips a coin β ∈ {0, 1}, and sets C∗

M = T0 · Mβ . To
simulate the rest of the challenge ciphertext, B implicitly defines the randomness
for the encryption as κ∗ = κ/α, and sets E∗

0 = hκ∗α·g(γ) = h
κ·g(γ)
0 which is given

in line (1.5) as well as E∗
1 , . . . , E∗

n−s. To complete the ciphertext, B computes
C∗

1 = u−κ∗
= g

−κγf(γ)
0 from line (1.1). B gives A the challenge ciphertext CT ∗ =

(E∗
0 , E∗

1 , . . . , E∗
n−s, C

∗
1 , C∗

M).

Phase 2. After the challenge step A may make other key extraction queries,
which are answered as before.

Guess. A outputs a β′. If β′ = β, B outputs 0; otherwise B outputs 1.

Probability Analysis
Let I = (−→x n, γ, κ, ω, α, Tb, T1−b) be the input of the algorithm B and the adver-
sary A break our CP-ABE scheme with advantage AdvIND-sCPA

A,SAA
(λ). Below we

analyse the simulation in two cases.
Case 1 (U∗ = ∅). Let κ = κ∗ · α. One can verify that in this case, E∗

0 =
h

κ·g(γ)
0 = hκ∗·α·∏at∈S(γ+τ(at)) and C∗

1 = g
−κ·γ·f(γ)
0 = g

−κ∗·α·γ·f(γ)
0 = u−κ∗

. As for
the C∗

M , we also note that if b = 0, T0 = e(g0, h0)κf(γ), then C∗
M = e(g0, h0)κf(γ) ·

Mβ = e(gα, h)κ∗ · Mβ = vκ∗ · Mβ . Therefore, the simulation of B is perfect, and
the adversary A will guess the bit β with its advantage. Hence, if b = 0 we have

|Pr[B(I) = 0|b = 0] − 1
2
| = AdvIND-sCPA

A (λ).

Else, if b = 1 and T0 is uniformly random in GT , C∗
M is uniformly random and

independent in GT , and the value of β is independent from A’s view as well,

Pr[B(I) = 0|b = 1] =
1
2
.

Thus, we have the advantage of B in solving the (n, s)-aMSE-DDHB problem in
Case 1 is

Adv
(n,s)−aMSEB-DDH
B (λ) = |Pr[B(I) = 0|b = 0] − Pr[B(I) = 0|b = 1]|

≥ AdvIND-sCPAwAR
A (λ).

Case 2 (U∗ = {at′1, at′2, . . . , at′t} �= ∅). In this case, we first show that how a
challenge ciphertext should be produced in a real game. Formally, the correct
procedures are as follows.

Ciphertext-Policy Attribute Based Encryption Supporting Access 51

Let S′ = S \ U∗. The encryption algorithm Enc(params,A′ =
∧

at∈S′ at,Mβ)
is run to get CT ∗. More precisely, it picks a randomness κ′ ∈ Zp and computes,

CT ∗ = (E∗
0 , E∗

1 , · · · , E∗
n−s+t, C

∗
1 , C∗

M)

= (hκ′·α·∏
at∈S′ (γ+τ(at))

, . . . , h
κ′·α·γn−s+t·∏

at∈S′ (γ+τ(at))
, u−κ′

, vκ′ · M).

The Addition algorithm Add(params, CT ∗,U∗) is run to add the attribute set
U∗ to the access policy of the ciphertext CT ∗. It processes as follows.

Let F ∗(x) be the polynomial in x as F ∗(x) =
∏

at′∈U∗(x + τ(at′)) = f∗
t xt +

f∗
t−1x

t−1 + · · · + f∗
0 .

Compute E′
0
∗ = (E∗

0)F ∗(γ) =
∏t

i=0(E
∗
i)f∗

i .
Finally, the challenge ciphertext in a real game is produced CT ′ =

(E′
0
∗
, C∗

1 , C∗
M).

Now we assume that the randomness κ′ used in producing CT ∗ is defined as
κ′ · α = κ. The challenge ciphertext CT ′ turns out to be as follows,

C∗
M = Mβ · vκ′

= Mβ · v
κ
α ,

E′
0
∗ = hκ′·α·∏at∈S(γ+τ(at)) = hκ·∏at∈S(γ+τ(at)) = h

κ·g(γ)
0 ,

C∗
1 = u−κ′

= g
κ·γ·f(γ)
0 .

It can be seen that if b = 0, T0 = e(g0, h0)κ·f(γ), the challenge ciphertext
in a real game is exactly the same as the simulated challenge ciphertext. The
simulated game would be a perfect simulation if it can be proved that the setting
of κ′ is indistinguishable from a real random value from the view of A. It will
suffice as κ is random to A. Thus, if b = 0 we have

|Pr[B(I) = 0|b = 0] − 1
2
| = AdvIND-sCPA

A,SAA
(λ).

On the other hand, if b = 1 and T0 is a random element from GT , C∗
M is

random and independent from the view of A,

|Pr[B(I) = 0|b = 1] =
1
2
.

Thus, we have the advantage of B in solving the (n, s)-aMSE-DDHB problem in
Case 2 is

Adv
(n,s)−aMSEB-DDH
B (λ) = |Pr[B(I) = 0|b = 0] − Pr[B(I) = 0|b = 1]|

≥ AdvIND-sCPAwAR
A,SAA

(λ).

This completes the proof. �

5 CP-ABE Supporting Attribute Revocation
Construction

In this section, we shall present our ciphertext-policy attribute-based encryp-
tion scheme that supports access policy update with operation indicator opt =
Revoke.

52 Y. Jiang et al.

5.1 Description

Setup(1λ,P). The PKG selects a suitable encoding τ sending each attribute in P
onto different elements τ(at) = δ ∈ Zp. It also chooses a bilinear group system
S = (p,G1,G2,GT , e(·, ·)). It picks at random two generators g of G1 and h

of G2. Then, the PKG picks at random α, γ ∈ Zp and sets {ui = gαγi}i=1...n,
and v = e(gα, h).

The master secret key is then msk = (g, α, γ) and the public parameters are

params =
(
P, n, {ui}i=1,...,n, v, h, {hαγi}i=0,...,n, τ}

)
.

KeyGen(params,W,msk). Given any subset W ⊂ P of attributes, the PKG picks
r ∈ Zp at random, computes skW =

(
{g

r
γ+τ(ati) }ati∈W , h

r−1
γ

)
.

Enc(params,M,A, l). Given an AND-gate access structure of a set of attributes
S ⊂ P with s = |S|, a message M ∈ GT and an extra input which is a
maximum revocation number l ≤ s, the sender picks at random κ ∈ Zp and
computes

⎧
⎨

⎩

E0 = hκ·α·∏at∈S(γ+τ(at))

C1 = u−κ
1 , . . . , Cl+1 = u−κ

l+1,
CM = vκ · M

The ciphertext sent from its encryptor to the storage server is then CTserver =
(E0, C1, . . . , Ct+1, CM) while the part of CT = (E0, C1, CM) will be access
by users for decryption.

Update(params, CT, “revoke′′,U). Given a ciphertext CT = (E0, C1, . . . , Ct+1,
CM) for an AND-gate access structure A = ∧at∈Sat, a revocation attribute
set U = {at′1, . . . , at′t} ⊆ S with t ≤ l and the public parameters params, the
revocation update algorithm works as follows.

Let F (x) be the polynomial in x as

F (x) =
1

∏
at′∈U τ(at′)

∏

at′∈U
(x + τ(at′)) = ftx

t + ft−1x
t−1 + · · · + f0.

Compute

– C ′
M = CM · e(

∏t
i=1 C−fi

i , h) = M · e(gκ·α·∑t
i=0 fiγ

i

, h) = M · vκ·F (γ),

– E′
0 = E

1∏

at′∈U τ(at′)
0 = h

κ·α·∏at∈S\U (γ+τ(at))·F (γ),
– C ′

1 =
∏t+1

i=1 C
fi−1
i = g−κ·α·γ·F (γ) = u

−κ·F (γ)
1 .

The new ciphertext is then CT = (E′
0, C

′
1, C

′
M) with new randomness κ · F (γ).

Dec(params, CT, skW). Any user with a set of attributes W such that W |= A

can use the private key to decrypt the ciphertext.

Ciphertext-Policy Attribute Based Encryption Supporting Access 53

First, the user computes e(g, h)κ·α·r as follows. The user computes

Aggregate({g
r

γ+τ(ati) , τ(ati)}ati∈S1) = g
r∏

ati∈S1
γ+τ(ati) .

With the output the user computes e(g, h)κ·α·r = e(g
r∏

ati∈S1
γ+τ(ati) , E0). After

that, the user computes e(g, h)κ·α = e(C1, h
r−1

γ)·e(g, h)κ·α·r. Finally, the user
recovers the message M = CM

e(g,h)κ·α .

5.2 Security Analysis

In this section, we prove that our scheme is secure against selective chosen-
ciphertext attack, assuming that the (n, s)-aMSE-DDHB problem is hard to solve.

Theorem 2. Let λ be an integer. For any adversary A against the IND-sCPA
security of our CP-ABE-AR encryption scheme SAR, for an attribute universe
P of size n, and a challenge setS with s = |S|, there exists an algorithm B of
the (n, s)-aMSE-DDHB problem, such that

Adv
(n,s)-aMSE-DDHB

B (λ) ≥ AdvIND-sCPA
A,SAR

(λ).

We now give the details of the simulation.

Init. B defines an attribute universe P = {at1, . . . , atn} of cardinal n. A gives B
the challenge access structure A

∗ defined by an AND-gate policy
∧

at∈S at where
S ⊂ P of respective cardinal s. Here we assume S = {atn−s+1, . . . , atn}.

Setup. The algorithm B defines g := g
f(γ)
0 , h := h0. B then can compute

– the values ui = gαγi

= g
αγi·f(γ)
0 with line (2.2) of its input values, since the

exponent α ·γi ·f(γ) is a linear combination of {g2(γ) ·α, . . . , g2(γ) ·α ·γ2n−s}
and B knows the coefficients of the exponent polynomial.

– the value v = e(g, h)α = e(gα·f(γ)
0 , h0) with line (2.2) for g

α·f(γ)
0 and line (2.4)

for h0.
– elements in {hαγi

= hα·γi

0 }i=0,...,n with line (2.6).
– The encoding τ is defined as τ(ati) = xi for i = 1, . . . , n. It can be seen that

the encodings of the first n−s elements are the opposite of the roots of f(X),
the encodings of the attributes in S are the opposite of roots of g(X).

Finally, B sends to A the simulated public parameters:(
u, v, h, {hαγi}i=0,...,n, τ

)
.

Phase 1. The adversary A makes private key queries. To respond to a query on
attribute set W ⊂ P, where W �|= A

∗, the algorithm B must produce a tuple of
the form

(
{g

r
γ+τ(at) }at∈W , h

r−1
γ

)
.

Observe that since W �|= A
∗ all allowed queries must satisfy |WS | < s. B

defines the polynomial QWS
(X) =

{
1 |WS | = 0
λi · ∏

at∈WS
(X + τ(at)) |WS | > 0

, where

λ =
(∏

A∈ωS
τ(at)

)−1, and simulates a private key for W as follows:

54 Y. Jiang et al.

B picks at random yW in Zp, and defines r := (1 + ωyW γ)QWS
(γ). B then

computes the elements for skW :

– For any attribute at ∈ W , g
r

γ+τ(at) = g
ωγyW · f(γ)QWS

(γ)

γ+τ(at)
0 · g

f(γ)QWS
(γ)

γ+τ(at)
0 . Since an

attribute at ∈ W can be in WS or P \ (S), (γ + τ(at))|f(γ)g2(γ)QWS
(γ). The

first factor can be computed with line (2.3) as its exponent is a polynomial
in γ of degree at most n − 1, and the second factor can be computed with
line (2.1) as its exponent is a polynomial in γ of degree at most n − 2.

– The value h
r−1

γ = h
ωyW QWS

(γ)

0 · h
QWS

(γ)−1

γ

0 , where the first factor can be
computed from line (2.7) and the second factor can be computed from line
(2.4), since QWS1

(γ) is a polynomial with independent term 1 by its definition,

thus QWS
(γ)−1

γ is a linear combination of {1, γ, . . . , γs−2}.

Challenge. Once A sends to B the two messages M0 and M1 as well as a
attribute set U∗ with t = |U∗| and U∗ ∩ S = ∅ including all attributes needed to
be revoked, B flips a coin β ∈ {0, 1}, and sets C∗

M = T0 ·Mβ . To simulate the rest
of the ciphertext components, B sets E∗

0 = h
κ·g(γ)
0 which is given in line (2.5).

Then, B computes C∗
1 = (gκγf(γ)

0)−1 from line (2.1). B gives A the challenge
ciphertext CT ∗ = (E∗

0 , C∗
1 , C∗

M).
Here we observe that

if U∗ = ∅, t = 0 B should output to the adversary CT = Enc(params,
A

∗, 0,Mβ) = (E0, C1, CM) for access structure A
∗, of which the challenge

ciphertext matches the form;
if U∗ �= ∅ B should output CT ′ = Revoke(params,Enc(params,A′, t,Mβ),U∗) =

(E′
0, C

′
1, CM) for access structure A

∗, of which the challenge ciphertext
matches the form as well.

Phase 2. After the challenge step A may make other key extraction queries,
which are answered as before.

Guess. A outputs a β′. If β′ = β, B outputs 0; otherwise B outputs 1.

Probability Analysis
Let I = (−→x n, γ, κ, ω, α, Tb, T1−b) be the input of the algorithm B and the adver-
sary A break our CP-ABE scheme with advantage AdvIND-sCPA

A (λ). Below we
analyse the simulation in two cases.

Case 1 (U∗ = ∅). Let κ∗ = κ · α. One can verify that in this case, E∗
0 =

h
κ·g(γ)
0 = hκ∗·α·γ·∏at∈S(γ+τ(at)) and C∗

1 = g
−κ·γ·f(γ)
0 = g

−κ∗·α·γ·f(γ)
0 = u−κ∗

1 .
As for the C∗

M , we also note that if b = 0, T0 = e(g0, h0)κf(γ), then C∗
M =

e(g0, h0)κf(γ) · Mβ = e(gα, h)κ∗ · Mβ = vκ∗ · Mβ . Therefore, the simulation of B
is perfect, and the adversary A will guess the bit β with its advantage. Hence,
if b = 0 we have

|Pr[B(I) = 0|b = 0] − 1
2
| = AdvIND-sCPA

A (λ).

Ciphertext-Policy Attribute Based Encryption Supporting Access 55

Else, if b = 1 and T0 is uniformly random in GT , C∗
M is uniformly random and

independent in GT , and the value of β is independent from A’s view as well,

Pr[B(I) = 0|b = 1] =
1
2
.

Thus, we have the advantage of B in solving the (n, s)-aMSE-DDHB problem in
Case 1 is

Adv
(n,s)−aMSEB-DDH
B (λ) = |Pr[B(I) = 0|b = 0] − Pr[B(I) = 0|b = 1]|

≥ AdvIND-sCPAwAR
A (λ).

Case 2 (U∗ �= ∅). In this case, we first show how a challenge ciphertext should
be produced in a real game. Formally, the correct procedures are as follows.

Let S′ = U∗∪S. The encryption algorithm Enc(params,A′ =
∧

at∈S′ at, t,Mβ)
is run to get CT ∗. More precisely, it picks a randomness κ′ ∈ Zp and computes,

CT ∗ = (E∗
0 , C∗

1 , · · · , C∗
t+1, C

∗
M)

= (hκ′·α·∏at∈S1
(γ+τ(at)), u−κ′

1 , . . . , u−κ′
t+1 , CM = vκ′ · M).

The revocation algorithm Revoke(params, CT ∗,U∗) is run to revoke the
attribute set U∗ from the access policy of the ciphertext CT ∗. It processes as
follows.

Let F (x) be the polynomial in x as

F (x) =
1

∏
at′∈U∗ τ(at′)

∏

at′∈U∗
(x + τ(at′)) = ftx

t + ft−1x
t−1 + · · · + f0.

Compute C ′
M = CM · e(

∏l
i=1 Cfi

i , h) = Mβ · vκ′·F (γ).

Compute E′
0 = E

1∏

at′∈U τ(at′)
0 = hκ′·α·F (γ)·∏at∈S(γ+τ(at)).

Compute C ′
1 =

∏l+1
i=1 C

fi−1
i = u

−κ′·F (γ)
1 .

Finally, the challenge ciphertext in a real game is produced CT ′ =
(E′

0, C
′
1, C

′
M).

Now we assume that the randomness κ′ used in producing CT ∗ is defined as
κ′ = κ

α · 1
F (γ) . Then let κ∗ = κ/α and the challenge ciphertext CT ′ turns out to

be as follows,
C ′

M = Mβ · v
κ
α = Mβ · vκ∗

,

E′
0 = hκ·∏at∈S(γ+τ(at)) = hκ∗·α·γ·∏at∈S(γ+τ(at)),

C ′
1 = u

−κ
α

1 = uκ∗
1 .

It can be seen that if b = 0, T0 = e(g0, h0)κ·f(γ), the challenge ciphertext
in a real game is exactly the same as the simulated challenge ciphertext. The
simulated game would be a perfect simulation if it can be proved that the setting

56 Y. Jiang et al.

of κ′ is indistinguishable from a real random value from the view of A. It will
suffice as κ is random to A. Thus, if b = 0 we have

|Pr[B(I) = 0|b = 0] − 1
2
| = AdvIND-sCPA

A,SAR
(λ).

On the other hand, if b = 1 and T0 is a random element from GT , C∗
M is

random and independent from the view of A, Pr[B(I) = 0|b = 1] = 1
2 . Thus, we

have the advantage of B in solving the (n, s)-aMSE-DDHB problem in Case 2 is

Adv
(n,s)−aMSEB-DDH
B (λ) = |Pr[B(I) = 0|b = 0] − Pr[B(I) = 0|b = 1]|

≥ AdvIND-sCPAwAR
A,SAR

(λ).

This completes the proof. �

6 Intractability of (n, S)-aMSE-DDH Assumptions

In this section, we provide the analysis of the intractability of (n, s)-aMSE-DDH
problem. The intractability analysis is based on the analysis in the generic group
model in [7].

6.1 Notations

For simplicity, we scope the problem to bilinear map group systems in the sym-
metric case (G1 = G2 = G). Let then S = (p,G,G,GT , e(·, ·)) be a bilinear
map group system. Let g ∈ G be a generator of G, and set gT = e(g, g) ∈ GT .
Let s,m be two positive integers and P,Q ∈ Fp[X1, . . . , Xm]s be two lists con-
taining s m-variate polynomials over Fp. Thus, P and Q can be written as
P = (p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs), and impose that p1 = q1 = 1.
For any function h : Fp → Ω and vector (x1, ..., xm) ∈ F

m
p , the notation

h(P (x1, . . . , xm)) stands for (h(p1(x1, . . . , xm)), . . . , h(ps(x1, . . . , xm))) ∈ Ωs.
We use a similar notation for the s-tuple Q. Let f ∈ Fp[X1, ...,Xm]. It is

said that f depends on (P,Q), which we denote by f ∈ 〈P,Q〉, when there
exists a linear decomposition f =

∑
1≤i,j≤s ai,j · pi · pj +

∑
1≤i≤s bi · qi, where

ai,j , bi ∈ Zp. Let P , Q be as above and f ∈ Fp[X1, . . . , Xm]. The (P,Q, f)-
General Diffie-Hellman Exponent problems are defined as follows.

Definition 2 ((P, Q, f)-GDHE [4]). Given the tuple

H(x1, ..., xm) =
(
gP (x1,...,xm), g

Q(x1,...,xm)
T

)
∈ G

s × G
s
T ,

compute gf(x1,...,xm).

Definition 3 ((P, Q, f)-GDDHE). Given H(x1, ..., xm) ∈ G
s ×G

s
T as above,

and T ∈ GT , decide whether T = gf(x1,...,xm).

We refer to [4] for a proof that (P,Q, f)-GDHE and (P,Q, f)-GDDHE have
generic security when f �∈ 〈P,Q〉. We will prove that our construction is secure
by first exhibiting the polynomials P , Q and f involved in the security proofs,
and then by showing that f �∈ 〈P,Q〉.

Ciphertext-Policy Attribute Based Encryption Supporting Access 57

6.2 (n, S)-aMSE-DDH

In this section, we prove the intractability of distinguishing the two distributions
involved in the (n, s)-aMSE-DDHA problem (cf. Corollary 1, Sect. 3.2). The proof
of the intractability of the (n, s)-aMSE-DDHB problem (cf. Corollary 2, Sect. 3.2)
is similar to that for Corollary 1, and hence, we omit it.

Proof (Proof of Corollary 1) To wrap up Corollary 1, we need to show that
(n, s)-aMSE-DDHA problem fits in the framework of Theorem A.2 in [4]. As
mentioned above, we consider our problem in the weakest case G1 = G2 = G

and pose g0 = g, h0 = gβ . Our problem can be reformulated as (P,Q, F)-GDDHE
where

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1, γ, . . . , γn−2,
κ · γ · f(γ),
α, α · γ, . . . , α · γn−s+1,
ω′ · γ, ω · γ2, . . . , ωγn−1,
β, β · γ, . . . , β · γs−2,
βκ · g(γ), βκ · γ · g(γ), . . . , βκ · γn−s · g(γ),
βα, βα · γ, . . . , β · α · γn

βω, βω · γ, . . . , βω · γn,

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Q = (1)
F = βκ · f(γ).

We need to prove the independence of F from 〈P,Q〉. By making all possible
products of two polynomials from P which are multiples of βκ, we want to prove
that the sum of any polynomials from the list R below does not lead to F :

R =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

βκ · γ · A(γ)f(γ)
βκ · B(γ)g(γ)
βκ · γ · B(γ)g(γ)
...
βκ · γs−2 · B(γ)g(γ)

where A, B are polynomials in γ.
After simplifying the list R, it can be seen that if F is not independent of

〈P,Q〉 we can then derive γ ·f(γ) from following list: R′ =
{

γ · A(γ)f(γ)
B′(γ)g(γ) where

A, B′ are polynomials in γ with 0 ≤ deg A ≤ s − 2, 0 ≤ deg B′ ≤ n + s − 4.
Thus, we have the following equation:

f(γ) = γ · A(γ)f(γ) + B′(γ)g(γ)

which can then be re-written into (1 − γ · A(γ))f(γ) = B′(γ)g(γ) where 1 −
γ · A(γ) �= 0, deg B1(γ) ≤ n + s − 4. Since f and g are coprime, we must
have g(γ)|(1 − γ · A(γ)). However, deg (1 − γ · A(γ)) < deg g(γ) will result in
1 − γ · A(γ) = 0, which contradicts with the fact 1 − γ · A(γ) �= 0. �

58 Y. Jiang et al.

7 Conclusion

In this paper, we considered the problem of access policy update in ABE schemes,
which make the ABE schemes become practical. When an ABE scheme is not
equipped with efficient access policy update, it cannot be used in practice as
policy update is an essential feature in the dynamic environment. We outlined
some trivial solutions including using AB-PRE system, and also pointed out
the difference between access policy update and ciphertext re-encryption, which
showed the importance of a general efficient access policy update mechanism.
We presented notions of ciphertext-policy attribute-based encryption supporting
attribute addition and revocation, and subsequently presented two new CP-ABE
schemes featured with functionalities of adding and revoking attributes, respec-
tively. We also proposed a new selective CPA model for CP-ABE with these
new features. Finally, we also proved the security of our schemes. The proposed
schemes are proven secure against selective CPA under the assumptions that
the augmented Multi-Sequence of Exponents Decisional Diffie-Hellman (aMSE-
DDH) problems are hard. The intractability of the aMSE-DDH problems is proved
in generic group model within the frame work of General Diffie-Hellman Expo-
nent problem in [4]. It remains an open problem to obtain a scheme integrated
with efficient access policy update mechanism supporting more expressive access
policies which can be proven secure under a more general computational assump-
tion.

Acknowledgement. Thiswork is partially supported byARCProject (DP130101383).

References

1. Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., De Panafieu, E., Ràfols,
C.: Attribute-based encryption schemes with constant-size ciphertexts. Theoret.
Comput. Sci. 422, 15–38 (2012)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, SP 2007, pp. 321–334. IEEE
(2007)

3. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). doi:10.1007/BFb0054122

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005). doi:10.1007/11426639 26

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

6. Cheung, L., Newport, C.: Provably secure ciphertext policy abe. In: Proceedings of
the 14th ACM Conference on Computer and Communications Security, pp. 456–
465. ACM (2007)

7. Delerablée, C., Pointcheval, D.: Dynamic threshold public-key encryption. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 317–334. Springer, Hei-
delberg (2008)

http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/11426639_26
http://dx.doi.org/10.1007/3-540-44647-8_13

Ciphertext-Policy Attribute Based Encryption Supporting Access 59

8. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 579–591.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70583-3 47

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

10. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant size ciphertexts in thresh-
old attribute-based encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13013-7 2

11. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 4

12. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

13. Li, J., Ren, K., Zhu, B., Wan, Z.: Privacy-aware attribute-based encryption with
user accountability. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.)
ISC 2009. LNCS, vol. 5735, pp. 347–362. Springer, Heidelberg (2009)

14. Liang, K., Au, M.H., Liu, J.K., Susilo, W., Wong, D.S., Yang, G., Yu, Y., Yang,
A.: A secure and efficient ciphertext-policy attribute-based proxy re-encryption for
cloud data sharing. Future Gener. Comput. Syst. 52, 95–108 (2015)

15. Liang, K., Au, M.H., Susilo, W., Wong, D.S., Yang, G., Yu, Y.: An adaptively
CCA-secure ciphertext-policy attribute-based proxy re-encryption for cloud data
sharing. In: Huang, X., Zhou, J. (eds.) ISPEC 2014. LNCS, vol. 8434, pp. 448–461.
Springer, Heidelberg (2014)

16. Liang, K., Fang, L., Susilo, W., Wong, D.: A ciphertext-policy attribute-based
proxy re-encryption with chosen-ciphertext security. In: 2013 5th International
Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 552–
559. IEEE (2013)

17. Liang, X., Cao, Z., Lin, H., Shao, J.: Attribute based proxy re-encryption with
delegating capabilities. In: Proceedings of the 4th International Symposium on
Information, Computer, and Communications Security, pp. 276–286. ACM (2009)

18. Luo, S., Hu, J., Chen, Z.: Ciphertext policy attribute-based proxy re-encryption.
In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 401–
415. Springer, Heidelberg (2010)

19. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

20. Nishide, T., Yoneyama, K., Ohta, K.: Attribute-based encryption with partially
hidden encryptor-specified access structures. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 111–129.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-68914-0 7

21. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, pp. 195–203. ACM (2007)

22. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

http://dx.doi.org/10.1007/978-3-540-70583-3_47
http://dx.doi.org/10.1007/978-3-642-13013-7_2
http://dx.doi.org/10.1007/978-3-642-13013-7_2
http://dx.doi.org/10.1007/978-3-642-13190-5_4
http://dx.doi.org/10.1007/978-3-540-68914-0_7
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27

60 Y. Jiang et al.

23. Seo, H.J., Kim, H.W.: Attribute-based proxy re-encryption with a constant number
of pairing operations. J. Inf. Commun. Convergence Eng. 10(1), 53–60 (2012)

24. Susilo, W., Chen, R., Guo, F., Yang, G., Mu, Y., Chow, Y.W.: Recipient revocable
identity-based broadcast encryption. In: ASIACCS (2016)

25. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19379-8 4

26. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer,
Heidelberg (2012)

27. Zhang, Y., Chen, X., Li, J., Wong, D.S., Li, H.: Anonymous attribute-based encryp-
tion supporting efficient decryption test. In: Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security, pp. 511–516.
ACM (2013)

http://dx.doi.org/10.1007/978-3-642-19379-8_4

Universally Composable Cryptographic
Role-Based Access Control

Bin Liu(B) and Bogdan Warinschi

University of Bristol, Bristol, UK
bin.liu@bristol.ac.uk, bogdan@cs.bris.ac.uk

Abstract. In cryptographic access control sensitive data is protected
by cryptographic primitives and the desired access structure is enforced
through appropriate management of the secret keys. In this paper we
study rigorous security definitions for the cryptographic enforcement of
Role Based Access Control (RBAC). We propose the first simulation-
based security definition within the framework of Universal Composabil-
ity (UC). Our definitions are natural and intuitively appealing, so we
expect that our approach would carry over to other access models.

Next, we establish two results that clarify the strength of our defini-
tion when compared with existing ones that use the game-based defini-
tional approach. On the positive side, we demonstrate that both read and
write-access guarantees in the sense of game-based security are implied
by UC security of an access control system. Perhaps expected, this result
serves as confirmation that the definition we propose is sound.

Our main technical result is a proof that simulation-based secu-
rity requires impractical assumptions on the encryption scheme that is
employed. As in other simulation-based settings, the source of inefficiency
is the well known “commitment problem” which naturally occurs in the
context of cryptographic access control to file systems.

Keywords: Universal composability · cRBAC · Game-based security

1 Introduction

Access control is one of the cornerstones of computer security. It comprises mech-
anisms and techniques that ensure that subjects (users, processes, etc.) get access
only to the objects (files, memory locations, etc.) in a way that preserves the pri-
vacy/integrity of the objects per some access policy that is in place. Traditional
access control mechanisms rely on reference monitors. Since monitors need to
be permanently on-line and have to be executed in trust domains outside the
control of the data owner(s), this has limitations that directly affect scalability
and deployability of applications.

A solution to this problem employs cryptography and is based on a simple and
elegant idea: protect the objects using cryptographic primitives (i.e. encryption
to guarantee privacy and signatures for integrity) and then enforce the desired
security policies by providing the right secret keys to the right parties. This type
c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 61–80, 2016.
DOI: 10.1007/978-3-319-47422-9 4

62 B. Liu and B. Warinschi

of implementation eliminates the need for an on-line monitor: the objects being
protected can be made publicly available in encrypted form and access is only
provided to the users that have the right secret keys.
Security models for cryptographic access control. Much of the prior
work in this area was concerned with designing access control systems from basic
cryptographic primitives [2,8–11,15,18] and/or designing new primitives tailored
for the problem of access control [14,17,23,24]. For the most part, the security of
cryptographic access control systems was only heuristically studied. Yet, precise
definitions are particularly important in this area: recent constructions employ
complex cryptographic primitives for which the level of security is not always
easy to ascertain and for which it is important to understand how they fit within
the higher level systems that employ them. For instance, in attribute based
encryption there is a sizable gap between security against adversaries that decide
statically the keys they will attack and those that take this decision adaptively.
Which of these types of schemes should be used in access control systems to
ensure security requires rigorous definitions of what such systems aim to achieve
and proofs that a given security level suffices.

Throughout the literature, rigorous models that look at the security of sys-
tems for access control have only sporadically been developed and were usually
concerned with particular schemes or applications [1,6,7,19]. Security models for
broader frameworks have only recently been developed [3,13]. One line of work
in this direction is due to Ferrara et al. who consider cryptographic enforcement
of Role-Based Access Control models [12,13]. Specifically, they define a general
syntax for cryptographic RBAC schemes (cRBAC in short), propose a security
model that captures privacy guarantees for objects protected with such a system,
and suggest an implementation based on predicate-encryption (PE).

The models proposed by Ferrara et al. use the so-called game-based approach.
Here, the model formalizes the interaction between an adversary and the system
and rigorously clarifies what is a security breach, e.g. as an event that occurs
during the execution. The appeal of this approach is its relative simplicity: exe-
cutions consider stand-alone scenarios where the system is in complete isolation
from other systems and the different security goals (e.g. privacy and integrity of
sensitive data) are treated independently from one another. At the same time,
simplicity is also cause of some concern. Since the security games must spec-
ify precisely the information that an adversary can obtain when attacking the
scheme, threats from arbitrary environments may not always be appropriately
captured. Similarly, individual treatment of security properties may overlook
unwanted interaction since oftentimes security properties are contradictory. Fur-
thermore, it may not always be possible to exhaustively enumerate the different
properties that one may desire from a system.

In this paper we consider a definitional alternative that does not suffer from
the above shortcomings. Under this paradigm, called simulation-based approach,
security is defined by comparing a system with an idealized version and demands
that the real execution of a system reveals at most as much information is
revealed by an ideal version of the system. As a consequence of this definition,

Universally Composable Cryptographic Role-Based Access Control 63

the real system inherints all of the security properties of the ideal one, so there
is no need to enumerate security properties separately. One important class of
simulation-based security considers executions determined by an arbitrary envi-
ronment (tasked, e.g. to provide inputs to the system), so security in this sense
is composable in the sense that it is preserved in any environment in which the
system is employed [4,20,22]. Unfortunately, simulation security is often difficult
to establish and impose stringent restrictions on the implementations which rule
out construction with no obvious weakness or, at the very least, require ineffi-
cient realizations [5,25]. In particular, the only attempt at a simulation-based
definition for access control is the work of Halevi, Karger, and Naor [19] who
provide such a security notion for access control in distributed file storage. Their
definition is for a specific system rather than for a general model as the one
developed in this paper.

Our contribution. The observation that motivates this paper is that
simulation-based security with composability properties is an excellent fit for
the context of cryptographic access control. Such systems involve multiple par-
ties, are quite complex and need to satisfy several security requirements (e.g.
both individual and joint privacy for the protected objects). Moreover, by their
raison d’être, access control systems need to maintain their security properties
when employed within higher level protocols. Below, we overview our results.

Security definition. We start with the formalization of an ideal functionality
that captures the security guarantees expected from a cryptographic RBAC sys-
tem. Our functionality reflects directly the semantics associated to RBAC sys-
tems [26]. Roughly speaking, the functionality keeps track of all of the operations
performed on the system and maintains the induced access control matrix; user
requests to access files are then granted/refused based on this matrix. Security in
the sense that we define requires that an adversary cannot do more against the
concrete implementation than it can do against the functionality. This require-
ment essentially says that the implementation enforces the expected semantics
of the RBAC system. Technically, to show security one needs to construct a sim-
ulator which can simulate the complete view that an adversary has against the
real system but only from access to the information that the ideal functionality
provides.

We note that our approach should work for any other model that benefits
from a precise semantics with an induced access control matrix.

Relation with game-based definitions. Next, we study the relation between the
existent game-based security notions and the level of security that our definition
entails. It is generally believed that, for the same task, simulation-based security
is stronger than game-based security, even if only because the former is suppose
to capture all of the security properties expected of a system. Indeed, we show
that our notion of security entails both security with respect to read access (the
game-based variant introduced in [13]) and write access (the game-based variant
introduced in [12]). While expected these types of results help build confidence
in the definitions.

64 B. Liu and B. Warinschi

Lower-bounds for UC-secure cRBAC. Our main result is a gap between
simulation-security and game-based security. More precisely, we show that it
is impossible for a cryptographic RBAC system to be UC-secure. In technical
terms, we show that the so-called commitment problem [5] occurs in the con-
text of access control. Roughly, the problem is that the simulator required by
the security definition needs to produce valid looking encryptions of the objects
that are protected without actually knowing the actual content of these objects
(e.g. files). The problem is that when the adversary gains access to such a file
(e.g. by corrupting a user who has access to this file), the simulator needs to
produce a decryption key that explains the ciphertext as an encryption of some
particular content which the simulator did not know when the ciphertext was
created.

In a bit more detail, our proof proceeds in two steps. First, we provide a
generic construction of a universally composable non-interactive communication
protocol (NICP) out of any universally composable cRBAC system. A classical
result by Nielsen shows that such schemes do not exist if no setup assumptions
are in place [25]. Nielsen’s result does not apply directly in our setting since
our construction of a NICP inherits several assumptions that are in place for
the cRBAC system; in particular, it requires a publicly available file-system and
secure channels between some of the parties. We bypass this difficulty by extend-
ing Nielsen’s impossibility result to settings that involve these setup assumptions
whenever their use are restricted in certain ways, and argue that these restric-
tions are natural in access control.

2 Preliminaries

In this section, we give a brief overview of Canetti’s UC framework [4], provide
some background of the Role-Based Access Control and recall Ferrara et at.’s
notion of cryptographic Role-Based Access Control.

The Universal Composability (UC) framework. The UC framework is
based on the “real-world/ideal-world” paradigm, which originates in Goldreich,
Micali and Wigderson’s paper [16]. The basic idea of this paradigm is to show
that the execution of a real-world protocol emulates a process which carries out
the given task in an idealised way: all the participants securely provide their
individual inputs to a trusted party, who then locally computes the outputs
and provide them to the participants according to the specification of the task.
The emulation property essentially requires that every possible damage caused
by an adversary against the real system can also be simulated by an adversary
(the simulator) in the ideal world. Since an adversary cannot really break the
idealised protocol, the real-world protocol should also be secure.

This paradigm has been further developed by the UC framework. In the
UC framework, the trusted party of the ideal process is modelled as an entity
called ideal functionality and denoted by F . In addition to handling the inputs
obtained repeatedly from the parties and generating the prescribed outputs, F
is allowed to interact with the adversary, in a way that captures the allowed

Universally Composable Cryptographic Role-Based Access Control 65

leakage of the protocol. To provide security guarantee under composition, the
UC framework introduces an adversarial entity called the environment Z, which
represents all possible settings in which the protocol can be executed. Z acts as
an interactive distinguisher which aims to tell if it is interacting with the real
protocol or with the ideal one. In the process, the environment is allowed to
exchange information with the adversary, to provide inputs to the participants
of it choice and to obtain outputs from them. A protocol Π is said to securely
realize the functionality F , if for any adversary A, there exists a simulator S
such that no environment can distinguish between its interactions with parties
running Π and A and the interactions with the ideal process for F and S.

An special type of adversary is the so-called dummy adversary D. This adver-
sary simply delivers the messages from the environment to the parties and for-
wards the messages from the parties to the environment: this adversary essen-
tially allows the environment to fully control the input/output and the commu-
nication between the parties. A simulator that works for the dummy adversary
essentially gives rise to a simulator for any other adversary.

An important concept in the UC framework is the hybrid model, an execution
setting which is a mix between a real protocol and an idealized setting. Specif-
ically, in an F-hybrid the parties running the protocol can use multiple copies
of an ideal functionality F . The extension of the notion of realizing of an ideal
functionality in the hybrid model is immediate. In fact, it captures the essence of
the general composition theorem specific to UC. If a protocol ρ securely realizes
an ideal functionality G in F-hybrid model and there is a protocol π securely
realizes F , then the composed protocol ρπ/F where all the calls to F are replaced
by calls to π securely realizes G. Hence π provides the same security guarantee
as the ideal functionality F even if used within an arbitrary protocol ρ; further-
more the composed protocol ρπ/F still provides the same security guarantee as
the ideal functionality G.

One particular application of hybrid models is to capture various communi-
cation models. This is achieved by formulating an appropriate ideal functionality
F that represents the abstraction from the communication, then real-world pro-
tocols in the communication model can be presented in the F-hybrid model.
To exemplify this approach, we present Fsmt, the ideal functionality for secure
message transmission (aka secure communication) in Fig. 1. In Fsmt, a sender PS

with input m sends its input to a receiver PR, while the adversary only learns
|m|, the length of the message m, and can delay the message delivery. Notice
that Fsmt can only transmit a single message, to transmit multiple messages
we need to use multiple instances of Fsmt. We refer to [4] for more details and
formal descriptions about the UC framework.

Cryptographic Role-Based Access Control. Role-based access control
(RBAC) is a general access control model that offers many benefits includ-
ing allowing for fine-grained access controls and simplifying the management
of user permissions. Instead of assigning users with the permissions directly, it
introduces an indirection namely the roles such that the access control poli-
cies are decomposed into two associations: the user-role assignment relation and

66 B. Liu and B. Warinschi

Fig. 1. Ideal functionality for the secure message transmission, Fsmt.

permission-role assignment relation. More formally, at any point a (core) RBAC
system is in a state which consists of a set of users U , a set of roles R, a set of
permissions P , a relation UA ⊆ U × R which records the assignment of users to
roles and a relation PA ⊆ P × R which maintains the assignment of permissions
to roles. Intuitively, a user u has permission p if there exists a role r such that
(u, r) ∈ UA and (p, r) ∈ PA.

The state of an RBAC system changes dynamically. Throughout the paper we
make the simplifying assumption that the set of R of roles is fixed (the assump-
tion reflects the reality that in many organizations the role structure is usually
stable). The remaining components of the state change following administrative
commands of the form (U ′, O′, P ′,UA′,PA′) ← Cmd((U,O, P,UA,PA), arg). We
summarize the typical commands and their intended semantics in Fig. 2.

Fig. 2. Administrative RBAC commands.

At a high-level, a cryptographic implementation of RBAC (cRBAC) consists
of algorithms that implement the administrative commands outlined above, in
a way that enforces the desired access matrix of the system. Formal syntax and
security for such systems have been introduced by Ferrara et al. for the case
where access is only concerned with reading sensitive data [13] and was later
extended to also enforcing writing to sensitive files [12]. As in these works, we

Universally Composable Cryptographic Role-Based Access Control 67

assume a setting that involves three main entities: a manager, a file system and
a set of users. The manager is assumed to be a trusted party and is tasked with
carrying out the administrative commands. The file system is publicly-accessible
and is assumed to support versioning – users are only allowed to append content
to the file system but not delete any data.

More precisely, a cRBAC scheme CRBAC consists of the following algo-
rithms: Init, AddUser, DelUser, AddObject, DelObject, AssignUser, DeassignUser,
GrantPerm, RevokePerm, Update, Write and Read. As suggested above (and by
their names) most of the algorithms correspond to the different administrative
commands of RBAC. There are three additional algorithms which we describe
below. We assume that they define non-interactive multi-party computations
which proceeds as follows: first, the manager carries out some local computa-
tions according to the RBAC command (including updates to the file system)
and produces a set of update messages, one for each of the users. The messages
are sent over private channels to users who use it to update their local state.
Therefore, these algorithms take as input the locate state of the manager stM ,
the RBAC command Cmd and the argument for the command arg as input and
output an updated file system fs accordingly, a new state for the manager and
a set of update messages {msgu}u∈U for the users. When a user u receives an
update message msgu from the manager, it then executes the Update algorithm
with its local state st [u] and the message to update its local state accordingly.
The Read and Write are the algorithms that allow users to read/write from the
files. Both algorithms take as input the local state of the user st [u], a file name
o (potentially some content to be written to the file m) and the state of the file
system fs. The Read algorithm should return the content of the file; the Write
algorithm should return the content that should be appended to the file system.

3 A UC Security Definition for cRBAC

This section presents a universally composable security definition for cRBAC
schemes. We formalize the security requirements of cRBAC schemes by designing
an ideal functionality Fcrbac.

Functionality Fcrbac. The ideal functionality we present in Fig. 3 captures the
intuitive security properties of cRBAC schemes in the way of simply behaving
as a server-mediated access control on the files being protected. Very roughly,
Fcrbac keeps track of every operation performed on the system and maintain the
induced access control matrix within, while it preserves that only the authorized
access requests will be granted. This is achieved by having Fcrbac maintain a
built-in database to store the content of every file, along with a symbolic RBAC
state of the system. Then it handles every access request according to the RBAC
state.

More specifically, Fcrbac embodies the essential interfaces of a cRBAC sys-
tem, including system initialization, RBAC administration and read/write access
to the file system. It proceeds as follows. Having received an initialization request
with a set of roles R from the manager M , Fcrbac initializes an object-indexed

68 B. Liu and B. Warinschi

Fig. 3. The cryptographic Role-Based Access control functionality, Fcrbac.

list fs and the symbolic system RBAC state. Then it notices the adversary that
the access control system is initialized with a set of roles R. Once Fcrbac is ini-
tialized, it ignores the other initialization request afterwards. Having received a
request of executing an administrative RBAC command from M , Fcrbac checks
if the command and its arguments specified in the request are valid. If so, it
executes the command symbolically and updates the system RBAC state. The
administrative RBAC command can be either of the commands presented in
Fig. 2. Having received a request to write some content m on a file o from some
arbitrary user u, Fcrbac first checks if u has the write permission. If so, it stores
m in fs[o] and leaks o and the length of m to the adversary. Having received a
request to read the content of a file o from some user u, Fcrbac also checks if u
has the read permission. If so, Fcrbac returns the content stored in fs[o] to u. If
fs[o] stores no content, it returns an empty value. With the use of the built-in
database, Fcrbac guarantees correctness: the content that has been written to
a file by an authorized user will be read by a user who is entitled to read that
file. Fcrbac is a standard corruption ideal functionality, with an exception that

Universally Composable Cryptographic Role-Based Access Control 69

Fig. 4. Ideal functionality for the versioning file storage, Fvfs.

the manager M cannot be corrupted. It captures the reasonable trust on the
manager to administrate the access control system.

Several remarks on Fcrbac are in order. First, Fcrbac is an ideal functional-
ity for the general cryptographic role-based access controls. Due to the purpose
of studying the relationship between the previous game-based security notions,
Fcrbac does not handle any administrative request of adding a new role or remov-
ing an existing role. Second, Fcrbac only guarantees secure access to the file sys-
tem and preserves no policy privacy (when handling an administrative request,
it simply reveals the command and the arguments to the adversary). There still
exists some design choices on policy privacy preserving (e.g. only leaks the exe-
cuted command but not its arguments), which is left as further study. Third,
Fcrbac makes no explicit restriction on the form of the file system and the file
system is not designed as an individual party of the system. Thus in a real-world
cRBAC scheme, the file system should be implemented by the scheme itself. It
also captures that the file system does not implement any access control mecha-
nism. Fourth, Fcrbac does not have any authentication mechanism on the parties’
identities. The authentication is left to the protocols that make calls to Fcrbac.

Before presenting our definition of universally composable cRBAC system,
we first need to transform a cRBAC scheme CRBAC = (Init, AddUser, DelUser,
AddObject, DelObject, AssignUser, DeassignUser, GrantPerm, RevokePerm) into an
associated protocol ΠCRBAC in the UC setting accordingly. Recall that CRBAC
assumes private channels between the manager and the users. To model this,
we let the parties have access to Fsmt, the ideal functionality of secure message
transmission which is presented in Fig. 1. Also, CRBAC makes use of a public-
accessible versioning file system. This is modelled by an appropriate functionality
Fvfs which is presented in Fig. 4. Fvfs proceeds with a set of users and a data

70 B. Liu and B. Warinschi

manager. Essentially, it serves as an ideal versioning file system which guarantees
the correct ordering of the file versions. The users can “write” to the file system
by appending new versions to the files instead of overwriting existing contents.
The data manager is provided with richer interfaces: it can remove and even
rewrite some existing version of a file. All the users in the system can check the
current state of the file system by providing a status request to Fvfs, and when
any change happens to the file system, the ideal functionality reveals the change
to the adversary and also notices the users about the change. These reflect the
public-accessible feature of the file system. In addition, any write operation to
the file system is done in an anonymous manner, Fvfs will not reveal information
about the identity of the party who carries out the write operation.

For simplification of the protocol presentation, we will also define some
shorthand notations. When a party executes some algorithm, it may gener-
ate a set of order-preserving instructions to be carried out on the file system.
We use {infoi}i∈N to denote this set of instructions. If the party is the man-
ager, each instruction infoi ∈ {infoi}i∈N can be either (Write, sid, o, ver, c) or
(Remove, sid, o, ver), where sid is the session id of Fvfs. If the party is a user, it
can only be the form (Write, sid, o, c). A party may also need to come up with a
set of order-preserving instructions {infofs→fs′

i }i∈N such that after carrying out
the instructions on the file system in order, the current state of the file system
fs would become fs ′. We say a party sends {infoi}i∈N (or {infofs→fs′

i }i∈N) to
Fvfs, it means the party provides every instruction infoi of the set as the input
to Fvfs in order.

We now present the associated protocol ΠCRBAC (in Fig. 5) and define uni-
versally composable cRBAC scheme.

Definition 1. Let CRBAC = (Init, AddUser, DelUser, AddObject, DelObject,
AssignUser, DeassignUser, GrantPerm, RevokePerm) be a cRBAC scheme, we say
CRBAC is UC-secure if the associated protocol ΠCRBAC securely realizes Fcrbac in
(Fvfs,Fsmt)-hybrid model and in a setting that the manager never gets corrupted.

4 UC Security Is Stronger Than Game-Based Security
of cRBAC

Based on the transformation above, we study the relation between UC security
and game-based security. We treat separately security of read access from that
of write access. The security notions of cRBAC scheme with respect to write
and read accesses are shown in the Appendix A.

Theorem 1. Any cRBAC scheme CRBAC which is UC-secure (in (Fvfs,Fsmt)-
hybrid model) is secure with respect to write accesses.

Proof sketch. We show that if CRBAC is not secure with respect to write
accesses, then it cannot be UC-secure. Given an adversary AW that breaks
write security of CRBAC, an environment Z can distinguish its interactions with
parties running ΠCRBAC and a dummy adversary, from the ideal process for

Universally Composable Cryptographic Role-Based Access Control 71

Fig. 5. The Protocol ΠCRBAC in (Fvfs, Fsmt)-hybrid model.

Fcrbac and a simulator. The idea is, Z runs a local copy of AW and simulates
to it the experiment that defines write security of CRBAC schemes. Then Z
proceeds according AW ’s queries such that the protocol execution is consistent
to AW ’s view. Since AW is a successful adversary, Z should be able to write
some valid content without having the permission in the real-world execution
with non-negligible probability. But in the ideal world, from the specification
of Fcrbac we can infer that Z will not be able to write any content to the file
system in this case.

Theorem 2. Any cRBAC scheme CRBAC which is UC-secure (in (Fvfs,Fsmt)-
hybrid model) is secure with respect to read accesses.

Proof sketch. The proof idea of this theorem is analogous to Theorem 1’s. Given
an adversary AR that breaks secure read access of CRBAC, an environment Z
can tell its interaction with the execution of ΠCRBAC and a dummy adversary
from the interactions with the ideal process for Fcrbac and a simulator. Similarly,
Z runs a local copy of AR and simulates to it the experiment that defines read
security. Then Z transforms every query from AR, which will not lead to a trivial
win, into appropriate inputs being provided to the parties and the adversary. By
assumption, Z would be able to distinguish its interactions in the two worlds
with the help of AR.

72 B. Liu and B. Warinschi

The full proofs of Theorem 1 and 2 can be found in the full version of this
paper.

5 Impossibility of UC-secure cRBAC Scheme

In this section we establish our main result. We show that the level of security
demanded by a universally composable cryptographic RBAC system cannot be
achieved, even in a setting where a protocol has access to an idealized file system
and secure channels between all parties. Our impossibility result is in a setting
where the adversary can adaptively corrupt honest protocol participants.

Theorem 3. There exists no UC-secure cRBAC scheme (in (Fvfs,Fsmt)-hybrid
model) with adaptive corruptions.

Proof: The proof of this theorem proceeds in two steps. First, we show that the
existence of any UC-secure cRBAC scheme implies the existence of a universally
composable NICP. Specifically, we provide a generic construction of a NICP that
securely realizes the functionality Fnce of non-committing encryption (which is
presented in Fig. 6), from any UC-secure cRBAC scheme. Next, we argue that
the resulting communication protocol in fact cannot securely realize Fnce – this
step is an extension of a well known result by Nielsen to a setting where parties
have access to a secure file system and secure channels.

We start by describing the generic construction for the universally compos-
able NICP. Recall that based on our transformation, the associated protocol of
a cRBAC scheme works in (Fvfs,Fsmt)-hybrid model and in a setting that the
manager never gets corrupted, the resulting communication protocol therefore
works in the same hybrid model and makes use of such a trusted party in a
restricted way.

Fig. 6. Ideal functionality for the non-committing encryption, Fnce.

Universally Composable Cryptographic Role-Based Access Control 73

Fig. 7. The Protocol Πnicp in (Fvfs, Fsmt)-hybrid model.

The communication protocol involves a message sender, a receiver and a
trusted party namely the manager. We restrict that there exists no direct com-
munication channel between the sender and the receiver. They have to commu-
nicate with each other in an indirect way: after a pre-processing phase in which
the manager interacts with the other two parties over secure channels to estab-
lish the communication, the sender can send messages to the receiver by writing
to the file system and then the receiver performs read operations to get the mes-
sages. Notice that the read operation will not bring any change to the file system
and the manager only works in the pre-processing phase and does not involve
in the communication phase. The communication protocol in fact requires no

74 B. Liu and B. Warinschi

interaction between the sender and the receiver. Hence it can be considered as
non-interactive.

More specifically, let CRBAC = {Init, AddUser, DelUser, AddObject,
DelObject, AssignUser, DeassignUser, GrantPerm, RevokePerm, Update, Write,
Read} be a cRBAC scheme. We denote the NICP by Πnicp and present it Fig. 7.

We show that Πnicp securely realizes Fnce in (Fvfs,Fsmt)-hybrid model. By
assumption, the scheme CRBAC is UC-secure implies that there exists a simulator
S such that no environment can tell with non-negligible probability whether it
interacts with the parties running ΠCRBAC in (Fsmt,Fvfs)-hybrid model and a
dummy adversary D, or it interacts with the ideal process for Fcrbac with S.
Then we give the construction of the simulator Snce for Πnicp as follows. Snce

internally runs an instance of S. Then it interacts with S as the environment
and simulates to S the ideal process for Fcrbac. It proceeds as follow.

1. Simulating the pre-processing phase. Upon receiving from Fnce a mes-
sage (Init, sid, PS , PR), Snce selects a random role r. It then simulates the
pre-processing phase by sending messages to S sequentially in the name of
Fcrbac indicating that the cRBAC system is initialized with a role r, a user uS

is granted the write permission of a file o via the role r and another user uR is
granted the read permission of o via r. When the environment requests Snce

to provide any information that it can obtain during this phase, including the
length of any update message sent from the manager in Πnicp and any content
written to Fvfs, Snce then instructs S to provide the related information and
hands it to the environment.

2. Simulating the communication phase. Upon receiving from Fnce a mes-
sage (Sent, sid, PS , PR, |m|), Snce sends (Wrote, sid′, o, |m|) in the name of
Fcrbac to S, where sid′ = (M, sid). When the environment requests Snce to
report the content written to Fvfs, Snce instructs S to report such content
and forwards it as its output.

3. Party corruption. When the environment instructs Snce to corrupt PS (PR

resp.), Snce delivers the corruption message to Fnce and also requests S to
corrupt uS (uR resp.). If the corruption happens after PS has ever sent some
message to PR, Snce will also obtain the messages sent so far from Fnce.
Then it provides the obtained information to S in the name of Fcrbac. Once
S outputs the internal state of the corrupt party, Snce forwards it to the
environment. After that, any message provided by the environment to the
corrupt party would be modified as the message for uS (uR resp.) accordingly
and forwarded to S (e.g. if the environment instructs the corrupt sender to
send some message c, Snce then instructs S to write the message c to the file o
on behave of uS). Any request from the environment to corrupt the manager
will be ignored.

We briefly analyse the validity of Snce. Suppose there exists an environment
Z which can tell its interactions with parties running Πnicp in (Fvfs,Fsmt)-hybrid
model and a dummy adversary from the interactions with the ideal process for
Fnce and Snce with non-negligible probability. We show that we can construct

Universally Composable Cryptographic Role-Based Access Control 75

an environment Z ′ which can tell whether it is interacting with parties running
ΠCRBAC in (Fvfs,Fsmt)-hybrid model and a dummy adversary or the interac-
tions with the ideal process for Fcrbac and the simulator S with non-negligible
probability. The main idea is that Z ′ runs an internal copy of Z towards which it
simulates the view of the ideal process for Fnce and the simulator Snce. The simu-
lation depends the information that Z ′ can obtain during the protocol execution.
From the construction of Snce above, it can be inferred that every instruction
for Snce can be broken down to corresponding instructions to S. Also, for the
inputs that Z provides to the dummy parties in the ideal process for Fnce, Z ′ can
modify them appropriately and provide to the parties it interacts with. Hence
we have, in the case that Z ′ interacts with the ideal process for Fcrbac and a
simulator S, the simulation Z ′ provides to Z is perfectly identical to the view
which Z expects to see. Then by assumption, Z can tell its interactions in the
two worlds with non-negligible probability, and so can Z ′ in this case. Thus, S
cannot be a valid simulator for ΠCRBAC which reaches a contradiction. Then we
have, if S is a valid simulator for ΠCRBAC , Snce is also a valid simulator for Πnicp

and therefore Πnicp securely realizes Fnce in (Fvfs,Fsmt)-hybrid model.
Now we argue that such a simulator S in fact does not exist. In [25], it

has been shown that no non-interactive communication protocol that securely
realizes Fnce exists in the plain model. However, we cannot apply directly that
result to complete our proof, since Πnicp makes use of Fvfs, Fsmt, albeit in a
restricted way. Nonetheless, we show that under these usage restrictions, we can
extend Nielsen’s result to our setting.

Consider that a Πnicp that securely realizes Fnce in (Fvfs,Fsmt)-hybrid
model allows the sender to send arbitrarily many messages to the receiver non-
interactively (e.g. by performing write operations to the file system). Any real-
world adversary that attacks the protocol cannot obtain more than the length of
the transmitted message. Consider the following environment Z. After the com-
munication is established between the message sender PS and the receiver PR, Z
activates PS with an input (Send, sid,m) and requests the adversary to report
the content c that has been written to some file o of Fvfs. Once Z obtains c, it
instructs the adversary to corrupt PR to obtain its internal state st . Then Z pro-
duces the current state of the file system from the update information provided by
the adversary as fs and computes m′ ← Read(st , fs, o). By assumption Z should
have m′ = m except for negligible probability. Then we consider in the ideal-world
case, the simulator should be able to come up with c given the length of m by Fnce,
and later it should be able to provide the internal state st which is consistent to
the transmitted message c when m is available by the time PR is corrupt. Notice
that the ideal functionality Fnce guarantees correctness on the transmitted mes-
sage, which means for every message sent by the sender, the receiver should be able
to recover the original message except for negligible probability. Hence for Πnicp,
there should not exist any local state of the receiver that allows it to decrypt any
written content to the file system into two different messages with non-negligible
probability each. Otherwise an environment can distinguish its interactions in the
two worlds with non-negligible probability. Thus if we fix a file version c, there

76 B. Liu and B. Warinschi

exists an injective mapping from the underlying messages to the local state of the
receiver, which implies that the number of possible internal states st of PR should
be at least the same as the number of the possible messages. Notice that the only
wayPR can receive themessage fromPS is to execute theRead algorithm to retrieve
the current content of o from the file system. The injective mapping will not be
affected by executing read operations since (by assumption) Read updates neither
the file system nor the local state of PS . Therefore it is impossible for PR to use the
unchanged local state to receiver arbitrary many message from PS . Thus we can
conclude that Πnicp does not securely realize Fnce in (Fvfs,Fsmt)-hybrid model,
which contradicts the existence of the simulatorS. Hence there exists noUC-secure
CRBAC (in (Fvfs,Fsmt)-hybrid model) with adaptive corruptions.

6 Conclusion

We present a security definition for cryptographic role-based access control in the
UC framework. We study its relation with existent game-based notions and show
that simulation-based security is strictly stronger. In essence, our results imply
that composable simulation-based security for access control may be difficult to
achieve to the point that it is impractical1 Interestingly, similar resultswere derived
empirically in a recent study of the efficiency of cryptographicRBACbased onboth
standard asymmetric encryption and identity-based encryption schemes [21].

In future work, we plan to study the efficiency implications of UC security
for cryptographic access control schemes that hide the access policy that is in
place at any given time during the execution of the system.

A The Security Notions of cRBAC Schemes in [12]

Secure read access. A cRBAC scheme CRBAC = (Init, AddUser, DelUser,
AddUser, AddObject, GrantPerm, RevokePerm, AssignUser, DeassignUser, Update,
Read, Write) is said to be secure with respect to read accesses if no user can
deduce any content of a file without having the read permission. It is formalized
by the experiment Expread

CRBAC,A. In the experiment, a random bit is selected
at the beginning and the cRBAC system is initialized with a set of roles R.
The adversary A is allowed to request for executing any administrative RBAC
command, to take over users, to request an honest user to write some content to
a file and to get access to the file system. A can also specify a file as his challenge
and provides two messages, of which one will be written to the file according to
the random bit. It can specify multiple challenges and finally output his guess
of the bit. To prevent trivial wins, no corrupt user can get read access to any of
the challenge files. We say the adversary wins if its guess is correct. A CRBAC is
said to be secure with respect to read accesses if no adversary can win the above
experiment with probability significantly better than a half.
1 One possibility which we did not explore in this paper is to rely on additional setup

assumptions, e.g. a common reference string, and employ a non-committing encryption
scheme.

Universally Composable Cryptographic Role-Based Access Control 77

A predicate HasAccess(u, p) is used to reflect that symbolically a user u has
access to a permission p. It is defined by: HasAccess(u, p) ↔ ∃r ∈ R : (u, r) ∈
UA ∧ (p, r) ∈ PA.

Definition 2. A cRBAC scheme CRBAC is secure with respect to read accesses
if for any probabilistic polynomial-time adversary A, we have

Advread
CRBAC,A(λ) :=

∣
∣ Pr[Expread

CRBAC,A(λ) → true] − 1
2

∣
∣

is negligible in λ, where Expread
CRBAC,A is defined as follows:

Expread
CRBAC,A(λ)

b ←$ {0, 1}; Cr ,Ch ← ∅
(stM , fs, {st [u]}u∈U) ←$ Init(1λ, R)

b′ ←$ A(1λ : Or)
Return (b′ = b)

The oracles Or to which the adversary has access are specified in Fig. 8.

Fig. 8. Oracles for defining the experiment Expread
CRBAC,A.

78 B. Liu and B. Warinschi

Secure write access. A cRBAC scheme CRBAC = (Init, AddUser, DelUser,
AddUser, AddObject, GrantPerm, RevokePerm, AssignUser, DeassignUser, Update,
Read, Write) is said to be secure with respect to write accesses if no user can write
some content to a file without having the permission. Particularly, in the case
of open-accessible file system, the content wrote by an unauthorized user should
not be considered as valid. It is formalized by the experiment Expwrite

CRBAC,A. The
cRBAC system is initialized with a set of role R. The adversary A is allowed to
request for executing any of the administrative RBAC commands, to corrupt a
user, to request an honest user to write some content to a file and to get access
to the file system. At some point, A must output a target file with an honest
user’s id. It wins if it can write any valid content without the permission(read
by the honest user). To prevent trivial wins, from the point when the last write
operation to the target file is carried out by an honest user who has the per-
mission till A generates its output, no corrupt user can get write access to the
target file. A CRBAC is said to be secure with respect to write accesses if no
adversary can win in the above experiment with non-negligible probability.

Definition 3. A cRBAC scheme CRBAC is secure with respect to write accesses
if for any probabilistic polynomial-time adversaries A, we have

Advwrite
CRBAC,A(λ) := Pr

[
Expwrite

CRBAC,A(λ) → 1
]

is negligible in λ, where Expwrite
CRBAC,A is defined as follows:

Expwrite
CRBAC,A(λ)

(U, O, P,UA,PA) ← (∅, ∅, ∅, ∅, ∅); Cr ← ∅
(stM , fs, {st [u]}u∈U) ←$ Init(1λ, R)

(u∗, o∗) ←$ A(1λ : Ow)
If all of the following are satisfied then return 1:

– u∗ ∈ U \ Cr ∧ HasAccess(u∗, (o∗, read))
– T [o∗] �= adv ∧ T [o∗] �= Read(st [u∗], o∗, fs))

Else Return 0

The oracles Ow to which the adversary has access are specified in Fig. 9.

Universally Composable Cryptographic Role-Based Access Control 79

Fig. 9. Oracles for defining the experiment Expwrite
CRBAC,A.

References

1. Abadi, M., Warinschi, B.: Security analysis of cryptographically controlled access
to XML documents. J. ACM 55(2), 1–29 (2008)

2. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in
a hierarchy. ACM Trans. Comput. Syst. 1(3), 239–248 (1983)

3. Alderman, J., Cid, C., Crampton, J., Janson, C.: Access control in publicly verifi-
able outsourced computation. IACR Cryptology ePrint Arch. 2014, 762 (2014)

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14–17, Las Vegas, Nevada, USA, pp. 136–145, October 2001

5. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

6. Castiglione, A., De Santis, A., Masucci, B., Palmieri, F., Castiglione, A., Huang,
X.: Cryptographic hierarchical access control for dynamic structures. IEEE Trans.
Inf. Forensics Secur. 11(10), 2349–2364 (2016)

7. Castiglione, A., De Santis, A., Masucci, B., Palmieri, F., Castiglione, A., Li, J.,
Huang, X.: Hierarchical and shared access control. IEEE Trans. Inf. Forensics
Secur. 11(4), 850–865 (2016)

8. Chang, Y.-F.: A flexible hierarchical access control mechanism enforcing extension
policies. Secur. Commun. Networks 8(2), 189–201 (2015)

9. Crampton, J.: Practical constructions for the efficient cryptographic enforcement
of interval-based access control policies. CoRR, abs/1005.4993 (2010)

80 B. Liu and B. Warinschi

10. Crampton, J.: Cryptographic enforcement of role-based access control. In: Degano,
P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 191–205.
Springer, Heidelberg (2011)

11. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Over-encryption: Management of access control evolution on outsourced data. In:
VLDB, pp. 123–134. ACM (2007)

12. Ferrara, A.L., Fuchsbauer, G., Liu, B., Warinschi, B.: Policy privacy in crypto-
graphic access control. In: IEEE 28th Computer Security Foundations Symposium,
CSF 2015, Verona, Italy, 13–17, pp. 46–60, July 2015

13. Ferrara, A.L., Fuchsbauer, G., Warinschi, B.: Cryptographically enforced RBAC.
In: IEEE 26th Computer Security Foundations Symposium, New Orleans, LA,
USA, June 26–28, pp. 115–129 (2013)

14. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: TCC 2016-A, Proceedings, Part
II, chapter Functional Encryption Without Obfuscation, pp. 480–511. Springer,
Heidelberg (2016)

15. Gifford, D.K.: Cryptographic sealing for information secrecy and authentication.
Communun. ACM 25(4), 274–286 (1982)

16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Proceedings of the
19th Annual ACM Symposium on Theory of Computing, pp. 218–229. New York,
New York, USA (1987)

17. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di
Vimercati, S. (eds.) ACM Conference on Computer and Communications Security,
pp. 89–98. ACM (2006)

18. Gudes, E.: The design of a cryptography based secure file system. IEEE Trans.
Softw. Eng. 6(5), 411–420 (1980)

19. Halevi, S., Karger, P.A., Naor, D.: Enforcing confinement in distributed storage
and a cryptographic model for access control. IACR Cryptology ePrint Archive
2005, 169 (2005)

20. Hofheinz, D., Shoup, V.: Gnuc: A new universal composability framework. IACR
Cryptology ePrint Archive 2011, 303 (2011)

21. Garrison III, W.C., Shull, A., Lee, A.J., Myers, S.: Dynamic, private cryptographic
access control for untrusted clouds: Costs and constructions (extended version).
CoRR, abs/1602.09069 (2016)

22. Küsters, R., Tuengerthal, M.: The IITM model: a simple and expressive model for
universal composability. IACR Cryptology ePrint Archive 2013, 25 (2013)

23. Libert, B., Vergnaud, D.: Adaptive-ID secure revocable identity-based encryp-
tion. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 1–15. Springer,
Heidelberg (2009)

24. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011)

25. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 8

26. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

http://dx.doi.org/10.1007/3-540-45708-9_8

Data in Cloud

ID-based Data Integrity Auditing Scheme
from RSA with Resisting Key Exposure

Jianhong Zhang1(B), Pengyan Li1, Zhibin Sun1, and Jian Mao2

1 College of Sciences, North China University of Technology, Beijing 100144, China
jhzhangs@163.com

2 School of Electronic and Information Engineering,
Beihang University, Beijing 100019, China

maojian@buaa.edu.cn

Abstract. As an important method, cloud-based data auditing can real-
ize the integrity checking of the outsourced data efficiently. However, the
existing public auditing schemes are mainly based on the PKI (public
key infrastructure). In this infrastructure, the auditor must validate the
certificates of data user before auditing data integrity. Thus, there exist
some drawbacks in such infrastructure. (1) It brings the heavy compu-
tation burdens on the auditor in the auditing process (2) Complicated
management of public key certificate makes the whole auditing protocol
inefficient, in particular, in the multi-user setting. To overcome compli-
cated key management and key exposure and reduce computation cost
in the auditing process, we propose ID-based data integrity public audit-
ing scheme with forward security in this paper. After a private key of
data user is compromised, all previous produced authentication tags still
remain valid. And we also show that our construction is provably secure
under the RSA assumption with prime exponents. Due to being based
on RSA, none of pairing operation is required in any algorithm, it makes
that auditing efficiency is greatly improved since the implementations
of pairings are much harder than those of exponentiations in a RSA
group. The highlight in our scheme is that the auditor’s verification cost
is constant, it is independent of the number of the challenged set. Com-
paring with Yu et al.’s scheme, our scheme has more advantages in terms
of computation cost and communication overhead. And implementation
results also show that our scheme is very practical and suitable for the
multi-user setting in the real life.

Keywords: ID-based auditing protocol · The RSA problem · Security
proof · Efficiency analysis · Key exposure · Forward security

1 Introduction

As a specialised distributed computing paradigm, cloud computing offers various
kinds of computation and storage services to the users via computer networks,
and is becoming very popular nowadays. The popularity and widespread use

c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 83–100, 2016.
DOI: 10.1007/978-3-319-47422-9 5

84 J. Zhang et al.

of cloud computing have brought great convenience for data sharing and data
collection. It makes that individuals can not only expediently obtain useful data,
but also conveniently achieve data sharing with others.

At present, cloud computing and storage services provide the individuals and
enterprises with various capabilities to store and process their data in third-party
data centers [4]. Organizations use the cloud in a variety of different service mod-
els (SaaS, PaaS, and IaaS) and deployment models (Private, Public, Hybrid, and
Community) [18]. Because cloud-based storage services have greatly reduced the
burden for local storage management and maintenance, some individuals and
enterprises migrate their local data into the cloud. It results in the following
cases, which some commercial products such as Google Drive and Dropbox have
become very popular for both individuals and enterprises. Nowadays, cloud stor-
age has become a quick profit growth point in cloud computing since it can
provide scalable pay as you go and location independent storage services for the
users.

However, cloud storage is a double-edged sword, it brings in some new secu-
rity threats [17]. In the cloud paradigm, after the data are outsourced to the
cloud, data users no longer possess these data locally, and they lose physical
control over these data. For the data users, the most concern is how to ensure
that their data are being correctly stored and maintained. At the same time,
cloud servers are not the fully-trusted entity, after they suffer Byzantine failures
occasionally, for their own self-interest, they may choose to conceal the data
errors from the data users [14]. What is more severe, these cloud servers might
neglect to keep or even deliberately delete rarely accessed data that belong to
ordinary data users to save storage space. Therefore, it is critical and significant
to develop efficient auditing techniques to strengthen data owners’ confidence.

To effectively check data integrity remotely, many solutions have been pro-
posed. These solutions are mainly divided into two categories: provable data
possession model (PDP) [7] and proof of retrievability model (PoR) [8]. The two
solutions can verify the remote data integrity to convince data users that their
outsourced data are intactly kept by using spot-checking and digital authenti-
cation techniques. However, the underlying ideas of the two approaches differ
substantially. PDP only can achieve the data integrity checking while PoR also
can recover the original data when data is corrupted but the corruption ratio
is within some threshold. According to the above two models, many different
schemes [7–11] have been proposed to achieve different functions, such as pub-
lic auditing, private auditing, dynamic updating. However, the aforementioned
schemes are mainly based on complicated public key infrastructure (PKI), where
the users’ public keys are certified with a public key certificate issued by the cer-
tificate authority. However, the complicated key management in PKI brings some
inconvenience to the source-constrained data user in the cloud, and also results in
heavy verification burden to the third-party auditor (TPA, for short). However,
for ID-based cryptosystem, it does not exist the above mentioned problems since
data users’ public keys in ID-based PKC are their own identities. The identity
information can realize self-authentication of the data user, thus it can alleviate

ID-based Data Integrity Auditing Scheme from RSA 85

the burden of checking tasks in terms of the auditor’s computation cost. In par-
ticular, in the multi-user setting, it can greatly increase the auditor’s auditing
efficiency.

The first ID-based data integrity protocol was proposed by Wang et al. in
[5]. Strictly speaking, their scheme is not genuine ID-based auditing scheme,
it should be called as proxy auditing scheme. To construct a genuine ID-based
scheme, Zhang et al. proposed an efficient ID-based auditing scheme in [15],
however, their scheme is only proven secure in the random oracle model. Sub-
sequently, Zhang et al. presented an ID-based public auditing scheme in the
standard model by using Waters signature in [16]. To the best of our knowl-
edge, most of existing ID-based public auditing schemes are mainly based on
the rather new and untested assumptions related to bilinear pairings. And the
implementations of pairings are much harder than those of exponentiations in a
RSA group. Building an inefficient prototype implementation of pairings is far
from straightforward for anyone but an expert, and even then it is often difficult
or impossible to generate curves with the desired security parameters. As the
most influential public-key encryption algorithm, RSA can resist all known pass-
word attack so far, has been recommended for ISO public key data encryption
standard. Thus, it has been widely applied in the industry for decades, many
companies may have invested in expensive hardware or software implementa-
tions of RSA and good pairing implementations are much harder to find, thus
they may be reluctant to reinvest in new pairing implementations.

In the real life, it is scarcely possible to guarantee that private key is not
compromised since human errors and administration errors might be exploited.
Key exposure is a very serious problem, it can result in that all produced signa-
tures by the signer become worthless. To address this problem, once key exposure
appears, the corresponding key revocation mechanisms should be invoked imme-
diately to reduce the loss which is from the compromised private key. However,
it cannot solve the problem of forgeability of previous signatures fundamently.
In cloud storage, key exposure makes that the validity of the outsourced data
faces severe threatens since the compromised private key can be used to generate
authentication tags.

Recently, Yu et al. proposed an efficient ID-based data integrity auditing
scheme from RSA in [1]. Their scheme can achieve higher verifying efficiency.
However, it is only suitable for the simple-user setting. And it does not consider
key exposure problem. To solve the above problems, in this paper, base on RSA
cryptosystem, we propose an ID-based public auditing protocol to achieve data
integrity checking. Our contributions are five-folds:

1. We propose a novel ID-based data integrity auditing scheme based RSA cryp-
tosystem. It can simplify the key management and alleviate the burden of the
auditor and data users.

2. Our proposed scheme is proven to be secure, the security of the scheme is
based on the RSA assumption with prime exponent in the random oracle
model.

86 J. Zhang et al.

3. The TPA’s computational cost in our scheme is constant in the auditing
verification phase.

4. Our protocol can resist replace attack and replay attack in the random oracle
model, its security is related to the RSA problem and hash function collusion-
resistance.

5. Our scheme supports the property of forward security and does not require
any pairing in any stage. And it also can extend to support the data integrity
checking in the multi-user setting.

Fig. 1. ID-based cloud storage model in our scheme

2 System Model and Security Requirements

In this section, we will give the system model of ID-based auditing protocol for
cloud storage, and define the corresponding security model.

2.1 System Model

For an ID-based auditing protocol, its system model is described as Fig. 1. It
consists of four different entities: data users, the third-party auditor (TPA),
the cloud server and private key generator (PKG). Their roles are identified as
follows:

– Data user: it is an entity which possesses a large amount of data to be out-
sourced to the cloud for data maintenance and computation. It may be an
enterprise or an individual.

ID-based Data Integrity Auditing Scheme from RSA 87

– The cloud server: it is an entity which can provide significant storage space
and computation capability to store and manage these data. In general, it is
an untrusted entity.

– The third-party auditor: it is an entity which has expertise and capabilities
that cloud user does not has, and it can realize data integrity auditing service
with the cloud servers for the data users.

– Private key generator: it is responsible to produce private key for data users
by using the user’s identity information.

The intrinsic goal of cloud storage service is to allow data users to outsource
their data files to the cloud in order to relieve of the burden of maintaining these
data files for data users. However, once these data files are outsourced to the
cloud, data users lose physical control over theses data. At the same time, cloud
server is not a fully-trusted entity. Thus, it is of very importance for the data
user to ensure that their data are being correctly stored and maintained. That
is a reason why data users should be equipped with certain security measure
so that they can periodically verify the integrity of the outsourced data even
without the existence of local copies. For data users, in general, they are the
resource-limited entities, it may be a challenge for them to periodically check
the integrity of their outsourced data. Therefore, data users can delegate the
checking task to a trusted TPA in order to let them free.

2.2 Mathematical Assumption

Definition 1 (the RSA Problem.) Let N = p · q be the product of p and
q, where p and q are two k-bit large primes which satisfies p = 2p′ + 1 and
q = 2q′ + 1 for some primes p′ and q′. e1 is a prime number which is greater
than 2l for some fixed security parameter l and satisfies gcd(e, φ(N)) = 1, where
φ(N) = 4p′q′. Let y be a random number in ZN . We say that an algorithm B
solves the RSA problem if it receives an input the tuple (N, e, y) and outputs an
element x such that xe = y mod N .

Definition 2. (ID-based auditing Protocol with Forward security). An
ID-based auditing protocol with forward security for cloud storage consists of
the following algorithms.

1. Setup(1k)→(params, mpk, msk). The algorithm takes as input a security
parameter k and outputs the master secret key msk and the master public
key mpk of private key generator (PKG) as well the public system parameters
params.

2. Extract(params,mpk,msk, ID) → (sk0
ID). The algorithm takes as inputs

system parameters params, the PKG’s secret key msk and the identity infor-
mation ID ∈ {0, 1}∗ and outputs the private key sk0

ID corresponding to the
user with identity ID such that this private key is valid at time period t = 0.

1 Note that we make a slightly modified version [22, 26] of the original RSA problem
definition. Here, we require the exponent to be a prime number.

88 J. Zhang et al.

When we say identity IDi corresponds to the user’s private key s0ID or vice
versa, it means the pair (IDi, s

0
ID) is an input-output pair of Extract algo-

rithm with inputs param and msk.
3. Update(params, skt

ID, t, ID) → (skt+1
ID). On input a user secret key skt

ID

for a time period t, the algorithm outputs a new user private key skt+1
ID for

the time period t + 1.
4. TagGen(M, skt

ID)→ δ. The algorithm takes as inputs an outsourced data
file M and the private key skt

ID in time period t. For each data block mi, it
computes a data authentication tag δi. It outputs a set of data authentication
tag δ = (δ1, δ2, · · · , δn).

5. Challenge(param, ID, Fname) → C. The algorithm takes as inputs system
public parameters param, the user’s identity information ID and the file’s
name Fname. It outputs a challenge information C.

6. ProofGen(param, ID,C,M, δ) → P . The algorithm takes as inputs the sys-
tem parameters param, the data file M , the authentication tags δ, and the
challenge information C from the auditor. Finally, it outputs a proof infor-
mation P the challenged blocks.

7. Verifying(C,P, ID,mpk, param) → 0/1. The algorithm takes as inputs sys-
tem parameters param, the proof information P , the user’s identity ID, the
public key mpk of the PKG, and outputs the auditing result as 1 if the data
file M is kept intact, otherwise, it outputs 0.

2.3 Definition of Security Model

Here, we consider each entity’s roles in the security mode. PKG is thought of as
a trusted authority, it can honestly produce private key for each data user. The
TPA (the third-part auditor) is honest but curious, it can reliably perform the
audit during the whole process. The cloud server is considered to be a dishonest
entity, in other words, it may choose to hide the fact of some data being corrupted
for its own reputation. In cloud storage, cloud server is a powerful attacker since
it has some information of the outsourced data, we mainly consider that the
cloud storage provider (CSP, for short) may launch the following attacks to the
TPA in this paper:

1. Forge attack. During the challenging-response procedure between the cloud
server and the auditor, the cloud server may forge a proof information P and
make P to pass the verification of the auditor.

2. Replace attack. After the challenged data blocks were corrupted, the cloud
server may choose another valid and uncorrupted pair of data block and data
tag (mi, δi) to replace the challenged pair of data block and data tag (mj , δj).
And it can pass the verification the auditor.

3. Replay attack. The cloud server may generate the proof information P from
the previous proof information or other information, without retrieving the
data user’s challenged data.

In cloud, key exposure is a more serious issue since before outsourcing the
data, data user needs to produce the corresponding signature on each data block,

ID-based Data Integrity Auditing Scheme from RSA 89

namely, authentication tag. Once private key of the user is leaked, it may render
all previously produced signatures invalid since one cannot distinguish whether
a signature is produced prior to the key exposure. Thus, key exposure is a great
threat on cloud storage’s security. To reduce the damage which is resulted from
key exposure, we define an ID-based auditing protocol with forward security.
In different cryptographic protocols, forward security has the different meanings
depending on security goals for the protocols. In this paper, forward security
means unforgeability of authentication tags of data blocks to be valid in previous
time periods even if current private key of data user is compromised.

In the following, we give the definition of forward security by an interactive
game between the simulator and the adversary.

1. Setup: The simulator B runs Setup(1k) to obtain system parameters param.
After that, it returns param the adversary A. And A choose a breakin time
t∗ and can obtain the private key st∗

ID of the user with identity ID in this
phase. At the same time, A knows the total number of time periods T and
the current time period t.

2. Extract Oracle: On input a data user’s identity ID and a time period t, the
private key st

ID for that time period t is returned.
3. TagGen Oracle: On input a time period t, the data user’s identity ID and a

data block m, a valid authentication tag ς at time period t is returned.
4. Finally, A outputs an authentication tag ς∗.

A wins this game if (t∗,m∗, ID, ς∗) is a valid authentication tag. The identity
ID is not queried Extract Oracle with time period t < t∗ and (t∗,m∗, ID) is not
queried to TagGen Oracle.

Let AdvFS
A denote the probability of the adversary A which wins the game.

Definition 2 (Forward Security). An ID-based data integrity auditing scheme
is forward security if for any probabilistic polynomial-time adversary A, AdvFS

A

is negligible.
To construct an efficient and secure ID-based public auditing protocol, the

proposed scheme is to achieve the following objectives:

1. Public auditing: anyone is allowed to have the capability to verify the cor-
rectness and integrity of the outsourced data in cloud which are stored the
users.

2. Blockless verification: The TPA can complete the data integrity verification
under the condition that data blocks are unknown during the verification
process.

3. Lightweight: the auditing verification should be performed with the minimum
communication and computation overhead.

4. Forward security: If the private key of the user ID at time period t is exposed,
the produced authentication tags before time period t are not affected.

5. Storage correctness: If the cloud server does not correctly store data users’
data as required, then the returned proof information by cloud server cannot
pass the auditing verification.

90 J. Zhang et al.

3 Our ID-based Data Integrity Auditing Scheme

In section, we are devoted to the description of our proposed ID-based data
integrity auditing scheme, then we analyze the security of the scheme. In our
construction, we assume that the validity of the user’s private key is divided into
T time intervals and these time intervals are public. Our construction consists
of the following seven algorithms.

– Setup: Taking as input a security parameter 1k, where k ∈ N , the PKG
produces two k-bits large primes p0 = 2p′ + 1 and q0 = 2q′ + 1, where p′ and
q′ are also big primes. Then it computes the RSA modulus N0 = p0q0. For
some two fixed parameter l, π ≤ k/20, the PKG randomly chooses a prime e
such that 2l ≤ e ≤ 2l+1 and GCD(e, φ(N0)) = 1 as well as 2π ≤ T ≤ 2π+1,
where φ(N) is an Euler Totient Function and T denotes the number of time
periods. And it computes d ∈ ZN0 such that ed = 1 mod N0. It chooses two
hash functions H1 : {0, 1}∗ → {0, 1}l1 and H2 : {0, 1}∗ → ZN0 , where l1 ≤ 80.
The system public parameters Para = {k, l, e,N0,H1,H2, T} are published
and the master secret keys (p0, q0, d) are kept secretly.

– Extract: For a user U with identity ID ∈ {0, 1}∗, when it requests for the
private key at time period t, where 0 ≤ t ≤ T , the PKG uses its master secret
key d to compute the user’s private key st

ID = H1(ID)dT+1−t

mod φ(N0),
note that in the initial phase of extract t is set 0. Finally, it sends st

ID to the
user U via a secure channel.

– Update: Taking as inputs st
ID and a time period t, if t + 1 ≤ T , then the

user’s private key is updated as

st+1
ID = (st

ID)e

otherwise, it outputs “⊥” which means that the user’s private key has expired.
– TagGen: To outsource a data file M to the cloud at time period t, a user U

with identity ID does the following steps:
1. For the user U , it randomly picks a secure signature algorithm Σ with

key pair (sk, pk).
2. Let M the outsourced file, first of all, it is split into M = M1||M2|| · · · ||Mn

such that Mi ≤ 2k for i = 1, 2 · · · , n.
3. Let τ = FName||n||IDi where n is the number of data blocks, FName

is a file name and ID is the identity information of the user. Then it sets
sig = τ ||Σ.signsk(τ) as file’s identification.

4. For data file FName, it randomly chooses r ∈ ZN to compute R =
reT+1−t

and for i = 1 to n, the authentication tag of data block Mi is
computed as follows:

ζi = rH2(FName||R||indexi)(H1(ID)dT+1−t

)Mi mod N0.

Let ζ = {ζi}i=1,··· ,n

5. Finally, the user uploads {M, t, ζ, R, τ, sig} to the cloud and deletes the
local storage, note that t denotes time period.

ID-based Data Integrity Auditing Scheme from RSA 91

– Challenge: To produce the challenge information, the TPA does the following
ones:
1. First, it requests the cloud server for data integrity auditing on the user

U’s data file FName.
2. Upon receiving this request, the cloud server first returns (τ, sig, t) to the

TPA.
3. Then the TPA first verifies whether time period t is valid. Then it verifies

the validity of signature sig by using Σ.verify(τ, pk). If it fails, then
aborts it; otherwise, it executes next step.

4. It chooses a subset I ⊆ {1, 2, · · · , n} and computes the challenge subset
Q = (j, vj)j∈I where vj ∈ 2k. And send the challenge information chall =
{Q,FName, ID} to the cloud server.

– ProofGen: Upon receiving the challenge information chall, the cloud server
computes as follows:
1. It computes δ =

∏
j∈I ζ

vj

j mod N0.
2. Then it calculates μ =

∑
j∈I vj · Mj .

3. the resultant proof information Prf = (δ,R, μ) is returned to the TPA.
– Verifying: Upon receiving proof information Prf , it does the following steps:

1. It computes H =
∑

j∈I vjH2(FName||R||indexj).
2. Then, it checks whether the following equation holds.

δe(T+1−t) ?= RH · H1(ID)μ mod N0 (1)

If the equations above hold, it means that the outsourced data file is well
maintained. Otherwise, the data file is corrupted. Note that in practice,μ·eT−t

can be computed by cloud server.

Correctness: In the following, we will show the correctness of our construction
based on Eq. 1 in time period t:

δe(T+1−t)
= (

∏

j∈I

ζ
vj

j)e(T+1−t)

= (
∏

j∈I

rH2(FName||R||indexj)vj · H1(ID)dT+1−t·vj ·Mj)e(T+1−t)

= (
∏

j∈I

(rvjH2(FName||R||indexj))e(T+1−t) · H1(ID)vjMj)

= (R)
∑

j∈I vjH2(FName||R||indexj) · H1(ID)μ

= (R)H · H1(ID)μ

For simplicity, we omit all mod N0 operation in the above equations rea-
soning. Obviously, if the proof information is honestly produced by the cloud
server, it must pass the verification checking.

92 J. Zhang et al.

3.1 Discussion

For an auditing scheme, it should support the data auditing of multiple users,
and consume computation cost as less as possible. From the above Eq. 1, we find
that only the right side of equation is related to the user’s identity information.
To support data auditing in the multi-user setting, the proof information should
be format (δ,R1, · · · , Rn, μ). When the auditor verifies the data integrity, it
should satisfies

δeT+1−t ?= ((
n∏

i=1

Ri))Hi ·
n∏

i=1

H1(IDi)μ mod N

where Hi =
∑

j∈Ii
vjH2(FNamei||Ri||indexj) and

⋃n
i Ii = I.

We can know that the right side of the above equation is a multi-
exponentiation computation. To speed up computation, we can adopt fast algo-
rithm for multi-exponentiation. We collectively refer to the multi-exponentiation
methods described in [6].

3.2 Forward Security

Forward security is an important cryptographic notion, it can preserve the valid-
ity of past signatures when the current private key is compromised. Thus, it can
reduce the loss which is resulted from key exposure. In our scheme, if the user’s
private key st

ID at time period t is compromised, then the produced authen-
tication tags before time period t are not affected. For forward security of the
proposed scheme, its security proof is given in Theorem 3.

3.3 Security Proof

In order to prove the unforgeability of the proof information in our proposed
construction, we first show that it is computationally difficult to forge the user’s
private key st

ID in time period t.

Theorem 1. If the user’s private key st
ID can be forged by the probabilistic

polynomial time adversary Adv, then we can construct an algorithm B which is
able to solve the RSA problem or inverse of hash function.

Proof. Here, we classify the adversaries into the outsider attackers and the
insider attackers. If an outsider attacker outputs a user’s private key st

ID∗ =
H1(ID∗)d(T+1−t)

, it means that it can solve the instance (N, e, y = H1(ID∗)) of
the RSA problem. Because

y = y(ed)(T+1−t)

= (H1(ID∗)d(T+1−t)
)e(T+1−t)

= (st
ID∗)e(T+1−t)

(2)

ID-based Data Integrity Auditing Scheme from RSA 93

Then (st
ID∗)e(T−t)

is the solution of the instance (N, e, y) of the RSA problem.
For the insider attackers, without loss of generality, we assume that the user

i and the user j are two insider attackers, they have their own private keys
st

IDi
= H1(IDi)d(T+1−t)

and st
IDj

= H1(IDj)d(T+1−t)
. If they collude to output

private key st
ID∗ = d(T+1−t)·H1(ID∗) of the user with identity ID∗ at time period

t, it means that

H1(ID∗) = H1(IDi)a · H1(IDj)b, (3)

where a, b are two integers which should be known for user i and user j. However,
it is equivalent to solve the inverse of hash function to find ID∗ which satisfies
Eq. (3). Obviously, it is in contradiction with the difficulty of solving the inverse
of hash function. �

Theorem 2. If there exists a probabilistic polynomial time adversary Adv that
successfully convinces the TPA to accept the fake proof information for a cor-
rupted file with non-negligible probability, then we can use Adv to solve the
RSA problem problem with non-negligible probability.

Proof. Suppose that there exists an adversary produces a faked proof infor-
mation which can pass verification auditing, then we are going to construct a
PPT algorithm B to solve the instance of the RSA problem. First of all, let us
recall the RSA problem: (N, e, y) is an instance of the RSA problem as stated
in Definition 1. At the same time, B randomly selects an interrupt time point
t̂, 1 ≤ t̂ ≤ T , it means that the breakin period happens at t̂ or later.

To play this game, B simulates the following oracles.

H1-Oracle. When the adversary A makes H1-query with identity IDi, B first
checks whether IDi exist in the H1-list which is initially empty. It exists, B
returns hIDi

to the adversary A. Otherwise, B tosses a biased coin βi ∈ {0, 1}
so that βi = 0 with probability η and β = 1 with probability 1 − η. If βi =
0, then B sets hIDi

= xeT+1

i mod N , where xi is a random number of ZN ;
Otherwise, it sets hIDi

= yeT+1−t̂

xeT+1

i mod ZN . After B sends hIDi
to A, it

adds (IDi, hIDi
, xi, βi) in the H1-list.

H2-Oracle. The adversary A can ask for H2-Oracle with (FName,R, IDi,
indexj), B randomly picks ρij ∈ ZN0 to set H2(FName||R||IDi||indexj) = ρij

and return ρij to the adversary. Finally, it also adds (FName,R, IDi, indexj , ρij)
in the H2-list which is initially empty.

Extract Oracle. When A makes the Extract-query with identity IDi at time
period t, B first looks up IDi in the H1-list. If the corresponding βi = 0, then B
computes its private key at time period t as st

IDi
= xet

i mod N . If βi = 1 and

t < t̂, then B aborts it. Otherwise, it computes st
IDi

= yet−t̂

xet

i mod N as the
private key of the user with identity IDi at time t. Finally, it sends st

IDi
to the

adversary A.

94 J. Zhang et al.

TagGen Oracle. When the adversary A asks for a TagGen Orale with (m, IDi)
in the time period t. B simulate as follows:

1. If βi = 0 or t ≥ t̂, B can retrieve the corresponding private key by querying
Extract-Oracle. Then it computes authentication tag (R, ς) of data block m
by using its private key.

2. If βi = 1 or t < t̂, B randomly chooses r ∈ ZN to compute R = reT+1−t ·
H1(IDi)−1 mod N and ς = rm mod N . And letH2(FName||R||IDi||index)
= m and add (FName||R||IDi||index,m) in the H2-list.

3. Finally, it returns (R, ς) to the adversary.

Prove. B and the adversary A executes an interactive challenge-response pro-
tocol where B acts as the TPA and A behaves as the cloud server. A can obtain
the auditing result at the end of the protocol.

Output. The adversary A outputs a fake proof information prf ′ = (δ′, R, μ′)
at time period t∗ < t̂, prf ′ �= prf , and prf ′ can pass the verification algo-
rithm, where prf = (δ,R, μ) is a valid proof information which is produced by
the honest cloud server. As the valid proof information, prf should satisfy the
verification algorithm, thus, we can obtain the following equation:

δe(T+1−t)
= RH · H1(ID)μ mod N (4)

Because the fake proof information prf ′ can also pass verification algorithm,
prf ′ should satisfy

δ′e(T+1−t)

= RH · H1(ID)μ′
mod N (5)

Due to μ �= μ′, we set 	μ = μ − μ′. By Eqs. 4 and 5, we can obtain

(δ/δ′)e(T+1−t)
= H1(ID)μ−μ′

mod N (6)

Note δ′−1 is able to be solved by Bezout’s identity, namely, there are two
numbers a · δ′ + b · N = 1.

Because H1(ID) = yeT+1−t̂

xeT+1

i mod N , the above Eq. 6 can be rewrote as

(δ/δ′)e(T+1−t)
= (yeT+1−t̂

xeT+1

i)μ−μ′
mod N

⇓
(

δ

δ′ · xet(µ−µ′)
i

)e(T+1−t)
= (yeT+1−t̂

)μ−μ′
mod N

⇓
(

δ

δ′ · xet(µ−µ′)
i

)e(t̂−t)
= yμ−μ′

mod N

ID-based Data Integrity Auditing Scheme from RSA 95

If gcd(e(t̂−t),	μ) = 1, it means that there exists two integers a and b such
that ae(t̂−t) + b	μ = 1, then we have

y = yae(t̂−t)+b�μ

= yae(t̂−t) · (
δ

δ′ · xet(µ−µ′)
i

)be(t̂−t)

= (ya · (
δ

δ′ · xet(µ−µ′)
i

)b)e(t̂−t)

Let x∗ = (ya · (δ

δ′·xet(µ−µ′)
i

)b), then we have (x∗)et̂−t

= y. Thus (x∗)et̂−t−1
is

the solution of the given instance of the RSA problem.
If gcd(e(t̂−t),	μ) �= 1, then it means that 	μ can divide e, that is to say,

	μ ≡ 0 mod e, since the least factor of e(t̂−t) is e. Thus, the probability of
gcd(e(T+1−t)H1(ID), 	μ · υ) �= 1 is at most

(t̂ − t)
2k

.

Due to k ≥ 256, the probability of the event occurs is less than (t̂−t)
2k

which is
negligible. Thus, we think gcd(e(t̂−t),	μ) = 1.

As is known to all, It is hard to solve the RSA problem with large expo-
nents. Thus, there does not exist an adversary which can output a fake proof
information to pass the verification algorithm.

�
Theorem 3. If there exists an adversary which can break forward security of
our scheme. Then, with non-negligible probability, the RSA problem can be
solved.

Proof. Suppose that (N0, e, y) is an instance of the RSA problem as stated
in Definition 1. We will construct a PPT algorithm B which makes use of the
adversary Adv to solve the RSA problem. In the following game, B can simulate
all the above oracles in Theorem 2 and answer Adv’s queries.

In the setup phase, the adversary Adv can obtain the public key (N0, e).
Then it can interact with B in an arbitrary way to obtain a series of data block
signature pairs (mi, ςi)i=1,··· ,qt . At the same time, we provide all hashing oracles
to answer the adversary Adv’s hashing queries. Let us define the adversary Adv
to break in the system at time period t∗ and learn the user ID’s private key st∗

ID.
Finally, the adversary Adv outputs a forged data block/signature pair at time
period t < t∗ which is not in (mi, ςi)i=1,··· ,qt with non-negligible probability,

By adopting standard rewind technique, B rewinds to the point just before
returning the answer of the H2 query, and returns another answer to this par-
ticular query. For convenient illustration, let δ′ = (R′, ς ′,m′) denote the first
forged signature by Adv at time period t∗, δ′′ = (R′′, ς ′′,m′) be another forged
signature by Adv at time period t∗. If Adv successes, then they should satisfy

ς ′eT+1−t∗
= R′h′ · H1(ID)m′

mod N

96 J. Zhang et al.

and

ς ′′eT+1−t∗
= R′′h′′ · H1(ID)m′

mod N

where R′ = R′′, h′ = H2(FName||R′||index∗) and h′′ = H2(FName||R′′||
index∗).

Dividing the above two equations, we have

(
ς ′

ς ′′)
eT+1−t∗

= R′h′−h′′

Now, setting R′ = veT+1−t∗
yβ for v ∈ ZN0 and β ∈ [1, 2k] as well as Δh =

h′ − h′′, then we have

(
ς ′

ς ′′)
eT+1−t∗

= (veT+1−t∗
yβ)Δh (7)

By reorganizing the above Eq. 7, we yields

(
ς ′

ς ′′ · vΔh
)eT+1−t∗

= yβΔh

Because e is a prime number, we have gcd(e, βΔh) = 1. By using extended
Euclidean algorithm, we can find a, b ∈ ZN0 to satisfy a · eT+1−t∗

+ b · βΔh = 1.
Thus, B can output χeT+1−t∗

= y where

χ = ya · (
ς ′

ς ′′ · vΔh
)b

It means that the RSA problem is solved. �

Theorem 4. Our proposed auditing protocol can resist the Replace Attack from
the cloud server.

Proof. To resist replace attack, we must make that the cloud server is not able
to pass the auditing verification by replacing a specified block and its tag, with
another block and its corresponding tag. If the challenged data blocks ml or its
authentication tag ζl is corrupted in cloud server, the proof information, which is
returned by cloud server, cannot pass the auditing since the verification equation
may not hold. Therefore, cloud server may launch the replace attack to try to
pass the audit.

It chooses another pair of data block and data authentication tag (mk, ζk)
to replace the corrupted one (ml, ζl). Then, it computes

δ∗ = (ζk)vl ·
∏

j∈I,i �=l

ζ
vj

j , μ∗ = vlMk +
∑

j∈I,j �=l

vj · Mj

Then, the left hand of the verification equation can be transformed as

ID-based Data Integrity Auditing Scheme from RSA 97

(δ∗)e
T+1−t

= [(ζk)vl ·
∏

j∈I,i�=l

ζ
vj
j]e

T+1−t

= (RH2(FName||R||indexk)(H1(ID))Mk)vl ·
∏

i∈I,i�=l

(RH2(FName||R||indexi)H1(ID))Mivi mod N

= R
∑

i∈I H2(FName||R||indexi)+(H2(FName||R||indexk)−H2(FName||R||indexl)) · H1(ID)µ
∗

If the auditing verification can be passed, it means that H2(FName
||R||indexk) = H2(FName||R||indexl). However, indexl �= indexk, it is impos-
sible for

H2(FName||R||indexk) = H2(FName||R||indexl)

due to collision resistance of hash function. Thus, the proof from the cloud server
cannot pass the auditing. �

4 Performance Analysis

To achieve 80-bit security parameter, in our scheme, we set k to be 512bits, thus,
the size of modulus N is 1024 bits. In the RSA cryptosystem, the size of public
parameter e has the important influence on the whole system. Increasing the
size of the RSA key will make that the generation of signature becomes slower.
Thus, we set the public parameter e which satisfies 2l ≤ e ≤ 2l+1 in our scheme,
where l = 20. Furthermore, for system public parameters in our scheme, they
only consist of some security parameters, a key pair and two hash functions. In
the TagGen phase and Verifying phase, any pairing operation is not required.

In the following, we analyze our scheme’s perform by making a comparison
of our scheme and Yu et al.’s scheme in [1]. Our experiment is conducted using C
on a system with an Intel Core 2 processor running at 2.4 GHz, 768 MB RAM,
and a 7200 RPM Western Digital 250 GB Serial ATA drive with an 8 MB buffer.
All algorithms are implemented using the Miracl Library [3].

Let us assume that 1GB data are stored to the cloud, these data are divided
into n data blocks. To fairly compare, the size of the split data block is set as
4KB, thus the size of the index is |n| = 18 bits. In the Setup phase, to produce
public system parameters, the time costs are 0.166 s and 0.1521 s in Yu et al.’s
scheme and our proposed scheme, respectively. The main difference of time cost
between the two scheme is the reason that two pseudo-random functions are
introduced in Yu et al.’s scheme. In the Extract algorithm, the time costs to
produce private key of the user with identity ID are 5.32 milliseconds in Yu
et al.’s scheme and our proposed scheme.

In the TagGen phase, to outsourced 1G data to the cloud, the user needs to
split these data into n data blocks, and to compute authentication tag for each
data block. As for Yu et al.’s scheme and our scheme, the comparison of their
computation costs and communication overhead is shown in Table 1.

98 J. Zhang et al.

Table 1. Comparison of our scheme and Yu et al.’s scheme in the TagGen

Computation cost Communication overhead (bits)

Yu et al.’s scheme (2n + 2)CE + (n + 1)CM + S |M | + |H1| + (n + 1)|ZN0 |
Our scheme 2nCE + nCM |M | + n|ZN0 |
Where CE denotes exponentiation operator in ZN0 or ZN , S is time to setup public
parameters of RSA and CM is multiplication operator in ZN0 or ZN . |M | denotes
the length of the outsourced data, H1 denotes the length of hash function H1,|ZN0 |
is the length of element in ZN0 .

By simulating, we find that it takes 928.576 s to produce these authentication
tag of data blocks in Yu et al.’s scheme. However, it needs to take 790.432 s these
authentication tags in our scheme when T = 50 and t = 0. In our scheme, the
time to compute authentication tag is influenced by time period T . The reason
to produce authentication tag is that the user needs to produce a suit of new
public parameters of RSA system.

The average time for the user to compute authentication tags with different
choices of time period T is shown in Table 2.

Table 2. The average time for the user to compute authentication tags

T = 50 T = 100 T = 150 T = 200

Times (s) 790.432 970.121 1197.332 1389.732

In the Verifying phase, the auditor’s computation cost changes with the num-
ber of the challenged blocks. And the probability of detecting error block is also
influenced by the number of the challenged blocks. The more the number of the
challenged blocks is, the more the auditor’s computation cost is and the higher
the probability of detecting error block is. Because the probability of detecting
error block can be denoted as follows:

1 − (1 − |C|
n

)|I|

where |C| denotes the number of the corrupted data blocks and |I| is the number
of the challenged blocks. For 1,000,000 data blocks, if the probability of the
corrupted data is 1%, then to obtain 99% probability of detecting error data,
the required challenged data blocks only needs 460 blocks. When the challenged
block is 350 blocks, the probability of detecting error data can achieve 95%.

In the Verifying phase, to verify data integrity, the auditor’s computation
costs in our scheme and Yu et al.’s scheme are shown in Table 3.

Obviously, our scheme has the advantages over Yu et al.’s scheme in terms
of computational cost and communication overhead. In our scheme, it is inde-
pendent of the challenged set in terms of the TPA’s computational cost. At the

ID-based Data Integrity Auditing Scheme from RSA 99

Table 3. Comparison of our scheme and Yu et al.’s scheme in the Verifying phase

Computation cost Communication overhead Forward security

Yu et al.’s scheme (|I| + 4)CE + (|I| + 1)CM |H1| + 2|ZN0 | + |μ| NO

Our scheme 3CE + 1CM 2|ZN0 | + |μ| Yes

same time, our scheme can provide forward security. When we set T = 50 and
the challenged blocks is 300 blocks, our implement shows that cloud server and
the auditor need to take 25.43 ms and 239.54 ms respectively to produce and
verify the proof in Yu et al.’s scheme, however, cloud server and the auditor only
need to take 22.43 ms and 205.94 ms in our scheme.

According to the statement above, no matter computational cost or com-
munication overhead, our scheme has many advantages over Yu et al.’s scheme.
At the same time, our proposed scheme can support forward security and be
applied to the multi-user setting.

5 Conclusion

In this paper, based on RSA cryptosystem we propose a novel ID-based data
integrity auditing mechanism with forward security, which does not only elimi-
nate the complicated certificate management in traditional PKI-based PDP or
PoR schemes, but also support forward security. At the same time, it also can
easily been extended into the multi-user setting. And we show that the proposed
scheme can resist malicious cloud server attack, replace attack and replay attack.
The security of the scheme is related to the hardness of RSA problem with prime
exponent in the random oracle model. By comparing with Yu et al.’s scheme,
the our scheme has more advantages in terms of computational cost and com-
munication overhead. It is the future problem how to achieve privacy-preserving
in the context of data processing.

Acknowledgments. This work was supported by Beijing Municipal Natural Science
Foundation (Nos: 4162020,4132056) and The importation and development of High-
Caliber Talents project of Beijing municipal Institutions (CIT&TCD201304004).

References

1. Yong, Y., Xue, L., Au, M.H., Susilo, W., Ni, J., Zhang, Y.F., et al.: Cloud data
integrity checking with an identity-based auditing mechanism from RSA. Future
Gen. Comput. Syst. 62, 51–53 (2016). doi:10.1016/j.future.2016.02.003

2. May, P., Ehrlich, H.-C., Steinke, T.: ZIB structure prediction pipeline: compos-
ing a complex biological workflow through web services. In: Nagel, W.E., Walter,
W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148–1158. Springer,
Heidelberg (2006)

3. M.I.R.A.C.L. library, Shamus Software Ltd., 94 Shangan Road, Ballymun, Dublin,
Ireland

http://dx.doi.org/10.1016/j.future.2016.02.003

100 J. Zhang et al.

4. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services
for distributed resource sharing. In: 10th IEEE International Symposium on High
Performance Distributed Computing, pp. 181–184. IEEE Press, New York (2001)

5. Wang, H.: Identity-based distributed provable data possession in multicloud stor-
age IEEE T. Serv. Compsut. 8(2), 328–340 (2015)

6. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31, 469–472 (1985)

7. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Proceedings 14th ACM Con-
ference Computer and Communications Security (CCS 2007), pp. 598–609 (2007)

8. Juels, A., Kaliski, B.S.: PORs: proofs of retrievability for large files. In: Proceedings
14th ACM Conference Computer and Communications Security (CCS 2007), pp.
584–597 (2007)

9. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data
dynamics for storage security in cloud computing. IEEE Trans. Parallel Distrib.
Syst. 22(5), 847–859 (2011)

10. Zhang, Y., Blanton, M.: Efficient dynamic provable possession of remote data via
balanced update trees. In: Proceedings 8th ACM SIGSAC Symposium Information,
Computer and Communications Security (ASIACCS 2013), pp. 183–194 (2013)

11. Zheng, Q., Xu, S.: Fair and dynamic proofs of retrievability. In: Proceedings First
ACM Conference Data and Application Security and Privacy (CODASPY 2011),
pp. 237–248 (2011)

12. Stefanov, E., Dijk, M.V., Oprea, A., Jules, A.: Iris: A Scalable Cloud File System
with Efficient Integrity Checks, Report /585, Cryptology ePrint Archive (2011)

13. Gritti, C., Susilo, W., Plantard, T.: Efficient dynamic provable data possession
with public verifiability and data privacy. In: Foo, E., Stebila, D. (eds.) ACISP
2015. LNCS, vol. 9144, pp. 395–412. Springer, Heidelberg (2015)

14. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data
dynamics for storage security in cloud computing. IEEE Trans. Parallel Distrib.
Syst. 22(5), 847–859 (2011)

15. Jianhong, Z., Qiaocui, D.: Efficient ID-based public auditing for the outsourced
data in cloud storage. Inf. Sci. 344, 1–14 (2016)

16. Zhang, J., Li, P., Mao, J.: IPad: ID-based public auditing for the outsourced data
in the standard model. Cluster Comput. 19(1), 127–138 (2016)

17. Ren, K., Wang, C., Wang, Q.: Security challenges for the public cloud. IEEE
Internet Comput. 16(1), 69–73 (2012)

18. Understanding the Cloud Computing Stack: SaaS, PaaS, IaaS. https://support.
rackspace.com/white-paper/understanding-the-cloud-computing-stack-saas-paas-
iaas/

https://support.rackspace.com/white-paper/understanding-the-cloud-computing-stack-saas-paas-iaas/
https://support.rackspace.com/white-paper/understanding-the-cloud-computing-stack-saas-paas-iaas/
https://support.rackspace.com/white-paper/understanding-the-cloud-computing-stack-saas-paas-iaas/

Efficient Dynamic Provable Data Possession
from Dynamic Binary Tree

Changfeng Li1 and Huaqun Wang2(B)

1 Nanjing University of Finance and Economics, Nanjing, China
2 Nangjing University of Posts and Telecommunications, Nanjing, China

wanghuaqun@aliyun.com

Abstract. In order to ensure the remote data integrity in cloud stor-
age, provable data possession (PDP) is of crucial importance. For most
clients, dynamic data operations are indispensable. This paper proposes
an efficient dynamic PDP scheme for verifying the remote dynamic data
integrity in an untrusted cloud storage. Our dynamic PDP scheme is
constructed from dynamic binary tree and bilinear pairings, supporting
the dynamic data operations, such as, insertion, deletion, modification.
From the computation cost, communication cost, and storage cost, our
proposed dynamic PDP scheme is efficient. On the other hand, our pro-
posed concrete dynamic PDP scheme is provably secure.

Keywords: Cloud computing · Dynamic provable data possession ·
Binary tree

1 Introduction

By using cloud computing, the clients are relieved of the burden for storage
management and data processing. Thus, the clients save the capital expenditure
on hardware, software, and personnel maintenances, etc. In cloud computing,
the clients outsource their computing and storage to remote cloud server (CS).
At the same time, the clients also face the risks of confidentiality, integrity and
availability of data and service. Since the clients do not store these data locally,
it is especially vital to ensure their remote data integrity. In 2007, Ateniese
et al. proposed an important remote data integrity checking primitive: PDP [1]. It
is a probabilistic remote data integrity checking primitive. For PDP, the verifier
can efficiently check remote data integrity with a high probability. Following
Ateniese et al.’s pioneering work, Shacham and Waters presented the proof of
retrievability (POR) scheme [2].

For most clients, their stored data is dynamic. The clients may frequently
insert or delete or modify their remote data. Thus, dynamic PDP is indispens-
able to ensure remote dynamic data integrity. On the other hand, the dynamic

H. Wang—This work is partly supported by the Natural Science Foundation of
China through projects (61272522), by the Program for Liaoning Excellent Talents
in University through project (LR2014021), and by the Natural Science Foundation
of Liaoning Province (2014020147).

c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 101–111, 2016.
DOI: 10.1007/978-3-319-47422-9 6

102 C. Li and H. Wang

PDP scheme must be efficient for capacity-limited end devices. Zheng et al. pro-
posed the fair and dynamic POR [3]. Then, Ateniese et al. proposed dynamic
PDP model and designed the concrete scheme although it does not support insert
operation [4]. In 2009, based on the skip list, Erway et al. designed a full-dynamic
PDP scheme which supports the insert operation [5]. In 2013, Etemad et al. pro-
posed the transparent, distributed, and replicated dynamic PDP scheme [6].
Cash et al. proposed the dynamic proofs of retrievability via oblivious RAM [7].
On the other hand, dynamic remote data public auditability has also been stud-
ied [8–10].

Tree is an important storage structure for the remote block data. In 2013,
Zhang et al. propose a dynamic provable scheme via balanced update tree [11].
Zhang et al. propose a verifiable dynamic provable data possession scheme by
developing a variant authenticated 2–3 tree [12]. Shi et al. pointed out that Cash
et al.’s scheme [7] is mostly of theoretical interest because it employs oblivious
RAM as a black box. They also pointed out Stefanov et al.’s scheme has a large
audit cost. Finally, they proposed a dynamic proof of retrievability scheme with
constant client storage whose bandwidth cost is comparable to a Merkle hash
tree [13]. Tate et al. proposed multi-user dynamic proofs of data possession by
using trusted hardware [14].

Until now, the proposed dynamic PDP schemes are inefficient. When a novel
block is inserted, many blocks have to change their index and create novel tags.
It will incur heavy cost. It is an open problem to keep the other block-tag pairs
unchanged even if the novel block is inserted.

1.1 Contributions

The main contributions of this work are summarized below: (1) We present a
dynamic binary tree construction method which yields an efficient dynamic PDP
scheme; (2) Based on the bilinear pairing and our proposed dynamic binary tree,
a concrete private dynamic PDP scheme is designed. (3) Our private dynamic
PDP scheme can detect the dishonest client’s invalid data.

1.2 Paper Organization

This paper is organized below. Section 2 presents the construction method of
dynamic binary tree. It comprises of insertion and deletion. Section 3 gives the
models of dynamic PDP: system model, security model and the definition of
dynamic PDP scheme. Based on the dynamic binary tree, Sect. 4 propose a
concrete dynamic PDP scheme. The performance analysis is also given in this
section. Section 5 analyzes the proposed dynamic PDP scheme’s security. Finally,
Sect. 6 gives the conclusion.

2 Dynamic Binary Tree

In order to realize the remote data integrity checking, the corresponding tag
Ti must be generated and uploaded for every block mi. In our scheme, the

Efficient Dynamic Provable Data Possession 103

tag Ti relates to mi and the leaf node index li. From the procedures Insertion
and Deletion, the leaf nodes’ index will keep constant after dynamic operations.
When the data blocks are stored on the leaf nodes, these blocks’ leaf node index
will also keep constant after the dynamic operations. Thus, when some blocks
are inserted, the other block-tag pairs will be unchanged. This dynamic binary
tree can be used to support our private dynamic PDP scheme.

2.1 Binary Tree

A simple binary tree can be depicted in Fig. 1. The top node R (level 0) is the
root of the tree. R has two children 1L and 1R (level 1). Continuously, 1L has
two children 1 and 2; 1R has two children 3 and 4 (level 2). The level 2 is the
bottom level which will store the clients’ remote data. Specially, denote R’s left
child as 0 and right child as 1. 0’s left child is 00 and right child is 01. 1’s left
child is 10 and right child is 11. Generally, every node’s index is its parent’s
index plus 0 if it is the left child or plus 1 if it is the right child. Thus, Fig. 1 can
be rewritten as Fig. 2. In the Fig. 2, every inner node has two elements: index
and leaf node number. For example, the root node R has 4 children which lie on
the bottom level. R’s left child has 2 children which lie on the bottom level. R’s
right child has 2 children which lie on the bottom level. In the dynamic binary
tree, the bottom nodes may be deleted or modified. On the other hand, some
novel nodes can be inserted at any place on the bottom level. On the bottom
level, the 4 leaf nodes’s indexes are 00, 01, 10, 11, respectively.

Fig. 1. Binary tree Fig. 2. Binary tree with index and leaf
node number

2.2 Insertion

When a leaf node Ni is inserted after another leaf node N , the binary tree can
be updated below:

1. From the node N , the left child and the right child are created and become
the leaf nodes. Their parent node N becomes the inner-node.

2. The inner node N ’s index keeps unchanged and N ’s left child has the same
index as the node N . N ’s right child’s index is N ’s index plus 1.

3. The inner node N ’s leaf node number is 2. N ’s parent, grandfather, until to
the root R, add their original leaf node number to 1 which is their new leaf
node number.

4. The other nodes’ index and leaf node number keep unchanged.

104 C. Li and H. Wang

An inner node < l, v > is associated with its index l and its leaf node number v.
The leaf node only has the index, i.e., it is denoted as l.

2.3 Deletion

Let a leaf node N ’s index be l′. Let N ’s parent node Np be < l, v >. Let N ’s
brother leaf node be l′′. When l′ is deleted, the binary tree can be updated below:

1. The parent node < l, v > is substituted by the index l′′ without the leaf node
number. The parent node becomes the leaf node.

2. The two leaf nodes l′ and l′′ are deleted.
3. Np’s parent, grandfather, until to the root R, subtract 1 from their original

leaf node number. The difference values are their new leaf node number.
4. The other inner nodes’ index and leaf node number keep unchanged. The

other leaf nodes’ index keeps unchanged.

3 Model of Dynamic PDP

In our dynamic PDP, there exist two different entities: client and CS. Client’s
massive data will be stored in CS. CS has significant storage space and compu-
tation resource which are used to process the clients’ data.

Definition 1 (Dynamic PDP). Dynamic PDP scheme consists of the phases
below. They can be performed in the PPT (probabilistic polynomial time).

1. KeyGen(1k) → (sk, pk). Input a security parameter 1k, it outputs the
secret/public key pair (sk, pk). By using KeyGen(1k), the client gets his
secret/public key pair (skc, pkc) and CS gets his secret/public key pair
(sks, pks).

2. TagGen(skc, pkc, pks,m) → Tm. Input (skc, pkc), pks and the message block
m, it outputs the tag Tm.

3. VryTag(sks, pks, pkc,m, Tm) → accept or reject. Input the block-tag pair
(m,Tm), CS’s secret/public key pair (sks, pks), the client’s public key pkc,
it outputs accept or reject. accept denotes the block-tag pair is valid and
reject denotes the block-tag pair is invalid.

4. PreUpdate(skc, pkc, pks, F, info,Me) → {e(F), e(info), e(M ′
e)}. Input (skc,

pkc), pks, the file block F, the update information info, the previous metadata
Me, it outputs the encoded version of the file e(F), e(info), and the new
metadata e(M ′

e). At last, the client sends e(F), e(info) to CS and stores M ′
e

locally.
5. PerUpdate(sks, pkc, pks, Fi−1,Mi−1, e(F), e(info)) → {U, PU , Fi,Mi}. Input

pkc, (sks, pks), the previous version of the stored file Fi−1, the metadata Mi−1

and the query (e(F), e(info)), it outputs the new version of the file Fi and
the metadata Mi, along with the update report U and its proof PU . CS stores
Fi,Mi and sends (U,PU) to the client.

Efficient Dynamic Provable Data Possession 105

6. VryUpdate(skc, pkc, pks, F, info,Me, U, PU) → accept or reject. Input (skc,
pkc), pks, (F, info), Me and (U,PU), it outputs accept or reject. accept
denotes CS’s update response is valid. reject denotes CS’s update response is
invalid.

7. Challenge(skc, pkc, pks,Me) → chal. Input (skc, pkc), pks, Me, it outputs the
challenge chal to CS.

8. Prove(sks, pks, pkc, Fi,Mi, chal) → V. Input (sks, pks), pkc, the latest version
of the file Fi and the metadata Mi, and chal, it outputs the proof V to the
client.

9. Verify(skc, pkc, pks,Me, chal, V) → accept or reject. Input (skc, pkc), pks,
Me, chal, and the proof V , it outputs accept or reject. accept means that CS
still keeps the file intact. reject means some challenged blocks are corrupted.

Definition 2. A dynamic PDP scheme is secure against any untrusted PPT
CS if the probability that any such CS wins the dynamic PDP game below is
negligible. The untrusted CS is the adversary A. The client is the challenger C.
The dynamic PDP game is played between C and A below:

1. KeyGen: C runs KeyGen(1k) → (skc, pkc) and gets its own secret/public
key pair (skc, pkc). A runs KeyGen(1k) → (sks, pks) and gets its own
secret/public key pair (sks, pks). The public keys pkc and pks are made public.

2. First-phase Queries: A adaptively makes a lot of different queries to C. Each
query can be one of the following:
(a) Update queries. A sends the update query to C adaptively. C responds A

according to the query.
(b) Hash queries. A can make hash queries adaptively. C returns the corre-

sponding hash values to A.
(c) Tag queries. A makes block-tag pair queries adaptively. For a block query

mi, C computes the tag Ti ← TagGen(skc,mi) and sends it to A.
Without loss of generality, let (mi, Ti) be the queried block-tag pair or updated
block-tag pair where i ∈ I1.

3. Challenge: C generates a challenge chal for A. Let the challenged block sub-
script set satisfy {i1, i2, · · · , il} � I1, where l is a positive integer. A is
required to provide a possession proof for the blocks mi1 ,mi2 , · · · ,mil .

4. Second-Phase Queries. Similar to the First-Phase Queries. Let (mi, Ti) be the
queried (Update queries or Tag queries) and responded block-tag pairs where
the subscript i ∈ I2 and I2 is the queried and responded block-tag pair subscript
set in Second-Phase. The restriction is that {i1, i2, · · · , il} � I1 ∪ I2.

5. Forge: A computes the remote data possession proof V for the blocks indicated
by chal and outputs V.

We say that a dynamic PDP scheme satisfies unforgeability against the untrusted
CS if the adversary A wins the dynamic PDP game with negligible probability.

106 C. Li and H. Wang

4 The Proposed Dynamic PDP Scheme

4.1 Bilinear Pairings

Let G1 and G2 be two cyclic multiplicative groups with the same prime order q.
Let e : G1 × G1 → G2 be a bilinear map [15,16] which satisfies the following
properties:

1. Bilinearity: ∀g1, g2 ∈ G1 and a, b ∈ Zq, e(g1a, g2b) = e(g1, g2)ab.
2. Non-degeneracy: ∃g4, g5 ∈ G1 such that e(g4, g5) �= 1G2 .
3. Computability: ∀g6, g7 ∈ G1, there is an efficient algorithm to calculate

e(g6, g7).

Definition 3 (CDH problem). Let g be the generator of G1. Given g, ga, gb ∈
G1 for randomly chosen a, b ∈ Zq, calculate gab ∈ G1.

Definition 4 (DDH problem). Let g be the generator of G1. Given (g, ga,

gb, ĝ) ∈ G4
1 for randomly chosen a, b ∈ Z∗

q , decide whether gab
?= ĝ.

In the paper, the chosen group G1 satisfies that CDH problem is difficult but
DDH problem is easy. The DDH problem can be solved by using the bilinear
pairings. Thus, (G1,G2) are also defined as GDH (Gap Diffie-Hellman) groups.

4.2 The Concrete Dynamic PDP Scheme

Initially, suppose the maximum number of the stored block-tag pairs is n̂. Let f
be a pseudo-random function, Ω be a trapdoor function whose first parameter
is the trapdoor, π be a pseudo-random permutation, and h be a cryptographic
hash function which are given below.

f : Z∗
q × {1, 2, · · · , n̂} → Z∗

q , Ω : G∗
1 × {1, 2, · · · , n̂} → Z∗

q

h : Z∗
q → G∗

1 , πn̄ : Z∗
q × {1, 2, · · · , n̄} → {1, 2, · · · , n̄}

The client will upload the large message M to CS. In order to generate
the corresponding tags, M (maybe encoded by using error-correcting code or
encryption algorithm) is divided into n blocks (m1,m2, · · · ,mn) where mi ∈ Z∗

q .
Without loss of generality, we denote M = (m1,m2, · · · ,mn). CS picks a random
number sks ∈ Z∗

q as its secret key and computes its public key pks = gsks . The
client picks a random number skc ∈ Z∗

q as its secret key and computes its public
key pkc = gskc . The client also picks a random point u ∈ G1 and makes u public.

TagGen(skc, pkc, pks,mi): The client creates the full binary tree with the
depth 	log2 n
. From the left, we denote the i-th leaf node index as li. For the
block mi which will be stored on the i-th leaf node, the client computes Wi =
Ω(pkskc

s , li), Ti = (h(Wi)umi)skc . Client outputs the block-tag pair (mi, Ti).
The above procedure is performed n times and all the block-tag pairs are

generated. The client uploads Σ = {(m1, T1), · · · , (mn, Tn)} to CS. CS creates
the full binary tree with the depth 	log2 n
 which is the same as the client’s full

Efficient Dynamic Provable Data Possession 107

binary tree. CS stores the block-tag pair (mi, Ti) on the i-th leaf node from the
left whose index is li.

VryTag(sks, pks, pkc,mi, Ti): CS searches for the i-th leaf node from the left
and gets its index li.

1. CS computes Ŵi = Ω(pksks
c , li);

2. CS verifies whether e(Ti, g) = e(h(Ŵi)umi , pkc) holds: if it holds, CS accepts
and stores it on the i-th leaf node from the left; otherwise, CS rejects it.

PreUpdate(skc, pkc, F, info,Me): The client prepares to update the block. The
update information is denoted as info (e.g., delete block, insert block, modify
block). In order to simplify the procedure, the encoding and encrypting are
omitted. Then, the client performs the procedures below:

1. If the update is insertion, the client updates its dynamic binary tree according
to Sect. 2.B: insertion. Suppose F is inserted after the leaf node lN . From the
updated dynamic binary tree, the client gets the index lN+1 which is after
the leaf node lN . The client computes

WN+1 = Ω(pkskc
s , lN+1), TN+1 = (h(WN+1)uF)skc

The client outputs the block-tag pair (F, TF). The original metadata Me is
also modified into the latest metadata M ′

e. The client uploads (F, TF , info)
to CS.

2. If the update is deletion, the client updates its dynamic binary tree according
to Sect. 2.C: deletion. The original metadata Me is updated into the latest
metadata M ′

e. The client uploads (F, info) to CS.
3. If the update is modification, i.e., the block-tag pair (mi, Ti) is modified into

(F, TF) on the same leaf node with the same index li. The client computes

Wi = Ω(pkskc
s , li), TF = (h(Wi)uF)skc

The client outputs the block-tag pair (F, TF). The original metadata Me is
also updated into the latest metadata M ′

e. The client uploads (F, TF , info)
to CS.

PerUpdate(pkc, pks, sks, F, info, TF): Upon receiving the updating query, the
corresponding leaf node (which will be inserted or modified or deleted) can be
fleetly searched by using the inner node’s parameter v (i.e., the number of the leaf
node which are the inner node’s children), CS performs the procedures below:

1. If the update is insertion, CS updates its dynamic binary tree according to
Sect. 2.B: insertion. Suppose F is inserted after the leaf node with the index
lN . CS gets the index lN+1 which is after the leaf node lN .
(a) If (F, TF) can pass VryTag, CS stores them on the leaf node with the

index lN+1. Then, CS sends the insertion verification information and
the corresponding signature (InfoU , Signsks

(InfoU)) to the client.
(b) If (F, TF) can not pass the insertion verification VryTag, CS rejects them.

108 C. Li and H. Wang

2. If the update is modification and (F, TF) can pass VryTag, CS substitutes
(F, TT) for (mi, Ti) whose index is li. Then, CS sends the modification verifi-
cation information and the corresponding signature (InfoU , Signsks

(InfoU))
to the client.

3. If the update is deletion, CS updates its dynamic binary tree according to
Sect. 2.B: deletion. Then, CS deletes the corresponding block-tag pair. CS
sends the deletion verification information and the corresponding signature
(InfoU , Signsks

(InfoU)) to the client.

VryUpdate({(InfoU , Signsks
(InfoU))}): Upon receiving the CS’s update

response (InfoU , Signsks
(InfoU)) on the update query (F, TF , info), where TF

is empty for the deletion, the client verifies CS’s signature for the update. If it
can pass the verification, the client accepts CS’s update response; otherwise, the
client rejects CS’s update response and sends the same query again.

Challenge(skc, pkc, pks,Mc): In order to check the remote data integrity, the
client sends the challenge chal = (c, k1, k2) to CS, where 1 ≤ c ≤ n̂, k1, k2 ∈ Zq.

Prove(sks, pks, pkc, Σ, chal): Suppose that n̂ block-tag pairs are stored in CS.
Upon receiving the challenge chal = (c, k1, k2), CS computes: vi = πn̂(k1, i), ai =
f(k2, i), for 1 ≤ i ≤ c; T =

∏c
i=1 T ai

vi
, m̂ =

∑c
i=1 aimvi

. CS outputs V = (m̂, T)
and sends V to the client.

V erify(skc, pkc, pks,Me, chal, V): Upon receiving the response V from CS,
based on the challenge chal and the stored metadata, the client performs the
procedures below:

1. For 1 ≤ i ≤ c, the client computes: vi = πn̂(k1, i), ai = f(k2, i);
2. From the left, the client searches for the vi-th (1 ≤ i ≤ c) leaf node from the

stored dynamic binary tree. Then, the client gets the corresponding leaf node
index lvi

for all vi (1 ≤ i ≤ c);
3. For all vi (1 ≤ i ≤ c), the client computes Wvi

= Ω(pkskc
s , lvi

) and checks

e(T, g) ?= e(
c∏

i=1

h(Wvi
)aium̂, pkc)

If it holds, the client outputs “accept”; otherwise the client outputs “reject”.
4. When CS’s response can not pass the client’s verification, the client will per-

form the same challenge many times. If the responses still cannot pass the
verification, the client will connect the CS provider to inform it this situation.
CS provider will censor the client’s stored data and retrieve the lost data from
the offline backup. If CS provider fails, the client and the CS provider will
evaluate the loss and discuss the reparation according to the loss severity.

Correctness: A dynamic PDP scheme must be workable and correct. That is, if
the client and CS are honest and follow the specified procedures, the response
V can pass the client’s verification. The correctness is given below:

e(T, g) = e(
∏c

i=1 T ai
vi

, g) = e(
∏c

i=1(h(Wvi
)umi)skcf(k2,i), g)

= e((
∏c

i=1 h(Wvi
)ai)um̂, pkc)

Efficient Dynamic Provable Data Possession 109

4.3 Performance Analysis

First, we analyze the performance of our proposed dynamic PDP scheme from
the computation cost and communication cost. We compare our dynamic PDP
scheme with the other up-to-date dynamic PDP schemes.

Table 1. Comparison of computation cost

Protocols Wang [9] Zhu [10] Ours

TagGen n̂(2Cexp + 1Cmul) (s + 2n̂)Cexp + n̂Cmul 2n̂Cexp + n̂Cmul

Prove cCexp + (c− 1)Cmul cCexp + (c− 1)Cmul cCexp + (c− 1)Cmul

Verify 4Ce + (c + 1)Cexp 3Ce + (c + s)Cexp+ 2Ce + (c + 1)Cexp+

+cCmul (c + s− 2)Cmul cCmul

Computation: Suppose there are n̂ block-tag pairs will be stored in CS. The
challenged block number is c. We will consider the computation overhead in the
different phases. The multiplication, exponentiation and bilinear pairings con-
tribute most computation cost on the group G1. Compared with them, the other
operations are faster and computation cost is small, such as Hash function, per-
mutation, etc. Thus, we only consider the multiplication, exponentiation and
bilinear pairings on the group G1. In the phase TagGen, the client performs 2n̂
exponentiation (pkskc

s can be finished in the precomputation once for all) and
n̂ multiplication on G1. In the phase of V ryTag, CS will perform 1 exponenti-
ation, n̂ multiplication and 2n̂ bilinear pairing on G1. In the phase PreUpdate,
for one time, the average computation cost is 1

4 (3+3) = 1.5 exponentiation and
1
4 (1+1) = 0.5 multiplication. In the phase PerUpdate, for one time, CS performs
1 signature operation and a VryTag operation. In the phase VryUpdate, the client
needs to verify a signature. In the phase of Prove, CS will perform c exponentia-
tion on G1. In the phase of V erify, the client will perform c multiplication, c+1
exponentiation and 2 pairings (pkskc

s can be finished in the precomputation). On
the other hand, in 2011, Wang et al. proposed the first dynamic remote data
public auditability scheme in cloud computing [9]. In 2013, Zhu et al. proposed
the dynamic audit services for outsourced storages in clouds [10]. The compu-
tation comparison can be summarized in Table 1. In Table 1, Cmul denotes the
time cost of multiplication, Cexp denotes the time cost of exponentiation on the
group G1, and Ce denotes the time cost of bilinear pairing. In the above com-
parison, we omit the computation cost in the phase VryTag. In order to guard
against the dishonest clients to upload invalid block-tag pairs, CS verifies every
block-tag pair. Our scheme has this property while Wang et al.’s scheme [9] and
Zhu et al.’s scheme [10] have not this property. Thus, we omit VryTag in the
above comparison. Our dynamic PDP scheme has lower computation cost.

Communication: In dynamic PDP scheme, the communication cost mainly comes
from the block-tag uploading, remote data integrity query and response. We

110 C. Li and H. Wang

give our dynamic PDP scheme’s communication overhead below. For n̂ blocks,
all the block-tag pairs length is n̂(|G1| + log2 q). In the phase Prove, the client
sends the challenge chal = (c, k1, k2) to CS, i.e., the communication overhead is
log2 n̂+2 log2 q. In the response, CS responds 1 element in G1 and 1 element in Z∗

q

to the client, i.e., the communication overhead is |G1|+log2 q. On the other hand,
Wang et al. [9] and Zhu et al. [10] proposed two different dynamic provable data
possession scheme. Compared with these two schemes, our dynamic PDP scheme
is more efficient in the communication cost. The communication comparison can
be summarized in Table 2. In Table 2, 1|G1| denotes the bit length of one element
in G1, 1|G2| denotes the bit length of one element in G2 and 1|Zq| denotes the bit
length of one element in Zq. Our dynamic PDP scheme has lower communication
cost.

Table 2. Comparison of communication cost (bits)

Protocols Wang [9] Zhu [10] Ours

Tag (n̂ + 1)|G1| (n̂ + 1) log2 n̂ + (s + n̂)|G1| n̂|G1|
+n̂(k + 1)

Chal c(log2 n̂ + log2 q c(log2 n̂ + log2 q) log2 n̂ + 2 log2 q

Response log2 n̂+(c+2)|G1|+O(c) 2|G1| + 1|G2| + s log2 q 1|G1| + 1Zq

Private PDP and Convertibility: From the phase VryTag, we know CS can iden-
tify the invalid block-tag pairs. On the other hand, in the phase Verify, the
client’s secret key skc is needed. Thus, only the client can perform his own
data’s PDP. Our proposed dynamic PDP scheme is private PDP scheme. In the
verification, the crucial element is pkskc

s which can only be computed by the
client and the cloud server. When the client makes the crucial element pkskc

s

public, every entity can perform the process of verification. Thus, our scheme
can be converted into public PDP scheme.

5 Security Analysis

Theorem 1. The proposed dynamic PDP scheme is existentially unforgeable in
the random oracle model if the CDH problem on G1 is hard.

The detailed proof process is omitted due to the page limit.

Theorem 2. Suppose that n̂ block-tag pairs are stored, d̄ block-tag pairs are
modified or are not correctly updated, and c block-tag pairs are challenged. Then,
our proposed dynamic PDP scheme is (d̄

n̂ , 1 − (n̂−d̄
n̂)c)-secure, i.e.,

1 − (
n̂ − d̄

n̂
)c ≤ PX ≤ 1 − (

n̂ − c + 1 − d̄

n̂ − c + 1
)c

where PX denotes the probability of detecting the dishonest CS.

The detailed proof process is omitted due to the page limit.

Efficient Dynamic Provable Data Possession 111

6 Conclusion

Based on the dynamic binary tree, this paper proposes a private dynamic PDP
scheme. From the comparison of communication cost and computation cost, our
proposed private dynamic PDP scheme is efficient.

References

1. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Capitani, D., di Vimercati,
S., Syverson, P. (eds.) CCS 2007, pp. 598–609. ACM Press, New York (2007)

2. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

3. Zheng, Q., Xu, S.: Fair and dynamic proofs of retrievability. In: CODASPY 2011,
pp. 237–248. ACM Press, New York (2011)

4. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: Liu, P., Molva, R. (eds.) SecureComm 2008, pp. 9:1–9:10.
ACM Press, New York (2008)

5. Erway, C.C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. ACM Trans. Inf. Syst. Secur. 17(4), 15 (2015)

6. Etemad, M., Küpçü, A.: Transparent, distributed, and replicated dynamic provable
data possession. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.)
ACNS 2013. LNCS, vol. 7954, pp. 1–18. Springer, Heidelberg (2013)

7. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious
RAM. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 279–295. Springer, Heidelberg (2013)

8. Yang, K., Jia, X.: An efficient and secure dynamic auditing protocol for data storage
in cloud computing. IEEE Trans. Parallel Distrib. Syst. 24(9), 1717–1726 (2013)

9. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and
data dynamics for storage security in cloud computing. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009)

10. Zhu, Y., Ahn, G., Hu, H., Yau, S., An, H., Chen, S.: Dynamic audit services for
outsourced storages in clouds. IEEE Trans. Serv. Comput. 99, 1 (2011)

11. Zhang, Y., Marina, B.: Efficient dynamic provable possession of remote data via
balanced update trees. In: ASIA CCS 2013, pp. 183–194. ACM Press, New York
(2013)

12. Wang, J., Liu, S.: Dynamic provable data possession with batch-update verifiabil-
ity. In: ICADE 2012, pp. 108–113. IEEE Press, New Jersey (2012)

13. Shi, E., Stefanov, E., Papamanthou, C.: Practical dynamic proofs of retrievability.
In: ACM CCS, pp. 325–336 (2013)

14. Tate, S.R., Vishwanathan, R., Everhart, L.: Multi-user dynamic proofs of data
possession using trusted hardware. In: 3rd ACM CODASPY, pp. 353–364. ACM
Press, San Antonio (2013)

15. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

16. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

Identity-Based Batch Provable Data Possession

Fucai Zhou1(B), Su Peng2, Jian Xu1, and Zifeng Xu1

1 Software College, Northeastern University, Shenyang, China
{fczhou,xuj}@mail.neu.edu.cn, dk@tnimdk.com
2 School of Computer Science and Engineering,

Northeastern University, Shenyang, China
supeng@stumail.neu.edu.cn

Abstract. Provable Data Possession (PDP) is a technique for checking
whether data is correctly stored in remote servers without retrieving the
entire data. For many previous PDP schemes, correctly choosing public
key for clients relies on the security of Public Key Infrastructure (PKI),
but PKI itself still faces many kinds of security vulnerabilities. In addi-
tion, the verification of certificates introduces heavy computation and
communication cost. In this paper, we propose an Identity-Based Batch
Provable Data Possession (ID-BPDP) scheme to eliminate the certifi-
cate management. Meanwhile, to the best of our knowledge, it is the
first identity-based provable data possession scheme supporting batch
verification for multiple owners and multiple clouds simultaneously to
reduce computation cost greatly. Our scheme is provably correct and
secure based on bilinear pairings and the hardness assumption of Com-
putational Diffie-Hellman problem, and our analyses/simulations show
that the scheme is able to verify the integrity of data efficiently.

Keywords: Provable data possession · Identity-Based cryptography ·
Batch proving · Bilinear pairings

1 Introduction

With the rapid development of cloud computing, for users possessing large
amount of data, it is much cheaper to store the data in remote cloud storage
servers than maintaining all the data locally. The outsourced data may not be
accessed frequently, but may consist of important information such as scientific
research data and archived files that have been collected for decades of years.
However, users are not able to control outsourced data directly. Although storage
service providers may apply general protections for data storage services, such as
transporting data using secure protocols, encrypting data, setting firewalls and
so on, the security of data is still doubtable because of system failures and other
irresistible factors [1]. In addition, storage service providers are also assumed to
be untrusted. Consider this scenario: a data owner uploaded a new version of
data, but the server lost updated blocks. Later, when the owner wants to retrieve
the data, the server cheats the owner by providing an outdated version.
c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 112–129, 2016.
DOI: 10.1007/978-3-319-47422-9 7

Identity-Based Batch Provable Data Possession 113

1.1 Motivation and Related Work

To resolve the problems mentioned above, the most straightforward method is
downloading entire data from the cloud storage server to check the integrity.
However, in nowadays, this solution is completely infeasible due to extremely
large size of data. Provable Data Possession (PDP) was first proposed by Ateniese
et al. [2] to provide probabilistically accurate verification of data integrity with
low computation and communication cost. Following Ateniese et al.’s pioneering
work, many PDP schemes have been proposed [3–20,22]. Among these works,
[3] by Curtmola et al. is a multiple replica provable data possession scheme.
[5] by Ateniese et al. is a dynamic PDP scheme but does not support insert
operation. In order to support the insert operation, Erway et al. proposed a
full-dynamic PDP scheme [6]. [7,9,10,13] allow a data owner to delegate the
remote integrity checking to a third party. [11] by Wang is a proxy PDP scheme
in public clouds. [12] by Zhu et al. is a cooperative PDP scheme in multicloud
storage. [15–17,19,20] make corrections to the security issues of some previously
proposed PDP schemes. [18] by Wang et al. is a PDP scheme supporting efficient
user revocation. However, in these schemes, to confirm if the data is uploaded by
a certain user, the verifier needs to retrieve the correct public keys of users from
Public Key Infrastructure (PKI). PKI ensures authenticity of public keys while
introduces some other problems. On the one hand, every user needs to check
its validity before using a public key. On the other hand, the managements of
certificates, such as delivery, renewal and revocation, need large costs of compu-
tation and storage. To make it worse, PKI itself still faces many kinds of security
vulnerabilities [21].

To eliminate the implementation of PKI, in 2015, Wang [22] proposed the
first Identity-based Distributed Provable Data Possession (ID-DPDP) scheme.
However, the scheme only supports verification for single owner and multiple
clouds simultaneously. When the verifier checks the integrity of many owners’
data, he must do the verification for many times which invokes expensive com-
putation cost.

1.2 Contributions

We proposed a novel Identity-Based Batch Provable Data Possession (ID-BPDP)
scheme. Without the implementation of PKI, ID-BPDP eliminates the resource-
consuming certificate management. Meanwhile, ID-BPDP supports batch ver-
ification for multiple owners and multiple clouds simultaneously to reduce the
computation cost greatly, especially in large-scale cloud storage systems. ID-
BPDP also reduces computation cost for data owners while generating tags of
data blocks and therefore it is especially suitable for data owners with limited
computation power.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2 reviews some prelim-
inaries of this paper. Section 3 presents the definitions of system model and

114 F. Zhou et al.

security model of our scheme. Section 4 proposes the detailed construction of
our scheme. Section 5 gives the analyses of our scheme in terms of computation
and communication costs. Section 6 proves the security of our scheme. Finally,
Sect. 7 concludes this paper.

2 Preliminaries

In this section, we review bilinear pairings and CDH problem.

2.1 Bilinear Pairings

Let G1 and G2 be two cyclic multiplicative groups with a same prime order q and
let g be a generator of G1. Let e : G1 × G1 → G2 be a bilinear map [23] which
satisfies the following properties:

1. Bilinearity. ∀u, v ∈ G1 and a, b ∈ Zq, e(ua, vb) = e(u, v)ab.
2. Non-degeneracy. e(g, g) �= 1G2 .
3. Computability. ∀u, v ∈ G1, There exists an efficient algorithm to compute

e(u, v).

2.2 CDH Problem on G1

Let G1 be a cyclic multiplicative group with a prime order q and let g be a
generator of G1. Given g, ga, gb ∈ G1 for randomly chosen a, b ∈ Zq, compute
gab ∈ G1.

3 Definitions

In this section, we present the system model and security model of our scheme.

3.1 System Model

Our scheme involves four entities: The private key generator (PKG), the data
owners (owners), the batch verifier (verifier) and the cloud servers (clouds). The
PKG outputs the corresponding private keys when received the identities of the
owners. The owners create the data and store their data in the clouds. The
batch verifier is a trusted third party to provide batch verification service for
the owners. The clouds store the owners’ data and provide data access to the
owners and, maybe, the other data users.

Furthermore, we assume that every owner possesses a large amount of data
comprised of file blocks and stores the blocks in several clouds. The clouds split
each block into smaller sectors with a same number and a same size.

Before presenting the definition of our scheme, we first define some notations
as listed in Table 1.

Identity-Based Batch Provable Data Possession 115

Table 1. Notations

Notations Descriptions

mpk Master public key

msk Master private key

DOi The i-th owner

CSj The j-th cloud

IDi DOi’s ID

ski DOi’s private key

Mijk The k-th block of DOi stores in CSj

s The sector number

Fijkl The l-th sector of the k-th block of DOi stores in CSj

mijk Linear combination of {Fijkl}
σijk Mijk’s tag

ci Number of challenged blocks of DOi

O Set of indexes of owners selected by verifier

C Set of indexes of challenged clouds

chal Challenge token of all owners

chalj Challenge token forwarded to CSj

Pj Proof of CSj

Definition 1 (Identity-Based Batch Provable Data Possession). The
ID-BPDP scheme is comprised of six procedures:

1. Setup(1k) → (params,mpk,msk). The procedure is run by the PKG. It takes
as input the security parameter k and outputs the public parameters, the mas-
ter public key mpk and the master private key msk.

2. Extract(params,msk, IDi) → ski. The procedure is run by the PKG. It takes
as input the public parameters and the i-th owner DOi’s identity IDi and
outputs the corresponding private key ski.

3. TagGen(params, IDi, ski,mpk, {Mijk}) → {σijk}. The procedure is run by
each owner. Mijk denotes the k’s block of DOi stores in the j-th cloud CSj

and {Mijk} denotes all the blocks of DOi. Each Mijk is comprised of s sectors,
i.e., Mijk = {Fijkl | l = 1, . . . , s}. It takes as input the public parameters,
DOi’s identity IDi, DOi’s private key ski, the master public key mpk and
{Mijk} defined above and outputs the corresponding set of tags {σijk}.

4. Challenge({(i, j, k)}) → (chal, {chalj}). The procedure is run by the verifier. It
takes as input the set of indexes {(i, j, k)} of {Mijk} and outputs the challenge
token chal by selecting some blocks. Then the verifier splits chal to a set of
challenge tokens {chalj} and forwards each chalj to the corresponding j-th
cloud. (Note: Some clouds may not be challenged).

5. Prove(params, chalj , {IDi}, {σijk}, {Mijk}) → Pj. The procedure is run
by each cloud who receives challenge token. It takes as input the public

116 F. Zhou et al.

parameters, the challenge token chalj, the set of the owners’ IDs {IDi}, the
tags {σijk} and the blocks {Mijk} and outputs the proof Pj for chalj. Then
the cloud forwards Pj to the verifier.

6. Verify(params, chal, {IDi}, {Pj},mpk) → {0, 1}. The procedure is run by the
verifier. It takes as input the public parameters, the challenge token chal,
the set of the owners’ IDs {IDi}, the set of the clouds’ proofs {Pj} and the
master public key mpk and outputs 1 (valid) or 0 (invalid).

3.2 Security Model

We assume the verifier always performs honestly during the verification proce-
dure, but the clouds could be dishonest and may forge tags or proofs to cheat
the verifier and the owners.

Definition 2 (Unforgeability of Tags). A tag is unforgeable if for any prob-
abilistic polynomial adversary A (malicious clouds), the probability that A wins
the Tag-Forge game on a set of blocks is negligible. The game between the adver-
sary A and the challenger C is described as follows:

1. Setup. C runs Setup(1k) and gets (params,mpk,msk). It forwards the public
parameters and the master public key (param,mpk) to A but keeps the master
private key msk secret.

2. Queries. A adaptively makes Extract and TagGen queries adaptively to C as
follows:
(a) Extract Queries. A queries the private key of IDi. By running

Extract(params,msk, IDi), C gets the private key ski and forwards it to
A. Let S1 denote the set of extracted identities {IDi}.

(b) TagGen Queries. A queries the tags of blocks {Mijk}. By running
TagGen(params, IDi, ski,mpk, {Mijk}), C gets the tag σijk and forwards
it to A. Let I1 denote the set of the TagGen-queried tuples
{(i, j, k,Mijk)}.

3. Forge. Eventually, A responds a valid tag σi∗j∗k∗ of IDi∗ and
(i∗, j∗, k∗,Mi∗j∗k∗) where IDi∗ /∈ S1 and (i∗, j∗, k∗,Mi∗j∗k∗) /∈ I1.

Definition 3 (Unforgeability of Proofs). A proof is unforgeable if for any
probabilistic polynomial adversary A (malicious clouds), the probability that A
wins the Proof-Forge game on a set of blocks is negligible. The game between the
adversary A and the challenger C is described as follows:

1. Setup. Same as the Tag-Forge game’s Setup phase described above.
2. First-Phase Queries. Same as the Tag-Forge game’s Queries phase described

above.
3. Challenge. Let S1 denote the set of the extracted identities {IDi} and let

I1 denote the set of the TagGen-queried tuples {(i, j, k,Mijk)}. C generates
a challenge token chal∗ for a set of c∗ tuples {(i∗n, j∗

n, k∗
n,Mi∗

n,j∗
n,k∗

n
) | n =

1, . . . , c∗} where at least one IDi∗
n

/∈ S1 and for the same i∗n,
{(i∗n, j∗

n, k∗
n,Mi∗

n,j∗
n,k∗

n
)} /∈ I1. Then C forwards chal∗ to A.

Identity-Based Batch Provable Data Possession 117

4. Second-Phase Queries. Similar as the First-Phase Queries. Let S2 denote the
set of the extracted identities {IDi} and let I2 denote the set of the TagGen-
queried tuples {(i, j, k,Mijk)}. The restriction is that at least one IDi∗

n
/∈

(S1 ∪ S2) and for the same i∗n, (i∗n, j∗
n, k∗

n,Mi∗
nj∗

nk∗
n
) /∈ (I1 ∪ I2).

5 Eventually, A responds a valid proof P ∗ = {Pj∗} of chal∗.

Definition 4 (Detection Probability). Suppose that n block-tag pairs are
stored, t block-tag pairs are modified and c block-tag pairs are challenged, the
probability of detecting the modification is PX .

4 Construction

The architecture of the proposed ID-BPDP scheme is described in Fig. 1 and the
construction is detailed as follows:

Fig. 1. Architecture of ID-BPDP.

1. Setup(1k) → (params,mpk,msk). Given a security parameter k, The PKG
chooses two groups G1 and G2 with the same order q > 2k along with a bilinear
map e : G1 × G1 → G2. Let g be a generator of G1. The PKG also chooses
three cryptographic hash functions H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → Zq,
H3 : {0, 1}∗ → G1 and a pseudo-random function f : Zq × {1, . . . , n} → Zq.
Then the PKG chooses a random number x ∈ Zq as the master private key
msk and set gx as the master public key mpk. The PKG also chooses s
random numbers {vl ∈ Zq | l = 1, . . . , s}.

2. Extract(params,msk, IDi) → ski. DOi sets pki = H1(IDi) as the public key
and forwards IDi to the PKG. The PKG sets ski = pkx

i as DOi’s private key
and forwards ski to the corresponding owner via a secure channel.

3. TagGen(params, IDi, ski,mpk, {Mijk}) → {σijk}. The set {Mijk} denotes
the k-th block of DOi will store in CSj . For each Mijk, the owner sets:

mijk =
s∑

l=1

vlFijkl, hi = H2(IDi), hpk = H3(mpk).

118 F. Zhou et al.

(Note: H1 and H2 are different hash functions). DOi also randomly chooses
ui ∈ Zq and sets the tag σijk = (Sijk, Tijk) of Mijk below:

Sijk = gui , Tijk = sk
mijk+hi

i · hpkui .

Then DOi forwards each Mijk and σijk to the corresponding j-th cloud.
The tag σijk = (Sijk, Tijk) can be verified by checking whether the following
equation holds:

e (Tijk, g) = e(H1(IDi)
s∑

l=1
vlFijkl+H2(IDi)

,mpk)e (H3(mpk), Sijk) . (1)

4. Challenge({(i, j, k)}) → (chal, {chalj}). Suppose that the verifier wants to
verify c different blocks. Let Minjnkn

(1 ≤ n ≤ c, (in, jn, kn) ∈ {(i, j, k)})
denote the kn-th blocks of the in-th owner stores in the jn-th cloud to
be verified, the verifier forms a challenge token chal = (I,K) with I =
{(in, jn, kn) | n = 1, . . . , c} and K = {κin | n = 1, . . . , c} with each random
temporary key κin ∈ Zq. Then the verifier splits chal to a set of challenge
tokens {chalj} and each chalj = (Ij ,Kj) with Ij = {(in, j, kn)} ⊆ I and
Kj = {κin | (in, jn, kn) ∈ Ij and for ∀n1, n2 with n1 �= n2, in1 �= in2} ⊆ K
(avoid sending duplicated or unneeded keys to reduce communication cost)
for each challenged cloud j. (Note: Some clouds may not be challenged). The
verifier forwards each chalj to the corresponding j-th cloud. Let C denote
the set of indexes {j} of the challenged clouds, we have ∪j∈CIj = I and for
∀j1, j2 ∈ C and j1 �= j2, Ij1 ∩ Ij2 = ∅.

5. Prove(params, chalj , {IDi}, {σijk}, {Mijk}) → Pj . Each cloud who receives
the challenge token chalj = (Ij ,Kj) with Ij = {(in, j, kn)} ⊆ I and
Kj = {κin | (in, jn, kn) ∈ Ij and for ∀n1, n2 with n1 �= n2, in1 �= in2} ⊆ K

computes {rn} = {fκin
(in, j, kn)} and generates the proof Pj = (S

′
j , T

′
j , {F

′
ijl |

(i, j, k) ∈ Ij}) of the challenged blocks {Minjkn
} with tags

{σinjkn
= (Sinjkn

, Tinjkn
)} by setting:

S
′
j =

∏

chalj

Srn

injkn
, T

′
j =

∏

chalj

T rn

injkn
, F

′
ijl =

∑

chalj,in=i

Finjknl · rn.

Then the cloud forwards Pj to the verifier.
6. Verify(params, chal, {IDi}, {Pj},mpk) → {0, 1}. Let O denote the set of

indexes {i} of the owners selected by the verifier. After received all the
proofs of the challenged clouds, with the challenge token chal = (I,K) with
I = {(in, jn, kn) | n = 1, . . . , c} and K = {κin | n = 1, . . . , c}, the verifier
computes {rn} = {fκin

(in, jn, kn) | n = 1, . . . , c} and outputs 1 (valid) or 0
(invalid) by checking whether the following equation holds:

e

⎛

⎝
∏

j∈C

T
′
j , g

⎞

⎠ = e

⎛

⎝
∏

i∈O

H1(IDi)
∑

j∈C

s∑

l=1
vlF

′
ijl+H2(IDi)

∑

in=i

rn

,mpk

⎞

⎠

· e

⎛

⎝H3(mpk),
∏

j∈C

S
′
j

⎞

⎠ .

(2)

Identity-Based Batch Provable Data Possession 119

4.1 Correctness

Now we show the correctness of our scheme. If the PKG, the owners, the verifier
and the clouds run all the procedures described above correctly, according to
formula (2), we have:

e

⎛

⎝
∏

i∈O

H1(IDi)
∑

j∈C

s∑

l=1
vlF

′
ijl

,mpk

⎞

⎠ = e

⎛

⎝
∏

j∈C

∏

chalj

H1(IDin)minjkn ·rn ,mpk

⎞

⎠

= e

⎛

⎝
∏

j∈C

∏

chalj

skin
minjkn ·rn , g

⎞

⎠ ,

e

(
∏

i∈O

H1(IDi)
H2(IDi)

∑

in=i

rn

,mpk

)

= e

⎛

⎝
∏

j∈C

∏

chalj

H1(IDin)H2(IDin)·rn ,mpk

⎞

⎠

= e

⎛

⎝
∏

j∈C

∏

chalj

skin
hin ·rn , g

⎞

⎠ ,

and:

e

⎛

⎝H3(mpk),
∏

j∈C

S
′
j

⎞

⎠ = e

⎛

⎝hpk,
∏

j∈C

∏

chalj

Srn

injkn

⎞

⎠

= e

⎛

⎝
∏

j∈C

∏

chalj

hpkuin ·rn , g

⎞

⎠ .

Then the right hand side (RHS) of formula (2) can be expressed as:

RHS = e

⎛

⎝
∏

j∈C

∏

chalj

skin
minjkn ·rn , g

⎞

⎠ e

⎛

⎝
∏

j∈C

∏

chalj

skin
hin ·rn , g

⎞

⎠

= e

⎛

⎝
∏

j∈C

∏

chalj

T rn

injkn
, g

⎞

⎠

= e

⎛

⎝
∏

j∈C

T
′
j , g

⎞

⎠ .

5 Performance Analysis

In this section, we analyze the performance of our proposed ID-BPDP scheme
from the computation and the communication costs and compare them with
other up-to-date PDP protocols.

120 F. Zhou et al.

5.1 Computation

We compare the computation cost between our scheme and Yang [14], Wang’s
Panda [18] and Wang’s ID-DPDP [22]. Yang [14] and Wang’s Panda [18] support
multi-owner-and-multi-cloud verification, while Wang’s ID-DPDP [22] is the first
ID-based PDP scheme. We summarize the result in Table 2.

Table 2. Comparison of Computation Cost - Multiple Owners (n1, n2 > 1)

Schemes TagGen Prove Verify ID-Based

Yang [14] n(s + 1)Cexp n1sCe +(c +
n1s)Cexp

(n1 + 1)Ce

+cCexp

No

Wang’s Panda [18] 2nCexp cCexp (n1 + 1)Ce

+(n1 +
c)Cexp

No

Wang’s ID-DPDP [22] n(s + 1)Cexp

+nsCh

cCexp + csCh 2n1Ce +(c +
n1s)Cexp

Yes

Our ID-BPDP nCexp (c+2n1n2)Cexp 3Ce + n1Cexp Yes

Notes:

1. Cexp denotes the time cost of single exponentiation on the group G1, Cmul

denotes the time cost of single multiplication on the group G1, Ce denotes the
time cost of single bilinear pairing; Ch denotes the time cost of single hash
operation on the blocks, n denotes the total number of blocks, s denotes the
sector number, c denotes the total number of challenged blocks, n1 denotes
the number of owners selected by the verifier, n2 denotes the number of
challenged clouds.

2. Bilinear pairings and exponentiations on G1 and hash operations on blocks
contribute most computation cost. Compared with them, computation cost of
multiplications on G1, multiplications and additions on Zq, multiplications on
G2 and other hash operations is negligible. Meanwhile, other hash operations
can be done once for all. Therefore, we do not consider them in the computa-
tion analysis. For the same reason, we do not consider the computation cost
of Challenge operation.

3. Because Wang’s ID-DPDP [22] does not support multi-owner-and-multi-cloud
verification, we assume that the computation repeats for several times that is
equal to n1, but for each loop, the blocks number is n/n1 and the challenged
blocks number is c/n1.

4. In the Prove operation of our scheme, notice that:

S
′
j =

∏

chalj

Srn

injkn
=

∏

i∈O

(gui)
∑

in=i

rn

,

with this, we can avoid some exponentiations.

Identity-Based Batch Provable Data Possession 121

Analysis:
In the comparison of computation cost with multiple owners, our scheme has
the fastest TagGen and Verify operations than those of the other schemes when
more than one owners selected by the verifier, even we set s = 1. Independent to
the increasing number of the owners selected by the verifier, our scheme needs
only three pairing operations to verify all the proofs.

Our Prove operation is slightly slower than that of Wang’s ID-DPDP [22], but
considering the strong computation power of cloud servers, it is still acceptable.

Meanwhile, our scheme does not suffer from resource-consuming certificate
management.

5.2 Communication

We compare the communication cost between our scheme and Yang [14], Wang’s
Panda [18] and Wang’s ID-DPDP [22]. We summarize the result in Table 3.

Table 3. Comparison of Communication Cost - Multiple Owners (n1, n2 > 1)

Schemes Challenge Prove ID-Based

Yang [14] c(log2 n + log2 q) n2(2G1) No

Wang’s Panda [18] c(log2 n + log2 q) n1n2(2G1) + 2c log2 n No

Wang’s ID-DPDP [22] (n1 + c) log2 n
+(2n1 + n1n2) log2 q

n1(n2+1)(1G1+s log2 q) Yes

Our ID-BPDP c log2 n + d log2 q n2(2G1) + n1n2s log2 q Yes

Notes:

1. d satisfies max(n1, n2) ≤ d ≤ min(n1n2, c), 1G1 denotes the size of one element
of G1 in bits, n denotes the total number of blocks, s denotes the sector
number, c denotes the total number of challenged blocks, n1 denotes the
number of owners selected by the verifier, n2 denotes the number of challenged
clouds.

2. Because Wang’s ID-DPDP [22] does not support multi-owner-and-multi-cloud
verification, we assume that the computation repeats for several times that is
equal to n1, but for each loop, the blocks number is n/n1 and the challenged
blocks number is c/n1.

3. In Wang’s ID-DPDP [22], the communication cost includes four parts: Chal-
lenge1, Challenge2, Response1 and Response2. We sum Challenge1 and Chal-
lenge2 to Challenge, sum Response1 and Response2 to Prove in Table 3.

Analysis:
In the comparison of communication cost with multiple owners, it is obvious that
our Challengeoperation has the smallest communication cost in the compared
schemes. Although Wang’s ID-DPDP [22] applies pseudo-random permutation

122 F. Zhou et al.

to reduce the communication cost between the verifier and the combiner, but
if we take the communication cost between the combiner and the clouds into
consideration, the total cost is still larger than that of our scheme. Furthermore,
it is difficult to implement a trusted combiner in practice.

The communication cost of our Prove operation is slightly smaller than that
of Wang’s ID-DPDP [22].

Meanwhile, our scheme does not suffer from resource-consuming certificate
management.

5.3 Simulation

We simulate our scheme and Wang’s ID-DPDP [22] and compare the com-
putation and communication cost between them under the same environment
described as follows:

1. A desktop PC with the following hardware and software settings:
(a) CPU: Intel Pentium G2030 @ 3.00 GHz;
(b) Physical Memory: 8 GB DDR3 @ 1333 MHz;
(c) OS: Linux with kernel 3.16.0-4-amd64;
(d) Development Environment: GCC v4.9.2 with GMP Library v6.0.0 [24],

PBC Library v0.5.14 [25] and OpenSSL 1.0.1k [26].
2. Security parameters: type A curve [25] with 1024-bit group order; Hash func-

tions implemented in PBC Library [25] and pseudo-random functions (per-
mutations) implemented with SHA-256 and AES-256 in OpenSSL [26].

The simulation demonstrated that our schemes reduces computation cost
for TagGen and Verify greatly. Our scheme is slightly slower than Wang’s ID-
DPDP [22] in Prove, but the difference is constant along with the increases of
the challenged blocks. The communication cost of our scheme is slightly smaller
than that of Wang’s ID-DPDP [22].

The detail of our simulation will be given in the extended version.

6 Security Analysis

We first prove the universal unforgeability of our scheme in this section. The
proof comprises two parts: single tag is universally unforgeable (Definition 2);
proof for blocks is universally unforgeable (Definition 3). Then we estimate the
probability of detecting the modification (Definition 4).

Theorem 1. If a probabilistic polynomial adversary A wins the Tag-Forge game
in Definition 2 with an unnegligible probability ε, then there exists a polyno-
mial adversary B solves the CDH problem on G1 with an unnegligible probability

(qE+qT)(qE+qT)

(qE+qT+1)(qE+qT +1) ε after A makes qE Extract queries and qT TagGen queries.

Proof. We define the interactions between A and B in the random oracle
model by utilizing the technique proposed by Coron [27]. Adversary A is given
(g, ga, gb) ∈ G3

1 . Its goal is to output gab ∈ G1. B simulates the challenger and
interacts with A as follows:

Identity-Based Batch Provable Data Possession 123

1. Setup. B sets mpk = ga while a keeps secret. It forwards mpk to A.
2. H1-Oracle. At any time, A can query the random oracle H1. To respond to

these queries, B maintains a list of tuples H1-list = {(IDI , dI , yI ,H1,I)} as
explained below. When A queries the oracle H1 at IDI , B responds as follows:
(a) If (IDI , ∗, ∗, ∗) ∈ H1-list, B retrieves the tuple (IDI , dI , yI ,H1,I) and

responds with H1,I , i.e., H1(IDI) = H1,I .
(b) Otherwise, B picks a bit dI ∈ {0, 1} according to a bivariate distribution

function: Pr[dI = 0] = δ,Pr[dI = 1] = 1 − δ. Here δ is a fixed probability
which will be determined later. Based on dI , B responds as follows:
i. If dI = 0, B independently picks a random yI , computes H1,I = gyI

and responds with H1,I , i.e., H1(IDI) = gyI . Then B adds the tuple
(IDI , dI , yI ,H1,I) to H1-list.

ii. If dI = 1, B independently picks a random yI , computes H1,I = gbyI

and responds with H1,I , i.e., H1(IDI) = gbyI . Then B adds the tuple
(IDI , dI , yI ,H1,I) to H1-list.

3. H2-Oracle. At any time, A can query the random oracle H2. To respond to
these queries, B maintains a list of tuples H2-list = {(IDI ,H2,I)} as explained
below. When A queries the oracle H2 at IDI , B responds as follows:
(a) If (IDI , ∗) ∈ H2-list, B retrieves the tuple (IDI ,H2,I) and responds with

H2,I , i.e., H2(IDI) = H2,I .
(b) Otherwise, B independently picks a random H2,I and responds with H2,I ,

i.e., H2(IDI) = H2,I . Then B adds the tuple (IDI ,H2,I) to H2-list.
4. H3-Oracle. At any time, A can query the random oracle H3. To respond

to these queries, B maintains a list of tuples H3-list = {(mpkI , zI ,H3,I)}
as explained below. When A queries the oracle H3 at mpkI , B responds as
follows:
(a) If (mpkI , ∗, ∗) ∈ H3-list, B retrieves the tuple (mpkI , zI ,H3,I) and

responds with H3,I , i.e., H3(mpkI) = H3,I .
(b) Otherwise, B independently picks a random zI , computes H3,I = gzI

and responds with H3,I , i.e., H3(mpkI) = gzI . Then B adds the tuple
(mpkI , zI ,H3,I) to H3-list. Especially, if mpkI = mpk, B denote the cor-
responding zI as z, i.e., H3(mpk) = gz and the tuple is (mpk, z, gz).

5. Extract-Oracle. At any time, A can query the oracle Extract. To respond
to these queries, B maintains a list of tuples Extract-list = {(IDI , skI)} as
explained below. When A queries the oracle Extract at IDI , B responds as
follows:
(a) If (IDI , ∗) ∈ Extract-list, B retrieves the tuple (IDI , skI) and responds

with skI .
(b) Otherwise, B look up H1-list for the tuple (IDI , dI , yI ,H1,I). If the tuple

does not exist, B issues a query itself for H1(IDI) to ensure that such a
tuple exists. Based on dI , B responds as follows:
i. If dI = 0, B computes skI = (ga)yI and responds with skI . Then B

adds the tuple (IDI , skI) to Extract-list.
ii. If dI = 1, B reports failure and the simulation terminates.

124 F. Zhou et al.

6. TagGen-Oracle. At any time, A can query the oracle TagGen. To respond to
these queries, B maintains a list of tuples TagGen-list=
{(I, J,K,MIJK , σIJK)} as explained below. When A queries the oracle
TagGen at (I, J,K,MIJK), B responds as follows:
(a) If (I, J,K,MIJK , ∗) ∈ TagGen-list, B retrieves the tuple

(I, J,K,MIJK , σIJK) and responds with σIJK .
(b) Otherwise, B looks up H1-list for the tuple (IDI , dI , yI ,H1,I). If the tuple

does not exist, B issues a query itself for H1(IDI) to ensure that such
a tuple exists. Then B looks up H2-list for the tuple (IDI ,H2,I). If the
tuple does not exist, B issues a query itself for H2(IDI) to ensure that
such a tuple exists. Then B looks up H3-list for the tuple (mpk, z, gz).
If the tuple does not exist, B issues a query itself for H3(mpk) to ensure
that such a tuple exists. Based on dI , B responds as follows:
i. If dI = 0, B independently picks a random SIJK , computes

σIJK = (SIJK , (ga)
yI

(
s∑

l=1
vlFIJKl+H2,I

)

Sz
IJK)

and responds with σIJK . Observe that (I, J,K,MIJK , σIJK) satisfies
formula (1) and therefore σIJK is a valid tag on (I, J,K,MIJK). Then
B adds the tuple (I, J,K,MIJK , σIJK) to TagGen-list.

ii. If dI = 1, B reports failure and the simulation terminates.
7. Forge. Eventually, A produces a tag σi∗j∗k∗ = (Si∗j∗k∗ , Ti∗j∗k∗) on

(i∗, j∗, k∗,Mi∗j∗k∗) such that no Extract query was issued for IDi∗ and no
TagGen query was issued for (i∗, j∗, k∗,Mi∗j∗k∗). B looks up H1-list for the
tuple (IDi∗ , di∗ , yi∗ ,H1,i∗). If the tuple does not exist, B issues a query itself
for H1(IDi∗) to ensure that such a tuple exists. Then B looks up H2-list for
the tuple (IDi∗ ,H2,i∗). If the tuple does not exist, B issues a query itself
for H2(IDi∗) to ensure that such a tuple exists. Then B looks up H3-list
for the tuple (mpk, z, gz). If the tuple does not exist, B issues a query itself
for H3(mpk) to ensure that such a tuple exists. Based on di∗ , B responds as
follows:
(a) If di∗ = 1, B reports failure and the simulation terminates.
(b) If di∗ = 0, (i∗, j∗, k∗,Mi∗j∗k∗) satisfies formula (1), i.e.:

e (Ti∗j∗k∗ , g) = e(H1(IDi∗)
s∑

l=1
vlFi∗j∗k∗l+H2(IDi∗)

,mpk)
· e (H3(mpk), Si∗j∗k∗) .

Thus, B can get:

e (Ti∗j∗k∗ , g) = e((gbyi∗)
s∑

l=1
vlFi∗j∗k∗l+H2,i∗

, ga)e (gz, Si∗j∗k∗)

= e((gab)
yi∗
(

s∑

l=1
vlFi∗j∗k∗l+H2,i∗

)

Sz
i∗j∗k∗ , g).

Finally, B gets:

gab = (Ti∗j∗k∗S−z
i∗j∗k∗)

yi∗
−1
(

s∑

l=1
vlFi∗j∗k∗l+H2,i∗

)−1

.

Identity-Based Batch Provable Data Possession 125

Probability Analysis. To evaluate the success probability for B, we analyze the
four events needed for B to succeed:

1. ε1: B does not abort as a result of any of A’s Extract queries.
2. ε2: B does not abort as a result of any of A’s TagGen queries.
3. ε3: B generates a valid tag σi∗j∗k∗ = (Si∗j∗k∗ , Ti∗j∗k∗) on (i∗, j∗, k∗,Mi∗j∗k∗).
4. ε4: Event ε3, di∗ = 1 for the tuple (IDi∗ , di∗ , yi∗ ,H1,i∗) in H1-list.

B succeeds if all of these events happen. The probability Pr[ε1 ∧ ε2 ∧ ε3 ∧ ε4]
decomposes as:

Pr [ε1 ∧ ε2 ∧ ε3 ∧ ε4] = δqEδqT ε (1 − δ) = δqE+qT (1 − δ)ε.

Thus, in the simulation, B solves the CDH problem on G1 with an unnegligible
probability δqE+qT (1 − δ)ε. Furthermore, when δ = qE+qT

qE+qT+1 , the corresponding

maximum probability is (qE+qT)(qE+qT)

(qE+qT+1)(qE+qT +1) ε. This completes the proof.

Theorem 2. If a probabilistic polynomial adversary A wins the Proof-Forge
game in Definition 3 with an unnegligible probability ε, then there exists a polyno-
mial adversary B solves the CDH problem on G1 with an unnegligible probability

[(qE+qT)(qE+qT)

(qE+qT+c∗)(qE+qT +c∗)]
c∗−1

c∗ε after A makes qE Extract queries and qT TagGen

queries. c∗ denotes the number of challenged blocks.

Proof. We define the interactions between A and B in the random oracle
model by utilizing the technique proposed by Coron [27]. Adversary A is given
(g, ga, gb) ∈ G3

1 . Its goal is to output gab ∈ G1. B simulates the challenger and
interacts with A as follows:

1. Setup. B sets mpk = ga while a keeps secret. It forwards mpk to A.
2. H1-Oracle, H2-Oracle, H3-Oracle, First-Phase Extract-Oracle and

First-Phase TagGen-Oracle. Same as H1-Oracle, H2-Oracle, H3-Oracle,
Extract-Oracle and TagGen-Oracle in the proof of Theorem 1.

3. Challenge. Let S1 denote the set of the extracted identities {IDi} and let I1
denote the set of the TagGen-queried tuples {(i, j, k,Mijk)}. B generates a
challenge token chal∗ = (I∗,K∗) with I∗ = {(i∗n, j∗

n, k∗
n) | n = 1, . . . , c∗} and

K∗ = {κ∗
n | n = 1, . . . , c∗} where at least one IDi∗

n
/∈ S1 and at least one

(i∗n, j∗
n, k∗

n,Mi∗
nj∗

nk∗
n
) /∈ I1. Then B forwards it to A.

4. Second-Phase Extract-Oracle and Second-Phase TagGen-Oracle. Same as
Extract-Oracle and TagGen-Oracle in the proof of Theorem 1, Let S2 denote
the set of the extracted identities IDi and let I2 denote the set of the TagGen-
queried tuples {(i, j, k,Mijk)}. The restriction is that at least one IDi∗

n
/∈

(S1 ∪ S2) and at least one (i∗n, j∗
n, k∗

n,Mi∗
nj∗

nk∗
n
) /∈ (I1 ∪ I2).

5. Forge. Eventually, the adversary A responds a valid proof P ∗ = {Pj∗} =
{(S

′
j∗ , T

′
j∗ , {F

′
i∗j∗l | (i∗, j∗, k∗) ∈ I∗})} of chal∗ = (I∗,K∗) with I∗ =

{(i∗n, j∗
n, k∗

n) | n = 1, . . . , c∗} and K∗ = {κ∗
n | n = 1, . . . , c∗}. B looks up H1-list

for the tuples {(IDi∗
n
, di∗

n
, yi∗

n
,H1,i∗

n
) | n = 1, . . . , c∗}. If some of these tuples

126 F. Zhou et al.

do not exist, B issues queries itself for H1(IDi∗
n
) to ensure that all the tuples

exist. Then B looks up H2-list for the tuples {(IDi∗
n
,H2,i∗

n
) | n = 1, . . . , c∗}. If

some of these tuples do not exist, B issues queries itself for H2(IDi∗) to ensure
that all the tuples exist. Then B looks up H3-list for the tuple (mpk, z, gz).
If the tuple does not exist, B issues a query itself for H3(mpk) to ensure that
such a tuple exists. Based on {di∗

n
| n = 1, . . . , c∗}, B responds as follows:

(a) If every di∗
n

= 0, B reports failure and the simulation terminates.
(b) If at least one di∗

n
= 1, B computes {r∗

n} = {fκ∗
n
(i∗n, j∗

n, k∗
n) | n =

1, . . . , c∗}. Let O∗ denote the set of indexes {i∗} and C∗ denote the set of
indexes {j∗}. Since P ∗ is a valid proof, {(S

′
j∗ , T

′
j∗ , {F

′
i∗j∗l | (i∗, j∗, k∗) ∈

I∗})} satisfies formula (2), i.e.:

e

⎛

⎝
∏

j∗∈C∗
T

′
j∗ , g

⎞

⎠

= e

⎛

⎝
∏

i∗∈O∗
H1(IDi∗)

∑

j∗∈C∗

s∑

l=1
vlF

′
i∗j∗l+H2(IDi∗)

∑

i∗n=i∗
r∗
n

,mpk

⎞

⎠

· e

⎛

⎝H3(mpk),
∏

j∗∈C∗
S

′
j

⎞

⎠ .

For simplicity, let
S∗ =

∏

j∗∈C∗
S

′
j∗ , T ∗ =

∏

j∗∈C∗
T

′
j∗ .

Similar to the analysis of correctness of formula (2), B has:

e (T ∗, g) = e

⎛

⎝
∏

j∗∈C∗

∏

chal∗
j∗

H1(IDi∗
n
)(mi∗nj∗k∗

n
+H2(IDi∗))r

∗
n ,mpk

⎞

⎠

· e (H3(mpk), S∗)

= e

(
c∗
∏

n=1

H1(IDi∗
n
)(mi∗nj∗k∗

n
+H2(IDi∗))r

∗
n ,mpk

)

e (H3(mpk), S∗) .

Let N0 = {n | (IDi∗
n
, di∗

n
, yi∗

n
,H1,i∗

n
) ∈ H1-list, di∗

n
= 0}, N1 = {n |

(IDi∗
n
, di∗

n
, yi∗

n
,H1,i∗

n
) ∈ H1-list, di∗

n
= 1} with N1 �= ∅, H∗ = mi∗

nj∗k∗
n

+
H2(IDi∗), B can get:

e (T ∗, g) = e

(
c∗
∏

n=1

H1(IDi∗
n
)H∗r∗

n ,mpk

)

e (H3(mpk), S∗)

= e

(
∏

n∈N0

(gyi∗n)H∗r∗
n ·

∏

n∈N1

(gbyi∗n)
H∗r∗

n , ga

)

e(gz, S∗)

= e

(
∏

n∈N0

(ga)yi∗nH∗r∗
n ·

∏

n∈N1

(gab)
yi∗nH∗r∗

n · S∗z, g

)

.

Identity-Based Batch Provable Data Possession 127

Finally, B gets:

gab = [T ∗S∗−z(ga)
− ∑

n∈N0

yi∗nH∗r∗
n

]

(
∑

n∈N1

yi∗nH∗r∗
n

)−1

.

Probability Analysis. To evaluate the success probability for B, we analyze the
four events needed for B to succeed:

1. ε1: B does not abort as a result of any of A’s Extract queries.
2. ε2: B does not abort as a result of any of A’s TagGen queries.
3. ε3: B generates a valid proof P ∗ = {Pj∗} = {(S

′
j∗ , T

′
j∗ , {F

′
i∗j∗l | (i∗, j∗, k∗) ∈

I∗})} of chal∗ = (I∗,K∗) with I∗ = {(i∗n, j∗
n, k∗

n) | n = 1, . . . , c∗} and K∗ =
{κ∗

n | n = 1, . . . , c∗}.
4. ε4: Event at least one di∗

n
= 1 for the tuples {(IDi∗

n
, di∗

n
, yi∗

n
,H1,i∗

n
) | n =

1, . . . , c∗} in H1-list.

B succeeds if all of these events happen. The probability Pr[ε1 ∧ ε2 ∧ ε3 ∧ ε4]
decomposes as:

Pr [ε1 ∧ ε2 ∧ ε3 ∧ ε4] = δqEδqT ε(1 − δc∗
) = δqE+qT (1 − δc∗

)ε.

Thus, in the simulation, B solves the CDH problem on G1 with an unnegligible

probability δqE+qT (1 − δc∗
)ε. Furthermore, when δ = (qE+qT

qE+qT+c∗)
c∗−1

, the corre-

sponding maximum probability is [(qE+qT)(qE+qT)

(qE+qT+c∗)(qE+qT +c∗)]
c∗−1

c∗ε. This completes

the proof.

Theorem 3. Suppose that n block-tag pairs are stored, t block-tag pairs are
modified and c block-tag pairs are challenged. Then the probability PX of detecting
the modification satisfies:

1 − (
n − t

n
)
c

≤ PX ≤ (
n − c + 1 − t

n − c + 1
)
c

.

Proof. Let X be a discrete random variable that is defined to be the number of
blocks challenged that match the blocks modified, we have:

PX = Pr[X ≥ 1] = 1 − Pr[X = 0] = 1 − n − t

n
· n − 1 − t

n − 1
· . . . · n − c + 1 − t

n − c + 1
.

It follows that:
1 − (

n − t

n
)
c

≤ PX ≤ (
n − c + 1 − t

n − c + 1
)
c

.

This completes the proof.

Figure 2 illustrates the probability curve of PX with n = 10000. From this,
we know that our scheme has a high modification checking probability.

128 F. Zhou et al.

Fig. 2. Probability curve PX of detecting the modification (n = 10000).

7 Conclusion

We proposed a novel Identity-Based Batch Provable Data Possession (ID-BPDP)
scheme in this paper. Without implementation of PKI, ID-BPDP eliminates
the resource-consuming certificate management. Meanwhile, ID-BPDP supports
batch verification for multiple owners and multiple clouds simultaneously to
reduce computation cost greatly, especially in large-scale cloud storage systems.
ID-BPDP also reduces computation cost for data owners while generating tags
of data blocks. We proved that ID-BPDP is correct and secure based on bilin-
ear pairings and the hardness assumption of CDH problem, and our analy-
ses/simulations show that ID-BPDP is able to verify integrity of data efficiently.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Kon-winski, A., Lee,
G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

2. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Proceedings of CCS, pp. 598–
609 (2007)

3. Curtmola, R., Khan, O., Burns, R., Ateniese, G.: MR-PDP: multiple-replica prov-
able data possession. In: Proceedings of ICDCS, pp. 411–420 (2008)

4. Sebé, F., Domingo-Ferrer, J., Mart́ınez-Ballesté, A., Deswarte, Y., Quisquater, J.:
Efficient remote data integrity checking in critical information infrastuctures. IEEE
Trans. Knowl. Data Eng. 20(8), 1034–1038 (2008)

5. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: Proceedings of SecureComm, pp. 1–10 (2008)

Identity-Based Batch Provable Data Possession 129

6. Erway, C.C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: Proceedings of CCS, pp. 213–222 (2009)

7. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for data
storage security in cloud computing. In: Proceedings of IEEE INFOCOM (2010)

8. Zhu, Y., Wang, H., Hu, Z., Ahn, G.J., Hu, H., Yau, S.S.: Efficient provable data
possession for hybrid clouds. In: Proceedings of CCS, pp. 756–758 (2010)

9. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data
dynamics for storage security in cloud computing. IEEE Trans. Parallel Distrib.
Syst. 22(5), 847–859 (2011)

10. Wang, C., Wang, Q., Ren, K., Cao, N., Lou, W.: Toward secure and dependable
storage services in cloud computing. IEEE Trans. Serv. Comput. 5(2), 220–232
(2012)

11. Wang, H.: Proxy provable data possession in public clouds. IEEE Trans. Serv.
Comput. 6(4), 551–559 (2013)

12. Zhu, Y., Hu, H., Ahn, G.J., Yu, M.: Cooperative provable data possession for
integrity verification in multicloud storage. IEEE Trans. Parallel Distrib. Syst.
23(12), 2231–2244 (2012)

13. Lier, S., Wörsdörfer, D., Gesing, J.: Business models and product service systems
for transformable, modular plants in the chemical process industry. In: Meier, H.
(ed.) Product-Service Integration for Sustainable Solutions. LNPE, vol. 6, pp. 227–
238. Springer, Heidelberg (2013)

14. Yang, K., Jia, X.: An efficient and secure dynamic auditing protocol for data storage
in cloud computing. IEEE Trans. Parallel Distrib. Syst. 24(9), 1717–1726 (2013)

15. Yu, Y., Ni, J., Au, M.H., Liu, H., Wang, H., Xu, C.: Improved security of a dynamic
remote data possession checking protocol for cloud storage. Expert Syst. Appl. 41,
7789–7796 (2014)

16. Yu, Y., Zhang, Y., Ni, J., Au, M.H., Chen, L., Liu, H.: Remote data possession
checking with enhanced security for cloud storage. Future Gener. Comput. Syst.
52, 77–85 (2015)

17. Yu, Y., Au, M.H., Mu, Y., Tang, S., Ren, J., Susilo, W., Dong, L.: Enhanced
privacy of a remote data integrity-checking protocol for secure cloud storage. Int.
J. Inf. Secur. 14, 307–318 (2015)

18. Wang, B., Li, B., Li, H.: Panda: public auditing for shared data with efficient user
revocation in the cloud. IEEE Trans. Serv. Comput. 8(1), 92–106 (2015)

19. Yu, Y., Ni, J., Au, M.H., Mu, Y., Wang, B., Li, H.: Comments on a public auditing
mechanism for shared cloud data service. IEEE Trans. Serv. Comput. 8(6), 998–999
(2015)

20. Yu, Y., Li, Y., Ni, J., Yang, G., Mu, Y., Susilo, W.: Comments on “public integrity
auditing for dynamic data sharing with multiuser modification”. IEEE Trans. Inf.
Forensics Secur. 11(3), 658–659 (2016)

21. Ellison, C., Schneier, B.: Ten risks of PKI: what you’re not being told about public
key infrastructure. Comput. Secur. J. 16(1), 1–7 (2000)

22. Wang, H.: Identity-based distributed provable data possession in multicloud stor-
age. IEEE Trans. Serv. Comput. 8(2), 328–340 (2015)

23. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

24. The GNU multiple precision arithmetic library. https://gmplib.org
25. The pairing-based cryptography library (PBC). https://crypto.stanford.edu/pbc
26. OpenSSL: cryptography and SSL/TLS Toolkit. http://www.openssl.org
27. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)

CRYPTO 2000. LNCS, vol. 1880, pp. 220–235. Springer, Heidelberg (2000)

https://gmplib.org
https://crypto.stanford.edu/pbc
http://www.openssl.org

Secure Näıve Bayesian Classification
over Encrypted Data in Cloud

Xingxin Li, Youwen Zhu(B), and Jian Wang

College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

lixingxin93@163.com, {zhuyw,wangjian}@nuaa.edu.cn

Abstract. To enjoy the advantage of cloud service while preserving
security and privacy, huge data is increasingly outsourced to cloud in
encrypted form. Unfortunately, encryption may impede the analysis and
computation over the outsourced dataset. Näıve Bayesian classification
is an effective algorithm to predict the class label of unlabeled samples.
In this paper, we investigate näıve Bayesian classification on encrypted
dataset in cloud and propose a secure scheme for the challenging problem.
In our scheme, all the computation task of näıve Bayesian classification
are completed by the cloud, which can dramatically reduce the burden
of data owner and users. Based on the theoretical proof, our scheme can
guarantee the security of both input dataset and output classification
results, and the cloud can learn nothing useful about the training data
of data owner and the test samples of users throughout the computation.
Additionally, we evaluate our computation complexity and communica-
tion overheads in detail.

Keywords: Cloud security · Näıve Bayesian classification · Privacy

1 Introduction

In recent years, cloud services become more and more prevalent, since they can
offer many benefits, such as quick deployment without up-front cost, dynami-
cal allocation and cost reduction. For enjoying the advantages, individuals and
organizations are being motivated to centralize their datasets into the convenient
pay-as-you-go storage space of cloud service providers, e.g., Amazon, Google,
Microsoft. Because the direct physical control will be transferred to cloud ser-
vice providers while outsourcing data to a remote cloud, it arouses the security
and privacy concerns. Thus, the sensitive information of outsourced data has
to be encrypted by data owner before they are uploaded to cloud such that no
privacy is breached. Meanwhile, some users may want to take advantage of the
powerful computation capability of cloud server to analyze the data stored in the
cloud for extracting beneficial knowledge and patterns. Nevertheless, encryption
will impede the functionality and performance of querying/analyzing over the
outsourced dataset in cloud.

c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 130–150, 2016.
DOI: 10.1007/978-3-319-47422-9 8

Secure Näıve Bayesian Classification over Encrypted Data in Cloud 131

Näıve Bayesian classification [16] is an effective algorithm to predict the
class label of unclassified samples, which is particularly suitable for high dimen-
sional data classification tasks, such as recommender system [15], text classifica-
tion [11], medical data analysis [1]. In this paper, we investigate the challenging
problem how to make use of cloud service to secure realize näıve bayesian clas-
sification on encrypted data. In the past several years, much work [5,10,22] has
focused on the privacy-preserving näıve bayesian classification. In the works,
they consider the model where database is vertically or horizontally distributed
in two or more independent parties, and the participants want to perform näıve
bayesian classification for a public or confidential unlabel sample without dis-
closing private data to each other. In their setting, each participant can access
a part of the dataset, and utilize the data to complete the computation. How-
ever, in an outsourcing scene, the cloud service providers should access only
the encrypted data to protect the privacy of data owner, and the computation
task is also completed by the cloud. Thus, we are faced with a different scene
from what the previous privacy-preserving näıve bayesian classification schemes
consider. Because the cloud can just learn the encrypted results, our problem
is much more challenging. Lately, Liu et al. [14] propose a privacy-preserving
näıve Bayesian classification approach for medical diagnosis, which introduces
the cloud to store the encrypted training dataset and compute some probability
during training stage. Nevertheless, the users in Liu et al.’s scheme must bur-
den heavy computation which does not fit the outsourcing goal well. Besides, if
the domain of one dimension of the sample consists of T different values, Liu
et al.’s scheme will extend the dimension into T new dimensions, because their
approach is suitable for binary dimensions only. Hence, Liu et al.’s scheme will
be low-efficient if the value range of the sample’s dimensions is large. In [3], Bost
et al. propose several secure schemes to support classification over encrypted
data, including näıve Bayesian classification. However, the server in [3] is
assumed to access the training data set, i.e., Bost et al.’s approach cannot protect
the training samples from the cloud server.

In this paper, we make use of Paillier homomorphic cryptosystem to encrypt
the training dataset of data owner and the unlabeled samples of users. The
encrypted data will be outsourced to the cloud for storage and näıve Bayesian
classification. All the computation tasks for näıve Bayesian classification will be
completed by the cloud in encrypted format. Additionally, the cloud can attain
only the encrypted value of the classification result, and only the user can clearly
learn the returned class label for his sample. Generally, our main contributions
in this paper are as follows.

• We present a secure scheme that can utilize cloud to implement näıve Bayesian
classification over encrypted dataset. In our scheme, all the computation task
of näıve Bayesian classification are completed by the cloud, which can dra-
matically reduce the burden of data owner and users.

• In the proposed scheme, we can guarantee the security of both input dataset
and output classification results. The cloud can learn nothing useful about
the training data set of data owner and the test data of users.

132 X. Li et al.

• We theoretically prove the security of our scheme, and provide detailed eval-
uation on the computation complexity and communication cost.

The remainder of the paper is organized as follows. In Sect. 2, we introduce
näıve Bayesian classification, preliminaries, our problem definition and threat
model. In Sect. 3, we present our secure scheme in detail. Then, we theoretically
prove the security of our scheme, and evaluate our computation and communi-
cation cost in Sect. 4. In Sect. 5, we review the related work. At last, we conclude
this paper in Sect. 6.

2 Preliminaries and System Model

2.1 Näıve Bayesian Classification

In the area of data mining, näıve Bayesian classification [16] is an effective algo-
rithm to predict the class label of unclassified samples, which is particularly
suitable for high dimensional data classification tasks, such as recommender sys-
tem [15], text classification [11], medical data analysis [1]. We concisely describe
näıve Bayesian classification as follows.

Assume S is an unclassified sample, which can be represented by a d-
dimensional vector, S = (S1, S2, · · · , Sd). The domain of class label is {1, 2, · · · ,
λ}. Let CS denote the class label of S. Näıve Bayesian classification predicts CS

to be the class with the highest posterior probability. It means

CS = argmax
1�i�λ

(P (CS = i|S)) . (1)

That is, P (CS = i|S) � P (CS = j|S), for each j ∈ {1, 2, · · · , λ} and j �= i.
Based on Bayes theorem,

P (CS = i|S) =
P (S|CS = i)P (CS = i)

P (S)
. (2)

As can be seen from the Eq. (2), P (S) is the same for each class label i ∈
{1, 2, · · · , λ}. Then,

CS = argmax
1�i�λ

(P (S|CS = i)P (CS = i)) . (3)

In näıve Bayesian classification, a simplifying assumption is further made that
the values of each attribute are conditionally independent of that of another. It
can guarantee

P (S|CS = i) =
d∏

t=1

P (St|CS = i). (4)

CS = argmax
1�i�λ

(

P (CS = i)
d∏

t=1

P (St|CS = i)

)

. (5)

Secure Näıve Bayesian Classification over Encrypted Data in Cloud 133

In the Eq. (5), the values of probabilities P (CS = i) and P (St|CS = i) can be
estimated from the training dataset as follows.

P (CS = i) =
mi

m
, (6)

P (St|CS = i) =
mit

mi
, (7)

where m is the total number of samples in training dataset, mi is the number of
samples with class label i, and mit is the number of samples whose class label
are i and t-th dimension equal to St.

In this paper, we will investigate a challenging problem: how to securely
harness cloud service to complete the näıve Bayesian classification over encrypted
data.

2.2 System Model

As shown in Fig. 1, this paper considers a secure outsourcing system involv-
ing a data owner, two non-colluding cloud servers CS1 and CS2, several
users. Data owner (denoted as Alice) owns a database D of m labeled sam-
ples {T1,T2, · · · ,Tm}. Each sample is a d-dimensional vector, i.e., Ti =
(Ti1, Ti2, · · · , Tid). The class label of Ti is denoted as Ci, and Ci ∈ {1, 2, · · · , λ}.
Here, we assume the dataset D is large enough, in which the number of any
class of samples is not less than 1. Suppose (pk, sk) is the key pair of Paillier
homomorphic encryption system proposed in [17], where pk is the public key
and sk is the secret key. The detail about Paillier is described in Appendix.
For 1 � i � m and 1 � j � d, Epk(Tij) and Epk(Ci) are the encrypted val-
ues of Tij and Ci, respectively. Let T ′

i denote the encrypted result of Ti, and
D′ = {T ′

1,T
′
2, · · · ,T ′

m}. For enjoying the advantages of cloud service and reliev-
ing himself from expensive local storage and computation cost, Alice plans to

Fig. 1. Architecture of securely outsourcing näıve Bayesian classification over
encrypted data

134 X. Li et al.

store the encrypted data D′ at CS1 and outsource her secret key sk to CS2, in
which CS1 and CS2 are assumed to be non-colluding. Then, Alice also employs
the cloud service providers to securely complete various data analysis tasks over
the encrypted dataset. In this paper, we focus on achieving secure näıve Bayesian
classification, and leave other tasks for future work.

Suppose each user (denoted as Bob) has an unlabeled sample S =
(S1, S2, · · · , Sd), and Bob wants to attain the class label of his data S through
the näıve Bayesian classification algorithm based on the dataset of Alice. For
the object, Bob will use Alice’s public key to encrypt each dimension of S, and
submit the encrypted sample S′ to cloud server CS1. It should be remarked that
Bob cannot access the secret key of Alice.

Finally, the two cloud servers CS1 and CS2 will complete näıve Bayesian
classification based on the encrypted dataset D′ and the encrypted unlabeled
sample S′, such that only Bob can learn the classification result.

Now, the challenging problem is how CS1 and CS2 can complete the näıve
Bayesian classification task taking as inputs {D′, S′} and the secret key sk,
respectively, while disclosing no privacy of Alice and Bob.

2.3 Threat Model

In this paper, all participants (Alice, Bob and cloud service providers) are
assumed to be semi-honest (i.e., honest-but-curious) [9]. Generally speaking,
each semi-honest participant will strictly follow the protocol, but try to infer as
much information as possible from what he legally receives during the protocol.
Additionally, the involved two cloud service providers CS1 and CS2 are assumed
to be non-colluding. This setting of non-colluding CS1 and CS2 has been widely
applied in many previous works, such as [8,13,18,19], and they have shown that
the assumption is practical and feasible in the real-world. The cloud service
providers, for example Amazon and Google, have little motivation to collude,
for protecting their business reputation, trade secret, etc.

In [9] (Chap. 7), Goldreich has given a security definition for the semi-honest
model. The definition is to ensure that any participant cannot infer more infor-
mation than what can be deduced from his input and deserved output. Briefly
speaking, a protocol is said to be secure against semi-honest adversaries if the
view of each participant, namely what each participant learns during the proto-
col, is computationally indistinguishable with random parameters and the input
& output of the participant. Therefore, we will consider the view of each party
while analyzing the security of our scheme.

Under the semi-honest model, our security goals include the following three
aspects.

• Privacy of Alice’s dataset D: Neither the cloud nor the user Bob can learn
any useful information about every sample in Alice’s dataset D.

• Privacy of Bob’s sample S: Each dimension of the sample S should be
private to Bob. Both Alice and the cloud cannot know it.

• Privacy of Bob’s output class label of S: The output class label should
be known to Bob only. Alice and the cloud cannot learn the class label of S.

Secure Näıve Bayesian Classification over Encrypted Data in Cloud 135

3 Our Proposed Scheme

In this paper, after outsourcing the encrypted dataset D′ and her secret key
sk to two non-colluding cloud servers separately, Alice will not implement any
computation task again. All the future computation will be completed by the
cloud service providers. Our scheme does not require Alice to be online for the
classification.

While the user Bob wants to find out CS , i.e., the class label of his unlabeled
sample S, he will encrypt S into S′ using the public key pk and submit the
encrypted value to CS1. Then, the cloud will complete the näıve Bayesian classi-
fication, and each cloud service provider returns an random number to Bob who
can easily obtain the class label CS through a subtraction of the two returned
numbers.

Näıve Bayesian classification aims at finding a class label i such that
P (S|CS = i)P (CS = i) � P (S|CS = j)P (CS = j), for any j �= i. For the
goal, a straightforward method is to compute P (S|CS = i)P (CS = i) for each
i ∈ {1, 2, · · · , λ} and compare them. Obviously, the probabilities are floating-
point numbers. Nevertheless, the employed Paillier homomorphic encryption
system can encrypt only the non-negative integers in its plaintext space. Here,
we convert the probability comparison into the comparison of the product of
several integers such that the computation and comparison does not involve any
floating-point number.

In näıve Bayesian classification, there is P (S|CS = i)P (CS = i) = P (CS =
i)

∏d
t=1 P (St|CS = i).

Based on the Eqs. (6) and (7), we have

P (S|CS = i)P (CS = i) =
mi

m

d∏

t=1

mit

mi
=

∏d
t=1 mit

md−1
i m

. (8)

Thus, for any i, j ∈ {1, 2, · · · , λ}, P (S|CS = i)P (CS = i) � P (S|CS =
j)P (CS = j) if and only if

∏d
t=1 mit

md−1
i m

�
∏d

t=1 mjt

md−1
j m

. (9)

Since m is the same for each i and j, then,

md−1
j

d∏

t=1

mit � md−1
i

d∏

t=1

mjt. (10)

Therefore, we can determine the larger one of P (S|CS = i)P (CS = i) and
P (S|CS = j)P (CS = j) through comparing md−1

j

∏d
t=1 mit and md−1

i

∏d
t=1 mjt

in which no floating numbers is involved.
In our scheme, the cloud will find out the class label for unlabeled sample by

implementing the comparison shown in the Eq. (10) in encrypted form.

136 X. Li et al.

Concretely, our scheme consists of two stages. The first stage will be imple-
mented just once while Alice uploads her encrypted dataset to CS1. In our first
stage, the cloud servers CS1 and CS2 will execute a secure computation protocol
such that CS1 attains the encrypted mi for each i ∈ {1, 2, · · · , λ}, and then
compute each md−1

i in encrypted form which is also known to CS1 only. The
second stage will be executed once for each unclassified sample S. In the sec-
ond stage, the cloud will await users to submit the encrypted unlabeled sample.
Upon receiving an encrypted sample S′ to classify, the cloud will compute the
encrypted value of each mit, based on which the cloud can further compute the
classification label of Bob’s sample in encrypted form. At last, each cloud ser-
vice provider returns a random number to Bob, and the latter can locally obtain
his class label by a simple subtraction of two clouds’ returned numbers. In the
following section, we will introduce the two stages of our scheme in detail.

3.1 First Stage: Preparation

In this stage, for each i ∈ {1, 2, · · · , λ}, the cloud aims at computing mi and
md−1

i both in encrypted form. For the goal, CS1 first computes the λ-dimensional
vector Wk for each 1 � k � m. Let Wki denote the i-th dimension of Wk. It
is required that Wki = Epk(1) if Ck = i, otherwise Wki = Epk(0). Besides, no
cloud server can learn which Wki is equal to Epk(1), such that the class label of
Alice’s samples will be well protected throughout the computation. Aroused by
the secure frequency protocol in [18], we enable CS1 to gain each Wk through
the following interaction with CS2.

CS1 selects random λ non-zero numbers {Rk1, Rk2, · · · , Rkλ} in the plain-
text space of Paillier homomorphic encryption system, and a random permu-
tation Πk of λ numbers. Then, CS1 computes Xki = Epk (Rki(Ck − i)) =
(
Epk(Ck)Epk(i)N−1

)Rki for 1 � i � λ, and sends the randomly-permutated
vector Πk(Xk) = Πk (Xk1,Xk2, · · · ,Xkλ) to CS2. The latter will decrypt the
λ dimensions of the vector, and return CS1 a λ-dimensional vector Yk =
(Yk1, Yk2, · · · , Ykλ) where Yki = Epk(1) if the decrypted result of the i-th
dimension of Πk(Xk) is zero, otherwise Yki = Epk(0). At last, CS1 can obtain
Wk = Π−1

k (Yk). Here, Π−1
k denotes the inverse permutation to Πk. It is to say

that Ck = i if and only if Rki(Ck − i) = 0. Thus, Wk can be correctly computed
by the approach above. Wk will be used not only to compute each Epk(mi) in
this stage, but also to classify in the second stage. It should be remarked that
neither CS1 nor CS2 can learn any plaintext hidden in Wk.

After acquiring all Wk, CS1 can locally calculate the encrypted value of each
mi using the method shown in the following equation Epk(mi) =

∏m
k=1 Wki

Further, we propose a novel secure and efficient approach enabling CS1 to
get Epk(md−1

i). For each i ∈ {1, 2, · · · , λ}, CS1 randomly selects a non-zero
numbers Pi, and sends Epk(miPi) to CS2 where Epk(miPi) = Epk(mi)Pi

based on the homomorphic property. Then, CS2 decrypts Epk(miPi), and
returns Epk

(
(miPi)d−1

)
to CS1. At last, CS1 can compute Epk(md−1

i) =

Epk

(
(miPi)d−1

)Qi where Qi = P 1−d
i mod N .

Secure Näıve Bayesian Classification over Encrypted Data in Cloud 137

Protocol 1. First Stage: computing Epk(md−1
i)

Input: CS1 holds {Epk(C1), Epk(C2), · · · , Epk(Cm)}. CS2 has the secret key (decryp-
tion key) sk.

Output: CS1 obtains Epk(md−1
i) for each i ∈ {1, 2, · · · , λ}.

1: for k = 1 to m do
2: CS1 randomly selects λ non-zero numbers {Rk1, Rk2, · · · , Rkλ} where Rki ∈ Z

∗
N .

3: CS1 generates a random permutation of λ numbers Πk.
4: CS1 computes the λ-dimensional vector Xk = (Xk1, Xk2, · · · , Xkλ) such that,

for each i ∈ {1, 2, · · · , λ},

Xki =
(
Epk(Ck)Epk(i)N−1

)Rki

. (11)

5: CS1 uses Πk to permute Xk, and sends Πk(Xk) to CS2.
6: CS2 decrypts Πk(Xk), and sets the λ-dimensional vector Yk =

(Yk1, Yk2, · · · , Ykλ) as follows.

Yki =

{
Epk(1), if the plaintext hidden in the i-th dimension of Πk(Xk) is 0,

Epk(0), otherwise.

(12)

7: CS2 sends the vector Yk to CS1.
8: CS1 uses Π−1

k (i.e., the inverse permutation to Πk) to compute Wk = Π−1
k (Yk).

9: end for
10: for i = 1 to λ do
11: CS1 computes Epk(mi) =

∏m
k=1 Wki. Here, Wki denotes the i-th dimension of

Wk.
12: CS1 selects a random non-zero number Pi ∈ Z

∗
N , then computes Epk(miPi) =

Epk(mi)
Pi , and sends Epk(miPi) to CS2.

13: CS2 uses the secret key sk to decrypt Epk(miPi), then calculates (miPi)
d−1,

and returns Epk

(
(miPi)

d−1
)

to CS1.

14: CS1 figures out Epk(md−1
i) = Epk

(
(miPi)

d−1
)Qi where Qi equals to

(P 1−d
i mod N).

15: end for

The detailed steps of our first stage is shown in protocol 1. The protocol will
be executed only once while Alice submits her encrypted data to the cloud CS1.

3.2 Second Stage: Computing Class Label for the Encrypted
Sample

In this stage, the cloud will complete näıve Bayesian classification for the
unlabeled sample of users. While a user Bob wants to find out the class
label of his sample S = (S1, S2, · · · , Sd), Bob will encrypt S into S′ =
(Epk(S1), Epk(S2), · · · , Epk(Sd)) and submit the encrypted vector to CS1. After
receiving the encrypted sample S′ to classify, the cloud will compute the

138 X. Li et al.

Protocol 2. Secure CipherText Comparison Protocol (SCTC)
Input: CS1 holds two encrypted values Epk(X) and Epk(Y). CS2 has the secret key

(decryption key) sk. Suppose 0 � X, Y < 2Ω .
Output: CS1 obtains the output Γ = Epk(1) if X � Y , otherwise Γ = Epk(0). It

should be remarked that neither CS1 nor CS2 know the comparison result hidden
in the output ciphertext Γ .

1: CS1 selects a random non-zero number δ ∈ {1, 2, · · · , 2Ω+1}, and a random number
φ ∈ {0, 1}.

2: if φ = 1 then
3: CS1 computes Φ = Epk(X)2δEpk(Y)N−2δEpk(22Ω+2 + δ),
4: else
5: CS1 computes Φ = Epk(X)N−2δEpk(Y)2δEpk(22Ω+2 − δ),
6: end if
7: CS1 sends Φ to CS2.
8: CS2 decrypts Φ, and returns Ψ to CS1 where

Ψ =

{
Epk(1), if Dsk(Φ) > 22Ω+2,

Epk(0), otherwise.
(13)

9: CS1 attains the output Γ as follows.

Γ =

{
βNΨ, if φ = 1,

Epk(1)ΨN−1, if φ = 0.
(14)

Here, β is a random number that belongs to Z
∗
N .

encrypted Epk(mit) for each t ∈ {1, 2, · · · , d}, and then securely find out the
class label Epk(CS) where CS ∈ {1, 2, · · · , λ} can make P (S|CS)P (CS) be the
maximum. The framework of our second stage is shown in protocol 3.

Here, mit is the number of Alice’s samples which meet the class label is i
and the t-th dimension equals to St. While computing mit, it needs to securely
determine whether the t-th dimension of each sample in D is equal to St for
each t ∈ {1, 2, · · · , d}. For the goal, we propose a sub-protocol SCTC (shown in
Protocol 2) to securely compare two encrypted numbers Epk(X) and Epk(Y).

Based on the proposed SCTC protocol, our second stage computes each
Epk(mit) (t = 1, 2, · · · , d) as follows. For each Tkt (k = 1, 2, · · · ,m), CS1 and
CS2 implement SCTC twice such that CS1 gains Akt1 and Akt2 which are the
encrypted comparison results of St � Tkt and Tkt � St, respectively. Namely,
Akt1 = Epk(St � Tkt), Akt2 = Epk(Tkt � St) (Here, we set TRUE = 1 and
FALSE = 0). Then, St = Tkt if and only if Dsk(Akt1) = Dsk(Akt2) = 1,
i.e., Dsk(Akt1Akt2) = 2. In our first stage, Wki has be set as Epk(1) if
Alice’s k-th sample’s class label Ck equals to i, otherwise Epk(0). We thus
have that the plaintext hidden in (Akt1Akt2Wki) equals to 3 if and only if
St = Tkt and Ck = i, namely Dsk(Akt1) = Dsk(Akt2) = Dsk(Wki) = 1.
It is easy to say 1 � Dsk(Akt1Akt2Wki) � 3. By employing our SCTC pro-
tocol to find out the encrypted comparison result of Dsk(Akt1Akt2Wki) � 3

Secure Näıve Bayesian Classification over Encrypted Data in Cloud 139

Protocol 3. Second Stage: computing the class label for each S
Input: CS1 has the following encrypted data T ′

k = (Epk(Tk1), Epk(Tk2), · · · , Epk(Tkd)), 1 � k �
m, Wk = (Wk1, Wk2, · · · , Wkλ), 1 � k � m, Epk(m

d−1
i), 1 � i � λ. CS2 has the secret key

(decryption key). Bob has an unlabeled sample S = (S1, S2, · · · , Sd) to classify.
Output: Bob obtains CS , i.e., the class label of S using näıve Bayesian classification.
1: Bob encrypts each dimension of S, and sends the encrypted vector S′ =

(Epk(S1), Epk(S2), · · · , Epk(Sd)) to CS1.
2: for k = 1 to m do
3: for t = 1 to d do
4: CS1 and CS2 implement SCTC({Epk(St), Epk(Tkt)}, {sk}) such that CS1 obtains

Akt1 =

{
Epk(1), if St � Tkt,

Epk(0), otherwise.
(15)

5: Similarly, CS1 and CS2 implement SCTC({Epk(Tkt), Epk(St)}, {sk}) such that CS1 obtains

Akt2 =

{
Epk(1), if Tkt � St,

Epk(0), otherwise.
(16)

6: for i = 1 to λ do
7: CS1 and CS2 securely implement SCTC({Akt1Akt2Wki, Epk(3)}, {sk}) such that CS1

obtains

Bkti =

{
Epk(1), if Dsk(Akt1Akt2Wki) � 3,

Epk(0), otherwise.
(17)

8: end for
9: end for
10: end for
11: for i = 1 to λ do
12: for t = 1 to d do
13: CS1 computes Epk(mit) =

∏m
k=1 Bkti.

14: end for
15: end for
16: for i = 1 to λ do
17: CS1 randomly selects d non-zero numbers Hi1, Hi2, · · · , Hid ∈ Z

∗
N , and sends the set

{Epk(mi1)
Hi1 , Epk(mi2)

Hi2 , · · · , Epk(mid)
Hid}toCS2.

18: CS2 decrypts them, and returns Epk(
∏d

t=1 mitHit) to CS1.

19: CS1 gains Epk(
∏d

t=1 mit) = Epk(
∏d

t=1 mitHit)
Gi where Gi =

∏d
t=1 H−1

it (mod N).

20: end for
21: CS1 sets Max1 = Epk(m

d−1
1), Max2 = Epk(

∏d
t=1 m1t), and Ecl = Epk(1).

22: for i = 2 to λ do
23: CS1 and CS2 implement SMRP() protocol (see Protocol 4 for details) that takes as input

{Ecl, Max1, Max2}∪{Epk(i), Epk(m
d−1
i), Epk(

∏d
t=1 mit)} and {sk}, such that CS1 obtains

the updated Ecl, Max1 and Max2 which satisfy

Ecl =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Epk(Dsk(Ecl)), if
(

m
d−1
i Dsk(Max2)

)
is not less

than

(

Dsk(Max1)

d∏

t=1

mit

)

,

Epk(i), otherwise.

Max1 = Epk(m
d−1
u), and Max2 = Epk(

∏d
t=1 mut) where u denotes Dsk(Ecl).

24: end for
25: CS1 selects a random number μ1 ∈ ZN . Then, CS1 sends Ecl ∗ Epk(μ1) to CS2, and gives μ1

to Bob. CS2 returns μ2 = Dsk (Ecl ∗ Epk(μ1)) to Bob.
26: At last, Bob obtains the class label CS = μ2 − μ1.

and set Bkti = Epk (Dsk(Akt1Akt2Wki) � 3), we can ensure Bkti = Epk(1) if
Alice’s k-th sample satisfies its class label is i and t-th dimension equals to St,

140 X. Li et al.

Protocol 4. Secure Maximum Ratio Protocol (SMRP)
Input: CS1 has two encrypted sets {Epk(α), Epk(Xα), Epk(Yα)} and {Epk(β), Epk(Xβ), Epk(Yβ)}.

CS2 has the secret key (decryption key) sk. Suppose 0 < Xα, Xβ , Yα, Yβ < 2Ω .
Output: CS1 obtains the output Ecl, Max1 and Max2 which satisfy if XβYα � XαYβ (i.e.,

the ratio Yα/Xα � Yβ/Xβ), then Ecl = Epk(α), Max1 = Epk(Xα) and Max2 = Epk(Yα);
otherwise Ecl = Epk(β), Max1 = Epk(Xβ) and Max2 = Epk(Yβ). Neither CS1 nor CS2 can
learn the values hidden in the output results Ecl, Max1 and Max2.

1: CS1 randomly selects four non-zero number θ1, θ2, θ3, θ4 ∈ Z
∗
N , and sends

{Epk(Xα)θ1 , Epk(Yα)θ2 , Epk(Xβ)
θ3 , Epk(Yβ)

θ4} to CS2.
2: CS2 decrypts the encrypted values and returns {Epk(XαYβθ1θ4), Epk(XβYαθ2θ3)} to CS1.

3: CS1 selects a random non-zero number δ ∈ {1, 2, · · · , 22Ω} and a random number φ ∈ {0, 1},
and then computes {γ1, γ2, γ3, γ4} as follows.

4: if φ = 1 then
5: ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ1 = 2δ(θ2θ3)
−1

mod N,

γ2 = (N − 2δ)(θ1θ4)
−1

mod N,

γ3 = 2
4Ω

+ δ,

γ4 = 1.

(18)

6: else
7: ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ1 = (N − 2δ)(θ2θ3)
−1

mod N,

γ2 = 2δ(θ1θ4)
−1

mod N,

γ3 = 2
4Ω − δ,

γ4 = N − 1.

(19)

8: end if
9: CS1 selects three random numbers ω1, ω2, ω3 ∈ ZN , computes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Φ1 = Epk(α)
N−γ4Epk(β)

γ4Epk(ω1),

Φ2 = Epk(Xα)
N−γ4Epk(Xβ)

γ4Epk(ω2),

Φ3 = Epk(Yα)
N−γ4Epk(Yβ)

γ4Epk(ω3),

Φ4 = Epk(XβYαθ2θ3)
γ1Epk(XαYβθ1θ4)

γ2Epk(γ3).

(20)

and sends {Φ1, Φ2, Φ3, Φ4} to CS2.
10: CS2 decrypts Φ4, computes {Ψ1, Ψ2, Ψ3, Ψ4} as follows.

11: if Dsk(Φ4) < 24Ω then
12: ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ψ1 = Φ1R
N
1 mod N

2
,

Ψ2 = Φ2R
N
2 mod N

2
,

Ψ3 = Φ3R
N
3 mod N

2
,

Ψ4 = Epk(1).

(21)

13: else
14: Ψ1 = Epk(0), Ψ2 = Epk(0), Ψ3 = Epk(0), Ψ4 = Epk(0).
15: end if

Here, R1, R2 and R3 are the random parameters selected from Z
∗
N .

16: CS2 returns {Ψ1, Ψ2, Ψ3, Ψ4} to CS1.
17: CS1 sets Ecl, Max1 and Max2 by the following method.

⎧
⎪⎪⎨

⎪⎪⎩

Ecl = Ψ1Epk(t)Ψ
N−ω1
4 ,

Max1 = Ψ2Epk(Xt)Ψ
N−ω2
4 ,

Max2 = Ψ3Epk(Yt)Ψ
N−ω3
4 .

(22)

Here, t = α if φ = 1, otherwise t = β.

Secure Näıve Bayesian Classification over Encrypted Data in Cloud 141

otherwise Bkti = Epk(0). That is, mit exactly equals to the number of “1”s
hidden in Bkti for k = 1, 2, · · · ,m. Hence, CS1 can use Bkti to locally compute
Epk(mit) =

∏m
k=1 Bkti based on the homomorphic property.

To complete the posterior probability comparison with the Eq. (10), CS1

needs to further compute Epk(
∏d

t=1 mit). Here, as shown in lines 16 to 20
of Protocol 3, we propose an efficient secure approach to make CS1 obtain
Epk(

∏d
t=1 mit) from Epk(mit). In our scheme, CS1 randomly generates non-

zero number Hit ∈ Z
∗
N to preserve mit, and sends Epk(mitHit) = Epk(mit)Hit

to CS2 for t = 1, 2, · · · , d. Then, CS2 returns Epk(
∏d

t=1 mitHit) to CS1,

such that the latter can obtain Epk(
∏d

t=1 mit) = Epk

(∏d
t=1 mitHit

)Gi

where

Gi =
∏d

t=1 H−1
it mod N .

Up to now, CS1 has gotten Epk(md−1
i) and Epk(

∏d
t=1 mit) for i = 1, 2, · · · , λ.

At the last phase of our second stage, CS1 and CS2 will compute the encrypted
class label Epk(CS) by the mean of Eq. (10). Here, CS1 first sets the initial values
Ecl = Epk(1), Max1 = Epk(md−1

1) and Max2 = Epk(
∏d

t=1 m1t). Then, for every
i = 2 to λ, CS1 and CS2 implement SMRP shown in Protocol 4 (we will introduce
the SMRP protocol later) such that CS1 attains an updated Ecl which is Epk(i)
if Dsk(Max1)(

∏d
t=1 mit) > (md−1

i)Dsk(Max2), or Eclold ∗ rN otherwise. Here,
Eclold denotes the value of Ecl before being updated, and r ∈ Z

∗
N is a random

self-blinding parameter of Paillier encryption system. Meanwhile, CS1 also gains
the updated Max1 and Max2. Let u denote the plaintext hidden in the updated
Ecl, then, the corresponding Max1 = Epk(md−1

u) and Max2 = Epk(
∏d

t=1 mut).
It should be remarked that neither CS1 nor CS2 can learn any plaintext hidden
in Ecl, Max1 and Max2.

In [14], Liu et al. lately propose a privacy preserving maximum proto-
col (PMAX) to get Epk(max{HA,HB}) from Epk(HA) and Epk(HB). How-
ever, PMAX cannot be directly applied to our problem, since we need to
compare Dsk(Max1)(

∏d
t=1 mit) and (md−1

i)Dsk(Max2), i.e., the product of
hidden plaintexts. For tackling the challenging problem, we improve PMAX
and propose SMRP to support our applications. In our SMRP, we use
{Epk(α), Epk(Xα), Epk(Yα)} and {Epk(β), Epk(Xβ), Epk(Yβ)} to denote the
input set of CS1. Here, α (or β) is a class label, and the corresponding Epk(md−1

α)
and Epk(

∏d
t=1 mαt) are Epk(Xα) and Epk(Yα), respectively. The output, known

to CS1 only, is denoted as {Ecl,Max1,Max2} which is the first or second input
set of CS1 according to the comparison result of XβYα and XαYβ . Remarkably,
CS1 cannot know {Ecl,Max1,Max2} is his first or second input set, because
the encrypted values have been self-blinded with random parameters.

Assume 0 < Xα,Xβ , Yα, Yβ < 2Ω . For the data privacy, SMRP uses
the random θ1, θ2, θ3, θ4 ∈ Z

∗
N to protect Xα, Yα, Xβ , Yβ , and CS1 sends

{Epk(Xα)θ1 , Epk(Yα)θ2 , Epk(Xβ)θ3 , Epk(Yβ)θ4} to CS2 who returns the cipher-
text Epk(XαYβθ1θ4) and Epk(XβYαθ2θ3) to CS1. Next, we will introduce
the main process to make CS1 obtain Ecl = Epk(α) if XβYα � XαYβ

holds, or Ecl = Epk(β) otherwise. The corresponding output {Max1,Max2}
(which is {Epk(Xα), Epk(Yα)} or {Epk(Xβ), Epk(Yβ)}) can be achieved by the

142 X. Li et al.

similar methods. For computing Ecl, CS1 first selects two random numbers
0 < δ < 22Ω and ω1 ∈ ZN to protect the private data from CS2. Then,
CS1 sends CS2 Φ1 and Φ4 which are decided by CS1’s coin-toss φ ∈ {0, 1}.
If φ = 1, CS1 sets Φ1 = Epk (β − α + ω1) = Epk(α)N−1Epk(β)Epk(ω1) and
Φ4 = Epk

(
δ(2XβYα + 1 − 2XαYβ) + 24Ω

)
; otherwise Φ1 = Epk (α − β + ω1) =

Epk(α)Epk(β)N−1Epk(ω1) and Φ4 = Epk

(
δ(2XαYβ − 2XβYα − 1) + 24Ω

)
. After

receiving Φ4, CS2 can learn whether (Dsk(Φ4) − 24Ω) is larger than 0 or not.
Nevertheless, CS2 does not know it indicates 2XβYα + 1 > 2XαYβ or 2XαYβ >
2XβYα + 1, owing to the confidentiality of CS1’s coin-toss φ. According to the
value of Dsk(Φ4), CS2 sets Ψ1 = Epk(0) and Ψ4 = Epk(0) if Dsk(Φ4) − 24Ω > 0;
otherwise Ψ1 = Φ1 ∗ RN

1 and Ψ4 = Epk(1). Here, R1 ∈ Z
∗
N is a random self-

blinding parameter. The intention that CS2 blinds Φ1 is to preserve CS1 from
learning whether Ψ1 and Φ1 hides the same plaintext or not, and further to keep
CS1 from any information about the class label hidden in the output Ecl. At
last, CS1 computes Ψ1Ψ

N−ω1
4 which is Epk(0) or Epk(Dsk(Φ1)−ω1), and attains

Ecl = Ψ1Epk(α)ΨN−ω1
4 if his coin-toss φ = 1; otherwise Ecl = Ψ1Epk(β)ΨN−ω1

4 .
The correctness of Ecl can be guaranteed as follows.

While CS1’s coin-toss φ = 1, CS1 sends Φ1 = Epk (β − α + ω1) and Φ4 =
Epk

(
δ(2XβYα + 1 − 2XαYβ) + 24Ω

)
to CS2. Then, we have Dsk(Φ4) − 24Ω > 0

if and only if 2XβYα + 1 > 2XαYβ , i.e., XβYα � XαYβ . Thus, Ψ1Ψ
N−ω1
4 will be

Epk(0) if XβYα � XαYβ , and CS1 can obtain Ecl = Ψ1Epk(α)ΨN−ω1
4 = Epk(α).

On the contrary (namely, XβYα < XαYβ), Ψ1Ψ
N−ω1
4 will be Epk(β − α), and

CS1 will attain Ecl = Ψ1Epk(α)ΨN−ω1
4 = Epk(β).

While CS1’s coin-toss φ = 0, CS1 sends Φ1 = Epk (α − β + ω1) and Φ4 =
Epk

(
δ(2XαYβ − 2XβYα − 1) + 24Ω

)
to CS2. Then, we have Dsk(Φ4)−24Ω > 0 if

and only if 2XαYβ > 2XβYα+1, i.e., XαYβ > XβYα. Therefore, Ψ1Ψ
N−ω1
4 will be

Epk(0) if XαYβ > XβYα, and CS1 can obtain Ecl = Ψ1Epk(β)ΨN−ω1
4 = Epk(β).

On the contrary (namely, XβYα � XαYβ), Ψ1Ψ
N−ω1
4 will be Epk(α − β), and

CS1 will attain Ecl = Ψ1Epk(β)ΨN−ω1
4 = Epk(α).

After achieving the final Ecl, CS1 perturbs it with a random μ1 ∈ ZN , and
sends Ecl ∗ Epk(μ1) to CS2. Then, CS1 returns μ1 to Bob, and CS2 returns
μ2 = Dsk(Ecl ∗ Epk(μ1)) = CS + μ1 to Bob. At last, Bob can obtain his class
label CS = μ2 − μ1, which correctly completes the näıve Bayesian classification
for the sample S.

4 Evaluation

In this section, we prove the security of our scheme, and then analyze our cost
in computation and communication.

4.1 Security

We consider the security of our scheme under semi-honest model. That is, each
participant is assumed to correctly follow the stated steps. Additionally, we

Secure Näıve Bayesian Classification over Encrypted Data in Cloud 143

assume CS1 and CS2 do not collude with each other. Our scheme can be proved
securely through following four theorems.

Theorem 1 (Security of Protocol 1). Our first stage is secure. Namely, no
information about Alice’s dataset is disclosed to CS1 or CS2 throughout our first
stage.

Theorem 2 (Security of Protocol 2). Our SCTC protocol is secure. No use-
ful information is disclosed to CS1 or CS2.

Theorem 3 (Security of Protocol 4). Our SMRP protocol is secure. CS1 or
CS2 cannot learn or deduce about any information about useful information.

Theorem 4 (Security of Protocol 3). Our second stage is secure. No infor-
mation about Alice’s dataset and Bob’s query are disclosed to Alice’s dataset.
And Bob can only obtain the class label.

The proof process about each theorem above can be found in Appendix.

4.2 Computation and Communication Complexity

In this section, we will analyze our computation cost and communication over-
heads, respectively. The computation and communication complexity of our
scheme is shown in Table 1, where K is the encryption key size. The detail about
computation and communication cost process is shown in Appendix.

Table 1. Computational and communication complexity of our scheme

Approach Computation cost Communication

Encryptions Exponentiations

First stage O(mλ) O(mλ) O(mλK)

SCTC protocol O(1) O(1) O(K)

SMRP protocol O(1) O(1) O(K)

Second stage O(mλd) O(mλd) O(mλdK)

5 Related Work

We simple review the related work as follows. Privacy preserving Bayes clas-
sification scheme was first studied in distributed environment where dataet is
horizontally partitioned or vertically partitioned. Kantarcioglu et al. [10] first
devised a privacy-preserving naive Bayes classification for horizontally parti-
tioned data by adopting secure sum protocol [4] and private lnx protocol [12].
Yang et al. [20] proposed a protocol for vertically partitioned customer data.
This privacy-preserving naive Bayes classification was achieved by using the

144 X. Li et al.

additively homomorphic property of a variant of ElGamal encryption [7]. Yi and
Zhang [22] achieved naive Bayes classification over horizontally partitioned data
by two non-colluding mixers private lnx protocol [12]. However, in the privacy-
preserving naive Bayes classification on distributed data, each participant can
access a part of the dataset. It is not suitable to our outsourcing scene, since the
cloud in our problem cannot learn any plaintext of the input dataset.

Recently, with the popularity of cloud computing, many privacy-preserving
protocols have been proposed to solve the problem of secure analysis encrypted
data in the cloud. Samanthula et al. [19] proposed a protocol for secure evalua-
tion of range queries in the cloud computing environment by devising a secure
bit-decomposition protocol which can convert an encrypted integer z into encryp-
tions of the individual bits of z. Elmehdwi et al. [8] proposed a set of secure
primitives which are based on additively homomorphic encryption (e.g., Paillier
encryption system [17]) and two non-colluding could servers. These primitive
protocols assume there are two non-colluding cloud service providers, one of
which stores users’ encrypted data and another holds users’ secret key. These
two non-colluding cloud servers could implement computation tasks by using
secure multi-party computation. Elmehdwi et al. then use these secure primi-
tives to construct secure k-NN query scheme in [8] and secure k-NN classification
scheme in [18]. Liu et al. [13] develop some secure protocols for secure similarity
evaluation of encrypted trajectories outsourced to the cloud. These secure pro-
tocols are implemented based on secure primitives in [8], Paillier homomorphic
encryption system and Yao’s garbled circuit [9,21]. The recent works [24,25]
study secure k-NN query over encrypted data in cloud, but they cannot support
secure näıve Bayesian classification. Yuan et al. [23] proposed privacy preserv-
ing back-propagation neural network over arbitrarily partitioned data. In Yuan
et al.’s scheme, all parties encrypt data by using BGN homomorphic encryption
algorithm [2], which supports one multiplication and multiple addition opera-
tions, and upload encrypted data to the cloud. The cloud can implement back-
propagation neural network with the help of all parties and the homomorphic
property of BGN encryption. Liu et al. [14] achieved privacy preserving Bayes
classification over encrypted disease data by using additive homomorphic proxy
aggregation scheme in [6], Paillier encryption system in [17] and secure multi-
plication protocol in [8]. Nevertheless, no existing work can outsource the entire
computation task of näıve Bayesian classification to cloud.

6 Conclusions

In this paper, we investigated näıve Bayesian classification on encrypted dataset
in cloud and proposed a semantically secure scheme for the challenging problem.
Our scheme enables all the computation task of näıve Bayesian classification
to be completed by the cloud, and thus can dramatically reduce the burden of
data owner and users. Besides, our scheme can guarantee the security of both
input dataset and output classification results, and the cloud can learn nothing
useful about the data of data owner and users. At last, theoretical analysis and

Secure Näıve Bayesian Classification over Encrypted Data in Cloud 145

evaluation indicated the security and computation/communication complexity
of our proposed scheme.

Acknowledgements. We thank the anonymous reviewers and our shepherd, Prof.
Xun Yi, for their valuable feedbacks. This work is partly supported by the Natural
Science Foundation of Jiangsu Province of China (No. BK20150760), the Fundamental
Research Funds for the Central Universities (No. NZ2015108, NS2016094), the China
Postdoctoral Science Foundation funded project (No. 2015M571752), and the Natural
Science Foundation of China (No. 61472470).

Appendix

Paillier Cryptosystem. Paillier [17] proposed an efficient public key cryptosys-
tem with semantic security (indistinguishability under chosen plaintext attack,
IND-CPA). The encryption scheme is additively homomorphic, i.e.,

Epk(m1, r1) × Epk(m2, r2) = Epk(m1 + m2, r1r2), (23)

Epk(m1, r1)κ = Epk(κ × m1, r
κ
1). (24)

Here, E denotes the encryption function, m1 and m2 are arbitrary messages
in plaintext space, pk is the public key, r1 and r2 are random parameters for
encryption, Epk(m1, r1) denotes the encrypted result of m1 using the random
parameter r1, and κ is a positive integer. In this paper, we also use Epk(m1)
to denote the encrypted value of m1 while it is unnecessary to emphasize the
random parameter. We briefly review the main steps of the encryption system
as follows.

Key Generation. Select two large enough primes p and q. Then, the secret
key sk is s = lcm(p − 1, q − 1), that is, the least common multiple of p − 1
and q − 1. The public key pk is (N, g), where N = pq and g ∈ Z

∗
N2 such

that gcd
(
L(gs mod N2), N

)
= 1, that is, the maximal common divisor of L(gs

mod N2) and N is equivalent to 1. Here, L(x) = (x − 1)/N , the same below.

Encryption. Let m0 be a number in plaintext space ZN . Select a random r ∈ Z
∗
N

as the secret parameter, then the ciphertext c0 of m0 is c0 = gm0rN mod N2.

Decryption. Let c0 ∈ ZN2 be a ciphertext. The plaintext hidden in c0 is

m0 =
L(cs

0 mod N2)
L(gs mod N2)

mod N.

Paillier homomorphic encryption system is an important secure building
block to be used in our scheme. As a probabilistic encryption, Paillier homomor-
phic encryption system also has the self-blinding property, that is, Epk(m0, r1)∗
rN
2 = Epk(m0, r1r2) and m0 = Dsk(Epk (m0, r1)) = Dsk

(
Epk(m0, r1) ∗ rN

2

)
for

any r2 ∈ Z
∗
N .

146 X. Li et al.

For simplicity, we also use Epk(m0) to denote the encrypted result of m0

while it is no need to emphasize the random parameter r.

Description about SCTC. In SCTC, CS1 holds the ciphertext {Epk(X),
Epk(Y)}, and CS2 holds secret key. SCTC enables CS1 to obtain an output
Γ which satisfies Γ = Epk(1) if X � Y , otherwise Γ = Epk(0). It is remarked
that CS1 and CS2 cannot know any plaintext hidden in Epk(X), Epk(Y) and Γ
throughout SCTC. The main steps of SCTC are as follows.

Assume 0 � X, Y < 2Ω . We have 0 � (2X + 1), 2Y < 2Ω+1. Besides,
X � Y if and only if 2X + 1 > 2Y . In SCTC, CS1 selects a random posi-
tive number δ < 2Ω+1, and sends Φ to CS2, where Φ equals to the ciphertext
Epk

(
δ(2X + 1 − 2Y) + 2Ω+2

)
or Epk

(
δ(2Y − 2X − 1) + 2Ω+2

)
with the same

probability 50%. Here, Φ can be locally achieved by CS1 using the following
equations based on the homomorphic property.

Epk

(
δ(2X + 1 − 2Y) + 2Ω+2

)
= Epk(X)2δEpk(Y)N−2δEpk(22Ω+2 + δ).

Epk

(
δ(2Y − 2X − 1) + 2Ω+2

)
= Epk(X)N−2δEpk(Y)2δEpk(22Ω+2 − δ).

After receiving Φ, CS2 can learn whether Dsk(Φ) > 22Ω+2 which indicates
the size relationship of (2X + 1) and 2Y . Nevertheless, CS2 cannot know it is
2X+1 > 2Y or 2Y > 2X+1, since CS2 has no idea which value is set as Φ by CS1.
CS2 tells CS1 whether Dsk(Φ) > 22Ω+2 or not in encrypted form Ψ = Epk(1)
or Epk(0). At last, CS1 can obtain the comparison result (in encrypted form)
of 2X + 1 > 2Y by setting Γ = Ψ if selecting the first value as Φ, otherwise
Γ = Epk (1 − Dsk(Ψ)) = Epk(1)ΨN−1 which is just the comparison result of
X � Y . During the execution of SCTC, CS1 can only access the encrypted
values Epk(X), Epk(Y), Ψ and Γ . CS2 can decrypt Φ, but cannot learn useful
information about X and Y , owing to the randomness of δ and CS1’s coin-toss φ.
Thus, the plaintext hidden in the input/output ciphertext will be well protected
from both CS1 and CS2.

Security Proof. The proof of Theorem 1.

Proof. In the following, we consider the view of CS1 and CS2, respectively.
CS1: In our first stage shown in Protocol 1, CS1 can access nothing but the

encrypted values Epk(Ck), Yki and Epk

(
(miPi)d−1

)
for each k = 1, 2, · · · ,m

and i = 1, 2, · · · , λ. Thus, CS1 cannot learn any useful information about the
plaintext hidden in the encrypted values, owing to the semantic security (IND-
CPA) of Paillier homomorphic encryption system.

CS2: In Protocol 1, CS2 holds the secret key sk, and he can also receive Πk(Xk)
(for each k = 1, 2, · · · ,m) and Epk(miPi) (for each i = 1, 2, · · · , λ). Through
decrypting, CS2 can attain Πk (Rk1(Ck − 1), Rk1(Ck − 2), · · · , Rk1(Ck − λ)) and
miPi. Because Pi is randomly selected from Z

∗
N , CS2 can learn nothing about mi

(in this paper, we have assumed mi > 0). For each Ck, it has 1 � Ck � λ, thus it
must be one and only one Rki(Ck − i) equals to 0 for all i ∈ {1, 2, · · · , λ}. Due to
the randomness of Rki, CS2 can only know some Rki(Ck −i) = 0, i.e., some i meets
Ck − i = 0. Nevertheless, CS2 does not know which i satisfies Rki(Ck − i) = 0, on

Secure Näıve Bayesian Classification over Encrypted Data in Cloud 147

account of the random permutation Πk. Therefore, CS2 can learn nothing during
our first stage.

To sum up, no information about Alice’s dataset is disclosed to CS1 or CS2

throughout our first stage. Our first stage is secure. It completes our proof of
Theorem 1.

The proof of Theorem2.

Proof. We consider the view of CS1 and CS2 as follows.
CS1: In SCTC protocol, i.e., Protocol 2, CS1 can obtain the values Epk(X),

Epk(Y) and Ψ in total. All the three values are the ciphertext of Paillier homo-
morphic encryption system. Based on its semantic security (IND-CPA), CS1

cannot learn any useful information about the plaintext hidden in the encrypted
values Epk(X), Epk(Y) and Ψ .

CS2: In Protocol 2, CS2 can receive Φ only. After decrypting Φ, CS2 can get(
δ(2X + 1 − 2Y) + 22Ω+2

)
or

(
δ(2Y − 2X − 1) + 22Ω+2

)
with the same proba-

bility 50%. Nevertheless, δ is a random number holden by CS1. Thus, CS2 can
learn no useful information about X or Y from the decrypted result of Φ.

In all, our SCTC is secure, which completes the proof of Theorem 2.

The proof of Theorem3.

Proof. Our SMRP protocol, namely Protocol 4, also consists of two participants:
CS1 and CS2. We will consider their view during the protocol, respectively.

CS1: In Protocol 4, in addition to the input of himself, CS1 can attain
the set {Epk(XαYβθ1θ4), Epk(XβYαθ2θ3)} and {Ψ1, Ψ2, Ψ3, Ψ4}. From the for-
mer encrypted data set, CS1 can infer nothing, because of the semantic security
(IND-CPA) of Paillier homomorphic encryption system.

For Ψi (i = 1, 2, 3), it is either Epk(0) or a blinded Φi. It is easy to say CS1

cannot efficiently distinguish Ψi from any other value in ciphertext space, based
on the semantic security.

Additionally, Ψ4 = Epk(1) or Epk(0). Hence, CS1 cannot deduce any plaintext
hidden in Ψ4, owing to the security of Paillier encryption system.

CS2: In SMRP protocol, CS2 can access secret key and the encrypted value
set {Epk(Xαθ1), Epk(Yαθ2), Epk(Xβθ3), Epk(Yβθ4)}, {Φ1, Φ2, Φ3, Φ4}. Because of
the randomness of {θ1, θ2, θ3, θ4}, the values {Xα, Yα,Xβ , Yβ} can be securely
protected from CS2.

By decrypting {Φ1, Φ2, Φ3}, CS2 can get the set {β − α + ω1, Xβ − Xα + ω2,
Yβ − Yα + ω3} or {α − β + ω1, Xα − Xβ + ω2, Yα − Yβ + ω3} with the same
probability 50%. Since the random ω1, ω2, ω3 ∈ ZN , CS2 can learn nothing about
{α, β,Xα,Xβ , Yα, Yβ}.

From Φ4, CS2 can obtain δ(2XβYα+1−2XαYβ)+24Ω or δ(2XαYβ −2XβYα−
1) + 24Ω with 50% probability both. Since the random δ is holden by CS1, CS2

cannot learn any useful information by decrypting Φ4.
Overall, CS1 or CS2 can learn nothing useful about {α, β, Xα, Xβ , Yα, Yβ},

thus SMRP protocol is secure, and we complete the proof of Theorem 3.

148 X. Li et al.

The proof of Theorem4.

Proof. Our second stage involves three participants: CS1, CS2, Bob. We will
consider the view of them, respectively.

Bob: Apart from his unlabeled sample S, Bob only can receive μ1 and μ2

from the cloud. μ1 is a random selected by CS1, and μ2 = Dsk(Ecl)+μ1. Then,
Bob can obtain nothing but Dsk(Ecl) which is just the class label of his sample
S using näıve Bayesian classification. That is, Bob can learn nothing about the
data of Alice.

CS1: Apart from employing SCTC and SMRP, there is a for loop (line 16
to 20) in our second stage shown in Protocol 3. In the for loop, CS1 can access
nothing but Epk(

∏d
t=1 mitHit). Thus, CS1 cannot learn any useful information

about the data of Alice and Bob, based on the security of SCTC, SMRP, and
Paillier encryption system.

CS2: Similarly, CS2 can only gain secret key and Epk(mitHit) for each t = 1,
2, · · · , d. Here, each Hit is randomly selected by CS1 from Z

∗
N . Therefore, every

mit can be well preserved from CS2.
In all, our second stage can ensure that Bob can obtain only the class label of

his sample, and the cloud can learn nothing useful about the data of Alice and
Bob. Our second stage is thus secure, which completes the proof of Theorem 4.

The analysis procedure of computation and communication complexity in
detail are shown as follow.

Computation Complexity. In Protocol 1 (namely our first stage), Eqs. (11)
and (12) need to be done mλ times, which leads to mλ encryptions and 2mλ
exponentiations. From lines 10 to 15, λ encryptions and 4λ exponentiations are
performed to calculate all Epk(md−1

i) (for i = 1, 2, · · · , λ). Based on the above
analysis, the total computation complexity of Protocol 1 is bounded by O(mλ)
encryptions and O(mλ) exponentiations.

In SCTC protocol, two encryptions and exponentiations are performed to
compute Φ (line 3 and line 5). In addition, considering Eq. (13) acquires one
encryption and Eq. (14) needs one exponentiation, the total computation com-
plexity of SCTC Protocol is bounded by O(1) encryptions and O(1) exponenti-
ations.

In SMRP protocol, one encryption and four exponentiations are performed to
compute ciphertext multiplication from lines 1 to 8. The rest part of this protocol
needs five encryptions and fourteen exponentiations to acquire the maximum of
two ciphertexts. Therefore, the total computation complexity of SMRP Protocol
is bounded by O(1) encryptions and O(1) exponentiations as well.

In Protocol 3 (namely our second stage), SCTC protocol (line 4 and line 7) is
performed m(λ+2)d times to get the comparative result of multiple ciphertexts.
From lines 16 to 20, it takes one encryption and d+1 exponentiations to compute
multiple ciphertext multiplication. From lines 22 to 24, SMRP protocol (line 23)
needs to be done λ − 1 times. Based on the aforementioned analysis, SCTC
protocol is bounded by O(1) encryptions and O(1) exponentiations. Besides, the
SMRP protocol is also bounded by O(1) encryptions and O(1) exponentiations.

Secure Näıve Bayesian Classification over Encrypted Data in Cloud 149

Therefore, the total complexity of Protocol 3 is bounded by O(mλd) encryptions
and O(mλd) exponentiations.

Communication Complexity. In our first stage, i.e., Protocol 1, CS1 needs to
send m + 1 λ-dimensional vectors to CS2 who returns CS1 m + 1 corresponding
λ-dimensional vectors. Considering all the data transferred between two clouds
are in encrypted form, the whole communication complexity in first stage is
bounded by O(mλK) bits, where K is the encryption key size.

In SCTC protocol, there is only two ciphertexts transferred between CS1 and
CS2, which means communication complexity in SCTC protocol is bounded by
O(K) bits.

In SMRP protocol, the number of ciphertexts sent by CS1 and CS2 is seven-
teen. Thus, the communication complexity in this protocol is bounded by O(K)
bits.

In our second stage (namely Protocol 3), SCTC protocol needs to be done
m(λ+2)d times, which leads to 2m(λ+2)d ciphertexts transferred between CS1

and CS2. In addition, while computing Epk(
∏d

t=1 mit), CS1 sends λd ciphertexts
to CS2 who returns λ ciphertexts to CS1. At last, 17(λ − 1) ciphertexts need
to be transmitted between CS1 and CS2, while CS1 and CS2 implement λ − 1
times SMRP protocol. Therefore, the communication complexity in Protocol 3
is bounded by O(mλdK) bits.

References

1. Bellazzi, R., Zupan, B.: Predictive data mining in clinical medicine: current issues
and guidelines. Int. J. Med. Inform. 77(2), 81–97 (2008)

2. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). doi:10.1007/978-3-540-30576-7 18

3. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: The Network and Distributed System Security Symposium
(NDSS), pp. 1–14 (2015)

4. Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy
preserving distributed data mining. ACM Sigkdd Explorations Newslett. 4(2), 28–
34 (2002)

5. Clifton, C., Vaidya, J., Kantarcioglu, M.: Privacy-preserving näıve Bayes classifi-
cation. VLDB J. 17(4), 879–898 (2008)

6. Dong, C., Chen, L., Camenisch, J., Russello, G.: Fair private set intersection with
a semi-trusted arbiter. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol.
7964, pp. 128–144. Springer, Heidelberg (2013)

7. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

8. Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over
encrypted data in outsourced environments. In: IEEE 30th International Confer-
ence on Data Engineering (ICDE), pp. 664–675 (2014)

9. Goldreich, O.: Foundations of Cryptography: Volume II, Basic Applications.
Cambridge University Press, Cambridge (2004)

http://dx.doi.org/10.1007/978-3-540-30576-7_18

150 X. Li et al.

10. Kantarcıoglu, M., Vaidya, J., Clifton, C.: Privacy preserving naive Bayes classifier
for horizontally partitioned data. In: IEEE ICDM workshop on privacy preserving
data mining, pp. 3–9 (2003)

11. Kim, H.J., Kim, J.U., Ra, Y.G.: Boosting näıve Bayes text classification using
uncertainty-based selective sampling. Neurocomputing 67, 403–410 (2005)

12. Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptology 15(3), 36–54
(2002)

13. Liu, A., Zhengy, K., Liz, L., Liu, G., Zhao, L., Zhou, X.: Efficient secure similarity
computation on encrypted trajectory data. In: IEEE 31st International Conference
on Data Engineering (ICDE), pp. 66–77 (2015)

14. Liu, X., Lu, R., Ma, J., Chen, L., Qin, B.: Privacy-preserving patient-centric clinical
decision support system on naive Bayesian classification. IEEE J. Biomed. Health
Inform. 20(2), 655–668 (2016)

15. Lops, P., Gemmis, M.D., Semeraro, G.: Content-based recommender systems: state
of the art and trends. In: Recommender Systems Handbook, pp. 73–105 (2011)

16. Mitchell, T.: Machine Learning, 1st edn. McGraw-Hill Science/Engineering/Math,
New York (1997)

17. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

18. Samanthula, B.K., Elmehdwi, Y., Jiang, W.: k-nearest neighbor classification over
semantically secure encrypted relational data. IEEE Trans. Knowl. Data Eng.
27(5), 1261–1273 (2015)

19. Samanthula, B.K., Jiang, W.: Efficient privacy-preserving range queries over
encrypted data in cloud computing. In: IEEE Sixth International Conference on
Cloud Computing, pp. 51–58 (2013)

20. Yang, Z., Zhong, S., Wright, R.N.: Privacy-preserving classification of customer
data without loss of accuracy. In: Siam International Conference on Data Mining,
pp. 92–102 (2005)

21. Yao, A.: How to generate and exchange secrets. In: 27th Annual Symposium on
Foundations of Computer Science, pp. 162–167. IEEE (1986)

22. Yi, X., Zhang, Y.: Privacy-preserving naive Bayes classification on distributed data
via semi-trusted mixers. Inform. Syst. 34(3), 371–380 (2009)

23. Yuan, J., Yu, S.: Privacy preserving back-propagation neural network learning
made practical with cloud computing. IEEE Trans. Parallel Distrib. Syst. 25(1),
212–221 (2014)

24. Zhu, Y., Huang, Z., Takagi, T.: Secure and controllable k-nn query over encrypted
cloud data with key confidentiality. J. Parallel Distrib. Comput. 89, 1–12 (2016)

25. Zhu, Y., Wang, Z., Zhang, Y.: Secure k-NN query on encrypted cloud data with
limited key-disclosure and offline data owner. In: The 20th Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pp. 401–414 (2016)

Searchable Encryption

Integrity Preserving Multi-keyword
Searchable Encryption for Cloud Computing

Fucai Zhou1(&), Yuxi Li1, Alex X. Liu2, Muqing Lin3,
and Zifeng Xu1

1 Software College, Northeastern University,
Shenyang 110819, Liaoning, China
fczhou@mail.neu.edu.cn

2 The Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824, USA

3 The College of Information Science and Engineering, Northeastern University,
Shenyang 110819, Liaoning, China

Abstract. Searchable symmetric encryption is an efficient way to perform
keyword search over encrypted data in cloud storage. However, most existing
methods do not take into account the integrity verification of the search result.
Moreover, existing methods can only verify the integrity of single-keyword
search results, which cannot meet the requirements of multi-keyword conjunc-
tive search. To address this problem, we proposed a multi-keyword searchable
encryption scheme with an authentication mechanism that can efficiently verify
the integrity of search results. The proposed scheme is based on the searchable
symmetric encryption and adopts the bilinear map accumulator to prove the
correctness of set operations. It supports multiple keywords as input for con-
junctive search and gives the server the ability to prove the integrity of the
search result to the user. Formal proofs show that the proposed scheme is
unforgeable and adaptive secure against chosen-keyword attacks. To the best of
our knowledge, this is the first work that can authenticate the multi-keyword
search result over encrypted data.

Keywords: Conjunctive keyword search � Integrity authentication � Searchable
encryption � Secure cloud storage

1 Introduction

Cloud computing is an innovative Internet-based computing paradigm that enables
cloud users to move out their data and applications to a remote cloud in order to deploy
scalable and elastic services on demand without having to provision a data center.
However, while cloud computing has many advantages, it has not been widely used.
According to a survey lunched by Twin Strata in 2015, only 38 % of organizations
would like to put their inactive data stored in public cloud; about 24 % of users were
using cloud storage for data backup, archiving and disaster recovery. This shows that
the issue of data security [1, 2] is one of the major obstacles to the promotion of cloud

© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 153–172, 2016.
DOI: 10.1007/978-3-319-47422-9_9

storage. Since the user’s data is outsourced to distributed cloud servers, the service
provider can easily access the data.

To prevent data from being maliciously accessed by cloud providers, data owners
tend to encrypt their private data before outsourcing to the cloud, and they only share
the decryption key to other authorized users. Although this method can protect the
privacy of the data, it brings the data retrieve problems. This limitation has motivated
many researches on advanced searchable encryption schemes that enable searching on
the encrypted data while protecting the confidentiality of the data and queries.

The solution of searchable encryption that first proposed by Song et al. [3] provides
a way to perform efficient keyword searches over encrypted data. Promoted by Song’s
pioneering work, many efforts have been devoted to construct more efficient searchable
symmetric encryption (SSE) schemes, such as [4–8] and [9]. A SSE scheme allows
users to encrypt their data using symmetric encryption, and then uses files and key-
words to create the encrypted index for further searches. When the user wants to
retrieve some files, he needs to choose a keyword and use it to generate a search
request. After that, the server uses this special request to search over its internal data
structure. At last, the server finds all the files related to that keyword and returns the file
collection to the user. Besides performing successful searches, the privacy feature of
the SSE also ensures that, given encrypted files, encrypted indexes and a series of
search requests, the server cannot learn any useful information about the files and the
keywords.

The solutions above are single-keyword oriented, which are inefficient in practice
since the searches may return a very large number of files, such as when searching in a
remote-stored email archive. The works in [10–12] and [13] extend the search primitive
to the multi-keyword conjunctive search, which avoid this limitation and are more
practical for real world scenarios.

To the best of our knowledge, few works consider the searchable encryption and
the search authentication together. Kamara et al. [14] presented a cryptographic cloud
storage system which combines an adaptive secure searchable symmetric encryption
scheme with a search authenticate mechanism to allow the user to verify the integrity of
the search result. They used a simple Merkle tree structure [15] and a pre-computed
basis to authenticate the given dataset. Kurosawa and Ohtaki [16] introduced the
definition of UC-security and proposed a verifiable SSE scheme that allows the user to
detect search result’s integrity.

Our Contribution. In this paper, we present a dynamic integrity preserving
multi-keyword searchable encryption scheme, enabling search authentication in
multi-keyword searchable encryption schemes to fulfill the practical needs. We reduce
the multi-keyword search (MSE) problem to the single-keyword case by performing a
search for each individual keyword and doing the intersection between each resultant
file sets to get the final result. To lower the communication overhead during a search,
the intersection of each keyword’s search result is computed at the server side. The
only thing that the user needs to do is to receive the final result and verify its integrity.

Thus, our approach should meet the following requirements: (1) the server is able to
take multiple keywords as input, and give the final result directly; (2) for the server that

154 F. Zhou et al.

honestly executes the search algorithm, a valid proof can be formed and pass the
verification; no one can generate a valid proof for a maliciously modified search result
and still pass the verification. Theoretical basis of proposed solution is inspired by the
authenticated data structure in [17] to verify set operations on out sourced sets.

We use dynamic SSE to realize the single-keyword search and use Merkle tree as
the base data structure to prove the correctness of the intersection. Based on them, our
scheme maintains the adaptive chosen-keyword security and is unforgeable against
adaptive adversaries.

2 Definition and Security Model

2.1 Definitions

We consider the scenario that consists of two types of entities. One of them is the user
that owns the data, and the other is the cloud storage provider, as known as the server,
which provides storage services to the user. The dynamic MSE scheme allows a user to
encrypt his data and outsource the encrypted data to the server. After uploading the
encrypted data, the user only needs to store a secret key and an authenticated data state,
regardless of the file number and size, i.e., the user’s storage overhead is constant size.
User can later generate search requests using single or multiple keywords and submit to
the server. Given a search request, the server searches over the encrypted data and
returns the set of encrypted files and a corresponding proof. The correctness of this
search result can be verified by the user, using this result and proof. User can also
dynamically update the file set on demand after the first uploading. The main system
architecture is showed in Fig. 1.

While using multiple keywords in a search, we define the search result to be the
intersection of the sets generated by searching for each individual keyword. Concretely
speaking, the question we discussed in this paper is the conjunctive keyword search.
We use “token” to describe the request sent by user. Since our scheme is dynamic,
there are two additional tokens, the add token and the delete token. The formal defi-
nition of our scheme is defined as follows.

Fig. 1. Integrity preserving search over encrypted data

Integrity Preserving Multi-keyword Searchable Encryption 155

Definition 1. A dynamic MSE scheme is a tuple of eight polynomial-time algorithms
and protocols MSE ¼ ðGen; Setup; SrchToken; Search;Verify, Dec;Add/Update;Del/
Update) such that:

K Genð1kÞ: is a probabilistic algorithm run by the user that takes a security
parameter 1k as input, outputs a secret key K.
ðc; c; st; aÞ SetupðK; d; fÞ: is a probabilistic algorithm run by the user that takes

the secret key K, an index d and a set of files f as input, outputs an encrypted index c, a
set of ciphertexts c, a data state st and an authenticated structure a.

ss SrchTokenðK;WÞ: is a deterministic algorithm run by the user that takes as
input the secret key K and a set of words W, outputs search token ss.
ðIW ; pÞ Searchða; c; c; ssÞ: is a deterministic algorithm run by the server that

takes as input the authenticated structure a, the encrypted index c, the set of ciphertexts
c and the search token ss, outputs a set of file identifiers IW, and a proof p.

b VerifyðK; st; ss; I0; pÞ: is a deterministic algorithm run by the user that takes
as input the secret key K, the data state st, a search token ss, a set of file identifiers I0

and a proof p, outputs 1 as accept or 0 as reject.
f DecðK; cÞ: is a deterministic algorithm run by the user to decrypt a ciphertext

c, outputs a plaintext file f .
ðU : st0; S : a0; c0; c0Þ Add/Update(U : K; df ; f ; st; S : a; c; cÞ: is an interactive

protocol run between the user U and the server S to add file to the file set.
ðU : st0; S : a0; c0; c0Þ Del/Update(U : K; df ; f ; st; S : a; c; cÞ: is an interactive

protocol run between the user U and the server S to delete file from the file set.

2.2 Security Model

We consider the server to be an un-trusted entity, which may deliberately steal or
sabotage the user’s data, or ignore some special files in the search result. Intuitively, an
integrity preserving searchable encryption scheme should meet the following security
features: (1) the encrypted files and data structures on the server side should not leak
any information about the files to the server; (2) the search requests generated by the
user should not leak any information about the keywords he uses; (3) for a fallacious
result, the server cannot produce a valid proof and pass the user’s verification.

Dynamic CKA2-Secure. This security requirement characterizes the feature that the
scheme does not leak any information to the adversary except those defined in the
leakage functions. The security definition will be parameterized by the four leakage
functions L1�L4. The adversary is allowed to be adaptive, i.e., its queries could base
on the previous results. Let A be a stateful adversary that executes the server-side
algorithm, “game” represent the interaction between A and user or simulator, “view”
represent all the information thatA can collect during the game. We assume that,A can
choose the encrypted message, and then generates the queries by interacting with the
user adaptively. Therefore, in our security definition, the “view” of A should only
contain the information specified by L1, L2, L3 and L4 in a simulated way.

156 F. Zhou et al.

Definition 2. Given the dynamic MSE scheme described in Definition 1, describe A as
a stateful adversary, S as a stateful simulator, L1, L2, L3, L4 as stateful leakage
functions. Consider the following games:

The dynamic MSE scheme is ðL1;L2;L3;L4Þ-secure against adaptive dynamic
chosen-keyword attacks if for all PPT adversary A, there exist a probabilistic poly-
nomial time simulator S such that:

Pr RealAð1kÞ ¼ 1
� �� Pr IdealA;Sð1kÞ ¼ 1

� ��� ��� neglð1kÞ;

where neglð1kÞ is a negligible function with input 1k.

Unforgeability. We use game ForgeAð1kÞ to describe our scheme’s unforgeability. In
the unforgeability game, the adversary interacts with a user that honestly executes the
scheme. User initializes his data structures using the data provided by the adversary.
After making polynomial times queries, the adversary produces a set of keywords, a
wrong search result and a proof to this result. If these outputs pass the user’s verifi-
cation algorithm, the game outputs 1, otherwise it outputs 0. The unforgeability
requires that, all PPT adversaries have at most negligible probability to let the game
output 1. We give the formal definition as follow.

Definition 3. Given the dynamic MSE scheme described in Definition 1, for a stateful
adversary A, consider the following game:

Integrity Preserving Multi-keyword Searchable Encryption 157

where the set I0 6¼ IW. We say the dynamic MSE scheme is unforgeable if for all
PPT adversary A, the probability: Pr½ForgeAð1kÞ ¼ 1� � neglð1kÞ, where neglð1kÞ is a
negligible function with input 1k.

3 Integrity Preserving Multi-keyword Searchable Encryption
Scheme

In this section, we first construct a multi-keyword searchable encryption scheme, and
then add the search authentication mechanism to it to make the search result’s integrity
verifiable.

In our construction, the set of files f along with the inverted indexes d are the initial
input. In contrast to the file index, an inverted index is a set of lists that lead by
keywords, and each keyword is followed by a set of files that contain that keyword. The
keywords of each file are pre-selected, and can be considered as the outputs of some
other algorithms, which won’t be discussed here.

3.1 Dynamic Searchable Encryption

In the literature, most searchable encryption schemes use symmetric encryption to
improve performance. We follow the prior constructions and build our scheme upon
the CPA secure private key encryption [18].

The Fig. 2 shows our dynamic searchable encryption structure that is constructed
based on the inverted index. Generally speaking, the lookup table contains all the
keywords in the system, and each keyword in the table leads a list that stored in the
search array. For example, the list of keyword w2 starts at address 4 in the array, and
the node at address 4 has a pointer that points to address 7, and then address 8. By
traversing this list, all files that contain the keyword w2 can be retrieved. All the nodes
are stored at random location in the search array. To support efficient file updating,

158 F. Zhou et al.

there are also a deletion table and a deletion array. They work the same way, except
those lists are led by files.

In order to prevent the server from learning the data, all the tables’ entry, all the
pointers in the table, and all the nodes in those arrays are encrypted. During a search,
given the encrypted keywords, the server first decrypts the pointers in the lookup table
and then uses the pointers to find the corresponding file identifiers in the search array.
Those keywords remain encrypted throughout the search. Even if the server has
searched all those keywords, it can only learn the relationship between the encrypted
keywords and the related file identifiers but cannot obtain any useful knowledge about
the keywords itself. This could prevent the curious server from learning the files and
keywords. A more detailed analysis about this security model will be presented in
Sect. 4.

3.2 Making Result Verifiable

In the following content, we discuss the method to make result verifiable. This method
can allow a server to prove to a client that it answered a multi-keyword search query
correctly.

The method proposed in [14] is a Merkle tree based solution that it computes the
accumulated value for each word w, and uses these values as leaves to construct the
tree. In a search, the server returns a file set S, and a Merkle tree proof to this set. The
user can compute his own accumulated value using the files in S, and use it to perform
the Merkle tree verification. If the newly computed root equals to the original one, then
the result is correct and can be accepted by the user.

However, while switching to the multiple keywords setting, this solution is obsolete
to prove the correctness of the intersection of the results. The server could only gen-
erate the proof for each set separately. These sets and proofs must be transferred to the
user side to be verified, and subsequently the intersection of these sets could be
computed by the user. Obviously, the communication complexity is linear and may
have performance problems when the sets are very large.

Fig. 2. The schematic search structure

Integrity Preserving Multi-keyword Searchable Encryption 159

The reasonable way to address this problem is to let the server compute the inter-
section, and give the user final result directly. In this case, the correctness of the
intersection operation should be proved. We use the bilinear-map accumulator to realize
this functionality. The bilinear-map accumulator [19] is an efficient tool to provide
proofs of membership for elements that belong to a set. Let s 2 Z

�
p be a randomly chosen

trapdoor. The accumulator accumulates elements in Zp, and outputs an element in G.
For a set of elements X in Zp, the accumulation value accðXÞ is defined as:

accðXÞ ¼ g
Q

x2X ðxþ sÞ ð1Þ

Without knowing the trapdoor s, the value accðXÞ can also be constructed using X
and the pre-computed ðg; gs; . . .; gsqÞ, where q�#X . The proof of subset containment
of a set S	X is the witness ðS;WS;XÞ where:

WS;X ¼ g
Q

x2X�S ðxþ sÞ ð2Þ

Subset containment of S in X can be verified by checking:

e WS;X ; g
Q

x2S ðxþ sÞ
� �

¼ e accðXÞ; gð Þ ð3Þ

The security of the bilinear-map accumulator relies on the bilinear q-Strong
Diffie-Hellman assumption.

Intuitively, the correctness of the intersection could be defined as follows: given a
set I and a series of sets S1; . . .; Sn, I is the correct intersection of S1; . . .; Sn if and only
if the following conditions hold:

1. The subset condition: ðI	S1Þ ^ � � � ^ ðI	SnÞ.
2. The completeness condition: ðS1 � IÞ \ � � � \ ðSn � IÞ ¼ ;.

The subset condition is easy to understand, because as the intersection, the set I
must be included in each set Si. We use Merkle tree to authenticate the value accðSiÞ.
For all w 2 w, the values accðfwÞ are computed according to (1), then the tree is
constructed using these values as leaves.

Since the user does not store those accumulated values, the server should first
generates Merkle tree proofs for each accðSiÞ. It’s then straight forward to produce the
subset witness ðI;W I;SiÞ in (2) for each set Si. Given the accðSiÞ and the witness
ðI;W I;SiÞ, the validity of the value accðSiÞ should be first verified using Merkle tree
proofs, then the subset containment relationship could be checked by performing the
verifications according to the equation in (3).

The completeness condition is also necessary since the set I must contain all the
common elements. To construct the completeness proof, we define the polynomial:

PiðsÞ ¼
Y

f2Si�I sþ idðf Þð Þ

160 F. Zhou et al.

The following result is based on the extended Euclidean algorithm over polyno-
mials and provides verification for checking the completeness of set intersection.

Lemma 1. The set I is complete if and only if there exist polynomials q1ðsÞ; . . .; qnðsÞ
such that q1ðsÞP1ðsÞþ � � � þ qnðsÞPnðsÞ ¼ 1 where PiðsÞ is defined above. Suppose I is
not the complete set, then there exist at least one common factor in P1ðsÞ; . . .;PnðsÞ. Thus
there are no polynomials q1ðsÞ; . . .; qnðsÞ to satisfy q1ðsÞP1ðsÞ þ � � � þ qnðsÞPnðsÞ ¼ 1.

The formal analysis will be given in Sect. 4.

3.3 Explicit Construction

Let P ¼ ðGen;Enc;DecÞ be a private-key encryption system. F : f0; 1gk
 f0; 1g�
! f0; 1gk, G : f0; 1gk
 f0; 1g� ! f0; 1g�, P : f0; 1gk
 f0; 1g� ! f0; 1gk be
pseudo-random functions. Let H1 : f0; 1g� ! f0; 1g�, H2 : f0; 1g� ! f0; 1g� and H3 :

f0; 1g� ! f0; 1gk be collision-resistant hash functions. Let z 2 N be the initial size of
the free list, and 0 be a series of 0’s. Choose bilinear pairing parameters ðp;G;G; e; gÞ.

Gen(1k) : Randomly choose three k - bit strings K1;K2;K3 and generate
K4 P:Genð1kÞ. Choose s 2 Z

�
p at random and output K ¼ ðK1;K2;K3;K4; sÞ as the

private keys. Compute ðg; gs; gs2 ; . . .; gsqÞ as public parameters where q should be large
enough, i.e., should at least satisfy q�maxf#fwgw2w.

SetupðK; d; f Þ :
1. Let As and Ad be arrays of size jcj=8þ z and let Ts and Td be dictionaries of size

#w and #f , respectively. Use “free” to represent a k - length word not in w.The
following step 2 and step 3 should be performed synchronously to set up As and Ad

at the same time.
2. For every keyword w 2 w,

• Generate a list Lw of #fw nodes ðN1; . . .;N#fwÞ randomly stored in As, set
Ni ¼ idi; addrsðNi�1Þ; addrsðNiþ 1Þh i � H1ðPK3ðwÞ; riÞ; rið Þ, where idi is the
identity of the ith file in fw, ri is a k - bit random string, and
addrsðN#fw þ 1Þ ¼ addrsðN0Þ ¼ 0log#As

• Set Ts FK1ðwÞ½ � ¼ addrsðN1Þ; addrdðN01Þ
� �� GK2ðwÞ, where N01 is the dual of

N1, which has the same ðf1;wÞ pair as node N1.

3. For each file f in f,

• Create a list Lf of #f dual nodes ðD1; . . .;D#f Þ ðN1; . . .;N#fwÞ randomly stored
in the deletion array Ad . Each node Di is associated with a word w, and a
corresponding node N in Lw. Let Nþ 1 be the node after N in Lw, and N�1 be the
node before N in Lw. Define Di as:

Integrity Preserving Multi-keyword Searchable Encryption 161

Di ¼ addrdðDiþ 1Þ; addrdðN0�1Þ; addrdðN0þ 1Þ;
addrsðNÞ; addrsðN�1Þ; addrsðNþ 1Þ

	

� H2ðPK3ðf Þ; r0iÞ; r0i

� �
;

where r0i is a random k - bit string, addrdðD#f þ 1Þ ¼ 0log#Ad

• Store a pointer to the first node of Lf in the deletion table by setting:

Td FK1ðf Þ½ � ¼ addrdðD1Þ � GK2ðf Þ

4. Generate the free list Lfree by choosing z at random in As and in Ad . Let ðF1; . . .; FzÞ
and ðF01; . . .; F0zÞ be the free nodes in As and Ad , respectively. Set: Ts free½ � ¼
addrsðF1Þ; 0log#As
� �

, and for 1� i� z, set As addrsðFiÞ½ � ¼ 0log#f ;
�

addrsðFiþ 1Þ;
addrdðF0iÞ; 0ki, where addrsðFzþ 1Þ ¼ 0log#As .

5. Fill the remaining entries of As and Ad with random strings.
6. For 1� i�#f, let ci P:EncK4ðfiÞ.
7. For all w 2 w, form the leaf node by letting hw ¼ FK1ðwÞ; g

Q
f2fw sþ idðf Þð ÞD E

.

Construct a Merkle tree using H3 with leaves L ¼ fhwgw2w permuted in a random
order.

8. Output ðc; c; st; aÞ, where c ¼ ðAs;Ts;Ad ;TdÞ, c ¼ ðc1; . . .; c#fÞ, st is the root of
the tree, and a is the tree itself.

SrchTokenðK;WÞ: For W ¼ ðw1; . . .;wnÞ, compute each si ¼ ðFK1ðwiÞ;GK2ðwiÞ;
PK3ðwiÞÞ, then output ss ¼ s1; . . .snð Þ.

Searchða; c; c; ssÞ :
1. For each si in ss, parse si as ðsi;1; si;2; si;3Þ,

• Recover a pointer to the first node of the list by computing
ða1; a01Þ ¼ Ts½si;1� � si;2.

• Lookup node N1 ¼ A½a1� and decrypt it using si;3, i.e., parse N1 as ðv1; r1Þ and
compute ðid1; 0; addrsðN2ÞÞ ¼ v1 � H1ðsi;3; r1Þ. Let a2 ¼ addrsðN2Þ.

• For j� 2, decrypt node Nj as above until ajþ 1 ¼ 0.
• Let Si ¼ fid1; . . .; idtg be the file identifiers revealed in the previous steps.

2. For the sets S1; � � � ; Sn generated in step 1, let IW ¼ fid1; . . .; idmg be the inter-
section, i.e., IW ¼ S1 \ S2 \ . . .\ Sn. Compute the proofs in the following steps:

• For 1� i� n, find the leaf hi in a whose first element is si;1 and generate the
proof ti. The ti includes hi and all the sibling nodes in the path from the leaf hi to
the root. Let T ¼ ft1; . . .; tng.

• For 1� i� n, form the polynomial: Pi ¼
Q

f2Si�IW sþ idðf Þð Þ,
then use the public parameters ðg; gs; gs2 ; . . .; gsqÞ to compute the value gPi . Let
S ¼ fgP1 ; . . .; gPng be the subset witness.

162 F. Zhou et al.

• Giving the polynomials fP1; . . .;Png generated in step 2, find the polynomials
fq1; . . .; qng that satisfying q1P1þ q2P2þ � � � þ qnPn ¼ 1 . This can be done
using extended Euclidean algorithm over polynomials. Let C ¼ fgq1 ; . . .; gqng be
the completeness witness.

3. Output the result IW and the proof p ¼ fT ;S; Cg.
VerifyðK; st; ss; I0; pÞ :

1. Parse p as fT ;S; Cg and verify these proofs in the following steps:

• For each proof ti in T , let hi be the corresponding leaf node in ti. Parse hi as

ðhi;1; hi;2Þ, i.e. hi;1 ¼ FK1ðwiÞ and hi;2 ¼ g
Q

f2fwi
sþ idðf Þð Þ

.Verify if the value hi;1
equals to si;1, where si;1 is the first element of si in ss. Then verify the proof ti
using the root st.

• For 1� i� n, parse the leaf node hi as ðhi;1; hi;2Þ, then perform the subset

condition verification by checking: eðg
Qm

k¼1 ðsþ idkÞ; gPiÞ¼? eðhi;2; gÞ, where
ðid1; . . .idmÞ is from I0 and gPi is element in S.

• Verify the completeness condition by checking:
Qn

i¼1 eðgPi ; gqiÞ¼? eðg; gÞ, where
gPi is element in S and gqi is the corresponding element in C.

2. If all the verifications succeed, then output 1, otherwise output 0.

DecðK; cÞ: Output f ¼ P:DecK4ðcÞ.
Add=UpdateðU : K; df ; f ; st; S : a; c; cÞ:
User:
Recover the unique sequence of words ðw1; . . .;w#f Þ from df and compute the set

fFK1ðwiÞg1� i�#f and send to the server.
Server:

1. For 1� i�#f , traverse the Merkel tree a and:

• Find the leaf hi in a whose first element is FK1ðwiÞ.
• Let ti be the proof in a from hi to the root. The proof includes the leaf hi, and all

the sibling nodes from hi to the root.

2. Let q ¼ ðt1; . . .; t#f Þ and send it to the user.

User:

1. Verify the proofs in ðt1; . . .; t#f Þ using st, if fails, output ? and terminate.
2. For 1� i�#f ,

• Let hi be the leaf in ti, parse hi as ðhi;1; hi;2Þ.
• Compute the new leaf node h0i ¼ ðhi;1; ðhi;2Þsþ idðf ÞÞ.

3. Update the root hash st using ðh01; . . .; h0#f Þ and the information in ðt1; . . .; t#f Þ.
4. Compute sa ¼ ðFK1ðf Þ;GK2ðf Þ; k1; . . .k#f Þ, where for all 1� i�#f ::

Integrity Preserving Multi-keyword Searchable Encryption 163

ki ¼ h0i;1; h
0
i;2;GK2 wið Þ; id fð Þ; 0; 0;h i � H1 PK3 Wið Þ; rið Þ;

ri; 0; 0; 0; 0; 0; 0h i � H2 PK3 fð Þ; r0i

 �

; r0i

� �
;

where ri and r0i are random k - bit strings.

5. Let cf SKE:EncK4ðf Þ and send ðsa; cf Þ to the server, then output the new root st0.

Server:

1. Parse sa as ðs1; s2; k1; . . .; k#f Þ and return ? if s1 is already in Td .
2. For 1� i�#f ,

• Find the first free location u in As, second free location uþ 1 in As, first free
location u0 in Ad , and second free location u0þ 1 in Ad , by computing
ðu; 0Þ ¼ Ts½free], ð0;uþ 1;u

0Þ ¼ As½u� and ð0;uþ 2;u
0
þ 1Þ ¼ As½uþ 1�.

• Update the search table by setting Ts½free� ¼ ðuþ 1; 0Þ.
• Recover N1’s address a1 by computing ða1; a01Þ ¼ Ts½ki½1�� � ki½3�.
• Parse N1 ¼ As½a1� as ðv1; r1Þ, then update N1’s back pointer point by setting:

As½a1� ¼ v1 � h0;u; 0i; r1ð Þ.
• Store the new node at location u and modify its forward pointer to N1 by

setting:As½u� ¼ ki½4� � h0; 0; a1i; ki½5�ð Þ .
• Update the search table by setting:Ts ki½1�½ � ¼ ðu;u0Þ � ki½3� .
• Parse D1 ¼ Ad ½a01� as ðv01; r01Þ, set Ad ½a01� ¼ ðv01 � h0;u0; 0; 0;u; 0i; r01Þ.
• If i\#f , set Ad ½u0� ¼ ki½6� � hu0þ 1; 0; a

0
1;u; 0; a1i; ki½7�

 �
.

• If i ¼ #f , set Ad½u0� ¼ ki½6� � h0; 0; a01;u; 0; a1i; ki½7�

 �

.
• If i ¼ 1, then update the deletion table by setting Td½s1� ¼ u0 � s2.

3. Update the cipher texts by adding c to c.
4. Let h0i ¼ ðki½1�; ki½2�Þ, update the tree a by replacing the leaves ðh1; . . .; h#f Þ with
ðh01; . . .; h0#f Þ.

5. Output ða0; c0; c0Þ, where a0 is the updated tree.

Del=UpdateðU : K; df ; f ; st; S : a; c; cÞ :
User:
Recover the unique sequence of words ðw1; . . .;w#f Þ from df and compute the set

fFK1ðwiÞg1� i�#f and send to the server.
Server:

1. For 1� i�#f , traverse the Merkel tree a and:

• Find the leaf hi in a whose first element is FK1ðwiÞ.
• Let ti be the proof in a from hi to the root. The proof includes the leaf hi, and all

the sibling nodes from hi to the root.

2. Let q ¼ ðt1; . . .; t#f Þ and send it to the user.

User:

1. Verify the proofs in ðt1; . . .; t#f Þ using st, if fails, output ? and terminate.
2. For 1� i�#f ,

164 F. Zhou et al.

• Let hi be the leaf in ti, parse hi as ðhi;1; hi;2Þ.
• Compute the new leaf node h0i ¼ ðhi;1; ðhi;2Þ1=ðsþ idðf ÞÞÞ.

3. Update the root hash st using ðh01; . . .; h0#f Þ and the information in ðt1; . . .; t#f Þ.
4. Compute sd ¼ ðFK1ðf Þ;GK2ðf Þ;PK3ðf Þ; idðf Þ; h01; . . .; h0#f Þ.
5. Send sd to the server, then output the new root st0.

Server:

1. Parse sd as ðs1; s2; s3; id; h01; . . .; h0#f Þ.
2. Find the first node of Lf by computing a0i ¼ Td½s1� � s2.
3. While a0i 6¼ 0,

• Parse Di ¼ Ad ½a0i� as ðv0i; r0iÞ, decrypt Di by computing ða1; . . .; a6Þ ¼
v0i�H2ðs3; r0iÞ.

• Delete Di by setting Ad½a0i� to a random string.
• Find address of the first free node by computing ðu; 0Þ ¼ Ts½free].
• Update the first node of the free list in the Ts point to Di’s dual by setting

Ts½free] ¼ ða4; 0Þ.
• Free Di’s dual by setting As½a4� ¼ ð0;u; a0iÞ.
• Let N�1 be the node before Di’s dual. Update N�1’s next pointer by setting

As½a5� ¼ ðb1;b2; b3 � a4 � a6; r�1Þ, where ðb1; b2; b3; r�1Þ ¼ As½a5�. Also,
update the pointers of N�1 ’s dual by setting:Ad a2½ � ¼ ðb1; b2; b3 � a0i � a3;
b4; b5; b6�a4 � a6; r0�1Þ,where ðb1; . . .;b6; r0�1Þ ¼ Ad½a2�.

• Let Nþ 1 be the node after Di’s dual. Update Nþ 1’s previous pointer by setting
As½a6� ¼ ðb1;b2 � a4 � a5; b3; rþ 1Þ, where ðb1; b2; b3; rþ 1Þ ¼ As½a6�. Also,
update Nþ 1’s dual’s pointers by setting: Ad a3½ � ¼ ðb1; b2 � a0i � a2; b3;
b4; b5 � a4 � a5;b6; r

0
þ 1Þ, where ðb1; . . .; b6; r0þ 1Þ ¼ Ad ½a3�.

• Set a0i ¼ a1.

4. Remove the cipher text corresponding to id from c.
5. Remove s1 from Td .
6. Update the tree a by replacing the leaves ðh1; . . .; h#f Þ with ðh01; . . .; h0#f Þ.
7. Output ða0; c0; c0Þ, where a0 is the updated tree.

4 Security Analysis

4.1 Dynamic CKA2-Secure

In the following, we analyze our dynamic MSE scheme and investigate which infor-
mation has been leaked during the execution of these algorithms and protocols. The
formal definition will be given afterwards.

In our scheme, for each word wi, the value FK1ðwiÞ can be treated as a unique
identifier, and we denote it by idðwiÞ. For each file fi, there are two identifiers, the idðfiÞ
in the array As and the FK1ðfiÞ in the table Td . Both of them can uniquely represent a
file, so for convenience, we do not distinguish between them.

Integrity Preserving Multi-keyword Searchable Encryption 165

Given the encrypted index c ¼ ðTs;As;Td;AdÞ, the Merkle tree a and the cipher-
texts c, the server can learn the size of As, the set ½idðwÞ�w2w from Ts, the set ½idðf Þ�f2f
and the length of each file ½jf j�f2f . We denote these by L1, i.e.,

L1ðd; fÞ ¼ #As; idðwÞ½ �w2w; idðf Þ½ �f2f ; fj j½ �f2f
� �

:

The search operation reveals to the server idðwÞ for all w 2 W , and the relationship
between idðwÞ and the identifiers of all files that contains w. We denote these by L2, i.e.,

L2ðd; f;WÞ ¼ ½idðf Þ�f2fw ; idðwÞ
� �

for allw2W
:

In the add protocol, the server can learn the identifier of the file to be added, the
length of the file, and the identifiers of the words that belong to the file. In addition, it
can tell whether the word w contained in the file is a new word by checking the table
Ts. We denote these by L3, i.e.,

L3ðd; f; f Þ ¼ idðf Þ; idðwÞ; apprsðwÞ½ �w2wf
; fj j

� �
;

where apprsðwÞ is a one bit flag set to 1 if the word w exists in the index before the file
f is added, otherwise, it is set to 0.

Similarly, in the delete protocol, the server can learn the identifier of the file to be
deleted, and know the relationship between idðf Þ and those word identifiers. In addi-
tion, for each w 2 wf , by removing the word pair ðf ;wÞ from the list Lw, the server
learns the locations of the pair’s neighbors in Lw. We denote these by L4.

L4ðd; f; f Þ ¼ idðf Þ; idðwÞ; prevðf ;wÞ; nextðf ;wÞ½ �w2wf

� �
;

where prevðf ;wÞ and nextðf ;wÞ are the file identifiers of the file before and after f in
the word list Lw. For the head and the tail of the list, the corresponding value is set ? to
indicate that there are no more nodes before or after this one.

Now we use the following theorem to claim that the construction in Sect. 4 is
dynamic CKA2-secure in the random oracle model with the leakage functions
described above.

Theorem 1. If the private-key encryption system P is CPA-secure, and the F, G and P
are pseudo-random functions, then the dynamic MSE scheme is ðL1;L2;L3;L4Þ-se-
cure against adaptive chosen-keyword attacks in the random oracle model.

Proof: The primary goal of providing this proof is to construct a PPT simulator S that
can generate the simulated values in the ideal game using the information given in
these leakage functions. Those simulated values should be indistinguishable from ones
in the real game to any PPT adversary.

Given the information received from L1, the simulator could determine the length
and the structure of encrypted index c, ciphertexts c and tree a. Then it can use

166 F. Zhou et al.

randomly chosen strings to construct these structures and produce these values as the
simulated one ð~c;~c; ~aÞ. If a PPT adversary can distinguish the tuple ð~c;~c; ~aÞ from
ðc; c; aÞ with non-negligible probability then it can break at least one of these properties
with non-negligible probability: the CPA security of the encryption scheme; the
pseudo-randomness of the PRFs and the elliptic curve discrete logarithm assumption.

Given the information received from L2, L3 and L4, the simulator should respond
the simulated search token, the simulated add token and the simulated delete token
during the adversary’s queries. These steps become more complex due to the fact that
simulator needs to track the dependencies between the information revealed by these
queries to ensure consistency among these simulated tokens. We define additional
assisting structures iAs, iAd , iTs and iTd in the simulator side to maintain consistency
during updation. The simulator uses these assisted structures to record those depen-
dencies that are revealed by L2, L3 and L4 in the queries, and builds internal rela-
tionship in iAs, iAd , iTs and iTd , while the values in ~c ¼ ð~As; ~Ts; ~Ad; ~TdÞ remain
random. This gives the simulator the ability to respond the adversary’s queries like a
real user, except using those simulated values.

Analyze.

1. If the pseudo-randomness of F, G and P holds, then for all PPT adversaries A, there
exist negligible value e1 such that:

Pr 1 A d; f;As;Ts;Ad ;Tdð Þ½ � � Pr 1 A d; f; ~As; ~Ts; ~Ad ; ~Td

 �� ��� ��� e1:

Because each cell in ~As can be recognized as the form h~N;~ri where ~N
�� �� ¼

2 log#Asþ log#f and ~rj j ¼ k. The cell in As is Ni ¼ idi; addrsðNi�1Þ;hð
addrsðNiþ 1Þi � H1ðPK3ðwÞ; riÞ; riÞ, due to the pseudo-randomness of P and the random
oracle H1, all PPT adversaries A� cannot distinguish ~As from As. Similarly, it cannot
distinguish Ts;Ad;Td with ~Ts; ~Ad ; ~Td if the pseudo-randomness of F, G and P holds. It
means the adversary can distinguish the real index As;Ts;Ad;Td from the simulated
index ~As; ~Ts; ~Ad ; ~Td . Therefore, the probability e1 is negligible.

2. Based on the elliptic curve discrete logarithm assumption and the
pseudo-randomness of F; any PPT adversary A cannot distinguish the real leaf
nodes L from the simulated one ~L, therefore cannot distinguish the tree ~a from a,
since they are generated by these leaves. i.e. there exist negligible value e2 such
that:

Pr 1 A d; f; að Þ½ � � Pr 1 A d; f; ~að Þ½ �j j � e2:

Because the pseudo-randomness of F holds, any PPT adversary cannot distinguish
the random bits from the output of PRF F. So it cannot distinguish the random bits
cs idðwiÞð Þ with FK1ðwiÞ. In addition, due to the discrete logarithm assumptions, any

PPT adversary cannot can distinguish gxi with g
Q

f2fwi
sþ idðf Þð Þ

. As we know, the real

Integrity Preserving Multi-keyword Searchable Encryption 167

leaf nodes L from the simulated one ~L are: ~L ¼ f~hwgw2w ¼ fð~hw;1; ~hw;2Þgw2w ¼ðcs idð
ðwiÞÞ; gxiÞ;L ¼ fhwgw2w ¼ fðhw;1; hw;2Þgw2w ¼ ðFK1ðwiÞ; g

Q
f2fwi

sþ idðf Þð ÞÞ,
So A cannot distinguish L from ~L. The tree ~a and a are build by the

collision-resistant hash function H3 of the leaf nodes, so the adversary cannot distin-
guish the tree ~a and a, then e2 is negligible.

3. If the private-key encryption system P is CPA-secure, then for all PPT adversaries
A, there exists negligible value e3 such that:

Pr 1 A f; cð Þ½ � � Pr 1 A f;~cð Þ½ �j j � e3:

Because the private-key encryption system P is proved to be CPA secure, so the
ciphertexts it produces do not reveal any partial information about the plaintext. So any
PPT adversary A cannot distinguish the ciphertexts that generated by two different
inputs using the SKE encryption. As we know, ~c and c are:c ¼ ðc1; . . .; c#fÞ, in which
ci ¼ P:EncK4ðfiÞ; ~c ¼ ð~c1; . . .;~c#fÞ, in which ~ci ¼ P:EncK4ð0 fj jÞ. So A cannot dis-
tinguish ~c from c. Therefore, e3 is negligible.

In addition, there exists negligible value e4 such that:

Pr 1 A d; f; ssð Þ½ � � Pr 1 A d; f;~ssð Þ½ �j j � e4

Because the pseudo-randomness of F;G;P holds, any PPT adversary cannot dis-
tinguish the random bits from the output of PRF F;G;P. So it cannot distinguish

~si ¼ cs idðwiÞð Þ; ~T0s cs idðwiÞð Þ½ � � iTs idðwiÞð Þ;KidðwiÞ
� �

with si ¼ ðFK1ðwiÞ;GK2ðwiÞ;
PK3ðwiÞÞ, so as ss ¼ s1; . . .snð Þ and ss ¼ ~s1; . . .~snð Þ. Therefore, e4 is negligible.

In the same way, based on the elliptic curve discrete logarithm assumption and the
pseudo-randomness of F;G;P, we have:

Pr 1 A d; f; sa; cf

 �� �� Pr 1 A d; f;~sa;~cf

 �� ��� ��� e5;

Pr 1 A d; f; sdð Þ½ � � Pr 1 A d; f;~sdð Þ½ �j j � e6;

where e5; e6 are all negligible values.
To sum up, we have the conclusion that for all PPT adversaries A, the output of

RealAð1kÞ and IdealA;Sð1kÞ are identical, except with negligible probability neglð1kÞ, i.e.:

Pr RealAð1kÞ ¼ 1
� �� Pr IdealA;Sð1kÞ ¼ 1

� ��� ��� neglð1kÞ:

Therefore our dynamic MSE scheme is ðL1;L2;L3;L4Þ-secure against adaptive
chosen-keyword attacks in random oracle model. □

168 F. Zhou et al.

4.2 Unforgeability

Theorem 2. If H3 is collision-resistant hash function and the bilinear q-SDH
assumption holds then the dynamic MSE scheme is unforgeable.

Proof: The main idea to give the proof is that, if there exists a PPT adversary A such
that ForgeAð1kÞ ¼ 1, then there exist a PPT simulator S that breaks at least one of the
assumptions : The collision-resistance property of H3 and the Bilinear q-SDH
assumption.

During the game, the simulator S interacts with A using real algorithm. Assume after q
times queries, A outputs a set of file identifiers I0 6¼ IW and a valid proof p. This means
the proof p ¼ T ;S; Cf g he produces under query W passes all three steps of the
verification phase. We categorize the forgery into three types:

Type I forgery: For some word wi 2 W , the adversary outputs a different leaf

value h
_

wi in Merkle tree proof t
_

i and passes the verification step 1.
Type II forgery: For some word wi 2 W , I0 6
 Si. The adversary gives the simu-

lator the real accumulation value in the proof ti, and outputs a subset witness g_
Pi that

passes the verification step 2.
Type III forgery: The set I0 is a proper subset of IW . The adversary gives the

simulator the real S ¼ fgP1 ; . . .; gPng, and outputs a completeness witness C
_

which
passes the verification step 3.

It is clear that if I0 6¼ IW and proof p is valid then one of the above mentioned
forgeries must occur. Next we show that the simulator S can use type I forgery to break
the collision-resistance property of H3, and use type II or III forgeries to break the
bilinear q-SDH assumption.

1. The collision-resistance property of H3

The hash function H3 is collision-resistance if it is difficult for all PPT adversaries
to find two different messages m1 and m2, such that H3ðm1Þ ¼ H3ðm2Þ.

First, given the hash function H3, the simulator S interacts with the adversary A
according to the game ForgeAð1kÞ. If A wins the game and the Type I forgery occurs,

that means for some word wi 2 W , A outputs a different leaf value h
_

wi in Merkle tree

proof t
_

i.. Then, the simulator S verifies the value A outputs, which passes the veri-

fication step 1. Let h
_

wi ¼ ðh
_

wi;1; h
_

wi;2Þ. Passing the verification step 1 means the
following two conditions hold:

• The search key FK1ðwiÞ ¼ h
_

wi;1.

• The Merkle tree verification using the leaf h
_

wi succeeds.

According to the verification step 1, the adversary A may only forge the h
_

wi;2. Then
passing the Merkle tree verification implies that the adversary is able to find the
collision of H3, because it can generate the same root with the modified leaf.

Integrity Preserving Multi-keyword Searchable Encryption 169

2. Bilinear q-SDH assumption
Given the simulator S an instance of bilinear q-SDH problem: ðp;G;G; e; gÞ and a

ðqþ 1Þ-tuple ðg; gs; . . .; gsqÞ. S interacts with the adversary A in the following way.
First, since S doesn’t know the value s in the given bilinear q-SDH instance, it

needs to reconstruct the following algorithms which related to s in the game
ForgeAð1kÞ:

In the algorithm Gen, the simulator S directly uses ðg; gs; . . .; gsqÞ as the public
parameters without knowing s, and sends them to the adversary.

And in the algorithm Setup, for the leaf nodes: hw ¼ FK1ðwÞ; g
Q

f2fw sþ idðf Þð Þ� �
, the

simulator S computes the value using ðg; gs; . . .; gsqÞ:g
Q

f2fw sþ idðf Þð Þ.
It is worth mentioning that, the simulator S needs to construct an extra auxiliary

data structure N . It stores for each leaf nodes hw the polynomial:nw ¼Q
f2fw ðsþ idðf ÞÞ, which is used to form the add/delete tokens later.
Simulator S cannot directly compute the value of sa in Add/Update protocol. In the

Add/Update protocol’s user’s step 2, when computing the value of the new leaf node h0i
in sa, it first finds N to find the polynomials ni that equals hi;2, then computes the value
gni�ðsþ idðf ÞÞ using ðg; gs; . . .; gsqÞ. The value h0i ¼ ðhi;1; gni�ðsþ idðf ÞÞÞ is the updated leaf
node.

Similarly, in the Del/Update protocol, S finds the ni in N and removes the factor
sþ idðf Þ from ni and then computes the value gni=ðsþ idðf ÞÞ using ðg; gs; . . .; gsqÞ and gets
a new leaf node h0i ¼ ðhi;1; gni=ðsþ idðf ÞÞÞ.

In this modified game, the values that related to s are computed in a new way.
However, it produces same output as it was produced by earlier version of algorithm.
So in the adversary A’s view, these values are still valid, it cannot distinguish this game
with the original one.

If A wins the game, and the following two types of forgeries occur, then the
simulator S may solve the given bilinear q-SDH instance.

• If the Type II forgery occurs, i.e., the adversaryA outputs a set I0 ¼ fx1; . . .; xmg and
a witness g_

Pi
for some wi 2 W . Let Si ¼ fid1; . . .; idqg be the file identifier set related

to the word wi, then gðsþ id1Þðsþ id2Þ���ðsþ idqÞ is the corresponding accumulation value.
Since I0 6
 Si, there exists some 1� j�m, such that xj 62 Si. This means in the

equation: eðg
Q

x2I0 ðsþ xÞ; g_
PiÞ ¼ eðgðsþ id1Þðsþ id2Þ���ðsþ idqÞ; gÞ, ðsþ xjÞ does not divide

ðsþ id1Þðsþ id2Þ � � � ðsþ idqÞ. Therefore there exists polynomial QðsÞ of degree q�
1 and constant c 6¼ 0, such that:ðsþ id1Þðsþ id2Þ � � � ðsþ idqÞ ¼ QðsÞðsþ xjÞ þ c.

Then the simulator S has eðg; g_PiÞðsþ xjÞ
Q

x2I0^x6¼xj
ðsþ xÞ ¼ eðg; gÞQðsÞðsþ xjÞþ c.

After transformation, it can finally have eðg; gÞ1=sþ xj ¼eðg; g_PiÞ
Q

x2I0^x 6¼xj
ðsþ xÞ

eðg; gÞ�QðsÞÞ1=c. This means the simulator S can solve the instance of bilinear q-SDH
problem in polynomial time.

170 F. Zhou et al.

• If the Type III forgery occurs, i.e., the adversaryA outputs a set I0 ¼ fx1; . . .; xmg and
the completeness witness C

_

. Since the set I0 is the proper subset of IW , there exists at
least one common factor in polynomials P1; . . .;Pn. We use ðsþ xÞ to denote the
factor, where x 62 I0. These values can pass the verification step 3 means the fol-
lowing holds:

Qn
i¼1 eðgPi ; gqiÞ ¼ eðg; gÞ. And extract ðsþ xÞ from each Pi by com-

puting gP
0
i ¼ ðgPiÞ1=ðsþ xÞ, then

Qn
i¼1 eðgPi ; gqiÞ ¼ðQn

i¼1eðgP
0
i ; gqiÞÞsþ x ¼ eðg; gÞ:

Thus the simulator S can easily form the solution of the instance of bilinear q-SDH

problem by computing: eðg; gÞ1=ðsþ xÞ ¼ Qn
i¼1 eðgP

0
i ; gqiÞ. This means the simulator can

also solve the instance of bilinear q-SDH problem in polynomial time.
The above analyses show that, if the adversary A could successfully forge a proof,

it must have the ability to break at least one of these assumptions above. Therefore we
have the conclusion that for all PPT adversaries A, the probability

Pr½ForgeAð1kÞ ¼ 1� � neglð1kÞ;

where neglð1kÞ is a negligible function with input 1k . Thus our dynamic MSE scheme
is unforgeable. □

5 Conclusion

Searchable encryption is an important cryptographic primitive for cloud storage
environment. It is well motivated by the popularity of cloud storage services. At the
same time, the authentication methods utilized for the search results’ verification is a
significant supplement that makes the search more reliable and it would greatly pro-
mote the development of cloud storage service.

In this paper, we described a searchable encryption scheme which supports multiple
keywords search and authentication. The scheme can greatly reduce the communication
cost during the search. We demonstrated that, taking into account the security chal-
lenges in the cloud storage, our scheme can withstand the chosen-keyword attack
carried out by the adaptive adversaries. Proposed scheme also prevents the result from
being maliciously altered by those adversaries.

In the future, we will perform a detailed analysis of the security aspects in this
paper and investigate the feasibility of designing improved security model to enhance
the scheme’s security features. Moreover, we will give consideration to the authenticate
techniques to achieve more efficiency to meet practical needs.

Acknowledgement. This work was supported in part by the National Science and Technology
Major Project under Grant No. 2013ZX03002006, the Liaoning Province Science and Tech-
nology Projects under Grant No. 2013217004, the Liaoning Province Doctor Startup Fund under
Grant NO. 20141012, the Fundamental Research Funds for the Central Universities under Grant
No. N130317002, the Shenyang Province Science and Technology Projects under Grant
No. F14-231-1-08, and the National Natural Science Foundation of China under Grant Numbers
61472184, 61321491, 61272546.

Integrity Preserving Multi-keyword Searchable Encryption 171

References

1. Cachin, C., Keidar, I., Shraer, A.: Trusting the cloud. ACM SIGACT News. 40(2), 81–86
(2009)

2. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., Curtmola, R., Dietrich, S.,
Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) RLCPS, WECSR, and WLC 2010. LNCS,
vol. 6054, pp. 136–149. Springer, Heidelberg (2010)

3. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In:
IEEE Symposium on Security and Privacy (S&P 2010), Oakland, California, USA, pp. 44–
55. IEEE Computer Society (2010)

4. Goh, E.J.: Secure indexes. cryptology. ePrint Archive, Report 2003/216
5. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted

data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp. 442–455. Springer, Heidelberg (2005)

6. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption:
improved definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)

7. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In:
Proceedings of CCS 2012, pp. 965–976. ACM (2012)

8. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., Steiner, M.: Dynamic
searchable encryption in very-large databases: data structures and implementation.
I Cryptology ePrint Archive, Report 2014/853

9. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small
leakage. In: Proceedings of the Network and Distributed System Security Symposium
(NDSS 2011), 23–26 February 2011, San Diego, California, USA. The Internet Society
(2011)

10. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over encrypted data.
In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 31–45.
Springer, Heidelberg (2004)

11. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword searches over
encrypted data. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol.
3783, pp. 414–426. Springer, Heidelberg (2005)

12. Byun, J.W., Lee, D.-H., Lim, J.-I.: Efficient conjunctive keyword search on encrypted data
storage system. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp. 184–
196. Springer, Heidelberg (2006)

13. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword ranked
search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1), 222–233 (2014)

14. Kamara, S., Papamanthou, C., Roeder, T.: CS2: a searchable cryptographic cloud storage
system. TechReport MSR-TR-2011-58, Microsoft Research (2011)

15. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol.
435, pp. 218–238. Springer, Heidelberg (1990)

16. Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In: Keromytis, A.D.
(ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg (2012)

17. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of operations on
dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 91–110.
Springer, Heidelberg (2011)

18. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca Raton (2014)
19. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.)

CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

172 F. Zhou et al.

Oblivious Keyword Search with Authorization

Peng Jiang1,2(B), Xiaofen Wang3, Jianchang Lai2,
Fuchun Guo2(B), and Rongmao Chen2

1 State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing 100876, China

2 Centre for Computer and Information Security Research,
School of Computing and Information Technology,

University of Wollongong, Wollongong, NSW 2522, Australia
{pj688,fuchun}@uow.edu.au

3 Centre for Cyber Security and Big Data Research Center,
University of Electronic Science and Technology of China,

Chengdu 611731, Sichuan, China

Abstract. Oblivious keyword search (OKS) allows a user to search and
retrieve the data associated with a chosen keyword in an oblivious way.
The database supplier issues a trapdoor (used for searching) of a specific
keyword chosen by the user while learns nothing about this keyword.
In this paper, we propose a new cryptographic primitive called oblivi-
ous keyword search with authorization (OKSA). In OKSA, the supplier
is able to verify the to-be-search keyword belonging to the authorized
keyword set for a user before running the OKS protocol. The proposed
OKSA augments the traditional OKS by providing assurance of keyword
authorization besides oblivious search. Then we present an OKSA proto-
col and formally prove its security. The proposed protocol features with
one-round (two-pass) interaction and constant size communication cost
between the supplier and the user in the transfer phase. Precisely, the
communication cost nseeds only four group elements (three group ele-
ments for keyword token and proof, and one group element for assigned
trapdoor), independent of the size of authorized keyword set.

Keywords: Keyword search · Oblivious transfer · Authorization

1 Introduction

Keyword search is a fundamental database operation. It involves two main par-
ties: a database supplier (or supplier for short) who holds a database comprised
of a set of data, and a user who wishes to retrieve some pieces of data containing
specific keywords. To preserve keyword privacy, searchable encryption [39] was
introduced to allow searching on encrypted data without revealing the associ-
ated keyword. Searchable encryption can be realized in either symmetric setting
or asymmetric setting. Although the symmetric searchable encryption (SSE)
enjoys high efficiency [13,17,24,25], it suffers from complicated secret key dis-
tribution/management when users want to share data. To resolve this problem,
c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 173–190, 2016.
DOI: 10.1007/978-3-319-47422-9 10

174 P. Jiang et al.

Boneh et al. introduced a more flexible primitive, namely public key encryption
with keyword search (PEKS) [7] that applies the asymmetric encryption setting
to enable users to search encrypted data.

Although supporting the keyword privacy in the asymmetric searching,
PEKS is unsuitable in database operation where supplier can control users based
on keyword while unknowing that keyword. In [30], Ogata and Kurosawa intro-
duced an interesting notion, called oblivious keyword search (OKS). In the OKS
protocol, data is encrypted using the associated keyword and all ciphertexts are
committed to users. The user generates the token for arbitrary one keyword of
his choice and sends the keyword token to the supplier. The supplier then gen-
erates the trapdoor with the received token and his master secret key without
any restriction. By this, the user can retrieve the data containing the specific
keyword. With a two-party oblivious transfer protocol between a supplier and a
user, the user is able to get the trapdoor of the chosen keyword without revealing
it to the supplier, while learns nothing except the data of his choice.

The OKS protocol solves the problem of the trapdoor generation for an
unknown keyword. However, in some special databases, such as databases for
commercial secrets and databases for DNA information, data is highly confi-
dential and users may have different retrieving rights according to their classes.
That is, the choice of keyword from a user must be in an authorized keyword
set defined by the supplier. Precisely, if W is the authorized keyword set for a
user, the user can only specify any keyword w ∈ W and the supplier grants the
user with the retrieving right for data associated with w. The supplier is able to
verify that the chosen keyword belongs to W but does not know which keyword
it is.

Fig. 1. OKSA framework.

Our Contributions. The contributions of this paper are mainly twofold.
Firstly, we propose a new notion named oblivious keyword search with autho-

rization (OKSA), which extends the previous OKS. We systematically study the
keyword authorization problem in the oblivious keyword search, where the sup-
plier has an agreed authorized keyword set with each user. In OKSA, the user

Oblivious Keyword Search with Authorization 175

generates a keyword token for any keyword in the authorized keyword set and
thereafter the supplier generates the trapdoor with the received token, his secret
key and the authorized keyword set, which is presented intuitively in Fig. 1. Like
this, the supplier can know the fact that the to-be-search keyword belongs to the
authorized keyword set but cannot distinguish which one it is. Compared with
OKS, the OKSA provides authorization verification of the to-be-search keyword
besides allowing the user to search data in an oblivious way.

Secondly, we design an OKSA protocol featuring that its communication
cost between user and supplier is constant, independent of the size of authorized
keyword set. A potential approach to the OKSA protocol is that the supplier
encrypts all trapdoors of keywords in W (we assume |W | = n) and runs a 1-
out-of-n oblivious transfer protocol with the user on each encrypted trapdoor.
This requires the linear size communication cost from the supplier to the user.
To obtain low communication bandwidth, we employ an aggregation algorithm
in trapdoor generation. Then each transfer subphase in this protocol requires
constant-size communication cost (i.e. one group element) from the supplier to
the user. The keyword token and proof for accountability are also of short size,
with two group elements and one group element respectively. Another nice fea-
ture is that the proposed OKSA protocol removes computationally expensive
cryptographic primitives (e.g. zero-knowledge proof), which are necessary and
impractical in the traditional OKS schemes. Finally, we formally prove the secu-
rity of the proposed OKSA protocol.

1.1 Related Work

Public Key Encryption with Keyword Search. Boneh et al. [7] introduced the
notion of PEKS to address weaknesses of SSE and presented a concrete scheme.
In their scheme, the searchable ciphertext is created using a keyword and the
user’s public key. The trapdoor is created using his secret key and keyword for
searching. The corresponding encrypted data is returned to the user only when
the keyword in the trapdoor matches the keyword in the ciphertext.

Many PEKS variants have been proposed to improve the security or func-
tionality later on. In terms of keyword security, some secure channel free-PEKS
(SCF-PEKS) schemes [3,18,34,35] have been proposed to resist keyword guess-
ing attacks. Regarding the search functionality, combinable multi-keyword search
using public-key encryption scheme with conjunctive keyword search (PECKS)
were achieved in [4,5,8,31,36,37]. To enhance the database system usability,
Abdalla et al. [1] constructed the public key encryption with temporary keyword
search (PETKS). The transformation from anonymous IBE to public key-based
search over encrypted data was given in [11,15]. From perpectives of applica-
tion, some schemes based on attribute-based encryption (ABE) [38,40,41] were
proposed to benefit data search control and some privacy-preserving data search
in multi-cloud were presented in [27,28].

Oblivious Transfer. Originally, the notion of oblivious transfer was introduced by
Rabin [32], which is a two party protocol between a sender S and a receiver R. S

176 P. Jiang et al.

has two bits and R wishes to get one of them satisfying the followings properties:
S does not know which bit R obtains, and R does not know any information
about the bit that he did not obtain. In an OT system, the most general type is
k-out-of-n oblivious transfer (OTk

n), where S holds n messages and R retrieves
k of them simultaneously, such that S does not know which messages R obtains.
There have been many works on oblivious transfer, such as adaptive oblivious
transfer [16,26], oblivious transfer with fully simulatable security [12], oblivious
transfer with universally composable security [20], oblivious transfer with access
control [9] and priced oblivious transfer [2,10]. Some proposed OTk

n protocols,
such as [14,21,29], have ideal communication rounds.

Oblivious Keyword Search. Ogata and Kurosawa [30] introduced the notion of
oblivious keyword search to address the user privacy issue in the keyword search,
which was based on a two party OT protocol between a supplier and a user.
Their OKS employed the blind signature, where the ciphertext is generated by
the master secret key of the supplier (denoted by msk) and some keyword, and
each trapdoor is transferred from the supplier to the user using msk and the
keyword token generated by the user. Rhee et al. [33] presented an oblivious
conjunctive keyword search to allow search over boolean combinations of key-
words. Freedman et al. [19] considered privacy concerns in keyword search using
oblivious evaluation of pseudorandom functions. Zhu and Bao [42] addressed the
OKS in the public database by using linear and non-linear oblivious polyno-
mial evaluation. Camenisch et al. [11] proposed the public key encryption with
oblivious keyword search (PEOKS) to build a public key encrypted database
permitting private information retrieval (PIR), where computationally expen-
sive zero-knowledge proof (ZKP) was employed.

Comparison with OKS [30]. There are some differences in components
between the OKS and our OKSA, especially the generation of the keyword token
and the trapdoor. Let sk be the secret key of the user, (mpk,msk) be the key
pair of the supplier, w be a keyword and W be the authorized keyword set,
respectively. We make a comparison of our OKSA with the OKS in terms of
notion formulation in Table 1, including the involved parameters and entities,
and the component size.

Table 1. Comparisons between Our OKSA and Traditional OKS.

Protocol Ciphertext Keyword Token Trapdoor Token Size Trapdoor
Size

OKS [30] w,msk,m w,mpk, sk (User) Token,msk
(Supplier)

O(1) O(1)

OKSA wi,mpk,m W,mpk, sk, wi ∈
W (User)

Token,msk,W
(Supplier)

O(1) O(1)

Oblivious Keyword Search with Authorization 177

As shown in Table 1, OKS focuses on a single keyword and its trapdoor size
is O(1) for one keyword. When for multiple keywords, the trapdoor size of OKS
will be O(n) to achieve the oblivious property. The trapdoor size in OKSA is
O(1), independent of the size of the keyword set. OKSA can achieve the efficient
oblivious search over a keyword set. Since the keyword set W is involved in
trapdoor generation, OKSA provides that the supplier can verify that the to-
be-search keyword is in the authorized keyword set (i.e., wi ∈ W), but cannot
distinguish which one wi is.

Organization. The rest of this paper is organized as follows. In Sect. 2, we
give some preliminaries and define the OKSA algorithm, security model and
complexity assumptions. We present an efficient OKSA protocol in Sect. 3 and
prove its security in Sect. 4. We conclude the paper in Sect. 5.

2 Preliminaries

2.1 Bilinear Pairing

Let G,GT be two cyclic multiplicative groups of the same prime order p, g be
the generator of G. A bilinear map is defined as e : G×G → GT which satisfies
the following properties [6]:

– Bilinearity: For all g, h ∈ G and a, b ∈ Zp, we have e
(
ga, hb

)
= e (g, h)ab.

– Non-degeneracy: e(g, g) �= 1.
– Computability: It is efficient to compute e (g, h) for any g, h ∈ G.

A bilinear group PG = (p,G,GT , e) is composed of objects described above.

2.2 Algorithm Definition

Our OKSA adopts a two-party interaction between the supplier and the user as
[30].

Definition 1. An oblivious keyword search with authorization consists of the
following polynomial time randomized algorithms.

Setup
The supplier T takes a security parameter 1λ and an integer n as input, and
outputs the master public/secret key pair (mpk,msk) to establish the system.
T negotiates a keyword set W with each user, where |W | ≤ n.

Commit
T takes a message mi, a keyword wi and the master public key mpk as input,
and outputs the ciphertext CTi, where each message mi has its own unique
keyword wi. T commits all ciphertexts {CTi} to the user U .

178 P. Jiang et al.

Transfer

– U → T : U takes the authorized keyword set W , a specified keyword w′
i ∈ W

and the master public key mpk as input, and outputs the keyword token
P(w′

i), the secret key of the user sk and the proof information for account-
ability Σ. Then U sends (P(w′

i), Σ) to T . Here, P(w′
i) is computed from

sk, w′
i,W,mpk. Σ helps T to verify the accountability, that is, the received

token is used to generate a trapdoor for only one keyword in the authorized
keyword set.

– T → U : T takes the received keyword token P(w′
i), the authorized keyword

set W and the master secret key msk as input. It verifies the accountability
by checking |P(w′

i)| = 1. and then outputs a trapdoor T to U .
– U : U takes CTi, T, sk as input and outputs mi if wi = w′

i, otherwise, ⊥.

Correctness. An oblivious keyword search with authorization is correct if the
user obtains the message of his choice when all of entities follow the protocol
steps above. Also, passing the verification of accountability means that the to-
be-generate trapdoor, based on the received token, will be for only one specific
keyword and this specific keyword is in the authorized keyword set.

2.3 Security Notions

Based on [7,30], we define security requirements to be user privacy, indistin-
guishability and accountability. User privacy guarantees that the supplier T does
not learn the to-be-search keyword from the user’s token in the i-th Transfer sub-
phase. Indistinguishability guarantees that a malicious user U cannot distinguish
the message and keyword from the ciphertext. Accountability guarantees that
the trapdoor the user asks for is for only one keyword in the authorized keyword
set.

– (User Privacy.) Given (P(w), Σ) and two keywords w0, w1, it is hard to dis-
tinguish whether w = w0 or w1.

– (Indistinguishability.) Given two message-keyword tuples (m0, w0), (m1, w1)
and a ciphertext CT for (m,w), it is hard to distinguish (m,w) = (m0, w0)
or (m,w) = (m1, w1).

– (Accountability.) Given (P(W),W, sk) satisfying |W | > 1, it is hard to gen-
erate (P(W), Σ) that passes the verification.

Based on the above requirements, we define the security models via the fol-
lowing games played between a challenger C and an adversary A. More formally,

User Privacy.

– Setup. C runs the Setup algorithm to generate the system parameter mpk
and sends it to A.

– Challenge. A gives two keywords w0, w1 to C. C responds by choosing a coin
θ ∈ {0, 1}, setting w = wθ and generating (P(w), Σ).

– Guess. A outputs θ′ and wins the game if θ′ = θ.

Oblivious Keyword Search with Authorization 179

We define A’s advantage as Adv = |Pr[θ′ = θ] − 1/2|.
Definition 2. We say that an OKSA satisfies user privacy if there exists no
probabilistic polynomial time adversary to win the above user privacy game with
a non-negligible advantage.

Indistinguishability.

– Setup. C runs the Setup algorithm to generate the system parameter mpk
and sends it to A.

– Phase 1. A makes the trapdoor query for the keyword w and C responds
with the trapdoor T .

– Challenge. A gives two same length message-keyword tuples (m0, w0),
(m1, w1) to C with the restriction that w0, w1 have not been issued the trap-
door queries in Phase 1. C responds the challenge ciphertext CT ∗ for ran-
domly choosing θ ∈ {0, 1}.

– Phase 2. A issues more trapdoor queries with the same restriction in
Challenge, C responds as Phase 1.

– Guess. A outputs θ′ and wins the game if θ′ = θ.

We define A’s advantage as Adv = |Pr[θ′ = θ] − 1/2|.
Definition 3. We say that OKSA has indistinguishability against chosen key-
word attack if there exists no probabilistic polynomial time adversary to win the
above game with a non-negligible advantage.

Accountability. In OKSA, the verification of accountability is to assure that
the to-be-generate trapdoor is for only one authorized keyword. It captures the
attack that an adversary A can forge a proof for a valid keyword token P(W ′),
where W ′ is a subset of the authorized keyword set W with 1 < |W ′| < |W | ≤ n.
Here, the validness means that A knows W ′,W, sk of computing P(W ′).

– Setup. C runs the Setup algorithm to generate the system parameter mpk
and sends it to A.

– Challenge. A outputs (P(W ′),W,W ′, sk) and 1 for challenge, where P(W ′)
is generated from W,W ′, sk,mpk and |W ′| > 1.

– Win. A outputs (P(W ′), Σ) and wins the game if (P(W ′), Σ) passes the
verification algorithm.

We define A’s advantage as Adv in computing (P(W ′), Σ).

Definition 4. We say that OKSA has accountability if there exists no polyno-
mial time adversary to win the above game with a non-negligible advantage.

180 P. Jiang et al.

2.4 Assumptions

We define two hard problems to provide foundation for the security of OKSA, i.e.,
(f, n)-DHE Problem and (f, q)-MSE-DDH Problem. Since (f, n)-DHE Problem
has been proposed and analyzed in [22,23], we only give its description and omit
its intractability analysis. We refer readers to the corresponding references for
details.

Definition 5 (f, n)-DHE Problem. Let G be a group of prime order p, h ∈ G

and a ∈ Zp. Given h, ha, · · · , han

, output (f(x), hf(a)), where f(x) ∈ Zp[x] is a
polynomial function with deg f(x) > n.

Then we introduce a new hard problem named (f, q)-MSE-DDH Problem,
which is slightly modified from MSE-DDH problem while still preserving its
hardness. Our (f, q)-MSE-DDH problem is a special instance of general Diffie-
Hellman exponent assumptions in [6], and its intractability will be analyzed later
on.

Definition 6 (f, q)-MSE-DDH Problem. Let PG be a bilinear map group
system and g0, h0 be the generators of the group G. We assume two pairwise
coprime polynomials f and q with degree 1, n − 1, respectively, where n is
an integer. Given g0, g

α
0 , gr

0, h
f(α)
0 , · · · , h

αn−2f(α)
0 , h

f(α)q(α)
0 , · · · , h

αnf(α)q(α)
0 , and

Z ∈ GT , the goal is to distinguish Z = e(g0, h0)rq(α) or a random group element
in GT .

Intractability Analysis of (f, q)-MSE-DDH Problem.
The (f, q)-MSE-DDH Problem can be reformulated as D,E, F . Since g0, h0

are generators in group G, we suppose h0 = gβ
0 ,

D =

⎛

⎝
1, α, r,
βf(α), · · · , βαn−2f(α),
βf(α)q(α), · · · , βαnf(α)q(α),

⎞

⎠

E = 1,

F = rβq(α).

We need to show that F is independent of (D,E), i.e. no coefficients {xi,j}
and y1 exist such that F = Σxi,jdidj + Σy1e1, where the polynomials di, dj are
listed in D and e1 is listed in E above. By making all possible products of two
polynomials from D which are multiples of rβ to F ′, we want to prove that no
such linear combination F ′ leads to F ,

F ′ =
(

rβf(α), · · · , rβαn−2f(α),
rβf(α)q(α), · · · , rβαnf(α)q(α),

)

Any such linear combination associated with rβ can be written

rβf(α)A(α) + rβf(α)q(α)B(α) = rβq(α),

Oblivious Keyword Search with Authorization 181

where A(α), B(α) are polynomials with degree deg A ≤ n − 2 and deg B ≤ n.
If B(α) �= 0, we have deg f(α)q(α)B(α) ≥ n. Since deg (q(α)− f(α)A(α)) ≤

n − 1, we have B(α) = 0. We simplify the above equation as f(α)A(α) = q(α),
so f(α)|q(α), which contradicts that f(α) and q(α) are comprime. Therefore,
there exist no coefficients {xi,j}, y1 such that F = Σxi,jdidj + Σy1e1 holds,
(f, q)-MSE-DDH Problem is intractable.

3 Oblivious Keyword Search with Authorization

In this section, we propose an oblivious keyword search with authorization pro-
tocol. Our protocol allows the user to obliviously obtain an authorized trapdoor
by submitting a keyword token adaptively. It features with constant size commu-
nication cost between the supplier and the user. The proposed scheme achieves
that T can generate the trapdoor for any keyword in the authorized keyword set
but cannot guess which one it is. Like OKS, OKSA is played between a supplier
T and a user U , and it consists of three phases: Setup, Commit and Transfer. Our
OKSA protocol is illustrated in Fig. 2 and its details are as follows.

Setup. T takes as input a security parameter 1λ, an integer n and PG =
(p,G,GT , e). Then T chooses generators g, h ∈ G, random numbers α, x ∈ Zp

and computes gα, hi = hαi−1
for i = 1, 2, · · · , n + 1. It picks a cryptographic

one-way hash function H : ({0, 1},GT) → {0, 1}�. The master public/secret key
pair is

mpk = (PG,H, g, gα, h1, h2, · · · , hn+1) , msk = α.

T publishes mpk to all and keeps msk private.

Commit. The universal keyword space is denoted as KS with the size n. Each
message has its associated keyword. Given a message mi ∈ {0, 1}� and a keyword
wi ∈ KS, T chooses ri ∈R Zp and computes the encrypted message CTi as

CTi =
(
c1i = gri(α+wi), c2i = H (0, e (g, h)ri) , c3i = H (1, e (g, h)ri) ⊕ mi

)
.

T commits all ciphertexts {CTi} to U .

Remark. There is a little difference between our OKSA and traditional OKS [30].
In OKS, the ciphertext is based on the master secret key and only the supplier,
who holds msk, can generate it. In our OKSA, the ciphertext is based on the
master public key and anyone in the system can generate it.

Transfer. We suppose T negotiates a unique keyword set W with each user, where
W ⊆ KS and the size of W is denoted as |W | = k ≤ n.

– U → T : Given the authorized keyword set W , a keyword wi ∈ W and the
master public key mpk, U picks s ∈R Zp as his secret key sk = s and computes
the token P(wi) and the proof Σ as

P(wi) = h
s
∏

wj∈W,j �=i(α+wj),

182 P. Jiang et al.

Fig. 2. Oblivious keyword search with authorization protocol.

Σ =
(
Σ1 = h

α+wi
s , Σ2 = Σαn−1

1

)
.

Then U sends (P(wi), Σ) to T .
– T → U : Given the tuple (P(wi),W,Σ) and the master secret key mpk, T

checks the accountability by the following equations,

e (Σ2, h
α) = e

(
Σ1, h

αn
)

,

e
(
h, h

∏
wi∈W (α+wi)

)
= e (P(wi), Σ1) .

If both equations hold, T accepts the received keyword token is for the trap-
door for one keyword, and we denote it as |P(wi)| = 1; otherwise, aborts.
Given msk and W , T computes the trapdoor T as

T = P(wi)
1∏

wj∈W (α+wj) .

Oblivious Keyword Search with Authorization 183

Then T returns the trapdoor T to U .
– U : Given CTi, T, sk, U executes the searching operation by

c2i = H
(
0, e (c1i, T)

1
s

)
.

If the above equation holds, U continues the decryption operation by

mi = c3i ⊕ H
(
1, e (c1i, T)

1
s

)
.

Correctness. Given the master public secret key pair (mpk,msk) from run-
ning Setup algorithm and token/proof tuple (P(wi), Σ), the correctness of the
accountability is verified by the following equations.

e (Σ2, h
α) = e

(
Σαn−1

1 , hα
)

= e
(
Σ1, h

αn)
,

e
(
h, h

∏
wi∈W (α+wi)

)
= e

(
h

s
∏

wj∈W,j �=i(α+wj), h
α+wi

s

)

= e (P(wi), Σ1) .

Given a ciphertext CTi from running the Commit algorithm, a trapdoor T
from running the Transfer algorithm and the secret key of the user sk, the cor-
rectness of searching and decryption can be verified by

H
(
0, e (c1i, T)

1
s

)
= H

(

0, e
(
gri(α+wi), h

s
α+wi

) 1
s

)

= H (0, e (g, h)ri)
= c2i,

c3i ⊕ H
(
1, e (c1i, T)

1
s

)
= H (1, e (g, h)ri) ⊕ mi ⊕ H

(

1, e
(
gri(α+wi), h

s
α+wi

) 1
s

)

= H (1, e (g, h)ri) ⊕ mi ⊕ H (1, e (g, h)ri)
= mi.

4 Security Analysis

We formally analyze the security of our OKSA protocol, which is under the
security model defined in Sect. 2.3. The security reduction is based on the hard
problems defined in Sect. 2.4. We show the detailed proof process as follows.

4.1 User Privacy

Theorem 1. The proposed scheme satisfies the unconditional keyword privacy
of the token from the user under the Privacy game.

184 P. Jiang et al.

Proof. Let W be the authorized keyword set and (P(w), Σ) be generated from
w = w0. We have the keyword token and proof as

P(w) = h
s
∏

wj∈W,wj �=w0
(α+wj),

Σ =
(

Σ1 = h
α+w0

s , Σ2 = h
αn−1(α+w0)

s

)

.

For any distinct keyword w1, let s′ ∈ Zp, we implicitly set s′ = s · α+w1
α+w0

. We
find that the keyword tokens are identical, i.e., P(w0) = P(w1), which can be
verified as

P(w0) = h
s
∏

wj∈W,wj �=w0
(α+wj) = h

s′∏
wj∈W,wj �=w1

(α+wj) = P(w1).

Suppose Σ′ = (Σ′
1, Σ

′
2). The proofs of accountability are also identical, i.e.,

Σ1 = Σ′
1 and Σ2 = Σ′

2, which can be verified as

Σ1 = h
α+w0

s = h
α+w1

s′ = Σ′
1,

Σ2 = h
αn−1(α+w0)

s = h
αn−1(α+w1)

s′ = Σ′
2.

We have (P(w0), Σ) = (P(w1), Σ′). Since s is randomly chosen from Zp, we have
s′ is also universally random in Zp. The distributions of (P(w), Σ) for both w0

and w1 are identical and therefore A has no advantage in guessing the keyword
in P(w). This completes the proof of Theorem 1.

4.2 Indistinguishability

Theorem 2. The proposed scheme is semantically secure and indistinguishable
under the Indistinguishability game in the random oracle model if the (f, q)-
MSE-DDH Problem is hard.

Proof. Suppose there exists an adversary A who can break the indistinguishabil-
ity. We can construct an algorithm B that solves the (f, q)-MSE-DDH Problem.
That is, given an instance of (f, q)-MSE-DDH Problem and Z ∈ GT , the goal
of B is to distinguish Z = e(g0, h0)rq(α) or a random group element in GT . B
interacts with A as follows.

Setup. We assume the universal keyword space as KS = {w1, w2, · · · , wn}. B
chooses wθ from KS and its corresponding message is denoted as mθ. It implicitly
sets the polynomials

f(α) = α + wθ, q(α) =
∏

wj∈KS,wj �=wθ

(α + wj).

It also sets g = g0, h = h
f(α)q(α)
0 and computes hi = h

αi−1f(α)q(α)
0 . Then B sends

the master public key mpk to A, where

mpk = (g0, gα
0 , h1, h2, · · · , hn+1,PG) .

Oblivious Keyword Search with Authorization 185

H-Query. B maintains a hash list L(ai,Xi, h
i), which is initially empty. Upon

receiving an H query for (ai,Xi), if (ai,Xi) is in the list L, B returns the
corresponding hi to A. Otherwise, B sets the hash value hi as follows.

hi = H(ai,Xi) =
{

bi
0, if ai = 0,

bi
1, if ai = 1,

where bi
0, b

i
1 are randomly chosen from {0, 1}�. Then B adds (ai,Xi, h

i) to the
list and returns hi to A.

Phase 1. A chooses a keyword set W ⊆ KS, where |W | ≤ n. When asking for
the trapdoor query for a keyword wi ∈ W , A randomly chooses s ∈ Zp as the
secret key sk = s, and sends (wi, s) to B.

– If wi = wθ, abort.
– If wi �= wθ, B responds T = h

sqi(α)f(α)
0 to A, where qi(α) = q(α)

α+wi
. The

trapdoor can be verified

T = P(wi)
1∏

wj∈W (α+wj) = h

s
∏

wj∈W,j �=i(α+wj)
∏

wj∈W (α+wj) = h
sf(α)q(α)

α+wi
0 = h

sqi(α)f(α)
0 .

It is easy to see that h
qi(α)f(α)
0 can be computed from elements h

f(α)
0 , h

αf(α)
0 ,

· · · , h
αn−2f(α)
0 in the instance.

Challenge. A sends two tuples (m0, w0), (m1, w1) to B for challenge, where the
trapdoor for w0 or w1 has not been queried.

– If wθ /∈ {w0, w1}, abort.
– If wθ ∈ {w0, w1}, B checks whether (0, Z) and (1, Z) are in the list L. If

yes, obtains the corresponding hash value and denotes them as b∗
0 and b∗

1.
Otherwise, B chooses b∗

0, b
∗
1 ∈R {0, 1}� and sets

H (0, Z) = b∗
0, H (1, Z) = b∗

1.

Then B adds (0, Z, b∗
0) and (1, Z, b∗

1) to the list L. B responds A with the
challenge ciphertext

CT ∗ = (c1 = gr
0, c2 = b∗

0, c3 = b∗
1 ⊕ mθ) .

If Z = e(g0, h0)rq(α), one can verify it by implicitly setting r = rif(α)

c1 = gri(α+wθ) = g
rif(α)
0 = gr

0,

c2 = H (0, e (g, h)ri) = H
(
0, e(g0, h0)rq(α)

)
= H (0, Z) = b∗

0,

c3 = H (1, e (g, h)ri)⊕mθ = H
(
1, e(g0, h0)rq(α)

)
⊕mθ = H (1, Z)⊕mθ = b∗

1⊕mθ.

Therefore, CT ∗ is a valid challenge ciphertext.

186 P. Jiang et al.

If Z is a random element in GT , the challenge ciphertext CT ∗ will be random
from the A’s view.

Phase 2. A continues to ask trapdoor queries for wi with restrictions wi �=
w0, w1. B responds as Phase 1.

Guess. A outputs a guess θ′ of θ.
This completes the description of our simulation. We will analyze the advan-

tage of B to solve the hard problem. Suppose that the total number of trap-
door query is qT and the size of the keyword space is n. According to the
above simulation, we have the probability that B does not abort is Pr[�abort] =
(1− 1

n)(1− 1
n−1) · · · (1− 1

n−qT +1) = n−qT

n . Since w0, w1 have not been queried in
Phase 1 and Phase 2, we have qT ≤ n − 2. Then Pr[�abort] ≥ 2

n . Assume
that A’s advantage to break the security game is at least ε, then we have
εreduction = Pr[θ′ = θ|Z = e(g0, h0)rq(α)]−Pr[θ′ = θ|Z is random] = 1

2+ε− 1
2 = ε.

Therefore, B’s advantage to solve the (f, q)-MSE-DDH Problem is at least
εB = Pr[¬abort] · εreduction = 2

nε. This completes the proof of Theorem 2.

4.3 Accountability

Theorem 3. The proposed scheme captures the accountability under the
Accountability game if the (f, n)-DHE Problem is hard.

Proof. Suppose there exists an adversary A who can break the security of
accountability. We construct an algorithm B that solves the (f, n)-DHE Prob-
lem. Given a challenge instance of (f, n)-DHE Problem, B interacts with the
adversary as the follows.

Setup. B sets α = a, we have h1 = h, h2 = ha, · · · , hn+1 = han

, which are from
the (f, n)-DHE instance. B chooses a hash function H as in the real scheme and
sends mpk to A, where

mpk = (g, ga, h1, h2, · · · , hn+1,H,PG).

Challenge. The adversary chooses two keyword sets W,W ′ with restriction
|W ′| > 1, |W | ≤ n, and selects a random number s ∈ Zp as the secret key of the
user sk = s. A outputs (P(W ′),W,W ′, sk) and 1 for challenge, where the token
is denoted as

P(W ′) = h
s
∏

wj∈W −W ′ (a+wj).

Win. The adversary A outputs (P(W ′), Σ) and wins the game if (P(W ′), Σ)
passes the verification algorithm.

In this case, the proof for accountability should be denoted as

Σ =
(
Σ1 = h

1
s

∏
wj∈W ′ (a+wj), Σ2 = Σan−1

1 = h
1
s an−1∏

wj∈W ′ (a+wj)
)

.

Oblivious Keyword Search with Authorization 187

Then the token and its proof can pass the verification as

e (Σ2, h
a) = e

(
Σ1, h

an
)

,

e
(
h, h

∏
wi∈W (a+wi)

)
= e (P(W ′), Σ1) .

Let f(x) = 1
sxn−1

∏
wj∈W ′ (x + wj), then Σ = hf(a). We have f(x) is a poly-

nomial function with deg f(x) > n. B outputs (f(x), Σ) as the solution to the
(f, n)-DHE Problem. This completes the proof of Theorem 3. Hence we obtain
|W ′| = 1, |P(W ′)| = 1.

5 Conclusion

We proposed a new notion namely oblivious keyword search with authorization,
where an authorized keyword set is taken into consideration in OKS. In OKSA,
the user gets a trapdoor for any keyword in the authorized keyword set in an
oblivious way. The supplier can know the fact that the to-be-search keyword is in
the authorized keyword set but has no idea about which one it is. We presented
an efficient OKSA protocol featured with constant size communication cost in
transfer phase. Each transfer subphase in our protocol only needs one-round
(two-pass) interaction. By borrowing the property of aggregation algorithm into
trapdoor generation, a constant-size trapdoor is issued from the supplier to the
user. We gave the formal security proof of the proposed protocol under the
security models.

Acknowledgments. This work is supported by BUPT Excellent Ph.D. Students
Foundation (Grant No. CX2015312), NSFC (Grant Nos. 61300181, 61502044, 61572390,
61502086), the Fundamental Research Funds for the Central Universities (Grant No.
2015RC23).

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: consis-
tency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6 8

3. Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword
search revisited. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun,
Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 1249–1259.
Springer, Heidelberg (2008)

4. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword
searches over encrypted data. In: Qing, S., Mao, W., López, J., Wang, G. (eds.)
ICICS 2005. LNCS, vol. 3783, pp. 414–426. Springer, Heidelberg (2005)

http://dx.doi.org/10.1007/3-540-44987-6_8

188 P. Jiang et al.

5. Bethencourt, J., Song, D.X., Waters, B.: New constructions and practical applica-
tions for private stream searching (extended abstract). In: 2006 IEEE Symposium
on Security and Privacy (S&P 2006), pp. 132–139 (2006)

6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005)

7. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

8. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

9. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control.
In: Proceedings of the 2009 ACM Conference on Computer and Communications
Security, CCS 2009, pp. 131–140 (2009)

10. Camenisch, J., Dubovitskaya, M., Neven, G.: Unlinkable priced oblivious transfer
with rechargeable wallets. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 66–81.
Springer, Heidelberg (2010)

11. Camenisch, J., Kohlweiss, M., Rial, A., Sheedy, C.: Blind and anonymous identity-
based encryption and authorised private searches on public key encrypted data. In:
Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 196–214. Springer,
Heidelberg (2009)

12. Camenisch, J.L., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer,
Heidelberg (2007)

13. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–
373. Springer, Heidelberg (2013)

14. Chen, Y., Chou, J., Hou, X.: A novel k-out-of-n oblivious transfer protocols based
on bilinear pairings. IACR Cryptology ePrint Archive 2010, 27 (2010)

15. Chow, S.S.M.: Removing Escrow from identity-based encryption. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 256–276. Springer, Heidelberg
(2009)

16. Chu, C.-K., Tzeng, W.-G.: Efficient k -Out-of-n oblivious transfer schemes with
adaptive and non-adaptive queries. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 172–183. Springer, Heidelberg (2005)

17. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS 2006, pp.
79–88 (2006)

18. Fang, L., Susilo, W., Ge, C., Wang, J.: Public key encryption with keyword search
secure against keyword guessing attacks without random oracle. Inf. Sci. 238, 221–
241 (2013)

19. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005)

20. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer,
Heidelberg (2008)

Oblivious Keyword Search with Authorization 189

21. Guo, F., Mu, Y., Susilo, W.: Subset membership encryption and its applications
to oblivious transfer. IEEE Trans. Inform. Forensics Secur. 9(7), 1098–1107 (2014)

22. Guo, F., Mu, Y., Susilo, W., Varadharajan, V.: http://www.uow.edu.au/fuchun/
publications/ACISP13.pdf (2013). full Version

23. Guo, F., Mu, Y., Susilo, W., Varadharajan, V.: Membership encryption and its
applications. In: Boyd, C., Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp. 219–
234. Springer, Heidelberg (2013)

24. Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmetric
private information retrieval. In: 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2013, pp. 875–888 (2013)

25. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: the ACM Conference on Computer and Communications Security, CCS
2012, pp. 965–976 (2012)

26. Kurosawa, K., Nojima, R.: Simple adaptive oblivious transfer without random
Oracle. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 334–346.
Springer, Heidelberg (2009)

27. Li, J., Li, J., Chen, X., Liu, Z., Jia, C.: Privacy-preserving data utilization in hybrid
clouds. Future Generation Comp. Syst. 30, 98–106 (2014)

28. Li, J., Lin, D., Squicciarini, A., Li, J., Jia, C.: Towards privacy-preserving storage
and retrieval in multiple clouds. IEEE Trans. Cloud Comput. (2015, to appear)

29. Mu, Y., Zhang, J., Varadharajan, V.: m out of n oblivious transfer. In: Batten, L.,
Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 395–405. Springer, Heidelberg
(2002). doi:10.1007/3-540-45450-0 30

30. Ogata, W., Kurosawa, K.: Oblivious keyword search. J. Complexity 20(2–3), 356–
371 (2004)

31. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword
search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86.
Springer, Heidelberg (2005)

32. Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical report
TR-81, Aiken Computation Laboratory, Harvard University (2005)

33. Rhee, H.S., Byun, J.W., Lee, D.-H., Lim, J.-I.: Oblivious conjunctive keyword
search. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786,
pp. 318–327. Springer, Heidelberg (2006)

34. Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Improved searchable public key
encryption with designated tester. In: Proceedings of the 2009 ACM Symposium
on Information, Computer and Communications Security, ASIACCS 2009, pp. 376–
379 (2009)

35. Rhee, H.S., Susilo, W., Kim, H.: Secure searchable public key encryption scheme
against keyword guessing attacks. IEICE Electron. Express 6(5), 237–243 (2009)

36. Ryu, E., Takagi, T.: Efficient conjunctive keyword-searchable encryption. In: 21st
International Conference on Advanced Information Networking and Applications
(AINA 2007), vol. 1, pp. 409–414 (2007)

37. Sedghi, S., van Liesdonk, P., Nikova, S., Hartel, P., Jonker, W.: Searching keywords
with wildcards on encrypted data. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010.
LNCS, vol. 6280, pp. 138–153. Springer, Heidelberg (2010)

38. Shi, J., Lai, J., Li, Y., Deng, R.H., Weng, J.: Authorized keyword search on
encrypted data. In: Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014, Part I. LNCS,
vol. 8712, pp. 419–435. Springer, Heidelberg (2014)

39. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: 2000 IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

http://www.uow.edu.au/ fuchun/publications/ACISP13.pdf
http://www.uow.edu.au/ fuchun/publications/ACISP13.pdf
http://dx.doi.org/10.1007/3-540-45450-0_30

190 P. Jiang et al.

40. Sun, W., Yu, S., Lou, W., Hou, Y.T., Li, H.: Protecting your right: Attribute-based
keyword search with fine-grained owner-enforced search authorization in the cloud.
In: 2014 IEEE Conference on Computer Communications, INFOCOM 2014, pp.
226–234 (2014)

41. Zheng, Q., Xu, S., Ateniese, G.: VABKS: verifiable attribute-based keyword search
over outsourced encrypted data. In: 2014 IEEE Conference on Computer Commu-
nications, INFOCOM 2014, pp. 522–530 (2014)

42. Zhu, H., Bao, F.: Oblivious keyword search protocols in the public database model.
Proceedings of IEEE International Conference on Communications, ICC 2007, pp.
1336–1341 (2007)

Efficient Asymmetric Index Encapsulation
Scheme for Named Data

Rong Ma1(B) and Zhenfu Cao1,2

1 Shanghai Jiaotong University, Shanghai, China
marong.sjtu@gmail.com

2 East China Normal University, Shanghai, China
zfcao@sei.ecnu.edu.cn

Abstract. We are studing the problem of searching on hidden index
in asymmetric setting. We define a mechanism that enables receiver to
provide a token to the server and enables the server to test whether
an encapsulated index matches the token without learning anything else
about them. We refer to this mechanism as Asymmetric Index Encapsu-
lation. We suggest to using the AIE as the core protocol of anonymous
content-oriented networking. A construction of AIE which strikes a bal-
ance between efficiency and security is also given. Our scheme is proved
secure base on the DBDH/CDH assumption in the random oracle with
tight reduction, while the encapsulated header and the token in our sys-
tem consists of only three elements.

Keywords: Asymmetric index encapsulation scheme · Anonymous
content-oriented networking · Asymmetric searchable encryption ·
Private keyword search

1 Introduction

Named Data. It tends to concern security on named data under untrusted net-
work. There are a variety of purposes for naming the data, for example, name
may be treated as index, tag, keyword or label in different scenarios. Let’s list
some interesting examples of named data below:

– Files stored in cloud server.
– E-mail. The contents of the letter can be seen as data, while the receiver’s

address or title can be seen as the name of data.
– Named content in Content-Oriented Networking (CON). CON is a candidate

for internet architecture designs in next generation. The content-oriented com-
munication paradigm relies on naming the content itself, rather that its loca-
tion. Content is self-contained, has a unique name, can be retrieved by means
of an interest for the name, cached in any arbitrary location, and digitally
signed to ensure its integrity and authenticity. We will discuss in more detail
later.

c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 191–203, 2016.
DOI: 10.1007/978-3-319-47422-9 11

192 R. Ma and Z. Cao

We propose an asymmetric index encapsulation (AIE) scheme to provide a
way to hide the name except to a party that is given appropriate token. In
addition, the token can only be generated from the authorized users and the
functionality of the token kept secret even during the match procedure.

In AIE scheme, three parties called “sender”, “receiver”, “server” are
involved. The sender is a party that creates the encapsulated header and sends
it to server. The server is a party that stores and forwards headers upon tokens.
The receiver is a party that distributes tokens to match the desired header. The
term “asymmetric” refers to the fact that sender can be anyone while receiver
can only be who owns the token.

Formally, an asymmetric index encapsulation scheme is specified by a quadru-
ple of probabilistic polynomial time algorithms:

– The setup algorithm Setup is run by the central authority, takes a security
parameter 1λ and outputs the public system parameters pp together with a
master (secret) key mk. The system parameters will be publicly known, while
the master key will be known only to the key generation algorithm.

– The index encapsulation algorithm Enc is run by the sender, takes as input
an index x, outputs a encapsulated header hdx.

– The token generation algorithm Gen is run by the central authority, takes as
input the master secrect key mk and an index y, outputs a related token tky.

– The test algorithm Test is run by the server, takes as input a header hdx and
a token tky, and outputs whether tky matches hdx, if they match, returns
“1”, else returns “0”

1.1 Contribution

New primitive. The first contribution of our paper is in defining a new cryp-
tographic primitive known as asymmetric index encapsulation scheme. There
are at least two differences between asymmetric index encapsulation and PEKS
or identity-based searchable encryption [6,16]. Firstly, the goal of AIE scheme
is to decouple index hiding and searching procedure from encryption scheme.
There are independent application scenarios of index encapsulation. Identity
based searchable encryption can be replaced by any combination of AIE and
anonymous identity based encryption. Secondly, asymmetric index encapsula-
tion scheme does not imply public key encryption or identity based encryption.
There are possibility to get better security reduction and efficiency.

New security model. We introduce new adversarial models for AIE. The
anonymity model captures the intuitive notion that an adversary should not
be able to distinguish between the encapsulated header of two challenge indices
of his choice, even if his is allowed to obtain tokens for any other indices. The
privacy model requires any token belongs to index x is indistinguishable from a
random token if x is choosen from a sufficiently high min-entropy distribution.

New construction. The security of our scheme relies on the DBDH/CDH assump-
tion in prime-order groups and random oracle. An encapsulated header in our

Efficient Asymmetric Index Encapsulation Scheme for Named Data 193

system consists of only three elements, while a token in our system also consists
of only three elements. Besides the acceptable efficiency in practice, the scheme
has tight security reduction against all kind of adversaries. A security reduction
is said to be tight when breaking the scheme is exactly as hard as solving the
underlying problem.

New application. We embed AIE scheme in the CON to provide comparable
anonymity with lower relative overhead. The main idea of our approach is to
encapsulate the name of the content/data packet and using token instead of the
interest packet. Public executable test algorithm of AIE scheme enables router
to retrieve the cached content matching the token from users. This work presents
an initial attempt to provide security and anonymity in CON by cryptographic
protocol.

1.2 Related Work

Symmetric searchable encryption with adaptive security against chosen-keyword
attacks was first considered explicitly in [14], where symmetric index encapsula-
tion was first considered explicitly by [8]. Unlike in asymmetric settings, securely
encapsulating a single keyword/index is nearly trivial in symmetric settings. In
these schemes and subsequent work [2,4], researchers focus on how to handle full
text indices and try to improve efficiency. Another line of work uses deterministic
encryption [1,4]. It only provides security for data and queries that have high
entropy.

Starting with the work of Boneh, Crescenzo, Ostrovsky and Persiano [6],
searchable encryption has also been considered in the public key setting [3,7,
13,21,22]. The early works lack function privacy until the first definition was
suggested very recently by Boneh, Raghunathan, Segev [16].

One of the key goals of CON projects is “security by design” [5]. In contrast
to todays Internet, where security problems were identified along the way, the
research community stresses both awareness of issues and support for features
and countermeasures from the outset. To this end, a few of papers investigate
various attacks and solutions in CON [9–11]. However, to the best of our knowl-
edge, there is an absence of cryptographic perspective.

1.3 Organization

Preliminaries and notations are recalled in Sect. 2. Definitions of security model
are given and discussed in Sect. 3. The application in CON is stated in Sect. 4.
The scheme description is presented in Sect. 5. The reduction proofs are shown
in following sections respectively.

2 Preliminaries

2.1 Notation

We denote by X = (X1,X2, . . . , Xq) a joint distribution of q random variables,
and by x = (x1, x2, . . . , xq) a sample drawn from X. The min-entropy of a

194 R. Ma and Z. Cao

random variable X is H∞(X) = − log2(maxx Pr[X = x]). A k-source is a ran-
dom varibale X with H∞(X) ≥ k. A (q, k)-block-source is a random varibale
X = (X1,X2, . . . , Xq) where for each i ∈ {1, 2, . . . , q}, (x1, . . . , xi−1) holds that
Xi|X1=x1,...,Xi−1=xi−1 is k-source. The statistical distance between two random
variables X and Y over a finite domain S is defined as

SD(X,Y) =
1
2

∑

x∈S

|Pr[X = x] − Pr[Y = x]|

2.2 Pairing Group

Let GroupGen be a probabilistic polynomial-time algorithm taking 1λ as secu-
rity parameter and outputs (G,GT , p, g, e) where G and GT are groups of prime
order p, 2λ < p < 2λ+1, g is a generator of group G and e : G × G → GT is a
non-degenerate efficiently computable bilinear map. See [12] for a description of
the properties of such pairings.

2.3 DBDH and CDH Assumption

Decisional bilinear Diffie-Hellman (BDDH) problem is to distinguish two distri-
butions PBDH = (gα, gβ , gγ , e(g, g)αβγ) and RBDH = (gα, gβ , gγ , R) for random
α, β, γ and R. Computational Diffie-Hellman (CDH) problem is to compute gαβ

provided that gα and gβ . To state the assumption asymptotically we rely on the
bilinear group generator algorithm GroupGen(1λ).

Definition 1. Let GroupGen(1λ) be a bilinear group generator. The DBDH
assumption holds for GroupGen(1λ) if for all probabilistic polynomial-time
algorithm B, its BDDH advantage, denoted by

AdvDBDH
B (λ) =

∣
∣
∣
∣ Pr[B(gα, gβ , gγ , e(g, g)αβγ) = 1] − Pr[B(gα, gβ , gγ , R) = 1]

∣
∣
∣
∣

is a negligible function of λ, where the probability is over (G,GT , p, g, e) ←
GroupGen(1λ), α, β, γ ← Z

∗
p, R ← GT .

Definition 2. Let GroupGen(1λ) be a bilinear group generator. The CDH
assumption holds for GroupGen(1λ) if for all probabilistic polynomial-time
algorithm B, its CDH advantage, denoted by

AdvCDH
B (λ) = Pr[B(gα, gβ) = gαβ]

is a negligible function of λ, where the probability is over (G,GT , p, g, e) ←
GroupGen(1λ), α, β ← Z

∗
p.

Efficient Asymmetric Index Encapsulation Scheme for Named Data 195

2.4 The Leftover Hash Lemma

Definition 3 (Universal Hash Function). A collection H of function H with
form U → V is universal if for any x, x′ ∈ U such that x �= x′ it holds that

Pr
H←H

[H(x) = H(x′)] =
1

|V |
Theorem 1 (Leftover Hash Lemma for block-source, see [16]). Let H
be a universal collection of functions H : U → V , let X = (X1,X2, . . . , Xq) be
(q, k)-block-source where k ≥ log |V | + 2 log(1/ε) + Θ(1). Then the distribution

(H1,H1(X1),H2,H2(X2), . . . , Hq,Hq(Xq))

where (H1,H2, . . . , Hq) ← Hq is εq-close to the uniform distribution over
(H × V)q

3 Definition of Security Models

3.1 Intuition

Before we begin to build our security model formally, it is necessary to identify
what attacks AIE should withstand, and what attributes are desirable to have:

– Anonymity of encapsulated header. An AIE scheme is anonymous if
Enc(pp, x) leaks no information about x.

– Privacy of token’s functionality. Formalizing such a notion is not straight-
forward since adversary can mount a guessing attack. If adversary has some
knowledge that the token comes from a small set, he can encapsulate each
candidate index, and run the legitimate Test procedure to learn the function
embedded inside the token. We adapt the notion from [16] which requires that
Gen(mk, y) is indistinguishable from a random token if y is chosen from a
sufficiently high min-entropy distribution.

We give the precise definitions based on the above discussion.

3.2 Security Model for Anonymity

To capture the anonymity properties formally, A game between a challenger and
an adversary A is defined as follows:

– Setup Phase: The challenger runs Setup(1λ) and sends pp to adversary A,
keeps mk to itself.

– Pre-Challenge Phase: In this phase, adversary A is allowed to make token
extraction qurey. The challenger responds the query about index y by sending
A the output of Gen(mk, y)

– Challenge Phase: A submits two indices x0, x1, which is restricted to the
indices that he did not request in pre-challenge phase. The challenger flips a
fair binary coin b and returns Enc(pp, xb) as challenge header.

196 R. Ma and Z. Cao

– Post-Challenge Phase: This phase is repeat of pre-challenge phase. The adver-
sary issues additional adaptive queries with the restriction that he can not
request token of x0 or x1.

– Guess Phase: Finally, A submits a guess b′ of b. The adversary wins if b′ = b.

Definition 4 (Anonymity of AIE). An AIE scheme says anonymous if for
any probabilistic polynomial-time algorithm A, it’s ANON advantage, denoted
by

AdvANON
A (λ) =

∣
∣
∣
∣ Pr[b′ = b] − 1

2

∣
∣
∣
∣

is a negligible function of λ, where the probability is over the random bits used
by the challenger and the adversary.

3.3 Security Model for Function Privacy

The following security game parameterized by a distribution D helps us capture
properties of token’s function privacy:

– Setup Phase. The challenger runs Setup(1λ) and sends both master secret
key mk and public parameters pp to adversary A.

– Challenge Phase. In this phase, the challenger samples an indices vector
(x1, x2, . . . , xq) from the distribution D, then for every i ∈ {1, 2, . . . , n}, com-
putes tki = Gen(mk, xi), returns (tk1, . . . , tkq) to A.

– Guess Phase. Finally, A sumbits a guess of the distribution challenger’s used.
It outputs “0” standing for uniform distribution, otherwise outputs “1”.

Definition 5 (Privacy of AIE). An AIE scheme says function private if for
any probabilistic polynomial-time algorithm A and any (q, k)-block-source distri-
bution D where q, k is a polynomial of λ, it’s PRIV advantage, denoted by

AdvPRIV
A (λ) =

∣
∣
∣
∣ Pr[ΨD(λ) = 1] − Pr[ΨR(λ) = 1]

∣
∣
∣
∣

is a negligible function of λ where R stands for uniform distribution.

4 Application

Review of CON. Communication in CON adheres to the pull model. End users
express interests and fetch data. Data are always named to facilitate search.
Interests represent the willingness of the user to retrieve certain data, indepen-
dently of its location. Content routing relies on content rather that hosts. Content
routers are responsible of forwarding interests and forwarding back the associ-
ated data. Each router is assumed to have a built-in cache which is expected to
be much bigger than today’s routers.

CON has some innate privacy friendly features, such as lack of source and
destination addresses on contents. However, there are some security and privacy
challenges in CON:

Efficient Asymmetric Index Encapsulation Scheme for Named Data 197

– Content privacy. As CON stores data packets and makes it available to anyone
that asks for it, the adversary might retrieve confidential content from caches
[11].

– Name privacy. Names reveal significantly more information about content
than IP addresses. Keeping the name private while ensuring accessibility and
routablility is the starting point of our work [10].

– Interest flooding attack. Adversary generates a large number of interests, aim-
ing to overwhelm in routers, in order to prevent them from handling legitimate
interests. Since CON interests lack source address, it is difficult to determine
the attack originator [9].

Instantiating AIE in CON. Our main idea is to encrypt the content, encapsu-
late the name and use token instead of the interest packet. Encrypted content,
encapsulated header and signature binding the first two compose the anonymous
content packet of x. As illustrated in Fig. 1, when a router receives a token for
name x and there are no same pending tokens in its cache, it forwards this token
to the neighbor routers. When the desired content is returned or there is already
an encapsulated header matching this token in the cache, the router forwards
it out on all neighbors where the token for x has been received and flushes
the corresponding cache entry. The anonymity and token function privacy of
AIE ensure that the name is hidden at interest and content packet, while the
token unforgeability helps central authority locating who is launching an interest
flooding attack.

Fig. 1. Instantiating AIE scheme in anonymous CON

198 R. Ma and Z. Cao

Disscusion and Suggestion. Since adversary can mount a guessing attack
(exhaustively testing the token by using pairings). We argue the name must be
sample from a large enough set. To own reasonable high min-entropy in anony-
mous CON, we suggest that data provider should assign a complicated name of
the encrypted data. Taking advantage of the present of timestamp and hierar-
chical prefix, it’s possible to prevent adversary knowing sensitive information by
brute force method.

5 Scheme Construction

In this section, we present an efficient AIE scheme with constant size token and
encapsulated header. The design inspiration of our scheme comes from [15,16].

– Setup(1λ): On input security parameter 1λ, the setup algorithm works as
follows:
1. Generate (p,G,GT , g, e) ← GroupGen(1λ).
2. Randomly sample a ← Z

∗
p.

3. Compute ga ← ga.
4. Choose two cryptographic hash function H and F : {0, 1}λ → G. The

security analysis will view H, F as random oracles.
5. Output a as master key, (g, ga) as public parameters.

– Enc(pp, x): Given x, the index encapsulation algorithm does:
1. Randomly sample r ← Z

∗
p.

2. Compute c ← gr, T ← e(ga,H(x))r, R ← e(ga, F (x))r.
3. Output (c, T,R) as an encapsulated header.

– Gen(mk, y): On input the master key a and an index y, the token generation
algorithm does the following:
1. If the same query for y is repeated twice, then the same token is provided.
2. Randomly choose u, v ← Z

∗
p.

3. Compute d ← (
H(y)uF (y)v

)a.
4. Output and record (d, u, v) as the token of y.

– Test(hd, tk): Given an encapsulated header hd and a token tk, the test algo-
rithm does:
1. Parse hd as (c, T,R), tky as (d, u, v).
2. Check if the following equation holds true:

e(c, d) = Tu · Rv,

if it holds, output “1”, meaning tk matches hd, else output “0”.

Correctness. For any index x, we need to guarantee Test(hdx, tkx) = 1, where
hdx ← Enc(x, pp) and tkx ← Gen(x,mk). Denoting hdx = (c, T,R) and tkx =
(d, u, v), that is clear since

e(c, d) = e (gs, (H(x)uF (x)v)a)
= e(gs,H(x))aue(gs, F (x))av)

=
(
e(ga,H(x))s

)u(
e(ga, F (x))s

)v

= Tu · Rv

Efficient Asymmetric Index Encapsulation Scheme for Named Data 199

6 Proof of Anonymity

We use reduction to prove anonymity of our scheme under the DBDH assump-
tion.

Lemma 1. Suppose there is an adversary A that can win the anonymity game
with advantage ε(λ). Then there is a algorithm B solves the DBDH problem with
advantage ε(λ).

Given a tuple (ga, gb, gc, Z), that is either sampled from PBDH or from RBDH.
Algorithm B interacts with adversary A as follows:

Setup Phase. B sets up public parameter pp = gα.
Programming the Random Oracle. B simulates the random oracle for A as

follows:
If the same query is repeated twice, then the same return value is provided,

on issuing a fresh query for H(x), B:
1. samples t1 ← Z

∗
p, t2 ← Z

∗
p

2. stores tuple (x, t1, t2) in table LH

3. returns H(x) = (gβ)t1gt2

On issuing a fresh query for F (x), B:
1. samples t3 ← Z

∗
p, t4 ← Z

∗
p,

2. stores tuple (x, t3, t4) in table LF ,
3. returns F (x) = (gβ)t3gt4 .

Pre-Challenge Phase. On A issuing a token for index y, algorithm B:
1. if the same query for y is repeated twice, then the same token is provided,
2. if A has not made a query for H(y) and/or F (y), programs H(y) and/or

F (y) as mentioned above.
3. retrieves (y, t1, t2) from LH and (y, t3, t4) from LF

4. samples u ← Z
∗
p, computes v ← −u · t1/t3. i.e., randomly samples u and

v such that u · t1 + v · t2 = 0
5. computes d ← (gα)ut2+vt4

6. returns (d, u, v)
(Correctness of simulation). We argue that (d, u, v) is always a proper token
corresponding to y since

(
H(y)uF (y)v

)α =
(
(gt1

β gt2)u(gt3
β gt4)v

)α

=
(
(gut1+vt3

β)gut2+vt4
)α

= gut2+vt4
α

= d

Challenge Phase. After A sends x0 and x1, algorithm B:
1. picks a random bit b ← {0, 1}
2. if A has not made a query for H(xb) and/or F (xb), programs H(xb)

and/or F (xb) as mentioned above.
3. retrieve (xb, s1, s2) from LH and (xb, s3, s4) from LF

200 R. Ma and Z. Cao

4. computes c ← gγ , T ← Zs1e(gα, gγ)s2 , W ← Zs3e(gα, gγ)s4

5. returns (c, T,W) as challenge header

Post-Challenge Phase. B responds as before in pre-challenge phase.
Guess Phase. Finally A outputs a guess b′ of b. B concludes its own game by

outputting a guess as follows. if b′ = b, B returns 1, else returns 0.

Analysis of B’s behavior. Denote γ = logg gγ . If Z is sampled from PBDH,
i.e., Z = e(gα, gβ)γ , then (c, T,W) is a perfectly legitimate header of xb since

e(gα,H(x))γ = e(gα, gs1
β gs2)γ =

(
e(gα, gβ)γ

)s1
e(gα, gs2)γ = Zs1e(gα, gγ)s2 = T

e(gα, F (x))γ = e(gα, gs3
β gs4)γ =

(
e(gα, gβ)γ

)s3
e(gα, gs4)γ = Zs3e(gα, gγ)s4 = W

Therefore, B simulates a perfect environment of A, the probability of the evnet
A winning the game is identical to ε. However, when Z is uniformly random, the
challenge header will not be legitimate. This is not a problem, and indeed, it is
crucial to the proof of security.

Lemma 2. If Z is sampled from uniformly random, the distribution of the b is
independent from the adversary’s view, so the probablility of event A winning
the game is identical to 1/2.

Proof. Consider the joint distribution of the adversary’s view. Note that the
adversary is not allowed to make a token query for x0 and x1, from his view,
only H(xb), F (xb), T and W may leak information about b. What we need proof
is for any fixed gα, gβ , gγ , T , W , H(x0), F (x0), H(x1) and F (x1),

Pr

⎡

⎢
⎢
⎣

Zr1e(gα, gγ)r2 = T
Zr3e(gα, gγ)r4 = W

gr1
β gr2 = H(x0)

gr3
β gr4 = F (x0)

⎤

⎥
⎥
⎦ = Pr

⎡

⎢
⎢
⎣

Zr1e(gα, gγ)r2 = T
Zr3e(gα, gγ)r4 = W

gr1
β gr2 = H(x1)

gr3
β gr4 = F (x1)

⎤

⎥
⎥
⎦

where the probability is over r1, r2, r3, r4 and Z. That is clear because the four
equations are linear independent since for any fixed T , W , f and h,

Pr

⎡

⎢
⎢
⎣

Zr1e(gα, gγ)r2 = T
Zr3e(gα, gγ)r4 = W

gr1
β gr2 = h

gr3
β gr4 = f

⎤

⎥
⎥
⎦ =

1
|G|2

That concludes that A learns nothing about b.

To summarize, when the input tuple is sampled from PBDH, then adversary’s
view is identical to its view in a real security game and therefore A satisfies
|Pr[b′ = b] − 1/2| ≥ ε. When the input tuple is sampled from RBDH, then
Pr[b′ = b] = 1/2. Therefore, we have that

AdvDBDH
B (λ) = |Pr[B(PBDH) = 1] − Pr[B(RBDH) = 1]| ≥ |(1/2 ± ε) − 1/2]| = ε

We present our conclusion as the following statement:

Theorem 2. The AIE scheme we proposed is anonymous assuming the DBDH
assumption holds for the bilinear group generated by GroupGen.

Efficient Asymmetric Index Encapsulation Scheme for Named Data 201

7 Proof of Function Privacy

Proof. Denote ViewD by the distribution of A’s view in the game ΨD(λ), ViewR

by the distribution of A’s view in the game ΨR(λ). We prove that ViewD is
statistically close to ViewR even for arbitrary fixed public parameters.

Suppose A received tokens corresponding to (x1, x2, . . . , xq) in the challenge
phase. As A knows the master key and having fixed pp, we can assume that
ViewD is equivalent to

(

u1, v1, h
u1
1 fv1

1 , u2, v2, h
u2
2 fv2

2 , . . . , uq, vq, h
uq
q fvq

q

)

where hi = H(xi) and fi = F (xi) for each i ∈ {1, . . . , q}.
Without loss of generality, we can assume that H and F are injective

since they are modeled as random oracle. Assuming that H and F are injec-
tive guarantees that for any (q, k)-block-source X over {0, 1}λq it holds that(
(h1, f1), . . . , (hq, fq)

)
is also a (q, k)-block-source over G

2q.
Note that the collection of functions {gu,v : G

2 → G}u,v∈Z∗
p

defined by
gu,v(h, f) = hufv is universal (see [19]). This enables us to directly apply the
Leftover Hash Lemma on block-source, implying that the statistical distance
between ViewD and the uniform distribution is negligible in λ. The same holds
also for ViewR since R is a (q, k)-block-source in particular. This completes the
proof of function privacy. We present our conclusion as the following statement:

Theorem 3. The AIE scheme we proposed is (computational) function privacy
under random oracle model.

8 Conclusion and Future Work

In this article, we have discussed the problem of searching on hidden index in
asymmetric setting. We make several contributions including a new primitive,
new security definitions, a new construction and a new application. An interest-
ing open problem is to construct AIE schemes for other classes of functions. A
possible starting point is to consider simple functionalities, such as wildcard [17]
and inner-product testing [18]. Another fascinating open problem is to design a
scheme which is secure in the standard model as well as keeps the token size and
header size constant. Finally, we leave it as an open problem to design an AIE
scheme without pairing.

Acknowledgements. This work is supported in part by the National Natural Science
Foundation of China (Grant Nos. 6163000206, 61373154, 61371083, and 61411146001),
in part by the Prioritized Development Projects through the Specialized Research Fund
for the Doctoral Program of Higher Education of China (Grant No. 20130073130004),
in part by Shanghai High-tech field project (Grant No. 16511101400). We also thank
Prof. Jiguo Li and Tsz Hon Yuen for the helpful suggestions.

202 R. Ma and Z. Cao

References

1. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 30

2. Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 351–368.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 20

3. Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword
search revisited. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y.,
Gavrilova, M.L. (eds.) ICCSA 2008. LNCS, vol. 5072, pp. 1249–1259. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-69839-5 96

4. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: ACM Conference on Computer and Communications Security, pp. 965–976
(2012)

5. Compagno, A., Conti, M., Gasti, P., Tsudik, G.: Poseidon: Mitigating interest
flooding DDoS attacks in Named Data Networking. In: LCN, pp. 630–638 (2013)

6. Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 30

7. Camenisch, J., Kohlweiss, M., Rial, A., Sheedy, C.: Blind and anonymous identity-
based encryption and authorised private searches on public key encrypted data.
In: Public Key Cryptography, pp. 196–214 (2009)

8. Goh, E.-J.: Secure Indexes (2004)
9. Paolo, G., Gene, T., Ersin, U., Lixia, Z.: DoS and DDoS in named data networking.

In: ICCCN , pp. 1-7 (2013)
10. DiBenedetto, S., Gasti, P., Tsudik, G., Uzun, E.: ANDaNA: Anonymous Named

Data Networking Application. In: NDSS 2012 (2012)
11. Abdelberi, C., De Cristofaro, E., Kaafar, M.A., Uzun, E.: Privacy in content-

oriented networking: threats and countermeasures. Comput. Commun. Rev. 43(3),
25–33 (2013)

12. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

13. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: consistency
properties, relation to anonymous IBE, and extensions. J. Cryptology 21(3), 350–
391 (2008)

14. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. J. Comput. Secur.
19(5), 895–934 (2011)

15. Coron, J.-S.: A variant of Boneh-Franklin IBE with a tight reduction in the random
oracle model. Des. Codes Crypt. 50(1), 115–133 (2009)

16. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40084-1 26

17. Abdalla, M., Birkett, J., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G.,
Schuldt, J.C.N., Smart, N.P.: Wildcarded identity-based encryption. J. Crypt.
24(1), 42–82 (2011)

http://dx.doi.org/10.1007/978-3-540-74143-5_30
http://dx.doi.org/10.1007/978-3-642-55220-5_20
http://dx.doi.org/10.1007/978-3-540-69839-5_96
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-642-40084-1_26

Efficient Asymmetric Index Encapsulation Scheme for Named Data 203

18. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. J. Crypt. 26(2), 191–224 (2013)

19. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

20. Li, J., Lin, X., Zhang, Y., Han, J.: KSF-OABE: outsourced attribute-based encryp-
tion with keyword search function for cloud storage. IEEE Trans. Serv. Comput.
PP(99), 1 (2016)

21. Li, J., Shi, Y., Zhang, Y.: Searchable ciphertext-policy attribute-based encryption
with revocation in cloud storage. Int. J. Commun. Syst. (2015)

22. Yuen, T.H., Zhang, Y., Yiu, S.M., Liu, J.K.: Identity-based encryption with post-
challenge auxiliary inputs for secure cloud applications and sensor networks. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 130–147.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-11203-9 8

http://dx.doi.org/10.1007/978-3-319-11203-9_8

Key Management

Multi-cast Key Distribution: Scalable, Dynamic
and Provably Secure Construction

Kazuki Yoneyama1(B), Reo Yoshida2, Yuto Kawahara2, Tetsutaro Kobayashi2,
Hitoshi Fuji2, and Tomohide Yamamoto2

1 Ibaraki University, Hitachi, Ibaraki, Japan
kazuki.yoneyama.sec@vc.ibaraki.ac.jp

2 NTT Secure Platform Laboratories, Musashino, Japan

Abstract. In this paper, we propose a two-round dynamic multi-cast
key distribution (DMKD) protocol under the star topology with a cen-
tral authentication server. Users can share a common session key with-
out revealing any information of the session key to the server, and can
join/leave to/from the group at any time even after establishing the ses-
sion key. Our protocol is scalable because communication and computa-
tion costs of each user are independent from the number of users. Also,
our protocol is still secure if either private key or session-specific ran-
domness of a user is exposed. Furthermore, time-based backward secrecy
is guaranteed by renewing the session key for every time period even if
the session key is exposed. We introduce the first formal security defini-
tion for DMKD under the star topology in order to capture such strong
exposure resilience and time-based backward secrecy. We prove that our
protocol is secure in our security model in the standard model.

Keywords: Multi-cast key distribution · Exposure resilience · Star
topology · Backward secrecy

1 Introduction

HTML 5 is an emerging technology for next generation web applications [1].
Actually, web browser vendors support this new technology. Google said its
Chrome browser would begin blocking Internet ads using Adobe’s Flash tech,
likely prompting advertisers to abandon the video format [2]. Similarly, Mozilla,
the Firefox vendor, is encouraging developers to adopt HTML5 and not to use
Flash [3].

In HTML5, we have a simple method using WebRTC [4] for a full-mesh
real time communication topology [5]. WebRTC provides the confidentiality of
real time transport protocol (RTP) [6] by using a key exchange and encrypted
transport protocol, DTLS-SRTP [7], which has been suggested in IETF Draft [8].
In order to make the full-mesh encrypted communication topology, WebRTC
needs full-mesh DTLS key exchanges to establish all SRTP sessions. In brief,
WebRTC clients must exchange the keys with n − 1 users in the n clients case.
c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 207–226, 2016.
DOI: 10.1007/978-3-319-47422-9 12

208 K. Yoneyama et al.

This is very inefficient. Such key exchange protocols under the mesh topology
are generally called group key exchange (GKE).

In this paper, we consider the star topology instead of the mesh topology for
establishing the session key. In the star topology, each user communicates with a
central authentication server, and users do not directly communicate with. Thus,
it is possible to reduce costs of clients without depending on n; and therefore,
WebRTC clients can do the key exchange part very efficiently. Key exchange
protocols under the star (or tree) topology are generally called multi-cast key
distribution (MKD) or group key management. Though the star topology can
reduce the cost for clients, moving most of the burden to the server makes the
server a natural target for a concentrated attack. Thus, the star topology is
useful if the system is still secure when some part of secret information of the
server is exposed by some attack.

Our Contribution. In this paper, we propose a new provably secure two-
round dynamic MKD (DMKD) protocol under the star topology with a central
authentication server. Because of the star topology, each user does not directly
communicate with other users. Instead, the central server communicates with
users, and distributes information for establishing the session key. If the server
was malicious under the star topology, the session key could be known for the
server by impersonating a user. Thus, we suppose that the server is honest-
but-curious, and even the server must not know any information of the session
key.

Each user has public information, called a static public key (SPK), and the
corresponding secret information, called a static secret key (SSK). The SPK
is also expected to be certified with user’s ID through an infrastructure such
as PKI. A user who wants to share a session key with other users exchanges
ephemeral public keys (EPKs) that is generated from the corresponding session-
specific randomness, called ephemeral secret keys (ESKs), via the server.

The highlight of our protocol is as follows.

– Dynamic Group. Our protocol allows users to share the session key in the
dynamic group manner. It means that, after establishing the session key among
a group of users in a distribution phase, a set of users can join/leave the
group without executing a new distribution phase among the new group. Users
generate and keep state information for the join and leave phases at the end of
the distribution phase. The join and leave phases of our protocol need smaller
computation and communication costs than the distribution phase thanks to
state information. Also, since the session key is refreshed after the join/leave
phases, any information of the new session key do not exposed to leaving users.

– Strong Exposure Resilience. In real-world applications, there are several
situations that secret information is exposed. For example, if a pseudo-random
number generator implemented in a system is poor, ESKs may be guessed to
the adversary. Also, when some devices containing SSKs are lost, then a mali-
cious person may use SSKs to know the session key generated by the owner.
Furthermore, the government may order the server to reveal the SSK. Thus, it

Multi-cast Key Distribution 209

is desirable that DMKD protocols are resilient to secret key exposure attacks.
Our protocol is secure even if either of SSKs or ESKs used to generate the
session key are exposed. We call security when ESKs are exposed ephemeral
key exposure resilience, and security when SSKs (including the server’s) are
exposed strong server key forward secrecy. To achieve ephemeral key expo-
sure resilience, we use the twisted pseudo-random function (PRF) trick [9,10].
Strong server key forward secrecy guarantees even if the adversary is allowed
to modify messages in the target session while most of AKE protocols pre-
vent that (i.e., weak forward secrecy). Moreover, our protocol guarantees a
distinguished security property, called time-based backward secrecy. It means
that if the session key is exposed at a time frame, the exposed session key
is revoked when a new time frame begins. Time-based backward secrecy is
very useful to resist real-time session key exposure attacks like malwares. We
achieve time-based backward secrecy by formalizing the notion of the time
frame in the security model, and proposing a method to update the session
key with a minimum cost.

– Scalability. Most of previous GKE protocols are constructed under the mesh
topology. A user must combine information from users in order to establish the
session key with contributions of all users. Thus, the user needs to broadcast
a message to all users (i.e., computation and communication costs depend on
the number of users), or the round complexity depends on the number of users.
Hence, if we adopt the mesh topology, it is difficult to achieve scalability. On
the other hand, our DMKD protocol is constructed under the star topology.
Though the server needs computation and communication costs depending on
the number of users, users can share the session key with constant costs. The
load of the server is actually not a problem because the server can be very pow-
erful in computational resource and communication bandwidth. Conversely,
users may have poor resources like a mobile device; and thus, scalability is
very important in reality.

Also, we propose a first formal security model for DMKD. Our security model
captures the star topology and several exposure resilience. Especially, to grasp
time-based backward secrecy, the notion of time frames is formulated to define
session freshness.

Related Work. We revisit several related work of this work.

GroupKeyExchange. The first provably secure GKEprotocol is proposed byBres-
son et al. [11]. Their protocol is not dynamic (i.e., the group member is fixed before
starting sessions.). Then, several dynamic GKE (DGKE) protocols and security
models are proposed [12,13]. These protocols need a linear number of rounds.
After that, several constant round DGKE protocols are studied [14–16]. Exposure
resilience of GKE protocols is firstly considered in the security model by Manulis
et al. [17]. Their model guarantees ephemeral key exposure resilience and weak
forward secrecy. This security model is extended by Suzuki and Yoneyama [18] to

210 K. Yoneyama et al.

grasp session state exposure. However, their proposed GKE protocol is not for gen-
eral group setting but three-party setting. Since these GKE protocols are consid-
ered under the mesh topology, costs of users depend on the number of users.

Multicast Key Distribution. Since the main application of MKD is Mobile Ad Hoc
Networks (MANET), most of MKD protocols use tree topology. The advantage of
the tree-basedMKDis that total communication complexity is reduced toO(log n).
For example, MKD protocols based on logical key hierarchies [19–22] have been
well studied. There are few papers studying MKD in the star topology [23–26].
The motivation of previous star topology-based MKD protocols is to reduce the
rekeying cost of tree topology-based MKD protocols. Most of these protocols have
no formal security proof. Sun et al. [26] propose a provably secure star topology-
based MKD protocol. However, their security model does not capture exposure
resilience, and their protocol is not scalable because communication complexity
for uses depend on the number of users. A formal security model for MKD proto-
cols is introduced by Micciancio and Panjwani [27]. However, their model allows
the server to know the session key shared by users. Also, exposure resilience is not
considered.

2 Preliminaries

2.1 Notations

Throughout this paper we use the following notations. If Set is a set, then by
m ∈R Set we denote that m is sampled uniformly from Set. If ALG is an
algorithm, then by y ← ALG(x; r) we denote that y is output by ALG on
input x and randomness r (if ALG is deterministic, r is empty).

2.2 Pseudo-Random Function, and Twisted Pseudo-Random
Function Trick

Let κ be a security parameter and F = {Fκ : Domκ × Kspaceκ → Rngκ}κ be
a function family with a family of domains {Domκ}κ, a family of key spaces
{Kspaceκ}κ and a family of ranges {Rngκ}κ.

Definition 1 (Pseudo-Random Function). We say that function family F =
{Fκ}κ is the PRF family, if for any PPT distinguisher D, |Pr[1 ← DFκ(·)]
− Pr[1 ← DRFκ(·)]| ≤ negl, where RFκ : Domκ → Rngκ is a truly random
function.

Next, we show the notion of the twisted PRF [9]. The twisted PRF tPRF
is a function that tPRF : {0, 1}κ × Kspace2κ × {0, 1}κ → Rngκ. We construct
tPRF (a, a′, b, b′) := Fκ(a, b) ⊕ Fκ(b′, a′) with PRF Fκ, where a, b′ ∈ {0, 1}κ and
a′, b ∈ Kspaceκ. The twisted PRF is used to guarantee that tPRF (a, a′, b, b′)
looks random even if either (a, a′) or (b, b′) is exposed.

Lemma 1 (Theorem 1 in [10]). If Fκ is PRF, then

Multi-cast Key Distribution 211

– [(a, a′), tPRF (a, a′, b, b′)] is indistinguishable from [(a, a′), R] where R is ran-
domly chosen from Rngκ, and

– [(b, b′), tPRF (a, a′, b, b′)] is indistinguishable from [(b, b′), R] where R is ran-
domly chosen from Rngκ.

2.3 Target-Collision Resistant Hash Function

We say a function TCR : Dom → Rng is a target-collision resistant (TCR) hash
function if the following condition holds for security parameter κ: For any PPT
adversary A, Pr[x ∈R Dom;x′ ← A(x) s.t. x �= x′ ∧ TCR(x) = TCR(x′)] ≤
negl.

2.4 Public Key Encryption

Definition 2 (Syntax for Public Key Encryption Schemes). A PKE
scheme consists of the following 3-tuple (Gen, Enc, Dec):

Gen : a key generation algorithm which on input 1κ, where κ is the security
parameter, outputs a pair of public and secret keys (pk, sk).

Enc : an encryption algorithm which takes as input public key pk and plaintext
m, outputs ciphertext CT .

Dec : a decryption algorithm which takes as input secret key sk and ciphertext
CT , outputs plaintext m or reject symbol ⊥.

Definition 3 (Chosen-Ciphertext Security for Public Key Encryption).
APKE scheme is CCA-secure if the following property holds for security parameter
κ; For any adversary A = (A1, A2), |Pr[(pk, sk) ← Gen(1κ); (m0, m1, state) ←
ADO(sk,·)

1 (pk); b ∈R {0, 1};CT ∗ ← Enc(pk,mb); b′ ← ADO(sk,·)
2 (pk,CT ∗, state);

b′ = b] − 1/2| ≤ negl(κ), where DO is the decryption oracle which outputs m or
⊥ on receiving CT , state is state information (possibly including pk, m0 and m1)
which A wants to preserve. A cannot submit the ciphertext CT = CT ∗ to DO.

2.5 Ciphertext-Policy Attribute-Based Encryption

Definition 4 (Syntax for Ciphertext-Policy Attribute-based Encryp-
tion Schemes). A CP-ABE scheme consists of the following 4-tuple
(Setup,Der, AEnc, ADec):

(Params,msk) ← Setup(1κ, att) : a setup algorithm which on inputs 1κ and
att, where κ is the security parameter and att is an attribute universe descrip-
tion, outputs a public parameter Params and a master secret key msk.

uskA ← Der(Params,msk,A) : a key derivation algorithm which on input
Params, msk and attribute A, outputs a user secret key uskA.

CT ← AEnc(Params, P,m) : an encryption algorithm which on input
Params, an access structure P and a plaintext m, outputs a ciphertext CT .

212 K. Yoneyama et al.

m ← ADec(Params, uskA, CT) : a decryption algorithm which on input uskA

and CT , outputs plaintext m if A satisfies P .

Definition 5 (Chosen-Ciphertext Security for Ciphertext-Policy
Attribute-based Encryption). A CP-ABE scheme is CCA-secure if the
following property holds for security parameter κ; For any PPT adversary
A = (A1,A2), |Pr[(Params,msk) ← Setup(1κ, att); (m0,m1, P

∗, s) ←
AEO(Params,msk,·),DO(Params,usk·,·)

1 (Params); b ∈R {0, 1}; CT ∗ ←
AEnc(Params, P ∗,mb); b′ ← AEO(Params,msk,·),DO(Params,usk·,·)

2 (Params,
CT ∗, s); b′ = b] − 1/2| ≤ negl, where EO is the key extraction oracle, DO is
the decryption oracle and s is state information that A wants to preserve from
A1 to A2. A cannot submit sets of attributes which satisfy P ∗ to EO and the
ciphertext CT ∗ to DO.

We say a CP-ABE scheme is CPA-secure if A does not access DO. Also,
we say a CP-ABE scheme is selectively secure if the adversary must commit P ∗

before Setup.

2.6 Message Authentication Codes

Definition 6 (Syntax for Message Authentication Codes). A MAC
scheme consists of the following 3-tuple (MGen, Tag, Ver):

MGen : a key generation algorithm which on input 1κ, where κ is the security
parameter, outputs a MAC key mk.

Tag : a tagging algorithm which on input mk and plaintext m, outputs an
authentication-tag σ.

Ver : a verification algorithm which on input mk, m and σ, outputs 1 if accepts,
0 otherwise.

Definition 7 (Unforgeability against Chosen-Message Attacks for
Message Authentication Codes). A MAC scheme is UF-CMA if the follow-
ing property holds for security parameter κ; For any PPT forger A, Pr[mk ←
MGen(1κ); (m∗, σ∗) ← AMO(mk,·); 1 ← Ver(mk,m∗, σ∗)] ≤ negl, where MO
is the MAC oracle. A cannot submit m∗ to MO.

2.7 Decisional Diffie-Hellman Assumption

Definition 8 (Decisional Diffie-Hellman Assumption). Let p be a prime
and let g be a generator of a finite cyclic group G of order p. We define two exper-
iments, Expddh-real

g,p (D) and Expddh-rand
g,p (D). For a distinguisher D, inputs (g,A =

ga, B = gb, C) are provided, where (a, b) ∈R (Zp)2. C = gab in Expddh-real
g,p (D)

and C = gc in Expddh-rand
g,p (D), where c ∈R Zp. Let (g,A = ga, B = gb, C = gab)

be the tuple in Expddh-real
g,p (D) and (g, A = ga, B = gb, C = gc) be the tuple

in Expddh-rand
g,p (D). We say that the DDH assumption in G holds for secu-

rity parameter κ if for any PPT distinguisher D |Pr[Expddh-real
g,p (D) = 1] −

Pr[Expddh-rand
g,p (D) = 1]| ≤ negl.

Multi-cast Key Distribution 213

3 Security Definition

In this section, we introduce a new security definition of DMKD under the
star topology. Our definition captures strong exposure-resilience and time-based
forward secrecy. The model is based on [16,18,28].

3.1 Protocol Participants and Initialization

Let U := {U1, . . . , UN} be a set of potential protocol users. Each user Ui is
modelled as a PPT Turing machine w.r.t. security parameter κ. For user Ui, we
denote static secret (public) key by SSKi (SPKi). Ui generates its own keys,
SSKi and SPKi, and the static public key SPKi is linked with Ui’s identity in
some systems like PKI. Each user Ui and the authentication server S are con-
nected by unauthenticated the star topology. That is, they do communications
through an unicast channel over an insecure network like the Internet. Users do
not directly communicate. S is also modelled as a PPT Turing machine. S has
the static secret key by SSKS and the static public key SPKS .

3.2 Session and State Information

There are three phases (Dist, Join, Leave) for DMKD. Dist means the session key
distribution phase that a new group is established and a session key is generated
for users in the group. Join means the user joining phase that a set of new
users join an established group and a session key is re-generated for users in
the new group. Leave means the user leaving phase that a set of users leave
an established group and a session key is re-generated for remaining users in
the group. An invocation of a phase is called a session. We suppose that a
session contains n users {Ui1 , . . . , Uin

}, where 2 ≤ n ≤ N . Let Π be a phase
identifier such that Π ∈ {Dist, Join, Leave}. A session owned by user instance U j�

i�

is managed by a tuple (Π, U j�

i�
, {U j1

i1
, . . . , U jn

in
}). U j�

i�
means the j�-th instance of

Ui�
. Sessions owned by user instances {U j1

i1
, . . . , U

j�−1
i�−1

, U
j�+1
i�+1

, . . . , U jn

in
} are called

matching sessions of the session of U j�

i�
. Hereafter, for simplicity, we can describe

Ui�
as Ui without loss of generality. We suppose that the total number of sessions

in the system is �max. We consider the notion of time frames. Each user Ui and S
communicate to update some state information statei when the session is firstly
executed in a time frame. Hereafter, Ui uses statei in sessions within the time
frame. Also, we consider the session key update based on time frames. Update
means the session key update phase that the shared session key is updated when
a new time frame begins. If a session key is shared in the Dist/Join/Leave phase
in the past time frame, the session key is updated by Update. We note that the
session is not changed after Update phase but only the session key is changed.
In Dist phase, U j

i generates ephemeral secret key ESKj
i and sends ephemeral

public key EPKj
i to S. When S receives all EPKj

i for i, j = 1, . . . , n, then
S returns messages to users. Users and S repeat some rounds, and then users
finally share session key SK and complete the session. After completing the

214 K. Yoneyama et al.

session, each user Ui updates statei to remain necessary information for Update,
Join and Leave phases. statei is passed to another inactivated instance U j′

i to
participate in the next activation of Update, Join or Leave phase. Similarly, in
Update, Join and Leave phases, users and S execute some interactions, and users
update the session key. DMKD consists of many concurrent executions of Dist,
Update, Join and Leave phases.

3.3 Adversary

The adversary A, which is modelled as a PPT Turing machine, controls all
communications between parties including session activation and registrations
of users by performing the following adversary queries.

– Establish(Ui, SPKi): This query allows A to introduce a new user. In response,
if Ui �∈ U (due to the uniqueness of identities) then Ui with the static public
key SPKi is added to U . Note that A is not required to prove the possession
of the corresponding secret key SSKi. If a party is registered by a Establish
query issued by A, then we call the party dishonest. If not, we call the party
honest.

– Send(U j
i ,message): This query allows A to send message to instance U j

i .
message includes Π ∈ {Dist, Join, Leave}. A obtains the response from U j

i . If
U j

i is an inactivated instance and Π = {Join, Leave}, statei is passed to U j
i .

To capture exposure of secret information, the adversary A is allowed to issue
the following queries.

– SessionReveal(U j
i): The adversary A obtains the session key SK for the session

owned by U j
i if the session is completed.

– StateReveal(Ui): The adversary A obtains current state information statei of
Ui. State information do not include the static secret key.

– ServerReveal: This query allows the adversary A to obtain static secret key
SSKS of the server S.

– StaticReveal(Ui): This query allows the adversary A to obtain static secret key
SSKi of the user Ui.

– EphemeralReveal(U j
i): This query allows the adversary A to obtain ephemeral

secret key ESKj
i of U j

i if the session is not completed (i.e., the session key is
not established yet).

3.4 Freshness

For the security definition, we need the notion of freshness.

Definition 9 (Freshness). Let sid∗ = (Π, U j
i , {U j1

i1
, . . . , U jn

in
}) be a completed

session between honest users {U1, . . . , Un}, which is owned by U j
i . Let sid∗ be a

matching session of sid∗. We say session sid∗ is fresh if none of the following
conditions hold:

Multi-cast Key Distribution 215

1. The adversary A issues either of SessionReveal(U j
i) or SessionReveal(U j′

i′) for
any sid∗ in the current time frame,

2. The adversary A issues either of SessionReveal(U j
i) or SessionReveal(U j′

i′)
for any sid∗ in the past time frame if A issues either of ServerReveal,
StaticReveal(Ui) or StaticReveal(Ui′),

3. The adversary A issues ServerReveal before completing sid∗,
4. The adversary A makes either of StateReveal(Ui) or StateReveal(Ui′) in the

current time frame or any of its ancestors1,
5. The adversary A makes either of StaticReveal(Ui) before completing sid∗ or

StaticReveal(Ui′) before completing sid∗ for any sid∗,
6. The adversary A makes both of StaticReveal(Ui) and EphemeralReveal(U j

i),
and

7. The adversary A makes both of StaticReveal(Ui′) and EphemeralReveal(U j′
i′)

for any sid∗.

We note that if both EphemeralReveal(U j
i) and StaticReveal(Ui) are posed,

then we regard that StateReveal(Ui) in the time frame for instance U j
i is also

posed because statei in the time frame is trivially derived from ESKj
i and SSKi.

3.5 Security Experiment

For the security definition, we consider the following security experiment. Ini-
tially, the adversary A is given a set of honest users and makes any sequence of
the queries described above. During the experiment, the adversary A makes the
following query.

– Test(sid∗): Here, sid∗ must be a fresh session. Select random bit b ∈R {0, 1},
and return the session key held by sid∗ if b = 0, and return a random key if
b = 1.

The experiment continues until the adversary A makes a guess b′. The adver-
sary A wins the game if the test session sid∗ is still fresh and if the guess of the
adversary A is correct, i.e., b′ = b. The advantage of the adversary A is defined
as Advdmkd(A) = Pr[A wins] − 1

2 . We define the security as follows.

Definition 10 (DMKD Security). We say that a DMKD protocol Π is secure
in the DMKD model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible
probability, they both compute the same session key.

2. For any PPT adversary A, Advdmkd(A) is negligible in security parameter
κ for the test session sid∗.

1 We say that statei is an ancestor of statei′ if there exists a path (statei, . . . , statei′)
such that each state in the path is updated to the next one.

216 K. Yoneyama et al.

3.6 Summary of Our Security Definition

Here, we give an intuition of security properties captured by our security
definition.

– Ephemeral Key Exposure Resilience. The adversary can obtain ESKs
of users by EphemeralReveal queries. From the freshness definition, when the
adversary does not pose StaticReveal(Ui) where Ui is the owner of the test ses-
sion, then the adversary can pose EphemeralReveal(U j

i) where the j-th session
of Ui is the test session. Thus, it guarantees that the session key is still secure
even if ESKs used to generate the session key are totally exposed.

– Time-based Backward Secrecy. The adversary can obtain the session key
of the test session by SessionReveal queries if the session key was generated at
a past time frame. Generally, if the session key of the test session is exposed,
the adversary easily distinguish the real session key from a random key. In our
security model, we introduce the notion of the time frame, and consider the
Update phase. Thus, when a new time frame begins, the session key may be
updated. Hence, it guarantees that the updated session key looks independent
from past session keys even in the test session.

– Strong Server Key Forward Secrecy. The adversary can obtain both
SSKs of users and the server by StaticReveal and ServerReveal queries. From
the freshness definition, when the adversary does not pose EphemeralReveal
queries for the test session, then the adversary can pose StaticReveal and
ServerReveal for users in the test session after completion of the session.2

Hence, it guarantees that past session keys are still secure even if SSKs of
users and the server are exposed. Also, the adversary is allowed to modify
messages in the test session (i.e., there is a non-matching session.) regardless
of posing StaticReveal or ServerReveal. Thus, while in most of AKE protocols
only weak forward secrecy is guaranteed (i.e., the adversary is prohibited to
pose StaticReveal for non-matching sessions.), our security guarantees strong
forward secrecy.

4 New Dynamic Multi-cast Key Distribution Protocol
Under Star Topology

In this section, we show a DMKD protocol under the star topology. In the Dist
phase, a group of users shares a session key with the help of the central server.
In the Join phase, new users can join the group that previously established
the session key with lower costs than executing a Dist phase by the new group
members. In the Leave phase, a subset of group users leaves from the group with
lower costs than executing a Dist phase by the remaining group members. After
establishing the session key, users can update the key at a new time frame. In the

2 If the adversary poses StaticReveal or ServerReveal before completion of the test
session, then the session key is trivially distinguished from a random key. Also, it
means that the server is honest-but-curious.

Multi-cast Key Distribution 217

Update phase, the server sends information to refresh the session key to users,
and users can locally update the key.

For simplicity, we show a simple setting that only one user joins/leaves
the group simultaneously. We show the general setting that multiple users can
join/leave the group simultaneously in the full paper [29].

4.1 Design Principle

The session key in our protocol is generated from two key materials K1 and
K2. K1 guarantees ephemeral key exposure resilience and strong server key for-
ward secrecy, and K2 guarantees time-based backward secrecy. Here, we give an
intuition of the design of our protocol.

The way to share K1 is based on the ring structure, and is similar to the
previous dynamic group key exchange protocol (the YT protocol) [16]. In the
YT protocol, each user broadcasts gri in Round 1, and computes gri−1ri and
griri+1 . Then, the left key K

(l)
i based on gri−1ri and the right key K

(r)
i based

on griri+1 are generated, and each user broadcasts K
(l)
i ⊕ K

(r)
i in Round 2.

Also, a representative user generates k, and broadcasts the masked k with his
left key to all users. Then, each user can recover the left and right keys for
all group members with his/her K

(l)
i and K

(r)
i . Thus, they can share k, and

generate K1 based on k. However, we cannot simply apply the YT protocol to
our protocol. First, the YT protocol is insecure if ESKs of users are exposed; that
means, ephemeral key exposure resilience is not satisfied. The other problem is
scalability. To broadcast messages and to compute k, both communication and
computational complexity of each user depend on the number of users; and
thus, if the YT protocol is used very large system, the load of users increases.
Therefore, achieving both exposure resilience and scalability is not easy task.

We can solve the first problem on ephemeral key exposure resilience by using
the twisted PRF trick. We use outputs of the twisted PRF based on the SSK and
the ESK instead of all randomness of users in our protocol. From Lemma 1, it is
guaranteed that an output of the twisted PRF is indistinguishable from the ran-
dom value unless both SSK and ESK are exposed. The freshness definition also
guarantee that both SSK and ESK are not exposed in the test session. There-
fore, our protocol satisfies ephemeral key exposure resilience. Also, we can solve
the second problem on scalability thanks to the difference of the network topol-
ogy. In the YT protocol, each user must communicate with other users directly
because of the mesh topology, and all costs inevitably depend on the number of
users. On the other hand, in our protocol, each user only communicates with the
server because of the star topology. Thus, we can confine commutation depend-
ing on the number of users to the server in our protocol. The server only sends a
constant number of messages to each user. Therefore, communication and com-
putational complexity of each user do not depend on the number of users; and
thus, our protocol is scalable. We note that complexity of the server depends on
the number of users, however, it is inevitable and not serious because the server
has sufficient computational power and communication bandwidth in reality.

218 K. Yoneyama et al.

The other key material, K2, is generated by the server. It is encrypted by
a CP-ABE scheme with the access structure that the ID is of the recipient
and the time is within the current time frame. Since for every time frame each
user receives a new decryption key with attribute of his/her ID and the current
time, K2 can be decrypted if the ID of the recipient is valid and the decryption
key is sent at the same time frame. The new decryption key is stored as state
information. After generating the session key, when a new time frame begins,
the server sends the encrypted form of new K2 and each user locally updates
the session key. Though the adversary can pose StateReveal queries, the freshness
definition guarantee that state information of the test session in the current time
frame or any of its ancestors is not exposed. Thus, even if the adversary obtains
session keys at past time frames, the session key at the current time frame is
still secure. Therefore, our protocol satisfies time-based backward secrecy.

4.2 System Setup

S runs the setup algorithm Setup of CP-ABE, and generates a public parameter
Params and a master secret key msk. Let p be a κ-bit prime, and G be a finite
cyclic group of order p with generator g, h. Let TCR : {0, 1}∗ → {0, 1}κ be a
TCR hash function. Let tPRF : {0, 1}κ × Kspace2κ × {0, 1}κ → Zp and tPRF ′ :
{0, 1}κ ×Kspace2κ ×{0, 1}κ → Kspaceκ be twisted PRFs. Let F : {0, 1}κ ×G →
Z
2
p, F ′ : {0, 1}κ × Zp → Kspaceκ and F ′′ : {0, 1}κ × Kspaceκ → {0, 1}κ,

F ′′′ : {0, 1}κ × Kspaceκ → Zp be PRFs. S stores msk as SSKS , and publishes
(Params, p,G, g, h, TCR, tPRF, tPRF ′, F, F ′, F ′′, F ′′′) as SPKS .

There are N users U1 . . . , UN . Each user Ui runs the key generation algo-
rithm of PKE Gen, and generates a public key pki and a secret key ski. Also,
Ui generates secret strings for the twisted PRF (sti, st′i) and (stS , st′S), where
sti, stS ∈R Kspaceκ and st′i, st

′
S ∈R {0, 1}κ. Ui stores (ski, sti, st

′
i) as SSKi, and

publishes pki as SPKi.

4.3 Dist Phase

A set of users Ui1 , . . . , Uin
(n ≤ N) starts a new session and share a session key.

For simplicity, w.l.o.g., we suppose that (Ui1 , . . . , Uin
) = (U1, . . . , Un).

(State Update at New Time Frame) If the session is the first session for
Ui at the time frame TF , then for the current time time S generates uski ←
Der(Params,msk,Ai) with attribute Ai = (Ui, time) and mki ← MGen,
and computes CTi ← Encpki

(uski,mki). Then, S sends CTi to Ui, and Ui

obtains (uski,mki) ← Decski
(CTi) and updates (uski,mki) in statei.

(Round 1 for Users) Ui generates r̃i ∈R {0, 1}κ, r̃′
i ∈R Kspaceκ, k̃i ∈R

{0, 1}κ, k̃′
i ∈R Kspaceκ, s̃i ∈R {0, 1}κ and s̃′

i ∈R Kspaceκ as ESKi, and
computes ri = tPRF (r̃i, r̃

′
i, sti, st

′
i), ki = tPRF (k̃i, k̃

′
i, sti, st

′
i) and si =

tPRF (s̃i, s̃
′
i, sti, st

′
i). Then, Ui computes Ri = gri and ci = gkihsi , and sends

(Ri, ci) to S.

Multi-cast Key Distribution 219

(Round 1 for Server) On receiving (Ri, ci) from all users, S computes sid =
TCR(c1, . . . , cn) and chooses a representative user from (U1, . . . , Un). Here,
w.l.o.g., we suppose that U1 is the representative user. For i ∈ [1, n], S sends
(sid,Ri−1, Ri+1) to Ui. Also, S notices that U1 is the representative user.

(Round 2 for Users) For i ∈ [2, n], on receiving (sid,Ri−1, Ri+1), Ui com-
putes K

(l)
i = F (sid,Rri

i−1), K
(r)
i = F (sid,Rri

i+1) and Ti = K
(l)
i ⊕ K

(r)
i .

Then, Ui computes σi ← Tagmki
(Ri, ci, Ri−1, Ri+1, ki, si, Ti, Ui, sid) and

sends (ki, si, Ti, σi) to S.
On receiving (sid,Rn, R2), U1 computes K

(l)
1 = F (sid, Rr1

n), K
(r)
1 = F (sid,

Rr1
2), T1 = K

(l)
1 ⊕ K

(r)
1 and T ′ = K

(l)
1 ⊕ (k1||s1). Then, U1 computes

σ1 ← Tagmk1
(R1, c1, Rn, R2, T1, T

′, U1, sid) and sends (T1, T
′, σ1) to S.

(Round 2 for Server) On receiving (T1, T
′, σ1) and (ki, si, Ti, σi), S verifies

Vermk1(R1, c1, Rn, R2, T1, T
′, U1, sid, σ1) and Vermki

(Ri, ci, Ri−1, Ri+1, ki,
si, Ti, Ui, sid, σi), and if the verification fails, then aborts. Also, for i ∈
[2, n], S checks if ci = gkihsi holds, and if the verification fails, then
aborts. S generates k̃S ∈R {0, 1}κ, k̃′

S ∈R Kspaceκ, K̃1 ∈R {0, 1}κ and
K̃ ′

1 ∈R Kspaceκ as ESKS , and computes kS = tPRF (k̃S , k̃′
S , stS , st′S),

K1 = tPRF ′(K̃1, K̃
′
1, stS , st′S) and k′ = (

⊕
2≤i≤n ki) ⊕ kS . For i ∈

[2, n], S computes T ′
i =

⊕
1≤j≤i−1 Tj . For i ∈ [1, n], S computes

CT ′
i ← AEnc(Params, Pi,K1) with access structure Pi := (ID =

Ui) ∧ (time ∈ TF). S computes σ′
1 ← Tagmk1

(R1, c1, Rn, R2, T1, T ′, U1,
sid, k′, CT ′

1), and sends (k′, CT ′
1, σ

′
1) to U1. For i ∈ [2, n], S computes σ′

i ←
Tagmki

(Ri, ci, Ri−1, Ri+1, ki, si, Ti, Ui, sid, c1, k
′, T ′

i , T
′, CT ′

i), and sends (c1,
k′, T ′

i , T
′, CT ′

i , σ
′
i) to Ui.

(Session Key Generation and Post Computation) For
i ∈ [2, n], on receiving (c1, k′, T ′

i , T
′, CT ′

i , σ
′
i), Ui verifies Vermki

(Ri, ci, Ri−1,
Ri+1, ki, si, Ti, Ui, sid, c1, k′, T ′

i , T
′, CT ′

i , σ
′
i), and if the verification fails, then

aborts. Ui computes K
(l)
1 = T ′

i ⊕ K
(l)
i and k1||s1 = T ′ ⊕ K

(l)
1 , and checks

if c1 = gk1hs1 holds, and if the verification fails, then aborts. Ui decrypts
K1 ← ADecuski

(CT ′
i , Pi), computes K2 = F ′(sid, k′ ⊕ k1), and outputs the

session key SK = F ′′(sid,K1) ⊕ F ′′(sid,K2). As state information, Ui adds
sid, H

(l)
i = Rri

i−1, H
(r)
i = Rri

i+1 and r = F ′′′(sid,K1) ⊕ F ′′′(sid,K2) to statei.
On receiving (k′, CT ′

1, σ
′
1), U1 verifies Vermk1(R1, c1, Rn, R2, T1, T

′, U1, sid,
k′, CT ′

1, σ′
1), and if the verification fails, then aborts. U1 decrypts K1 ←

ADecusk1(CT ′
1, P1), computes K2 = F ′(sid, k′ ⊕ k1), and outputs the ses-

sion key SK = F ′′(sid,K1)⊕F ′′(sid,K2). As state information, U1 adds sid,
H

(l)
1 = Rr1

n , H
(r)
1 = Rr1

2 and r = F ′′′(sid,K1) ⊕ F ′′′(sid,K2) to statei.

4.4 Join Phase

A user Uin+1 joins an established session by U1, . . . , Un. W.l.o.g., we suppose
that Uin+1 = Un+1.

In the Join phase, users Ui for i ∈ [2, n− 1] can reduce computation than the
Dist phase. They do not need to compute gri . The ring structure to compute K1

still works because r in statei is used to connect the ring instead of using ri.

220 K. Yoneyama et al.

(State Update at New Time Frame) If the session is the first session for
Ui at the time frame TF ′, then for the current time time S generates uski ←
Der(Params,msk,Ai) with attribute Ai = (Ui, time) and mki ← MGen,
and computes CTi ← Encpki

(uski,mki). Then, S sends CTi to Ui, and Ui

obtains (uski,mki) ← Decski
(CTi) and updates (uski,mki) in statei.

(Round 1 for Users) For i ∈ {1, n, n + 1}, Ui generates r̃i ∈R {0, 1}κ, r̃′
i ∈R

Kspaceκ, k̃i ∈R {0, 1}κ, k̃′
i ∈R Kspaceκ, s̃i ∈R {0, 1}κ and s̃′

i ∈R Kspaceκ

as ESKi, and computes ri = tPRF (r̃i, r̃
′
i, sti, st

′
i), ki = tPRF (k̃i, k̃

′
i, sti, st

′
i)

and si = tPRF (s̃i, s̃
′
i, sti, st

′
i). Ui computes Ri = gri and ci = gkihsi , and

sends (Ri, ci) to S.
For i ∈ [2, n − 1], Ui generates k̃i ∈R {0, 1}κ, k̃′

i ∈R Kspaceκ, s̃i ∈R {0, 1}κ

and s̃′
i ∈R Kspaceκ as ESKi, and computes ki = tPRF (k̃i, k̃

′
i, sti, st

′
i) and

si = tPRF (s̃i, s̃
′
i, sti, st

′
i). Ui computes ci = gkihsi , and sends ci to S.

(Round 1 for Server) On receiving (Ri, ci) for i ∈ {1, n, n + 1} and ci for
i ∈ [2, n − 1], S computes sid = TCR(c1, . . . , cn+k), and chooses a represen-
tative user from i ∈ {1, n, n + 1}. Here, w.l.o.g., we suppose that U1 is the
representative user. S sends (sid,Rn, R1) to Un+1. For i ∈ {1, 2}, S sends
(sid,Ri−1) to Ui where R0 = Rn+1. For i ∈ [3, n−2], S sends sid to Ui. Also,
S notices that U1 is the representative user.

(Round 2 for Users) On receiving (sid,Rn+1), U1 computes K
(l)
1 = F (sid,

Rr1
n+1), K

(r)
1 = F (sid,Rr

1), T1 = K
(l)
1 ⊕ K

(r)
1 and T ′ = K

(l)
1 ⊕ (k1||s1). U1

computes σ1 ← Tagmk1
(R1, c1, Rn+1, T1, T

′, U1, sid), and sends (T1, T
′, σ1)

to S.
On receiving (sid,R1), U2 computes K

(l)
2 = F (sid, Rr

1), K
(r)
2 = F (sid, gr)

and T2 = K
(l)
2 ⊕ K

(r)
2 . U2 computes σ2 ← Tagmk2

(c2, R1, k2, s2, T2, U2, sid),
and sends (k2, s2, T2, σ2) to S.
For i ∈ [3, n−2], on receiving sid, Ui computes σi ← Tagmki

(ci, ki, si, Ui, sid),
and sends (ki, si, σi) to S.
On receiving (sid,Rn), Un−1 computes K

(l)
n−1 = F (sid, gr), K

(r)
n−1 = F (sid,

Rr
n) and Tn−1 = K

(l)
n−1 ⊕K

(r)
n−1. Un−1 computes σn−1 ← Tagmkn−1

(cn−1, Rn,
kn−1, sn−1, Tn−1, Un−1, sid), and sends (kn−1, sn−1, Tn−1, σn−1) to S.
On receiving (sid,Rn+1), Un computes K

(l)
n = F (sid,Rr

n), K
(r)
n = F (sid,

Rrn
n+1) and Tn = K

(l)
n ⊕ K

(r)
n . Un computes σn ← Tagmkn

(Rn, cn, Rn+1, kn,
sn, Tn, Un, sid), and sends (kn, sn, Tn, σn) to S.
On receiving (sid,Rn, R1), Un+1 computes K

(l)
n+1 = F (sid,R

rn+1
n), K

(r)
n+1 =

F (sid,R
rn+1
1) and Tn+1 = K

(l)
n+1 ⊕ K

(r)
n+1. Un+1 computes σn+1 ←

Tagmkn+1
(Rn+1, cn+1, Rn, R1, kn+1, sn+1, Tn+1, Un+1, sid), and sends (kn+1,

sn+1, Tn+1, σn+1) to S.
(Round 2 for Server) On receiving (T1, T

′, σ1) from U1, (ki, si, Ti, σi) for
i ∈ {2}∪[n−1, n+1] and (ki, si, σi) for i ∈ [3, n−2], S verifies authentication-
tags, and if the verification fails, then aborts. Also, for i ∈ [2, n+1], S checks if
ci = gkihsi holds, and if the verification fails, then aborts. S generates k̃S ∈R

{0, 1}κ, k̃′
S ∈R Kspaceκ, K̃1 ∈R {0, 1}κ and K̃ ′

1 ∈R Kspaceκ as ESKS , and
computes kS = tPRF (k̃S , k̃′

S , stS , st′S), K1 = tPRF ′(K̃1, K̃
′
1, stS , st′S) and

Multi-cast Key Distribution 221

k′ = (
⊕

2≤i≤n+k ki) ⊕ kS . For i ∈ [2, n + 1], S computes T ′
i =

⊕
1≤j≤i−1 Tj ,

where for i ∈ [3, n − 1], Ti is treated as empty (i.e., T ′
3 = · · · = T ′

n−1). For
i ∈ [1, n + 1], S computes CT ′

i ← AEnc(Params, Pi,K1) with access struc-
ture Pi := (ID = Ui) ∧ (time ∈ TF).
S computes σ′

1 ← Tagmk1
(R1, c1, Rn+1, T1, T

′, U1, sid, k′, CT ′
1), and sends

(k′, CT ′
1, σ

′
1) to U1.

S computes σ′
2 ← Tagmk2

(c2, R1, k2, s2, T2, U2, sid, c1, k
′, T ′

2, T
′, CT ′

2), and
sends (c1, k′, T ′

2, T
′, CT ′

2, σ
′
2) to U2.

For i ∈ [3, n − 2], S computes σ′
i ← Tagmki

(ci, ki, si, Ui, sid,
c1, k

′, T ′
i , T

′, CT ′
i), and sends (c1, k′, T ′

i , T
′, CT ′

i , σ
′
i) to Ui.

S computes σ′
n−1 ← Tagmkn−1

(cn−1, Rn, kn−1, sn−1, Tn−1, Un−1, sid, c1, k
′,

T ′
n−1, T ′, CT ′

n−1), and sends (c1, k′, T ′
n−1, T

′, CT ′
n−1, σ

′
n−1) to Un−1.

S computes σ′
n ← Tagmkn

(Rn, cn, Rn+1, kn, sn, Tn, Un, sid, c1, k
′, T ′

n, T ′,
CT ′

n), and sends (c1, k′, T ′
n, T ′, CT ′

n, σ′
n) to Un.

S computes σ′
n+1 ← Tagmkn+1

(Rn+1, cn+1, Rn, R1, kn+1, sn+1, Tn+1, Un+1,
sid, c1, k

′, T ′
n+1, T

′, CT ′
n+1), and sends (c1, k′, T ′

n+1, T
′, CT ′

n+1, σ
′
n+1) to

Un+1.
(Session Key Generation and Post Computation) For i ∈ [2, n + 1], on

receiving (c1, k′, T ′
i , T

′, CT ′
i , σ

′
i), Ui verifies the authentication-tag, and if

the verification fails, then aborts. Ui computes K
(l)
1 = T ′

i ⊕ K
(l)
i where

for i ∈ [3, n − 1] K
(l)
1 = T ′

i ⊕ gr and k1||s1 = T ′ ⊕ K
(l)
1 , and checks if

c1 = gk1hs1 holds, and if the verification fails, then aborts. Ui decrypts
K1 ← ADecuski

(CT ′
i , Pi), computes K2 = F ′(sid, k′ ⊕ k1), and outputs the

session key SK = F ′′(sid,K1)⊕F ′′(sid,K2). As state information, Ui updates
r = F ′′′(sid,K1) ⊕ F ′′′(sid,K2) in statei. Also, Un updates H

(r)
n = Rrn

n+1 in
staten. Un+1 adds sid, H

(l)
n+1 = R

rn+1
n and H

(r)
n+1 = R

rn+1
1 to staten+1.

On receiving (k′, CT ′
1, σ

′
1), U1 verifies the authentication-tag, and if the veri-

fication fails, then aborts. U1 decrypts K1 ← ADecusk1(CT ′
1, P1), computes

K2 = F ′(sid, k′ ⊕ k1), and outputs the session key SK = F ′′(sid,K1) ⊕
F ′′(sid,K2). As state information, U1 updates sid, H

(l)
1 = Rr1

n+k and r =
F ′′′(sid,K1) ⊕ F ′′′(sid,K2) in state1.

4.5 Leave Phase

A user Uj leaves an established session by U1, . . . , Un.
In the Leave phase, users Ui ∈ I \ {Uj−1, Uj , Uj1+1} can reduce computation

than the Dist phase. They do not need to compute gri . The ring structure to
compute K1 still works because H

(l)
i and H

(r)
i in statei are used to connect the

ring instead of using gri−1ri and griri+1 .

(State Update at New Time Frame) If the session is the first session for
Ui at the time frame TF ′, then for the current time time S generates uski ←
Der(Params,msk,Ai) with attribute Ai = (Ui, time) and mki ← MGen,
and computes CTi ← Encpki

(uski,mki). Then, S sends CTi to Ui, and Ui

obtains (uski,mki) ← Decski
(CTi) and updates (uski,mki) in statei.

222 K. Yoneyama et al.

(Round 1 for Users) Ui ∈ {Uj−1, Uj+1} generates r̃i ∈R {0, 1}κ, r̃′
i ∈R

Kspaceκ, k̃i ∈R {0, 1}κ, k̃′
i ∈R Kspaceκ, s̃i ∈R {0, 1}κ and s̃′

i ∈R Kspaceκ

as ESKi, and computes ri = tPRF (r̃i, r̃
′
i, sti, st′i), ki = tPRF (k̃i, k̃

′
i, sti, st

′
i)

and si = tPRF (s̃i, s̃
′
i, sti, st

′
i). Then, Ui computes Ri = gri and ci = gkihsi ,

and sends (Ri, ci) to S.
Ui ∈ I \ {Uj−1, Uj , Uj+1} generates k̃i ∈R {0, 1}κ, k̃′

i ∈R Kspaceκ, s̃i ∈R

{0, 1}κ and s̃′
i ∈R Kspaceκ as ESKi, and computes ki = tPRF (k̃i, k̃

′
i, sti, st

′
i)

and si = tPRF (s̃i, s̃
′
i, sti, st

′
i). Then, Ui computes ci = gkihsi , and sends ci

to S.
(Round 1 for Server) On receiving (Ri, ci) from Ui ∈ {Uj−1, Uj+1} and ci

from Ui ∈ I \ {Uj−1, Uj , Uj+1}, for i such that Ui ∈ I \ {Uj}, S com-
putes sid = TCR({ci}I\{Uj}), chooses a representative user from Ui ∈
{Uj−1, Uj+1}. Here, w.l.o.g., we suppose that Uj−1 is the representative user.
S sends (sid,Rj+1) to Uj−1. S sends (sid,Rj−1) to Uj+1. Then, S sends sid
to Ui ∈ I \ {Uj−1, Uj , Uj+1}. Also, S notices that Uj−1 is the representative
user.

(Round 2 for Users) On receiving (sid,Rj+1), Uj−1 computes K
(l)
j−1 =

F (sid, H
(l)
j−1), K

(r)
j−1 = F (sid,R

rj−1
j+1), Tj−1 = K

(l)
j−1 ⊕ K

(r)
j−1 and T ′ =

K
(l)
j−1 ⊕ (kj−1||sj−1). Uj−1 computes σj−1 ← Tagmkj−1

(Rj−1, cj−1, Rj+1,
Tj−1, T

′, Uj−1, sid), and sends (Tj−1, T
′, σj−1) to S.

On receiving (sid,Rj−1), Uj+1 computes K
(l)
j+1 = F (sid, R

rj+1
j−1), K

(r)
j+1 =

F (sid,H
(r)
j+1) and Tj+1 = K

(l)
j+1 ⊕ K

(r)
j+1. Uj+1 computes σj+1 ←

Tagmkj+1
(Rj+1, cj+1, Rj−1, kj+1, sj+1, Tj+1, Uj+1, sid), and sends (kj+1,

sj+1, Tj+1, σj+1) to S.
On receiving sid, Ui ∈ I \ {Uj−1, Uj , Uj+1} computes K

(l)
i = F (sid,

H
(l)
i), K

(r)
i = F (sid,H

(r)
i) and Ti = K

(l)
i ⊕ K

(r)
i . Ui computes σi ←

Tagmki
(ci, ki, si, Ti, Ui, sid), and sends (ki, si, Ti, σi) to S.

(Round 2 for Server) On receiving (Tj−1, T
′, σj−1) from Uj−1 and (ki, si, Ti,

σi) from other users, S verifies the authentication-tag, and if the verifica-
tion fails, then aborts. Also, for Ui ∈ I \ {Uj−1, Uj}, S checks if ci = gkihsi

holds, and if the verification fails, then aborts. S generates k̃S ∈R {0, 1}κ,
k̃′

S ∈R Kspaceκ, K̃1 ∈R {0, 1}κ and K̃ ′
1 ∈R Kspaceκ as ESKS , and com-

putes kS = tPRF (k̃S , k̃′
S , stS , st′S) and K1 = tPRF ′(K̃1, K̃

′
1, stS , st′S). For i

such that Ui ∈ I \ {Uj−1, Uj}, S computes k′ = (
⊕{ki}) ⊕ kS . For i such

that Ui ∈ I \ {Uj} and i < j − 1, S computes T ′
i =

⊕
1≤�≤i−1,j−1≤�≤n T�,

where Tj is empty. For i such that Ui ∈ I \ {Uj} and j + 1 ≤ i, S com-
putes T ′

i =
⊕

j−1≤�≤i−1 T�, where Tj is empty. For Ui ∈ I \ {Uj}, S com-
putes CT ′

i ← AEnc(Params, Pi,K1) with access structure Pi := (ID =
Ui) ∧ (time ∈ TF).
S computes σ′

j−1 ← Tagmkj−1
(Rj−1, cj−1, Rj+1, Tj−1, T

′, Uj−1, sid, k′,
CT ′

j−1), and sends (k′, CT ′
j−1, σ

′
j−1) to Uj−1.

S computes σ′
j+1 ← Tagmkj+1

(Rj+1, cj+1, Rj−1, kj+1, sj+1, Tj+1, Uj+1, sid,
cj−1, k

′, T ′
j+1, T ′, CT ′

j+1), and sends (cj−1, k
′, T ′

j+1, T
′, CT ′

j+1, σ
′
j+1) to Uj+1.

Multi-cast Key Distribution 223

For Ui ∈ I \ {Uj−1, Uj , Uj+1}, S computes σ′
i ← Tagmki

(ci, ki, si, Ti, Ui, sid,
cj−1, k

′, T ′
i , T

′, CT ′
i), and sends (cj−1, k

′, T ′
i , T

′, CT ′
i , σ

′
i) to Ui.

(Session Key Generation and Post Computation) On receiving (cj−1,
k′, T ′

i , T
′, CT ′

i , σ
′
i), Ui ∈ I \ {Uj−1, Uj} verifies the authentication-tag, and

if the verification fails, then aborts. Ui computes K
(l)
j−1 = T ′

i ⊕ K
(l)
i and

kj−1||sj−1 = T ′ ⊕ K
(l)
j−1, and checks if cj−1 = gkj−1hsj−1hold, and if the ver-

ification fails, then aborts. Ui decrypts K1 ← ADecuski
(CT ′

i , Pi), computes
K2 = F ′(sid, k′ ⊕ kj−1), and outputs the session key SK = F ′′(sid,K1) ⊕
F ′′(sid,K2). As state information, Ui updates sid, r = F ′′′(sid,K1)⊕F ′′′(sid,
K2) in statei.
On receiving (k′, CT ′

j−1, σ
′
j−1), Uj−1 verifies the authentication-tag, and if

the verification fails, then aborts. Uj−1 decrypts K1 ← ADecuskj−1(CT ′
j−1,

Pj−1), computes K2 = F ′(sid, k′ ⊕ kj−1), and outputs the session key
SK = F ′′(sid,K1) ⊕ F ′′(sid,K2). As state information, U1 updates sid,
r = F ′′′(sid, K1) ⊕ F ′′′(sid,K2) in statej−1.
Additionally, Uj−1 updates H

(r)
j−1 = R

rj−1
j+1 in statej−1, and Uj+1 updates

H
(l)
j+1 = R

rj+1
j−1 in statej+1.

4.6 Update Phase

When a new time frame begins, a set of users Ui1 , . . . , Uin
(n ≤ N) updates

the session key SK shared by them in the Dist/Join/Leave phase at the past
time frame to a new session key SK ′. For simplicity, w.l.o.g., we suppose that
(Ui1 , . . . , Uin

) = (U1, . . . , Un).

(State Update at New Time Frame) If the session is the first session for
Ui at the time frame TF , then for the current time time S generates uski ←
Der(Params,msk,Ai) with attribute Ai = (Ui, time) and mki ← MGen,
computes CTi ← Encpki

(uski,mki). Then, S sends CTi to Ui, and Ui obtains
(uski,mki) ← Decski

(CTi) and updates (uski,mki) in statei.
(Information for Update) S generates K̃1 ∈R {0, 1}κ and K̃ ′

1 ∈R Kspaceκ,
and computes K1 = tPRF ′(K̃1, K̃

′
1, stS , st′S) and CT ′

i ← AEnc(Params, Pi,
K1) with access structure Pi := (ID = Ui) ∧ (time ∈ TF). Then, S sends
CT ′

i to Ui.
(Session Key Update) On receiving CT ′

i , Ui decrypts K1 ← ADecuski
(CT ′

i ,
Pi), and outputs the updated session key SK ′ = F ′′(sid,K1) ⊕ SK.

5 Complexity for Users

5.1 Computational Complexity

We consider dominant operations like modular exponentiations and operations
for public key crypto, and ignore other light-weight operations like XORs and
operations for secret key crypto.

224 K. Yoneyama et al.

In the Dist phase, on-line computations (i.e., from Round 1 to post compu-
tations) for a user are gri and gkihsi for Round 1, Rri

i−1 and Rri
i+1 for Round 2,

and gk1hs1 and the decryption of CT ′
i for the session key generation. In the Join

phase, maximum on-line computations for a user are gri and gkihsi for Round
1, Rri

i−1 and Rri
i+1 for Round 2, and gk1hs1 and the decryption of CT ′

i for the
session key generation. In the Leave phase, maximum on-line computations for
a user are gri and gkihsi for Round 1, Rri

i−1 for Round 2, and gk1hs1 and the
decryption of CT ′

i for the session key generation. In the Update phase, the on-line
computation for a user is the decryption of CT ′

i for the session key update.
Therefore, for all phases, computational complexity of users is constant for

the number of users.

5.2 Communication Complexity

In the Dist phase, sent and received information for a user in on-line (i.e., from
Round 1 to post computations) are (Ri, ci) and (sid,Ri−1, Ri+1) for Round 1,
and (ki, si, Ti, σi) and (c1, k′, T ′

i , T
′, CT ′

i , σ
′
i) for Round 2. In the Join phase,

maximum sent and received information for a user in on-line are (Ri, ci) and
(sid,Ri−1, Ri+1) for Round 1, and (ki, si, Ti, σi) and (c1, k′, T ′

i , T
′, CT ′

i , σ
′
i) for

Round 2. In the Leave phase, maximum sent and received information for a
user in on-line are (Ri, ci) and (sid,Ri−1) for Round 1, and (ki, si, Ti, σi) and
(cj−1, k

′, T ′
j+1, T

′, CT ′
j+1, σ

′
j+1) for Round 2. In the Leave phase, received infor-

mation for a user in on-line is CT ′
i for the session key update.

Therefore, for all phases, communication complexity of users is constant for
the number of users.

6 Security

Theorem 1. We assume that TCR satisfies the TCR property, tPRF and
tPRF ′ are twisted PRFs, F , F ′, F ′′ and F ′′′ are PRFs, (Gen, Enc, Dec) is a
CCA-secure PKE, (Setup,Der, AEnc, ADec) is a selective CCA-secure CP-
ABE, (MGen, Tag, Ver) is an UF-CMA MAC scheme and the DDH assump-
tion in G holds. Then, our scheme is secure in the DMKD model.

Here, we show a proof sketch. The proof can be divided four cases: (1) the
test session is in the Dist phase, (2) the test session is in the Join phase, (3) the
test session is in the Leave phase, and (4) the test session is in the Update phase.
For Case (1), (2) and (3), secrecy of the session key is guaranteed by secrecy
of K1. Thus, we use the game hopping proof technique [30], and, finally, K1 is
replaced with a random value. To prevent malicious behaviours of the adversary,
we show that the probability that messages in the test session are modified is
negligible thanks to the security of PKE and MAC, and the DDH assumption.
For Case (4), secrecy of the session key is guaranteed by secrecy of K2. Thus,
K2 is replaced with a random value similar to other cases. In this case, we rely
on the security of CP-ABE to prevent malicious behaviours of the adversary.

We show the proof of Theorem 1 in the full paper [29].

Multi-cast Key Distribution 225

References

1. Berjon, R., Leithead, T., Navara, E.D., O’Connor, E., Pfeiffer, S.: HTML5. In:
W3C Working Draft (2012)

2. Marshall, J.: Google chrome will begin blocking flash web ads. In: The Wall Street
Journal (2015)

3. Chesters, J.: Mozilla blocks flash, encourages HTML5 adoption. In: InfoQ (2015)
4. Bergkvist, A., Burnett, D.C., Jennings, C., Narayanan, A., Aboba, B.: WebRTC

1.0: real-time communication between browsers. In: InfoQ (2015)
5. Westerlund, M., Wenger, S.: RTP topologies, draft-ietf-avtcore-rtp-topologies-

update-10. In: IETF Draft (2015). https://tools.ietf.org/html/draft-ietf-avtcore-
rtp-topologies-update-10

6. Schulzrinne, H., Casner, S.L., Frederick, R., Jacobson, V.: RTP: a transport pro-
tocol for real-time applications. In: IEFT RFC 3550 (2003)

7. Fischl, J., Tschofenig, H., Rescorla, E.: Framework for establishing a secure real-
time transport protocol (SRTP), security context using datagram transport layer
security (DTLS). In: IEFT RFC 5763 (2010)

8. Rescorla, E.: WebRTC security architecture, draft-ietf-rtcweb-security-arch-12. In:
IETF Draft (2015). https://tools.ietf.org/html/draft-ietf-rtcweb-security-arch-12

9. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. Des. Codes Crypt. 76, 469–504
(2015)

10. Kurosawa, K., Furukawa, J.: 2-pass key exchange protocols from CPA-secure KEM.
In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 385–401. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-04852-9 20

11. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.: Provably authenticated
group Diffie-Hellman key exchange. In: Reiter, M.K., Samarati, P., (eds.) CCS
2001, Proceedings of the 8th ACM Conference on Computer and Communications
Security, Philadelphia, Pennsylvania, USA, 6–8 November 2001, pp. 255–264. ACM
(2001)

12. Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group Diffie-
Hellman key exchange — the dynamic case. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001). doi:10.1007/
3-540-45682-1 18

13. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic group Diffie-Hellman key
exchange under standard assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002). doi:10.1007/
3-540-46035-7 21

14. Kim, H.-J., Lee, S.-M., Lee, D.H.: Constant-round authenticated group key
exchange for dynamic groups. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol.
3329, pp. 245–259. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30539-2 18

15. Dutta, R., Barua, R.: Constant round dynamic group key agreement. In: Zhou,
J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 74–88.
Springer, Heidelberg (2005). doi:10.1007/11556992 6

16. Yang, G., Tan, C.H.: Dynamic group key exchange revisited. In: Heng, S.-H.,
Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS, vol. 6467, pp. 261–277.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17619-7 19

17. Manulis, M., Suzuki, K., Ustaoglu, B.: Modeling leakage of ephemeral secrets in
tripartite/group key exchange. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol.
5984, pp. 16–33. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14423-3 2

https://tools.ietf.org/html/draft-ietf-avtcore-rtp-topologies-update-10
https://tools.ietf.org/html/draft-ietf-avtcore-rtp-topologies-update-10
https://tools.ietf.org/html/draft-ietf-rtcweb-security-arch-12
http://dx.doi.org/10.1007/978-3-319-04852-9_20
http://dx.doi.org/10.1007/3-540-45682-1_18
http://dx.doi.org/10.1007/3-540-45682-1_18
http://dx.doi.org/10.1007/3-540-46035-7_21
http://dx.doi.org/10.1007/3-540-46035-7_21
http://dx.doi.org/10.1007/978-3-540-30539-2_18
http://dx.doi.org/10.1007/11556992_6
http://dx.doi.org/10.1007/978-3-642-17619-7_19
http://dx.doi.org/10.1007/978-3-642-14423-3_2

226 K. Yoneyama et al.

18. Suzuki, K., Yoneyama, K.: Exposure-resilient one-round tripartite key exchange
without random oracles. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 458–474. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38980-1 29

19. Caronni, G., Waldvogel, M., Sun, D., Plattner, B.: Efficient security for large and
dynamic multicast groups. In: Proceedings of 7th Workshop on Enabling Tech-
nologies (WETICE 1998), Infrastructure for Collaborative Enterprises, 17–19 June
1998, Palo Alto, CAUSA, pp. 376–383. IEEE Computer Society (1998)

20. Canetti, R., Garay, J.A., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
security: a taxonomy and some efficient constructions. In: Proceedings IEEE INFO-
COM 1999, The Conference on Computer Communications, Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies, The
Future Is Now, New York, NY, USA, 21–25 March 1999, pp. 708–716. IEEE (1999)

21. Waldvogel, M., Caronni, G., Sun, D., Weiler, N., Plattner, B.: The versakey frame-
work: versatile group key management. IEEE J. Sel. Areas Commun. 17, 1614–1631
(1999)

22. Sherman, A.T., McGrew, D.A.: Key establishment in large dynamic groups using
one-way function trees. IEEE Trans. Softw. Eng. 29, 444–458 (2003)

23. Lin, I., Tang, S., Wang, C.: Multicast key management without rekeying processes.
Comput. J. 53, 939–950 (2010)

24. Saravanan, K., Purusothaman, T.: Efficient star topology based multicast key man-
agement algorithm. J. Comput. Sci. 8(6), 951–956 (2012)

25. Mittal, N., Kumar, V.: An efficient and secure multicast key management scheme
based on star topology. Int. J. Comput. Sci. Inf. Technol. 5(3), 3777–3783 (2014)

26. Sun, H., He, B., Chen, C., Wu, T., Lin, C., Wang, H.: A provable authenticated
group key agreement protocol for mobile environment. Inf. Sci. 321, 224–237 (2015)

27. Micciancio, D., Panjwani, S.: Optimal communication complexity of generic mul-
ticast key distribution. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 153–170. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 10

28. Suzuki, K., Yoneyama, K.: Exposure-resilient one-round tripartite key exchange
without randomoracles. IEICE Trans. 97(A), 1345–1355 (2014)

29. Yoneyama, K., Yoshida, R., Kawahara, Y., Kobayashi, T., Fuji, H., Yamamoto, T.:
Multi-cast key distribution: scalable, dynamic and provably secure construction.
In: Cryptology ePrint Archive: 2016/833 (2016)

30. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. In:
Cryptology ePrint Archive: 2004/332 (2004)

http://dx.doi.org/10.1007/978-3-642-38980-1_29
http://dx.doi.org/10.1007/978-3-540-24676-3_10
http://dx.doi.org/10.1007/978-3-540-24676-3_10

One-Round Attribute-Based Key Exchange
in the Multi-party Setting

Yangguang Tian1(B), Guomin Yang1, Yi Mu1, Kaitai Liang2, and Yong Yu3

1 School of Computing and Information Technology,
University of Wollongong, Wollongong, NSW 2522, Australia

{ytian,gyang,ymu}@uow.edu.au
2 School of Computing, Mathematics and Digital Technology,
Manchester Metropolitan University, Manchester M1 5GD, UK

kaitailiang88@gmail.com
3 School of Computer Science, Shaanxi Normal University, Xi’an 710062, China

yyucd2012@gmail.com

Abstract. Attribute-based authenticated key exchange (AB-AKE) is a
useful primitive that allows a group of users to establish a shared secret
key and at the same time enables fine-grained access control. A straight-
forward approach to design an AB-AKE protocol is to extend a key
exchange protocol using attribute-based authentication technique. How-
ever, insider security is a challenge security issue for AB-AKE in the
multi-party setting and cannot be solved using the straightforward app-
roach. In addition, many existing key exchange protocols for the multi-
party setting (e.g., the well-known Burmester-Desmedt protocol) require
multiple broadcast rounds to complete the protocol. In this paper, we
propose a novel one-round attribute-based key exchange (OAKE) pro-
tocol in the multi-party setting. We define the formal security models,
including session key security and insider security, for OAKE, and prove
the security of the proposed protocol under some standard assumptions
in the random oracle model.

Keywords: Attribute-based cryptography · One-round key exchange ·
Multi-party setting · Insider security

1 Introduction

Authenticated key exchange (AKE) protocols are a central building block in
many network security standards such as IPSec, TLS/SSL, SSH, and so on.
AKE aims to share a common secret key among multiple users over an inse-
cure communication channel, such that the users can authenticate each other by
using the respective identities or public keys. AKE has been further explored in
the attribute-based context recently [16,26]. Attribute-based AKE (AB-AKE),
as a new general form of AKE, enables fine-grained access control between
authenticated users. The AB-AKE mechanism is significantly useful in many

c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 227–243, 2016.
DOI: 10.1007/978-3-319-47422-9 13

228 Y. Tian et al.

real-world applications, such as distributed collaborative systems [16]. In prac-
tice, sometimes it is necessary for users to communicate with each other based
on their role/responsibility. For instance, an individual user should be allowed
to establish a secure communication with another user if and only if the former’s
role/responsibility can satisfy the latter’s expectation.

The anonymity property naturally exists in attribute-based systems since
people with different attribute sets may all satisfy an access policy. This brings
a security issue for AB-AKE in the multi-party setting where it might be pos-
sible that a malicious authorized member can successfully impersonate other
authorized members (i.e., insider attacks). Specifically, a malicious user Alice
(attacker) attempts to impersonate an honest user Bob to establish a conversion
with another user, say Charlie, but the impersonated user Bob was not actually
involved in the particular conversion with Charlie. Such an attack is possible
due to the inherent anonymous property of attribute-based systems. Therefore,
achieving insider security is a non-trivial task for AB-AKE under the multi-party
setting. Although there are some existing works on AB-AKE [16,26], they didn’t
consider the issue of insider attacks in the multi-party setting.

In order to achieve the insider security for AB-AKE in the multi-party setting,
in this paper, we propose a novel hybrid signcryption (HSC) scheme to address
the issue, where the hybrid signcryption scheme is built on top of a combina-
tion of key-policy attribute-based encryption (KP-ABE) [17] and identity-based
signature (IBS) [14,19]. In addition to insider security and fine-grained authen-
tication for key exchange, it is also desirable to share a secret key with less com-
munication rounds. Many existing multi-party (or group) AKE protocols, such
as the well-known Burmester-Desmedt protocol [12], require mutiple broadcast
rounds in order to complete the protocol. In this paper we tackle this problem
by making use of the (generic) multilinear maps [10] to establish a session key
with only one broadcast round for a group of users.

1.1 This Work

In this paper, we introduce the notion of one-round attribute-based broadcast
key exchange in the multi-party setting, allowing all users to agree on a common
session key in only one broadcast round. Our contributions are as follows:

1. We present the formal security definitions for OAKE. In particular, we extend
the model of [26] to define session key security and propose a new insider
security model to capture malicious insider attacks.

2. We introduce a new primitive named hybrid signcryption (HSC), and propose
a concrete scheme that is built on top of an identity-based signature scheme
and Goyal et al.’s [17] key-policy attribute-based encryption scheme. We also
prove that the proposed HSC scheme can achieve existential unforgeability in
the random oracle model.

3. We present a one-round AB-AKE protocol in the multi-party setting based on
our proposed HSC scheme and the generic multilinear maps [10]. We further
prove that the proposed protocol can achieve both session key security and
insider security.

One-Round Attribute-Based Key Exchange in the Multi-party Setting 229

1.2 Related Work

Key Exchange. Burmester and Desmedt [12] introduced several key exchange
protocols in the multi-party setting, including star-based, tree-based, broadcast-
based and cyclic-based protocols. Later, a few generic transformations [8,20,
21] were proposed to convert passive-secure group key exchange protocols into
active-secure ones. Bellare and Rogaway [5] introduced the first complexity-
theoretic security model for key exchange under the symmetric-key setting. The
model was later extended and enhanced under different contexts [3,4,6]. Canetti
and Krawczyk [13] later refined the previous models and proposed a new model,
known as the CK model, which is widely used in the analysis of many well-known
key exchange protocols. Some variants [22,23] of CK model were also proposed to
allow an adversary to obtain either long term secret key or ephemeral secret key
of the challenge session. In [26] an extension of the eCK (extended CK) model
proposed in [23] was introduced for the attribute-based setting. It strengthens
the session key security model by allowing adversary to gain access to the master
secret key.

Signcryption. Zheng [27] introduced the concept of signcryption that provides
an efficient way of achieving both message confidentiality and authenticity. The
security of the scheme was later proven in [2]. An et al. [1] formally analyzed
three generic constructions of signcryption in the public key setting, namely
“encrypt then sign” (EtS), “sign then encrypt” (StE), and “commit then encrypt
and sign” (CtE&S). Meanwhile, Haber and Pinkas [18] proposed a combined
public key scheme under the joint security model, where encryption schemes and
signature schemes shared the common public parameters and secret key. Boyen
[11] introduced an efficient identity-based signcryption (IBSC) scheme based on
the Boneh–Franklin IBE [9] scheme and the Cha–Cheon IBS [14] scheme.

Attribute-based Cryptography. For achieving fine-grained access control over the
encrypted data, Sahai and Waters [25] proposed the fuzzy identity-based encryp-
tion, in which users must match at least a certain threshold of attributes before
data decryption. Later, two types of attribute-based encryption (ABE) systems
were proposed: Key-policy ABE [17] and Ciphertext-policy ABE [7]. In KP-ABE,
a ciphertext is labeled with an attribute set, while a secret key is associated with
the access structure specifying which ciphertext a user is able to decrypt. The
roles of attribute set and access structure are swapped in the CP-ABE context.
Inspired by the attribute-based cryptography, several attribute-based signcryp-
tion schemes [15,24] have been proposed in the literature where both signing
and encryption functions are attribute-based. We should note that such kind of
attribute-based signcryption schemes are not suitable for our purpose since they
cannot address the insider attacks.

2 Security Models

In this section, we present the security models for OAKE. As mentioned in
the introduction, a secure OAKE protocol in the multi-party setting should

230 Y. Tian et al.

achieve both session key security and insider security. Below we present the
corresponding security models to capture the above requirements. Specifically,
the session key security model is a modified version of Yoneyama’s model [26]
which is an extension of eCK model [23] in the attribute-based setting.

States. We define a system user set U with n users, i.e. |U| = n. We say an
oracle Πi

U may be used or unused. The oracle is considered as unused if it
has never been initialized. Each unused oracle Πi

U can be initialized with a
secret key x. The oracle is initialized as soon as it becomes part of a group.
After the initialization the oracle is marked as used and turns into the stand-by
state where it waits for an invocation to execute a protocol operation. Upon
receiving such invocation the oracle Πi

U learns its partner id pidi
U and turns into

a processing state where it sends, receives and processes messages according to
the description of the protocol. During that stage, the internal state information
statei

U is maintained by the oracle. The oracle Πi
U remains in the processing state

until it collects enough information to compute the session key ki
U . As soon as

ki
U is computed Πi

U accepts and terminates the protocol execution meaning that
it would not send or receive further messages. If the protocol execution fails then
Πi

U terminates without having accepted.

Partnering. We denote the i-th session established by an user U by Πi
U , the

attribute set of the user by δU , and the access structure of the user by ΛU . Let
the partner identifier pidi

U includes the identities of participating users (including
U) in the i-th session established by the user U with the condition that ∀Uj ∈
pidi

U , ΛU (δUj
) = 1, where δUj

denotes the attribute set of the user Uj , and
ΛU (δUj

) = 1 means that the attribute set δUj
is satisfied by the access structure

ΛU . In other words, pidi
U is a collection of recognized participants by the instance

oracle Πi
U . We also define sidi

U as the unique session identifier belonging to the
session i established by the user U . Specifically, sidi

U = (pidi
U , {mj}n

j=1), where
mj ∈ {0, 1}∗ is the message transcript among users in pidi

U . We say two instance
oracles Πi

U and Πj
U ′ are partners if and only if sidi

U = sidj
U ′ .

2.1 Session Key Security

We define the session key security model for key-policy AB-AKE protocols, in
which each user obtains a secret key associating with his/her access structure
from the trusted authority (TA), and establishes a session key depending on the
partners’ attribute sets. The model is defined via a game between a probabilistic
polynomial time (PPT) adversary A and a simulator S. A is an active attacker
with full control of the communication channel among all the users.

– Setup: S first generates master public/secret key pair (K0, x0) for the TA and
long term secret keys {xi}n

i=1 for n users by running the corresponding key
generation algorithms, where xi denotes the secret key of user i, such that xi

(i �= 0) is corresponding to the access structure Λi and identity IDi of user i.
S also tosses a random coin b which will be used later in the game.

– Training:A can make the following queries in arbitrary sequence to simulator S.

One-Round Attribute-Based Key Exchange in the Multi-party Setting 231

• Establish: A is allowed to register a user U ′ with an access structure
Λ′. If a party is registered by the A, then we call the user i dishonest ;
Otherwise, it is honest.

• Send: If A issues a send query in the form of (U, i,m) to simulate a
network message for the i-th session of user U , then S would simulate the
reaction of instance oracle Πi

U upon receiving message m, and returns
to A the response that Πi

U would generate; If A issues a send query in
the form of (U,′ start′, δU), then S creates a new instance oracle Πi

U and
returns to A the first protocol message under the attribute set δU .

• Session key reveal: A can issue session key reveal query to an accepted
instance oracle Πi

U . If the session is accepted, then S will return the
session key to A; Otherwise, a special symbol ‘⊥’ is returned to A.

• Ephemeral secret key reveal: If A issues an ephemeral secret key reveal
query to (possibly unaccepted) instance oracle Πi

U , then S will return
all ephemeral secret values contained in Πi

U at the moment the query is
asked.

• Long term secret key reveal: If A issues a long term secret key reveal (or
corrupt, for short) query to user i, then S will return the long term secret
key xi to A.

• Master secret key reveal: If A issues a master secret key reveal query to
TA, then S will return the master secret key x0 to A.

• Test: This query can only be made to an accepted and fresh (as defined
below) session i of a user U . Then S does the following:

∗ If the coin b = 1, S returns the real session key to the adversary;
∗ Otherwise, a random session key is drawn from the session key space

and returned to the adversary.
It is also worth noting that A can continue to issue other queries after
the Test query. However, the test session must maintain fresh throughout
the entire game.

Finally, A outputs b′ as its guess for b. If b′ = b, then the simulator outputs 1;
Otherwise, the simulator outputs 0.

Freshness. We say an accepted instance oracle Πi
U is fresh if A does not perform

any of the following actions during the game:

– A issues establish query, where the new user U ′ ∈ pidi
U ;

– A issues a session key reveal query to Πi
U or its accepted partnered instance

oracle Πj
U ′ (if the latter exists);

– A issues both long term secret key reveal query to U ′ s.t. U ′ ∈ pidi
U and

ephemeral secret key reveal query for an instance Πj
U ′ partnered with Πi

U .
– A issues long term secret key reveal query to user U ′ s.t. U ′ ∈ pidi

U prior to the
acceptance of instance Πi

U and there exists no instance oracle Πj
U ′ partnered

with Πi
U .

Note that the master key reveal query is equivalent to the long term secret key
reveal to all users in U .

232 Y. Tian et al.

We define the advantage of an adversary A in the above game as

AdvA(k) = Pr[S → 1] − 1/2.

Definition 1. We say an OAKE protocol has session key security if for any
probabilistic polynomial-time (PPT) A, AdvA(k) is a negligible function of the
security parameter k.

2.2 Insider Security

Informally, a PPT adversary A attempts to impersonate one honest user to
communicate with other honest users, whereas the impersonated honest user is
not actually involved in that conversion. We define the insider security game
between a PPT insider adversary A and a simulator S as follows.

– Training: A is allowed to issue establish, send, ephemeral secret key reveal,
at most n-1 long term secret key reveal, and session key reveal queries to the
simulator. Let U ′ denotes the set of uncorrupted users (the established users
are excluded from U ′). At the end of training stage, A outputs (U,U ′, s), such
that U ∈ U ′, i.e., U denotes an impersonated but honest user who is not
corrupted, and U ′ ∈ U can be a corrupted user who has a used oracle Πs

U ′ .
Note that A is not allowed to issue the master key reveal query, otherwise all
users are corrupted.

– Attack: A wins the game if all of the following conditions hold.
• Πs

U ′ accepted, it implies sids
U ′ exist;

• U ∈ pids
U ′ , it implies ΛU ′(δU) = 1;

• mU ∈ sids
U ′ , but there exists no Πi

U which has sent mU (mU denotes the
message transcript from the user U).

We define the advantage of an adversary A in the above game as

AdvA(k) = Pr[A wins].

Definition 2. We say a OAKE protocol has insider security if for any proba-
bilistic polynomial-time (PPT) A, AdvA(k) is an negligible function of the secu-
rity parameter k.

3 OAKE Protocol

In this section, we firstly review the preliminaries and the building blocks that
will be used in the proposed hybrid signcryption scheme and the OAKE protocol,
and then introduce our constructions.

One-Round Attribute-Based Key Exchange in the Multi-party Setting 233

3.1 Preliminaries

(Generic) Multilinear Maps [10]. It assumes the existence of a group gener-
ator g, which takes a security parameter k and the number of levels K as input,
outputs a sequence of groups (G1, · · · ,GK) with the corresponding canonical
generators (g1, · · · , gK), each of them with large prime order q. The multilinear
maps ê : Gi × Gj → Gi+j |i, j ≥ 1; i + j ≤ K satisfies the following relation:

ê(gαi
i , g

αj

j) = g
αi·αj

i+j : ∀αi, αj ∈R Zq, i + j ≤ K

Bilinear Maps. The bilinear maps (i.e., K = 2) e : G × G → GT has the
following properties:

1. Bilinearity: e(gαi , gαj) = e(g, g)αi·αj : ∀αi, αj ∈ Zq, g ∈ G.
2. Non-degeneracy: e(g, g) �= 1.
3. Computable: There exists an efficient algorithm for computing the bilinear

maps.

Note that the maps e is symmetric since e(gαi , gαj) = e(g, g)αi·αj = e(gαj , gαi).

K-Multilinear Decisional Diffie-Hellman (K-MDDH) Assumption [10]:
Given g1, g

c1
1 , · · · , gcK

1 where c1, · · · , cK ∈R Zq, we define the advantage of the
adversary in solving the K-MDDH problem as

AdvA(k) = Pr[b ∈ {0, 1},A(gc1
1 , · · · , gcK

1 , Tb = g
∏K

i=1 ci
K−1 , T1−b ∈ GK−1) = b].

The K-MDDH assumption holds if for any PPT A, AdvA(k) is a negligible
function of the security parameter k.

Computational Diffie-Hellman (CDH) Assumption [22]: Given g, ga, gb ∈
G where a, b ∈R Zq, we define the advantage of the adversary in solving the CDH
problem as

AdvCDH
A (k) = Pr[A(g, ga, gb) = gab ∈ G].

The CDH assumption holds if for any PPT A, AdvA(k) is a negligible function
of the security parameter k.

3.2 Building Blocks

Key-Policy Attribute-based Encryption Access Structure [17]. Let {P1,
· · · , Pn} be a set of parties. A collection Λ ⊆ 2{P1,··· ,Pn} is monotone if ∀B,C :
if B ∈ Λ and B ⊆ C then C ∈ Λ. An access structure (i.e., monotone
access structure) is a collection of non-empty subsets of {P1, · · · , Pn} (i.e.,
Λ ⊆ 2{P1,··· ,Pn}\{φ}). The sets in Λ are called the authorized sets, and the
sets not in Λ are called the unauthorized sets.

Access Tree Λ [17]. Let Λ be a tree representing an access structure. Each
non-leaf node of the tree represents a threshold gate, described by its children

234 Y. Tian et al.

and a threshold value. If numi is the number of children of a node x and kx is its
threshold value, then 1 ≤ kx ≤ numx. If kx = 1, it is an OR gate; If kx = numx,
it is an AND gate. Each leaf node x of the tree is described by an attribute and
a threshold value kx = 1.

We define the parent of the node x in the tree by parent(x), the attribute
associates with the leaf node x in the tree by att(x), the ordering between the
children of every node x in the tree by index(x) (numbered from 1 to num).

Satisfying An Access Tree. Let Λ be an access tree with root R. The Λx

denotes the subtree of Λ rooted at the node x (e.g., Λ = ΛR). If a set of attributes
δ satisfies the access tree Λx, we denote it as Λx(δ) = 1. We compute Λx(δ) as
follows: If x is a leaf node, then Λx(δ) returns 1 iff att(x) ∈ δ; If x is a non-leaf
node, evaluate Λx′(δ) for all children x′ of node x. Λx(δ) returns 1 iff at least kx

children return 1.

Key-Policy Attribute-Based Encryption Scheme: It consists of four algo-
rithms [17]: KP-ABE=(Setup, KeyGen, Encrypt, Decrypt).

– Setup: The algorithm takes the security parameter k as input, outputs the
master public parameters mpk and the master secret key msk.

– KeyGen: The algorithm takes the master secret key msk and an access struc-
ture Λ as input, outputs a secret key sk.

– Encrypt: The algorithm takes the master public parameters mpk, a message
M and a set of attributes δ as input, outputs a ciphertext C. The C implicitly
contains δ.

– Decrypt: The algorithm takes the master public parameters mpk, a ciphertext
C and the secret key sk as input, outputs the message M if and only if the
attribute set δ satisfies the access structure Λ.

Identity-Based Signature. An identity-based signature (IBS) scheme [14,19]
consists of four algorithms: IBS=(Setup, KeyGen, Sign, Verify).

– Setup: The algorithm takes the security parameter k as input, outputs the
master public parameters mpk and the master secret key msk.

– KeyGen: The algorithm takes the master secret key msk and an identity ID
as input, outputs a secret signing key sk.

– Sign: The algorithm takes a message M and the signing key sk as input,
outputs a signature σ on the message M .

– Verify: The algorithm takes the signature σ, the message M and the identity
ID as input, outputs 1 if σ is valid on M , otherwise reject.

Hybrid Signcryption. A hybrid signcryption (HSC) scheme consists of four
algorithms: HSC=(Setup, KeyGen, Sigcrypt, Unsigncrypt).

– Setup: The algorithm takes the security parameter k as input, and outputs
the master key pair (mpk,msk).

One-Round Attribute-Based Key Exchange in the Multi-party Setting 235

– KeyGen: The algorithm takes an identity ID, an access structure Λ and the
master secret key msk as input, and outputs the decryption/signing key pair
(dk, sk), where dk is corresponding to Λ and sk is corresponding to ID.

– Signcrypt: The randomized algorithm takes the master public key mpk, a mes-
sage M , a sender’s identity ID, the signing key sk and an attribute set δ as
input, and outputs a signcryption CT .

– Unsigncrypt: The deterministic algorithm takes the master public key mpk, a
signcryption CT , the decryption key dk as input, and outputs the message M
and sender’s identity ID if CT is valid, otherwise it outputs reject.

We define an unforgeability game between an insider adversary A and a simulator
S in the multiple party setting, which proceeds as follows:

– Setup: S runs (mpk,msk) ← Setup(1k), where k is the security parameter,
returns mpk to A.

– Training: A is allowed to issue Signcrypt, Unsigncrypt and KeyGen queries. Note
that S will return the secret key pair (dk, sk) to A when issuing the KeyGen
query.

– Forgery: A outputs a signcryption CT ∗ and an access structure Λ∗.
– Outcome: A wins if all of the following conditions hold.

• Unsigncrypt(mpk,CT ∗, dk∗) = (M∗, ID∗) where dk∗ denotes the decryp-
tion key corresponding to Λ∗;

• no KeyGen query was made on ID∗;
• no Signcrypt query was made on M∗ and ID∗.

We define the advantage of the adversary as

AdvA(k) = Pr[A wins].

Definition 3. We say that the HSC scheme is existentially unforgeable under
chosen message attacks (EUF-CMA) if for any PPT A, AdvA(k) is a negligible
function of the security parameter k.

3.3 A Novel Hybrid Signcryption Scheme

We construct a hybrid signcryption scheme based on the KP-ABE scheme pro-
posed in [17]. We define the Lagrange coefficient Δi,N for i ∈ Zq and a set, N ,

of elements in Zq: Δi,N (x) =
∏j �=i

i∈N

x − j

i − j
. The data will be signcrypted under

a set δ of n elements of Zq. The proposed hybrid signcryption scheme works as
follows:

– Setup: It takes the security parameter k as input, outputs the master public
key mpk = (g, T1 = gt1 , · · · , Tn+1 = gtn+1 , gα, gβ , e(g, h)α, h ∈R G) and the
master secret key msk = (t1, · · · , tn+1, α, β ∈R Zq). It also generates hash
functions H1 : {0, 1}∗ → G, H2 : G1 → G and chooses a pseudo-random gen-
erator G. We let N be the set {1, 2, · · · n + 1} and denote the bilinear pairing
e : G × G → GT . We define a function T as T (X) = hXn · ∏n+1

i=1 ·TΔi,N (X)
i .

236 Y. Tian et al.

– KeyGen: It takes the identity ID ∈ {0, 1}∗, the access tree Λ as input, outputs
the signing key sk = H1(ID)β and the decryption key dk.

1. It chooses a polynomial qx for each node x (including the leaf nodes) in
the tree Λ. These polynomials are chosen in the following way in a top-
down manner, starting from the root node R. For each node x in the tree,
set the degree dx of the polynomial qx to be one less than the threshold
value kx of that node (i.e., dx = kx − 1). Starting with the root note R,
the algorithm will set qR(0) = α. Then it chooses dR other points of the
polynomial qR randomly to define it completely. For other nodes x, it
sets qx(0) = qparent(x)(index(x)) and chooses dx other points randomly
to completely define qx. We define L as the set of leaf nodes in Λ, and
proceed as follows:

2. ∀l ∈ L : Dl = hqx(0) · T (i)rl , Rl = grl , where i = att(l) and rl ∈R Zq is
corresponding to leaf node l in Λ. Set dk = {Dl, Rl}l∈L.

– Signcrypt: It takes a message m ∈ G1 and a set of attributes δ as input, then
1. Computes Ĉ = (m‖ID) ⊕ G(e(g, h)α·s), C = gs, {Ci = T (i)s}i∈δ, where

s ∈R Zq;
2. Computes S = sk · H2(m)s;
3. Outputs the signcryption: CT = {δ, Ĉ, C, {Ci}i∈δ, S}.

– Unsigncrypt:

1. We define a recursive algorithm DecryptNode(CT, dk, x), such that dk is
associated with an access tree Λ and a node x from Λ.

• If x is a leaf node, we let i = att(x).
∗ If i ∈ δ, compute

DecryptNode(CT, dk, x) =
e(Dx, C)
e(Rx, Ci)

=
e(hqx(0) · T (i)rx , gs)

e(grx , T (i)s)

=
e(hqx(0), gs) · e(T (i)rx , gs)

e(grx , T (i)s)

= e(g, h)s·qx(0);

∗ If i /∈ δ, abort.
• If x is a non-leaf node, for all nodes z, which are children of x, call
DecryptNode(CT, dk, z) and store the output as Cz. Let Sx be an
arbitrary kx-sized set of child nodes z such that Cz �=⊥. If no such set
exists, the node is not satisfied and the algorithm aborts. Otherwise,
compute:

One-Round Attribute-Based Key Exchange in the Multi-party Setting 237

Cx =
∏

z∈Sx

(e(g, h)s·qz(0))Δi,S′
x
(0)

=
∏

z∈Sx

(e(g, h)s·qparent(z)(index(z)))Δi,S′
x
(0)

=
∏

z∈Sx

e(g, h)s·qx(i)·Δi,S′
x
(0)

= e(g, h)s·qx(0).

Note that i = index(z), S′
x = {index(z) : z ∈ Sx}, and the computation

Δi,S′
x
(0) is computed via the polynomial interpolation according to access

tree Λ.
2. If the attribute set associated with the ciphertext satisfies the tree Λ,

we get e(g, h)s·qR(0) = e(g, h)α·s, and next compute (m‖ID) = Ĉ ⊕
G(e(g, h)α·s);

3. If e(S, g) = e(H1(ID), gβ) · e(H2(m), C), it returns m; Otherwise, reject.

Lemma 1. The proposed HSC scheme achieves EUF-CMA security under the
CDH assumption.

Proof. Let SCDH denotes a Computational Diffie-Hellman problem solver, who
is given g, ga, gb and aims to find gab. Let A denotes a forger against the proposed
HSC scheme. SCDH plays the EUF-CMA security game with A as follows.

– Setup Stage: Let K denotes the maximum number of users that will occur in
the game. SCDH randomly selects two indices i and j and guesses that the
Forge event will happen with regard to user i and the j-th query (denote
it by m∗) to the random oracle H2. SCDH further sets gβ = ga, and gen-
erates master secret/public keys (msk = (α, t1, · · · , tK+1),mpk = (T1 =
gt1 , · · · , TK+1 = gtK+1 , gα, e(g, h)α, h = gθ) as in the real scheme. SCDH

finally sends mpk to A. Note that θ ∈R Zq is chosen by SCDH .
– SCDH answers F ’s queries as follows.

• If A issues IDi to random oracle H1, then SCDH chooses bi ∈R Zq and
returns gb · gbi as the public key of user i; Otherwise, SCDH chooses
bj ∈R Zq returns the value gbj to F .

• If A queries the random oracle H2 with regard to the message m∗, then
SCDH chooses ci ∈R Zq and returns gci as the response to H2(m∗). If A
queries the random oracle H2 with regard to other messages (e.g., mi),
then SCDH chooses ci ∈R Zq and returns gci−a as the response.

• If A issues a KeyGen query for the user i, abort. If A issues a KeyGen
query of a user IDj (whereby j �= i), SCDH returns the value ga·bj as
the signing key to A, and further simulates the decryption key exactly
same as in the algorithm KeyGen. A is given both the signing key and the
decryption key of the user j.

238 Y. Tian et al.

• SCDH simulates the Signcrypt oracle for the user i as follows. Firstly,
SCDH chooses ki ∈R Zq, generates Ĉ = (mi‖IDi)⊕G(e(g, h)α·(b+ki)), C =
gb+ki , Si = gb·ci · ga·(bi−ki) · gci·ki , where the randomness s is implicitly
sets as b + ki. Secondly, SCDH generates {Ci}i∈δ = {T (i)b+ki}i∈δ using
the knowledge of ti and θ. Finally, SCDH returns the signcryption CT =
{δ, Ĉ, C, {Ci}i∈δ}, Si} to A. One can verify that the signcryption is valid
since gci−a = H2(mi) and e(Si, g) = e(gb · gbi , ga) · e(gci−a, gb+ki).
Note that if A issues the Signcrypt query for other users, e.g., user l (l �= i),
SCDH can simulate it perfectly since the simulator knows the signing key.

• If A issues an Unsigncrypt query, SCDH answers the query as usual since
SCDH has the knowledge of α.

– If A successfully forges a signcryption CT ∗ including a valid forgery C∗ =
gs∗

, S∗ = g(b+bi)·a · H2(m∗)s∗
(notice that the randomness s∗ is chosen by A)

satisfying the validity check, SCDH can compute ga·b =
S∗

C∗·ci · ga·bi (ci is

known to SCDH who programmed the random oracle gci = H2(m∗)) as the
solution of the Computational Diffie-Hellman problem.

Probability analysis: Let qhi
denotes the number of queries that F asks to the

random oracles Hi, i = 1, 2. If SCDH guesses the challenge user i and challenge
message correctly, then the simulation is perfect. Therefore we have

Pr[Forge] ≤ K · qh2 · AdvCDH
S (k).

3.4 Our OAKE Protocol

Now we present our proposed one-round authenticated key exchange protocol in
the multiple party setting. It works as follows:

– Setup: TA takes the security parameter k and the number of users K as input,
outputs the master public key mpk = (T1 = gt1 , · · · , Tn+1 = gtn+1 , gα, gβ ,
e(g, h)α, {G,G1, · · · ,GK}, {g, g1, · · · , gK}, h ∈R G) and the master secret key
msk = (t1, · · · , tn+1, α, β ∈R Zq). In addition, let ê : Gi ×Gj → Gi+j denotes
the K-linear maps and e : G × G → GT denotes the bilinear maps. TA
also generates three hash functions H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → Zq, H3 :
{0, 1}∗ → G. We let N be the set {1, 2, · · · n + 1} and define a function T as
T (X) = hXn · ∏n+1

i=1 ·TΔi,N (X)
i .

– KeyGen: Run the KeyGen algorithm described in the HSC scheme.
– KeyExchange: User i performs the following steps.

1. Choose the ephemeral secret key ri ∈R Zq, computes xi = H2(ri‖dki‖ski)
and mi = gxi

1 ;
2. Run the Signcrypt algorithm described in the HSC scheme, but the algo-

rithm sets the randomness as xi;
3. Compute Si = sk · H3(mi||tsi)xi , where tsi ∈R Zq is the current time-

stamp generated by user i;
4. Broadcast the signcryption: CT = {tsi, δi, Ĉ, C, {Ci}i∈δ, Si}.

One-Round Attribute-Based Key Exchange in the Multi-party Setting 239

– SharedKey: After receiving the ciphertext CTj = {tsj , δj , Ĉ, C, {Cj}j∈δ, Sj}
from user j, user i does the following operations.
1. Check the time-stamp: If |tsi − tsj | > � (tsi is the current time-stamp

generated by user i and � denotes the time window), then reject;
2. Run the Unsigncrypt algorithm described in the HSC scheme, then get

the message mj = g
xj

1 and IDj , and verify: If e(Sj , g) = e(H1(IDj), gβ) ·
e(H3(mj ||tsj), C), it returns mj ; Otherwise, it rejects the session;

3. Compute the session key: SKi = ê(gx1
1 , · · · , g

xi−1
1 , g

xi+1
1 , · · · , gxK

1)xi =

g
∏K

j=1 xj

K−1 .

Design Rational. The proposed Hybrid Signcrypiton scheme has been used in
the OAKE protocol for preventing the insider attacks in the multi-party setting.
In addition, the Hybrid Signcryption scheme also ensures the user privacy in the
proposed OAKE protocol. More details will be given in the full version of the
paper.

4 Security Analysis

Theorem 1. The proposed OAKE protocol achieves session key security
(Definition 1) if the K-MDDH assumption hold in the underlying group GK−1,
the proposed signcryption scheme HSC is EUF-CMA secure.

Proof. We define a sequence of games Gi, i = 0, · · · , 3 and let AdvOAKE
i denotes

the advantage of the adversary in game Gi. Assume that A activates at most m
sessions in each game.

– G0 This is original game GameOAKE
A for session key security.

– G1 This game is identical to game G0 except that S will output a random bit
if Forge event happens where A makes a send query in the form of CTi, such
that Si is a valid signature of user i who is not corrupted (i.e., no long term
key reveal query to user i or master secret key reveal query) when the send
query is made, and Si is not previously generated by the simulator. Therefore
we have: ∣

∣AdvOAKE
0 − AdvOAKE

1

∣
∣ ≤ Pr[Forge] (1)

Lemma 2. The Forge event happens only with a negligible probability when our
proposed signcryption scheme HSC is EUF-CMA secure.

Let F denotes a forger against signcryption scheme HSC with EUF-CMA secu-
rity, who has access to the Signcrypt oracle, the Unsigncrypt oracle and the KeyGen
oracle, and aims to forge a valid signature S∗. F simulates the game for A as
follows.

• Setup Stage: F sets up the game for A by creating K users with the corre-
sponding identity set

∏K
i=1{IDi}. F randomly selects an index i and guesses

that the Forge event will happen with regard to user i. F then sends the

240 Y. Tian et al.

master public keys and the identity set to A. F obtains all the user secret
keys except the secret key of IDi via the KeyGen oracle. It is obvious that F
can answer all the queries made by A except user i. Below we mainly focus
on the simulation of user i only.

• F answers A’s queries as follows.
∗ If A issues a send query in the form of a signcryption CT to user i, then

F will perform the simulation as follows: F firstly can get the message gx
1

and the identity ID after submitting the received signcryption CT to his
Unsigncrypt oracle. If A makes a send query in the form of an activation
request, F randomly chooses ri ∈R Zq and programs the H2 oracle to get
xi, computes the message gxi

1 and generates the signcryption CTi using
his Signcrypt oracle on the message gxi

1 ||IDi and returns CTi to A.
∗ If A issues an ephemeral secret key reveal query to user i, then F returns

ri ∈R Zq to A.
∗ If A issues long term secret key reveal query to user i or master secret

key reveal query, then F aborts.
∗ F answers the session key reveal query and test query by using the session

key it has derived during the protocol simulation described above.
• If a Forge event with respect to user i occurs, then F outputs whatever A

outputs as its own forgery; Otherwise, F aborts the game. Therefore we have:

Pr[Forge] ≤ K · AdvHSC
F (k) (2)

– G2: This game is identical to game G1 except the following difference: S ran-
domly chooses g ∈ [1,m] as a guess for the index of the test session. S will
output a random bit if A’s test query does not occurred in the g-th session
(denote this event by Guess). Therefore we have

AdvOAKE
1 = m · AdvOAKE

2 (3)

– G3 This game is identical to game G2 except that in the test session, we

replace the session key SK = g
∏K

j=1 xj

K−1 by a random value R ∈R GK−1. Below
we show that the difference between G2 and G3 is negligible under the K-
MDDH assumption is hold in the group GK−1.
Let SK−MDDH denotes a distinguisher against the K-MDDH assumption, who

is given (gc1
1 , · · · , gcK

1) and aims to distinguish the value T = g
∏K

j=1 cj
K−1 from a

random value R ∈R GK−1. SK−MDDH simulates the game for A as follows.
• Setup Stage: SK−MDDH sets up the game for A by creating K users.

SK−MDDH then generates the master public/secret key pair (mpk,msk)
and the secret keys {(dki, ski)} for all the users, where the dki is corre-
sponding to an access tree Λi and ski is corresponding to the identity IDi

of user i. SK−MDDH then sends the master public key and the identity
set to A.

• It is easy to see that all queries to a user can be simulated perfectly using
the user secret keys. In the g-th (i.e., test) session, SK−MDDH sets m1 =

One-Round Attribute-Based Key Exchange in the Multi-party Setting 241

gc1
1 , · · · ,mK = gcK

1 for all the users which implicitly sets H(ri‖dki‖ski) =
ci where ri denotes the ephemeral key of user i in the g-th session. Since
A is not allowed to ask both ephemeral and long term secret keys of a
user in the test session, the simulation is perfect.

• SK−MDDH answers the Test query by using its own challenge as the
session key of the g-th session.

• If A wins the game, then SK−MDDH outputs that the challenge is g
∏K

j=1 cj
K−1 ;

Otherwise SK−MDDH outputs that the challenge is a random element.

If the challenge of SK−MDDH is g
∏K

j=1 cj
K−1 , then the simulation is consistent

with G2; Otherwise, the simulation is consistent with G3. If the advantage
of A is significantly different in G2 and G3, then SK−MDDH can break the
K-MDDH assumption. Therefore we have

∣
∣AdvOAKE

2 − AdvOAKE
3

∣
∣ ≤ AdvK−MDDH

SK−MDDH
(k) (4)

It is easy to see that in game G3, A has no advantage, i.e.,

AdvOAKE
3 = 0 (5)

Combining the above results together, we have

AdvOAKE
A (k) ≤ K · AdvHSC

F (k) + m · AdvK−MDDH
SK−MDDH

(k)

Theorem 2. The proposed OAKE protocol achieves insider security (Defini-
tion 2) if the proposed signcryption scheme HSC is EUF-CMA secure.

The proof of insider security can be obtained from the proof of Lemma2 since
if an attacker can break the insider security with a non-negligible probability,
then a Forge event would occur also with a non-negligible probability. We omit
the details of the proof here.

5 Conclusion

In this paper, we proposed a one-round attribute-based key exchange (OAKE)
protocol in the multi-party setting. In order to address the insider security issue,
we proposed a new primitive named hybrid signcryption which is a combination
of attribute-based encryption and identity-based signature. We used this new
primitive and the multilinear maps as major building block in constructing our
OAKE protocol. We also defined the formal security models for session key
security and insider security, and proved the security of the proposed OAKE
protocol in the random oracle model.

References

1. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002). doi:10.1007/3-540-46035-7 6

http://dx.doi.org/10.1007/3-540-46035-7_6

242 Y. Tian et al.

2. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption.
J. Cryptology 20(2), 203–235 (2007)

3. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols (extended abstract). In: Pro-
ceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,
pp. 419–428 (1998)

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 11

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). doi:10.1007/3-540-48329-2 21

6. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party
case. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory
of Computing, pp. 57–66 (1995)

7. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (S&P 2007), pp. 321–334
(2007)

8. Bohli, J., Vasco, M.I.G., Steinwandt, R.: Secure group key establishment revisited.
Int. J. Inf. Secur. 6(4), 243–254 (2007)

9. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

10. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 15

11. Boyen, X.: Multipurpose identity-based signcryption. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 383–399. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45146-4 23

12. Burmester, M., Desmedt, Y.: Efficient and secure conference-key distribution. In:
Security Protocols, International Workshop, Cambridge, United Kingdom, 10–12
April 1996, p. 119–129 (1996)

13. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6 28

14. Cha, J.C., Cheon, J.H.: An identity-based signature from gap diffie-hellman groups.
In: IACR Cryptology ePrint Archive 2002, vol. 18 (2002)

15. Gagné, M., Narayan, S., Safavi-Naini, R.: Threshold attribute-based signcryption.
In: Security and Cryptography for Networks, pp. 154–171 (2010)

16. Gorantla, M.C., Boyd, C., González Nieto, J.M.: Attribute-based authenticated
key exchange. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168,
pp. 300–317. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14081-5 19

17. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM, CCS 2006, pp. 89–98 (2006)

18. Haber, S., Pinkas, B.: Securely combining public-key cryptosystems. In: CCS 2001,
pp. 215–224 (2001)

19. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg,
K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg
(2003). doi:10.1007/3-540-36492-7 20

20. Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols. In:
ACM, CCS 2005, pp. 180–189 (2005)

http://dx.doi.org/10.1007/3-540-45539-6_11
http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/978-3-540-45146-4_23
http://dx.doi.org/10.1007/978-3-540-45146-4_23
http://dx.doi.org/10.1007/3-540-44987-6_28
http://dx.doi.org/10.1007/978-3-642-14081-5_19
http://dx.doi.org/10.1007/3-540-36492-7_20

One-Round Attribute-Based Key Exchange in the Multi-party Setting 243

21. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidel-
berg (2003). doi:10.1007/978-3-540-45146-4 7

22. Krawczyk, H.: HMQV: a high-performance secure diffie-hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). doi:10.1007/11535218 33

23. LaMacchia, B.A., Lauter, K.E., Mityagin, A.: Stronger security of authenticated
key exchange. In: Provable Security 2007, pp. 1–16 (2007)

24. Rao, Y.S., Dutta, R.: Expressive bandwidth-efficient attribute based signature
and signcryption in standard model. In: Susilo, W., Mu, Y. (eds.) ACISP
2014. LNCS, vol. 8544, pp. 209–225. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-08344-5 14

25. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

26. Yoneyama, K.: Strongly secure two-pass attribute-based authenticated key
exchange. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol.
6487, pp. 147–166. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17455-1 10

27. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption)
� cost(signature) + cost(encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

http://dx.doi.org/10.1007/978-3-540-45146-4_7
http://dx.doi.org/10.1007/11535218_33
http://dx.doi.org/10.1007/978-3-319-08344-5_14
http://dx.doi.org/10.1007/978-3-319-08344-5_14
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-642-17455-1_10

Strongly Secure Two-Party Certificateless Key
Agreement Protocol with Short Message

Yong Xie1,2, Libing Wu1(B), Yubo Zhang1, and Zhiyan Xu1

1 School of Computer Science, Wuhan University, Wuhan 430072, China
{xieyongdian,wu,cszyb,czxzy}@whu.edu.cn

2 Jingdezhen Ceramic Institute, Jingdezhen 333403, China

Abstract. Key agreement protocol is generic way to establish a secure
private conversation over a public network. Recently, certificateless key
agreement (CL-KA) protocol has drawn much attention because it not
only efficiently eliminates the problems of key escrow and certificate man-
agement but also is more suitable for universal wireless communication
environment. However, it is a challenge to design a CL-KA protocol to
meet security and efficiency requirement concurrently. In this paper, we
propose a new two-party CL-KA protocol with short message under GDH
and GBDH assumption. We also present a full security proof for the pro-
posed protocol in extended Canetti-Krawczyk (eCK) security model. The
performance shows that the proposed protocol can capture the security
requirements and is more efficient than similar CL-KA protocol.

Keywords: Certificateless · Key agreement · eCK · Two-party

1 Introduction

Nowadays, people can enjoy a variety of convenient applications and services
from various communication networks. The private conversation over public net-
works has become one of the most important and popular applications. People
could launch a private conversation through public networks anywhere and any-
time. However, the private conversation encounters a perplexing situation that
opportunities and challenges coexist in the public networks because there are
more and more security attacks in public networks. To protect conversation pri-
vacy, the participants agree on a shared session key firstly, then use the session
key to encrypt their following conversation. No one can reveal the conversa-
tion without knowing the session key. The process to generate a shared session
key is called key agreement. Recent years, many key agreement protocols [1–4]
have been proposed to provide secure private conversation for different network
environments. To avoid the complex certificate management and the key escrow
problem, some researchers have designed CL-KA protocols [5–8] by using cer-
tificateless public key cryptography.

Key agreement is executed in an insecure environment, so a CL-KA protocol
should first resist all kinds of secure attacks and meet security requirements.
c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 244–254, 2016.
DOI: 10.1007/978-3-319-47422-9 14

Strongly Secure Two-Party Certificateless Key Agreement 245

The efficiency of CL-KA protocol is alway another obligatory property, which
is more valued in the scenario that power and computation ability is limited. It
is well known that security and efficiency are a contradiction for the protocol
design. The existing CL-KA protocols may meet security requirement well or
efficiency requirement well, but cannot meet both of them. Therefore, it is still
a challenge for CL-KA protocol to meet the two requirements simultaneously.

Most recently, Lin proposed a new efficient two-party CL-KA protocol [9].
Lin demonstrated his protocol is provably secure in the eCK security model
[10]. Unfortunately, Lin’s protocol is insecure against the Type II adversary in
eCK security model. A Type II adversary can successfully impersonate any legal
users to generate a session key with other legal user at will. The detailed analysis
of the attack will be presented in the full-version paper. To solve the problem
of Lin’s protocol and meet security and efficiency requirements concurrently,
we propose an improved two-party CL-KA protocol in this paper. And we also
present an in-depth security analysis in eCK security model. The performance
analysis shows that the proposed protocol can meet security requirements and
incurs less computation cost than Lin’s CL-KA protocol.

2 Preliminaries

The eCK security model for the CL-KA protocol is defined as a game played
between a challenger C and an adversary A . In a CL-KA protocol, each partic-
ipant has three secrets, i.e. partial private key (issued by the KGC), secret value
(selected by the user) and ephemeral secret key (selected by the user). Adver-
sary is allowed to reveal two secrets at most. There are two types of adversary
in the CL-KA protocol, i.e. Type I adversary AI and Type II adversary AII .
The capability of the two adversaries are defined as following.

• AI . It can replace user’s secret value with an assigned value. However, it
cannot know the master key of the KGC.

• AII . It can know the master key of the KGC and replace user’s partial private
key, but cannot know any users’ secret value.

The adversary A can access the following oracle queries at will in any order,
and the simulator S answers the oracle queries according to the specification of
security model.

• CreateUser(i). S generates user i’s partial private key, secret value and public
key, then sends the public key to A .

• RevealMasterKey: S sends the master key to A .
• RevealPartialKey(i). S returns user i’s partial key to A .
• RevealSecertKey(i): S returns user i’s secret key to A .
• RevealEphemeralKey(Πt

i,j): S sends user i’s ephemeral secret key about ses-
sion Πt

i,j to A , where Πt
i,j denotes the tth session between i and j.

• ReplaceKey(i,ki): S replaces user i’s public key with ki that sent by A .

246 Y. Xie et al.

• RevealSessionKey(Πt
i,j): If Πt

i,j has been accepted, S sends the session key
to A . Else, S returns ⊥ to A .

• Send(Πt
i,j ,m): A sends the message m to this oracle and obtains a response

according to the protocol specification.

Definition 1 (Matching session). If Πt
i,j and Πs

j,i have an identical session
identity, we says that Πt

i,j has a matching session Πs
j,i.

Once A has decided to finish the first phase, it will start the second phase
by selecting a fresh session Πt

i,j , and issue the following Test(Πt
i,j) queries.

Test(Πt
i,j). This oracle query model is used as the indistinguishability between

random session keys and the actual key. The session Πt
i,j must be fresh. The

challenger C flips a fair coin b ∈ {0, 1}, then decides by following.

• If b = 0, C sends the actual session key to A .
• If b = 1, C selects a random one from the distribution of session keys.

At last, A guesses a coin value b
′

for b. If Πt
i,j is fresh and b

′
= b, A

wins the game. Therefore, the advantage of that A wins the game is defined as
AdvA (κ) = |pr[A win] − 1/2|. We say that A wins the game, if AdvA (κ) is
non-negligible.

3 The Proposed Protocol

The new protocol includes five phases, i.e. Setup, Partial private key extraction,
Keygen, Message exchange and Key computation. The details of the five phase
are described as following.

Setup. Let the security parameter be κ. The KGC selects group (G1,+) and
(G2,×) with same prime order q over bilinear paring mapping e : G1 ×G1 → G2

and two secure hash function, H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ × {0, 1}∗ × G3
1 ×

G1
2 × G1

1 → {0, 1}n, where n > 0, P is generator of G1. Then the KGC selects
s ∈ Z∗

q as its master secret key, compute Ppub = s·P . At last, the KGC publishes
public parameters pp = {G1, G2, q, P, e,H1,H2, Ppub}.

Partial private key extraction. The KGC computes user’s partial private
key DID = s · H1(ID), where ID ∈ {0, 1}∗. Then the KGC returns DID to user
in a secure way.

Keygen. user selects xID ∈ Z∗
q as secret value and computes YID = xID · P .

Message exchange. Assume A and B be the session participants. A selects
ra ∈R Z∗

q , and computes RA = ra · P , then sends message {IDA, RA, YA} to
B. B randomly selects rb ∈ Z∗

q , and computes RB = rb · P , then sends message
{IDB , RB , YB} to A.

Key computation. A and B compute the session key respectively as following.
KA1 = (xa + ra)(YB + RB) = (xb + rb)(YA + RA) = KB1,

Strongly Secure Two-Party Certificateless Key Agreement 247

KA2 = e(DA + ra · Ppub,H1(IDB) + RB)
= e(DB + rb · Ppub,H1(IDA) + RA) = KB2,

KA3 = ra · RB = rb · RA = KB3,
skA = H2(IDA, IDB , RA, RB ,KA1,KA2,KA3)

= H2(IDA, IDB , RA, RB ,KB1,KB2,KB3) = skB .
At last, A and B compute an identical session key sk = skA = skB .

4 Security Proof

In this section, we prove that our proposed scheme is secure in eCK security
model. Let C be a challenger who can answer an adversary A ’s oracle queries
to solve a specific problem that defined in the protocol, where A ∈ {AI ,AII}.
Gap DiffieHellman (GDH) problem and Gap Bilinear Diffie-Hellman (GBDH)
problem will be used in the game, which are assumed to be hard in polynomial
time [5,11].

4.1 Security Proof on AI

Theorem 1. The advantage of adversary AI against the proposed protocol is
negligible under the GDH and GBDH assumption.

Proof. Let κ be the system security parameter. Assume AI is PPT bounded
adversary, AI can invoke κp distinct honest participants, and make κq distinct
hash queries. Every participant could be involved in κs sessions. AI can distin-
guish the tested session key from random one only in the following three ways.

• W1. AI obtains the session key by guess attack. The probability of outputting
a right session key in this way is O(1/2κ). Therefore, it can be negligible.

• W2. AI obtains the session key by key-replication attack. In this way, AI

queries the session key of other sessions to form a same key with the test
session. However, the probability of outputting a right session key in this way
is O((κ − 1)2/2κ). Therefore, it can be negligible too.

• W3. AI obtains the session key by forging attack. In this way, AI queries
H2-oracle on H2(IDA, IDB , RA, RB , K1,K2,K2) in test session, in which
the value of K1, K2 and K3 should be computed by AI .

Next, a challenger C run AI ’s advantages in distinguishing the tested session
key from a random string into an advantage in solving the GDH or GBDH
problem. C simulates the game with AI . C chooses two random number I, J ∈
[1, κp] and t ∈ κs, where I �= J . Let P0 ← γ · P , P0 is the KGC’s public key.
Assume Πt

I,J is the test session in this game, Πs
I,J is the matching session if Πt

I,J

is existing. The probability of the session key being guessed correctly is O(1
κpκs

).
The following six complementary events must be considered in this game.

E1. The matching session ΠS
J,I exists, and AI cannot query both Reveal-

EphemeralKey(ΠT
I,J) and RevealPartialKey(J).

248 Y. Xie et al.

E2. The matching session ΠS
J,I exists, and AI cannot query both Reveal-

EphemeralKey(ΠT
I,J) and RevealEphemeralKey(ΠS

J,I).
E3. The matching session ΠS

J,I exists, and AI cannot query both Reveal-
PartialKey(I) and RevealEphemeralKey(ΠS

J,I).
E4. The matching session ΠS

J,I exists, and AI cannot query both Reveal-
PartialKey(I) and RevealPartialKey(J).

E5. There is no matching session for ΠT
I,J , and AI cannot query both Reveal-

EphemeralKey(ΠT
I,J) and RevealPartialKey(J).

E6. There is no matching session for ΠT
I,J , and AI cannot query both Reveal-

PartialKey(I) and RevealPartialKey(J).
Next, the six events in forging attack will be analyzed. At the beginning of each

simulation,C maintains four listsLH1,LH2,Lc andLs with contents of queries and
answers of H1-oracle, H2-oracle, Create-oracle, Send-oracle, and Reveal-oracle,
which are initial empty list when the game starts, and are consisted of entries
with form of (IDi,Hi), (IDi, IDj , Ri, Rj , K1,K2,K3, sk), (IDi, xi, Yi,Di) and
(Πt

i,j , IDi, IDj , Ri, Rj , Yi, Yj , sk).

Event E1. In this event, the ephemeral private key of IDI and the partial
private key of IDJ are chosen by C in the simulation, which cannot be revealed
by AI .

Given a GBDH problem instance (U = u ·P , V = v ·P , P0 = γ ·P), C aims to
solve GBDH(U, V, P0) by accessing DBDH oracle, where u, v ∈ Z∗

n and P ∈ G.
Let AdvGBDH

C (κ) be the advantage that C obtains in solving GBDH problem.

Queries. C begins this phase by answering AI ’s queries as follows.

Create(IDi). AI queries this oracle with IDi. If IDi = IDJ , C selects xi ∈ RZ∗
n,

and calculates Yi = xi ·P , sets H1(IDi) ← V , then adds the tuple (IDi, xi, Yi,⊥)
and (IDi, V) to Lc and LH1 respectively. Otherwise, C selects xi, hi ∈ RZ∗

n, and
calculates Yi = xi · P , sets H1(IDi) ← Hi = hi · P , Di ← hi · P0, then adds the
tuple (IDi, xi, Yi,Di) and (IDi,Hi) to Lc and LH1 respectively.

H1-oracle. AI queries this oracle with tuple (IDi). If this tuple is already in
LH1, C returns Hi to AI . Else, C selects hi ∈ RZ∗

n, computes Hi = hi · P , then
returns Hi to AI and adds the entry (IDi,Hi) to LH1.

H2-oracle. As AI queries this oracle with tuple (IDi, IDj , Ri, Rj ,
K1,K2,K3), C responds as the following way.

• If the tuple exists in LH2, C sends the corresponding session key sk to AI .
• Else If IDi = IDJ . C looks up LH2 for the entry (IDi, IDj , Ri, Rj , ∗). If this

entry is already in LH2, C calculates K2 = K2
e(Dj ,H1(IDi)+Ri)e(Rj ,P0)ri

. Then

C checks whether the tuple (Rj ,Hi, P0,K2) meets the oracle DBDH(∗) → 1
when the tuple is the oracle input, and checks whether the equation K1 =
(xi + ri)(Yj + Rj), K2 = e(Dj + rj · P0, H1(IDi) + Ri), K3 = ri · Rj . If they
hold, C adds (IDi, IDj , Ri, Rj , Y1, Y2, sk) to Ls, where sk is obtained from
LH2. Else, C randomly selects sk ∈ {0, 1}κ, then adds (IDi, IDj , Ri, Rj ,
K1,K2,K3, sk) to LH2 and sends sk to AI .

Strongly Secure Two-Party Certificateless Key Agreement 249

• Else, C looks for (IDi, IDj , Ri, Rj , ∗, ∗, ∗) from Ls. If there exists this tuple,
C gets sk and adds the entry (IDi, IDj , Ri, Rj , K1,K2, K3, sk) to LH2.
Else, C randomly selects sk ∈ {0, 1}κ, then adds (IDi, IDj , Ri, Rj , K1,K2,
K3, sk) to LH2 and sends sk to AI .

RevealMasterKey. C terminates this simulation.
RevealStaticKey(IDi). ifIDi = IDJ ,C aborts.Else,C looksupLc for(IDi, ∗).

If there exists this entry (IDi, ∗), C sends the corresponding Di to AI , else C exe-
cutes create(IDi) and sends si to AI .

RevealSecretValue(IDi). C looks up Lc for (IDi, ∗). If there exists this entry
(IDi, ∗), C sends the corresponding xi to AI , else C executes create(IDi) and
sends xi to AI .

ReplacePublicKey(IDi, Yi). C looks up Lc for (IDi, ∗). If there exists this
entry (IDi, ∗), C replaces Yi and xi with P

′
i and x

′
i respectively, where x

′
i ∈ RZ∗

n

and Y
′
i = x

′
i · P . Else C executes create(IDi) with Y

′
i and x

′
i.

RevealEphemeralKey(Πt
i,j). If Πt

i,j = ΠT
I,J , C terminates this simulation.

Otherwise, C sends the ephemeral key to AI .
RevealSessionKey(Πt

i,j). If Πt
i,j = ΠT

I,J or Πt
i,j = ΠS

J,I , C terminates this
simulation. Otherwise, C returns the stored session key to AI .

Send(Πt
i,j ,m). When AI makes this query, C responds according to the fol-

lowing situations.

• If Πt
i,j = ΠT

I,J , C sends Ri = V to AI .
• Else if IDi = IDJ , C selects ri ∈ RZ∗

n, and calculates K2. Then C checks
whether the tuple (Ri,Hj , P0,K2) meets the oracle DBDH(∗, ∗, ∗, ∗) → 1
when the tuple is the oracle input. If it does, C get sk from LH2 and adds
(IDi, IDj , Ri, Rj , sk) to Ls. Else, C randomly selects sk ∈ {0, 1}κ, then adds
(Πt

i,j , IDi, IDj , Ri, Rj , Yi, Yj , sk).
• Else C responds based on the regulation of protocol.

Test(Πt
i,j). C responds to this query according to the following conditions.

• If Πt
i,j �= ΠS

I,J , C terminates this simulation.
• Else C randomly selects sk ∈ {0, 1}κ and sends to AI .

Analysis. If AI dose successfully, it should have made queries from H2-oracle
about (IDI , IDJ , U,RJ ,K1, K2,K3) and H1-oracle about (IDi, V). To solve
the GBDH problem, C optionally selects a entry from LH2 with probabil-
ity O(1/κp). Then C calculatesK2 = K2

e(DI ,V +RJ)e(U,P0)rJ
. At last, C outputs

GBDH(U, V, P0) = K2 = e(P, P)uvγ . The advantage of that C solves the
GBDH(U, V, P0) problem is AdvGBDH

C (κ) ≥ AdvAI
(κ)

κsκ2
pκq

. Because AdvAI
(κ) is

assumed to be non-negligible, AdvGBDH
C (κ) should be non-negligible. However,

it is a contradiction to the GBDH assumption.

Event E2. In this event, the ephemeral private keys of IDI and IDJ are chosen
by C in the simulation, which cannot be revealed by AI .

250 Y. Xie et al.

Given a GDH problem instance (U = u · P , V = v · P), C aims to
solve GDH(U, V) by accessing DDH oracle, where u, v ∈ Z∗

n and P ∈ G. Let
AdvGDH

C (κ) be the advantage that C obtains in solving GDH problem.

Queries. In query phase, C responds to the oracle queries as it does in Event
E1 except the follows.

Create(IDi). C selects xi, hi ∈ RZ∗
n, and calculates Yi = xi · P , sets

H1(IDi) ← Hi = hi · P , Di ← hi · P0, then adds the tuple (IDi, xi, Yi,Di)
and (IDi,Hi) to Lc and LH1 respectively.

H2-oracle. As AI queries this oracle with tuple (IDi,
IDj , Ri, Rj ,K1,K2,K3), C responds as the following way.

• If this tuple has already in LH2, C sends the corresponding K to AI .
• Else, C looks up Ls for the entry (IDi, IDj , Ri, Rj , ∗). If it is already in Ls,

C checks whether (Ri, Rj ,K1) meets the oracle DDH(∗, ∗, ∗) → 1 when the
tuple is the oracle’s input. If it holds, C adds (IDi, IDj , Ri, Rj , Y1, Y2, sk)
to Ls, where sk is obtained from LH2. Else, C randomly selects sk ∈ {0, 1}κ,
then adds (IDi, IDj , Ri, Rj , K1,K2,K3, sk) to LH2 and sends sk to AI .

• Else. C randomly selects sk ∈ {0, 1}κ, then adds (IDi, IDj , Ri, Rj , K1,
K2,K3, sk) to LH2, and sends sk to AI .

RevealPartialKey(i). C looks up Lc for (IDi, ∗). If there exists this entry
(IDi, ∗), C sends the corresponding Di to AI . Else C executes create(IDi) and
sends Di to AI .

RevealEphemeralKey(Πt
i,j). when AI makes this query, C checks Πt

i,j . If
Πt

i,j = ΠT
I,J or Πt

i,j = ΠS
J,I , C terminates this simulation. Otherwise, C sends

the ephemeral key to AI .
Send(Πt

i,j ,m). When AI makes this query, C responds according to the fol-
lowing situations.

• If Πt
i,j = ΠT

I,J , C sends Ri = U to AI .
• Else if Πt

i,j = ΠS
J,I , C sends Ri = V to AI .

• Else, C responds this query based on the regulation of protocol.

Analysis. If AI dose successfully, it should have makes queries from H2-oracle
about (IDI , IDJ , U, V,K1,K2,K3) or (IDJ , IDI , V, U,K1,K2,K3). To solve the
GDH problem, C optionally selects an entry from LH2 with probability O(1/κp).
Then C outputs GDH(U, V) = K3 = uv ·P . The advantage of that C solves the
GDH(U, V) problem is AdvGDH

C (κ) ≥ AdvAI
(κ)

κsκ2
pκq

. Because AdvAI
(κ) is assumed

to be non-negligible, AdvGDH
C (κ) should be non-negligible. However, it is a con-

tradiction to the GDH assumption.

Event E3. In this event, only the roles of IDI and IDJ are changed when
compared with Event E1. Therefore, AdvGBDH

C (κ) in this event can be proved
to be non-negligible with the same analysis way of E1 by changing the roles of
IDI and IDJ . For simplicity, the detailed analysis is not presented.

Strongly Secure Two-Party Certificateless Key Agreement 251

Event E4. In this event, the partial key of IDI and IDJ are chosen by C in
the simulation, which cannot be revealed by AI .

Given a GBDH problem instance (U = u ·P , V = v ·P , P0 = γ ·P), C aims to
solve GBDH(U, V, P0) by accessing DBDH oracle, where u, v ∈ Z∗

n and P ∈ G.
Let AdvGBDH

C (κ) be the advantage that C obtains in solving GBDH problem.

Queries. In query phase, C responds to the oracle queries as it does in Event
E1 except the follows.

Create(IDi). AI queries this oracle with IDi. If IDi = IDI , C selects
xi ∈ RZ∗

n, and calculates Yi = xi · P , sets H1(IDi) ← U , then adds the tuple
(IDi, xi, Yi,⊥) and (IDi, U) to Lc and LH1 respectively. Else if IDi = IDJ ,
C selects xi ∈ RZ∗

n, and calculates Yi = xi · P , sets H1(IDi) ← V , then adds
the tuple (IDi, xi, Yi,⊥) and (IDi, V) to Lc and LH1 respectively. Otherwise,
C selects xi, hi ∈ RZ∗

n, and calculates Yi = xi · P , sets H1(IDi) ← Hi = hi · P ,
Di ← hi · P0, then adds the tuple (IDi, xi, Yi,Di) and (IDi,Hi) to Lc and LH1

respectively.
H2-oracle. As AI queries this oracle with tuple (IDi, IDj , Ri, Rj ,

K1,K2,K3), C responds as the following way.

• If this tuple has already in LH2, C sends the corresponding sk to AI .
• Else If IDi = IDI or IDi = IDJ , C looks up LH2 for the entry (IDi, IDj ,

Ri, Rj , ∗). If it is in LH2, C calculates K2 = K2
e(ri·P0,H1(IDj)+Rj)e(H1(IDi),P0)

rj .

Then C checks whether the tuple (H1(IDi),H1(IDj), P0,K2) meets the ora-
cle DBDH(∗, ∗, ∗, ∗) → 1 when the tuple is the oracle input. If it holds, C
adds (IDi, IDj , Ri, Rj , Y1, Y2, sk) to Ls, where sk is obtained from LH2. Else,
C randomly selects sk ∈ {0, 1}κ, then adds (IDi, IDj , Ri, Rj , K1,K2,K3, sk)
to LH2 and sends sk to AI .

• Else, C looks up Ls for the entry (IDi, IDj , Ri, Rj , ∗). If this entry is in
Ls, C gets the sk from Ls and stores (IDi, IDj , Ri, Rj , K1,K2,K3, sk) to
LH2, where the values of tuple comes form Ls. Else, C randomly selects
sk ∈ {0, 1}κ, then adds (IDi, IDj , Ri, Rj , K1,K2,K3, sk) to LH2.

RevealPartialKey(i). if IDi = IDI or IDi = IDJ , C aborts. Else, C looks
up Lc for (IDi, ∗). If there exists this entry (IDi, ∗), C sends the corresponding
Di to AI , else C executes create(IDi) and sends Di to AI .

Send(Πt
i,j ,m). When AI makes this query, C responds according to the fol-

lowing situations.

• If Πt
i,j = ΠS

J,I , C return Hi = V to AI . Else if Πt
i,j = ΠT

I,J , C return Hi = U
to AI .

• Otherwise, if IDi = IDI or IDi = IDJ , C selects ti ∈ RZ∗
n, and calculates

K2 = K2
e(ri·P0,H1(IDj)+Rj)e(H1(IDi),P0)

rj . Then C checks whether the tuple

(H1(IDi),H1(IDj), P0,K2) meets the oracle DBDH(∗, ∗, ∗, ∗) → 1 when the
tuple is the oracle input. If it holds, C adds (IDi, IDj , Ri, Rj , K1,K2,K3, sk)
to LH2. Else, C randomly selects sk ∈ {0, 1}κ, then adds (IDi, IDj , Ri, Rj ,
K1,K2,K3, sk) to LH2.

252 Y. Xie et al.

• Else, C responds this query based on the regulation of protocol.

Analysis. If AI dose successfully, it should have makes queries from H2-oracle
about (IDI , IDJ , RI , RJ , K1,K2, K3) or (IDJ , IDI ,RJ , RI , K1,K2, K3), and
H1-oracle about (IDI , U) and (IDJ , V). To solve the GBDH problem, C option-
ally selects an entry from LH2 with probability O(1/κp). Then C calculates
K2 = K2

e(rI ·P0,V +RJ)e(U,P0)rJ
. At last, C outputs GBDH(U, V, P0) = K2 =

e(P, P)γuv. The advantage of that C solves the GBDH(U, V, P0) problem is
AdvGBDH

C (κ) ≥ AdvAI
(κ)

κsκ2
pκq

. Because AdvAI
(κ) is assumed to be non-negligible,

AdvGBDH
C (κ) should be non-negligible. However, it is a contradiction to the

GBDH assumption.

Event E5. In this Event, there is no matching session for ΠT
I,J . The simulation

of this event is similar to Event E4, so we do not repeat here for simplicity.

Event E6. In this Event, there is no matching session for ΠT
I,J . The simulation

of this event is similar to Event E1, so we won’t go into detail here.

4.2 Security Proof on AII

Theorem 2. The advantage of the adversary AII against the proposed protocol
is negligible under the GDH assumption.

The proof of Theorem2 is not presented here. The detailed proof is deferred
to the full paper due to page constraint.

According to Theorems 1 and 2, we can draw a conclusion that our proposed
protocol is a secure in eCK security model under the GDH and GBDH assump-
tion.

5 Performance Analysis

In this section, the proposed protocol is compared with Lin’s protocols [9] in
terms of security and efficiency.

As for the security comparison, our proposed CL-KA protocol can meet all
of the security requirements, while lin’s protocol has a fatal security deficiency
that it can not resist impersonation attack.

For convenience, let Tb, Tm and Te denote the time cost for a bilinear pairing
operation, a curve point multiplication operation and a exponentiation operation
respectively. The other operations are omitted during comparison due to much
less than the three former operations. The execution times of the basic operations
in Xiong et al.’s experiments [12] are adopted in this paper. The execution time
of the three operations, Tb, Tm and Te, are 5.32 s, 2.45 s and 1.25 s respectively.
Therefore, the total time of the Lin’s protocol and our proposed protocol are
18.41 s and 12.67 s.

The results of security and computation cost comparison are shown in Table 1
according the former analysis. From Table 1, our proposed CL-KA protocol
achieves more advantages than lin’s protocol.

Strongly Secure Two-Party Certificateless Key Agreement 253

Table 1. Performance comparisons

Lin’s protocol [9] Our protocol

Resist impersonation attack No Yes

Resist KCI attack Yes Yes

RLESK Yes Yes

No key control Yes Yes

Forward secrecy Yes Yes

Known-key security Yes Yes

Resist unknown key share Yes Yes

Security model eCK eCK

Hardness GDH GDH and GBDH

Precomputed cost 2Tb 0

Computation cost Tb + Tm + Te Tb + 3Tm

Total time 18.41 s 12.67 s

6 Conclusion

In this paper, to meet security and efficiency simultaneously, we propose an
improved CL-KA protocol with short message over Lin’s CL-KA protocol [9].
The proposed protocol overcomes the security deficiencies of Lin’s CL-KA pro-
tocol. Only one complex bilinear paring operation in the key computation phase
and no precomputation is required in the proposed protocol. We also present
the security proof in the eCK model under the GDH and GBDH problem. The
performance analysis shows the proposed CL-KA protocol can meet all security
requirements and incurs less computation cost than Lin’s protocol. Due to the
paring operation is a complex crypto-operation for mobile devices, our next work
is to study strongly secure CL-KA protocol without paring.

References

1. Sun, H., Wen, Q., Zhang, H., Jin, Z.: A strongly secure identity-based authenti-
cated key agreement protocol without pairings under the gdh assumption. Secur.
Commun. Netw. 8(17), 3167–3179 (2015)

2. Choo, K.K.R., Nam, J., Won, D.: A mechanical approach to derive identity-based
protocols from Diffie-Hellman-based protocols. Inf. Sci. 281, 182–200 (2014)

3. Hafizul Islam, S.K., Singh, A.: Provably secure one-round certificateless authenti-
cated group key agreement protocol for secure communications. Wirel. Pers. Com-
mun. 85(3), 879–898 (2015)

4. Zhu, Z., et al.: Cryptanalysis of pairing-free certificateless authenticated key agree-
ment protocol. IACR Cryptology ePrint Archive, p. 253 (2012)

5. Swanson, C., Jao, D.: A study of two-party certificateless authenticated key-
agreement protocols. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS,
vol. 5922, pp. 57–71. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10628-6 4

http://dx.doi.org/10.1007/978-3-642-10628-6_4

254 Y. Xie et al.

6. He, D., Chen, J., Jin, H.: A pairing-free certificateless authenticated key agreement
protocol. Int. J. Commun. Syst. 25(2), 221–230 (2012)

7. Kim, Y.-J., Kim, Y.-M., Choe, Y.-J.: An efficient bilinear pairing-free certificateless
two-party authenticated key agreement protocol in the eCK model. arXiv preprint
arXiv:1304.0383 (2013)

8. Bala, S., Verma, A.K.: A non-interactive certificateless two-party authenticated key
agreement protocol for wireless sensor networks. Int. J. Ad Hoc Ubiquit. Comput.
21(2), 140–155 (2016)

9. Lin, H.-Y.: Secure certificateless two-party key agreement with short message. Inf.
Technol. Contr. 45(1), 71–76 (2016)

10. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

11. Liu, J.K., Baek, J., Susilo, W., Zhou, J.: Certificate-based signature schemes with-
out pairings or random oracles. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T.
(eds.) ISC 2008. LNCS, vol. 5222, pp. 285–297. Springer, Heidelberg (2008)

12. Xiong, X., Wong, D.S., Deng, X.: Tinypairing: a fast and lightweight pairing-based
cryptographic library for wireless sensor networks. In: Wireless Communications
and Networking Conference (WCNC 2010), pp. 1–6. IEEE (2010)

http://arxiv.org/abs/1304.0383

Encryption

Integrity Analysis of Authenticated Encryption
Based on Stream Ciphers

Kazuya Imamura1, Kazuhiko Minematsu2, and Tetsu Iwata1(B)

1 Nagoya University, Nagoya, Japan
k imamur@echo.nuee.nagoya-u.ac.jp, iwata@cse.nagoya-u.ac.jp

2 NEC Corporation, Kawasaki, Japan
k-minematsu@ah.jp.nec.com

Abstract. We study the security of authenticated encryption based on
a stream cipher and a universal hash function. We consider ChaCha20-
Poly1305 and generic constructions proposed by Sarkar, where the
generic constructions include 14 AEAD (authenticated encryption with
associated data) schemes and 3 DAEAD (deterministic AEAD) schemes.
In this paper, we analyze the integrity of these schemes both in the stan-
dard INT-CTXT notion and in the RUP (releasing unverified plaintext)
setting called INT-RUP notion. We present INT-CTXT attacks against
3 out of the 14 AEAD schemes and 1 out of the 3 DAEAD schemes.
We then show INT-RUP attacks against 1 out of the 14 AEAD schemes
and the 2 remaining DAEAD schemes. We next show that ChaCha20-
Poly1305 is provably secure in the INT-RUP notion. Finally, we show
that 4 out of the remaining 10 AEAD schemes are provably secure in the
INT-RUP notion.

Keywords: Authenticated encryption · Stream cipher · Universal hash
function · Provable security · Integrity · Releasing unverified plaintext

1 Introduction

Background. An authenticated encryption (AE) scheme is a symmetric encryp-
tion primitive where the goal is to achieve both privacy and integrity of plain-
texts. Examples of AE include GCM [11], CCM [19], and EAX [6], and they
are widely used in practice. There are several ways to construct AE, and the
construction by the generic composition (GC), which was formalized by Bellare
and Namprempre [3], is to combine existing primitives, one for encryption and
the other for authentication, to obtain AE. The security notion for integrity,
called INT-CTXT, requires that an adversary is unable to produce a ciphertext
that is accepted in verification, where the adversary has access to an encryption
oracle. Authenticated encryption with associated data (AEAD) was formalized
in [15], where associated data (AD) is the input that is authenticated but not
encrypted. Nonce-based encryption was formalized in [16], where a nonce is the
input of the scheme which is supposed to be used only once, meaning that it is

c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 257–276, 2016.
DOI: 10.1007/978-3-319-47422-9 15

258 K. Imamura et al.

not repeated. Implementation of a nonce is non-trivial in practice, and a repeat
of a nonce in AEAD is often devastating. To address this issue, deterministic
authenticated encryption (DAE) was formalized in [17]. More precisely, DAEAD
is DAE that supports AD, which is AE that remains secure without the use of a
nonce and does not leak information about a plaintext from a ciphertext, except
for the repetition of the input. In this sense DAEAD has the nonce-reuse misuse
resistance, but on a downside, DAEAD requires off-line computation. The GC
in [3] was refined by Namprempre, Rogaway, and Shrimpton [12] by explicitly
treating the use of a nonce.

Another direction of GC was put forward by Sarkar [18], where a stream
cipher is used for encryption and a universal hash function is used for authen-
tication. In [18], a total of 17 AEAD/DAEAD schemes are proposed. There are
14 AEAD schemes, called AEAD-{1, 2, 2a, 2b, 3, 4, 4a, 4b, 5, 6, 6a, 7, 8, 8a}, and 3
DAEAD schemes, called DAEAD-{1, 2, 2a}. It was proved that all these schemes
achieve both privacy and integrity under the assumption that the stream cipher
is a pseudo-random function (PRF) and that the hash function is a universal
hash function.

Related AEAD which we call ChaCha20-Poly1305 was proposed by Nir and
Langley [13]. A stream cipher ChaCha20 [8] is used for encryption and a univer-
sal hash function Poly1305 [7] is used for authentication, which were designed by
Bernstein. ChaCha20-Poly1305 is practically used in IETF protocols [13]. The
scheme is similar to one of the GC called AEAD-2b of [18], but there is a subtle
difference and it does not exactly follow the composition. Procter [14] proved
that ChaCha20-Poly1305 achieves both privacy and authenticity in the model
of [4] under the assumption that ChaCha20 block function is a PRF.

Another security notion called the releasing unverified plaintext (RUP) was
formalized by Andreeva et al. [1]. This notion is motivated to cover the situation
in which there is not enough memory in decryption devices to store the entire
decrypted plaintext and decrypted plaintexts are immediately required in real
time. The corresponding integrity notion is called INT-RUP, and the goal of an
adversary under the INT-RUP notion is to produce a new ciphertext which is
accepted in the verification, where the adversary has access to the oracle that
returns unverified plaintexts. We remark that the notion is often referred to as
the decryption-misuse setting.

Our Contributions. In this paper, we study the integrity of AEAD and DAEAD
based on a stream cipher and a universal hash function in the standard INT-
CTXT notion and in the decryption-misuse, INT-RUP notion.

Our results are summarized in Table 1. We first show that there are INT-
CTXT attacks against 4 out of 17 schemes in [18], invalidating the original INT-
CTXT security claims. In addition to this, we show INT-RUP attacks against
3 out of the 17 schemes, showing a sort of tightness of the original INT-CTXT
claims. All our attacks need only a few queries, and are hence practical. Specif-
ically, we show INT-CTXT attacks against AEAD-{2a, 4a, 4b} and DAEAD-2a,
and INT-RUP attacks against AEAD-2b and DAEAD-{1, 2}. We note that INT-
RUP security is not claimed in [18], as [18] predates [1].

Integrity Analysis of Authenticated Encryption Based on Stream Ciphers 259

Table 1. INT-CTXT and INT-RUP security of AEAD and DAEAD schemes. The
mark ✓ means secure, ✗ means insecure, (✗) follows from the INT-CTXT result, and ?
remains open.

Scheme INT-CTXT INT-RUP

ChaCha20-Poly1305 ✓ ([14]) ✓ (Theorem 1)

AEAD-1 ✓ ([18, Theorem 20]) ✓ (Theorem 2)

AEAD-2 ✓ ([18, Theorem 20]) ✓ (Theorem 2)

AEAD-2a ✗ (Sect. 4.1) (✗)

AEAD-2b ✓ ([18, Theorem 20]) ✗ (Sect. 4.2)

AEAD-3 ✓ ([18, Theorem 20]) ✓ (Theorem 2)

AEAD-4 ✓ ([18, Theorem 20]) ✓ (Theorem 2)

AEAD-4a ✗ (Sect. 4.1) (✗)

AEAD-4b ✗ (Sect. 4.1) (✗)

AEAD-5 ✓ ([18, Theorem 20]) ?

AEAD-6 ✓ ([18, Theorem 20]) ?

AEAD-6a ✓ ([18, Theorem 20]) ?

AEAD-7 ✓ ([18, Theorem 20]) ?

AEAD-8 ✓ ([18, Theorem 20]) ?

AEAD-8a ✓ ([18, Theorem 20]) ?

DAEAD-1 ✓ ([18, Theorem 21]) ✗ (Sect. 4.2)

DAEAD-2 ✓ ([18, Theorem 21]) ✗ (Sect. 4.2)

DAEAD-2a ✗ (Sect. 4.1) (✗)

A universal hash function, or more precisely an almost XOR universal (AXU)
hash function, is used in these schemes, and our observation is that the defin-
ition of an AXU hash function does not exclude a case where it has a fixed
point, which is the input X and the output Y of the hash function H such that
HL(X) = Y holds independent of the key L. Our INT-CTXT attacks against
AEAD-{2a, 4a, 4b} and DAEAD-2a, and INT-RUP attacks against DAEAD-{1, 2}
make use of the existence of the fixed point. The INT-RUP attack against AEAD-
2b is based on a different observation. We show that an adversary can recover
the hash key from the unverified plaintext and hence break the INT-RUP secu-
rity with probability 1. The attacks are described in Sect. 4. We remark that
our attacks imply the existence of a universal hash function that makes these
schemes insecure, and the attacks do not imply the non-existence of a universal
hash function that makes the schemes secure.

Next, we show that ChaCha20-Poly1305 is INT-RUP secure under the same
assumption as Procter. While ChaCha20-Poly1305 is similar to AEAD-2b, there
is a difference in the order of the generation of a hash key and a keystream,
and this small difference results in the difference in INT-RUP security. Finally,

260 K. Imamura et al.

we show that AEAD-{1, 2, 3, 4} are INT-RUP secure under the assumption that
a stream cipher is a PRF. Our security bounds of these schemes are shown in
Sect. 5.

2 Preliminaries

2.1 Notation

We write {0, 1}∗ for the set of all finite bit strings, and for an integer l ≥ 0,
we write {0, 1}l for all the l-bit strings. We write ε for the empty string. For
X ∈ {0, 1}∗, |X| is its length in bits. For X ∈ {0, 1}∗ and an integer l such
that |X| ≥ l, msbl(X) denotes the most significant (the leftmost) l bits of X,
and lsbl(X) denotes the least significant (the rightmost) l bits of X. For X,Y ∈
{0, 1}∗, their concatenation is written as X ‖ Y . The bit string of m zeros is
written as 0m ∈ {0, 1}m, and m ones is written as 1m ∈ {0, 1}m. We write
g ◦ f for the composite function of two functions f and g, which is defined as
g◦f(·) = g(f(·)). For a finite set X , we write X

$← X for a procedure of assigning
X an element sampled uniformly at random from X .

2.2 AEAD and DAEAD

Authenticated Encryption with Associated Data (AEAD) [3,15]. The goal of
AEAD is to achieve both privacy and integrity of a plaintext, and integrity of
associated data. We consider that AEAD consists of three deterministic algo-
rithms, and let AEAD = (AEAD.Enc,AEAD.Dec,AEAD.Ver). Let K ∈ K be the
underlying secret key that fixes the three algorithms, where K is the key space.
The encryption algorithm AEAD.EncK takes input a nonce N , associated data
A, and a plaintext M , and outputs a ciphertext C and a tag T . The decryption
algorithm AEAD.DecK takes input N , A, C, and T , and always outputs M . The
verification algorithm AEAD.VerK takes input N , A, C, and T , and outputs �
or ⊥, where � means that the verification is accepted, and ⊥ means that the
verification is rejected. The correctness requirement must be satisfied, that is,
the following requirements are satisfied.

{
AEAD.DecK(N,A,AEAD.EncK(N,A,M)) = M

AEAD.VerK(N,A,AEAD.EncK(N,A,M)) = �
Deterministic AEAD (DAEAD) [17]. DAEAD is AEAD that does not require a
nonce. Let DAEAD = (DAEAD.Enc,DAEAD.Dec,DAEAD.Ver), where the encryp-
tion algorithm DAEAD.EncK takes input A and M , and outputs C and T , the
decryption algorithm DAEAD.DecK takes input A, C, and T , and outputs M , and
the verification algorithm DAEAD.VerK takes input A, C, and T , and outputs �
or ⊥. As in AEAD, the following correctness requirement must be satisfied.

{
DAEAD.DecK(A,DAEAD.EncK(A,M)) = M

DAEAD.VerK(A,DAEAD.EncK(A,M)) = �

Integrity Analysis of Authenticated Encryption Based on Stream Ciphers 261

2.3 Security Definitions

Ciphertext Integrity. For AEAD and DAEAD, privacy and integrity are the
main two security notions. In this paper, we focus on the latter, and describe
two notions called INT-CTXT and INT-RUP. INT-CTXT is a standard, classical
notion that captures the integrity of ciphertext under chosen ciphertext attacks.
INT-RUP considers a more powerful adversary that has access to an oracle that
returns unverified plaintexts. We note that INT-RUP is a stronger notion than
INT-CTXT, and if a scheme is INT-RUP secure, then it is also INT-CTXT
secure.

Definition 1 (INT-CTXT Advantage [3,4]). Let A be an adversary that
has access to two oracles AEAD.EncK and AEAD.VerK . Then we define the INT-
CTXT advantage of A against AEAD as

Advint-ctxt
AEAD (A) def= Pr[AAEAD.EncK ,AEAD.VerK forges],

where K
$← K and A forges is the event that AEAD.VerK returns � to A. We

assume that A does not repeat a query, and if A receives a response (C, T) for
an encryption query (N,A,M), then A does not subsequently make a verifi-
cation query (N,A,C, T). We assume that A is nonce-respecting with respect
to encryption queries, that is, if (Ni, Ai,Mi) denotes the i-th encryption query,
then it holds that Ni 	= Ni′ for any i 	= i′.

We note that A may repeat a nonce within verification queries, may reuse a
nonce used for an encryption query as a nonce for a subsequent verification
query, and may reuse a nonce used for a verification query as a nonce for a
subsequent encryption query.

The INT-CTXT advantage for DAEAD is similarly defined as

Advint-ctxt
DAEAD (A) def= Pr[ADAEAD.EncK ,DAEAD.VerK forges].

We assume that A does not repeat a query, and if A receives a response (C, T) for
an encryption query (A,M), then A does not subsequently make a verification
query (A,C, T). Since DAEAD does not take a nonce N as input, A has no
nonce-respecting restriction.

Definition 2 (INT-RUP Advantage [1]). Let A be an adversary that has
access to three oracles AEAD.EncK , AEAD.DecK , and AEAD.VerK . Then we
define the INT-RUP advantage of A against AEAD as

Advint-rup
AEAD (A) def= Pr[AAEAD.EncK ,AEAD.DecK ,AEAD.VerK forges],

where K
$← K and A forges is the event that AEAD.VerK returns � to A. A does

not repeat a query, and if A receives a response (C, T) for an encryption query
(N,A,M), then A does not subsequently make a verification query (N,A,C, T).
A is nonce-respecting with respect to encryption queries. However, a nonce can
be repeated within decryption queries and within verification queries, and the
same nonce can be reused across encryption, decryption, and verification queries.

262 K. Imamura et al.

The INT-RUP advantage of DAEAD is defined as

Advint-rup
DAEAD(A) def= Pr[ADAEAD.EncK ,DAEAD.DecK ,DAEAD.VerK forges].

As in the INT-CTXT definition, since DAEAD does not take a nonce N as
input, A has no nonce-respecting restriction. However, we assume that A does
not repeat a query, and if A receives a response (C, T) for an encryption query
(A,M), then A does not subsequently make a verification query (A,C, T).

Pseudo-Random Function (PRF). Following [18], we consider a stream cipher
as a function SC : K × {0, 1}n → {0, 1}�, where K is the set of keys, n denotes
the length of IV in bits, and � is a sufficiently large and fixed integer. For a key
K ∈ K, the corresponding function SCK takes an IV N ∈ {0, 1}n as input, and
outputs the keystream Z ← SCK(N) ∈ {0, 1}�. Let Rand(n, �) be the set of all
functions from {0, 1}n to {0, 1}�, and let A be an adversary. Then we define the
PRF-advantage of A against SC as

Advprf
SC (A) def= Pr[K $← K : ASCK ⇒ 1] − Pr[F $← Rand(n, �) : AF ⇒ 1],

where A ⇒ 1 denotes the event that A outputs 1.
We note that in the above formalization, SCK is a function with fixed-input

length and fixed-output length, and we assume that the output of SCK is always
� bits. However, in the actual usage of SCK , we abuse the notation and for
instance we write C ← M ⊕ SCK(N) to mean C ← M ⊕ msb|M |(SCK(N)),
or R ‖ Z ← SCK(N), where |R| = n and |Z| is clear from the context (such
as the length of the plaintext), to mean Y ← SCK(N), R ← msbn(Y), and
Z ← lsb|Z|(msbn+|Z|(Y)).

Hash Function. Let H : L × DH → {0, 1}n be a hash function, where L is a set
of hash keys, DH denotes the domain, and n is the length of the output in bits.
The function specified by L ∈ L is written as HL.

Let {HL} be a family of keyed hash functions. For any distinct X ′,X ∈ DH

and any Y ∈ {0, 1}n, if the differential probability Pr[HL(X) ⊕ HL(X ′) = Y] is
at most ε, then HL is defined to be an ε-almost-XOR-universal (ε-AXU) hash
function, where the probability is taken over the choice of L

$← L.
There are several examples of an ε-AXU hash function for small ε, and they

include GHASH used in GCM [11] and Poly1305 [7]. For these hash functions, the
key length is independent of the input length, and the key space is the set of bit
strings of a fixed length. Following [18], we call this type of hash functions Type-I
hash functions. There are other examples of an ε-AXU hash function where the
key length can be as long as the input length, or even longer that that, including
UMAC [9]. We call this type of hash functions Type-II hash functions.

We observe that the definition of an ε-AXU hash function does not exclude a
case where the hash function has a fixed point. That is, there may exist X ∈ DH

and Y ∈ {0, 1}n such that HL(X) = Y holds independently of the key L, since
the requirement is about the differential probability, and the uniformity of a

Integrity Analysis of Authenticated Encryption Based on Stream Ciphers 263

single input is irrelevant of the definition. Indeed, practical hash functions like
GHASH and Poly1305 have a fixed point. For GHASH, it takes (A,C) ∈ {0, 1}∗×
{0, 1}∗ as input and outputs Y ∈ {0, 1}n, and it holds that GHASHL(A,C) = Y
with probability 1 for (A,C) = (ε, ε) and Y = 0n. Poly1305 has the same fixed
point. We will exploit the existence of a fixed point in our attacks.

3 Schemes

In this section, we present the specifications of AEAD and DAEAD schemes that
are proposed in [18], and ChaCha20-Poly1305 [13].

AEAD in [18]. Let fStr be an arbitrary fixed n-bit string. For instance fStr
could be 0n. AEAD schemes in [18] are specified by a stream cipher SC and
a hash function H, and we write AEAD[SC,H] for AEAD that uses SC and H
as parameters. We also write AEAD[Rand(n, �),H] for AEAD where we use a
random function F

$← Rand(n, �) as the stream cipher SCK . The encryption
algorithms of the schemes are defined in Fig. 1. See Fig. 2 for the overall structure
of the encryption algorithms. The decryption and verification algorithms are
naturally defined and are presented in [10]. We note that these schemes have the
convention on the length of the input. Specifically, the encryption algorithms
take any plaintext M which is not empty, and |M | = 0 is not allowed [18].

We also note that AEAD-{1, 2, 2a, 2b, 3, 4, 4a, 4b} use H as a double-input
hash function, but AEAD-{5, 6, 6a, 7, 8, 8a} use H as a hash function that can
take both double-input and single-input. See [18] for more details on this matter.

ChaCha20-Poly1305 [13]. Let KCC = {0, 1}256 and KPoly = {0, 1}128 × {0, 1}128.
We denote ChaCha20 block function by CC : KCC×{0, 1}32×{0, 1}96 → {0, 1}512,
and denote Poly1305 authentication function by Poly : KPoly×{0, 1}∗ → {0, 1}128.
The functions specified by K ∈ KCC and (r, s) ∈ KPoly are written as CCK and
Polyr,s, respectively. We write CC&Poly for ChaCha20-Poly1305.

With these functions, the encryption algorithm of ChaCha20-Poly1305 is
defined in Fig. 3. See Fig. 4 for the overall structure of the encryption algorithm.
See [7,8] for further details of the specifications of ChaCha20 and Poly1305.

Observe the similarity to AEAD-2b. SCK(N) in AEAD-2b corresponds to
CCK(0, N),CCK(1, N), . . . ,CCK(
|M |/512�, N), where (L,R) in AEAD-2b cor-
responds to (r, s) in ChaCha20-Poly1305. The difference is that L is taken from
the rightmost bits of SCK(N), thus the starting position can be moved depending
on the length of M , while s is always taken from the same position.

DAEAD in [18]. The encryption algorithms of DAEAD schemes are defined in
Fig. 5. See Fig. 6 for the overall structure. We note that the basic idea of DAEAD
schemes follows the SIV construction in [17].

4 Negative Results

In this section, we show that AEAD-{2a, 4a, 4b} and DAEAD-2a are not INT-
CTXT secure and that AEAD-2b and DAEAD-{1, 2} are not INT-RUP secure.
Our forgery attacks against these schemes are presented in Figs. 7 and 8.

264 K. Imamura et al.

Fig. 1. Pseudocode of the encryption algorithms of AEAD schemes [18]

Before describing the details of our attacks, we present the following propo-
sition showing that the fixed point can be “moved” to any desired point without
changing the value of ε.

Integrity Analysis of Authenticated Encryption Based on Stream Ciphers 265

Fig. 2. Illustration of the encryption algorithms of AEAD schemes [18]. In AEAD-2 and
AEAD-4, L = SCK(K′). In AEAD-2a and AEAD-4a, L = SCK(msbn(SCK(fStr))). In
AEAD-6 and AEAD-8, L1 ‖ L2 = SCK(K′). In AEAD-6a and AEAD-8a, L1 ‖ L2 =
SCK(msbn(SCK(fStr))).

266 K. Imamura et al.

CC&Poly.EncK(N,A,M)

1. Z ← KSGenK(N, |M |)
2. C ← M ⊕ Z
3. T ← TagK(N,A,C)
4. return (C, T)

KSGenK(N, l)

1. m ← �l/512�
2. for i ← 1 to m do
3. Z[i] ← CCK(i,N)
4. l∗ ← l mod 512
5. Z[m] ← lsbl∗(Z[m])
6. Z ← ∑m

i=1 Z[i]·2512(i−1)

7. return Z

TagK(N,A,C)

1. s ‖ r ← lsb256(CCK(0, N))
where |r| = |s| = 128

2. l1 ← 128�|A|/128�
3. l2 ← l1 + 128�|C|/128�
4. l3 ← l2 + 64
5. Y ← A
6. Y ← Y + C · 2l1

7. Y ← Y + �|A|/8� · 2l2

8. Y ← Y + �|C|/8� · 2l3

9. T ← Polyr,s(Y)
10. return T

Fig. 3. Pseudocode of the encryption algorithm of ChaCha20-Poly1305. The arith-
metics are usual integer addition and multiplication.

KSGenK TagK

C

N

Z

N CAM

T

Fig. 4. Illustration of the encryption algorithm of ChaCha20-Poly1305

DAEAD-1.EncK,L(A,M)

1. V ← HL(A,M)
2. T ← msbn(SCK(V))
3. Z ← SCK(T)
4. C ← M ⊕ Z
5. return (C, T)

DAEAD-2.EncK,K′(A,M)

1. L ← SCK(K′)
2. V ← HL(A,M)
3. T ← msbn(SCK(V))
4. Z ← SCK(T)
5. C ← M ⊕ Z
6. return (C, T)

DAEAD-2a.EncK(A,M)

1. K′ ← msbn(SCK(fStr))
2. L ← SCK(K′)
3. V ← HL(A,M)
4. T ← msbn(SCK(V))
5. Z ← SCK(T)
6. C ← M ⊕ Z
7. return (C, T)

Fig. 5. Pseudocode of the encryption algorithms of DAEAD schemes [18]

Proposition 1. Let H̃L : DH → {0, 1}n be a hash function, ϕ : DH → DH be an
injective function, and c ∈ {0, 1}n be a constant. Let HL : DH → {0, 1}n be a
hash function, where HL(X) = H̃L(ϕ(X)) ⊕ c. If {H̃L} is ε-AXU, then {HL} is
ε-AXU.

Integrity Analysis of Authenticated Encryption Based on Stream Ciphers 267

Z

C

SCK

V

HL

A

K

fStr

SCK

K

SCK

L

SCK

T

M

Fig. 6. Illustration the encryption algorithms of DAEAD schemes [18]. In DAEAD-2,
L = SCK(K′). In DAEAD-2a, L = SCK(msbn(SCK(fStr))).

INT-CTXT attack against AEAD-2a

1. (C1, T1) ← AEAD-2a.EncK(N1, A1,M1) where (N1, A1,M1) ← (fStr, A0,M0)
2. if C1 = C0 then
3. K′ ← T1

4. if K′ �= fStr then
5. (C2, T2) ← AEAD-2a.EncK(N2, A2,M2) where (N2, A2,M2) ← (K′, A0,M0)
6. if C2 = C0 then
7. L∗ ← T2; T

∗ ← HL∗(A∗, C∗) ⊕ K′

8. � ← AEAD-2a.VerK(N∗, A∗, C∗, T ∗) where N∗ ← fStr
9. else

10. L∗ ← fStr; T ∗ ← HL∗(A∗, C∗) ⊕ fStr
11. � ← AEAD-2a.VerK(N∗, A∗, C∗, T ∗) where N∗ ← fStr

INT-CTXT attack against AEAD-4a

1. (C1,K
′) ← AEAD-4a.EncK(N1, A1,M1) where (N1, A1,M1) ← (fStr, A0,M0)

2. if K′ �= fStr then
3. (C2, L

∗) ← AEAD-4a.EncK(N2, A2,M2) where (N2, A2,M2) ← (K′, A0,M0)
4. else
5. L∗ ← K′

6. T ∗ ← HL∗(A∗,M∗) ⊕ K′ where |M∗| ≤ |M0|
7. � ← AEAD-4a.VerK(N∗, A∗,M∗ ⊕ msb|M∗|(M1 ⊕ C1), T

∗) where N∗ ← fStr

INT-CTXT attack against AEAD-4b

1. (C0, R) ← AEAD-4b.EncK(N1, A1,M1) where (N1, A1,M1) ← (N,A0,M0)
2. Z0 ← M0 ⊕ C0

3. Parse Z0 as Z∗ ‖ L∗ where |L∗| is the key length to compute Step 4
4. T ∗ ← HL∗(A∗,M∗) ⊕ R
5. � ← AEAD-4b.VerK(N∗, A∗, C∗, T ∗) where N∗ ← N and C∗ ← M∗ ⊕ Z∗

INT-CTXT attack against DAEAD-2a

1. (C0,K
′) ← DAEAD-2a.EncK(A1,M1) where (A1,M1) ← (A0,M0)

2. L∗ ← M0 ⊕ C0

3. Compute (A∗,M∗) such that fStr = HL∗(A∗,M∗) with L∗

4. � ← DAEAD-2a.VerK(A∗, C∗, T ∗) where (C∗, T ∗) ← (M∗ ⊕ msb|M∗|(L
∗),K′)

Fig. 7. INT-CTXT attacks

268 K. Imamura et al.

INT-RUP attack against AEAD-2b

1. (C, T) ← AEAD-2b.EncK(N1, A1,M1) where (N1, A1,M1) ← (N,A,M)
2. Let c be an integer which is at least |M | plus the hash key length of H
3. Z′ ← AEAD-2b.DecK(N ′

1, A
′
1, C

′
1, T

′
1) where (N ′

1, A
′
1, C

′
1, T

′
1) ← (N,A′, 0c, T ′)

4. Parse Z′ as Z ‖ L where |Z| = |M |
5. R ← HL(A,C) ⊕ T
6. Parse Z′ as Z∗ ‖ L∗ where |Z∗| ≤ |Z|
7. T ∗ ← HL∗(A∗, C∗) ⊕ R where |C∗| = |Z∗|
8. � ← AEAD-2b.VerK(N∗, A∗, C∗, T ∗) where N∗ ← N

INT-RUP attack against DAEAD-{1, 2}
1. M ′

1 ← DAEAD-{1, 2}.DecK(A′
1, C

′
1, T

′
1) where (A′

1, C
′
1, T

′
1) ← (A′

1, C
′
1, V0)

2. M ′
2 ← DAEAD-{1, 2}.DecK(A′

2, C
′
2, T

′
2) where (A′

2, C
′
2, T

′
2) ← (A′

2, C
′
2,M

′
1 ⊕ C′

1)
3. � ← DAEAD-{1, 2}.VerK(A∗, C∗, T ∗) where (A∗, C∗, T ∗) ← (A0,M0⊕M ′

2⊕C′
2, T

′
2)

Fig. 8. INT-RUP attacks

Proof. For any distinct X ′,X ∈ DH and any Y ∈ {0, 1}n, ϕ(X) and ϕ(X ′) are
distinct, and we have

Pr[HL(X) ⊕ HL(X ′) = Y] = Pr[H̃L(ϕ(X)) ⊕ c ⊕ H̃L(ϕ(X ′)) ⊕ c = Y]

= Pr[H̃L(ϕ(X)) ⊕ H̃L(ϕ(X ′)) = Y] ≤ ε.

Therefore, {HL} is also ε-AXU. ��

There exists an ε-AXU hash function H̃L such that H̃L(A,M) = 0n for (A,M) =
(ε, ε), e.g., GHASH function in GCM and Poly1305, and we use the proposition
to respect the non-empty plaintext convention of the schemes in [18].

We are now ready to present the details of our attacks.

4.1 AEAD-{2a, 4a, 4b} and DAEAD-2a Are Not INT-CTXT Secure

Attack against AEAD-2a. The hash function in AEAD-2a takes associated data
A and a ciphertext C as input. Suppose that H̃L is an ε-AXU hash function such
that H̃L : (ε, ε) �→ 0n. Let A0 be any associated data and C0 be any ciphertext
such that |C0| = 1, i.e., C0 is a bit. We also assume that, given a hash key
of length n bits, the adversary can compute the hash value for any input, e.g.,
Type-I hash functions like GHASH function. Define an injective function ϕ as
follows.

ϕ(A,C) =

⎧
⎪⎨

⎪⎩

(ε, ε) if (A,C) = (A0, C0)
(A0, C0) if (A,C) = (ε, ε)
(A,C) otherwise

(1)

Let HL(A,C) = H̃L(ϕ(A,C)). Then HL is an ε-AXU function from Proposition 1.

Integrity Analysis of Authenticated Encryption Based on Stream Ciphers 269

Now in the attack in Fig. 7, the adversary receives (C1, T1) for the first
encryption query (N1, A1,M1) = (fStr, A0,M0), where |M0| = 1. We see that
Pr[C1 = C0] is approximately 1/2. If C1 	= C0, then the adversary fails to make
a forgery. If C1 = C0, from K ′ = msbn(SCK(fStr)), ϕ(A0, C0) = (ε, ε), and
H̃L(ε, ε) = 0n, the adversary receives K ′ as the tag. Suppose that K ′ 	= fStr. For
the second encryption query (N2, A2,M2) = (K ′, A0,M0), the adversary receives
(C2, T2). Pr[C2 = C0] is approximately 1/2, and if C2 	= C0, then the adversary
fails to make a forgery. If C2 = C0, from L = SCK(K ′) and HL(A0, C0) = 0n, the
adversary receives the first n bits of the hash key L, called L∗. If K ′ = fStr, the
hash key L∗ is fStr. Therefore, the forgery (N∗, A∗, C∗, T ∗), where N∗ = fStr, is
accepted with probability approximately 1/4.

Attack against AEAD-4a. In AEAD-4a, the hash function takes A and M as input.
Let H̃L be an ε-AXU hash function such that H̃L : (ε, ε) �→ 0n. Given a hash key
of length n bits, we assume that the adversary can compute the hash value for
any input. Let A0 be any associated data and M0 be any non-empty plaintext
that will be used in the attack. Define an injective function ϕ as follows.

ϕ(A,M) =

⎧
⎪⎨

⎪⎩

(ε, ε) if (A,M) = (A0,M0)
(A0,M0) if (A,M) = (ε, ε)
(A,M) otherwise

(2)

LetHL(A,M) = H̃L(ϕ(A,M)). ThenHL is an ε-AXU function from Proposition 1.
For the first encryption query (N1, A1,M1) = (fStr, A0,M0), from K ′ =

msbn(SCK(fStr)), ϕ(A0,M0) = (ε, ε), and H̃L(ε, ε) = 0n, the adversary receives
K ′ as the tag. Suppose that K ′ 	= fStr. For the second encryption query
(N2, A2,M2) = (K ′, A0,M0), the adversary receives the first n bits of the hash
key L, which we write L∗, and can compute the tag T ∗ ← HL∗(A∗,M∗) ⊕ K ′

without access to the encryption oracle. Here the length of M∗ should be at
most the length of M0. If fStr = K ′, then the hash key L∗ is fStr. Therefore the
forgery (N∗, A∗, C∗, T ∗), where N∗ = fStr and C∗ ← M∗ ⊕ msb|M∗|(M1 ⊕ C1),
is accepted with probability 1.

Attack against AEAD-4b. The hash function in AEAD-4b takes A and M as
input. Suppose that H̃L is an ε-AXU hash function such that H̃L : (ε, ε) �→ 0n.
Let A0 be any associated data and M0 be any non-empty plaintext. Define an
injective function ϕ as in (2). Let HL(A,M) = H̃L(ϕ(A,M)). Then HL is an
ε-AXU function from Proposition 1. Let N ∈ {0, 1}n be an arbitrary nonce.

For the encryption query (N1, A1,M1) = (N,A0,M0), since we define R =
msbn(SCK(N)), ϕ(A0,M0) = (ε, ε), and H̃L(ε, ε) = 0n, the adversary receives
R as the tag. Observe that we have (R,Z0, L) = SCK(N). In the attack, we
parse Z0 as Z0 = Z∗ ‖ L∗, and use Z∗ as the keystream and L∗ as the hash
key. Note that Z0 = M0 ⊕ C0 and hence the adversary can recover Z0, and
given L∗, the adversary can compute T ∗ for any (A∗,M∗). We remark that the
length of L∗ to compute Step 4 may depend on |A∗| and |M∗| if Type-II hash
function is used, and the length of L∗ can be arbitrarily long by using long

270 K. Imamura et al.

M0. For any M∗ ∈ {0, 1}|Z∗|, the adversary can compute the tag T ∗. Hence the
forgery (N∗, A∗, C∗, T ∗), where N∗ = N and C∗ = M∗ ⊕ Z∗, is accepted with
probability 1.

Attack against DAEAD-2a. Suppose that H̃L is an ε-AXU hash function such
that H̃L : (ε, ε) �→ 0n. We also assume that, given a hash key L∗ and Y , we
can compute some (A∗,M∗) such that Y = HL∗(A∗,M∗). Let A0 be arbi-
trary associated data and M0 be a plaintext. Define an injective function
ϕ as in (2). We have a restriction on |M0|, which is discussed below. Let
HL(A,M) = H̃L(ϕ(A,M)) ⊕ fStr. Then HL is ε-AXU from Proposition 1.

For the encryption query (A1,M1) = (A0,M0), from ϕ(A0,M0) = (ε, ε) and
H̃L(ε, ε) = 0n, it follows that HL(A0,M0) = fStr. From K ′ = msbn(SCK(fStr)),
the adversary receives K ′ as the tag. From SCK(K ′) = L and M0 ⊕ C0, it
obtains the first |M0| bits of L. Let L∗ be the value of msb|M0|(L). The length
of L∗ has to be long enough so that the adversary can compute (A∗,M∗) such
that fStr = HL∗(A∗,M∗). Therefore, (A∗, C∗, T ∗), where (C∗, T ∗) = (M∗ ⊕
msb|M∗|(L∗),K ′), is always accepted.

Comments. We note that, since the above schemes are not INT-CTXT secure,
they are not INT-RUP secure, and these attacks contradict the claims in [18].
All the above attacks use the fixed point of the hash function. For example,
given the security proof of AEAD-2, it is tempting to claim that AEAD-2a is also
secure. However, the dependence of the generation of K ′ and (R,Z) within the
encryption algorithm allows the adversary to reproduce K ′ within encryption,
and the fixed point of the hash function makes it possible for the adversary to
actually learn the value of K ′. This type of discrepancy explains the success of
the above attacks.

4.2 AEAD-2b and DAEAD-{1, 2} Are Not INT-RUP Secure

Attack against AEAD-2b. Suppose that HL is ε-AXU. The values N ∈ {0, 1}n,
A ∈ {0, 1}∗, and M ∈ {0, 1}∗ can be arbitrarily chosen, where |M | 	= 0.

For the encryption query (N1, A1,M1) = (N,A,M), the adversary receives
(C, T). For the decryption query (N ′

1, A
′
1, C

′
1, T

′
1) = (N,A′, 0c, T ′), where A′ ∈

{0, 1}∗ and T ′ ∈ {0, 1}n may be arbitrarily chosen, the adversary receives Z ′

as the plaintext. Z ′ can be parsed into the keystream Z and the hash key L.
Then the adversary can compute R = HL(A,C) ⊕ T with L. We observe that
Z ′ can also be parsed into another keystream Z∗ and another hash key L∗. For
any A∗ ∈ {0, 1}∗ and any C∗ ∈ {0, 1}|Z∗|, the adversary can compute the tag as
T ∗ = HL∗(A∗, C∗) ⊕ R. Therefore, (N∗, A∗, C∗, T ∗), where N∗ = N , is accepted
with probability 1. Note that this attack does not rely on the fixed point of the
hash function.

Attacks against DAEAD-{1, 2}. Suppose that HL is an ε-AXU hash function such
that HL(A0,M0) = V0 for any L, where A0 ∈ {0, 1}∗ and M0 ∈ {0, 1}n denote
special input to produce the fixed point V0. The values A′

1, A
′
2 ∈ {0, 1}∗ and

C ′
1, C

′
2 ∈ {0, 1}n can be arbitrarily chosen.

Integrity Analysis of Authenticated Encryption Based on Stream Ciphers 271

For the first decryption query (A′
1, C

′
1, T

′
1) = (A′

1, C
′
1, V0), the adversary

receives the plaintext M ′
1. Then the keystream is computed as M ′

1 ⊕ C ′
1. In

fact, it is computed as the tag from SCK(V0). For the second decryption query
(A′

2, C
′
2, T

′
2) = (A′

2, C
′
2,M

′
1⊕C ′

1), the adversary receives the plaintext M ′
2. For the

verification query (A∗, C∗, T ∗) = (A0,M0⊕M ′
2⊕C ′

2, T
′
2), from HL(A0,M0) = V0

and T ′
2 = SCK(V0), the forgery (A∗, C∗, T ∗) is accepted with probability 1.

5 Positive Results

5.1 ChaCha20-Poly1305 Is INT-RUP Secure

Let A be an adversary. Suppose that A makes q encryption queries (N1, A1,M1),
. . . , (Nq, Aq,Mq), q′ decryption queries (N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
q′ , A′

q′ , C ′
q′ , T ′

q′),
and q′′ verification queries (N ′′

1 , A′′
1 , C ′′

1 , T ′′
1), . . . , (N ′′

q′′ , A′′
q′′ , C ′′

q′′ , T ′′
q′′). Define the

maximum byte length of the message for the encryption queries and the verifi-
cation queries as

16

⎛

⎜
⎝ max

1≤i≤q
1≤j≤q′′

{⌈ |Ai|
128

⌉

+
⌈ |Mi|

128

⌉}

∪
{⌈ |A′′

j |
128

⌉

+
⌈ |C ′′

j |
128

⌉}

+ 1

⎞

⎟
⎠ .

The security bound of ChaCha20-Poly1305 is given as follows. We note that we
consider the case where CCK is a random function and focus on the information
theoretic case. However, it is standard to derive the corresponding complexity
theoretic result. See for example [2].

Theorem 1. Consider CC&Poly, where a random function F : {0, 1}32 ×
{0, 1}128 → {0, 1}512 is used as CCK . Let A be an INT-RUP adversary that
makes at most q encryption queries, q′ decryption queries, and q′′ verification
queries, and the maximum byte length of the message for the encryption queries
and the verification queries is at most �max bytes. Then we have

Advint-rup
CC&Poly(A) ≤ q′′ 8
�max/16�

2106
.

A proof is presented in Appendix A. We note that the INT-CTXT security
was proved by Procter in [14]1. The above theorem shows that the security does
not change even if the adversary is given access to the decryption oracle. We see
that the adversary learns the keystream Mi ⊕Ci by making an encryption query

1 We remark that there is a minor gap in the proof in [14]. The proof introduces a
hybrid (E1, D1) where the keystream is the output of a random function taking
a nonce, and another hybrid (E2, D2) where the keystream is completely random
for both encryption and decryption, and claims both hybrids are equivalent. This
does not hold true in general since the keystream in a decryption query can be
determined by an encryption query made before. However, as far as we see, the
theorem statement stands.

272 K. Imamura et al.

(Ni, Ai,Mi). Intuitively, there is no additional information that the adversary
can learn from the decryption oracle, since the decryption oracle simply allows
the adversary to learn the keystream, which is already available from the encryp-
tion oracle.

5.2 AEAD-{1, 2, 3, 4} Are INT-RUP Secure

The following theorem shows the security bounds of AEAD-{1, 2, 3, 4}. We focus
on the information theoretic result, but the corresponding complexity theoretic
result can be obtained in a standard way [2].

Theorem 2. Let Rand(n, �) and H be the parameters of each AEAD scheme.
Suppose that {HL} is ε-AXU. Let A be an INT-RUP adversary that makes at
most q encryption queries, q′ decryption queries, and q′′ verification queries.
Then we have the following security bounds:

Advint-rup
AEAD-1[Rand(n,�),H](A) ≤ q′′ε, (3)

Advint-rup
AEAD-3[Rand(n,�),H](A) ≤ q′′ε, (4)

Advint-rup
AEAD-2[Rand(n,�),H](A) ≤ q + q′ + q′′

2n
+ q′′ε, and (5)

Advint-rup
AEAD-4[Rand(n,�),H](A) ≤ q + q′ + q′′

2n
+ q′′ε. (6)

A proof is presented in [10].

6 Conclusions

In this paper, we analyzed the integrity of the authenticated encryption schemes
that are based on stream ciphers and universal hash functions. Our attacks
indicate that the use of fStr to reduce the number of secret keys requires careful
handling in the security proof.

It would be interesting clarify the INT-RUP security of the remaining AEAD
schemes shown as open in Table 1.

Acknowledgments. We thank the anonymous ProvSec 2016 reviewers and partici-
pants of Early Symmetric Crypto (ESC) 2015 for helpful comments. We also thank
Palash Sarkar for insightful feedback on an earlier version of this paper. The work by
Tetsu Iwata was supported in part by JSPS KAKENHI, Grant-in-Aid for Scientific
Research (B), Grant Number 26280045.

A Proof of Theorem 1

We evaluate Advint-rup
CC&Poly(A) following the game playing proof technique in [5].

Without loss of generality, we assume that A is deterministic and makes exactly
q encryption queries, q′ decryption queries, and q′′ verification queries. Let

Integrity Analysis of Authenticated Encryption Based on Stream Ciphers 273

Game G0

Initialize

1. forge ← false; F
$← {f | f : {0, 1}32 × {0, 1}96 → {0, 1}512}

Oracle Encrypt(N,A,M)

2. Z ← KSGen(N, |M |)
3. C ← M ⊕ Z
4. T ← Tag(N,A,C)
5. return (C, T)

Oracle Decrypt(N,A,C, T)

6. Z ← KSGen(N, |C|)
7. M ← C ⊕ Z
8. return M

Oracle Verify(N,A,C, T)

9. T ∗ ← Tag(N,A,C)
10. if T ∗ = T then forge ← true; return �
11. return ⊥
Subroutine KSGen(N, l)

12. m ← �l/512�
13. for i ← 1 to m do
14. Z[i] ← F (i,N)
15. Z[m] ← lsbl mod 512(Z[m])
16. Z ← ∑m

i=1 Z[i] · 2512(i−1)

17. return Z

Subroutine Tag(N,A,C)

18. s ‖ r ← lsb256(F (0, N)) where |r| = |s| = 128
19. l1 ← 128�|A|/128�
20. l2 ← l1 + 128�|C|/128�
21. l3 ← l2 + 64
22. Y ← A
23. Y ← Y + C · 2l1

24. Y ← Y + �|A|/8� · 2l2

25. Y ← Y + �|C|/8� · 2l3

26. T ← Polyr,s(Y)
27. return T

Fig. 9. Game G0 for the proof of Theorem 1

274 K. Imamura et al.

Game G1

Initialize

1. forge ← false; N ← ∅
Oracle Encrypt(N,A,M)

2. Z ← KSGen2(N, |M |)
3. C ← M ⊕ Z
4. T ← Tag(N,A,C)
5. return (C, T)

Oracle Decrypt(N,A,C, T)

6. Z ← KSGen2(N, |C|)
7. M ← C ⊕ Z
8. return M

Oracle Verify(N,A,C, T)

9. T ∗ ← Tag2(N,A,C)
10. if T ∗ = T then forge ← true; return �
11. return ⊥
Subroutine KSGen2(N, l)

12. m ← �l/512�
13. for i ← 1 to m do
14. Z[i]

$← {0, 1}512

15. if (i,N) ∈ N then Z[i] ← F (i, N)
16. else N ← N ∪ {(i,N)}
17. F (i,N) ← Z[i]
18. Z[m] ← lsbl mod 512(Z[m])
19. Z ← ∑m

i=1 Z[i] · 2512(i−1)

20. return Z

Subroutine Tag2(N,A,C)

21. U ‖ s ‖ r
$← {0, 1}512 where |r| = |s| = 128

22. if (0, N) ∈ N then U ‖ s ‖ r ← F (0, N)
23. else N ← N ∪ {(0, N)}
24. F (0, N) ← U ‖ s ‖ r
25. l1 ← 128�|A|/128�
26. l2 ← l1 + 128�|C|/128�
27. l3 ← l2 + 64
28. Y ← A
29. Y ← Y + C · 2l1

30. Y ← Y + �|A|/8� · 2l2

31. Y ← Y + �|C|/8� · 2l3

32. T ← Polyr,s(Y)
33. return T

Fig. 10. Game G1. Keystreams and authentication keys are generated at random.

Integrity Analysis of Authenticated Encryption Based on Stream Ciphers 275

(Ni, Ai,Mi) for i = 1, . . . , q, (N ′
i′ , A′

i′ , C ′
i′ , T ′

i′) for i′ = 1, . . . , q′, and (N ′′
j , A′′

j , C ′′
j ,

T ′′
j) for j = 1, . . . , q′′ denote the queries.

We define Game G0 in Fig. 9. In Fig. 9, Game G0 simulates the real oracles
of ChaCha20-Poly1305 based on the random function F . Then we have

Advint-rup
CC&Poly(A) = Pr[AG0 sets forge].

We next define Game G1 in Fig. 10. Game G1 simulates the oracles using the
lazy sampling of F , where F is regarded as an array, and the array F (X,Y) is
initially undefined for all (X,Y) ∈ {0, 1}32 × {0, 1}96. Now since the function
F produces the random values and the values are perfectly indistinguishable
between Game G0 and Game G1, these games are identical. Hence

Pr[AG0 sets forge] = Pr[AG1 sets forge]. (7)

We consider Pr[AG1 sets forge]. In Fig. 9, the authentication keys in verifica-
tion queries are generated independently of the keystreams in decryption queries,
and hence there are two cases to consider. We denote the polynomial hash func-
tion in Poly1305 [7] by Hr. If for the j-th verification query, it holds that
N ′′

j 	= Ni for all i, then (r′′
j , s′′

j) is uniformly distributed and independent of
(ri, si). Hence

Pr[T ∗
j = T ′′

j] = Pr[Hr′′
j
(Y ′′

j) + s′′
j mod 2128 = T ′′

j] =
1

2128
.

Suppose that for the j-th verification query, we have N ′′
j = Ni for some i.

Then it follows that (r′′
j , s′′

j) = (ri, si). The event T ∗
j = T ′′

j is equivalent to

Hri
(Y ′′

j) − Hri
(Yi) mod 2128 = T ′′

j − Ti mod 2128. (8)

Now if (A′′
j , C ′′

j) = (Ai, Ci), then we necessarily have T ′′
j 	= Ti and hence (8) can-

not hold. Therefore let (A′′
j , C ′′

j) 	= (Ai, Ci). Then, since Hr is ε-AΔU [7, Sect. 3],
meaning that it has a small differential probability with respect to modulo 2128,
we have

Pr[T ∗
j = T ′′

j] = Pr[Hri
(Y ′′

j) − Hri
(Yi) mod 2128 = T ′′

j − Ti mod 2128] ≤ ε.

Therefore, for each j = 1, . . . , q′′, we have Pr[T ∗
j = T ′′

j] ≤ ε. Following [7,
Sect. 3], ε = (8
�max/16�)/2106. Hence we have

Pr[AG1 sets forge] ≤ q′′ 8
�max/16�
2106

. (9)

The claimed bound is obtained from (7) and (9). ��

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45611-8 6

http://dx.doi.org/10.1007/978-3-662-45611-8_6

276 K. Imamura et al.

2. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

3. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 41

4. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 24

5. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006). doi:10.1007/11761679 25

6. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-25937-4 25

7. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). doi:10.1007/11502760 3

8. Bernstein, D.J.: ChaCha, a variant of Salsa20 (2008). DocumentID:
4027b5256e14b6796842e6d0f68b0b5e. http://cr.yp.to/papers.html#chacha

9. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: fast and
secure message authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 216–233. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 14

10. Imamura, K., Minematsu, K., Iwata, T.: Integrity Analysis of Authenticated
Encryption Based on Stream Ciphers (Full version of this paper). Cryptology
ePrint Archive, Report 2016 (2016). http://eprint.iacr.org/

11. McGrew, D.A., Viega, J.: The security and performance of the galois/counter
mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30556-9 27

12. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 15

13. Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF protocols. IRTF RFC 7539.
https://tools.ietf.org/html/rfc7539

14. Procter, G.: A Security Analysis of the Composition of ChaCha20 and Poly1305.
Cryptology ePrint Archive, Report 2014/613 (2014). http://eprint.iacr.org/

15. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.),
ACM Conference on Computer and Communications Security, pp. 98–107. ACM
(2002)

16. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25937-4 22

17. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). doi:10.1007/11761679 23

18. Sarkar, P.: Modes of operations for encryption and authentication using stream
ciphers supporting an initialisation vector. Crypt. Commun. 6(3), 189–231 (2014)

19. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). Submis-
sion to NIST (2002). http://csrc.nist.gov/

http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/3-540-44448-3_24
http://dx.doi.org/10.1007/3-540-44448-3_24
http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/978-3-540-25937-4_25
http://dx.doi.org/10.1007/11502760_3
http://cr.yp.to/papers.html#chacha
http://dx.doi.org/10.1007/3-540-48405-1_14
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-540-30556-9_27
http://dx.doi.org/10.1007/978-3-540-30556-9_27
http://dx.doi.org/10.1007/978-3-642-55220-5_15
https://tools.ietf.org/html/rfc7539
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-540-25937-4_22
http://dx.doi.org/10.1007/978-3-540-25937-4_22
http://dx.doi.org/10.1007/11761679_23
http://csrc.nist.gov/

Secure and Efficient Construction of Broadcast
Encryption with Dealership

Kamalesh Acharya(B) and Ratna Dutta

Department of Mathematics, Indian Institute of Technology,
Kharagpur 721302, Kharagpur, India

kamaleshiitkgp@gmail.com, ratna@maths.iitkgp.ernet.in

Abstract. Broadcast encryption with dealership (BED) has been pro-
posed to achieve more innovative and scalable business models for broad-
cast services. It has an extensive application future. However, designing
secure BED is a challenging task. The only known BED construction so
far is by Gritti et al. We aim to raise the profile of BED primitives which
has not received much attention despite of its importance. This paper
presents a selectively chosen plaintext attack (CPA) secure BED scheme
supporting maximum number of accountability and privacy (hides the
group of users from broadcaster). Our scheme is a key encapsulation
mechanism and practically more efficient. It reduces the parameter sizes
and computation cost compared to Gritti et al. More interestingly, the
broadcaster does not need to rely on users to detect the dishonest dealer.
We provide concrete security analysis of our design under reasonable
assumptions.

Keywords: Broadcast encryption with dealership · Chosen plaintext
attack · Maximum number of accountability · Privacy

1 Introduction

The increasing interests in the wide application of e-commerce raises issues
regarding unauthorised distributions and use of digital content. Broadcast
encryption provides enhanced confidentiality in the setting of practical threats
against content distribution systems. Broadcast encryption was formally intro-
duced by Fiat and Naor [8] in 1994, followed by a vast literature in various
flavours [1–7,9,11–13].

Broadcast encryption with dealership (BED), introduced by Gritti et al. [10],
is a promising cryptographic primitive which has been developed very recently. It
has greatly facilitated with sufficiently fine grained business model in broadcast
environment. The core concept in BED is to enable a dealer to select the set of
subscribed users and publishing a group token together with a threshold value
on the group size. A broadcaster implicitly verifies the size of the group utilizing
the group token without knowing the group explicitly. The broadcaster aborts
if the group size exceeds the threshold value, otherwise produces a ciphertext.

Designing BED is not trivial mainly due to the difficulty in achieving the
following three security issues:
c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 277–295, 2016.
DOI: 10.1007/978-3-319-47422-9 16

278 K. Acharya and R. Dutta

(i) Maximum number of accountability: Dealer should not be able to cheat. If
a dishonest dealer selects k′ > k users and pays money for k users to the
broadcaster, then the business of the broadcaster will be ruined.

(ii) Privacy: The dealer should be able to keep the subscribed user set secret
from the broadcaster. Otherwise, the broadcaster can directly approach to
the subscribers and damage the business of the dealer.

(iii) Security against illegal users: Illegal users (including dealers) should not be
able to decrypt the encrypted digital content (ciphertext) similar to other
broadcast encryption schemes.

Efficiency is always the first priority in obtaining practical BED. Low cost deliv-
ery of content is a major challenge in this context apart from achieving the
aforementioned security attributes.

Interest in designing BED primitives is due to its applications in the real
world. It could solve several problems of security and trust. For instance, suppose
a dealer purchases the access of some encrypted digital contents from the service
provider (broadcaster) in a bulk and resells them to the subscribers with a better
price compared to the broadcaster’s price for individual content. The subscribers
thus enjoy the cheaper rate. The dealer keeps the identities of these subscribers
secret from the broadcaster to protect his business. On the other hand, the dealer
should be made incapable of decrypting the digital content to forbid him from
rebroadcasting the content. In the light of the above application requirements,
BED is useful.

So far as we know, BED has received very little attention despite of its
numerous applications in the real world. Our goal is to develop this direction of
research further by finding more practical and more efficient solutions towards
BED. Principally, a BED makes the existing business model more flexible by
creating new business opportunities for the dealers. A local dealer can better
explore potentially unknown markets for service provider (broadcaster) and make
a strategy according to the market. In addition, the dealer can also help in
handling different pricing structures of media in different countries and share
with the broadcaster any information on price or demand fluctuation cost. The
dealer gets commission from the broadcaster and eventually sale of company
increases.

Our contribution: Considering the limited development in the area of broad-
cast encryption in dealership framework, BED is further studied in this paper.
The closest related work to ours is that of Gritti et al. [10]; indeed their work
was starting point of ours. However, in the attempt made by [10], the broad-
caster does not have the full control to detect illegal behaviour of a dealer as
the components of the group token generated by the dealer are not fully binded.
A dishonest dealer could easily manipulate some components of a group token
P (G) in such a way that the implicit verification of the size of group G by the
broadcaster succeeds without following the actual protocol. In fact, in Sect. 2.3
we elaborate this issue. The broadcaster has to release the encrypted content
once the verification passes and rely on the response from the user side who has
given the power to detect a dishonest dealer on completion of the protocol. This

Secure and Efficient Construction of Broadcast Encryption with Dealership 279

is not a good solution as user may be dishonest themselves, thereby hampering
the broadcaster’s interest. The construction of [10] is claimed to achieve uncon-
ditional privacy. Unfortunately, the argument in the security proof provided to
support unconditional privacy allows illegal users to recover messages, thereby
leading to a contradiction to semantic security in semi-static security model. We
put more light on this in Sect. 2.3. We emphasize that in our scheme, the com-
ponents of group token are skillfully formed to enable the broadcaster to have
full control in detecting the dishonest behaviour of a dealer.

Our BED construction, namely KEMD, adapts key encapsulation mechanism
and reduces the parameter sizes and computation cost over the existing scheme
[10] significantly. Our construction based upon the identity based encryption
scheme of Delerablee et al. [5]. The scheme provides computational privacy under
the discrete logarithm problem. It is proven to achieve key indistinguishability
under chosen plaintext attack (CPA) in selective model assuming the hardness
of the (f, φ, F)-General Decisional Diffie-Hellman Exponent ((f, φ, F)-GDDHE)
problem. Furthermore, it supports maximum number of accountability under the
(f,N)-Diffie-Hellman Exponent assumption. In addition, if a user gets revoked
from the system, he will be unable to decrypt the ciphertext similar to other
broadcast encryption schemes. The dealer can select a new group of users without
changing the existing public parameter and secret key.

Organization: The rest of the paper is organized as follows. Section 2 provides
necessary definitions and background materials. We describe our main construc-
tion in Sect. 3 and its security in Sect. 4. Efficiency and comparison with the
existing work is presented in Sect. 5. We finally conclude in Sect. 6.

2 Preliminaries

Notation: We use the notation x ∈R S to denote x is a random element of
S and λ to represent bit size of prime integer p. Also, we use [m] to denote
integers from 1 to m and [a, b] to denote integers from a to b. Let ε : N → R be
a function, where N and R are the sets of natural and real number respectively.
The function ε is said to be a negligible function if ∃ d ∈ N such that ε(λ) ≤ 1

λd .
Let |G| denotes the cardinality of group G.

2.1 Broadcast Encryption with Dealership

Syntax of KEMD: A key encapsulation mechanism with dealership scheme
KEMD = (KEMD.Setup, KEMD.KeyGen, KEMD.GroupGen, KEMD.Verify, KEMD.
Encrypt, KEMD.Decrypt) consists of four probabilistic polynomial time (PPT)
algorithms - KEMD.Setup, KEMD.KeyGen, KEMD.GroupGen, KEMD.Encrypt and
two deterministic polynomial time algorithms - KEMD.Verify, KEMD.Decrypt.
Formally, KEMD is described as follows:

• (PP,MK)←KEMD.Setup(N,λ): The PKGC takes as input the total number
of users N in the system and security parameter λ and constructs the public

280 K. Acharya and R. Dutta

parameter PP and a master key MK. It makes PP public and keeps MK secret
to itself.

• (ski)←KEMD.KeyGen(PP,MK, i): Taking as input PP, MK and a subscribed
user i, the PKGC generates a secret key ski of user i and sends ski to user i
through a secure communication channel between PKGC and user i.

• (P (G), k)←KEMD.GroupGen(PP, G): The dealer selects a set of subscribed
users G and generates a group token P (G) using PP. It outputs a threshold
value k, where |G| ≤ k. The dealer sends G to each subscribed user u ∈ G
through a secure communication channel between them. Subscribed users
keep G secret.

• (0 ∨ 1)←KEMD.Verify(P (G),PP, k): The broadcaster verifies implicitly group
size |G| ≤ k using P (G), PP, k and sets

KEMD.Verify(P (G),PP, k) =

{
1, if |G| ≤ k

0, otherwise.

If the verification fails i.e., KEMD.Verify(P (G),PP, k) = 0, the broadcaster
aborts.

• (Hdr,K)←KEMD.Encrypt(P (G),PP): Taking as input P (G) and PP, the
broadcaster produces a header Hdr and a session key K. It makes the header
Hdr public and keeps the session key K secret to itself. This session key K
can be used to generate a ciphertext for a message using a symmetric key
encryption algorithm.

• (K)←KEMD.Decrypt(PP, ski,Hdr, G): A subscribed user i with secret key
ski outputs the session key K using PP, Hdr and subscribed user set G.

Correctness: The scheme KEMD is said to be correct if the session key K can be
retrieved from the header Hdr by any subscribed user in G. Suppose (PP,MK) ←
KEMD.Setup(N,λ), (P (G), k) ← KEMD.GroupGen(PP, G), (Hdr,K) ←
KEMD.Encrypt

(
P (G),PP

)
. Then for every subscribed user i ∈ G,

KEMD.Decrypt
(
PP,KEMD.KeyGen

(
PP,MK, i

)
,Hdr, G

)
= K.

2.2 Security Framework

〈I〉Privacy: We define the privacy of the subscribed user set G of the protocol
KEMD using the game as in Fig. 1 between an adversary A and a challenger
C. We have followed privacy model of [10].
The advantage of the adversary A in the privacy game is defined as AdvKEMD-P

A
=|Pr(b

′
= b) − 1

2 |. The probability is taken over random bits used by C and
A.
Definition 1.The BED scheme KEMD is said to be (T, ε)-secure under group
privacy issue, if AdvKEMD-P

A ≤ ε for every PPT adversary A with running
time at most T .

Secure and Efficient Construction of Broadcast Encryption with Dealership 281

Fig. 1. Privacy of protocol KEMD.

〈II〉Maximum Number of Accountability: The security game between an
adversary A and a challenger C addressing maximum number of accountability
of the protocol KEMD follows the model in [10] and described in Fig. 2.
The adversary A’s advantage in the game for maximum number of account-
ability is defined as AdvKEMD-M

A = |(Pr(KEMD.Verify(P (G∗),PP, k)) = 1
)− 1

2 |
where k < |G∗|. The probability is taken over random bits used by C and A.

Definition 2. The BED scheme KEMD is said to be (T, ε)-secure under max-
imum number of accountability, if AdvKEMD-M

A ≤ ε for every PPT adversary
A with running time at most T .

〈III〉Key indistinguishability of KEMD under CPA: We have followed
[5] to design key indistinguishability against CPA security model. Selective
security of the scheme KEMD is measured under the following key indistin-
guishability game played between a challenger C and an adversary A:
Initialization: The adversary A selects a recipient set G and sends to C.
Setup: The challenger C generates (PP,MK) ← KEMD.Setup(N,λ). It keeps

the master key MK secret to itself and makes the public parameter PP
public.

Phase 1: The adversary A sends key generation queries for i1, . . . , im /∈ G
to C and receives the secret key ski ← KEMD.KeyGen(PP,MK, i) for user
i ∈ {i1, . . . , im}.

Challenge: The challenger C generates (Hdr,K) ← Encrypt
(
P (G),PP

)
,

where (P (G), k) ← KEMD.GroupGen(PP, G). It selects b ∈R {0, 1} and
sets Kb = K, K1−b a random value. Finally, C returns Hdr,K0,K1 to A.

Phase 2: This is similar to Phase 1 key generation queries. The adversary
A sends key generation queries for im+1, . . . , iq /∈ G to C and receives the
secret key ski ← KEMD.KeyGen(PP,MK, i) for i ∈ {im+1, . . . , iq}.

Guess: The adversary A outputs a guess b′ ∈ {0, 1} of b and wins if b′= b.
Let t be the number of corrupted users and N be the total number of users.

Adversary is allowed to get reply up to t key generation queries. In random
oracle model t is number of hash queries and key generation queries. The
adversary A’s advantage in the above security game is defined as
AdvKEMD-INDK

A (t,N)= |2Pr(b′ = b) − 1|=|Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]|.
The probability is taken over random bits used by C and A.

282 K. Acharya and R. Dutta

Definition 3. Let AdvKEMD-INDK(t,N) = max
A

[
AdvKEMD-INDK

A (t,N)
]
, where

maximum is taken over all PPT algorithm running in poly(λ) (polynomial of
λ) time. The BED scheme KEMD is said to be (t,N)- secure if AdvKEMD-INDK

= ε(λ), where ε(λ) is a negligible function in security parameter λ.

Fig. 2. Maximum number of accountability of protocol KEMD.

2.3 The Drawbacks of [10]

We provide the overview of the BED construction of Gritti et al. [10] in
Appendix A. In BED scheme of [10], the dealer generates the group token as

P (G) =
(
w1, w2, w3, w4, w5, w6

)

=
(
u

t1
∏

i∈G(xi+α)

0 , v
t1
∏

i∈G(xi+α)

0 , v
t1
∏

i∈G(xi+α)

N−k ,
∏

i∈G

f t2
i , gt2 , e(gγ , g)t2

)
.

Here e : G×G → G1 is bilinear mapping from source group G with generator
g to target group G1, ui = hγαi

, vi = hγβαi

for i ∈ [0, N], α, β, γ, t1, t2 ∈R Zp,
h ∈R G, public key of user i is PKi = (xi + α, fi), xi ∈R Zp, fi ∈R G, the group
G = {i1, i2, . . . , ik′} ∈ (Zp)k′

, k′ ≤ k. The broadcaster verifies whether group size
is ≤ k by checking e(w2, gN) = e(w3, gk). It generates a ciphertext for message
M ∈ G1 as (wr

5, w
r
4,Mwr

6) where r ∈R Zp. Note that the broadcaster does not
involve w1, w2, w3 in ciphertext components. A dishonest dealer can generate
w1, w2, w3 for less than k users while creating w4, w5, w6 for greater than k
users. In decryption phase, a user checks the group size that is received from
the dealer during group token generation. If it is greater than k, then the user
informs this to the broadcaster. The dealer will be blacklisted and excluded from
further business. Consequently, the broadcaster does not have the full control
on determining the dishonest dealer and has to rely on user’s response to stop
release of further encrypted content.

In the privacy proof, Gritti et al. [10] argued that group privacy is preserved
unconditionally since for each group of receivers G, there is a group G′ of same
size such that P (G) = P (G′). This argument in fact incorrect. It is not sufficient
to show that there exists a group G′, since the adversary is allowed to choose

Secure and Efficient Construction of Broadcast Encryption with Dealership 283

G0 and G1. It is required to prove that P (Gb) = P (G1−b), b ∈ {0, 1} for a group
Gb. They have proved P (Gb) = P (Gb′) where Gb′ may not be equal to G1−b. If
unconditional privacy holds, then P (G) = P (G′) for all pairs of groups of same
size with G
= G′. Then the members of G′ would also be able to decrypt the
ciphertext generated using P (G) as P (G) = P (G′). But if G is the set of legal
users, then a user in G′ \G is not entitled to decrypt the ciphertext using P (G).
This contradicts the semantic security against illegal users.

2.4 Complexity Assumptions

Definition 4 (Bilinear Map). Let G and G1 be two multiplicative groups of
prime order p. Let g be a generator of G. A bilinear map e : G × G −→ G1 is a
function having the following properties:

1. e(ua, vb) = e(u, v)ab, ∀ u, v ∈ G and ∀ a, b ∈ Zp.
2. The map is non-degenerate, i.e., e(g, g) is a generator of G1.

The tuple S = (p,G,G1, e) is called a prime order bilinear group system.

〈 A 〉 The Discrete Logarithm (DL) Assumption:
Input :

〈
Z = (gα, g)

〉
, where g is a generator of G, α ∈R Zp.

Output : α
Definition 5.The (T, ε)-DL assumption holds if for every PPT adversary A
with running time at most T , the advantage of solving the above problem is
at most ε, i.e., AdvDL

A = |Pr[A(Z) = α]| ≤ ε(λ), where ε(λ) is a negligible
function in security parameter λ.

〈 B 〉The (f, l)-Diffie-Hellman Exponent ((f, l)-DHE) Assumption [10]:
Input :

〈
Z = (S, g, gα, . . . , gαl

)
〉
, where g is generator of G, α ∈R Zp.

Output : f(x) and gf(α) where f(x) is polynomial of degree l′ > l.
Definition 6. The (f, l)-DHE assumption holds with (T, ε) if for every PPT
adversary A with running time at most T , the advantage of solving the above
problem is at most ε, i.e., Adv

(f,l)−DHE
A = |Pr[A(Z) = (f(x), gf(α))]| ≤ ε(λ),

where ε(λ) is a negligible function in security parameter λ and f(x) is poly-
nomial of degree l′ > l.

〈 C 〉 The (f, φ, F)-General Decisional Diffie-Hellman Exponent ((f, φ, F)-GDDHE)
Assumption [5]:
Input:

〈
Z = (S, f(x), φ(x), h0, h

α
0 , hα2

0 , . . . , hαt−1

0 , h
αf(α)
0 , h

kαf(α)
0 , g0, g

α
0 , gα2

0 ,

. . . , gα2N

0 , g
kφ(α)
0),K

〉
, where g0, h0 are generators of G, α ∈R Zp, f(x) =

∏t
i=1(x + xi), φ(x) =

∏t+N
i=t+1(x + xi), xi ∈ Zp for i ∈ [t + N] are distinct, K

is either e(g0, h0)F (α) where F (α) = kf(α) or a random element X ∈ G1.
Output: Yes if K = e(g0, h0)kf(α); No otherwise.
Definition 7. The (f, φ, F)-GDDHE assumption holds with (T, ε) if for every
PPT adversary A with running time at most T , the advantage of solving
the above problem is at most ε, i.e., Adv

(f,φ,F)−GDDHE
A = |Pr[A(Z,K =

e(g0, h0)kf(α)) = 1] − Pr[A(Z,K = X) = 1]| ≤ ε(λ), where ε(λ) is a neg-
ligible function in security parameter λ and X is random element of G1.

284 K. Acharya and R. Dutta

3 Our KEMD Construction

Our key encapsulation mechanism with dealership KEMD = (KEMD.Setup,
KEMD. KeyGen, KEMD. GroupGen, KEMD.Verify, KEMD.Encrypt, KEMD.
Decrypt) is described as follows:

• (PP,MK)←KEMD.Setup(N,λ): Given the security parameter λ and public
identity ID = {ID1, ID2, . . . , IDN} ∈ (Z+)N of a group of N users, the
PKGC generates the public parameter PP and a master key MK as follows:
1. Chooses a prime order bilinear group system S = (p,G,G1, e), where

G,G1 are groups of prime order p and e : G × G → G1 is a bilinear
mapping. Let g, h be generators of group G and H : {0, 1}∗ → Z

∗
p be a

cryptographically secure hash function.
2. Selects α ∈R Zp and sets a master key MK and public parameter PP as

MK = (α, h),PP = (S, g, g1, . . . , gN , v = e(g, h), w = hα,H, ID),
where gi = gαi

for i ∈ [1, N].
3. Keeps MK secret to itself and makes PP public.

Note that the public identity of the user i is IDi ∈ Z
+ for i ∈ [N].

• (sku)←KEMD.KeyGen(PP,MK, u): For each user u ∈ [N], the PKGC extracts
α, h from MK and IDu from PP, generates a secret key as sku = h

1
α+H(IDu)

and sends it to user u through a secure communication channel between them.
• (P (G), k)←KEMD.GroupGen(PP, G): The dealer selects a group of users G =

{i1, i2, . . . , ik′} ⊆ [N] and performs the following using PP:

1. Sets a polynomial F (x) =
∏

ij∈G

(x + H(IDij
)) =

k′
∑

i=0

Fix
i, where Fi’s are

function of H(IDj) for j ∈ G.
2. Picks t1 ∈R Zp and generates the group token P (G) = (w1, w2, w3, w4)

by setting

w1 = w−t1 = h−αt1 , w2 =
k′
∏

i=0

gt1Fi

N−k+i = g

k′∑

i=0
t1αiFi

N−k = g
t1F (α)
N−k ,

w3 = gt1F0
k′
∏

i=1

gt1Fi
i = g

k′∑

i=0
t1αiFi

= gt1F (α), w4 = vt1 = e(g, h)t1

where w, gi, for i ∈ [1, k′] and v are extracted from PP.
3. Selects a threshold value k on the group size G where k ≥ k′ = |G|.
4. Sends G to each subscribed user through a secure communication channel

between the user and the dealer. The subscribed users keep G secret to
themselves.

5. Publishes P (G) together with the threshold value k.
• (0∨1)←KEMD.Verify(P (G),PP, k): Taking as input the group token P (G) =

(w1, w2, w3, w4), the threshold value k, and gk, gN extracted from PP, the

broadcaster setsKEMD.Verify(P (G),PP, k) =

{
1, if e(w2, gk) = e(w3, gN)
0, otherwise.

Secure and Efficient Construction of Broadcast Encryption with Dealership 285

Notice that, e(w2, gk) = e(gt1F (α)
N−k , gk) = e

(k′
∏

i=0

g(t1αN−k+i·Fi), gαk
)

= e(g, g)
t1αk

(
k′∑

i=0
αN−k+i·Fi

)

= e(g, g)
t1

(
k′∑

i=0
αN+i·Fi

)

,

and, e(w3, gN) = e(gt1F (α), gN) = e(g, g)
t1

(
k′∑

i=0
αN+i·Fi

)

.

If the verification fails i.e., KEMD.Verify(P (G),PP, k) = 0, the broadcaster
aborts. We point down here that only two components namely w2, w3 of P (G)
are used during this verification process.

• (Hdr,K)←KEMD.Encrypt(P (G),PP): Using PP and P (G) = (w1, w2, w3, w4)
with KEMD.Verify(P (G),PP, k) = 1, the broadcaster does the following:
1. Chooses an integer r ∈R Zp and sets a session key K, header Hdr as

K = wr
4 = e(g, h)t1r,Hdr = (C1, C2) =

(
wr

1, w
r
3

)
=

(
h−αrt1 , grt1F (α)

)
.

2. Finally, publishes Hdr and keeps K secret to itself.

Note that this encryption process utilizes the two components w1, w4 of P (G),
together with w3 which has already been used in combination with w2 and passed
the verification in procedure KEMD.Verify successfully.

• (K)←KEMD.Decrypt(PP, sku,Hdr, G): A subscribed user u with secret key
sku, uses PP, the header Hdr = (C1, C2), the set of subscribed users G and

recovers the session key K as K =
(
e(C1, g

Pu,G(α))e(sku, C2)
) 1∏

j∈G,j �=u
H(IDj)

where Pu,G(α) = 1
α

{ ∏

j∈G,j �=u

(α + H(IDj)) − ∏

j∈G,j �=u

H(IDj)
}
.

Observe that gPu,G(α) is computable with the knowledge of G as follows:
The expression

{ ∏

j∈G,j �=u

(α + H(IDj)) − ∏

j∈G,j �=u

H(IDj)
}

is a polynomial

of degree (k′ − 1) in α without a constant term where k′ = |G| and thus

the expression 1
α

{ ∏

j∈G,j �=u

(α + H(IDj)) − ∏

j∈G,j �=u

H(IDj)
}

=
k′−2∑

i=0

aiα
i is a

polynomial of degree (k′ −2) in α. Here ai, i ∈ [0, k′ −2] are constants and are
functions of H(IDj) where j ∈ G, j
= u. Since g, gi = gαi

for i ∈ [1, k′ − 2]
are all available in public parameter PP,

gPu,G(α) = g

k′−2∑

i=0
aiα

i

= ga0

k′−2∏

i=1

gaiα
i

= ga0

k′−2∏

i=1

gai
i

can be computed without the knowledge of α. However, this requires explicit
knowledge of group G, which is intimated to each subscriber by the dealer

286 K. Acharya and R. Dutta

during token generation in the procedure KEMD.GroupGen through a secure
communication channel between them.

Correctness of our KEMD: The correctness of KEMD.Decrypt algorithm is
as follows:

K =
[
e(C1, g

Pu,G(α))e(sku, C2)
] 1∏

j∈G,j �=u
H(IDj)

=
[
e
(
h−αrt1 , g

1
α

{ ∏

j∈G,j �=u

(α+H(IDj))−
∏

j∈G,j �=u

H(IDj)
}
)
×

e
(
h

1
α+H(IDu) , g

rt1
∏

j∈G

(α+H(IDj)))] 1∏

j∈G,j �=u
H(IDj)

=
[
e(g, h)

−rt1

{ ∏

j∈G,j �=u

(α+H(IDj))−
∏

j∈G,j �=u

H(IDj)
}

×

e(h, g)
rt1

{ ∏

j∈G,j �=u

(α+H(IDj))
}
] 1∏

j∈G,j �=u
H(IDj)

= e(g, h)t1r.

Remark 1. If a user revokes then the selected user set G will be changed. Accord-
ingly P (G) will be changed. Moreover, a revoked user will not have the infor-
mation about current subscribed users. Therefore he will unable to recover the
session key.

Remark 2. In our scheme dealer can not act dishonestly as we use all the com-
ponents of our group token

P (G) =
(
w1, w2, w3, w4

)
=

(
w−t1 , g

t1F (α)
N−k , gt1F (α), e(g, h)t1

)

either implicitly or explicitly in encryption phase. This property is not achievable
in [10].

Remark 3. Note that the decryptor (legitimate subscribed user) needs the
explicit knowledge of subscribed users in the decryption procedure. The dealer
uses secure communication channel to inform the subscribed user set G while
generating the group token P (G). The dealer has to use these secure chan-
nels between him and the subscribed user each time a new group token is
generated on group membership change. For dynamic group, it is essential
to remove the reuse of secure communication channel which can be done by
using a suitable public key encryption as follows: The dealer generates (pub-
lic key, secret key) pair (pi, si) for each user i ∈ [N] during the procedure
KEMD.Setup using a public key encryption mechanism and gives si to user i
securely. Let at some stage, j1, . . . , jk′ ∈ [N] are subscribed users with iden-
tities IDj1 , . . . , IDjk′ . To represent a user index, we need s = log2 N bits
for a network with maximum N users. Let message space of the public key
encryption scheme E be at least (N + 2)s bits. The dealer generates ciphertext

y =
([

Epi
(j1|| . . . ||jk′ ||k′||X)

]k′

i=1
,
[
Ep̂i

(Ri)
]k−k′

i=1
,X

)
of size k + 1 while generat-

ing group token in the procedure KEMD.GroupGen. Here Ri are random mes-
sages, p̂i are random key values for i ∈ [1, k−k′], || denotes concatenation of bits.

Secure and Efficient Construction of Broadcast Encryption with Dealership 287

Consider j1, . . . , jk′ , k′,X are of s bits. If it is not of s bits, fill up left part by
zeros. Last s bits are parity checking bits. The dealer publishes y instead of send-
ing the group G to the subscribed users through secure communication channels.
User i decrypts the ciphertext components using the secret key si. If it finds a
decrypted value whose last s bits matches with X, then it can extract j1, . . . , jk′

from the decrypted value.

4 Security

Theorem 1. (Privacy). Our proposed BED scheme KEMD described in Sect. 3
is computationally secure under the hardness of the discrete logarithm problem
as per the group privacy issue as described in Fig. 1 in Sect. 2.2.

Proof. We describe the privacy of KEMD using a game between a challenger C
and an adversary A as:

Setup: The challenger C generates the public parameter, PP = (S, g, g1, . . . , gN ,
v = e(g, h), w = hα,H, ID), and the master key MK = (α, h) by calling
KEMD.Setup(N,λ). Here gi = gαi

for i ∈ [1, N], α ∈ Zp, g, h are generators
of group G, ID = {ID1, ID2, . . . , IDN} ∈ (Z+)N is the set of public identities
of N users, H : {0, 1}∗ → Z

∗
p is a cryptographically secure hash function. It

keeps MK secret to itself and hands PP to A.
Challenge: The adversary A selects two sets of users G0, G1 of same size and

submits G0, G1 to C. The challenger C chooses b ∈R {0, 1} and generates a
group token P (Gb) by running KEMD.GroupGen(PP, Gb) as

P (Gb) = (w1, w2, w3, w4) = (w−t1 ,

k′
∏

i=0

gt1Fi

N−k+i,

k′
∏

i=0

gt1Fi
i , vt1)

= (h−αt1 , g
t1F (α)
N−k , gt1F (α), e(g, h)t1)

where t1 ∈ Zp, Fi, 0 ≤ i ≤ k′ are coefficient of xi in polynomial F (x) =∏
j∈Gb

(x + H(IDj)). The challenger C hands P (Gb) to A.
Guess: The adversary A outputs a guess b′ ∈ {0, 1} of b and wins if b′= b.

Given P (Gb), the adversary A can predict Gb if it can predict the random
number t1 chosen by the challenger C. As A has G0, G1, he can compute P (G0)
if he can know t1. If P (G0) matches with P (Gb), A predicts b = 0, else b = 1.
Therefore, prediction of b is same as predicting t1 from P (Gb) i.e., computing t1
from w1 = w−t1 where w is available to A trough PP. So, security depends on
the hardness of the discrete logarithm problem. Hence the theorem.

Theorem 2. (Maximum number of accountability). Our proposed BED scheme
KEMD described in Sect. 3 is secure as per maximum number of accountability
security model as described in Fig. 2 in Sect. 2.2 under the (f,N)-DHE hardness
assumption.

288 K. Acharya and R. Dutta

Proof. Let a PPT adversary A breaks the maximum number of accountability
of our KEMD scheme with non-negligible advantage. We construct an algorithm
C that attempts to solve an instance of the (f,N)-DHE problem using A as a
sub-routine.

C is given an instance of the (f,N)-DHE problem
〈
Z = (S, g, g1, g2, . . . , gN)

〉
,

where gi = gαi

for i ∈ [N], α ∈ Zp, S is a bilinear group system, g is a generator
of the group G. Now C plays the role of the challenger in the security game and
interacts with A as follows:

Setup: Using Z, the challenger C sets public parameter PP = (S, g, g1,
. . . , gN , v = e(g, gx), w = gx

1 ,H, ID) where x ∈R Zp, H : {0, 1}∗ → Z
∗
p

is a cryptographically secure hash function, ID = {ID1, ID2, . . . , IDN} ∈
(Z+)N is the set of public identities of N users and hands PP to A. It
sets MK = (α, h = gx). Note that α is not known to C explicitly and
w = gx

1 = gαx = hα, v = e(g, gx) = e(g, h) as in the real scheme.
Challenge: The challenger C submits a threshold value k ∈ [N] on the group

size to A.
Guess: The adversary A computes P (G∗) by running KEMD.GroupGen(PP, G∗)

where |G∗| = k̂ > k as

P (G∗) = (ŵ1, ŵ2, ŵ3, ŵ4) = (w−t1 ,
k̂∏

i=0

gt1Fi

N−k+i,
k̂∏

i=0

gt1Fi
i , vt1)

= (h−αt1 , g
t1F̂ (α)
N−k , gt1F̂ (α), e(g, h)t1)

where t1 ∈ Zp, Fi, 0 ≤ i ≤ k̂ are coefficient of xi in polynomial F̂ (x) =∏
j∈G∗(x + H(IDj)). The adversary A sends (P (G∗), G∗) to C.

Note that if the adversary A outputs a valid P (G∗) for a group G∗ of size
k̂ > k i.e., KEMD.Verify(P (G∗),PP, k) = 1, then F̂ (x) =

∏

j∈G∗
(x + H(IDj))

is a k̂(> k) degree polynomial and ŵ2 = g
t1F̂ (α)
N−k = gt1αN−kF̂ (α). Let f(x) =

t1x
N−kF̂ (x). This is a polynomial of degree N − k + k̂ > N as k̂ > k. Then

(f(x), ŵ2 = gf(α)) is a solution of the (f,N)-DHE problem. Therefore if A wins
against maximum number of accountability game in Fig. 2, then it can solve the
(f,N)-DHE problem. This completes the proof.

Theorem 3. (Key indistinguishability under CPA) Our proposed BED scheme
KEMD described in Sect. 3 achieves selective semantic (indistinguishable under
CPA) security in the random oracle model as per the key indistinguishability
security game of Sect. 2.2 under the (f, φ, F)-GDDHE hardness assumption.

Proof. Assume that there is a PPT adversary A that breaks the selective seman-
tic security of our proposed KEMD scheme with a non-negligible advantage. We
construct a distinguisher C that attempts to solve the (f, φ, F)-GDDHE problem

Secure and Efficient Construction of Broadcast Encryption with Dealership 289

using A as a subroutine. Both A and C are given N , the total number of users and
t, the total number queries for key generation and random oracle. Let C be given
an (f, φ, F)-GDDHE instance

〈
Z = (S, f(x), φ(x), h0, h

α
0 , hα2

0 , . . . , hαt−1

0 , h
αf(α)
0 ,

h
kαf(α)
0 , g0, g

α
0 , gα2

0 , . . . , gα2N

0 , g
kφ(α)
0), X

〉
, where f(x) =

∏t
i=1(x + xi), φ(x) =

∏t+N
t+1 (x + xi) are two co-prime polynomials with pairwise distinct roots i.e.,

xi ∈R Zp, i ∈ [t + N] are all distinct, S = (p,G,G1, e), g0, h0 are generators
of group G, X = e(g0, h0)kf(α) or random element of G1. The distinguisher C
attempts to output 0 if X = e(g0, h0)kf(α) and 1 otherwise, using A as a subrou-
tine. Let us denote fi(x) = f(x)

x+xi
for i ∈ [t], φi(x) = φ(x)

x+xi
for i ∈ [t + 1, t + N].

Now C plays the role of a challenger in the security game described in Sect. 2.2
and interacts with A as follows:

Initialization: The adversary A selects a target recipient set G of s∗ users with
identity set S = {ID∗

1 , . . . , ID∗
s∗} ⊆ ID = {ID1, ID2, . . . , IDN} ∈ (Z+)Nand

declares it to C. Here ID is the set of identities of the group of N users.

Setup: Using Z, the challenger C first computes
t+N∏

i=t+s∗+1

(x + xi) =
N−s∗
∑

i=0

xiAi

(say), where Ai’s, are function of xj , j ∈ [t + s∗ + 1, t + N] for i ∈ [0, N − s∗].
We note down here that xj are distinct roots of polynomial φ(x) which
C can extract from the polynomial. Using these Ai values, C computes

N−s∗
∏

i=0

(gαi

0)Ai = g

N−s∗
∑

i=0
αiAi

0 = g

t+N∏

i=t+s∗+1
(α+xi)

0 by extracting gαi

0 values from

Z and sets g = g

t+N∏

i=t+s∗+1
(α+xi)

0 , gj = gαj

=
N−s∗
∏

i=0

(gαi+j

0)
Ai

.

Note that
N−s∗
∏

i=0

(gαi+j

0)
Ai

= g

N−s∗
∑

i=0
αi+jAi

0 = g
αj

{
t+N∏

i=t+s∗+1
(α+xi)

}

0 = gαj

= gj .

The challenger also computes

f(x)
t+N∏

i=t+s∗+1

(x + xi) =
t∏

i=1

(x + xi)
t+N∏

i=t+s∗+1

(x + xi) =
N−s∗+t∑

i=0

xiCi (say),

where Ci, are function of xj , j ∈ [t+s∗ +1, t+N]∪ [1, t] for i ∈ [0, N −s∗ + t].
Here xj are distinct roots of f(x) and φ(x), which are made available to
C through f(x), φ(x) provided in Z. Using these Ci values, C computes

N−s∗+t∏

i=0

(gαi

0)
Ci

= g

N−s∗+t∑

i=0
αiCi

0 = g
f(α)

{
t+N∏

i=t+s∗+1
(α+xi)

}

0 and

e
(
g

f(α)

{
t+N∏

i=t+s∗+1
(α+xi)

}

0 , h0

)
= e(g0, h0)

f(α)

{
t+N∏

i=t+s∗+1
(α+xi)

}

. Note that, N −
s∗ + t ≤ 2N as t, s∗ ≤ N . Therefore, all gαi

0 values required for the above
computation can be extracted by C from Z. The challenger C finally sets

290 K. Acharya and R. Dutta

w = h
αf(α)
0 , v = e(g0, h0)

f(α)

{
t+N∏

i=t+s∗+1
(α+xi)

}

and gives public parameter
PP = (S, g, g1, . . . , gN , v, w,H, ID) to A, where H : {0, 1}∗ → Z

∗
p is a crypto-

graphic hash function selected by C himself.

Observe that, w = h
αf(α)
0 = hα,

v = e(g0, h0)
f(α)

{
t+N∏

i=t+s∗+1
(α+xi)

}

= e(g

t+N∏

i=t+s∗+1
(α+xi)

0 , h
f(α)
0) = e(g, h),

where h = h
f(α)
0 is set by C implicitly. This makes the distribution of PP

simulated above identical as in the original scheme. As α or hαt

0 is not known
to adversary A or challenger C, they can not compute h.

Hash queries: The challenger maintain hash list HL that contains at the begin-
ning {∗, xi, ∗}t

i=1, {ID∗
i−t, xi, ∗}t+s∗

i=t+1 (∗ stands for empty entry) to reply at
most t − q hash queries, where q is number of key generation queries. If the
queried identity already exists in HL, C responds with corresponding hash
value. Else picks xi for some {∗, xi, ∗} in HL, returns H(IDi) = xi to A, adds
{IDi, xi, ∗} to HL.

Query Phase 1: The adversary A issues key generation queries on {IDi}m
i=1

with a restriction that IDi /∈ S. The challenger generates private key as: If A
already issued a key generation query on IDi, C can find an entry (IDi, xi, ski)
in HL and responds to A with this ski.
Else if A has already issued a hash query on IDi, then C can find an entry

(IDi, xi, ∗) in HL, uses this xi to compute fi(x) = f(x)
x+xi

=
t−1∑

i=0

Dix
i (say),

where Di’s are function of the roots xj , j ∈ [1, t] of f(x) for i ∈ [0, t − 1], sets

ski =
t−1∏

i=0

hαiDi
0 = h

t−1∑

i=0
(αiDi)

0 = h
fi(α)
0 , adds (IDi, xi, ski) to HL and responds

to A with this ski.

Note that ski = h
fi(α)
0 = h

f(α)
α+xi
0 = h

1
α+xi = h

1
α+H(IDi) has the same distribu-

tion as in the original scheme.
Else C sets H(IDi) = xi, (as in the Hash queries phase), computes the
corresponding ski exactly as above, adds (IDi, xi, ski) to HL and responds to
A with this ski.

Challenge: The challenger C first extracts (hkαf(α)
0 , g

kφ(α)
0) from the

(f, φ, F)-GDDHE instance
〈
Z,X

〉
and sets the header Hdr as, Hdr =

(h−kαf(α)
0 , g

kφ(α)
0).

Observe that, h
−kαf(α)
0 = (hαf(α)

0)−k = w−k,

g
kφ(α)
0 = g

k

(
t+s∗
∏

i=t+1
(α+xi)

t+N∏

i=t+s∗+1
(α+xi)

)

0 = g
k

(
t+s∗
∏

i=t+1
(α+xi)

)

= g
k

s∗∏

i=1
(α+H(ID∗

i))

are similar to our real construction from A’s point of view.

Secure and Efficient Construction of Broadcast Encryption with Dealership 291

The challenger C then computes the polynomial

q(x) = 1
x

(t+N∏

i=t+s∗+1

(x+xi)−
t+N∏

i=t+s∗+1

xi

)
=

N−s∗−1∑

i=0

xiĀi (say), where Āi, are

function of xj , j ∈ [t + s∗ + 1, t + N] for i ∈ [0, N − s∗ − 1]. It then generates

N−s∗−1∏

i=0

gĀiα
i

0 = g

N−s∗−1∑

i=0
αiĀi

0 = g
q(α)
0 by extracting gαi

0 from the given instance

〈
Z,X

〉
and sets session key K as, K =

[
(X)

t+N∏

i=t+s∗+1
xi]

e(hkαf(α)
0 , g

q(α)
0), where

X is extracted from the (f, φ, F)-GDDHE instance. The challenger C finally
chooses b ∈R {0, 1} and sets Kb = K, K1−b as a random element of G1 and
returns (Hdr,Kb,K1−b) to A.
Here X= e(g0, h0)kf(α) or random element of G1, if X= e(g0, h0)kf(α) then

K =
[
(X)

t+N∏

i=t+s∗+1
xi]

e(hkαf(α)
0 , g

q(α)
0)

=
[
e(g0, h0)

kf(α)

{
t+N∏

i=t+s∗+1
xi

}
][

e(g0, h0)
kf(α)

(
t+N∏

i=t+s∗+1
(α+xi)−

t+N∏

i=t+s∗+1
xi

)
]

= e(g0, h0)
kf(α)

(
t+N∏

i=t+s∗+1
(α+xi)

)

= e(g

t+N∏

i=t+s∗+1
(α+xi)

0 , h
f(α)
0)k = e(g, h)k = vk.

Hence the simulated session key K has the same distribution as in original
scheme.

Phase 2: This is similar to Phase 1 key generation queries. The adversary A
sends key generation queries for {IDi}q

m+1 with a restriction that IDi /∈ S
and receives back secret keys {ski}q

m+1 simulated in the same manner by C
as in Phase 1.

Guess: Finally, A outputs a guess b′ ∈ {0, 1} of b to C and wins if b′ = b.

We define X = e(g0, h0)kf(α) as real event and X a random element of G1 as
rand event. Therefore

Adv
(f,φ,F)−GDDHE
C = |Pr[b′ = b|real] − Pr[b′ = b|rand]| = |Pr[b′ = b|real] − 1

2
|

=
∣
∣
∣(

1
2
Pr[b′ = 1|b = 1 ∧ real] +

1
2
Pr[b′ = 0|b = 0 ∧ real]) − 1

2

∣
∣
∣

=
∣
∣
∣
1
2
Pr[b′ = 1|b = 1 ∧ real] − 1

2
Pr[b′ = 1|b = 0 ∧ real]

∣
∣
∣.

[as Pr[b′ = 0|b = 0 ∧ real] + Pr[b′ = 1|b = 0 ∧ real] = 1]

292 K. Acharya and R. Dutta

In real case, the distribution of all the variables agrees with the semantic
security game, thereby

AdvKEMD-INDK
A (t,N) = |Pr[b′ = 1|b = 1 ∧ real] − Pr[b′ = 1|b = 0 ∧ real]|.

This implies Adv
(f,φ,F)−GDDHE
C = 1

2AdvKEMD-INDK
A (t,N). Therefore, if A has non-

negligible advantage in correctly guessing b′, then C solves (f, φ, F)-GDDHE
instance given to C with non-negligible advantage. Hence the theorem follows.

5 Efficiency

We compare our KEMD construction with the only known work of Gritti et al.
[10] in Tables 1 and 2 which exhibit significant improvement in parameter sizes
and computation overhead of our scheme over [10].

Table 1. Comparative summaries of storage, communication bandwith and security
of BED schemes.

Scheme |PP| |PK| |SK| |P (G)| |CT| SM MC SA

[10] (2N + 4)|G| + 1|G1| N|Zp| + N|G| (N+1)|G| 5|G|+1|G1| 2|G|+1|G1| Semi-static Semantic N-DBDHE

Our KEMD (N+2)|G|+1|G1| 0 1|G| 3|G|+1|G1| 2|G|+1|G1| Selective Semantic GDDHE

|PP| = public parameter size, |PK| = public key size, |SK| = secret key size, |P (G)| = group token size, |CT| =
ciphertext size, N = total number of users, |G| = bit size of an element of G, |G1| = bit size of an element of G1,
|Zp| = bit size of an element of Zp, SM = security model, MC = message confidentiality, SA = security assumption,
N-DBDHE = N- decisional bilinear diffie-hellman exponent, GDDHE = general decisional diffie-hellman exponent.

Table 2. Comparative summary of computation cost of parameter generation, encryp-
tion and decryption algorithm for BED schemes.

Scheme PP SK P (G) Verify Enc Dec

#exp #pair #exp # inv #exp # inv #pair #exp #pair #exp #pair # inv

[10] 2N+3 1 N+2 1 k′+4 in G, 0 2 2 in G, 2 0 2 1 in G1

in G in G 1 in G1 1 in G1

Our N+1 0 1 1 2k′+3 in G, 1 2 2 in G, 0 k′-1 in G 2 1 in G1

KEMD in G in G 1 in G1 in G1 1 in G1 1 in G1

PP = public parameter, SK = secret key, P (G) = group token, Enc = encryption, Dec = decryption, N

= total number of users, k′ = number of users selected by the dealer, #exp = number of exponentiations,

#pair = number of pairings, #inv = number of inversions.

Our proposed scheme is essentially a key encapsulation mechanism in deal-
ership framework whereas the construction of [10] is message encryption in deal-
ership framework. Unlike [10], our construction does not require any public key
and has constant size secret key. More interestingly, the sizes of the public para-
meter, secret key, group token and ciphertext are less in our KEMD design than
those of [10]. Computation cost in our construction is also favourably compa-
rable with that of [10]. The total number of exponentiation in our scheme is
3k′ +N +9, whereas in [10] number of exponentiation is 3N +k′ +13. Here N is
the total number of users and k′ is the number of subscribed users. As k′ ≤ N ,
our scheme requires less exponentiation. Our scheme needs 5 pairings whereas
[10] needs 7 pairings. While [10] is semi-statically secure in the standard model,
our KEMD is selectively secure in the random oracle model.

Secure and Efficient Construction of Broadcast Encryption with Dealership 293

Remark 4. Session key K is used for message encryption. If we compare with a
message encryption scheme, we can consider ciphertext CT as CT = (Hdr,MK).
In our scheme, we can consider ciphertext size as 1 more to the size of header.

6 Conclusion

We have proposed a BED scheme in key encapsulation mode, namely KEMD
which significantly reduces the parameter sizes and computation cost compared
to the only existing BED scheme constructed by Gritti et al. [10]. The scheme
is selectively secure against CPA under reasonable assumption. We have also
discussed privacy and maximum number of accountability issues. Furthermore,
unlike [10] the broadcaster in our scheme does not have to wait for response from
user’s side to detect illegal behaviour of a dealer.

References

1. Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using
private broadcast encryption. In: Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS,
vol. 4107, pp. 52–64. Springer, Heidelberg (2006). doi:10.1007/11889663 4

2. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005). doi:10.1007/11535218 16

3. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from
multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 206–223. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 12

4. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). doi:10.1007/
3-540-48658-5 25

5. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76900-2 12

6. Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broad-
cast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T.,
Okamoto, E., Okamoto, T., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp.
39–59. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73489-5 4

7. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-44993-5 5

8. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). doi:10.1007/
3-540-48329-2 40

9. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 10

10. Gritti, C., Susilo, W., Plantard, T., Liang, K., Wong, D.: Broadcast encryption
with dealership. Int. J. Inf. Secur. 15, 1–13 (2015)

11. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys.
In: IEEE Symposium on Security and Privacy (SP), pp. 273–285 (2010)

http://dx.doi.org/10.1007/11889663_4
http://dx.doi.org/10.1007/11535218_16
http://dx.doi.org/10.1007/978-3-662-44371-2_12
http://dx.doi.org/10.1007/3-540-48658-5_25
http://dx.doi.org/10.1007/3-540-48658-5_25
http://dx.doi.org/10.1007/978-3-540-76900-2_12
http://dx.doi.org/10.1007/978-3-540-73489-5_4
http://dx.doi.org/10.1007/978-3-540-44993-5_5
http://dx.doi.org/10.1007/3-540-48329-2_40
http://dx.doi.org/10.1007/3-540-48329-2_40
http://dx.doi.org/10.1007/978-3-642-01001-9_10

294 K. Acharya and R. Dutta

12. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). doi:10.1007/3-540-44647-8 3

13. Phan, D.H., Pointcheval, D., Shahandashti, S., Strefler, M.: Adaptive CCA broad-
cast encryption with constant-size secret keys and ciphertexts. Int. J. Inf. Secur.
12(4), 251–265 (2013)

A The BED Construction of [10]

The portions in the following scheme of [10] framed by boxes indicates those
terms which were added or modified in transition from the syntax of KEMD as
described in Sect. 2.1 to the syntax of BED of [10].

(PP,MK)←Setup(N,λ): The PKGC chooses a bilinear group system S = (p,G,
G1, e), where G,G1 are groups of prime order p and e : G × G → G1 is a
bilinear mapping. Let g be a generator of G and h ∈R G. It selects α, β, γ ∈R

Zp, computes ui = hγαi

, vi = hγβαi

for i ∈ [0, N] and sets public parameter
PP and master key MK as

MK = (α, β, γ),PP = (S, g, h, e(gγ , g), {ui}N
i=0, {vi}N

i=0).

(ski, PKi)←KeyGen(PP,MK, i): The PKGC takes si ∈R Zp, fi ∈R G for
i ∈ [1, N] and generates a secret key for user i as ski = (di,0, . . . , di,N), where
di,0 = g−si , di,i = gγfsi

i , di,j = fsi
j for i
= j. The PKGC additionally gener-

ates the public key for user i as PKi = (xi + α, fi) where xi ∈R Zp. It makes
PKi public and sends ski to user i securely through a secure communication
channel.

(P (G), k)←GroupGen(PP, {PKi}N
i=1 , G): A dealer selects a group G of k′(≤ k)

users and generates a group token P (G) as

P (G) = (w1, w2, w3, w4, w5, w6)

= (u
t1
∏

i∈G

(xi+α)

0 , v
t1
∏

i∈G

(xi+α)

0 , v
t1
∏

i∈G

(xi+α)

N−k ,
∏

i∈G

f t2
i , gt2 , e(gγ , g)t2)

where t1, t2 ∈R Zp, ui, vi are extracted from PP, xi +α, fi are extracted from
PKi for i ∈ [N]. The dealer sends G to each subscribed user through a secure
communication channel.

(0∨1)←KEMD.Verify(P (G),PP, k): The broadcaster implicitly verifies that the
size of G does not exceed k by checking the pairing e(w2, uN) = e(w3, uk). If
the verification succeeds, the broadcaster outputs 1 and proceeds; otherwise
it outputs 0 and aborts.

http://dx.doi.org/10.1007/3-540-44647-8_3

Secure and Efficient Construction of Broadcast Encryption with Dealership 295

(C)←Encrypt(P (G),PP, M): The broadcaster verifies that w2 = wβ
1 by check-

ing e(w1, v0) = e(w2, u0). If the verification succeeds the broadcaster gener-
ates a ciphertext C using P (G) = (w1, w2, w3, w4, w5, w6), PP and a message
M ∈ G1 as
C = (C1, C2, C3) = (wr

5, w
r
4,Mwr

6) = (grt2 ,
∏

i∈G

frt2
i ,M.e(gγ , g)rt2)

where r ∈R Zp.
(M)←Decrypt(PP, ski, C ,G): User i checks the cardinality of G which he

receives from the dealer. If it is greater than k, then user i informs this to
the broadcaster. User i retrieves M by coupling C = (C1, C2, C3) with di,j ’s
extracted from ski as follows:

X = e(di,i

∏

j∈G,j �=i

di,j , C1)e(di,0, C2)

= e(gγ
∏

j∈G

fsi
j , grt2)e(g−si ,

∏

j∈G

frt2
j) = e(gγ , grt2)

X−1C3 = e(gγ , grt2)−1Me(gγ , grt2) = M.

Towards Certificate-Based Group Encryption

Yili Ren1,2, Xiling Luo1,2, Qianhong Wu1(B), Joseph K. Liu3, and Peng Zhang4

1 School of Electronic and Information Engineering,
Beihang University, Beijing, China

qianhong.wu@buaa.edu.cn
2 Beijing Key Laboratory for Network-Based Cooperative Air Traffic Management,

Beijing, China
3 Faculty of Information Technology, Monash University, Melbourne, Australia

4 ATR Key Laboratory of National Technology,
Shenzhen University, Shenzhen, China

Abstract. Group Encryption (GE) is a recently proposed cryptographic
primitive protecting the privacy of the receivers in a communication sys-
tem. A majority of group encryption schemes are implicitly based on
public key infrastructure (PKI) setting in which the management of cer-
tificates are complicated. Identity based encryption (IBE) seems to be
a good alternative for PKI in GE, but the private key escrow and the
user revocation problem are inherent in IBE system. Certificate-based
encryption (CBE) overcomes drawbacks of PKI and IBE. In this paper,
we propose a new cryptographic primitive, referred to as certificate-based
group encryption (CBGE). In this notion, a certificate authority issues
the certificate as a part of decryption key corresponding to a user’s pub-
lic key and other information; and the user can register himself as a
group member to a group manager. Then anyone can verifiably send
confidential messages to a group member whose identity information is
hidden within a group of certified users. If required, the group manager
(GM) can trace the receiver. Following this model, we propose a scheme
towards CBGE, where the roles of the verifier and the GM are taken by a
single entity. We formally prove the scheme is secure in the random ora-
cle model. Unlike the users existing in GE schemes, users in our scheme
need not to check the certificates. CBGE provides an implicit certifica-
tion mechanism and allows a periodical update of certificate status.

Keywords: Group encryption · Certificate-based · Knowledge proof

1 Introduction

Privacy leakage has been a critical issue in communication with more and more
users frequently accessing to Internet. Communication involves two types of
privacy issues, i.e., sender privacy and receiver privacy. Group signature is a
well-known cryptographic primitive that guarantees sender privacy. It allows a
sender to issue a signature on behalf of a group and the identity authenticity of

c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 296–305, 2016.
DOI: 10.1007/978-3-319-47422-9 17

Towards Certificate-Based Group Encryption 297

the sender is verifiable but hidden from the others. Group signature is introduced
by Chaum and van Heyst [3] and developed in subsequent works [2,8].

Group encryption [9] (GE) is the encryption analogue of group signature but
designed for the purpose of receiver privacy. It allows a sender to send a cipher-
text to a receiver whose identity is hidden within a group of certified users. GE
schemes were introduced by Kiayias, Tsiounis and Yung [9] and further devel-
oped in a line of works [1,4,10,11]. GE schemes can be used in many important
settings, including the scenario where a user wants to hide himself from a trusted
third party, Ad-Hoc access structure group signature, as well as secure oblivious
retriever storage.

A majority of group encryption schemes are implicitly based on Public Key
Infrastructure (PKI). PKI leads to some shortcomings of GE schemes. In public-
key cryptosystems, user’s public key is a random string unrelated to his iden-
tity. When a sender wants to send a message to a receiver, he must obtain the
receiver’s public key authenticated by a trusted Certificate Authority. So the
problem of the PKI-based GE schemes lies in the need of high cost in authen-
ticating and managing the public keys, and the difficulty in managing multiple
communities.

One may naturally expect alternative paradigm without the disadvantages
of PKI-based GE schemes. Identity-based encryption (IBE) seems a plausible
solution. It was introduced by Shamir in 1984 [12]. Its main idea is that the
public keys of a user can be easily derived from arbitrary strings corresponding
to his identity information. And therefore, certification becomes unnecessary.
However, there are still some drawbacks in IBE system. First, the private key
escrow is inherent in such systems. A PKG can easily decrypt its users’ messages.
Second, the secret keys must be sent to the users via a secure channel, which
makes the problem of key distribution difficulty. Finally, the user revocation is
troublesome if some users’ secret keys are leaked.

Recently, certificate-based encryption [7] (CBE) has been proposed to bridge
the gap between traditional public key encryption and IBE. CBE provides an
efficient implicit certification mechanism as conventional PKI and allows a peri-
odical update of certificate status while eliminating third-party queries for the
certificate status in the conventional PKI. In CBE, each user generates his own
public/private key pair and requests a long-lived certificate from his certificate
authority (CA) as in a conventional PKI system. But, CA generates the long-
lived certificate as well as the short-lived certificates. A short-lived certificate is
only pushed to the owner of the public/private key pair and acts as a partial
decryption key. This additional functionality provides an implicit certification
so that the user is required to decrypt the ciphertext using his private key along
with an up-to-date certificate from his CA. These desirable features of CBE may
allows a new group encryption pardigm without disadvantages in PKI and IBE
based ones mentioned before.

298 Y. Ren et al.

1.1 Our Contribution

Motivated by the above scenarios, we propose a new crytographic primitive called
certificate-based group encryption (CBGE). In CBGE, a certificate acts as a
part of decryption key corresponding to a user’s identity information. Anyone
can send an encrypted message to an anonymous receiver. The group manager
can trace the authentic receiver if the need arises.

We define necessary security notions about CBGE. The first security notion,
called anonymity, protects the users from a hostile environment where the
attacker may want to extract the identity information about the receivers. The
second security notion is semantic security, i.e., indistinguishability against a cho-
sen plaintext attacks. Our model considers adversaries who have oracle access to
the certificate functionality of all users. The last security notion is traceability
which ensures that tracking dishonest receivers is reliable.

We design a concrete scheme in which the roles of the verifier and group
manager are taken by one entity. In order to get an efficient and practical scheme,
we use three primitives, i.e., a public-key encryption scheme which satisfies CCA2
security, an CBE scheme which satisfies anonymity and semantic security, and a
zero-knowledge proof to guarantee the traceability. And we provide the analysis
of successful attack performance of our scheme.

We prove the security of our concrete scheme according to the security defi-
nitions. The implementation of the scheme will require less infrastructure since
there are no certificates management or certificates revocation problems. The
certificates in our scheme are character strings which need not to be checked by
the users. Group manager can trace the identity of the receivers. These mecha-
nisms make our scheme easy to be deployed.

1.2 Related Work

Kiayias et al. formalized the notion of group encryption [9]. They provided mod-
ular design including zero-knowledge proofs, digital signature schemes, public-
key encryption schemes with CCA2 security and key-privacy and commitment
schemes. Cathalo et al. [4] proposed a group encryption with non-interactive real-
ization in the standard model. Independently, Qin et al. [11] considered a similar
primitive called Group Decryption. The Group Decryption has non-interactive
proofs and short ciphertexts. They avoid interaction by explicitly employing a
random oracle. Libert et al. proposed a traceable GE [10] which can trace all
the ciphertexts encrypted by a specific user without abolishing the anonymity of
the others. Aimani and Joye [1] obtain group encryption schemes that support
both interactive and non-interactive validity proofs.

The concept of certificate-based encryption (CBE) was proposed by Gentry
in 2003 [7]. Several generic constructions [5,13] have been proposed for construct-
ing a certificate-based encryption scheme from an identity-based scheme. In this
model, certificates are part of the secret key, so certification is implicit. CBE
has two important advantages over IBE. First, there is no key escrow, because
certificates are only a part of the secret key, while the other part is owned by the

Towards Certificate-Based Group Encryption 299

user alone. Second, the approach to user revocation is simple and neat. Specifi-
cally, certificates can have an expiry date, which means that the certification is
valid for a designated period.

2 Preliminaries

2.1 Bilinear Maps

Our scheme makes use of a bilinear map. Let G1, G2 and GT be cyclic groups of
prime order q for some large prime q. g1 is a generator of G1. g2 is a generator of
G2. We say that G1 and G2 are admissible bilinear groups if there is a bilinear
map e : G1 × G2 → GT that satisfies the following properties:

– Bilinear. We say that a map e : G1 × G2 → GT is bilinear if e(ga
1 , gb

2) =
e(g1, g2)ab for all g1 ∈ G1, g2 ∈ G2, and all a, b ∈ Zq.

– Non-degenerate. If g1, g2 are generators of G1, G1, then e(g1, g2) is a generator
of GT .

– Computable. There is an efficient algorithm to compute e(g1, g2) for all g1 ∈
G1, g2 ∈ G2.

2.2 Complexity Assumption

Our scheme’s anonymity and semantic security are based on the decisional bilin-
ear Diffie-Hellman (DBDH) assumption. Our scheme also relies on the well-know
Decisional Diffie-Hellman (DDH) assumption (in G1 defined below).

Let e : G1 × G2 → GT be an admissible bilinear map as defined above. Let
g1 be a generator of G1 and g2 be a generator of G2. The challenger randomly
chooses a, b, c ∈ Zq, Z ∈ GT , and then flips a coin ξ. If ξ = 1 the challenger out-
puts the tuple (g1, ga

1 , gb
1, g

c
1, g2, g

a
2 , gb

2, g
c
2, e(g1, g2)

abc). Otherwise, the challenger
outputs the tuple (g1, ga

1 , gb
1, g

c
1, g2, g

a
2 , gb

2, g
c
2, Z). The adversary output a guess

ξ′ of ξ.
An adversary, B has at least an ε advantage in solving the DBDH problem if

Pr[B(g1, ga
1 , gb

1, g
c
1, g2, g

a
2 , gb

2, g
c
2, e(g1, g2)

abc) = 1]

−Pr[B(g1, ga
1 , gb

1, g
c
1, g2, g

a
2 , gb

2, g
c
2, Z) = 1] |≥ ε

where the probability is over the random choice of a, b, c,∈ Zq, the random choice
of Z ∈ GT , the random choice of g1 ∈ G1, the random choice of g2 ∈ G2 and the
random bits of B.

Definition 1. The (t, ε)-DBDH assumption holds if no t-time adversary has at
least ε advantage in solving the above game.

300 Y. Ren et al.

3 Modelling CBGE

3.1 The CBGE System

CBGE system involves five parties: a CA who can generate system parameters
and a certificate according to the user’s identity and public key, a GM who man-
ages the group and traces the receivers if the need arises, a group of legitimate
users who anonymously receive messages from the senders, a sender who might
be one of the group members or not and has secret messages to be sent to the
legitimate users, and a verifier who can verify whether the encrypted identity
and the identity that forms the ciphertext are identical or not. CBGE consists
of the following procedures:

– (Params, SKCA) ← Setup(λ). This is a probabilistic algorithm which takes as
input a security parameter λ. It outputs the system parameter Params that
includes the description of a string space Λ and a CA’s master-key SKCA.
This algorithm is run by the CA.

– (PKGM , SKGM) ← GKGen(Params). This is a probabilistic algorithm which
takes as input system parameter Params. It outputs the group public key
and private key (PKGM , SKGM). This algorithm is run by the GM.

– (PKU , SKU) ← UKGen(Params). This is a probabilistic algorithm which
takes as input system parameter Params. It outputs the user’s corresponding
public key and private key pair (PKU , SKU). This algorithm is run by a user.
Each user can register his public key as a group member to GM.

– (Certτ,U) ← Certificate(Params, τ, SKCA, userinfo). This is deterministic
algorithm which takes as inputs Params, τ, SKCA, userinfo, where userinfo
includes the user’s public key PKU and any necessary additional identifying
information, while τ is a string identifying a time period. It outputs Certτ,U

and sends it to the user. This algorithm is run by the CA.
– (C) ← Encrypt(M,Params, PKGM , τ, userinfo). This is a probabilistic algo-

rithm which takes as inputs a message M in the structured message space,
system parameter Params, the userinfo, a time period τ , as well as group
public key PKGM . It outputs a final ciphertext C in the ciphertext space.
This algorithm is run by the sender.

– (M) ← Decrypt(Params,C, SKU , Certτ,U). This is a deterministic algorithm
which takes as inputs system parameter Params, ciphertext C, user’s private
key SKU and the certificate Certτ,U . It outputs the message M in the message
space. This algorithm is run by the receiver.

– (PKU) ← Trace(C,SKGM). GM runs a probabilistic algorithm takes as inputs
ciphertext C and group private key SKGM , outputs the PKU of the receiver
which indicates the receiver’s identity.

3.2 Security Notions of CBGE

We consider the anonymity, semantic security and traceability of a CBGE
scheme.

Anonymity. Anonymity of CBGE is defined as follow.

Towards Certificate-Based Group Encryption 301

Definition 2. We say that a CBGE scheme has indistinguishability against a
chosen user information attack (IND-CUA) if no polynomially bounded adver-
sary A has non-negligible advantage in the following game.

– Setup. The challenger takes as input security parameter λ and runs the
algorithm Setup(λ) which outputs system parameter Params and master-
key SKCA. The challenger then runs GKGen(Params) and UKGen(Params)
to obtain the key pairs (PKGM , SKGM) and (PKU , SKU). It gives the adver-
sary Params, PKGM and PKU .

– Phase 1. The adversary can adaptively issue the certification query of
(τ, userinfo) and the user secret key query. The challenger runs Certificate
and returns Certτ . The challenger runs UKGen and sends SKU to adversary.

– Challenge. The adversary chooses a message M and two users’ information
userinfo0, userinfo1 wished to be challenged. The challenger picks a random
b ∈ {0, 1} and runs Encrypt. Then it returns (C) = Encrypt(M,Params,
PKGM , userinfob).

– Phase 2. It is similar to Phase 1. One restriction is that in the queries
userinfo /∈ {userinfo0, userinfo1}. Another is that neither key of the chal-
lenging users regarding userinfo0 and userinfo1 can be queried.

– Guess. The adversary outputs b′ ∈ {0, 1}. The adversary wins in the game if
b = b′.

We define adversary A’s advantage with security parameter λ in the above
anonymity game as: AdvA(λ) =| Pr[b = b′] − 1

2 | .

Semantic security. Semantic security of CBGE is defined as follow.

Definition 3. We say that a CBGE scheme has indistinguishability against a
chosen plaintext attack (IND-CPA) if no polynomially bounded adversary A has
non-negligible advantage in the following game.

– Setup. The challenger takes as input security parameter λ and runs the
algorithm Setup(λ) which outputs system parameter Params and master-
key SKCA. The challenger then runs GKGen(Params) and UKGen(Params)
to obtain the key pairs (PKGM , SKGM) and (PKU , SKU). It gives the adver-
sary Params, PKGM and PKU .

– Phase 1. The adversary can adaptively issue the certification query of
(τ, userinfo) and the user secret key query. The challenger runs Certificate
and returns Certτ . Then the challenger runs UKGen and sends SKU to the
adversary.

– Challenge. After Phase 1, adversary chooses two equal length plaintexts
M0,M1 and issues query (τ ′, userinfo′, SK ′

U ,M0,M1). The challenger runs
Encrypt and returns (C) = Encrypt(Mc, Params, PKGM , τ ′, userinfo′).

– Phase 2. It is similar to Phase 1. One restriction is that the adversary can
at most ask one of two queries of the certification query and the secret query
regarding (τ ′, userinfo′).

– Guess. The adversary outputs c′ ∈ {0, 1}. The adversary wins in the game if
c = c′.

302 Y. Ren et al.

We define adversary A’s advantage with security parameter λ in the above
semantic security game as: AdvA(λ) =| Pr[c = c′] − 1

2 |.
Traceability. Traceability is formally defined as follow.

Definition 4. We say that an CBGE scheme is traceable if no polynomially
bounded adversary has non-negligible probability to win in the following game.

– Setup. The challenger takes as input security parameter λ and runs the
algorithm Setup(λ) which outputs system parameter Params and master-
key SKCA. The challenger then runs GKGen(Params) to obtain the key pairs
(PKGM , SKGM). It gives the adversary Params and PKGM .

– Challenge. The adversary outputs user1 with PKU1 , user2 with PKU2 and
an authenticated message M . The challenger returns the corresponding SKU1

and SKU2 .
– Output. The adversary outputs a well-formed ciphertext C ′ and a valid zero-

knowledge proof. The adversary wins if the group manager outputs one of the
user public keys and decryptions with SKU1 and SKU2 are both valid.

4 The Proposal

In this section, we propose a scheme towards CBGE. The only difference is that
the GM and the verifier are identical.

4.1 A Scheme Towards CBGE

Setup. Let e : G1 × G2 → GT be a bilinear map as defined in Sect. 2, where G1

is DDH-hard. The CA picks random generators g1, g2
R←G1. It picks a random

sC
R←Z∗

q and sets g = gsC
1 . The CA’s secret is sC . It chooses cryptographic hash

functions H1 : {0, 1}∗ → G2 and H2 from the family of universal one-way hash
functions. The systems paramters are Params = (q,G1, G2, GT , e, g, g1, g2,H1,
H2). The message space is M = {0, 1}�, where � is the message length.

GKGen. This procedure chooses random x1, x2, y1, y2, z
R←Zq, then computes

w = gx1
1 gx2

2 , d = gy1
1 gy2

2 , s = gz
1 . Group public key and secret key are PKGM =

(g1, g2, w, d, s,H2) and SKGM = (x1, x2, y1, y2, z), respectively.

UKGen. Assume that a user’s secret key/public key pair is (SKU , PKU) =
(sU , gsU

1), where sU
R←Z∗

q .

Certificate. The user sends userinfo to the CA, which includes his public
key gsU

1 and any necessary additional identifying information, such as his name
and email address. The CA verifies the user’s information. If satisfied, the CA
computes PU = H1(g, τ, userinfo) ∈ G2 in period τ . The CA then computes
P sC

U as a certificate and sends it to the user via a secure channel. The user also
signs userinfo, producing (P ′

U)sU where P ′
U = H1(userinfo) ∈ G2. Now, notice

that Certτ,U = P sC

U · (P ′
U)sU is a two person aggregate signature. The user will

use this aggregate signature as his partial decryption key.

Encrypt. This encryption procedure can be divided into two sub-procedures.

Towards Certificate-Based Group Encryption 303

– Message encryption. The sender computes PU = H1(h, τ, userinfo) ∈ G2 and
P ′

U = H1(userinfo) ∈ G2. Then he chooses a random r
R←Z∗

q . Let gU =
e(gsC

1 , PU)e(gsU
1 , P ′

U) ∈ GT . Let M = (M ′‖H(M ′, gr
U)) ∈ GT , where M ′ is

an appropriate bit string. To encrypt M using userinfo, the sender sets the
ciphertext to be C1 = [C10, C11] = [gr

1,M · gr
U].

– User’s public key encryption. Given the user’s public key gsU
1 ∈ G1, the

procedure chooses random n
R←Zq then it computes k1 = gn

1 , k2 = gn
2 , ψ =

sngsU
1 , ϕ = H2(k1, k2, ψ), v = wndnϕ. The ciphertext is C2 = [k1, k2, ψ, v].

The sender sends the ciphertext C = [C1, C2] to the verifier.

Zero-knowledge proof. We construct a zero-knowledge proof which can prove
the encrypted public key and the public key that forms message encryption are
identical. It proves the ciphertext has not been tampered as well as the ciphertext
is well-formed. This is an interactive protocol between the sender (prover) and
the verifier (GM). We denote the protocol as follow.

ZK

⎧
⎪⎨

⎪⎩
M, r, n, PKU

∣
∣
∣
∣
∣
∣
∣

C10 = gr
1, k1 = gn

1 , k2 = gn
2 ,

C11 = M · e(g, P r
U)e(PKU , (P ′

U)r),
ψ = snPKU , v = wndnϕ

⎫
⎪⎬

⎪⎭

This zero-knowledge proof is difficult to be constructed directly. We compute
T = PKr

U , ψ′ = ψr = snrT, k′
1 = kr

1 = gnr
1 and set dϕ = d′. Then we convert the

above zero-knowledge proof into an equivalent one as follows.

ZK

⎧
⎪⎨

⎪⎩
M, r, n, T, PKU

∣
∣
∣
∣
∣
∣
∣

C10 = gr
1, k1 = gn

1 , k2 = gn
2 , , v = (wd′)n

C11 = M · e(g, P r
U)e(T, P ′

U), ψ′ = ψr

ψ = snPKU , ψ′ = snrT, k′
1 = gnr

1 , k′
1 = kr

1

⎫
⎪⎬

⎪⎭

The 3-move protocol is as follows.

1. The prover randomly chooses integers r̄, n̄ ∈ Zq, ¯PKU , T̄ ∈ G1, and M̄ ∈
GT . He computes C̄10 = gr̄

1, k̄1 = gn̄
1 , k̄2 = gn̄

2 , ψ̄ = sn̄ ¯PKU , C̄11 = M̄ ·
e(g, P r̄

U)e(T̄ , P ′
U), ψ̄′ = sn̄r̄T̄ , k̄′

1 = gn̄r̄
1 , v̄ = (wd′)n̄, ψ̄′ = ψr̄, k̄′

1 = kr̄
1. Then he

sends these to the verifier.
2. The verifier challenges the prover with a random element c̄ ∈ Zq.
3 The prover responses with σ = {c̄, σ1, σ2, σ3, σ4, σ5, σ6}, where σ1 = M̄M c̄,

σ2 = r̄ + c̄r, σ3 = n̄ + c̄n, σ4 = ¯PKUPK c̄
U , σ5 = T̄ T c̄, σ6 = n̄r̄ + c̄ · nr.

4. The verifier who is also the GM computes PKU = gsU
1 = ψ/kz

1 . There-
fore, it can further compute PU , P ′

U . Then the verifier checks that gσ2
1

?=

C c̄
10C̄10, g

σ3
1

?= kc̄
1k̄1, g

σ3
2

?= kc̄
2k̄2, σ1 · e(g, P σ2

U)e(σ5, P
′
U) ?= C c̄

11C̄11, s
σ3σ4

?=

ψc̄ψ̄, sσ6σ5
?= ψ′c̄ψ̄′, gσ6

1
?= k′c̄

1 k̄′
1, (wd′)σ3

?= vc̄v̄, ψσ2
?= ψ′c̄ψ̄′, kσ2

1
?= k′c̄

1 k̄′
1. The

verifier outputs 1 if all checks hold and forwards (C, σ) to the anonymous
receiver, e.g., in a broadcast way; otherwise it outputs 0 and aborts.

304 Y. Ren et al.

Decryption. To decrypt C, the receiver computes: M = C11/e(C10, Certτ,U).
M can be divided into the form of M = (M ′‖ξ) ∈ GT . The receiver outputs M
if ξ = H(M ′, gr

U); else, outputs “abort”.

Trace. The GM outputs PKU = gsU
1 = ψ/kz

1 . It indicates the receiver’s identity.

Correctness of our scheme. We show that the above scheme is correct. We
first verify that the ciphertext can be decrypted correctly. e(C10, Certτ,U) =
e(gr

1, P
sC

U · (P ′
U)sU) = e(gsC

1 , PU)re(gsU
1 , (P ′

U))r = gr
U . We then verify that the

receiver can be traced correctly. Since k1 = gn
1 , k2 = gn

2 , we have kx1
1 kx2

2 =
gnx1
1 gnx2

2 = wn. Similarly, we have ky1
1 ky2

2 = dn and kz
1 = sn. The equation

kx1+y1ϕ
1 kx2+y2ϕ

2 = v will hold. The output is gsU
1 = ψ/sn.

For the security, we have the following theorems. The proofs are given in the
full version of the paper.

Theorem 1. Our scheme is anonymous against chosen users’ information
attack in the random oracle model assuming DDH and DBDH are intractable.

Theorem 2. Our scheme is semantically secure against chosen plaintext attack
in the random oracle model assuming DBDH is intractable.

Theorem 3. The probability that the GM outputs a wrong public key of the
receiver is 1/q. Our scheme satisfies traceability.

4.2 Efficiency

In Table 1, we denote τm as one multiplication operation time unit in G1,G2 and
GT , τe as one exponent operation time unit in G1,G2 and GT , τp as one pairing
operation time unit. The storage complexity and computational complexity of
our schemes are constant. Table 1 shows that our scheme is efficient.

Table 1. Efficiency of our CBGE scheme

PKGM size 5 SKGM size 5

PKU size 1 SKU size 1

Ciphertext size 6 Certificate time 2τe + τm

Setup time τe GKGen time 2τm + 5τe

UKGen time τe Encrypt time 2τm + 8τe

Decrypt time τm + τp Trace time τm + τe

5 Conclusion

We formalized a new cryptographic primitive, CBGE, which overcomes the draw-
backs of PKI-based and IBE-based group encryption. It allows a sender to send

Towards Certificate-Based Group Encryption 305

a ciphertext to any group member and the receiver of the ciphertext remains
anonymous. The group manager can trace the receiver if the need arises. We pro-
pose a concrete construction towards CBGE which achieves anonymity, semantic
security and traceability. We leave it as an open question to design a standard
CBGE scheme.

Acknowledgment. This paper is supported by the Natural Science Foundation of
China through projects 61370190 and by the Science & Technology Plan Projects of
Shenzhen (JCYJ20150324140036830, GJHZ20160226202520268).

References

1. Ei Aimani, L., Joye, M.: Toward practical group encryption. In: Jacobson, M.,
Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954,
pp. 237–252. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38980-1 15

2. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006). doi:10.1007/11761679 26

3. Chaum, D., Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). doi:10.1007/
3-540-46416-6 22

4. Cathalo, J., Libert, B., Yung, M.: Group encryption: non-interactive realization in
the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
179–196. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7 11

5. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005).
doi:10.1007/978-3-540-30576-7 11

6. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998). doi:10.1007/BFb0055717

7. Gentry, C.: Certificate-based encryption and the certificate revocation problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer,
Heidelberg (2003). doi:10.1007/3-540-39200-9 17

8. Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and
separable authorities. Int. J. Secur. Netw. 2006 1(1/2), 24–45 (2006)

9. Kiayias, A., Tsiounis, Y., Yung, M.: Group encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 181–199. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-76900-2 11

10. Libert, B., Yung, M., Joye, M., Peters, T.: Traceable group encryption. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 592–610. Springer, Heidel-
berg (2014). doi:10.1007/978-3-642-54631-0 34

11. Qin, B., Wu, Q., Susilo, W., Mu, Y.: Publicly verifiable privacy-preserving group
decryption. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487,
pp. 72–83. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01440-6 8

12. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). doi:10.1007/3-540-39568-7 5

13. Yum, D.H., Lee, P.J.: Identity-based cryptography in public key management. In:
Katsikas, S.K., Gritzalis, S., López, J. (eds.) EuroPKI 2004. LNCS, vol. 3093, pp.
71–84. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25980-0 6

http://dx.doi.org/10.1007/978-3-642-38980-1_15
http://dx.doi.org/10.1007/11761679_26
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/978-3-642-10366-7_11
http://dx.doi.org/10.1007/978-3-540-30576-7_11
http://dx.doi.org/10.1007/BFb0055717
http://dx.doi.org/10.1007/3-540-39200-9_17
http://dx.doi.org/10.1007/978-3-540-76900-2_11
http://dx.doi.org/10.1007/978-3-642-54631-0_34
http://dx.doi.org/10.1007/978-3-642-01440-6_8
http://dx.doi.org/10.1007/3-540-39568-7_5
http://dx.doi.org/10.1007/978-3-540-25980-0_6

Leakage Analysis

Updatable Lossy Trapdoor Functions
and Its Application in Continuous Leakage

Sujuan Li1,2(B), Yi Mu2, Mingwu Zhang3, and Futai Zhang4

1 School of Mathematical and Physical Sciences,
Nanjing Tech University, Nanjing, China

lisujuan1978@126.com
2 School of Computing and Information Technology,

University of Wollongong, Wollongong, Australia
3 School of Computer Science, Hubei University of Technology, Wuhan, China

4 School of Computer Science and Technology,
Nanjing Normal University, Nanjing, China

Abstract. Lossy trapdoor functions (LTFs) were firstly introduced by
Peikert and Waters [2]. Since their introduction, LTFs have found numer-
ous applications. In this paper we focus on the LTFs in the continuous
leakage. We introduce the new notion of updatable LTFs (ULTFs) and
give its formal definition and security properties. Based on these, we
extend the security model of the LTFs to continuous leakage. Under
the DDH assumption and DCR assumption respectively, we show two
explicit LTFs against continuous leakage in the standard model. We also
show the performance of the proposed schemes compared with the known
existing continuous leakage resilient LTFs.

Keywords: LTFs · Continuous leakage · ULTFs · DDH · DCR

1 Introduction

Lossy trapdoor functions (LTFs) were firstly introduced by Peikert and
Waters [2]. A collection of lossy trapdoor functions can be divided into two
computationally indistinguishable families. The first family is the injective func-
tions which can be efficiently inverted using a trapdoor, while the other family
is the lossy functions under which the image size of these functions is signifi-
cantly smaller than the size of their domain. Hence the lossy functions loose a
lot of information about their input. Additionally injective and lossy functions
are efficiently samplable.

This work was partly supported by the National Natural Science Foundation of
China under Grant 61170298, 61370224, 61672010, 61672289, Fujian Provincial Key
Laboratory of Network Security and Cryptology Research Fund (Fujian Normal
University) under Grant NO. 15006, the Jiangsu Government Scholarship for Over-
seas Studies (JS-2014-044), the Natural science fund for colleges and universities in
Jiangsu Province under Grant 16KJB520018. and the Youth Cultivation Fund of
Nanjing Tech University under ZKJ201528.

c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 309–319, 2016.
DOI: 10.1007/978-3-319-47422-9 18

310 S. Li et al.

Actually, lossy trapdoor functions have found numerous applications, which
can be used as a tool to construct important cryptographic primitives such as
injective one-way trapdoor functions, chosen plaintext secure (CPA) and chosen
ciphertext secure (CCA) public key encryptions (PKE) in the standard model
and oblivious transfer (OT). In addition, LTFs have already found various other
applications, including deterministic PKE scheme [9], OAEP-based PKE scheme,
hedged PKE scheme for protecting against bad randomness , selective opening
attack (SOA) secure PKE scheme and efficient non-interactive string commit-
ment etc.

The feature of a leakage resilient cryptosystem is that it remains secure even
when some secret internal information including the secret key is leaked to the
adversary. In the traditional security analysis, security models treat such internal
information as perfectly hidden from the adversary. With the development of
various side-channel attacks it is clear that the traditional view is inconsistent
with some physical realities [16]. The cryptographic researchers have paid much
attention to the design of leakage-resilient cryptosystems [5,17–19].

The continuous leakage resilient (CLR) model was introduced by Dodis et al.
[13] and Brakerski et al. [14]. It is a more powerful security model since it allows
the adversary to learn unbounded leakage on the system’s secret memory along
the full time of the system. Such model of invisible key updates was formalized
by Alwen et al. [15] where one assumes that there exists a trusted and leak-free
device which uses some updatable key uk to continuously refresh the secret key
in a way that still satisfies the above two requirements. The leak-free device is
only present during the key updates, but not during the normal operations just
like decryption when the leakage actually happens. In [1], this CLR model of
invisible key updates is referred to the floppy model, where there is assumed an
external leak-free storage which is only present for refreshing operations.

Our Motivation Based on the work of Brakerski et al. [14], Koppula et al.
[7] firstly gave the security model of lossy trapdoor functions under continuous
leakage and presented the lossy trapdoor functions against continuous leakage
which is a base of the deterministic public key encryption against continuous
leakage. Their security model is mainly based on the all-but-one (ABO) LTFs
of Peikert and Waters in [2]. Under this model their proposal is not concise
and efficient in which they utilized many bi-linear parings to encrypt only one
bit. Hence their LTFs against continuous leakage is so complicated that it can
not be used in practice efficiently. Qin and Liu et al. firstly introduced the
leakage resilient lossy trapdoor functions [8]. In their work the structure of LTFs
is slightly different from the one introduced by Peikert and Waters in [2]. In
[2], the evaluation key of a LTF includes the public parameters. But in [8],
they distinguish between the public parameters and the evaluation key with two
independent algorithms. Even though, the slight change on the constructure did
not has influence on their scheme to satisfy the security properties of LTFs.

Motivated by the work of Qin and Liu et al. [8], we focus on how to construct
efficient and practical LTFs against continuous leakage in the floppy model.

Our Contribution In this work, our contribution is described as follows:

Updatable Lossy Trapdoor Functions and Its Application 311

1. We introduce the new notion of updatable lossy trapdoor functions (ULTFs)
based on the LTFs structure of [8] where the key sample algorithm is divided
into two independent steps. At the same time, we also give the security
requirements such as the indistinguishability of injective/lossy evaluation key
et al. When the evaluation algorithm F is leakage resilient, we can achieve
the LTFs against continuous leakage which we denote as CLR-LTFs for short.
With the help of the new notion of ULTFs we achieve the security model of
CLR-LTFs in the floppy model (Table 1).

2. Based on the ElGamal-like PKE scheme in vector form [1,4,5] which is addi-
tively homomorphic and CPA-secure against continuous leakage, we achieve
two proposals of CLR-LTFs under the DDH and DCR assumptions respec-
tively. In the two CLR-LTFs schemes, with the public parameters and the
evaluation key fixed, we utilize the technology of the matrix kernel to com-
plete the refreshment of the trapdoor.

3. Compared with the other known CLR-LTFs constructions introduced by Kop-
pula et al. [7], we give a efficiency comparison as below.

Table 1. Efficiency comparison.

Scheme Hardness assumption Leakage rate |m| Pairing Group

[7] DDH 1/2 1-bit Yes Prime order

[7] SXDH 1 − o(1) 1-bit Yes Prime order

Ours DDH 1/n n-bit No Prime order

Ours DCR 1 − o(1) αlogN -bit No Composite order

|m| denotes the length of the encrypted massage; n ≈ Θ(κ) where κ is the security
parameter; N is a RSA modulus; α ≥ 1 is a nature number.

2 Preliminaries

Let [t] denote the set {1, 2, · · · , t} where t is a natural number and logx denote
the discrete logarithm of x in base 2. We say that a function negl(κ) is negli-
gible in κ if for all polynomial ploy and sufficiently large negl(κ) ≤ 1/ploy(κ).
Rki(Zn×m

p) denotes the uniform distribution on any n-by-m matrices over Zp

of rank i. We extend the standard DDH assumption to the following form. For
a group (G, p, g) and random elements g1, g2, · · · , gl ∈ G we define two sets:
L := {(gr

1, g
r
2, · · · , gr

l) : r ∈ Zp}; X := {(gr1
1 , gr2

2 , · · · , grl

l) : r1, r2, · · · , rl ∈ Zp}.
If x ∈ L the corresponding r is called a witness for x. At the same time

(X,L) forms a subset membership problem [5] whose hardness is subject to the
DDH assumption [4]. On the other hand, Naor and Segev [5] showed that the
DDH assumption is equivalent to the assumption that it is hard to distinguish
between an n-by-m matrix X with rank i ≥ 1 and one with rank j > i in the
exponent of a generator g of a prime order group G.

312 S. Li et al.

Rank Hiding Assumption[14]. Following with the parameters of the DDH
assumption. Let Rki(Zn×m

p) denote the uniform distribution on all n-by-m matri-
ces over Zp of rank i. The rank hiding assumption holds iff

AdvrhG,A := |Pr[A((G, p, g, gX) : X ← Rki(Zn×m
p)) = 1]

−Pr[A((G, p, g, gX) : X ← Rkj(Zn×m
p)) = 1]| ≤ negl(κ)

for any PPT adversary A.

Extended Rank Hiding Assumption[1]. Based on the rank hiding assump-
tion the extended rank hiding assumption states that for any PPT adversary A,
the advantage
AdverhG,A
:=|Pr[A((G, p, g, gX ,v1, · · · ,vt) : X ← Rki(Zn×m

p); {vl}t
l=1 ∈ kernel(X)) = 1]

−Pr[A((G, p, g, gX ,v1, · · · ,vt) : X ← Rkj(Zn×m
p); {vl}t

l=1 ∈ kernel(X)) = 1]|
≤ negl(κ) where m,n ∈ N, j > i ∈ N and t ≤ min{n,m}−max{i, j}.

Decisional Composite Residuosity (DCR) Assumption. We assume a
group Z∗

Nα+1 is a multiplicative group where α ≥ 1 is an integer. The integer
N = PQ is an RSA modulus which means that P and Q are odd primes of
equivalent bit length. Obviously the group Z

∗
Nα+1 is a direct product G × H

where G is a cyclic group of order Nα and H is isomorphic to Z
∗
N . We define T :=

1 + N(modNα+1), therefore T generates the group H. The decisional composite
residuosity (DCR) assumption holds on the group Z∗

Nα+1 iff

AdvDCR
N,A := |Pr[A(N, g) = 1] − Pr[A(N, g · T) = 1]| ≤ negl(κ)

for any PPT adversary A where g ∈ G is chosen at random.

Generalized Leftover Hash Lemma. We write X ≈ε Y to denote SD(X,Y)≤
ε, and X ≈ Y to denote that the statistical distance is negligible. The min-
entropy of a random variable X is H∞(X) = − log(maxxPr[X = x]). We use the
notion of average min-entropy which captures the remaining unpredictability of a
random variable X conditioned on another random variable Y , formally defined
as: H̃∞(X|Y) = −log(Ey∈Y [2−H∞(X|Y =y)])where Ey∈Y denotes the expected
value over all values of Y .

Definition 2. [6] A function Ext : X × {0, 1}t → Y is an average-case (m, ε)-
strong extractor if for all pairs of random variables (X,Z) such that X ∈ X and
H̃∞(X|Z) ≥ m it holds that SD((Ext(X,S), S, Z), (UY , S, Z)) ≤ ε. where S is
uniform in {0, 1}t and UY is uniform over Y.

Lemma 1. [6] (Generalized Leftover Hash Lemma) Assume that the family H =
{Hk : X → Y}k∈K is a universal hash family. Then for any two random variables

X,Z and k ∈ K, it holds that SD((Hk(X), k, Z), (UY , k, Z)) ≤ 1
2

√
2−H̃∞(X|Z)|Y|.

Updatable Lossy Trapdoor Functions and Its Application 313

3 Updatable Lossy Trapdoor Function

Though Koppula et al. [7] has introduced a notion of LTFs resilient to continual
memory leakage, their notion was mainly based on the all-but-one (ABO) LTFs
of Peikert and Waters in [2]. The new notion which will be presented as follows
is mainly based on the LTFs structure of Qin and Liu et al. [8] which is slightly
different from the one introduced by Peikert and Waters in [2]. In [2], the eval-
uation key of a LTF includes the public parameters. But in [8], they distinguish
between the public parameters and the evaluation key with two independent
algorithms. As a result the change on the structure does not do any influence on
the security. Based on the new notion, we can extend the ULTFs to CLR-LTFs
naturally when the evaluation algorithm is leakage resilient.

We give some related functions about the security parameter κ: d(κ): the
input length of the polynomial about κ; k(κ): the lossiness k(κ) ≤ d(κ).

Definition (Updatable Lossy Trapdoor Functions). A collection of updat-
able (d, k)-lossy trapdoor functions is a 5-tuple of (possible probabilistic)
polynomial-time algorithms (PTAs) (G,S,F,F−1,U) such that:

1. Public Parameter. G(1κ): It is a probabilistic PTA which takes in the
security parameter 1κ and outputs the public parameter, the trapdoor and
the updatable key (pp, td, uk).

2. Public Parameter. S(pp, b): It is a probabilistic PTA which takes in the
public parameter pp and b ∈ {0, 1} and samples an evaluation key ek which
is also called the function index.

3. Evaluation. F(ek, x): It is a deterministic PTA which takes in the evaluation
key ek and x ∈ {0, 1}d and outputs the image y.

4. Inversion. F−1(td, y): It is a deterministic PTA which takes in the image y
and the trapdoor td and outputs x ∈ {0, 1}d or ⊥.

5. Update. U(uk, td): It is a probabilistic PTA which takes in the updatable
key uk and the original trapdoor td and outputs the updated trapdoor td′

such that |td| = |td′|.
Basic Properties. We require that the ULTF (G,S,F,F−1,U) has some basic
properties, indicating its correctness an hardness requirements:

– Correctness. For all (PP, td) ← G(1κ), all ek ← S(pp, 1) and all x ∈ {0, 1}d

it holds that F−1(td,F(ek, x)) = x which is the preimage of y. On the other
hand, it requires that with the fixed public parameter pp and the evaluation
key ek the updated trapdoor td′ can also recover the preimage x of y correctly
in the injective mode i.e. it holds that F−1(td′,F(ek, x)) = x.

– Injective/Lossy. For the third evaluation algorithm F(ek, ·), it requires that
for any ek ← S(pp, 1) the function F(ek, ·) is in the injective mode; and for any
ek ← S(pp, 0) the function F(ek, ·) is in the lossy mode. The image size of the
lossy function F(ek, x) is at most 2d−k. Even when the evaluation F(ek, x)
is in the injective mode, it requires that it can be inverted to the correct
preimage using either the trapdoor td or any of its polynomial many updated
trapdoor td′.

314 S. Li et al.

– Indistinguishability. For the second public parameter algorithm S(pp, b), the
two evaluation keys ek respectively produced by S(pp, 1) and S(pp, 0) are
computationally indistinguishable even after the trapdoor updates.

Extension. For the particular structure, the ULTFs can be viewed as a spe-
cial lossy trapdoor function which serves as a fundamental tool in constructing
cryptographic primitives in both leakage-free and leaky settings. If we combine
the ULTF with the leakage property efficiently, we can achieve the continuous
leakage resilient (CLR) LTFs. Based on the new notion of ULTFs, we give the
security model of the CLR-LTFs as follows.

We consider the security model in the floppy model [1]. That means dur-
ing the trapdoor update there is a leak-free device available and between two
trapdoor updates there is bounded leakage about the trapdoor (see [1] for more
details).

Definition (Lossy Trapdoor Functions against continuous leakage).
We say that ULTFs (G,S,F,F−1,U) is a collection of continuous λ-bit leakage
resilient (d, k)-LTFs (denote λ-CLR-LTFs) in the floppy model if the ULTFs
satisfies the basic properties above and for any PPT λ-key leakage adversary
A = (A1,A2) the advantage

Advλ−CLR
ULTF,A(κ) := |Pr[Expλ−CLR

ULTF,A(κ, 0) = 1] − Expλ−CLR
ULTF,A(κ, 1) = 1]| ≤ negl(κ)

where the experiment Expλ−CLR
ULTF,A(κ, γ) (γ ∈ {0, 1}) is described as:

Experiment Expλ−CLR
ULTF,A(κ, γ):

(pp, td0) ← G(1κ)
For i = 0, 1, 2, · · · , t where t is polynomial in the security parameter κ

{Statei ← Aleakage(tdi)
1 (pp) where |leakage(tdi)| ≤ λ;

tdi+1 ← U(uk, tdi)}; ek ← S(pp, γ); γ′ ← A2(Statei∈[t], ek)
output γ′.

4 ElGamal-Like Public Key Encryption Scheme

Briefly we intrduce the ElGamal-like Encryption scheme which will be elegantly
embedded into the following continuous leakage resilient LTFs. We will utilize
some good algebraic properties of this cryptographic structure in the following.
For the security parameter κ, G = (G, p, g) ← G(1κ). The scheme is run in group
G with prime order p. For some negligible ε = ε(κ) set l = 2+ λ+2log(1/ε)−2

logp . The
ElGamal-like PKE (KeyGen,Encrypt,Decrypt) is operated as follows.

1. KeyGen(1κ): Run G = (G, p, g) ← G(1κ). Choose vector w ∈ Z
l
p and s ∈ Z

l
p

and let h = g〈w,s〉 ∈ G. The public key is pk = (G, p, g, gw, h). The secret key
is set to sk = s.

Updatable Lossy Trapdoor Functions and Its Application 315

2. Encrypt(pk,m): Given a public key pk = (G, p, g, gw, h) along with a message
m ∈ G, pick a random scalar r ∈ Zq uniformly at random and output the
ciphertext c = (c1, c2) = (grw, hr · m).

3. Decrypt(sk, c): Given a ciphertext c = (c1, c2) along with a secret key sk = s
output m = c2 · c−s

1 .

The correctness holds directly with hr = gr〈w,s〉 = g〈rw,s〉. The above scheme is a
variant of the ElGamal public key encryption in vector form. On the other hand,
it also can be seen as the BHHO public key encryption [4] when s ∈ {0, 1}n. As
we all known that this primitive has some good cryptographic properties. We
will use these properties in our LTFs against continuous key leakage.

From the leakage resilient aspect, Naor and Segev [5] showed that given the
public key and any λ bits of leakage, H̃(sk|(pk, λ)) ≥ logp + 2log(1/ε) − 2. The
leftover hash lemma provides that with overwhelming probability over the choice
of c1 ∈ X \ L, it holds that hr is ε-close to the uniform distribution over G.

Lemma 2. If the DDH assumption is hard in the p-prime order group G, then
the above scheme is a λ-LR-CPA secure PKE scheme as long as the leakage
parameter λ ≤ (l − 2)log(p) − 2log(1/ε) + 2 where ε = ε(κ) is some negligible
function about the security parameter κ.

From the continuous leakage resilient aspect, Agrawal et al. [1] showed that
with the updated key w ∈ Z

l
p we can update the secret key with sk′ = sk + β

where β ∈ kernel(w). With the fixed public key, the updated key sk′ can also
decrypt the ciphertext correctly. With the above lemma and the help of the
(extended) rank hiding assumption, the the above scheme is a λ-CLR-CPA secure
PKE scheme.

Lemma 3. Under the extended rank hinging assumption and the DDH assump-
tion for G, then the above scheme is a λ-CLR-CPA secure PKE scheme in the
floppy model as long as the leakage parameter λ ≤ (l − 2)log(p) − 2log(1/ε) + 2
where ε = ε(κ) is some negligible function about the security parameter κ.

5 Continuous Leakage-Resilient LTF from the DDH
Assumption

In this section, we show how to construct continuous leakage resilient lossy
trapdoor function (CLR-LTF) from the continuous leakage resilient CPA-secure
ElGamal-like PKE. For some negligible ε = ε(κ) set l = 2 + λ+2log(1/ε)−2

logp . The
construction CLR-TDF=(G, S, F, F−1, U) is presented as follows.

1. G(1κ): Run G = (G, p, g) ← G(1κ). Randomly choose gw = (w1, w2, · · · , wl) ∈
Z

l
p and compute gw = (g1, g2, · · · , gl) where gj = gwj for j ∈ [l]. Choose n

tuples of secret keys si = (si1, si2, · · · sil) ∈ Z
l
p for i ∈ [n]. Let hi = Π l

j=1g
sij

j =
g〈w,si〉. Output pp = (G, p, g, gw, h1, h2, · · · , hn), td = (s1, s2, · · · , sn).

316 S. Li et al.

2. S(pp, b): Given b ∈ {0, 1}. For i ∈ [n], let Ri = (gri
1 , gri

2 , · · · , gri

l) ∈ L with a
witness ri ∈ Zp independently at random.

Let R =

⎛

⎜
⎜
⎜
⎝

R1

R2

...
Rn

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

gr1
1 gr1

2 · · · gr1
l

gr2
1 gr2

2 · · · gr2
l

...
...

. . .
...

grn
1 grn

2 · · · grn

l

⎞

⎟
⎟
⎟
⎠

n×l

and Q = (Q1,Q2, · · · ,Qn)=

⎛

⎜
⎜
⎜
⎝

hr1
1 · gb hr2

1 · · · hrn
1

hr1
2 hr2

2 · gb · · · hrn
2

...
...

. . .
...

hr1
n hr2

n · · · hrn
n · gb

⎞

⎟
⎟
⎟
⎠

n×n

.

When b = 1, we say it is in injective mode; otherwise, let g0 = 1G and we say
it is in lossy mode. The evaluation key is ek = (R,Q).

3. F(ek, x): Given a message x = x1x2 · · · xn ∈ {0, 1}n. Given a function index
(R,Q) and then calculate FR,Q(x) = (c1, c2) where
c1 = x · R = (c11, c12, · · · , c1l), where c1i =

∏n
j=1 g

rjxj

i , i ∈ [l];
c2 = x · Q = (c21, c22, · · · , c2n), where c2i =

∏n
j=1 Q

xj

ij , i ∈ [n].
Output c = (c1, c2) ∈ Gl × Gn.

4. F−1(td, c): Firstly parse c as (c1, c2) = ((c11, c12, · · · , c1l), (c21, c22, · · · , c2n)).
If

∏l
j=1 c

sij

1j = c2i, then xi = 0, i ∈ [n]; if
∏l

j=1 c
sij

1j 	= c2i, then xi = 1, i ∈ [n].
At last, output the message x = x1x2 · · · xn ∈ {0, 1}n.

5. U(td, uk): Input the update key uk = w and the trapdoor is updated into the
new one td′ = td + (β1,β2, · · · ,βn) = (s1 + β1, s2 + β2, · · · , sn + βn) where
βi = (bi1, bi2, · · · , bil) ← kernel(w) (i.e. s′

ij = sij + bij for ∀i ∈ [n], j ∈ [l]).

We give the following correctness, consistency and security properties.

– Since the updated trapdoor is td′ = (si + βi)i∈[n] = (sij + bij)i∈[n],j∈[l], we
have h′

i = Π l
j=1g

sij+bij

j = g〈w,si+βi〉 = g〈w,si〉 = hi.
– For any evaluation key ek and ∀i ∈ [n], we have c2i =

∏n
j=1 Q

xj

ij =

gbxi · ∏n
j=1 h

′rjxj

i = gbxi · h
′∑n

j=1 rjxj

i = gbxi · g〈w,si+βi〉·
∑n

j=1 rjxj = gbxi ·
g〈w,si〉·

∑n
j=1 rjxj .

On the other hand,
∏l

j=1 c
s′

ij

1j = c
s′

i1
11 c

s′
i2

12 · · · cs′
il

1l = (
∏n

j=1 g
rjxj

1)s′
i1(

∏n
j=1 g

rjxj

2)s′
i2 · · · (∏n

j=1

g
rjxj

l)s′
il

= g
s′

i1
∑n

j=1 rjxj

1 g
s′

i2
∑n

j=1 rjxj

2 · · · gs′
il

∑n
j=1 rjxj

l

= gw1s′
i1
∑n

j=1 rjxj gw2s′
i2
∑n

j=1 rjxj · · · gwls
′
il

∑n
j=1 rjxj

= g〈w,si+βi〉
∑n

j=1 rjxj = g〈w,si〉·
∑n

j=1 rjxj .
Since in injective mode (i.e. b = 1), gbxi = gxi holds and the correctness of F
and F−1 follows.

Theorem 1. Under the DDH assumption and the (extended) rank hiding
assumption in group G with the prime order p, the proposed scheme is a col-
lection of λ-CLR-LTFs with λ ≤ (l − 2)logp − 2log(1/ε) + 2 where ε = ε(κ) is

Updatable Lossy Trapdoor Functions and Its Application 317

some negligible function of the security parameter κ in the floppy model. There-
fore, the leakage rate is λ

|td| = (l−2)logp−2log(1/ε)+2
nllogp ≈ 1

n . The lossiness is n− logp

bits.

Remark: In this section we can see that the leakage ratio of the DDH-based
CLR-LTF is only 1

n where the lossiness is n−logp. This relationship implies that
the higher leakage rate, the lower lossiness. Therefore, it is hard to improve the
leakage rate in the prime order group. In next section, we present an instantiation
in the composite order group which would do some help to improve the leakage
rate to 1 − o(1).

6 Continuous Leakage-Resilient LTFs from the DCR
Assumption

In this section, we show how to construct CLR-LTF under the decisional compos-
ite residuosity (DCR) assumption. The group Z

∗
Nα+1 is a multiplicative group

where α ≥ 1 is an integer. The integer N = PQ is an RSA modulus which
means that P and Q are odd primes of equivalent bit length. Obviously the
group Z

∗
Nα+1 is a direct product G×H where G is a cyclic group of order Nα and

H is isomorphic to Z
∗
N . We define T := 1 + N(modNα+1), therefore T generates

the group H. In addition, the discrete logarithm with respect to T over group
H is efficiently computable. Such an N will be called admissible in the following
discussion. The scheme is as follows:

Set l = 2 + λ+2log(1/ε)
logN−3 for some negligible ε = ε(κ). The construction CLR-

TDF=(G, S, F, F−1, U) is operated over the group Z∗
Nα+1 as follows.

1. G(1κ): On input 1κ the generation algorithm, chooses an admissible κ-bit
RSA modulus N = PQ and a natural number α ≥ 1. Note that this fixes the
groups G where the generator is g and H.

Choose s = (s1, s2, · · · , sl) ∈ Zl
N−1

4
at random. Select g1 = gw1 , g2 =

gw2 , · · · , gl = gwl ∈ G uniformly and let w = (w1, w2, · · · , wl) ∈ Z
l
N−1

4
,

then gw = (g1, g2, · · · , gl). Given h = Π l
i=1g

si
i = g〈w,s〉. Output pp =

(N,α, g, gw, h), td = s.
2. S(pp, b): Given b ∈ {0, 1}, choose r ∈ Z∗

N and define R = gwr, Q = hr · T b.
When b = 1, we say it is in injective mode; otherwise, we say it is in lossy
mode. At last the evaluation key is ek = (R,Q) ∈ Gl × Z∗

Nα+1 .
3. F(ek, x): Given a message x ∈ ZNα . Given a function index (R,Q), then

calculate FR,Q(x) = (c1, c2) where c1 = x · R = Rx; c2 = x · Q = Qx. Output
c = (c1, c2) ∈ Gl × Z∗

Nα+1 .
4. F−1(td, c): Firstly parse c as (c1, c2). In the injective mode, we compute X =

c2 · (c−s
1) = T x. At last, output the message x = logT X.

5. U(td, uk): Given the update key uk = w and the trapdoor is updated into
the new one td′ = td + β = s + β where β ← kernel(w).

318 S. Li et al.

Correctness. The correctness is described as follows.

– For the updated trapdoor is td′ = s+β, we have h′ = g〈w,s+β〉 = g〈w,s〉 = h.
– For any evaluation key ek, there has c2 · (c−s

1) = Qx · (Rx)−s = hrx · T bx ·
(gw·rx)−s = hrx · T bx · h−rx = T bx. Since in injective mode (i.e. b = 1),
T bx = T x holds and the correctness of F and F−1 follows.

Theorem 2. If the DDH assumption is hard in G and the DCR problem is hard
in Z∗

Nα+1 , then we can construct a collection of λ-CLR-TDFs. During each time
interval the proposed scheme can tolerate at most λ ≤ (l−2)(logN −3)−2log1/ε
bits on the trapdoor where ε = ε(κ) is some negligible function with the security
parameter κ. Therefore, the leakage rate is λ

|td| = (l−2)(logN−3)−2log1/ε
l(logN−3) ≈ 1−o(1).

The lossiness is at least αlogN − (logN − 2) bits.

7 Conclusion and Future Work

In this paper, we focus on the lossy trapdoor functions in the presence of con-
tinuous leakage. Firstly, we introduce the new notion of ULTFs and give the
formal definition and security requirements. We extend the notion of ULTFs to
CLR-LTFs and give the explicit security model of CLR-LTFs. Under the DDH
assumption and DCR assumption respectively, we introduce two concrete lossy
trapdoor functions against continuous leakage in the standard model. Our pro-
posed scheme can also be seen as a deterministic public key encryption, we think
it is of independent interest in the study of deterministic PKE against continuous
leakage which is also an open problem presented in [7].

References

1. Agrawal, S., Dodis, Y., Vaikuntanathan, V., Wichs, D.: On continual leakage
of discrete log representations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8270, pp. 401–420. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-42045-0 21

2. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC,
pp. 187–196 (2008)

3. Wee, H.: KDM-security via homomorphic smooth projective hashing. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615,
pp. 159–179. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49387-8 7

4. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 7

5. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 2

6. Dodis, Y., et al.: Fuzzy extractors: How to generate strong keys from biometrics
and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

http://dx.doi.org/10.1007/978-3-642-42045-0_21
http://dx.doi.org/10.1007/978-3-642-42045-0_21
http://dx.doi.org/10.1007/978-3-662-49387-8_7
http://dx.doi.org/10.1007/978-3-540-85174-5_7
http://dx.doi.org/10.1007/978-3-642-03356-8_2

Updatable Lossy Trapdoor Functions and Its Application 319

7. Koppula, V., Pandey, O., Rouselakis, Y., Waters, B.: Deterministic public-key
encryption under continual leakage. In: Manulis, M., Sadeghi, A.-R., Schneider,
S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 304–323. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-39555-5 17

8. Qin, B., Liu, S., Chen, K., Charlemagne, M.: Leakage-resilient lossy trapdoor func-
tions and public-key encryption. In: AsiaPKC, pp. 3–12 (2013)

9. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryp-
tion, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-85174-5 19

10. Li, S., Zhang, F., Sun, Y., Shen, L.: Efficient leakage-resilient public key encryption
from DDH assumption. Cluster Comput. 16, 1–10 (2013)

11. Li, S., Zhang, F.: Leakage-resilient identity-based encryption scheme. Int. J. Grid
Utility Comput. 4(2–3), 187–196 (2013)

12. Li, S., Zhang, F., Sun, Y., Shen, L.: A new variant of the cramer-shoup leakage-
resilient public key encryption. In: INCoS 2012, pp. 342–346 (2012)

13. Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS, pp. 511–520 (2010)

14. Brakerski, Z., et al.: Overcoming the hole in the bucket: Public-key cryptography
resilient to continual memory leakage. In: FOCS, pp. 501–510 (2010)

15. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 3

16. Halderman, J.A., et al.: Lest we remember: Cold boot attacks on encryption keys.
In: Proceedings of the 17th USENIX Security Symposium, pp. 45–60 (2008)

17. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol.
5444, pp. 474–495. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5 28

18. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key
encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13190-5 6

19. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 1

http://dx.doi.org/10.1007/978-3-319-39555-5_17
http://dx.doi.org/10.1007/978-3-540-85174-5_19
http://dx.doi.org/10.1007/978-3-540-85174-5_19
http://dx.doi.org/10.1007/978-3-642-03356-8_3
http://dx.doi.org/10.1007/978-3-642-00457-5_28
http://dx.doi.org/10.1007/978-3-642-13190-5_6
http://dx.doi.org/10.1007/978-3-642-13190-5_6
http://dx.doi.org/10.1007/978-3-642-14623-7_1

A Black-Box Construction of Strongly
Unforgeable Signature Schemes in the Bounded

Leakage Model

Jianye Huang1, Qiong Huang1,2(B), and Chunhua Pan1

1 College of Mathematics and Informatics,
South China Agricultural University, Guangzhou, China
hjnubys@stu.scau.edu.cn,{qhuang,chpan}@scau.edu.cn

2 Nanjing University of Information Science and Technology, Nanjing, China

Abstract. Due to the imperfect implementation of cryptosystems,
adversaries are able to obtain secret state of the systems via side-channel
attacks which are not considered in the traditional security notions of
cryptographic primitives, and thus break their security. Leakage-resilient
cryptography was proposed to prevent adversaries from doing so. Katz
et al. and Boyle et al. proposed signature schemes which are existentially
unforgeable in the bounded leakage model. However, neither takes mea-
sures to prevent the adversary from forging on messages that have been
signed before. Recently, Wang et al. showed that any signature scheme
can be transformed to one that is strongly unforgeable in the leakage
environment with the help of a leakage-resilient chameleon hash func-
tion. However, their transformation requires changing the key pair of the
signature scheme.

In this work, we further improve Wang et al.’s results by proposing a
black-box construction of signature schemes, which converts a leakage-
resilient signature scheme to one that is both strongly unforgeable and
leakage resilient. Our construction does not require adding any element
to the signature key pair nor modify the signature scheme at all. It is
efficient in the sense that the resulting signature scheme has almost the
same computational cost in signing and verification as the underlying
scheme.

Keywords: Digital signature · Generic transformation · Strong unforge-
ability · Leakage-resilient cryptograhpy · Bounded leakage model

1 Introduction

1.1 Side-Channel Attacks

Halderman et al. showed an attack on encryption keys that are stored in mem-
ory even when it loses power in their influential paper [13]. It is a kind of side-
channel attacks, where adversaries are capable of acquiring part of the secret

c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 320–339, 2016.
DOI: 10.1007/978-3-319-47422-9 19

A Black-Box Construction of BLF-sEUF-CMA Secure Signature Schemes 321

state (including the secret key and the randomness) from the physical imple-
mentation of a cryptosystem. Other side-channel attacks include running-time
attack [19], electromagnetic radiation analysis [12,25], power consumption analy-
sis [7,18], fault detection [2,3] and etc. Unfortunately, traditional cryptography
does not capture such attacks that craftily bypass the barrier of solving hard
problems, which is a threat to practical cryptosystem.

1.2 Leakage-Resilient(LR) Models

To address side-channel attacks, leakage-resilient cryptography was introduced
[8], which aims to constructing cryptographic schemes that remain secure even
if the adversary is able to obtain part of the secret state of the scheme. The first
significant issue of leakage-resilient cryptography is how to formalize the leak-
age. Inspired by [1,23], most proposed models define the leakage by additionally
giving the adversary a leakage oracle OL

state(·) which outputs a fraction of the
cryptosystem’s internal state on inputting an adversarially chosen function f(·).
However, if the sequence of leakage functions are unrestricted, secure crypto-
graphic schemes are never achievable, i.e. the leakage function simply outputs
the whole secret key. The restrictions are listed as follows.

Partial Sate vs. Entire State. Inspired by the axiom only computation leaks
information in [23], [8,24] require that all leakage functions take half of the
internal state that is being currently accessed as input and omit the other half.
However, [13] showed that the secret information can be leaked as well even if
it is not accessed in the computation. Most schemes therefore allow the leakage
functions to take the entire internal state as input.

Leakage Resilience vs. Fully Leakage Resilience. There are two most com-
mon cases in consideration: (1) the internal state is exactly the secret key of the
scheme; or (2) additionally containing the randomness used in the computation,
e.g. the signing process. The latter is a stronger notion of leakage resilience,
called fully leakage resilience (FLR).

Output Length. For an arbitrary function fi that takes the internal state X as
input, its output length should satisfy that ‖fi(X)‖ < ‖X‖. Namely, we suppose
that any PPT adversary can only get partial information of internal state.

Bounded Leakage vs. Unbounded Leakage. Another important issue is
whether the amount of the leakage is bounded, i.e.

∑q
i=1 ‖fi(X)‖ ≤ λ for

some bound λ after q leakage queries. If so, the internal state keeps unchanged
over time. Otherwise, the internal state should be periodically updated. We call
these two models bounded leakage-resilient (BLR) model and continuous leakage-
resilient (CLR) model, respectively.

Polynomial Time. We require that the leakage function should be polynomial-
time computable since we only consider the probabilistic polynomial-time adver-
saries.

322 J. Huang et al.

1.3 Leakage-Resilient Signature

A leakage-resilient signature remains existentially unforgeable even if bounded
information about the internal state is leaked. In 2009, Katz and Vaikuntanathan
proposed existentially unforgeable signature schemes under bounded leakage
model based on standard assumptions [17]. There are also leakage-resilient sig-
nature schemes proposed in other LR models like [10,22]. And the fully leakage
resilient unforgeability is considered in [6,30]. However, none of these schemes
take measures to ensure the strongly existential unforgeability (sEUF), i.e. pro-
tecting the adversary from forging on messages that have been signed before.

Boneh, Shen, Waters [4] proposed a transformation that converts any exis-
tentially unforgeable signature scheme into one that is strongly unforgeable in
the non-leakage setting. However, their transformation depends on partitioned-
ness property of the underlying signature scheme. Not all of the existing signature
schemes enjoy this property, e.g. DSA signature [11]. Later works, for example [26],
proposed transformations that can convert any signature scheme into a strongly
unforgeable one. However, it inevitably modifies key pairs or adds additional ran-
domness in the signing phase. Huang et al. proposed another transformation that
overcomes this drawback by using a strong one-time signature [15].

1.4 Generic Transformations Under Leakage Models

The black-box construction of strongly unforgeable signature schemes in the
leakage-resilient setting, however, is not trivial. The transformations we men-
tioned above have a common feature. The security proofs are partitioned into
several parts, each of which reduces to a different assumption. Consequently,
their proofs consist of several reduction games, in each of which the adversary
may lack part of secret state and thus may be unable to answer the leakage
queries.

Wang et al. addressed this issue in [27,28]. They strengthened the defini-
tion of Chameleon hash function by giving adversaries a leakage oracle Ol

td(·)
where adversaries can adaptively choose leakage functions and learn at most
l-bits information on the trapdoor. Utilizing this leakage-resilient Chameleon
hash function, any signature scheme can be transformed to one that is strongly
existentially unforgeable under bounded leakage model. The intuition of this
technique is that if all the reduced objects are leakage-resilient, then the leakage
queries can be answered by hard-coding and transmitting the leakage function.
Similar to [26], however, the transformation requires changing the key pairs.

1.5 Our Contributions

In this work we further improve Wang et al.’s results by introducing a new
transformation. Formally, we make the following contributions in the paper.

1. Based on Huang et al.’s generic transformation [15], we propose a new
black-box construction of strongly unforgeable and leakage-resilient signa-
ture scheme, which does not require any special property of the underlying

A Black-Box Construction of BLF-sEUF-CMA Secure Signature Schemes 323

signature scheme nor adding any element to the public key. The construction
makes use of a leakage-resilient strong one-time signature scheme. Briefly, to
sign a message m, the signer uses the underlying signature scheme to sign a
freshly generated one-time verification key, and then uses the one-time sign-
ing key to sign the message. Following the proof technique of [27,28] and
[15], we show that if the underlying signature scheme is unforgeable in the
leakage setting and the one-time signature scheme is strongly unforgeable in
the leakage setting as well, the resulting signature scheme is then strongly
unforgeable and leakage-resilient.

2. Moreover, we observe that Katz et al.’s one-time signature scheme [17] is
actually strongly unforgeable even if (14 − ε)|sk| bits of the signing key are
leaked.

3. To further support our generic construction, we propose another more efficient
leakage-resilient strong one-time signature scheme based on cover-free family,
which has the same leakage rate (14 − ε).

Independently, Wang et al. proposed the same construction of leakage-
resilient strongly unforgeable signature scheme in [29]. Their work also includes
another fully l-leakage-resilient one-time signature scheme which is based on a
l-leakage-resilient chameleon hash function.

2 Digital Signature

2.1 Definition of Digital Signature

Digital signature is the analogy of message authentication code (MAC) in the
public key setting that ensures the integrity of transmitted messages over pub-
lic channels. Formally, a signature scheme consists of the following three PPT
algorithms (Kg,Sign,Ver).

Kg. The key generation algorithm takes the security parameter n (in unary
representation) as input and outputs a key pair (vk, sk), where vk is the
verification key (public key) and sk is the signing key (private key). We denote
it by (vk, sk) ← Kg(1n).

Sign. The signing algorithm takes the signing key sk and a message m ∈ {0, 1}∗

as input and outputs a signature σ. We denote it by σ ← Sign(sk,m).
Ver. The verification algorithm takes the verification key vk, a message m along

with a purported signature σ as input and outputs a bit b, which is 1 if
σ is a valid signature on m under vk, and 0 otherwise. We denote it by
b ← Ver(vk,m, σ).

Generally, the correctness of a signature scheme requires if a signature is correctly
generated, it could always be verified. That is, for any m ∈ {0, 1}∗, we have that

Pr[Ver(vk,m,Sign(sk,m)) = 1] = 1.

324 J. Huang et al.

2.2 Security Models

Let Σ = (Kg,Sign,Ver) be a signature scheme and A be an adversary who tries
to forge a valid message-signature pair. Consider the following experiment.

Unforgeability Game:

(a) The challenger runs Kg(1n) to generate a key pair (vk, sk).
(b) A is given the verification key vk and accesses to a signing

oracle Osk(·).
(c) A submits a message to Osk(·) according to its view and is

returned the corresponding signature.
(d) Repeat Step c) q := q(n) times where q(·) is polynomial in n.

Denote Q := {(mi, σi)} where mi represents the i-th signing
query and σiis the corresponding signature.

e) A outputs a forgery (m̂, σ̂).

Definition 1 (EUF-CMA Security). A signature scheme Σ is existentially
unforgeable under chosen-message attacks (EUF-CMA secure, in short) if for
any PPT adversary A the probability that A succeeds in forging a valid signature
on a new message in the experiment above is negligible, i.e.

Pr[Ver(vk, m̂, σ̂) = 1 : (m̂, σ̂) ← AOsk(·)(vk); (m̂, ∗) �∈ Q] ≤ nelg(n).

Definition 2 (Strong Unforgeability (sEUF-CMA Security). A signa-
ture scheme Σ is strongly existentially unforgeable under chosen-message
attacks (sEUF-CMA secure, in short) if for any PPT adversary A, the prob-
ability that A succeeds in outputting a valid message-signature pair (m̂, σ̂) in
the unforgeability game which is different from all the pairs it has seen, e.g.
(m̂, σ̂) �∈ Q, is negligible, i.e.

Pr[Ver(vk, m̂, σ̂) = 1 : (m̂, σ̂) ← AOsk(·)(vk); (m̂, σ̂) �∈ Q] ≤ nelg(n).

Leakage Resilience. To model an adversary against a signature scheme, which
is allowed to launch side channel attacks, we allow it to submit leakage queries
in Steps c) and d) in the unforgeability game. That is, besides the signing oracle
Osk(·), the adversary is also given access to a leakage oracle OL

sk(·). The adver-
sary submits a leakage function fi(·) to OL

sk(·), and is returned Λi := fi(sk). Let
λi be the output length of Λi. W.l.o.g., we suppose that the adversary makes
a leakage query after a signing query, and it makes at most q queries for each
type. We have the following definitions.

Definition 3 (Leakage Resilient Unforgeability). A signature scheme Σ
is λ-leakage resilient and existentially unforgeable under chosen-message attacks
(λ-BLR-EUF-CMA) if for any PPT adversary A, the probability that A succeeds
in outputting a valid signature on a new message in the modified game above is
negligible, i.e.

A Black-Box Construction of BLF-sEUF-CMA Secure Signature Schemes 325

Pr

⎡

⎢
⎢
⎣Ver(vk, m̂, σ̂) = 1 :

(m̂, σ̂) ← AOsk(·),OL
sk(·)(vk)

(m̂, ∗) �∈ Q ∧
q∑

i=1

‖λi‖ ≤ λ

⎤

⎥
⎥
⎦ ≤ nelg(n).

Definition 4 (Leakage Resilient Strong Unforgeability). A signature
scheme Σ is λ-leakage resilient and strongly existentially unforgeable under
chosen-message attacks (λ-BLR-sEUF-CMA) if for any PPT adversary A, the
probability that A succeeds in outputting a valid message-signature pair in the
modified game above is negligible, i.e.

Pr

⎡

⎢
⎢
⎣Ver(vk, m̂, σ̂) = 1 :

(m̂, σ̂) ← AOsk(·),OL
sk(·)(vk)

(m̂, σ̂) �∈ Q ∧
q∑

i=1

‖λi‖ ≤ λ

⎤

⎥
⎥
⎦ ≤ nelg(n).

If the internal state in above experiment consists of the signing key sk and
randomness, we replace the leakage oracle OL

sk(·) with OL
state(·). Then, we have

following definitions:

Definition 5 (Fully Leakage Resilient Unforgeability). A signature sche-
me Σ is λ-fully leakage resilient and existentially unforgeable under chosen-
message attacks (λ-BFLR-EUF-CMA) if for any PPT adversary A, the proba-
bility that A succeeds in outputting a valid signature on a new message in the
modified game above is negligible, i.e.

Pr

⎡

⎢
⎢
⎣Ver(vk, m̂, σ̂) = 1 :

(m̂, σ̂) ← AOsk(·),OL
state(·)(vk)

(m̂, ∗) �∈ Q ∧
q∑

i=1

‖λi‖ ≤ λ

⎤

⎥
⎥
⎦ ≤ nelg(n).

Definition 6 (Fully Leakage Resilient Strong Unforgeability). A signa-
ture scheme Σ is λ-fully leakage resilient and strongly existentially unforgeable
under chosen-message attacks (λ-BFLR-sEUF-CMA) if for any PPT adversary
A, the probability that A succeeds in outputting a valid message-signature pair
in the modified game above is negligible, i.e.

Pr

⎡

⎢
⎢
⎣Ver(vk, m̂, σ̂) = 1 :

(m̂, σ̂) ← AOsk(·),OL
state(·)(vk)

(m̂, σ̂) �∈ Q ∧
q∑

i=1

‖λi‖ ≤ λ

⎤

⎥
⎥
⎦ ≤ nelg(n).

Leakage Resilient Strong One-Time Signature. We say that Σ is a λ-
leakage resilient strong one-time signature scheme in the bounded leakage model
(or bounded fully leakage model) if the adversary makes at most q = 1 signing
query in Definition 4 (or Definition 6).

326 J. Huang et al.

3 Preliminaries

3.1 Error Correcting Codes

Hamming distance[16] The Hamming distance d(x, y) between two vectors
x, y ∈ F

n
q is defined to be the number of coordinates in which x and y differ.

Minimum distance[16] The minimum distance of a code C is the smallest
hamming distance between distinct codewords, i.e.

dmin(C) := min{d(xi, xj)|∀i �= j, xi, xj ∈ C}.

Let A be a k × l matrix over F2. Then A defines linear error-correcting code
C ⊂ {0, 1}l where the row vector m ∈ {0, 1}k is mapped to the codeword m · A.
We have the following lemma.

Lemma 1 ([17]). ∀ε ∈ {0, 1},∃R s.t.

Pr
[

dmin(m · A) =
(

1
2

− ε

)

l : A
$← {0, 1}k×Rk

]

� 1 − negl(k),

where negl(·) is a negligible function.

Note that we do not require the efficient decodability in this paper.

3.2 Cover Free Family

Definition 7 (Cover-Free Family[20]). Let U be a universe where |U | = n.
A family of sets S = {S1, · · · , SN} where Si ⊆ U and N = Ω(2n) is a (k, α)-
cover-free family if for all distinct S, S1, · · · , St ∈ S,

∣
∣
∣
∣
∣
S \

k⋃

i=1

Si

∣
∣
∣
∣
∣
� α |S| .

Lemma 2 ([9]). Given any N < 0, there exists (k, α)-cover-free families with
N sets s.t. |Si| = O(kn) for all i, and N = O(k2n).

3.3 Entropy

Let X be a random variable taking values in {0, 1}n. The min-entropy of X is
given by

H∞(X) def= min
x∈{0,1}n

{− log2 Pr[X = x]}.

The conditional min-entropy of X given an event E is defined as:

H∞(X|E) def= min
x∈{0,1}n

{− log2 Pr[X = x|E]}.

A Black-Box Construction of BLF-sEUF-CMA Secure Signature Schemes 327

Lemma 3 ([17]). Let X be a random variable with H
def= H∞(X), and fix δ ∈

[0,H]. Let f be an arbitrary function with range {0, 1}λ. Then

Pr[H∞(X|f(X)) � H − Δ] � 2λ−Δ.

That is, the probability that knowledge of f(X) decreases the min-entropy of X
by Δ or more is at most 2λ−Δ. Put differently, the upper bound of the probability
that given f(X) the residual entropy of X remains at most L is

Pr[H∞(X|f(X)) � L] � 2λ−H+L.

4 Generic Transformation to sEUF-CMA Secure in the
Leakage Setting

Let Σ =(Kg,Sign,Ver) and ΣOT =(KgOT ,SignOT ,VerOT) be signature schemes.
Consider the following construction of a signature scheme Σ′=(Kg′,Sign′,Ver′).

Construction 1 Kg′(1n). Receive a security parameter n in unary rep-
resentation, generate the key pairs as follows.
1. Run Kg(1n) to generate a key-pair: i.e. (vk, sk) ← Kg(1n).
2. Output (vk, sk) as its verification key and signing key, respec-

tively.
Sign′(sk,m). To sign a message m, run the signing algorithm with sign-

ing key sk as follows.
1. Run KgOT (1n) to generate a key pair, i.e. (vkOT , skOT) ←

KgOT (1n).
2. Sign vkOT using sk: σ ← Sign(sk, vkOT ;w) using randomness w.
3. Sign σ‖m using skOT : σOT ← SignOT (skOT , σ‖m;wOT) using

randomness wOT (which might be empty if the signing algorithm
is deterministic).

4. Output the signature σ′ := (vkOT , σ, σOT).
Ver′(vk,m, σ′). Given a message-signature pair (m,σ′), the verification

algorithm works as follows.
1. Parse σ′ as (vkOT , σ, σOT).
2. Output 1 if Ver(vk, vkOT , σ) = 1 and VerOT (vkOT , σ‖m,σOT) =

1, and 0 otherwise.

In ACNS 2007, Huang et al. showed the following theorem [15].

Theorem 1 ([15]). If Σ is a EUF-CMA secure signature scheme and ΣOT is
a strong one-time secure signature scheme, then the Construction 1 is sEUF-
CMA-secure.

Our construction above extends Huang et al.’s result into the leakage setting.
We have the following theorem.

328 J. Huang et al.

Theorem 2. If Σ is a λ1-BFLR-EUF-CMA secure signature scheme and ΣOT

is a λ2-BFLR-sEUF-CMA secure one-time signature scheme, then Construction
1 is λ-BFLR-sEUF-CMA secure signature scheme where λ = min{λ1, λ2}.
Intuition of proof. Consider a sequence of message-signature pairs {(mi, σ

′
i =

(vkOT
i , σi, σ

OT
i))}q

i=1 the adversary obtains via signing queries. Let Forge be the

event that a PPT adversary A outputs a valid forgery (m̂, σ̂′ = (v̂k
OT

, σ̂, σ̂OT))
s.t. (m̂, σ̂′) �∈ {(mi, σ

′
i)}q

i=1. If Forge occurs, either of following events would
occur with non-negligible probability:

– Reuse : v̂k
OT

/∈ {vkOT
i }q

i=1. If Reuse occurs, (v̂k
OT

, σ̂) is a valid forgery of
Σ;

– Reuse : ∃i∗ ∈ [q], v̂k
OT

= vkOT
i∗ . We have that (σ̂, m̂, σ̂OT) �= (σi∗ ,mi∗ , σOT

i∗),
which gives a forgery (σ̂‖m̂, σ̂OT) against the strong unforgeability of ΣOT .

Obviously, we have that Pr[Forge] = Pr[ForgeReuse] + Pr[ForgeReuse], where
ForgeReuse := Forge ∧ Reuse and ForgeReuse := Forge ∧ Reuse. Below we show
that each of the terms on the right-hand side is negligible, thus proving the
theorem.

Proof. Consider two adversaries AΣ and AΣOT attacking the existential unforge-
ability of Σ and the strong unforgeability of ΣOT , respectively.
Algorithm AΣ :
The challenger runs Kg(1n) to generate a key pair (vk, sk). AΣ is given vk, a
signing oracle Osk(·) and a leakage oracle OL

state(·). The algorithm AΣ works as
follows.

1. Set the key pair of Σ′ as (vk′, sk′) := (vk,⊥). Notice that the signing key sk′

is unknown.
2. Generate q one-time key pairs, i.e., ∀i ∈ [q], (vkOT

i , skOT
i) ← KgOT (1n).

3. Submit {vkOT
i }q

i=1 to Osk(·), and obtain the corresponding signatures, i.e.
σi ← Osk(vkOT

i ;wi), where wi is the randomness used to generate σi.
4. Run A(vk′), and answer A’s signing and leakage queries as follows.

Signing Query. The i-th signing query mi is answered as follows.
(a) Compute σOT

i ← SignOT (skOT
i , σi‖mi;wOT

i).
(b) Set the state as S := {sk, {wj}i

j=1, {skOT
j , wOT

j }i
j=1}. Notice that the

adversary AΣ does not know sk and {wj}i
j=1.

(c) Return (vkOT
i , σi, σ

OT
i) to A.

Leakage Query. The i-th leakage query fi(·) is answered as follows.
(a) Construct the leakage function f ′

i(·, ·) := f{skOT
j ,wOT

j }i
j=1

(sk, {wi}i
j=1) :=

fi(S).
(b) Submit the leakage query f ′

i to OL
state(·) and obtain Λi ← OL

state(f
′
i).

(c) Return Λi to A.

5. When A outputs (m̂, (v̂k
OT

, σ̂, σ̂OT)), outputs (v̂k
OT

, σ̂).

A Black-Box Construction of BLF-sEUF-CMA Secure Signature Schemes 329

It is clear that if A succeeds in breaking the fully leakage resilient strong unforge-
ability, we have that AΣ breaks the fully leakage resilient unforgeability of Σ.
Let δ1 be the probability that AΣ forges a valid signature of Σ. Then we have

δ1 = Pr
[
Ver(vk, v̂k

OT
, σ̂) = 1 ∧ v̂k

OT
/∈ {vkOT

i }q
i=1

]
≥ Pr

[
ForgeReuse

]
.

That is, Pr[ForgeReuse] ≤ δ1 ≤ negl1(n) follows from the fact that Σ is λ1-BFLR-
EUF-CMA secure.

Next, we consider the adversary AΣOT as follows:
Algorithm AΣOT :
The challenger runs KgOT (1n) to generate a key-pair (vkOT , skOT). AΣOT is
given vkOT , a signing oracle OskOT (·) and a leakage oracle OL

stateOT (·). The
algorithm AΣOT works as follows.

1. Run Kg(1n) to generate a key pair (vk, sk) and set the key pair of Σ′ as
(vk′, sk′) := (vk, sk).

2. Randomly choose a value i∗ ← [q].
3. Generate q key pairs {vkOT

i , skOT
i }q

i=1 where

(vkOT
i , skOT

i) =

{
(vkOT ,⊥) if i = i∗,
KgOT (1n) otherwise.

4. Compute signatures on {vkOT
i }q

i=1, i.e. ∀i ∈ [q], σi ← Sign(sk, vkOT
i ;wi).

5. Run A(vk′) and answer its signing queries and leakage queries as follows.
Signing Qeury. Answer the i-th signing query mi as follows.

(a) Compute the one-time signature

σOT
i =

{
OskOT (σi‖mi;wOT

i) if i = i∗,
SignOT (skOT

i , σi‖mi;wOT
i) otherwise.

(b) Set the state as S := {sk, {wj}i
j=1, {skOT

j , wOT
j }i

j=1}. Notice that
AΣOT does not know (skOT

i∗ , wOT
i∗).

(c) Return (vkOT
i , σi, σ

OT
i) to A.

Leakage Query. Answer the i-th leakage query fi(·) as follows.
Case i < i∗. Compute Λi = fi(S) and return Λi to A.
Case i � i∗. Return Λi ← OL

stateOT (f ′
i) where

f ′
i(·, ·) := fS/(skOT

i∗ ,wOT
i∗)(skOT

i∗ , wOT
i∗) := fi(S).

6. When A outputs (m̂, σ̂′ = (v̂k
OT

, σ̂, σ̂OT)), AΣOT outputs (σ̂‖m̂, σ̂OT).

Let δ2 be the probability that AΣOT forges a valid signature on vkOT . Then, we
have

330 J. Huang et al.

δ2 = Pr
[
Ver

(
v̂k

OT
, σ̂‖m̂, σ̂OT

)
= 1 ∧ v̂k

OT
= vkOT

]

≥ Pr
[
Ver′

(
vk′, m̂,

(
v̂k

OT
, σ̂, σ̂OT

))
= 1 ∧ v̂k

OT
= vkOT

i∗

]

= Pr
[
Ver′

(
vk′, m̂,

(
v̂k

OT
, σ̂, σ̂OT

))
= 1 ∧ v̂k

OT
= vkOT

i |i = i∗
]

· Pr[i = i∗]

= Pr
[
ForgeReuse] · Pr[i = i∗

]

=
1
q

Pr
[
ForgeReuse

]
.

Thus we have Pr[ForgeReuse] ≤ q · δ2 ≤ negl2(n) follows from the fact that ΣOT

is λ2-BFLR-sEUF-CMA.
From the above we know that Pr[Forge] = Pr[ForgeReuse] + Pr[ForgeReuse] ≤

negl1(n) + negl2(n), which is negligible as well. This completes the proof. ��
Remark 1. Since the amount of the leaked information obtained by A is bounded
by λ = min{λ1, λ2}, AΣ and AΣOT are able to answer all the leakage queries
from A.

Remark 2. A reconstructed leakage function based on A’s leakage query can be
easily realized thanks to the hard coding technology.

With almost the same proof as above, we can prove the following theorem.

Theorem 3. If Σ is a λ1-BLR-EUF-CMA secure signature scheme and ΣOT

is a λ2-BLR-sEUF-CMA secure one-time signature scheme, then Construction
1 is λ-BLR-sEUF-CMA-secure where λ = min{λ1, λ2}.
Remark 3. Furthermore, similar with [14], our results above also apply to a weak
variant of unforgeability of Σ (weak unforgeability, for short). Namely, the adver-
sary chooses its signing queries {mi}q

i=1 before seeing the verification key and
submits the queries to the challenger. It is then returned the verification key vk
along with all the corresponding signatures {σi}q

i=1. The adversary then tries to
give a valid forgery. Our construction actually transforms a leakage-resilient and
weakly unforgeable signature scheme to a leakage-resilient and strongly unforge-
able signature scheme.

5 Leakage Resilient Strong One-Time Signature Schemes

5.1 The First Construction

From Sect. 4 we know that a strong one-time signature scheme in leakage setting
is necessary for the generic transformation. In this section, we present a one-time
signature scheme that is (14 − ε)|sk|-BFLR-sEUF-CMA secure.

Let H = {KgH , h} be a collision-resilient hash function where h : {0, 1}lin →
{0, 1} ε

2 lin and ε ∈ (
0, 1

4

)
. Let A ∈ {0, 1} ε

2 lin×l be a ε
2 lin × l matrix (viewed as

A Black-Box Construction of BLF-sEUF-CMA Secure Signature Schemes 331

F2), then A defines a linear error-correcting code C ⊂ {0, 1}l where the row
vector m ∈ {0, 1} ε

2 lin is mapped to the codeword m · A. Consider the following
construction of a signature scheme Σ = (Kg,Sign,Ver), which is a generalization
of Lamport’s signature scheme.

Construction 2. Kg(1n). Receive a security parameter n in unary rep-
resentation, generate the key pairs as follows.
1. Uniformly sample the matrix A

$← {0, 1} ε
2 lin×l.

2. Generate the random seed of collision-resilient hash function h:
s ← KgH(1n).

3. Randomly select xb
i ← {0, 1}lin and compute yb

i := hs(xb
i),∀i ∈

[l], b ∈ {0, 1}. Set X := {xb
i} and Y := {yb

i }.
4. Set the verification key vk := (A, s, Y), and the signature key

sk := X.
Sign(sk,m). To sign a message m, run the signing algorithm with signing

key sk as follows.
1. Compute the row vector m = m · A.
2. Return the signature σ = {xmi

i }l
i=1.

Ver(vk,m, σ). Given a message-signature pair (m,σ), the verification
algorithm works as follows.
1. Compute the row vector m = m · A.
2. Parse σ as σ = (xi)l

i=1.
3. Output 1 if ∀i ∈ [l], ymi

i = hs(xi), and 0 otherwise.

Theorem 4. If H is collision-resistant, Construction 2 is a one-time signature
scheme that is (14 − ε)|sk|-BFLR-sEUF-CMA secure.

Intuition. Denote by m,m∗ the queried message and the message in forgery,
respectively. Let Forge be the event that an PPT algorithm A forges a valid
signature σ∗ = {x∗

i }l
i=1 on m∗. The intuition is that if Forge occurs, then either

the second-preimage collision resilience or the collision resilience of h would be
broken with non-negligible probability.

– Reuse : m∗ �= m. If Reuse occurs, then ∃i ∈ [l] s.t. m∗
i �= mi, which breaks

the second preimage collision resistance of h.
– Reuse : m∗ = m. If Reuse occurs, then ∃i ∈ [l] s.t. xi∗ �= xi which gives a

collision of h.

Clearly, we have that Pr[Forge] = Pr[ForgeReuse] + Pr[ForgeReuse], where
ForgeReuse := Forge ∧ Reuse and ForgeReuse := Forge ∧ Reuse. Below we show
that each of the terms on the right-hand side is negligible, thus proving the
theorem.

Proof. Construct two PPT Adversaries ASPR and ACR attacking the second-
preimage resistance and collision resistance of h, respectively.

332 J. Huang et al.

Algorithm ASPR:
The challenger runs KgH(1n) to generate a random seed s of hash function h.

ASPR is given s and a uniformly random value x
$← {0, 1}lin . The algorithm

ASPR works as follows.

1. Generate a key pair (vk, sk) ← Kg(1n).
2. ∀i ∈ [l], b ∈ {0, 1}, randomly select xb

i ← {0, 1}lin , and set yb
i = h(xb

i).
3. Choose a random position i∗ ∈ [l], b∗ ∈ {0, 1} and set (yb∗

i∗ , xb∗
i∗) = (hs(x), x).

4. Set vk = {yb
i }i∈[l],b∈{0,1}, and run A on input vk. Answering A’s signing

query and leakage query as follows:
Signature Query. Given a message m, set σ := {xmi

i }l
i=1 = Sign(sk,m),

and return σ.
Leakage Query. Given a leakage function f , compute Λ = f(sk), and return

Λ.
5. When A outputs (m∗, (x∗

1, · · · , x∗
l)), if y = hs(xi∗), return xi∗ ; else, return ⊥.

The event m∗ �= m implies that Pr
[
d(m∗,m) � (12 − ε)l

]
� 1 − negl(n) that

follows the Lemma 1 where negl(n) is a negligible function in n. That is, at least
(12 − ε)l bits are opposite between m∗ and m with overwhelming probability if
m∗ �= m. Define HalfDiff as the event that d(m∗,m) � (12 − ε)l. We have that

Pr [HalfDiff | m∗ �= m] � 1 − negl(n),

Pr
[
HalfDiff | m∗ �= m

]
� negl(n).

(5.1)

Denote by I = {i|m∗
i �= mi} (|I| � (12 − ε)l) the positions that m∗ differ from m

(i.e. the positions that A forges on). Let X ′ = {x
m∗

i
i |i ∈ I} be the forged objects.

Obviously, the min-entropy of X ′ is H∞(X ′) � (12 − ε)l · lin bits.
The min-entropy of secret key is H = 2l · lin. The verification key will at

most leaks l · ε
2 lin bits. And the signature and leakage query would leak at most

l · lin bits and (14 − ε)2l · lin bits, respectively. That is, the amount of leakage bits
from A’s view is λ = l · ε

2 lin + l · lin + (14 − ε)2l · lin = (32 − 3ε
2)l · lin. Then, we

have

Pr [H∞ (X ′ | A′s V iew) = 0 | m∗ �= m]
= Pr [H∞ (X ′ | A′s V iew) = 0 ∧ HalfDiff | m∗ �= m]

+ Pr
[
H∞ (X ′ | A′s V iew) = 0 ∧ HalfDiff | m∗ �= m

]

�Pr [H∞ (X ′ | A′s V iew) = 0 ∧ HalfDiff | m∗ �= m] + Pr
[
HalfDiff|m∗ �= m

]

�Pr
[

H∞ (X | A′s V iew) � l · lin −
(

1
2

− ε

)

l · lin

]

+ negl(n) (5.2)

= Pr
[

H∞ (X | A′s V iew) �
(

1
2

+ ε

)

l · lin

]

+ negl(n)

�2(3
2− 3ε

2)l·lin−2l·lin+(1
2+ε)l·lin + negl(n) (5.3)

=2− ε
2 l·lin + negl(n).

A Black-Box Construction of BLF-sEUF-CMA Secure Signature Schemes 333

Equations (5.2),(5.3) follow from Equation (5.1) and Lemma 3, respectively.
Put differently, the forged objects X ′ are all fixed by A with negligible prob-

ability in the case of m∗ �= m. Then there exist at least one bit which is unfixed
by A. Let CorrectGuess be the event that an unfixed bit locates at the posi-
tion (i∗, b∗), i.e. the probability that ASPR correctly guesses the position of an
unfixed bit is Pr[CorrectGuess] � 1

2l .
Let ε1 be the probability that ASPR succeeds in breaking the second preimage

collision resistance, then we have

ε1 = Pr [x �= xi∗ ∧ hs(x) = hs(xi∗)]
�Pr [x �= xi∗ ∧ hs(x) = hs(xi∗) ∧ m∗ �= m]

�Pr

[

x �= xi∗ ∧
(

l∧

i=1

y
m∗

i
i = hs (x∗

i)

)

∧ m∗ �= m

]

= Pr
[
x �= xi∗ ∧ ForgeReuse

]

�Pr
[
x �= xi∗ ∧ ForgeReuse ∧ H∞(X ′|A′s V iew) = 0 ∧ CorrectGuess

]

= Pr
[
x �= xi∗ ∧ ForgeReuse ∧ H∞(X ′|A′s V iew) = 0

]
· Pr [CorrectGuess]

= Pr
[
x �= xi∗ |ForgeReuse ∧ H∞(X ′|A′s V iew) = 0

]
·

(1 − Pr
[
H∞(X ′|A′sV iew) > 0|ForgeReuse

]
) · Pr

[
ForgeReuse

]
· 1
2l

�1
2

Pr
[
ForgeReuse

] (
1 − (

2− ε
2 l·lin + negl(n)

)) · 1
2l

� 1
4l

(
Pr

[
ForgeReuse

]
− (

2− ε
2 l·lin + negl(n)

))
.

Thus, we have

Pr
[
ForgeReuse

]
� 4l · ε1 + 2− ε

2 l·lin + negl(n) = negl1(n)

which follows the fact that h is a collision-resilient hash function.
Below we consider the adversary ACR as follows:

Algorithm ACR:
The challenger runs KgH(1n) to generate a random seed s of hash function h.
ACR is given s and works as follows.

1. Compute (vk, sk) ← Kg(1n).
2. Run A on input vk, and answer A’s signing query and leakage query as

follows:
Signature Query. Given a message m, return Sign(sk,m) to A.
Leakage Query. Given a leakage function f , compute Λ = f(sk), return Λ

to A.
3. When A outputs (m∗, (x∗

1, · · · , x∗
l)), if ∃i s.t. x∗

i �= xmi
i and hs(xi∗) =

hs(xmi
i), return (x, xi∗); else, return ⊥.

334 J. Huang et al.

Notice that if m = m∗ occurs, the forgery refers to positions in σ which have
been exposed to A. In this case, A is not provided with any help from the leakage
information.

Let ε2 be the probability that ACR succeeds in breaking the collision resis-
tance of h, then we have

ε2 = Pr [xi �= xi∗ ∧ hs(xi) = hs(xi∗)]
�Pr [xi �= xi∗ ∧ hs(xi) = hs(xi∗) ∧ m∗ = m]

�Pr

[

xi �= xi∗ ∧
(

l∧

i=1

y
m∗

i
i = hs(x∗

i)

)

∧ m∗ = m

]

= Pr
[
ForgeReuse

]
.

Thus,
Pr

[
ForgeReuse

]
� ε2 � negl2(n).

From above, we know that Pr [Forge] = Pr
[
ForgeReuse

]
+ Pr

[
ForgeReuse

]
�

negl1(n) + negl2(n), which is negligible as well. This completes the proof. ��

5.2 Another More Efficient Construction

Let H = (KgH , h) be a collision-resilient hash function where h : {0, 1}lin →
{0, 1} ε

2 lin and ε ∈ (
0, 1

4

)
. Let S = {S1, · · · , SN} be a (1, 1

2)-cover-free family
where U = [l], N = 2k and ∀i ∈ [l], |Si| = 1

2 l. Assume that there exists an
efficient injective map f : {0, 1}k → S. Consider the following signature scheme
that signs messages of length l := l(n).

Construction 3. Kg(1n). Receive a security parameter n in unary rep-
resentation, generate the key pair as follows.
1. Sample a random seed s ← KgH(1n).
2. Randomly select xi ← {0, 1}lin and compute yi := hs(xi),∀i ∈ [l].

Set X = {xi}l
i=1 and Y = {yi}l

i=1.
3. Set vk := (s, Y), sk := X.

Sign(sk,m). To sign a message m, compute Sm = f(m) and return
σ = {xi}i∈Sm

.
Ver(vk,m, σ). To verify a given message-signature pair,

1. Compute Sm = f(m) and Parse σ as σ = {xi}i∈Sm
.

2. Output 1 if ∀i ∈ Sm, yi = hs(xi) and 0 otherwise.

Theorem 5. If H is a collision-resilient hash function, Construction 3 is a
one-time signature scheme that is (14 − ε)|sk|-BFLR-sEUF-CMA-secure.

A Black-Box Construction of BLF-sEUF-CMA Secure Signature Schemes 335

Note that the Construction 3 is a special construction of Bos and Chaum [5]
where the one-way function is replaced with a collision-resilient hash function.
It is a generalization of Lamport’s construction [21] where reduces the size of
key pairs to nearly half of their original cost. Actually, it is the special case of
the t-time signature given in [17] when t = 1.

Intuition of proof. Denote by m,m∗ the query message and the forge, respec-
tively. Let Forge be the event that an PPT algorithm A efficiently forges a valid
signature σ∗ = {x∗

i }i∈Sm∗ on m∗. The initiation of proof is that if Forge occurs,
then either the second-preimage collision resilience or the collision resilience of
h would be broken with significant probability:

– Reuse : m∗ �= m. If Reuse occurs, then ∃i ∈ [l] s.t. m∗
i �= mi, which breaks

the second preimage collision resistance of h.
– Reuse : m∗ = m. If Reuse occurs, then ∃i s.t. xi∗ �= xi which gives a collision

of h.

Obviously, we have that Pr[Forge] = Pr[ForgeReuse] + Pr[ForgeReuse], where
ForgeReuse := Forge ∧ Reuse and ForgeReuse := Forge ∧ Reuse. Below we show
that each of the terms on the right-hand side is negligible, thus proving the
theorem.

Proof. Construct two PPT Adversaries ASPR and ACR attacking the second-
preimage resistance and collision resistance of h, respectively.

Algorithm ASPR:
The algorithm is given s, the seed of collision-resilient hash function h, and a
random value x

$← {0, 1}lin .

1. Generate key pairs (vk, sk) ← Kg(1n).
2. Choose a random position i∗ ∈ [l] and replace (yi∗ , xi∗) with (hs(x), x).
3. Run A(vk), answering its signature query and leakage query as follows:

Signature Query Given the message m, generate the corresponding signa-
ture {xi}i∈Sm

← Sign(sk,m), and return {xi}i∈Sm
to A.

Leakage Query Given the leakage function f , compute Λ = f(sk), return
Λ to A.

4. When A outputs (m∗, {x∗
i }i∈Sm∗),

– If y = hs(xi∗), return xi∗ .
– Else, return ⊥.

Denote by I = {i|i ∈ Sm∗ \ Sm} the positions that adversary forges on. Clearly
that the event m∗ �= m implies |I| � 1

2Sm∗ = 1
4 l follows the Lemma 2. Let

X ′ = {xi|i ∈ I} be the set of forged objects. Denote H by the min-entropy of
sign key, i.e. H = l · lin. The secret key is disclosed 1

2 l · lin bits after the signature
query. Additionally, the public key and leakage query leak at most 1

2 l · ε
2 lin bits

and (14 −ε)l ·lin of left undisclosed secret key, respectively. Therefore, the amount

336 J. Huang et al.

of leakage is λ = 1
2 l · lin + 1

2 l · ε
2 lin + (14 − ε)l · lin = (34 − 3ε

4)l · lin on A’s view.
Then, we have

Pr[H∞(X ′ | A′s V iew) = 0|m∗ �= m]

= Pr[H∞(X ′ | A′s V iew) = 0|m∗ �= m ∧ |I| � 1
4
l]

= Pr[H∞(X | A′s V iew) � 1
2
l · lin − 1

4
l · lin]

= Pr[H∞(X | A′s V iew) � 1
4
l · lin]

�2(
3
4− 3ε

4)l·lin−l·lin+ 1
4 l·lin (5.4)

=2− 3ε
4 l·lin

The Equation (5.4) follows Lemma 3. In words: the forged objects X ′ are all
fixed by A with negligible probability in n in case of m∗ �= m. That is, there
exist at least one bit is unfixed by A. Let CorrectGuess be the event that a
unfixed bit locates the position i∗, i.e. the probability that ASPR correctly guess
the position of an unfixed bit is Pr[CorrectGuess] � 1

l . Let ε1 be the probability
that ASPR succeeds in breaking the second preimage collision resistance, then
we have

ε1 = Pr[x �= x′ ∧ hs(x) = hs(x′)]
�Pr[x �= xi∗ ∧ hs(x) = hs(xi∗) ∧ m∗ �= m]

�Pr[x �= xi∗ ∧ ForgeReuse]

�Pr[x �= xi∗ ∧ ForgeReuse ∧ H∞(X ′ | A′s V iew) = 0 ∧ CorrectGuess]

= Pr[x �= xi∗ ∧ ForgeReuse ∧ H∞(X ′ | A′s V iew) = 0] · Pr[CorrectGuess]

= Pr[x �= xi∗ |ForgeReuse ∧ H∞(X ′ | A′s V iew) = 0]·
(1 − Pr[H∞(X ′ | A′s V iew) > 0|ForgeReuse]) · Pr[ForgeReuse] · 1

l

� 1
2l

(Pr[ForgeReuse] − 2− 3ε
4 l·lin)

Thus,
Pr[ForgeReuse] � 2l · ε1 + 2− 3ε

4 l·lin � negl1(n)

which follows the fact that h is a collision-resilient hash function.
Next, we consider the adversary ACR as follows:

Algorithm ACR:
The algorithm is given the description of the collision-resilient hash function h,
say s.

1. Compute (vk, sk) ← Kg(1n).
2. Run A(vk), answering its signature query and leakage query as follows:

Signature Query Given the message m, return Signsk(m) to A.

A Black-Box Construction of BLF-sEUF-CMA Secure Signature Schemes 337

Leakage Query Given the leakage function f , compute Λ = f(sk), return
Λ to A.

3. When A outputs (m∗, {x∗
i }i∈Sm∗),

– If ∃i s.t. x∗
i �= xi and hs(xi∗) = hs(xi), return (x, xi∗).

– Else, return ⊥.

Notably, if m = m∗ occurs, then the forge positions refers to positions in σ
which have been exposed to A. In this case, A is not provided with any help
from leakage information resulting from the fact that collisions are independent
of the unexposed secret.

Let ε2 be the probability that ACR succeeds in breaking the collision resis-
tance of h, then we have

ε2 = Pr[xi �= xi∗ ∧ hs(xi) = hs(xi∗)]
�Pr[xi �= xi∗ ∧ hs(xi) = hs(xi∗) ∧ m∗ = m]

�Pr[xi �= xi∗ ∧ (
∧

i∈Sm∗

yi = hs(x∗
i)) ∧ m∗ = m]

= Pr[ForgeReuse].

Thus,
Pr[ForgeReuse] � ε2 � negl2(n).

From above, we know that

Pr[Forge] = Pr[ForgeReuse] + Pr[ForgeReuse] � negl1(n) + negl2(n),

which is negligible as well. This completes the proof. ��

6 Conclusion

In this paper we proposed a black-box construction of leakage-resilient and
strongly unforgeable signature scheme. It uses a leakage-resilient strong one-time
signature to transform a leakage-resilient and existentially unforgeable signature
scheme to the corresponding strongly unforgeable version. Our construction does
not require any special structure or property of the underlying signature scheme,
nor add any element to the verification key. To demonstrate our transformation,
we further provided two instantiations of leakage-resilient strong one-time sig-
nature scheme.

The major drawback of our construction is that the leakage rate of the result-
ing scheme is restricted by the lower rate of the underlying strong one-time sig-
nature schemes, which is (1/4 − o(1)) in our instantiation. And leakage rate of
strong one-time signature scheme proposed by Wang et al. [29] is (1/2 − o(1)).
How to construct a leakage-resilient strong one-time signature scheme with high
leakage rate e.g. 1 − o(1), and thus improving the leakage rate of the leakage-
resilient and strongly unforgeable signature scheme, is one of our future work.

338 J. Huang et al.

Acknowledgements. We would like to thank the anonymous reviewers for their
invaluable comments and for referring us to [29]. This work was supported by the
National Natural Science Foundation of China (No. 61472146), Guangdong Natural
Science Funds for Distinguished Young Scholar (No. 2014A030306021), Guangdong
Program for Special Support of Top-notch Young Professionals (No. 2015TQ01X796),
Pearl River Nova Program of Guangzhou (No. 201610010037), and the CICAEET fund
and the PAPD fund (No. KJR1615).

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol.
5444, pp. 474–495. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5 28

2. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). doi:10.1007/BFb0052259

3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 4

4. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on com-
putational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006). doi:10.
1007/11745853 15

5. Bos, J.N.E., Chaum, D.: Provably unforgeable signatures. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 1–14. Springer, Heidelberg (1993). doi:10.
1007/3-540-48071-4 1

6. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. J. Cryptology
26(3), 513–558 (2013)

7. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5 25

8. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: IEEE 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp.
293–302. IEEE (2008)

9. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union ofr others. Israel J. Math. 51(1), 79–89 (1985)

10. Faust, S., Hazay, C., Nielsen, J.B., Nordholt, P.S., Zottarel, A.: Signature schemes
secure against hard-to-invert leakage. J. Cryptology 29(2), 422–455 (2016)

11. Gallagher, P.: Digital signature standard (dss). Federal Information Processing
Standards Publications, FIPS, pp. 186–3. Springer, US (2013)

12. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). doi:10.1007/3-540-44709-1 21

13. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot
attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

14. Huang, Q., Wong, D.S., Li, J., Zhao, Y.: Generic transformation from weakly to
strongly unforgeable signatures. J. Comput. Sci. Technol. 23(2), 240–252 (2008)

http://dx.doi.org/10.1007/978-3-642-00457-5_28
http://dx.doi.org/10.1007/BFb0052259
http://dx.doi.org/10.1007/3-540-69053-0_4
http://dx.doi.org/10.1007/11745853_15
http://dx.doi.org/10.1007/11745853_15
http://dx.doi.org/10.1007/3-540-48071-4_1
http://dx.doi.org/10.1007/3-540-48071-4_1
http://dx.doi.org/10.1007/3-540-48059-5_25
http://dx.doi.org/10.1007/3-540-44709-1_21

A Black-Box Construction of BLF-sEUF-CMA Secure Signature Schemes 339

15. Huang, Q., Wong, D.S., Zhao, Y.: Generic transformation to strongly unforgeable
signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 1–17.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-72738-5 1

16. Huffman, W.C., Pless, V.: Fundamentals of Error-correcting Codes. Cambridge
University Press, Cambridge (2010)

17. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10366-7 41

18. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

19. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

20. Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting
problems without computational assumptions. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999). doi:10.1007/
3-540-48405-1 38

21. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report, Technical Report CSL-98, SRI International Palo Alto (1979)

22. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual
leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol.
6597, pp. 89–106. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6 7

23. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24638-1 16

24. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-01001-9 27

25. Quisquater, J.-J., Samyde, D.: Electro Magnetic Analysis (EMA): measures
and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart
2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). doi:10.1007/
3-540-45418-7 17

26. Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforge-
able signature into a strongly unforgeable signature. In: Abe, M. (ed.) CT-RSA
2007. LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006). doi:10.1007/
11967668 23

27. Wang, Y., Tanaka, K.: Generic transformation to strongly existentially unforgeable
signature schemes with leakage resiliency. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K.,
Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 117–129. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-12475-9 9

28. Wang, Y., Tanaka, K.: Generic transformation to strongly existentially unforgeable
signature schemes with continuous leakage resiliency. In: Foo, E., Stebila, D. (eds.)
ACISP 2015. LNCS, vol. 9144, pp. 213–229. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-19962-7 13

29. Wang, Y., Tanaka, K.: Generic transformations for existentially unforgeable sig-
nature schemes in the bounded leakage model. Secur. Commun. Networks 9(12),
1829–1842 (2016)

30. Yuen, T.H., Yiu, S.M., Hui, L.C.K.: Fully leakage-resilient signatures with auxiliary
inputs. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372,
pp. 294–307. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31448-3 22

http://dx.doi.org/10.1007/978-3-540-72738-5_1
http://dx.doi.org/10.1007/978-3-642-10366-7_41
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-48405-1_38
http://dx.doi.org/10.1007/3-540-48405-1_38
http://dx.doi.org/10.1007/978-3-642-19571-6_7
http://dx.doi.org/10.1007/978-3-540-24638-1_16
http://dx.doi.org/10.1007/978-3-540-24638-1_16
http://dx.doi.org/10.1007/978-3-642-01001-9_27
http://dx.doi.org/10.1007/978-3-642-01001-9_27
http://dx.doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/11967668_23
http://dx.doi.org/10.1007/11967668_23
http://dx.doi.org/10.1007/978-3-319-12475-9_9
http://dx.doi.org/10.1007/978-3-319-19962-7_13
http://dx.doi.org/10.1007/978-3-319-19962-7_13
http://dx.doi.org/10.1007/978-3-642-31448-3_22

Towards Proofs of Ownership Beyond Bounded
Leakage

Yongjun Zhao(B) and Sherman S.M. Chow

Department of Information Engineering,
The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong

{zy113,sherman}@ie.cuhk.edu.hk

Abstract. Cloud servers save their storage cost by applying deduplica-
tion. Duplicated copies of the same file uploaded by the cloud service
clients can be reduced to a single copy by maintaining a list of clients
who own the same file. Nowadays it is a common practice to rely on the
message digest of the file for showing its possession. Yet, this property
has been exploited to make the cloud storage service effectively become
a content distribution network, by sharing a short message digest.

Proof of ownership (PoW) has been proposed to address this prob-
lem. PoW is an interactive protocol by which the prover can prove to the
verifier about the ownership of a file. Under this setting, the adversary is
motivated to leak some knowledge of the file, for helping a non-owner to
also claim ownership. We are intrigued to ask, what is the strongest pos-
sible form of leakage, such that a PoW protocol can be provably secure?

In this paper, we propose a leakage-resilient PoW under a strong
model, such that any adversary who holds leakage derived from a form
of one-way function cannot falsely claim the file ownership.

Keywords: Cloud cryptography · Proof of ownership · Leakage-
resilience · Bounded retrieval model · Auxiliary input model

1 Introduction

The move to cloud computing is not just a mere slogan but an unstoppable trend
for enterprises and personal computer users. Increasing network bandwidth and
reliability make outsourcing local data to remote server a more and more attrac-
tive option. Compared with personal computing devices, cloud storage systems
are considered to be more powerful and reliable. For enterprises, delegating data
to cloud storage server could significantly reduce the cost of local data storage
and maintenance. Nevertheless, such benefits come at the cost of potential secu-
rity threats. In fact, researchers have pointed out that many important aspects
of information security; including availability, authenticity, and confidentiality
are at risk in cloud storage systems. In this paper, we focus on the challenge of
achieving authenticity in client-side deduplication system.

S.S.M. Chow—Supported in part by General Research Fund (Grant No. 14201914)
and the Early Career Award (439713) from Research Grants Council, Hong Kong.

c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 340–350, 2016.
DOI: 10.1007/978-3-319-47422-9 20

Towards Proofs of Ownership Beyond Bounded Leakage 341

1.1 Deduplication

Deduplication is a widely used technology in cloud storage systems like Dropbox,
Wuala, in order to save space by storing only one copy of duplicated files from
different users (or even the same user). That is to say, if multiple users requested
the cloud server to store the same file, the server will only store a single copy of
that file, and then maintain a list of users who own it.

Deduplication can be classified in different dimensions: e.g., client-side dedu-
plication versus server-side deduplication, cross-user deduplication versus single-
user deduplication, etc. Server-side deduplication means that the server is in full
control of whether to store a file or not by first requiring the clients to always
upload the whole file. In contrast, client-side deduplication does not involve
always sending the whole file to the server since the deduplication has been done
at the client-side before the upload process. For single-user deduplication, only
files owned by the same client are deduplicated. Among these variants, client-
side cross-user deduplication is most economical in terms of bandwidth and space
saving.

The typical work flow of client-side cross-user deduplication is as follows:
Instead of uploading the whole file, client sends only the hash of the file. The
server then uses this hash as a file identifier, to check whether the file already
exists in its database. If so, the server simply adds that client in to the list of file
owners. If not, the server asks the client to upload the whole file, and adds the
new hash value in its database. In the rest of this paper, deduplication refers to
this variant unless otherwise specified.

Client-side deduplication induces security risks for both servers and clients.
The root cause of the risk is the lack of authenticity in deduplication: anyone
that owns the hash of the file is considered to be its owner by the cloud storage
systems. If Alice wants to share a huge file to a larger number of people, she only
needs to upload the file to the sever once, and then broadcasts the short hash
value to the intended receivers. Since Alice does not need to send the actual huge
file to many others, basically Alice uses the cloud storage system as a content
distribution network (CDN) almost for free. This impairs the financial interest of
the cloud storage system. From the perspective of users, if the short hash value
of an important secret file is somehow leaked to an attacker, it essentially means
the whole large file is leaked. The above attacks are not just mere speculation
but happened in reality already [6,16]. In particular, Dropbox disabled cross-user
deduplication due to the CDN attack.

Table 1 summarizes the current state of some popular cloud storage systems.
The information in the first three rows comes from an existing study [17] while
the last row is based on our own experiment. We notice that client-side cross-user
deduplication is still popular.

1.2 Proofs of Ownership

The CDN attack can be somewhat relieved by using a keyed collision-resistant
hash function (to be formally reviewed in Sect. 2, despite that it is not used in our

342 Y. Zhao and S.S.M. Chow

Table 1. Comparison of some popular cloud storage systems

Name Deduplication Cross-user

Dropbox Yes No (once supported)

SpiderOak Yes No

Wuala Yes Yes

BaiduYun Yes Yes

proposed constructions). By keeping the hashing key secret and encrypting the
network traffic using TLS/SSL, the attacker would have a hard time finding the
hash value of a file of interest. However, such approach is not very satisfactory.
For client-side deduplication, the hashing key has to be stored somewhere within
the client-side software program, and the client-side program is always subject
to reverse engineering attack. In general, simple use of traditional cryptographic
primitives cannot provide a satisfactory solution.

The first solution to the above problem is called “proofs of ownership” (PoW)
proposed by Halevi et al. [12]. PoW is an interactive protocol by which the prover
can prove to the verifier that the client really owns the file. A trivial approach
of realizing PoW is to just send the whole file in clear. Yet, it wastes a lot of
bandwidth. All their PoW solutions [12] are based on a Merkle hash tree instead
of using a single static digest value as a proof.

Halevi et al. [12] propose three different definitions. The first and the
strongest definition parameterizes a PoW scheme with two parameters: slack-
ness s and soundness ε. A PoW scheme is said to be (s, ε)-secure if the adversary
can only convince the server with probability negl(s)+ ε (negl(s) to be explained
in Sect. 2) when the file still has s-bits of entropy after some information of it
has been leaked. Their second and third definitions are in the standard bounded-
retrieval model (see Sect. 1.3 for details). The security analysis of the last con-
struction of Halevi et al. [12] relies on an assumption that no one knows how to
prove yet.

Researchers have been trying to improve efficiency of PoW construc-
tions [1,13,14]. The work of Blasco et al. [1] compresses many cryptographic
tags associated to different blocks of the file using Bloom filter [5], resulting in
a more efficient scheme (when compared with [12,13]). Yu et al. [19] replaces
Bloom filter with counting Bloom filter [9] to cope with file deletion and inser-
tion. Recently, Pietro et al. [14] give a very efficient PoW construction that is
unconditionally secure by improving their previous work [13]. Unfortunately, the
interaction between prover and verifier in the proving protocol of their construc-
tion directly leaks the file.

Xu et al. [17] considers the problem of protecting the confidentiality of the file
against an honest-but-curious cloud server in the context of PoW. Their solution
is a leakage-resilient PoW protocol which is formulated in the following setting.
Instead of keeping plaintext on the server as in the tradition notion of PoW, their
scheme requires the first uploader to encrypt the file using a randomly selected

Towards Proofs of Ownership Beyond Bounded Leakage 343

key and encrypt the selected key by the hash digest of the file. Ciphertexts of
the file and the key are uploaded to the server along with an index. For future
uploaders of the same file, the server will transmit the ciphertext of the key to
the client only if the client passes the PoW challenge. The client can retrieve
the encryption key by knowing the hash digest of the file, and then keep the
encryption key for future access. One potential problem of this scheme is that
it relies on the assumption that the leakage can only happen before a “commit”
phase, which may be unrealistic since leakage can happen anytime, anywhere in
reality.

1.3 Bounded-Retrieval Model

Bounded-retrieval model (BRM) has been considered as a reasonable model
which is widely used in leakage-resilient cryptography. In essence, it bounds the
leakage which can be retrieved by the adversary, for example, on the number of
bits revealed. A leakage-resilient cryptographic scheme means that the security
guarantee still holds even after some information about the secret material (e.g.,
secret key in an encryption scheme, or the file to be proven in PoW) has been
leaked to the adversary.

However, in some applications, BRM might fail to capture necessary security
requirements. For example, the work of Halevi et al. [12] suggested that the
leakage threshold T can be set to be 64 megabytes. But for an attacker who
wants to share a 4 gigabytes file, 64 megabytes is less than 2 % of the file size,
which means the attacker has a strong incentive to leak a relatively “small”
amount of data (64 megabytes in this example). Any security proof in BRM will
guarantee nothing in the face of an adversary who receives leakage exceeding the
threshold. Constructing PoW beyond BRM is not only of theoretical interest,
but also practically necessary.

1.4 Our Contributions

We present a PoW construction in a strong leakage model. Let Leak(·) be the
leakage function supplied by the adversary such that the adversary can learn
some information of a file M in the form of Leak(M). Obviously it is impos-
sible to achieve any security if there is no restriction on Leak(·). In this work,
we choose a more general notion of leakage when compared with BRM, which
restricts Leak(·) to be a one-way function, meaning that we require our proposed
PoW construction remains secure as long as it is computationally infeasible to
recover M from Leak(M). In particular, such kind of leakage covers that in
existing length-bounded model.

In cryptography, such leakage is often called auxiliary input [8,20]. Similar
to the benefits of auxiliary input in other cryptographic primitives [8,20], Our
result generalizes secure PoW in the dimension of leakage allowed.

344 Y. Zhao and S.S.M. Chow

2 Background

In this section, we establish some notations that will be used in the rest of the
paper, and then introduce some important concepts in cryptography.

2.1 Notation

If S is a finite set, then |S| denotes its size and s
$←− S denotes picking an element

uniformly in S and assigning it to s. If s is a string, then |s| denotes the length
of s and s[i] denotes the i-th bit, s[i, j] = s[i] . . . s[j] for 1 ≤ i ≤ j ≤ |s|.

By A(x1, . . .) → y, we denote the operation of running algorithm A on inputs
x1, . . . and assigning the output to y. Unless otherwise specified, all algorithms
in this paper are randomized. A function is called negligible, denoted by negl(·),
if there exists and N such that for all n > N and for all polynomial function p(·),
we have negl(n) < 1/p(n).

2.2 Hash Functions and Collision-Resistance

A collision in a function H is a pair of distinct inputs x and x′ such that
H(x) = H(x′). A function H(·) is said to be collision-resistant if it is infeasible
for any probabilistic polynomial-time algorithm to find a collision in H(·).

A family of hash functions H = (HK,H) is a pair of polynomial-time algo-
rithms, the second being deterministic. The key generation algorithm HK takes
input 1λ, and returns a hashing key Kh. The hashing algorithm H takes Kh

and a message m and returns its hash H = H(Kh,m). For simplicity, we refer
to H as “hash functions” instead of “a family of hash functions”. This should
not cause any confusion. We say that H are “collision-resistant hash functions”
if H(Kh, ·) is collision-resistant for random Kh.

2.3 One-Way Function

A function f : {0, 1}∗ → {0, 1}∗ is one-way [10] if f can be computed in poly-
nomial time, but it is hard to find a preimage of f(x) with success probability
noticeably better than a random guess in the domain of x. Typically we only
require such computational hardness to hold when x is chosen uniformly at
random. For the purpose of this work, we will extend uniform distribution to
arbitrary distribution. The reason for this adaptation is that we will model the
file as input x, and model the leakage function Leak as a one-way function. It
would be unrealistic to assume the file is uniformly distributed. We adopt the
definition given by Rosen and Segev [15] which explicitly specifies the input
distribution.

Definition 1 (One-way function). Let I be a distribution where I(1n) is
distributed over {0, 1}n. A polynomial-time computable function f(·) is said to

Towards Proofs of Ownership Beyond Bounded Leakage 345

be one-way with respect to the input distribution I if for every probabilistic
polynomial-time algorithm A, it holds that

Pr[f(A(1n, f(x))) = f(x)] < negl(n)

for all sufficiently large n, where x ← I(1n).

2.4 Hard-Core Predicate and Hard-Core Function

The well-known Goldreich-Levin theorem [10,11] asserts that the exclusive-or
of a random subset of the bits of x is hard to approximate when given f(x),
if f(·) is a one-way function for uniformly distributed x. Such bit is called hard-
core predicate of the one-way function f(·). The notion of predicate can be
generalized to functions whose output length is not restricted to be 1. Informally,
a function h(·) is called a hard-core function of the one-way function f(·), if
given f(x) it is hard to approximate h(x) with probability noticeably better
than a random guess. Moreover, the requirement of uniformly distributed x can
be relaxed to consider arbitrary distribution. The hard-core predicate/function
exists on the same distribution on which the one-way function is defined.

Definition 2 (Hard-core predicate/function). Let I be a distribution where
I(1n) is distributed over {0, 1}n. A polynomial-time computable function h(·) is
said to be a hard-core function of the one-way function with respect to the input
distribution I if for every probabilistic polynomial-time algorithm A, it holds that

Pr[A(1n, f(x)) = h(x)] <
1

2|h(x)| + negl(n)

for all sufficiently large n, where x ← I(1n). When the output of h(·) is only 1
bit, namely |h(x)| = 1, h(·) is called a hard-core predicate.

3 Proof of Ownership

In this section, we introduce the system model of client-side deduplication. In
particular, we change the leakage model in existing definitions [12,14,17,18] from
bounded-leakage model to auxiliary input model.

3.1 System Model

Cloud Storage Server. The cloud storage server (or the server in short) pro-
vides outsourced storage service for users. To save computation and communi-
cation cost, the server adopts client-side deduplication technique. As mentioned
in Sect. 1.1, the trivial client-side deduplication effectively turns the server into
a free content-distribution center, which impairs its financial interest. Therefore,
the server wants to make sure that the client indeed holds the claimed file by
executing the PoW protocol with the client.

Since it is in the interest of the server to execute the PoW protocol correctly,
and the server can learn the file from the client after all, the server does not
have any incentive to deviate from the protocol specification.

346 Y. Zhao and S.S.M. Chow

Cloud Users. Honest users upload files to the cloud server, by following the
protocol specification to convince the server that they indeed hold the file. We
assume that they do not have any incentive to share their potentially sensitive
files to the others. However, adversarial users may obtain partial information
about a file (which they do not really have) from elsewhere, say from some
side-channel. Compare with other schemes in the literature, we do not restrict
the amount of information being leaked. Instead, we model the knowledge of
the adversary about the file (including some prior knowledge and leakage from
side-channel) as a one-way function of the file. Namely, it is computationally
infeasible to recover the file from the knowledge of the adversary.

3.2 Syntactic Definition

Definition 3 (Proof of Ownership (PoW) [12]). A PoW system comprises
the three polynomial-time algorithms (Challenge, GenProof, CheckProof).
Challenge(M) → c: The algorithm Challenge takes input some file M and outputs

a random challenge c for the file M .
GenProof(c,M) → π: The algorithm GenProof is run by the client to generate a

response to a challenge c, in order to prove ownership of the file M .
CheckProof(π, c,M) → {“success”,“failure”}: The algorithm CheckProof is run

by the verifier, i.e., server, to validate the proof π.

We mandate the following correctness and security requirements.

Definition 4 (PoW Correctness). We say that a PoW protocol is correct, if
the following condition holds with overwhelming probability: For any file M ∈
{0, 1}n

CheckProof(GenProof(c,M), c,M) = “success”

where c ← Challenge(M).

As for the security of proof-of-ownership, we consider the probability that
an adversary can convince the server that it owns the entire file M while it
only knows some partial information Leak(M). Based on the auxiliary input
modal [7,20], we assume that Leak(·) is a one-way function.

Definition 5 (PoW Security). We say that a PoW protocol is secure if
there is no polynomial time adversary who can win the following game with
non-negligible probability.

– Setup: The challenger generates and sends A the system parameters P (which
includes the security parameter n).

– Challenge: The challenger runs M ← In and sends the proof query c with the
auxiliary information Leak(M) to the adversary.

– Finally, the adversary outputs the proof π∗. If CheckProof(π∗, c,M) → true,
i.e., π∗ passes the verification, the challenger outputs 1, otherwise outputs 0.

We define A’s advantage AdvA
In

as the probability that the game outputs 1.
A PoW scheme is secure if for any one-way function Leak(·) on the distribution
In and any polynomial time adversary A, the advantage AdvA

In
is negligible.

Towards Proofs of Ownership Beyond Bounded Leakage 347

4 Our Constructions

Below we develop our construction step-by-step. The high level idea is that,
given that the leakage of the file M is a one-way function Leak(·) on M , it is
hard to approximate some information of M given only Leak(M) according to
the Goldreich-Levin Theorem.

4.1 Our Basic Construction

Before introducing the efficient construction, we first describe the following basic,
but inefficient construction.

Let M denote the file of which the adversarial client wants to prove ownership.
Challenge(M) → c: The Challenge algorithm run by the verifier (server) selects

a random string r of length |M |. The challenge c is set to be r. The verifier sends
this random string to the client.

GenProof(c,M) → π: The GenProof algorithm run by the client calculates
b = (

∑|M |
i=1 M [i] · r[i]) mod 2 and returns b to the verifier. The proof π is set to

be b.
CheckProof(π, c,M) → {“success”,“failure”}: Upon receiving the proof b ∈

{0, 1}, the verifier recomputes b′ = (
∑|M |

i=1 M [i] · r[i]) mod 2 and checks b
?= b′.

Security and Efficiency. To see the security of the above protocol, let Leak(M) be
the leakage the prover receives. As long as Leak(M) is a one-way function of M ,
then b can be viewed as a hard-core predicate of Leak′(·, r) = (Leak(·), r) [10].
That means if the prover does not know M in advance, she could only guess b
with probability less than 1

2 + negl(n).
While achieving strong leakage resilience, this construction is inefficient,

because the communication cost is linear in the length of the file. In terms
of security, the prover can always pass verification with probability at least 1

2 .

4.2 An Improved Construction

In the more efficient construction, we use hard-core function instead of hard-
core predicate to challenge the client. Moreover, instead of sending the random
challenge r directly, we use a hash function G to generate r from a short random
seed s. We model this function as a random oracle in the security proof. These
two improvements significantly reduce the communication cost.

Let λ ∈ O(log n) be a chosen parameter. Let M ∈ {0, 1}n be the file of which
the client wants to prove ownership. Let G : {0, 1}� → {0, 1}|M |+λ−1, � � |M |
be a hash function.

Challenge(M) → c: The Challenge algorithm run by the verifier selects a
random string s of length �. The challenge c is set to be s. The verifier sends
this random string to the client.

GenProof(c,M) → π: The client performs the following step:

1. calculates r = G(s) ∈ {0, 1}|M |+λ−1,

348 Y. Zhao and S.S.M. Chow

2. calculates bj(M, r) = (
∑|M |

i=1 M [i] · r[i + j − 1]) mod 2 for 1 ≤ j ≤ λ,
3. returns h(M, r) = (b1(M, r), . . . , bλ(M, r)) ∈ {0, 1}λ as the proof π to the

verifier.
CheckProof(π, c,M) → {“success”,“failure”}: Upon receiving a λ-bit string π,
the verifier recomputes h(M, r) and checks h(M, r) ?= π.

Theorem 1. If Leak(·) is a one-way function of M from the adversary’s view,
then the advantage AdvA

In
of any probabilistic polynomial time adversary A

breaking the security game in Definition 5 is at most 1
2λ , when we model G

as a random oracle.

Proof. The core idea of this proof is that h(M, r) is a hard-core function of
f(M) = (Leak(·)). This means if the prover does not know M in advance, she
could only guess h(M, r) with probability at most 1

2λ . To formalize the proof,
we need to show that replacing r with G(s) would not change the behavior of
the adversary. This is can be seen easily from the fact that G(s) is guaranteed
to be distributed uniformly random by the definition of a random oracle. ��

4.3 Discussions

On the Use of Random Oracle. Note that our use of the random oracle is
applying it on a random string s. We did not use the random oracle to take the
file M itself, the leakage target which we aim to protect, as an input.

One may ask whether we can simply assume G to be a secure pseudorandom
generator (PRG) instead of a random oracle. The answer is probably not because
in the standard definition of PRG, it is only ensured that G(s) is computationally
indistinguishable from random if the adversary does not know s. However, in
our case, the adversary (client) has to know s in order to compute r = G(s).
Therefore, it appears that PRG is not very useful in our setting.

Further Reducing AdvA
In

. Note that we require λ ∈ O(log n). This is because
we can only extract O(log n) pseudorandom bits by the Goldreich-Levin The-
orem. As a consequence, the winning probability AdvA

In
of an adversary is at

most 1
n , which is still not negligible in n.

Recently it has been shown that by assuming the existence of differing-inputs
obfuscation [2,3], we can extract polynomially many pseudorandom bits from
any one-way function [4]. Investigating whether such technique can be adapted
in our setting to reduce the soundness error is left as a future research direction.
We note that to reduce the advantage to negligible, it suffices to extract ω(log n)
bits instead of polynomially many bits, because

(
1
2

)ω(log n) = 1
nω(1) < negl(n).

Preventing Leakage to Outsider Adversary. The execution of the proposed
PoW protocol may leak information about the file M to an outsider adversary
eavesdropping the communication between an honest server and an honest client.
Such leakage can be easily prevented by encrypting all the traffic using a session
key established between the client and the server using a standard key exchange

Towards Proofs of Ownership Beyond Bounded Leakage 349

protocol. This fix is reasonable since both the server and the client have no
intention to leak any information about the files.

5 Conclusion and Future Work

For the first time in the literature, we constructed a leakage-resilient PoW for
leakage beyond bounded retrieval model. There are various leakage-resilient mod-
els for PoW. A future research direction is to unify the security model. Our basic
construction is secure in the standard model, yet it is inefficient. It is interesting
to see if a reasonably efficient construction can be obtained by only relying on
some of the properties of the random oracle, or getting rid of it altogether.

Acknowledgement. We would like to thank Zongyang Zhang for helpful advice and
suggestions. We also want to thank Yu Chen who refers us to the work of Rosen and
Segev [15].

References

1. Aĺıs, J.B., Di Pietro, R., Orfila, A., Sorniotti, A.: A tunable proof of ownership
scheme for deduplication using bloom filters. In: IEEE Conference on Communi-
cations and Network Security, CNS 2014, San Francisco, CA, USA, 29–31 October
2014, pp. 481–489 (2014)

2. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-Inputs Obfus-
cation and Applications. Cryptology ePrint Archive 2013/689 (2013)

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

4. Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 102–121. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-45608-8 6

5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

6. DeFelippi, D.: dropship - Instantly transfer files between Dropbox accounts using
only their hashes. github. Accessed 04 June 2016

7. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 621–630 (2009)

8. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplifica-
tion. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00457-5 8

9. Fan, L., Cao, P., Almeida, J.M., Broder, A.Z.: Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM Trans. Netw. 8(3), 281–293 (2000)

10. Goldreich, O.: The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press (2001)

11. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
ACM Symposium on Theory of Computing, STOC 1989, 14–17 May 1989, Seattle,
Washington, USA, pp. 25–32 (1989)

http://dx.doi.org/10.1007/978-3-662-45608-8_6
http://dx.doi.org/10.1007/978-3-642-00457-5_8

350 Y. Zhao and S.S.M. Chow

12. Halevi, S., Harnik, D., Pinkas, B., Shulman-Peleg, A.: Proofs of ownership in remote
storage systems. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS 2011, Chicago, Illinois, USA, 17–21 October 2011,
pp. 491–500 (2011)

13. Di Pietro, R., Sorniotti, A.: Boosting efficiency and security in proof of owner-
ship for deduplication. In: 7th ACM Symposium on Information, Computer and
Communications Security, ASIACCS 2012, Seoul, Korea, 2–4 May 2012, pp. 81–82
(2012)

14. Di Pietro, R., Sorniotti, A.: Proof of ownership for deduplication systems: a secure,
scalable, and efficient solution. Comput. Commun. 82, 71–82 (2016)

15. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. SIAM J.
Comput. 39(7), 3058–3088 (2010)

16. Thomas, K., Dropbox: A File Sharer’s Dream Tool? PCWorld, April 2011. Accessed
04 June 2016

17. Xu, J., Chang, E.-C., Zhou, J.: Weak leakage-resilient client-side deduplication of
encrypted data in cloud storage. In: 8th ACM Symposium on Information, Com-
puter and Communications Security, ASIACCS 2013, Hangzhou, China, 08–10 May
2013, pp. 195–206 (2013)

18. Xu, J., Zhou, J.: Leakage resilient proofs of ownership in cloud storage, revisited.
In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479,
pp. 97–115. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07536-5 7

19. Yu, C.-M., Chen, C.-Y., Chao, H.-C.: Proof of ownership in deduplicated cloud
storage with mobile device efficiency. IEEE Netw. 29(2), 51–55 (2015)

20. Yuen, T.H., Chow, S.S.M., Zhang, Y., Yiu, S.M.: Identity-based encryption resilient
to continual auxiliary leakage. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 117–134. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29011-4 9

http://dx.doi.org/10.1007/978-3-319-07536-5_7
http://dx.doi.org/10.1007/978-3-642-29011-4_9
http://dx.doi.org/10.1007/978-3-642-29011-4_9

Homomorphic Encryption

A Homomorphic Proxy Re-encryption
from Lattices

Chunguang Ma1,2(B), Juyan Li1, and Weiping Ouyang1

1 College of Computer Science and Technology, Harbin Engineering University,
Harbin 150001, People’s Republic of China

machunguang@hrbeu.edu.cn, lijuyan587@163.com, 185593450@qq.com
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences,
Beijing 100093, People’s Republic of China

Abstract. In this paper, we present a unidirectional homomorphic
proxy re-encryption (PRE) scheme from learning with errors assump-
tion, which can homomorphically evaluates ciphertexts at input or out-
put side, no matter ciphertexts are fresh or re-encrypted (re-encrypted
ciphertexts can come from different identities). Our PRE scheme modify
the recent HE scheme of Gentry etc. We also use the approximate eigen-
vector method to manage the noise level and decrease the decryption
complexity without introducing additional assumptions. Furthermore,
with the security definition of Nishimai etc., we prove that our homo-
morphic PRE is indistinguishable against chosen-plaintext attacks, key
privacy secure and master secret secure.

Keywords: Homomorphic encryption · LWE · Proxy re-encryption ·
Key privacy

1 Introduction

Fully-homomorphic encryption marks another milestone in the history of mod-
ern cryptography. To put it in a simple way, a fully homomorphic encryption
(FHE) scheme is an encryption scheme that allows evaluation of arbitrarily com-
plex programs on encrypted data. Since Regev [1] proved that the learning with
errors (LWE) assumption is at least as hard as solving hard problems in general
lattices, the FHE scheme is mainly based on LWE. Brakerski et al. [2] estab-
lished a full homomorphism scheme based on the LWE assumption, which needs
modulus q ≈ B2L, where B is the initial magnitude of noise and L is the levels
of multiplication. Brakerski et al. [3] improved [2] by using modulus switching
technique. Because [3] can scale down the ciphertext vector after every multipli-
cation, after L levels of multiplication-and-scaling, the noise magnitude is still
B, but the modulus is down to q

BL . Therefore it is sufficient to use q ≈ BL+1.
Brakerski [4] proposed a scale-invariant homomorphic encryption scheme, which
avoids the utilization of modulus switching technique, considerably simplifying

c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 353–372, 2016.
DOI: 10.1007/978-3-319-47422-9 21

354 C. Ma et al.

the scheme [3]. Noise only grows linearly, [4] only depend on the ratio between
the modulus q and the initial noise level B, and not on their absolute values. Gen-
try et al. [5] built a homomorphic encryption scheme by using the approximate
eigenvector method. In this scheme, homomorphic addition and multiplication
are just matrix addition and multiplication. This makes the scheme asymptoti-
cally faster. Zhang et al. [6] presented an effective FHE scheme from Ring-LWE
assumption which was obtained by modifying the scheme [7]. They used the
re-linearization technique to reduce the length of ciphertext considerably, and
used the modulus reduction technique to manage the noise level and decrease the
decryption complexity. Furthermore, they extended the FHE scheme to a thresh-
old fully homomorphic encryption scheme, which allows parties to cooperatively
decrypt a ciphertext without learning anything but the plaintext. Hiromasa
et al. [8] constructed the first FHE scheme that encrypts matrices and supports
homomorphic matrix addition and multiplication. This is a natural extension
of a packed FHE scheme [5] and thus supports more complicated homomorphic
operations.

Proxy re-encryption (PRE) is an extension of public key encryption. In a
proxy re-encryption scheme, a server is given re-encryption key from Alice to
Bob. The server, given ciphertext for Alice, converts it to ciphertext for Bob
with the help of the re-encryption key, without decrypting the ciphertext of Alice
[9–11]. The interesting property makes PRE more applicable in many scenarios
[9,12,13]. At present, research on PRE over lattices is relatively sparse. Xagawa
[14] constructed the first PRE scheme based on lattices, which is a CPA secure
with bidirectional and not against collusion attacks. Aono et al. [15] proposed a
key-private PRE (KP-PRE) scheme with unidirectional and mulity-hop delega-
tion. A unidirectional proxy re-encryption is said to be key privacy if any adver-
sary cannot distinguish a real re-encryption key from a random re-encryption
key even if the adversary is allowed to access to the re-encryption key oracle and
the re-encryption oracle which re-encrypts input ciphertexts by using the real re-
encryption key. Ateniese et al. [12] introduced master secret security as another
security requirement for unidirectional PRE. Master secret security demands
that no coalition of dishonest proxy and malicious delegatees can compute the
master secret key (private key) of the delegator. Singh et al. [16] showed [15] is
not secure under master secret security model and constructed a unidirectional
PRE scheme which is secure under master secret security model with multi-use.
Nishimak et al. [18] proposed two unidirectional KP-PRE schemes from LWE
assumptions, which are CPA secure. Jiang et al. [17] constructed a multi-use
unidirectional PRE scheme based on lattices, which is CPA secure and against
collusion attacks.

In this paper, we construct a unidirectional homomorphic KP-PRE scheme
based on [5,19], which allows users to homomorphically evaluate on the cipher-
texts at input or output side, no matter ciphertexts are fresh or re-encrypted
(re-encrypted ciphertexts can come from different users). Furthermore, we prove
that the homomorphic PRE scheme is indistinguishable against chosen-plaintext
attacks, key privacy secure and master secret secure. Our scheme does not use

A Homomorphic Proxy Re-encryption from Lattices 355

the modulus switching technique, so it is more efficient and easier to understand,
operate and analyze.

The rest of this paper is organized as follows. Section 2 is preliminaries.
Section 3 describes our homomorphic KP-PRE scheme. Section 4 describes the
proof of security. At last, we conclude our work in Sect. 5.

2 Preliminaries

We denote scalars in plain (e.g. x), row vectors in bold lowercase (e.g. x) and
matrices in bold uppercase (e.g. A). We use �x� to indicate rounding x to the
nearest integer, and �x� , �x� (for x ≥ 0) to indicate rounding down or up. For
an integer q, we define the set Zq = [−q/2, q/2) ∩ Z and l = �log q�. We use
the notation [k] for an integer k to denote the set {1, 2, · · · , k}. Inner product is
denoted by 〈x,y〉, k-dimensional identity matrix is denoted by Ik. For a vector
x, ‖x‖p denote the lp norm of x.

For two matrices X ∈ Zm×n1
q ,Y ∈ Zm×n2

q , [X|Y] ∈ Z
m×(n1+n2)
q is the

concatenation of the columns of X,Y. For two matrices X ∈ Zn1×m
q ,Y ∈ Zn2×m

q ,

[X;Y] ∈ Z
(n1+n2)×m
q is the concatenation of the rows of X,Y.

For a probability distribution χ, we denote by x ← χ the fact that x is
sampled according to χ. We overload the notation for a set S, i.e. x ← S denotes
that x is sampled uniformly from S. Two random variables X and Y are said
to be statistically (and computationally) indistinguishable, denoted by X≈sY
(and X≈cY).

A quantity is said to be negligible with respect to some parameter λ, writ-
ten negl(λ), if it is asymptotically bounded from above by the reciprocal of all
polynomials in λ.

2.1 Subgaussian Distributions and Random Matrices

For δ ≥ 0, we say that a random variable X (or its distribution) over
R is δ-subgaussian with parameter s > 0 if for all t ∈ R, the (scaled)
moment-generating function satisfies E[exp(2πtX)] ≤ exp(δ) · exp(πs2t2). If X
is δ-subgaussian, then its tails are dominated by a Gaussian of parameters,
i.e.Pr[|X| ≥ t] ≤ 2exp(δ)exp(−πt2/s2), for all t ≥ 0. Using the Taylor series
expansion of exp(2πtX), it can be shown that any B-bounded symmetric ran-
dom variable X (i.e., |X| ≤ B always) is 0-subgaussian with parameterB

√
2π.

Subgaussianity is homogeneous, i.e., X is subgaussian with parameter r, then
cX is subgaussian with parameter cr for any constant c ≥ 0. Subgaussians also
satisfy Pythagorean additivity: if X1 is subgaussian with parameter r1, and X2

is subgaussian with parameter r2 conditioned on any value of X1, then X1 +X2

is subgaussian with parameter
√

r21 + r22.

Lemma 1. ([20]) There is a randomized, efficiently computable function g−1 :
Zq → Zl such that x ← g−1(a) is subgaussian with parameter O(1), and always
satisfies 〈g,x〉 = a, where g =

(
1, 2, 4, · · · , 2l−1

) ∈ Zl
q.

356 C. Ma et al.

Notice that for any A ∈ Zn×m
q , if X ← G−1(A) then X has subgaussian

parameter O(1) and GX = A, where G = In ⊗ g = dig(g, · · · ,g) ∈ Zn×nl
q .

Definition 1. ([1]) For security parameter k, let n = n(k) be an integer dimen-
sion, let q = q(n) be an integer, and let χ = χ(n) be a distribution over Z. The
LWEn,q,χ problem is to distinguish the following two distributions: In the first
distribution, one samples (a, b) ← Zn+1

q . In the second distribution, one first
draws s ← χn and then samples (a, b) ∈ Zn+1

q by sampling a ← Zn
q , e ← χ, and

setting b = 〈a, s〉. The LWEn,q,χ assumption is that the problem is infeasible.

The hardness of LWEn,q,χ where the entries of the secret are drawn from
the subgaussian distribution χ is no easier than for a uniformly random secret
[21].

2.2 Definition of PRE Security Model

As [18], we also concentrate on special PRE schemes, there are two PKE schemes
and re-encryption converts an input ciphertext of one scheme to an output
ciphertext of the other scheme, which is called two-format.

Definition 2. (Unidirectional PRE Scheme [18])
A single-hop unidirectional PRE scheme consists of the following eight algo-

rithms:
Setup(1k) → pp: Given the security parameter k, output the public parame-

ters pp.
Gen(pp, i) → (eki, dki): Given pp and a user identity i, output an encryp-

tion/decryption key pair
((

eki, êki
)

,
(
dki, d̂ki

))
.

Ênc(pp, êk, μ) → ĉt: Given pp, êk and a message μ, output an output side
ciphertext ĉt.

D̂ec
(
pp, d̂k, ĉt

)
→ μ: Given output side d̂k and ĉt, output a plaintext μ or

an error symbol ⊥.
Enc(pp, ek, μ) → ct: Given pp, ek and a message μ, output an output side

ciphertext ct.
Dec (pp, dk, ct) → μ: Given output side dk and ct, output a plaintext μ or an

error symbol ⊥.
Rekey

(
pp, dki, eki, êkj

)
→ rki→j : Given a decryption key dki, encryption

keys eki, êkj , output a re-encryption key rki→j from i to j.
ReEnc

(
pp, rki→j , cti

) → ĉtj : Given the re-encryption key rki→j fom i to j
and a ciphertext cti for the user i, output a ciphertext ĉtj for the user j.

We consider indistinguishability of unidirectional PRE against chosen-
plaintext attacks, denoted by IND-UniPRE-CPA. We also consider key privacy
security and master secret security of unidirectional PRE. The formal definitions
appears in Appendix.

A Homomorphic Proxy Re-encryption from Lattices 357

3 A Homomorphic PRE Scheme

In this section, we construct a unidirectional homomorphic KP-PRE scheme
based on [5,19]. For simplicity of analyses we can assume that χ is 0-subgaussian
with parameter B

√
2π (i.e. χ is a B-bound distribution) and the PRE scheme is

single-hop. A homomorphic PRE scheme is defined as follows.
Setup(1k):

1. A ← Z
(n−1)×nl
q ,

2. output pp =
(
1k, 1n, q, χ,A

)
.

Gen(pp):
1. b ∈ Znl

q ← −sA+ x,d ∈ Znl
q ← −tA+ y, where s, t ← χn−1,x,y ← χnl,

2. output
((

ek, êk
)

,
(
dk, d̂k

))
= ((b,d) , ([s|1] , [t|1])).

Ênc(pp, êk = d, μ ∈ {0, 1}):
1. C = [A;d]R + μG, where R ← {0, 1}nl×nl,G ∈ Zn×nl

q
,

2. Output ĉt = C ∈ Zn×nl
q .

D̂ec
(
pp, d̂k = [t|1] , ĉt = C

)
:

Let c be the penultimate column of C, and output μ = �〈[t|1], c〉�2, where
�·�2 : Zq → {0, 1} indicates whether its argument is closer modulo q to 0 or to
2l−2.
Enc(pp, ek = b, μ ∈ {0, 1}):

1. C = [A;b]R + μG, where R ← {0, 1}nl×nl,G ∈ Zn×nl
q

,
2. Output ct = C ∈ Zn×nl

q .
Dec (pp, dk = [s|1], ct = C):
Let c be the penultimate column of C, and output μ = �〈[s|1], c〉�2, where
�·�2 : Zq → {0, 1} indicates whether its argument is closer modulo q to 0 or to
2l−2.
Rekey

(
pp, dki =

[
si|1]

, eki = bi, êkj = dj
)
:

1. Mi→j ∈ Zn×n2l
q ← [

ARi→j ;djRi→j
]

+ In ⊗ ((
si|1)

G
)
, where Ri→j ←

{0, 1}nl×n2l,
2. Nj ∈ Zn×nl

q ← [
A;dj

]
Rj , where Rj ← {0, 1}nl×nl,

3. Output rk = (Nj ,Mi→j).
ReEnc(rk = (Nj ,Mi→j), ct = Ci):

Output ĉt = Cj = Mi→j(In ⊗ G−1(Ci)) + NjR
j
, where Ci =

[

C
i
∣
∣
∣
∣C

i
]

,

R
j ← {0, 1}nl×nl, C

i ∈ Zn×l
q .

– Homomorphic addition is defined as Ci
+ = Ci

1+Ci
2, where Ci

1,C
i
2 are cipher-

texts of user i at input or output side.
– Homomorphic multiplication is defined as Ci

∗ = Ci
1 · G−1(Ci

2), and is right
associative, where Ci

1,C
i
2 are ciphertexts of user i at input or output side.

We show the correctness of the homomorphic PRE scheme below.

Proposition 1. The scheme is correct at input side if nlB < q
8 .

358 C. Ma et al.

Proof. To decrypt a ciphertext C = [A;b]R + μG with [s|1], where R ←
{0, 1}nl×nl,G ∈ Zn×nl

q
, one computes

[s|1]C = [s|1] [A;b]R + [s|1]μG = xR + μ[s|1]G.

If the magnitude of the penultimate coordinate ‖xR‖∞ ≤ nlB < q
8 . This com-

pletes the proof.

Proposition 2. The scheme is correct at output side if nlB < q
8 .

Proof. The proof is similar to Proposition1.

Proposition 3. The scheme is correct at input side for homomorphic addition
and multiplication if

(
nl + O(n2l2)

)
B < q

8 .

Proof. Let Ck = [A;bk]Rk + μkG, bk = −skA + xk, sk ← Z
n−1

q , xk ← χnl,
Rk ← {0, 1}nl×nl,G ∈ Zn×nl

q
, k = 1, 2.

To decrypt a ciphertext of homomorphic addition C+ = C1 +C2 with [s|1],
one computes

[s|1]C+ = [s|1] [A;b1]R1 + [s|1]μ1G + [s|1] [A;b2]R2 + [s|1]μ2G
= x1R1 + μ1[s|1]G + x2R2 + μ2[s|1]G
= (μ1 + μ2) [s|1]G + (x1R1 + x2R2)

If the magnitude of the penultimate coordinate of x1R1 + x2R2 is less than
q
8 , the Dec (pp, dk = [s|1], ct = C+) correctly outputs (μ1 + μ2)mod2. We have
‖x1R1 + x2R2‖∞ ≤ √

2nlB < q
8 .

To decrypt a ciphertext of homomorphic multiplication C∗ = C1 · G−1(C2)
with [s|1], one computes

[s|1]C∗ = [s|1]C1 · G−1(C2)
= ([s|1] [A;b1]R1 + [s|1]μ1G) G−1(C2)
= (x1R1 + μ1[s|1]G) G−1(C2)
= x1R1G

−1(C2) + μ1[s|1]C2

= μ1μ2[s|1]G + μ1x2R2 + x1R1G
−1(C2)

If the magnitude of the penultimate coordinate of μ1x2R2 + x1R1G
−1(C2)

is less than q
8 , the Dec (pp, dk = [s|1], ct = C∗) correctly outputs μ1μ2. We have

∥
∥μ1x2R2 + x1R1G

−1(C2)
∥
∥

∞ ≤ (
nl + O(n2l2)

)
B <

q

8
.

This completes the proof.

Proposition 4. The scheme is correct at output side for homomorphic addition
and multiplication if

(
nl + O(n2l2)

)
B < q

8 .

Proof. The proof is similar Proposition 3

A Homomorphic Proxy Re-encryption from Lattices 359

Proposition 5. The scheme is correct for re-encrypted ciphertexts if
O(n2l2)B + nlB2 < q

8 .

Proof. Suppose

[si|1]Ci = [si|1]
[

C
i|Ci

]

= xi

[

R
i
∣
∣
∣
∣R

i
]

+ μ2[si|1] [[In−1; 0] ⊗ g| [0; 1] ⊗ g] ,

then
(
si|1)

C
i
= xiR

i
+ μg. To decrypt the re-encrypted ciphertext ĉt = Cj =

Mi→j(In ⊗ G−1(Ci)) + NjR
j

with
[
tj |1]

, where Mi→j =
[
ARi→j ;djRi→j

]
+

In ⊗ ((
si|1)

G
)
, Ci =

[
A;bi

]
Ri + μG, Nj =

[
A;dj

]
Rj , bi = −siA + xi,

dj = −tjA + yj , R
j
,Ri,Rj ← {0, 1}nl×nl, Ri→j ← {0, 1}nl×n2l, G ∈ Zn×nl

q
,

one computes
[
tj |1] (

Mi→j
(
In ⊗ G−1(C

i
)
)

+ NjR
j
)

=
[
tj |1] ([

ARi→j ;djRi→j
]
+ In ⊗ ((

si|1)
G

)) (
In ⊗ G−1(C

i
)
)

+
[
tj |1] [

A;dj
]
RjR

j

=
(
yjRi→j +

[
tj |1] (

In ⊗ ((
si|1)

G
))) (

In ⊗ G−1(C
i
)
)

+ yjRjR
j

=
[
tj |1] ((

In ⊗ ((
si|1)

G
)) (

In ⊗ G−1(C
i
)
))

+ yjRi→j
(
In ⊗ G−1(C

i
)
)

+

yjRjR
j

=
[
tj |1] (

In ⊗
((

si|1)
GG−1(C

i
)
))

+ yjRi→j
(
In ⊗ G−1(C

i
)
)

+ yjRjR
j

=
[
tj |1] (

In ⊗
(
xiR

i
+ μg

))
+ yjRi→j

(
In ⊗ G−1(C

i
)
)

+ yjRjR
j

= μ
[
tj |1]

G +
[
tj |1] (

In ⊗ xiR
i
)

+ yjRi→j
(
In ⊗ G−1(C

i
)
)

+ yjRjR
j

If the magnitude of the penultimate coordinate of
[
tj |1] (

In ⊗ xiR
i
)

+ yjRi→j
(
In ⊗ G−1(C

i
)
)

+ yjRjR
j

is less than q
8 , the

Dec
(
pp, d̂k =

[
tj |1]

, ĉt = Cj = Mi→j(In ⊗ G−1(Ci)) + NjR
j
)

correctly outputs μ. We have

∥
∥
∥
∥
∥

[
tj |1]

(In ⊗ xiR
i
) + yjRi→j(In ⊗ G−1(C

i
))

+yjRjR
j

∥
∥
∥
∥
∥

∞
≤ O(n2l2)B + nlB2 <

q

8
.

This completes the proof.

Proposition 6. The scheme is correct for a re-encrypted ciphertext and a
fresh ciphertext of identity j with homomorphic addition and multiplication if
O(n3l3)B + O(n2l2)B2 < q

8 .

360 C. Ma et al.

Proof. Suppose

[si|1]Ci = [si|1]
[

C
i|Ci

]

= xi

[

R
i
∣
∣
∣
∣R

i
]

+ μ2[si|1] [[In − 1; 0] ⊗ g| [0; 1] ⊗ g] ,

then
(
si|1)

C
i

= xiR
i
+ μg. Let Cj

1 = Mi→j
(
In ⊗ G−1(Ci)

)
+ NjR

j
is a re-

encrypted ciphertext form i to j and Cj
2 =

[
A;dj

]
Rj

2+μ2G is a fresh ciphertext
of user j, where Mi→j =

[
ARi→j ;djRi→j

]
+In ⊗((

si|1)
G

)
, Ci =

[
A;bi

]
Ri +

μ1G, Nj =
[
A;dj

]
Rj

1, d
j = −tjA+yj , Ri→j ← {0, 1}nl×n2l, R

j
,Ri,Rj

1,R
j
2 ←

{0, 1}nl×nl, we can decrypt

Cj
+ = Cj

1 + Cj
2,C

j
∗ = Cj

1 · G−1(Cj
2), C̃

j
∗ = Cj

2 · G−1(Cj
1)

with
[
tj |1]

, respectively.
To decrypt a ciphertext of homomorphic addition Cj

+ = Cj
1+Cj

2 with
[
tj |1]

,
one computes

[tj |1]Cj
+ = [tj |1]Cj

1 + [tj |1]Cj
2

= (μ1 + μ2)
[
tj |1]

G

+
[
tj |1] (

In ⊗ xiR
i
)

+ yjRi→j
(
In ⊗ G−1(C

i
)
)

+ yjRj
1R

j
+ yjRj

2.

If
∥
∥
∥

[
tj |1] (

In ⊗ xiR
i
)

+ yjRi→j
(
In ⊗ G−1(C

i
)
)

+ yjRj
1R

j
+ yjRj

2

∥
∥
∥

∞≤ (
nl + O(n2l2)

)
B + nlB2 = O(n2l2)B + nlB2 < q

8 ,

the Dec
(
pp, d̂k =

[
tj |1]

, ĉt = Cj
+

)
correctly outputs (μ1 + μ2)mod2.

To decrypt a ciphertext of homomorphic multiplication Cj
∗ = Cj

1 · G−1(Cj
2)

with
[
tj |1]

, one computes
[
tj |1]

Cj
∗ =

[
tj |1]

Cj
1 · G−1(Cj

2)
= μ1μ2

[
tj |1]

G + μ1yjRj
2

+
([

tj |1] (
In ⊗ xiR

i
)

+ yjRi→j
(
In ⊗ G−1(C

i
)
)

+ yjRj
1R

j
)

G−1(Cj
2)

If
∥
∥
∥
∥
∥

μ1yjRj
2

+
([

tj |1] (
In ⊗ xiR

i
)

+ yjRi→j
(
In ⊗ G−1(C

i
)
)

+ yjRj
1R

j
)

G−1(Cj
2)

∥
∥
∥
∥
∥

∞≤ (
O(n3l3) + nl

)
B + O(n2l2)B2 < q

8 ,

the Dec
(
pp, d̂k =

[
tj |1]

, ĉt = Cj
∗
)

correctly outputs μ1μ2.

To decrypt a ciphertext of homomorphic multiplication C̃j
∗ = Cj

2 · G−1(Cj
1)

with
[
tj |1]

, one computes
[
tj |1]

C̃j
∗ =

[
tj |1]

Cj
2 · G−1(Cj

1) =
(
μ2

[
tj |1]

G + yjRj
2

)
G−1(Cj

1)

= μ1μ2

[
tj |1]

G + μ2

[
tj |1] (

In ⊗ xiR
i
)

+μ2yjRi→j
(
In ⊗ G−1(C

i
)
)

+ μ2yjRj
1R

j
+ yjRj

2G
−1(Cj

1)

A Homomorphic Proxy Re-encryption from Lattices 361

If
∥
∥
∥
∥
∥
∥
∥
∥

μ2

[
tj |1] (

In ⊗ xiR
i
)

+μ2yjRi→j
(
In ⊗ G−1(C

i
)
)

+μ2yjRj
1R

j
+ yjRj

2G
−1(Cj

1)

∥
∥
∥
∥
∥
∥
∥
∥

∞

≤ O(n2l2)B + nlB2 < q
8 ,

the Dec
(
pp, d̂k =

[
tj |1]

, ĉt = C̃j
∗
)

correctly outputs μ1μ2. This completes
the proof.

Proposition 7. The scheme is correct for re-encrypted ciphertexts from
same identity with homomorphic addition and multiplication if O(n3l3)B +
O(n2l2)B2 < q

8 .

Proof. Suppose

[si|1]Ci
k = [si|1]

[

C
i

k|Ci

k

]

= xi
k

[

R
i

k

∣
∣
∣
∣R

i

k

]

+ μ2[si|1] [[In−1; 0] ⊗ g| [0; 1] ⊗ g] ,

then
(
si|1)

C
i

k = xi
kR

i

k + μg, k = 1, 2. Consider the user js re-encrypted

ciphertexts Cj
k = M

i→j

k

(
In ⊗ G−1(C

i

k)
)

+ Nj
kR

j

k from i to j, where Mi→j
k =

[
ARi→j

k ;djR
i→j
k

]
+ In ⊗ ((si|1)G), Nj

k = [A;dj]R
j
k, Ci

k =
[
A;bi

k

]
Ri

k + μi
kG,

bi
k = −si

kA + xi
k, R

j

k,Rj
k,Ri

k ← {0, 1}nl×nl,Ri→j
k ← {0, 1}nl×n2l, G ∈ Zn×nl

q
,

k = 1, 2.
To decrypt a ciphertext of homomorphic addition Cj

+ = Cj
1+Cj

2 with
[
tj |1]

,
one computes

[
tj |1]

Cj
+ =

2∑

k=1

⎛

⎝
μk

[
tj |1]

G +
[
tj |1] (

In ⊗ xi
kR

i

k

)

+yjR
i→j

k

(
In ⊗ G−1(C

i

k)
)

+ yj
kR

j
kR

j
k

⎞

⎠

If
∥
∥
∥
∥

2∑

k=1

[
tj |1] (

In ⊗ xi
kR

i

k

)
+ yjR

i→j

k

(
In ⊗ G−1(C

i

k)
)

+ yj
kR

j
kR

j
k

∥
∥
∥
∥

∞
≤

O(n2l2)B + nlB2 < q
8 , the Dec

(
pp, d̂k =

[
tj |1]

, ĉt = Cj
+

)
correctly outputs

(μ1 + μ2)mod2.
To decrypt a ciphertext of homomorphic multiplication Cj

∗ = Cj
1 · G−1(Cj

2)
with

[
tj |1]

, one computes
[
tj |1]

Cj
∗ =

[
tj |1]

Cj
1 · G−1(Cj

2)

=

⎛

⎝
μ1

[
tj |1]

G +
[
tj |1] (

In ⊗ xi
1R

i

1

)

+yj
1R

i→j
1

(
In ⊗ G−1(Ci

1)
)

+ yj
1R

j
1R

j

1

⎞

⎠ G−1(Cj
2)

= μ1

[
tj |1]

Cj
2

+
([

tj |1] (
In ⊗ xi

1R
i

1

)
+ yj

1R
i→j
1

(
In ⊗ G−1(Ci

1)
)

+ yj
1R

j
1R

j

1

)
G−1(Cj

2)

= μ1μ2

[
tj |1]

G + μ1

[
tj |1] (

In ⊗ xi
2R

i

2

)
+ μ1y

j
2R

i→j
2

(
In ⊗ G−1(Ci

2)
)

+μ1y
j
2R

j
2R

j

2

+
([

tj |1] (
In ⊗ xi

1R
i

1

)
+ yj

1R
i→j
1

(
In ⊗ G−1(Ci

1)
)

+ yj
1R

j
1R

j

1

)
G−1(Cj

2).

362 C. Ma et al.

If the magnitude of the penultimate coordinate of

μ1

[
tj |1] (

In ⊗ xi
2R

i

2

)
+ μ1y

j
2R

i→j
2

(
In ⊗ G−1(Ci

2)
)

+ μ1y
j
2R

j
2R

j

2

+
([

tj |1] (
In ⊗ xi

1R
i

1

)
+ yj

1R
i→j
1

(
In ⊗ G−1(Ci

1)
)

+ yj
1R

j
1R

j

1

)
G−1(Cj

2)

is less than q
8 , the Dec

(
pp, dk =

[
tj |1]

, ct = Cj
∗
)

correctly outputs μ1μ2. We
have
∥
∥
∥
∥
∥
∥

μ1 [tj |1]
(
In ⊗ xi

2R
i

2

)
+ μ1y

j
2R

i→j
2

(
In ⊗ G−1(Ci

2)
)

+ μ1y
j
2R

j
2R

j

2

+
(

[tj |1]
(
In ⊗ xi

1R
i

1

)
+ yj

1R
i→j
1

(
In ⊗ G−1(Ci

1)
)

+ yj
1R

j
1R

j

1

)
G−1(Cj

2)

∥
∥
∥
∥
∥
∥

∞≤ O(n3l3)B + O(n2l2)B2 < q
8 .

This completes the proof.

Proposition 8. The scheme is correct for re-encrypted ciphertexts form dif-
ferent identity with homomorphic addition and multiplication if O

(
n3l3

)
B +

O(n2l2)B2 < q
8 .

Proof. Suppose
(
si|1)

C
i
= xiR

i
+ μ1g,

(
sk|1)

C
k

= xkR
k

+ μ2g, where Ci =[

C
i|Ci

]

, Ck =
[

C
k|Ck

]

, C
i
,C

k ∈ Zn×l
q , i �= k. Let

Cj
1 = Mi→j

(
In ⊗ G−1(Ci)

)
+ Nj

1R
j

1

is a re-encrypted ciphertext form i to j and Cj
2 = Mk→j

(
In ⊗ G−1(Ck)

)
+Nj

2R
j

2

is a re-encryption ciphertext form k to j whereMi→j =
[
ARi→j ;djRi→j

]
+In ⊗

((
si|1)

G
)
, Ci =

[
A;bi

]
Ri + μ1G, Nj

1 =
[
A;dj

]
Rj

1, C
k =

[
A;bk

]
Rk + μ2G,

Mk→j =
[
ARk→j ;djRk→j

]
+ In ⊗ ((

sk|1)
G

)
, Nj

2 =
[
A;dj

]
Rj

2, d
j = −tjA+

yj , R
j

1,R
i,Rj

1,R
j

2,R
j
2 ← {0, 1}nl×nl,Rk→j ,Ri→j ← {0, 1}nl×n2l, k �= i.

To decrypt a ciphertext of homomorphic addition Cj
+ = Cj

1+Cj
2 with

[
tj |1]

,
one computes

[
tj |1]

Cj
+ = (μ1 + μ2)

[
tj |1]

G +
[
tj |1] (

In ⊗ xiR
i
)

+ yjRi→j
(
In ⊗ G−1(C

i
)
)

+yjRj
1R

j

1 +
[
tj |1] (

In ⊗ xkR
k
)

+ yjRk→j
(
In ⊗ G−1(C

k
)
)

+ yjRj
2R

j

2

If O
(
n2l2

)
B + nlB2 < q

8 , the Dec
(
pp, d̂k =

[
tj |1]

, ĉt = Cj
+

)
correctly out-

puts (μ1 + μ2)mod2.
To decrypt a ciphertext of homomorphic multiplication Cj

∗ = Cj
1 · G−1(Cj

2)
with

[
tj |1]

, one computes

A Homomorphic Proxy Re-encryption from Lattices 363

[
tj |1]

Cj
∗ =

[
tj |1]

Cj
1 · G−1(Cj

2)

=

⎛

⎝
μ1

[
tj |1]

G +
[
tj |1] (

In ⊗ xiR
i
)

+yjRi→j
(
In ⊗ G−1(C

i
)
)

+ yjRj
1R

j

1

⎞

⎠ G−1(Cj
2)

= μ1

[
tj |1]

Cj
2

+
([

tj |1] (
In ⊗ xiR

i
)

+ yjRi→j
(
In ⊗ G−1(C

i
)
)

+ yjRj
1R

j

1

)
G−1(Cj

2)

= μ1μ2

[
tj |1]

G + μ1

[
tj |1] (

In ⊗ xkR
k
)

+ μ1yjRk→j
(
In ⊗ G−1(C

k
)
)

+μ1yjRj
2R

j

2

+
([

tj |1] (
In ⊗ xi

1R
i

1

)
+ yj

1R
i→j
1

(
In ⊗ G−1(Ci

1)
)

+ yj
1R

j
1R

j

1

)
G−1(Cj

2)

If O
(
n3l3

)
B + O(n2l2)B2 < q

8 , theDec
(
pp, dk =

[
tj |1]

, ct = Cj
∗
)

correctly
outputs μ1μ2. This completes the proof.

Theorem 1. Let χ be a B-bounded distribution. Suppose that O
(
n3l3

)
B +

O(n2l2)B2 < q
8 . Then the homomorphic PRE scheme is correct.

Proof. The theorem can be easily proved by Proposition 1—Proposition 8.

4 Security

We show the security of the homomorphic PRE scheme in this section. At first,
we show the IND-UniPRE-CPA security, and then show the KP-CPA security.
At last, we prove the Master secret security.

Proposition 9. Under the LWEn,q,χ assumption, the homomorphic PRE
scheme is IND-UniPRE-CPA secure at output side.

Proof. Let us consider the following games for b ∈ {0, 1}.
RealPKb: this is the game ExptInd−UniPRE−CPA,O

A,UniPRE (k) with b. Suppose the

target public key is
(
ek0, êk0

)
=

(
b0,d0

)
, where b0 = −s0A+x0,d0 = −t0A+

y0, s0, t0 ← Z
n−1

q ,x0,y0 ← χnl. The challenger computes the target ciphertext
on query μ ∈ {0, 1} as follows:

– If (b = 0), it returns ĉt ← Zn×nl
q .

– If (b = 1), it return ĉt ← [
A;d0

]
R+μG, where R ← {0, 1}nl×nl,G ∈ Zn×nl

q
.

The adversary halts after it outputs its decision b′ ∈ {0, 1}.
FakePKb: In this game, We replace d0 with d0

+ ← Znl
q , and the challenger

computes the target ciphertext as RealPKb. The other parts in this game are
the same as RealPKb.

Since in the two games, the challenger does not require the secret t0, there is
d0≈cd0

+ under the LWEn,q,χ assumption. Furthermore, RealPKb≈cFakePKb.
In addition, from the leftover hash lemma, we have FakePK0≈sFakePK1. From
the above, RealPK0≈cRealPK1 under the LWEn,q,χ assumption.

364 C. Ma et al.

Proposition 10. Under the LWEn,q,χ assumption, the homomorphic PRE
scheme is IND-UniPRE-CPA secure at input side.

Proof. We consider the following games for b ∈ {0, 1}.
Gameb

0: This is the real game ExptInd−UniPRE−CPA,I
A,UniPRE (k) with b. Suppose

the target public key is
(
ek0, êk0

)
=

(
b0,d0

)
, where b0 = −s0A + x0,d0 =

−t0A + y0, s0, t0 ← Z
n−1

q ,x0,y0 ← χnl. The other public keys of honest users

are
{(

eki, êki
)}

i=1,··· ,H
=

{(
bi,di

)}
i=1,··· ,H

, where bi = −siA + xi,di =

−tiA + yi. The challenger computes the re-encryption key from user 0 to
user i ∈ [H] as M0→i ∈ Zn×n2l

q ← [
AR0→i;diR0→i

]
+ In ⊗ ((

s0|1)
G

)
,

Ni ∈ Zn×nl
q ← [

A;di
]
Ri, where R0→i ← {0, 1}nl×n2l, Ri ← {0, 1}nl×nl. The

challenger computes the target ciphertext on query μ ∈ {0, 1} as follows:

– If (b = 0), it returns ĉt ← Zn×nl
q .

– If (b = 1), it return ĉt = Cj = Mi→j(In ⊗ G−1(Ci)) + NjR
j
, where Ci =[

C
i
∣
∣
∣
∣C

i
]

, R
j ← {0, 1}nl×nl, C

i ∈ Zn×l
q .

The adversary finally outputs its guess b′ ∈ {0, 1}.
Gameb

1: We replace di with di
+ ← Znl

q for i ∈ [H]. The challenger computes
a re-encryption key from user 0 to user i ∈ [H] by using s0 and di

+ as Gameb
0.

The others are the same as in Gameb
0.

Since in the two games, the challenger does not require the secret ti, there
is di≈cdi

+ under the LWEn,q,χ assumption. Furthermore, Gameb
0≈cGameb

1.
Gameb

2: We replace M0→i, Ni with M0→i
+ ← Zn×n2l

q , Ni
+ ← Zn×nl

q . The
others are the same as in Gameb

1.
It follows from the leftover hash lemma, we have M0→i≈sM0→i

+ and
Ni≈sNi

+. Furthermore, Gameb
1≈sGameb

2.
Gameb

3: We replace d0 with d0
+ ← Znl

q . The others are the same as in Gameb
2.

Since the challenger does not require the secret t0, there is d0≈cd0
+ under

the LWEn,q,χ assumption. Furthermore, Gameb
3≈cGameb

2.
Finally, we have that Game03≈sGame12 from the leftover hash lemma. Com-

bining the above indistinguishabilities, we have shown that Game00≈cGame10.
This completes the proof.

Theorem 2. Under the LWEn,q,χ assumption, the homomorphic PRE scheme
is IND-UniPRE-CPA secure at both sides

Proof. It follows from Propositions 9, 10.

Theorem 3. Under the LWEn,q,χ assumption, the homomorphic PRE scheme
is KP-CPA secure.

A Homomorphic Proxy Re-encryption from Lattices 365

Proof. We start with the original game with b = 1.
Game0: This is the game ExptKP−CPA

A,UniPRE (k) with b = 1. The challenger runs
the adversary with input pp, public keys

{(
eki, êki

)}
i=−1,0,··· ,H

=
{(

bi,di
)}

i=−1,0,··· ,H

for honest users and key pairs
{((

eki, êki
)

,
(
dki, d̂ki

))}

i=H+1,··· ,H+C

=
{(

bi,di
)
,
([
si|1]

,
[
ti|1])}

i=H+1,··· ,H+C

for corrupted users. The challenger generates the real re-encryption key
M0→−1 ∈ Zn×n2l

q ← [
AR0→−1;diR0→−1

]
+ In ⊗ ((

s0|1)
G

)
, N−1 ∈ Zn×nl

q ←
[
A;d−1

]
R−1, where R0→−1 ← {0, 1}nl×n2l, R−1 ← {0, 1}nl×nl. On the re-

encryption query (0, -1, ct = C0), it re-encrypts the ciphertext with the real re-
encryption key, that is, it returns ĉt = C−1 = M0→−1(In⊗G−1(C0))+N−1R

−1
,

where C0 =
[

C
0
∣
∣
∣
∣C

0
]

, R
−1 ← {0, 1}nl×nl, C

0 ∈ Zn×l
q . We summarize the input

and the answers to the adversary as follows:

RealPK : d−1,Challenge : M0→−1,N−1,Table : M0→−1,N−1,

ReEnc : ĉt = C−1 = M0→−1(In ⊗ G−1(C0)) + N−1R
−1

.

After the learning phase, the adversary outputs its guess b′ ∈ {0, 1}.
Game1: The challenger replace d−1 with d−1

+ ← Znl
q , and the re-encryption

keys in challenge and the table is constructed from d−1
+ and s0. The other parters

are the same as Game0. The challenger re-encrypts a given ciphertext with the
re-encryption key in the table. The challenger answers the queries from user 0
to -1 as follows:

RealPK : d−1
+ ,Challenge : M0→−1,N−1,Table : M0→−1,N−1,

ReEnc : ĉt = C̃−1 = M0→−1(In ⊗ G−1(C0)) + N−1R
−1

.

It is easy to verify that d−1≈cd−1
+ under the LWE(n,q,χ) assumption, since we

do not need to know t−1. Furthermore, we have Game0≈cGame1 by the leftover
hash lemma.

Game2: The challenger replaces M0→−1, N−1 with M0→−1
+ ← Zn×n2l

q ,
N−1

+ ← Zn×nl
q . The other parts are not changed from the previous game: the

challenger re-encrypts a given ciphertext with the random re-encryption key in
the table. The challenger answers the queries from user 0 to -1 as follows:

RealPK : d−1
+ ,Challenge : M0→−1

+ ,N−1
+ ,Table : M0→−1

+ ,N−1
+ ,

ReEnc : ĉt = C̃−1
+ = M0→−1

+ (In ⊗ G−1(C0)) + N−1
+ R

−1
.

366 C. Ma et al.

It follows from the leftover hash lemma, we have M0→−1≈sM0→−1
+ and

N−1≈sN−1
+ . Furthermore, Game1≈sGame2.

Game3: If the query is (0, -1, ct = C0), then it returns C−1
+ ← Zn×nl

q . The
other parts are not changed from the previous game: The challenger answers the
queries from user 0 to -1 as follows:

RealPK : d−1
+ ,Challenge : M0→−1

+ ,N−1
+ ,Table : M0→−1

+ ,N−1
+ ,

ReEnc : ĉt = C−1
+ .

It follows from the leftover hash lemma, we have C̃−1
+ ≈sC−1

+ . Furthermore,
Game2≈sGame3.

Game4: The challenger additionally generates another random re-encryption
key M0→−1

++ , N−1
++ and uses it in the re-encryption oracle. The other parts are

not changed from the previous game: As a summary, the challenger answers the
queries from user 0 to -1 as follows:

RealPK : d−1
+ ,Challenge : M0→−1

+ ,N−1
+ ,Table : M0→−1

++ ,N−1
++,

ReEnc : ĉt = C̃−1
++ = M0→−1

++ (In ⊗ G−1(C0)) + N−1
++R

−1
.

We note that the adversary does not know the alternative fake re-encryption key
M0→−1

++ , N−1
++, directly. Even if the adversary knows the alternative, it cannot

distinguish the two games since the re-encrypted ciphertext, which is almost
uniformly at random in the ciphertext space from the leftover hash lemma.
Hence, we have Game3≈sGame4.

Game5: We again modify the re-encryption key in the table and the re-
encryption oracle. The challenger additionally generates a fake re-encryption
key M0→−1

∗ ∈ Zn×n2l
q ← [

AR0→−1
∗ ;d−1

+ R0→−1
∗

]
+ In ⊗ ((

s0|1)
G

)
, N−1

∗ ∈
Zn×nl

q ← [
A;d−1

+

]
R−1

∗ , where R0→−1
∗ ← {0, 1}nl×n2l, R−1

∗ ← {0, 1}nl×nl. In
the re-encryption oracle, the oracle uses the additional fake-re-encryption key
M0→−1

∗ , N−1
∗ instead of M0→−1

+ , N−1
+ that the adversary receives as the chal-

lenge. The other parts are not changed from the previous game: As a summary,
the challenger answers the queries from user 0 to -1 as follows:

RealPK : d−1
+ ,Challenge : M0→−1

+ ,N−1
+ ,Table : M0→−1

∗ ,N−1
∗ ,

ReEnc : ĉt = C̃−1
∗ = M0→−1

∗ (In ⊗ G−1(C0)) + N−1
∗ R

−1
.

It follows from the leftover hash lemma, we have M0→−1
∗ ≈sM0→−1

+ , N−1
∗ ≈sN−1

+

and C−1
∗ ≈sC−1

++. Furthermore, Game4≈sGame5.
Game6: This is a final game. We replace the fake public key d−1

+ with the
real public key d−1. The other parts are not changed from the previous game:
As a summary, the challenger answers the queries from 0 to -1 as follows:

RealPK : d−1,Challenge : M0→−1
+ ,N−1

+ ,Table : M0→−1
∗ ,N−1

∗ ,

ReEnc : ĉt = M0→−1
∗ (In ⊗ G−1(C0)) + N−1

∗ R
−1

.

A Homomorphic Proxy Re-encryption from Lattices 367

Since M0→−1
+ , N−1

+ is distributed uniformly at random, this game is equiv-
alent to ExptKP−CPA

A,UniPRE (k) with b = 0. We have Game5≈cGame6 under the
LWE(n,q,χ) assumption, since we only change the random instance d−1

+ with
the LWE instance d−1.

Above all, we know Game0≈cGame6, that is ExptKP−CPA
A,UniPRE (k) with b=0

and ExptKP−CPA
A,UniPRE (k) with b=1 are computationally indistinguishable under

LWE(n,q,χ) assumption. This completes the proof.

Theorem 4. Under the LWEn,q,χ assumption, the homomorphic PRE scheme
is master secret security.

Proof. The proof is similar to Theorem 3 of [16]

5 Conclusion

In this paper, we adopt approximate eigenvector method and the scheme of
Gentry etc. to construct a homomorphic PRE scheme. With the approximate
eigenvector method, we keep noise that terms in ciphertexts also grow asymmet-
rically. We also prove that our homomorphic PRE scheme is IND-UniPRE-CPA,
KP-CPA and master secret security. We will be devoted to improving the com-
putation efficiency in our future work, so as to make our homomorphic PRE
schemes more practical.

Acknowledgements. The authors would like to thank the reviewers for their detailed
reviews and constructive comments, which have helped improve the quality of this
paper. This work was supported by the National Natural Science Foundation of China
(61472097), the Special Research Found for the Doctoral Program of Higher Educa-
tion of China (20132304110017), and the Open Fund of the State Key Laboratory of
Information Security(2016-MS-10).

Appendix

Definition 3. (IND-UniPRE-CPA security at input side [18])
Let UniPRE=(Setup, Gen, Ênc, Enc, D̂ec, Dec, ReKey, ReEnc) be a single-

hop, unidirectional PRE scheme, k a security parameter. Suppose that there
exists a PPT algorithm RandEnc which takes pp as input and outputs a random
ciphertext at input side. Let H=H(k) and C=C(k) be polynomials of k, which
stands for the number of honest users and corrupted users, respectively. Consider
the following game, denoted by ExptIND−UniPRE−CPA,I

A,UniPRE (k), between challenger
and adversary.

Initialization: Given security parameter k and coin b ∈ {0, 1}, run pp ←
Setup(1k). Initialize CU ← {H + 1, · · · ,H + C}, which denote the set of cor-
rupted users. For i = 0, · · · ,H+C generate key pairs

((
eki, êki

)
,
(
dki, d̂ki

))
←

Gen (pp, i). Run the adversary on input pp, key pairs of corrupted users

368 C. Ma et al.

{((
eki, êki

)
,
(
dki, d̂ki

))}

i=H+1,··· ,H+C , and public keys of honest users
{(

eki, êki
)}

i=0,··· ,H
.

Learning Phase: The adversary could issue queries to the following oracles
in any order and many times : Oracle REKEY receives two indices i, j ∈
{0, 1, · · · ,H + C}. If i = j then it returns ⊥; if (i = 0) ∩ (j ∈ CU) then the
oracle returns ⊥; otherwise, returns rki→j ← Rekey

(
pp, dki, eki, êkj

)
.

Oracle REENC receives two indices i, j ∈ {0, 1, · · · ,H+C} and ciphertext ct.
If i = j then returns ⊥; if (i = 0)∩(j ∈ CU) then the oracle returns ⊥; otherwise,
it queries (i,j) to REKEY, obtains rki→j , and returns ĉt ← ReEnc(pp, rki→j , ct).

Oracle CHALLENGE receives μ. If (b = 0), it returns ct ← RandEnc(pp).
If (b = 1), ct ← Enc(pp, ek0, μ).

Eventually. The adversary halts after it outputs its decision b′ ∈ {0, 1}.

Finalization: Output 1 if b′ = b. Otherwise, output 0.
We define the advantage of the adversary as

AdvInd−UniPRE−CPA,I
A,UniPRE (k) =

∣
∣
∣
∣
∣
∣

Pr
[
ExptInd−UniPRE−CPA,I

A,UniPRE (k) → 1 |b = 1
]

−Pr
[
ExptInd−UniPRE−CPA,I

A,UniPRE (k) → 1 |b = 0
]

∣
∣
∣
∣
∣
∣

We say that UniPRE is IND-UniPRE-CPA secure at output side if
AdvInd−UniPRE−CPA,I

A,UniPRE (·) is negligible for every PPT adversary.

Definition 4. (IND-UniPRE-CPA security at output side [18])
Let UniPRE=(Setup, Gen, Ênc, Enc, D̂ec, Dec, ReKey, ReEnc) be a single-

hop, unidirectional PRE Scheme, k a security parameter. Suppose that there
exists a PPT algorithm ̂RandEnc which takes pp as input and outputs a ran-
dom ciphertext at output side. Let H=H(k) and C=C(k) be polynomials of k,
which stands for the number of honest users and corrupted users, respectively.
Consider the following game, denoted by ExptIND−UniPRE−CPA,O

A,UniPRE (k), between
challenger and adversary.

Initialization: Given security parameter k and coin b ∈ {0, 1}, run pp ←
Setup(1k). For i = 0, · · · ,H + C generate key pairs

((
eki, êki

)
,
(
dki, d̂ki

))
←

Gen (pp, i). Run the adversary on input pp, public keys of honest users{(
eki, êki

)}

i=0,··· ,H
, and key pairs of corrupted users

{((
eki, êki

)
,
(
dki, d̂ki

))}

i=H+1,··· ,H+C .

Learning Phase: The adversary could issue queries to the following oracles in
any order and many times :

Oracle REKEY receives two indices i, j ∈ {0, 1, · · · ,H + C}. If i = j then it
returns ⊥; otherwise, returns rki→j ← Rekey

(
pp, dki, eki, êkj

)
.

Oracle REENC receives two indices i, j ∈ {0, 1, · · · ,H + C} and ciphertext
ct. If i = j then returns ⊥; otherwise, it queries (i,j) to REKEY, obtains rki→j ,
and returns ĉt ← ReEnc(pp, rki→j , ct).

A Homomorphic Proxy Re-encryption from Lattices 369

Oracle CHALLENGE receives μ. If (b = 0), it returns ĉt ← ̂RandEnc(pp).
If (b = 1), ĉt ← Ênc(pp, êk0, μ).

Eventually. The adversary halts after it outputs its decision b′ ∈ {0, 1}.

Finalization: Output 1 if b′ = b. Otherwise, output 0.
We define the advantage of the adversary as

AdvInd−UniPRE−CPA,O
A,UniPRE (k) =

∣
∣
∣
∣
∣
∣

Pr
[
ExptInd−UniPRE−CPA,O

A,UniPRE (k) → 1 |b = 1
]

−Pr
[
ExptInd−UniPRE−CPA,O

A,UniPRE (k) → 1 |b = 0
]

∣
∣
∣
∣
∣
∣

We say that UniPRE is IND-UniPRE-CPA secure at output side if
AdvInd−UniPRE−CPA,O

A,UniPRE (·) is negligible for every PPT adversary.

Definition 5. (KP-CPA security [18])Let UniPRE=(Setup, Gen, Ênc, Enc,
D̂ec, Dec, ReKey, ReEnc) be a single-hop, unidirectional PRE Scheme, k a
security parameter. Suppose that there exists a PPT algorithm RandRekey
which takes pp as input and outputs a random re-encryption key rk . Let
H=H(k) and C=C(k) be polynomials of k, which stands for the number of honest
users and corrupted users, respectively. Consider the following game, denoted by
ExptKP−CPA

A,UniPRE (k), between challenger and adversary.

Initialization: Given security parameter k and coin b ∈ {0, 1}, run pp ←
Setup

(
1k

)
. Initialize L ← φ which is a table containing the re-encryption

keys and shared among oracles. For i = −1, 0, · · · ,H + C, generate key pairs((
eki, êki

)
,
(
dki, d̂ki

))
← Gen (pp, i). Run adversary with pp, the public

keys of honest users
{(

eki, êki
)}

i=0,··· ,H
, and the key pairs of corrupted users

{((
eki, êki

)
,
(
dki, d̂ki

))}

i=H+1,··· ,H+C .

Learning Phase: Adversary could issue queries to the following oracles in any
order and many times except for the constraint in oracle CHALLENGE.

Oracle REKEY receives two indices i, j ∈ {−1, 0, · · · ,H + C}. If i=j then it
returns ⊥; if (i, j) = (0,−1), then it returns ⊥; if there already exists the re-
encryption key from i to j, i. e.

(
i, j, rki→j

) ∈ L, then it returns rki→j , otherwise,

it generates rki→j ← Rekey
(
pp, dki, eki, êkj

)
, updates L ← L∪{(

i, j, rki→j
)}

,

and returns rki→j .
Oracle REENC receives two indices i, j ∈ {−1, 0, · · · ,H+C} and a ciphertext

ct. if i=j then it returns ⊥; if there exists no re-encryption key from i to j in
the table L, it generates rki→j ← Rekey

(
pp, dki, eki, êkj

)
, and updates L ←

L ∪ {(
i, j, rki→j

)}
, it finally returnsĉt ← ReEnc

(
pp, rki→j , ct

)
.

Oracle CHALLENGE can be queried only once. On the query, the oracle
searches the table L for

(
0,−1, rk0→−1

)
, if such key does not exist, it generates

rk0→−1 ← ReKey
(
pp, dk0, ek0, êk−1

)
and updates L ← L∪{(

0,−1, rk0→−1
)}

.

370 C. Ma et al.

If b=0 then it returns a random re-encryption key rk ← FakeReKey (pp), which
is not contained in L. If b=1, then it returns the real re-encryption key rk0→−1

contained in L.
Eventually. Adversary halts after it outputs its decision b′ ∈ {0, 1}.

Finalization: Output 1 if b′ = b. Otherwise, output 0.
The advantage of Adversary is

AdvKP−CPA
A,UniPRE (k) =

∣
∣
∣
∣
∣
∣

Pr
[
ExptKP−CPA

A,UniPRE (k) → 1 |b = 1
]

−Pr
[
ExptKP−CPA

A,UniPRE (k) → 1 |b = 0
]

∣
∣
∣
∣
∣
∣

We say that UniPRE is KP-CPA secure if AdvKP−CPA
A,UniPRE (·) is negligible for

every polynomial-time adversary.

Definition 6. (Master secret security [16]) Let UniPRE=(Setup, Gen, Ênc,
Enc, D̂ec, Dec, ReKey, ReEnc) be a single-hop, unidirectional PRE Scheme, k
a security parameter. Suppose that there exists a PPT algorithm RandRekey
which takes pp as input and outputs a random re-encryption key rk . Let
H=H(k) and C=C(k) be polynomials of k, which stands for the number of honest
users and corrupted users, respectively. Consider the following game, denoted by
ExptMSS

A,UniPRE (k), between challenger and adversary.

Initialization: The challenger runs pp ← Setup
(
1k

)
and gives the public para-

meters pp to the adversary.

Challenge: The adversary submits target delegator i.
Learning Phase :

– The adversary can issue re-encryption key query rki→j corresponding to the
public keys eki and ekj .

– The adversary can issue re-encryption query rki→j corresponding to any pub-
lic keys eki and ekj .

Finalization : Adversary finally outputs a guess x for private key dki of target
delegator i and wins if x = dki.

The advantage of adversary is AdvMSS
A,UniPRE (k) =

∣
∣Pr

(
x = dki

)∣
∣, we say that

unidirectional PRE is master secret security if AdvMSS
A,UniPRE (·) is negligible for

every polynomial-time adversary.

References

1. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93. ACM (2005)

2. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) FOCS 2011, pp. 97–106. IEEE (2011)

A Homomorphic Proxy Re-encryption from Lattices 371

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: ITCS, pp. 309–325. ACM (2012)

4. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 50

5. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-40041-4 5

6. Zhang, X., Xu, C., Jin, C., Xie, R., Zhao, J.: Efficient fully homomorphic encryption
from RLWE with an extension to a threshold encryption scheme. Future Gener.
Comput. Syst. 36, 180–186 (2014)

7. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 29

8. Hiromasa, R., Abe, M., Okamoto, T.: Packing messages and optimizing bootstrap-
ping in GSW-FHE. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 699–715.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 31

9. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). doi:10.1007/BFb0054122

10. Lu, Y., Li, J.: A pairing-free certificate-based proxy re-encryption scheme for secure
data sharing in public clouds. Future Gener. Comput. Syst. doi:10.1016/j.future.
2015.11.012

11. Li, J., Zhao, X., Zhang, Y.: Certificate-based conditional proxy re-encryption. In:
Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014. LNCS, vol. 8792, pp.
299–310. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11698-3 23

12. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

13. Smith, T.: DVD Jon: Buy DRM-less Tracks from Apple iTunes (2005). http://
www.theregister.co.uk/2005/03/18/itunes pymusique/

14. Xagawa, K.: Cryptography with Lattices. Ph.D. thesis. Department of Mathemat-
ical and Computing Sciences Tokyo Institute of Technology (2010)

15. Aono, Y., Boyen, X., Phong, T.L., Wang, L.: Key-private proxy re-encryption under
LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp.
1–18. Springer, Heidelberg (2013)

16. Singh, K., Pandu, R.C., Banerjee, A.K.: Cryptanalysis of unidirectional proxy re-
encryption scheme. In: Linawati, M.S.M., et al. (eds.) ICT-EurAsia 2014. LNCS,
vol. 8407, pp. 564–575. Springer, Heidelberg (2014)

17. Jiang, M., Hu, Y., Wang, B., Wang, F., Lai, Q.: Lattice-based multi-use unidirec-
tional proxy re-encryption. Secur. Commun. Netw. 8(18), 3796–3803 (2015)

18. Nishimak, R., Xagawa, K.: Key-private proxy re-encryption from lattices, revisit-
eds. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E98-A(1), 100–116
(2015)

19. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 17

http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-662-46447-2_31
http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1016/j.future.2015.11.012
http://dx.doi.org/10.1016/j.future.2015.11.012
http://dx.doi.org/10.1007/978-3-319-11698-3_23
http://www.theregister.co.uk/2005/03/18/itunes_pymusique/
http://www.theregister.co.uk/2005/03/18/itunes_pymusique/
http://dx.doi.org/10.1007/978-3-662-44371-2_17

372 C. Ma et al.

20. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 41

21. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 35

http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-642-03356-8_35

Preventing Adaptive Key Recovery Attacks
on the GSW Levelled Homomorphic

Encryption Scheme

Zengpeng Li1,2, Steven D. Galbraith3, and Chunguang Ma1,2(B)

1 College of Computer Science and Technology, Harbin Engineering University,
Harbin 150001, China

{lizengpeng,machunguang}@hrbeu.edu.cn
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing 100093, China
3 Department of Mathematics,

The University of Auckland, Auckland 1142, New Zealand
s.galbraith@auckland.ac.nz

Abstract. A major open problem is to protect levelled homomorphic
encryption from adaptive attacks that allow an adversary to learn the
private key. The only positive results in this area are by Loftus, May,
Smart and Vercauteren. They use a notion of “valid ciphertexts” and
obtain an IND-CCA1 scheme under a strong knowledge assumption, but
they also show their scheme is not secure under a natural adaptive attack
based on a “ciphertext validity oracle”.

The main contribution of this paper is to explore a new approach
to achieve security against adaptive attacks, which does not rely on a
notion of “valid ciphertexts”. Instead, our idea is to generate a “one-
time” private key every time the decryption algorithm is run, so that
even if an attacker can learn some bits of the one-time private key from
each decryption query, this does not allow them to compute a valid pri-
vate key. We demonstrate how this idea can be implemented with the
Gentry-Sahai-Waters levelled homomorphic encryption scheme, and we
give an informal explanation of why the known attacks no longer break
the system.

Keywords: Adaptive key recovery attacks · Lattice-based cryptogra-
phy · Levelled homomorphic encryption

1 Introduction

It is well-known that access to a decryption oracle can lead to attacks on basic
Regev [14] or Gentry-Peikert-Vaikuntanathan (GPV) [7] encryption, as well as
various homomorphic encryption schemes [3–5,10,16]. These attacks allow an
adversary to learn the private key, and so they are more serious than attacks
that learn some information about messages. It is of major interest to obtain
secure variants of these schemes, and this problem seems to be very difficult.
c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 373–383, 2016.
DOI: 10.1007/978-3-319-47422-9 22

374 Z. Li et al.

Loftus, May, Smart and Vercauteren [10] have considered the security of
the private key of Gentry’s homomorphic encryption scheme based on ideal lat-
tices [6] (and some variants of it [15]) under adaptive attacks. They show that
the private key can be determined if one has access to a decryption oracle. They
also give a variant of the Smart-Vercauteren cryptosystem [15] for which the pri-
vate key seems to be secure even when a decryption oracle is present; this result
is based on a notion of “valid ciphertext”, which is checked by the decryption
algorithm, and the security relies on a very strong knowledge assumption.

Loftus et al. also emphasise the relevance of ciphertext validity attacks (CVA).
This model allows an attacker to have access to an oracle that determines
whether or not a ciphertext is valid. They show that it is possible for an adver-
sary to decrypt a challenge ciphertext with the help of the CVA oracle (but
at least the private key remains secure, and this is not a CCA1 attack but a
CCA2 attack). Loftus et al. argue that CCA1 and CVA attacks on homomor-
phic encryption schemes are realistic in practice (they write in Sect. 6 of [10] that
“Such an oracle can often be obtained in the real world by the attacker observ-
ing the behaviour of a party who is fed ciphertexts of the attacker’s choosing”).
For example, if a user is storing an encrypted database in the cloud and making
queries to it, then an attacker could send ciphertexts of its choosing in response.
If these ciphertexts are invalid then the user might re-send the same query until
a valid ciphertext is received in response. Such a situation precisely gives a CVA
oracle. Bleichenbacher’s use of a CVA oracle to attack certain variants of RSA is
well-known [1]. Hence, we believe that this issue is serious and that it is impor-
tant to develop techniques to secure the private key of homomorphic encryption
schemes.

In this paper we consider a different approach to the problem. Rather than
relying on a notion of “valid ciphertexts”, we avoid the risk of private key expo-
sure by using “one-time” private keys. The idea is that, even if an attacker can
learn some bits of the one-time private key from each decryption query, there
should be no way for the attacker to combine the information from multiple
decryption queries to compute an actual private key. Since there is no check on
“valid ciphertexts” there is no risk of an attacker exploiting a CVA attack.

The idea of one-time secret keys can be implemented with many lattice-
based cryptosystems but it only gives rise to a somewhat homomorphic scheme.
We focus our attention on the Gentry-Sahai-Waters (GSW13) scheme, since it
can achieve levelled homomorphic encryption without any key switching. This
is important, since it is trivially impossible to achieve CCA1-security for any
scheme that uses key-switching or bootstrapping or any other method where the
public key contains encryptions of secret information. To argue that our method
resists adaptive attacks we use the left-over hash lemma.

The paper is organised as follows. Section 2 recalls some basic notions in the
subject. Section 3 presents the Gentry-Sahai-Waters (GSW13) scheme. Section 4
presents our new scheme, while Sect. 5 explains why this scheme is resistant to
the known adaptive attack. In the conclusions section we discuss whether our
ideas might also be useful in the context of leakage resilience and side-channel
protection.

Preventing Adaptive Key Recovery Attacks on the GSW 375

2 Preliminaries

In this section we introduce some notations and recall the learning with errors
problem (LWE). Due to lack of space we refer to [11,13] for background details
about learning with errors, lattice crypto, and homomorphic encryption.

We use the following variant of the leftover hash lemma [9].

Lemma 1. (Matrix-vector leftover hash lemma [2] Lemma 2.1) Let λ ∈ Z, n ∈
N, q ∈ N, and m ≥ n log(q)+2λ. Let A R← Z

m×n
q be a uniformly sampled matrix,

let r R← {0, 1}m and y R← Z
n
q , Then:

Δ
(
(A,AT · r), (A,y)

) ≤ 2−λ (1)

where Δ(A,B) denotes the statistical distance between the distributionsA and B.

The learning with errors problem is the main computational assumption
underlying the GSW13 cryptosystem and our variant of it. Here χ is some dis-
tribution on Z.

Definition 1. (Learning with Errors Distribution) For a vector s ∈ Z
n
q called

the secret, the LWE distribution As,χ over Zn
q ×Zq is sampled by choosing a ∈ Z

n
q

uniformly at random, choosing e ← χ, and outputting
(
a, b = 〈s,a〉+e (mod q)

)
.

There are two main versions of the LWE problem: search version, which is to
find the secret given LWE samples, and decision version, which is to distinguish
between LWE samples and uniformly random ones.

Definition 2. (Search-LWEn,q,χ,m) Given m independent samples (ai, bi) ∈
Z

n
q × Zq drawn from As,χ for a uniformly random s ∈ Z

n
q (fixed for all sam-

ples), find s.

Definition 3. (Decision-LWEn,q,χ,m) Given m independent samples (ai, bi) ∈
Z

n
q × Zq where every sample is distributed according to either: (1) As,χ for a

uniformly random s ∈ Z
n
q (fixed for all samples), or (2) the uniform distribution,

distinguish which is the case (with non-negligible advantage).

Regev and others [12,14] showed that, when χ is a suitable discrete Gaussian
distribution, the LWE problem is as hard as approximating the shortest vector
problem in lattices (for appropriate parameters).

The following theorem is a key result used to show the security of our scheme.

Theorem 1. Let m > n ∈ N, let q ∈ N and let χ be a discrete Gaussian
distribution on Z such that the (n, q, χ,m)-LWE problem is hard. Let t be an
integer such that t = O(log(n)). Define two distributions X and Y as follows.
– X is the distribution on m × (t + n) matrices

[b1| · · · |bt|B]

where B ∈ Z
m×n
q is chosen uniformly at random and where, for all 1 ≤ i ≤ t,

376 Z. Li et al.

bi = Bti + ei (mod q)

where ti is sampled uniformly from Z
n
q and ei is sampled from a discrete

Gaussian distribution χ.
– Y is the uniform distribution on Z

m×(t+n)
q .

Then the two distributions X and Y are computationally indistinguishable.

Proof. The proof is a straightforward hybrid argument, the details are given in
the full version of the paper.

3 Gentry-Sahai-Waters Homomorphic Encryption

In this section we describe the Gentry-Sahai-Waters (GSW13) homomorphic
encryption scheme [8], then we sketch the adaptive attack on it due to Chenal
and Tang [3]. First we need to recall some terminology and tools from [8] and
other previous work.

3.1 Basic Tools

Fix q,m ∈ N. Let lq = �log q	 and N = m · (lq + 1). For v ∈ Z
m
q we define

Powerof2(v) =
(
v1, 2v1, · · · , 2lqv1, · · · , vm, 2vm, · · · , 2lqvm

) ∈ Z
N
q .

For v ∈ Z
m
q we define BitDecomp(v) = (v1,0, · · · , v1,lq , · · · , vm,0, · · · , vm,lq)

where vi,j is the j-th bit in the binary representation of vi (ordered from least
significant to most significant.) In other words,

vi =
lq∑

j=0

2jvi,j .

For v = (v1,0, · · · , v1,lq , · · · , vm,0, · · · , vm,lq) ∈ Z
N
q we define

BitDecomp−1(v) =

⎛

⎝
lq∑

j=0

2j · v1,j , · · · ,

lq∑

j=0

2j · vm,j

⎞

⎠ ∈ Z
m
q .

Note that the input vectors v need not be binary, the algorithm is well-
defined for any input vector in Z

N . Finally, we define Flatten(v) =
BitDecomp(BitDecomp−1(v)). Note that, for a,b ∈ Z

m
q and a′ ∈ Z

N ,

〈BitDecomp(a), Powerof2(b)〉 = 〈a,b〉

and
〈a′, Powerof2(b)〉 = 〈Flatten(a′), Powerof2(b)〉.

Preventing Adaptive Key Recovery Attacks on the GSW 377

3.2 GSW13 Scheme

Let λ be a security parameter and let L be the number of levels for the some-
what homomorphic scheme. We describe the algorithms that form the GSW13
scheme [8]. Due to lack of space, we focus only on the parts relevant for the
adaptive key recovery attacks.

– GSW.Setup(1λ, 1L)
1. Choose a modulus q of κ = κ(λ,L) bits, lattice dimension parameter n =

n(λ,L), and error distribution χ = χ(λ,L) appropriately for LWE that
achieves at least 2λ security against known attacks. Choose a parameter
m = m(λ,L) = O(n log(q));

2. Output: params = (n, q, χ,m).
We also use the notation l = �log q	 and N = (n + 1) · (l + 1).

– GSW.KeyGen(params):
1. Sample t = (t1, . . . , tn)T ← Z

n
q and compute s ← (1,−tT)T ∈ Z

n+1
q ;

2. Let v = Powerof2(s);
3. Generate a matrix B ← Z

m×n
q uniformly and a vector e ← χm;

4. Compute b = B · t+e ∈ Z
m
q and construct the matrix A(∈ Z

m×(n+1)
q) to

be the (n + 1)−column matrix consisting of b followed by the n columns
of B. Observe that

A · s = (b | B) · s = (Bt + e | B) ·
(

1
−t

)

= Bt + e − Bt = e.

5. Return sk ← v and pk ← A.
– GSW.Encrypt(params, pk, μ) where μ ∈ {0, 1} is a message:

1. Sample a uniform matrix R ∈ {0, 1}N×m;
2. Compute C = Flatten(μ · IN + BitDecomp(R · A)) ∈ Z

N×N
q , where IN

denotes the N -dimensional identity matrix;
3. Return the ciphertext C.

– GSW.Decrypt(params, sk,C):
1. Observe that the first l coefficients of v are 1, 2, · · · , 2l, among these

coefficients, let vi = 2i ∈ (q/4, q/2];
2. Let Ci be the i-th row of C. Compute xi ← 〈Ci,v〉;
3. Output μ′ = �xi/vi	.
There is also a variant of the scheme that handles messages in Zq when q is

a power of two. We refer to [8] for the details.

3.3 Security

A sketch proof is given in [8] of the following theorem.

Theorem 2. Let (n, q, χ) be such that the LWE(n,q,χ) assumption holds and let
m = O(n log(q)). Then the GSW13 scheme is IND-CPA secure.

The main step in the proof is showing that (A,R · A) is computationally
indistinguishable from uniform.

378 Z. Li et al.

3.4 Key Recovery Attacks

We now briefly review the adaptive key recovery attack due to Chenal and
Tang [3]. The adversary recovers the secret key through a number of decryption
oracle queries. Note that an attacker can call the decryption oracle on any matrix
C of their choice, and the oracle will return the most significant bit of 〈Ci,v〉
where Ci is the i-th row of C (where i is a fixed constant known to the adversary)
and v = Powerof2(s) is a vector containing the entries of the secret key s =
(1,−tT)T .

The attack is therefore quite simple: One chooses Ci = (0, 0, . . . , 0,M,
0, . . . , 0) for appropriate values M in appropriate positions and learns the entries
of the secret key bit-by-bit. For example, to compute t1 ∈ Zq one makes a decryp-
tion oracle query on a matrix with Ci = (0, 0, . . . , 0, 1, 0, . . . , 0) where the 1 is
in the (l + 2)-th position. Hence

〈Ci,v〉 = −t1

and so one learns the most significant bit of t1. One can now either re-scale Ci

or put the one in the (l + 3)-th position to get information about the next most
significant bit (one has to correct for modular reduction if the most significant
bit was 1). To separate positive and negative values one can use vectors like
Ci = (M, 0 . . . , 0, 1, 0, . . . , 0), which provide the most significant bit of 〈Ci,v〉 =
M − 2jti. We omit further details here, see [3–5] for discussion.

4 Multiple Secret Scheme (MGSW)

We now describe our variant of the GSW13 scheme. First we give some moti-
vation for our design. The adaptive attack exploits the fact that certain queries
to the decryption oracle leak one bit of one component of the fixed secret key
s = (1,−t1, . . . ,−tn)T . Our main idea is to have a large set of possible secret
keys. Each execution of the decryption algorithm will generate a fresh random
“one-time” secret key s. The decryption algorithm itself does not change, and
we do not introduce any notion of “valid ciphertext”, so an attacker can still
learn one bit of one component of the key used for decryption. However, the
main idea of our approach is that an attacker cannot iterate the attack to learn
an “entire” secret key, since each query gives information about a fresh random
key and these keys are uncorrelated with each other.

The basic idea is, instead of choosing A of the form [Bt+e|B] for a uniform
t and a short vector e, to construct

A′ = [Bt1 + e1|Bt2 + e2| · · · |Btt + et|B]

where t1, . . . , tt are sampled uniformly in Z
n
q and e1, . . . , et are sampled from

the discrete Gaussian distribution χ. It follows that there are now t different
secret keys. Further, one can generate exponentially many short vectors that act
as secret keys (i.e., satisfy A′s being small) by taking short linear combinations
of these t vectors.

We now give the formal details.

Preventing Adaptive Key Recovery Attacks on the GSW 379

4.1 The Scheme

– params ← MGSW.Setup(1λ, 1L)
1. Identical to GSW.Setup algorithm except that a parameter t = O(log(n))

is chosen (the number of secret keys);
2. Output params = (n, q, χ,m, t) and let l = �log q	 and N ′ = (t+n) · (l +

1)).
– (pk, sk) ← MGSW.KeyGen(params):

1. Sample ti ← Z
n
q , i ∈ [t] and output ski = si ← (0, · · · , 1, · · · , 0,−tT

i)T =
(0, · · · , 1, · · · , 0,−ti,1, · · · ,−ti,n)T ∈ Z

n+t
q , where the i-th position is 1;

2. Choose a matrix B ← Z
m×n
q uniformly and t vectors ei ← χm for i ∈ [t];

3. Compute bi = Bti + ei ∈ Z
m
q and A′ = [b1| · · · |bt|B] ∈ Z

m×(n+t)
q ;

4. Output pk ← A′ and sk ← {s1, . . . , st}.
– C ← MGSW.Encrypt(params, pk, μ):

1. To encrypt a message μ ∈ Zq, sample a uniform matrix R′ ∈ {0, 1}N ′×m;
2. Compute and output the ciphertext

C = Flatten(μ · IN ′ + BitDecomp(R′ · A′)) ∈ Z
N ′×N ′
q ,

where the IN ′ denotes the N ′-dimensional identity matrix;
– μ′ ← MGSW.Decrypt(params, sk,C):

1. Choose λ1, . . . , λt uniformly from {0, 1} such that they are not all zero;
2. Generate one-time key s′ =

∑t
i=1 λisi and set v′ = Powerof2(s′);

3. Determine an integer 1 ≤ I ≤ tl such that vI := 2I ∈ (q/4, q/2] (note
that this value depends on which of the values λi = 1);

4. Let CI be the I-th row of C. Compute x ← 〈CI ,v′〉 and return �x/vI	 ∈
{0, 1}.

– The homomorphic operations are exactly the same as in the original scheme.

4.2 Correctness and Homomorphic Operations

In this section, we will analyze the scheme’s correctness and homomorphic oper-
ations, following the arguments from [8].

The main change in the scheme is that a secret key is changed from s =
(1,−tT)T to a large set of secret keys of the form s′ =

∑t
i=1 λisi with λi ∈ {0, 1}.

We have A′si = ei (mod q) for all 1 ≤ i ≤ t where ei is chosen from a discrete
Gaussian distribution. Writing e′ = A′s′ (mod q) for any choice of one-time
secret key s′ we have

‖e′‖ = ‖A′s′‖ =

∥
∥
∥
∥
∥

t∑

i=1

λiei

∥
∥
∥
∥
∥

≤
t∑

i=1

|λi|‖ei‖.

Since we may assume ‖ei‖ ≤ 2
√

mσ it follows that ‖e′‖ ≤ 2t
√

mσ. Gentry, Sahai
and Waters consider B-bounded error vectors to show that decryption is correct.
If ‖ei‖∞ = max{|ei,j |} ≤ B then, by the same argument ‖e′‖∞ ≤ B′ = tB.

380 Z. Li et al.

To specify parameters we first fix a level L. The parameter n determines
a number of parameters σ ≥ 2

√
n, t = O(log(n)), B = 10σ, B′ = tB. It is

necessary to choose (l, q) with 2l < q < 2l+1 and q > 8B′((t+n)l+1)L+1. Finally,
one selects a large enough parameter n so that the (n, q,Dσ)-LWE problem is
hard with these choices for q and σ. Note that m > 2n log(q) > t + n and
N ′ = (t+n)(l+1). These are the parameters used in the MGSW key generation.

We say that a ciphertext C is at level i if it has been formed by running the
Evaluate algorithm at most i times on encryptions of messages. The Encrypt
algorithm outputs ciphertexts of level 0. Lemma 2 shows that our variant of the
GSW13 scheme is homomorphic. Due to space restrictions the proof is omitted,
but can be found in the full version of the paper.

Lemma 2. Let notation and parameters be as above. Let C be any ciphertext
at level i ≤ L. Then the decryption algorithm returns the correct message μ.

4.3 IND-CPA Security

We show the scheme is IND-CPA secure based on the LWE assumption by using
Theorem 1 to show that the scheme is indistinguishable from the original GSW13
scheme, and then applying Theorem 2.

Theorem 3. Let (n, q, χ,m, t) be such that the LWEn,q,χ,m assumption holds,
t = O(log(n)), and m = O(n log(q)). Then the MGSW scheme is IND-CPA
secure.

Proof. The proof of security consists of two steps:

– Firstly, we apply Theorem 1 to show that, under the LWE assumption, the
matrix A′ = [b1, · · · ,bt,B] ∈ Z

m×(n+t)
q is computationally indistinguishable

from a randomly chosen matrix.
– Then we apply the arguments from the proof of Theorem 2, namely

that R′ · A′ is indistinguishable from uniform assuming the hardness of
LWEn,q,χ,m.

This completes the sketch of the proof. �

5 Security of the Multiple Secret GSW Scheme Against
Adaptive Attacks

In this section we explain how the standard attack on the GSW13 scheme is
prevented by our countermeasure. Unfortunately we are not able to prove IND-
CCA1 security of our new scheme. Indeed, proving IND-CCA1 security of homo-
morphic encryption is an extremely challenging problem as one needs to somehow
handle the decryption queries. No-one has ever managed to give a proof of such
a result, the nearest is the result of Loftus et al. [10], which uses a very strong
knowledge assumption.

Preventing Adaptive Key Recovery Attacks on the GSW 381

The crux of our argument is that the one-time keys are distributed uniformly
from the point of view of the decryption oracle, and so are independent of the
actual secret basis. In terms of linear algebra (assuming for the moment that q
is prime), the one-time keys all lie in a vector subspace K of dimension t inside
the much larger space Z

n
q . (Not all elements of the space K are valid secret

keys; only the ones that correspond to short linear combinations of the basis are
allowed.) However, the attacker just gets a single bit of an inner product of the
one-time key with the vector coming from the ciphertext. One can think of the
inner product with Ci as giving a projection (linear map) LCi

: Zn
q → Zq. So

the adversary only sees one bit of one projection of the secret. Even though the
subspace K is small, the probability that K lies in the kernel of this projection
is equal to the probability that Ci is chosen in the orthogonal complement K⊥

of K. Since K has dimension t in an n-dimensional space, the dimension of K⊥

is n − t. Hence the probability that a randomly chosen Ci is such that K is in
the kernel of the projection LCi

is qn−t/qn = 1/qt, which will be negligible. So
we can assume that the projection is surjective and it suffices to argue that the
distribution of the projected value is close to uniform and so is independent on
the secret vectors. This is sufficient to prove that the attack cannot work, since
the information revealed by the decryption oracle is therefore independent of the
choice of secret keys.

First note that the one-time secret key is of the form

t∑

i=1

λisi =

⎛

⎜
⎜
⎜
⎝

λ1

...
λt∑t
i λiti

⎞

⎟
⎟
⎟
⎠

∈ Z
n
q .

The first t entries carry no information about the long-term secret t1, . . . , tt.
We now fix a linear map L : Zn

q → Zq (corresponding to an inner product
with Ci). We assume that t′ of the vectors s1, . . . , st do not lie in ker(L) where
t′ ≈ t (a random vector lies in ker(L) with probability 1/q so a given set of
l vectors lie in ker(L) with probability 1/ql). Re-ordering the vectors we have
s1, . . . , st′ not in ker(L). When making a decryption oracle query with ciphertext
Ci the adversary gets one bit of information about the value

L

(
t∑

i=1

λisi

)

=
t′

∑

i=1

λiL(si).

Since t1, . . . , tt are sampled uniformly from Z
n
q we can model L(s1), . . . , L(st′)

as corresponding to t′ non-zero values uniformly sampled from Zq.
We now apply the left-over hash lemma (Lemma 1) in the one-dimensional

case. If t′ ≥ log(q) + 2k then the statistical difference between the distribution
on Zq given by

∑t′

i=1 λiL(si) and the uniform distribution is at most 2−k. The
adversary does not even see the whole value, but only one bit of it. This means
that the value output by the decryption oracle is indistinguishable from a uniform

382 Z. Li et al.

value. Since a uniform value is independent of the long-term secret key t1, . . . , tt,
it follows that the adversary cannot learn a secret key from making queries of
this form.

To achieve security one can take t ≥ log(q) + 3k, but this is likely to be
overkill in practice. Since q grows like nL it is possible to satisfy this inequality
while also satisfying the necessary condition t = O(log(n)) for Theorem 1. An
open problem is to give a more precise analysis on distribution of a single bit of
such a linear projection, and hence obtain a smaller value for t.

6 Conclusion

We have given a variant of the GSW13 scheme and explained why it resists the
known adaptive attack that breaks the original version of the scheme. Our ideas
may also be useful in the framework of leakage resilience: since we are using a
one-time key one could hope that the computations involving the one-time key
would not leak information about the long-term secrets. We leave these topics
for future research.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their helpful advice and comments. This work was supported by the National Natural
Science Foundation of China (No.61472097), Specialized Research Fund for the Doc-
toral Program of Higher Education (No.20132304110017) and International Exchange
Program of Harbin Engineering University for Innovation-oriented Talents Cultivation.

References

1. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998). doi:10.1007/BFb0055716

2. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, pp. 97–106. IEEE Computer Society (2011)

3. Chenal, M., Tang, Q.: On key recovery attacks against existing somewhat homo-
morphic encryption schemes. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT
2014. LNCS, vol. 8895, pp. 239–258. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-16295-9 13

4. Chenal, M., Tang, Q.: Key recovery attacks against NTRU-based somewhat
homomorphic encryption schemes. In: Lopez, J., Mitchell, C.J. (eds.) ISC
2015. LNCS, vol. 9290, pp. 397–418. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-23318-5 22

5. Dahab, R., Galbraith, S., Morais, E.: Adaptive key recovery attacks on NTRU-
based somewhat homomorphic encryption schemes. In: Lehmann, A., Wolf, S.
(eds.) ICITS 2015. LNCS, vol. 9063, pp. 283–296. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-17470-9 17

6. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–169.
ACM Press (2009)

http://dx.doi.org/10.1007/BFb0055716
http://dx.doi.org/10.1007/978-3-319-16295-9_13
http://dx.doi.org/10.1007/978-3-319-16295-9_13
http://dx.doi.org/10.1007/978-3-319-23318-5_22
http://dx.doi.org/10.1007/978-3-319-23318-5_22
http://dx.doi.org/10.1007/978-3-319-17470-9_17

Preventing Adaptive Key Recovery Attacks on the GSW 383

7. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, pp. 197–206. ACM (2008)

8. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40041-4 5

9. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, pp. 12–24. ACM (1989)

10. Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-secure somewhat homo-
morphic encryption. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118,
pp. 55–72. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28496-0 4

11. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer,
Heidelberg (2009)

12. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector prob-
lem. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, pp. 333–342. ACM (2009)

13. Peikert, C., et al.: Decade of Lattice Cryptography. World Scientific (2016)
14. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-

phy. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, pp. 84–93. ACM (2005)

15. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively
small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13013-7 25

16. Zhang, Z., Plantard, T., Susilo, W.: On the CCA-1 security of somewhat homo-
morphic encryption over the integers. In: Ryan, M.D., Smyth, B., Wang, G. (eds.)
ISPEC 2012. LNCS, vol. 7232, pp. 353–368. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29101-2 24

http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-642-28496-0_4
http://dx.doi.org/10.1007/978-3-642-13013-7_25
http://dx.doi.org/10.1007/978-3-642-13013-7_25
http://dx.doi.org/10.1007/978-3-642-29101-2_24
http://dx.doi.org/10.1007/978-3-642-29101-2_24

A Secure Reverse Multi-Attribute
First-Price E-Auction Mechanism
Using Multiple Auctioneer Servers

(Work in Progress)

Jun Gao1, Jiaqi Wang1, Ning Lu2, Fang Zhu2, and Wenbo Shi2(B)

1 Department of Computer Science and Engineering,
Northeastern University, Shenyang, China

2 School of Computer and Communication Engineering,
Northeastern University at Qinhuangdao, Qinhuangdao, China

swb319@hotmail.com

Abstract. One of the recent focus within the auction field has been
multi-attribute auctions where buyer is not restricted to selecting the
best option only by price but also other attributes. Due to the increase
in the awareness of securing private information, in this paper, we design
a secure reverse multi-attribute first-price auction scheme, in which the
auction is processed on the bidders’ encrypted bids by multiple auction-
eer servers. As a result, auctioneer servers can determine the winner
without knowing the real value of bids, which let bidder’s privacy would
not be revealed. At last, an analysis on the privacy of bids is conducted.

Keywords: Secure auction · Threshold homomorphic encryption · Bids
privacy · Multiple attributes

1 Introduction

In past decades, e-auction has become a popular form of price determination in
e-commerce due to its simplicity and efficiency [7]. Unlike traditional price-only
auctions, in multi-attributes reverse (online) auction (MROA) [1,6] describes
one such scenario, the buyer organizes an auction for contracts and asks sup-
pliers to submit their bids and attributes through one or a number of different
auction agents (servers). Next the auctioneer agents use a kind of scoring rule
cooperatively computing and determine the winner of the auction.

In this paper’s construction, there is a buyer, n distributed auctioneer servers
(calculators) and m bidders with bids Bi(1 ≤ i ≤ m), which is characterized by
a n-length vector of attributes in addition to price: Bi = {bi, {αj |1 ≤ j ≤ n}}
(bi, aj ∈ ZN), bi is the price and αj is the value of the j-th non-price attribute
submitted by the bidder. To determine the winner, typical linear additive func-
tion [3,11] has been used, which takes the following form:

c© Springer International Publishing AG 2016
L. Chen and J. Han (Eds.): ProvSec 2016, LNCS 10005, pp. 384–391, 2016.
DOI: 10.1007/978-3-319-47422-9 23

A Secure Reverse Multi-Attribute First-Price E-Auction Mechanism 385

Scorei(bi, ATi) = −bi +
m∑

j=1

wj ∗ fj(αj) (1)

ATi denotes the vector of weighed non-price attributes in ith bids, wi is the
weight indicating the importance given to the attribute in weight set W =
{wi|1 ≤ i ≤ n}. fi(·) is the valuation function associated with the attribute. So
in multi-attribute auctions, to determine the winner is to find:

arg maxi(Score(bi, ATi)) (2)

Our goal is to solve the problem: distributed auctioneer servers collabora-
tively compute the maximum sum of the weighted attribute values while the
information of bids should be kept secret.

2 Related Work

In MROA, the computing process is centrally controlled by an auctioneer and
bidders are supposed and they are supposed to faithfully reveal their valuations
of the goods in the auction, namely auctioneer/bidders could know all the bids
information. From the view point of security, it is significant to preserve bids’
privacy as once it is revealed to a half-hearted auctioneer, he or she may exploit
such knowledge for its own benefit either in future auctions or renege on the
sale. To the best our of knowledge, the related research about security issues of
MROA is still very lacking. Suzuki et al.’s work [13] is the first one about deal-
ing with security in multi-attribute auction. This scheme is applied to Vickrey
auction and concentrates on bid privacy, and public verifiability. Shi. et al. [10]
proposed a new qualitative attribute-based sealed-bid multi-attribute auction
scheme under semi-honest model for the first time, which explores the different
results in the multi-attribute auction model because of different bid structures,
focuses on qualitative attribute-based winner determination auction model. Sri-
nath et al. [11,12] proposed two MROA protocols, both use score function to
compute the rank of biddings and pseudonym technique to anonymize bidders,
however, they all open bids during or after the score computation so that the
private information for losing bids will be leaked out.

3 Preliminaries

3.1 Paillier’s Homomorphic Cryptosystem

Homomorphic encryption is a form of encryption that enables the decrypted
result computed on the ciphertext to match the result calculated on the plaintext.
Generally Paillier cryptosystem [8] has three parts: Key Generation, Encryption
and Decryption.

386 J. Gao et al.

Key Generation: Select n = pq, where p and q are large primes satisfying
p � q − 1 and q � p − 1. Set λ = lcm(p − 1, q − 1) where lcm() represents the
least common multiple. Then randomly select g ∈ Z

∗
n2 such that order of g is

a multiple of n, this is can be achieved by checking gcd(L(gλ mod n2), n) = 1,
in which L(·) is a function defined as L(μ) = (μ − 1)/n.
Public Key: Spk = (n, g), private Key: Ssk = λ or (p, q).
Encryption: Given plaintext m ∈ Zn and r ∈R Z

∗
n, the ciphertext c is:

c = E(m, r) = gmrn mod n2.
Decryption: Given the ciphertext c ∈ Z

∗
n2 , the plaintext m is given by:

m = L(cλ mod n2)
L(gλ mod n2)

mod n.

It’s necessary to know about its two homomorphic properties:

D(E(m1, r1) ∗ E(m2, r2) mod n2) = m1 + m2 mod n (3)

D(E(m1, r1)k mod n2) = km1 mod n (4)

where m1,m2 ∈ Zn, r1, r2 ∈R Z
∗
n.

3.2 Threshold Paillier Cryptosystem

Threshold Paillier cryptosystem (TPC) [5] is utilized in our construction to avoid
possible frauds in which a party who knows the secret key decrypts an arbitrary
ciphertext and violates the privacy of a participating party. This scheme consists
of the following participants: a dealer and a set of n decryption servers Ui.

Key Generation: Each decryption servers could get a share SKi of the
private key which is corresponding to the public key PK through a trusted
dealer.
Encryption: Any one of decryption servers can take as input Pk, a plaintext
M ; it outputs a ciphertext c.
Decrypiton: A decryption server uses its secret key share SKi to decrypt c
to get a partial decryption ci and forms a proof of its validity proofi.
Recover: If at least a list of c1, c2...ct’s proofi are validated correctly where
t ≤ n, the dealer or any third party can recover the plaintext M using a
Lagrange-like combining protocol.

The details will be integrated into proposed protocol and explained in Sect. 4.

3.3 Definition of Security

In this paper, the parties are assumed to be semi-honest, i.e., bidders could
submit their bids and calculators compute attributes honestly. Moreover, all
messages are sent in clear between all participants using a broadcast channel
which is public.

A Secure Reverse Multi-Attribute First-Price E-Auction Mechanism 387

Definition 1. (computationally indistinguishability): Let Σ ⊆ {0, 1}∗. Two

ensembles (indexed by Σ), U
def
= {Uσ}σ∈Σ and V

def
= {Vσ}σ∈Σ are computation-

ally indistinguishable, if for every family of polynomial-size circuits, {Xn}n∈N,
there exists a negligible (i.e., dominated by the inverse of any polynomial)function
μ: N �→ [0, 1] so that

| Pr[Xn(σ,Uσ) = 1] − Pr[Xn(σ, Vσ) = 1] |< μ(| σ |)

Nextly, let us consider an attacker A who can actively but non-adaptively
corrupts servers to learn both public parameters and private information. The
security of protocol π is defined as follows:

Definition 2. The security of protocol π is defined in terms of the indistin-
guishability under chosen plaintext attacks (IND-CPA). The security game is
executed by a simulator B and a adversary A as follows:

1. Setup: B generates a key pair (Spk, Ssk) based on some public parameters. A
chooses t servers to corrupt, he learns all private information of the corrupted
servers, and actively controls their behavior.

2. Query 1: A selects a message M and a partial decryption oracle gives him
l valid decryption shares of the encryption M . This phase can be repeated
arbitrary times as A wishes.

3. Challenge: A submits two distinct messages m0,m1 and sends them to B.
Then,B chooses a random bit b ∈ {0, 1}, and generates the challenge cipher-
text cmb

. B sends it to A.
4. Query 2: A repeats Query 1, asking for decryption shares of encryptions of

chosen messages.
5. Guess: Finally, A outputs a bit b

′
.

The adversary wins the game if b = b
′
and we define the advantage of A in this

game to be Advπ(A). We say that the protocol π is semantically secure against
IND-CPA attack if no polynomially bounded adversary A has a non-negligible
advantage against the simulator in the above game. Namely,

Advπ(A) =| Pr[b = b
′
] − 1/2 |≈ 0

4 Our Proposed Scheme

As introduce in Sect. 1, there is a buyer, l calculators and m bidders in our
auction scenario. For the sake of simplicity, we assume a trusted dealer D as
a key generation and distribution center of the underlying threshold Paillier
system. Note that the trusted party D can be removed by using distributed key
generation protocols [2,4]. The proposed scheme consists of four stages as 4.1
to 4.4.

388 J. Gao et al.

4.1 System Initialization and Key Generation

As introduced in Sect. 1, at the beginning of the auction, the buyer publishes the
procurement demand which actually is a vector of preferred attributes of goods,
and its weight set {wi}i∈[1,l−1] is separately sent to a calculator. Accordingly,
each bidder generates his/her own bids Bi = {bi, (αj |1 ≤ j ≤ l−1)} (By default,
the attribute with index l is the price attribute) that also are l-length vectors.

Next, D picks an integer n, a product of two strong primes p and q such that
p = 2p

′
+1 and q = 2q

′
+1 where p

′
and q

′
are large primes. Set m = p

′
q

′
, Δ = l!,

g = (n+1)a × bn mod n2 where (a, b) ∈R Z
∗
n × Z

∗
n and β is randomly selected in

Z
∗
n. The public key Spk = (n, g) is sent to all bidders, and the secret key Ssk =

βm is shared with the Shamir scheme [9]: selects a polynomial f(x) =
∑l

i=0 aix
i

where a0 = βm and {ai}i=1,...,l are random numbers in {0, ..., nm−1}, the share
si for the i-th calculator is f(i) mod nm.

4.2 Multiple Attributes Encryption and Transmission

In this phase, the bidder starts to send encrypted attribute to calculators.
Firstly, when receiving Spk, the bidder encrypts his/her own bids Bi by for-
mula: ESpk

(−bi) = −gbir1
n mod n2 and ej = ESpk

(αj) = gαj r2
n mod n2

where r1, r2 ∈ RZ
∗
n. Then sends ESpk

(−bi) and a list of encrypted attributes
{ej}j∈[1,l−1] to all calculators {ASk}k∈[1,l]).

4.3 Computing Scores of Bids Using Homomorphic Properties

After each calculator {ASk}k∈[1,l−1])receives {ej} from the i-th bidder, ASk is
going to calculate weighted attribute value wj ∗αj with its corresponding weight
wj , by using second Paillier cryptosystem’s homomorphic property as described
in formula (4), namely: ESpk

(ATij) = ej
wj .

Next, each ASk sends ESpk
(ATij) to ASl, then ASl calculates the weighted

attributes score as formula (1) through executing following operations using

(3): ESpk
(ATi) =

l−1∏

j=1

e
wj

j , then computes ESpk
(Scorei(bi, ATi)) = ESpk

(ATi) ∗
ESpk

(−bi). At last of this phase, ASl sends ESpk
(Scorei(bi, ATi)) to other l − 1

calculators.

4.4 Share Decryption and Combining

Now, all calculators have ESpk
(Scorei(bi, ATi)), we denote it as c. Next, the i-th

calculator ASi,i∈[1,l] computes the decryption share ci = c2Δsi mod n2 using his
secret share si. Then each ASi sends ci to the buyer.

Under the assumption that calculators are semi-honest, the buyer could
receive l valid ciphertext shares {ci}i∈[1,l]. Let S be the set of these l shares,the
buyer could compute the plaintext form of the sum of weighted attributes for
j-th bids:

Scorej = L(
∏

k∈S

c2Γk

k mod n2) × (4Δ2)−1 (5)

A Secure Reverse Multi-Attribute First-Price E-Auction Mechanism 389

where Γk = Δ × ∏

k′∈S\{k}
k

′

k′−k
∈ Z.

Now, the execution for one bids Bi has been done. After the rest of m′ − 1
bids are computed, the buyer could select one or top-k satisfied bids by sorting
{Scorej}j∈[1,m′] as formula (2).

5 Security Analysis

In this section, we analyze the privacy of bids in proposed auction scheme accord-
ing to the definition of security in Sect. 3.3. Through the adoption of TPC,
the ciphertext is protected by the secret sharing scheme and the Decisional
Composite Residuosity Assumption(DCRA). Furthermore, under the assump-
tion that the participants are semi-honest, there is no colluding group could
decrypt ciphertext to get the real value of the attributes in bids or the final
score.

Theorem 1. During the process of protocol, no participant can disclose Bi even
after the bidding procedure is closed, i.e., the computation process is semantically
secure under DCRA assumption.

Proof. As discussed in previous section, only ESpk
(ATi) and ESpk

(bi) having
information of Bi are sent during the protocol process. Because all elements of
E(ATi) are the ciphertext forms of wj ∗ ATij , any party wanting to get the true
value of the weighted attribute must decrypt bids, let us consider a adversary
A able to break the semantic security of the threshold scheme. As the Sect. 3.3
defined, in the setup phase, A obtains the public key (n, g) and chooses two
distinct messages (m0,m1) which are sent an encryption oracle B, who randomly
chooses a bit b and returns the encryption of b to A, namely cmb

. In next phase,
called guess phase, A tries to guess which message has been encrypted.

In the Setup phase of the game introduce in Sect. 3.3, the adversary chooses
to corrupt t servers and obtain these servers’ secret shares s1, ..., st. Since our
participants are semi-honest, the proposed scheme did not let calculators gen-
erate a proof for proving that they compute decryption shares rightly as the
original TPC does. However, the received data by A is still indistinguishable to
him during the process of Query 1 to Query 2. In these three steps, an encryption
of message M is first computed: c = gM

1 xn mod n2. Then the shares of corrupted
servers c1, ...ct are computed using the secret key s1, ...st as ci = c2Δsi . Finally,
the missing ci’s are obtained by interpolation (Sect. 5.2 in [5]), using c1, ...ct

and the (t + 1)-th point cmβ mod n2 which we can compute without any secret
knowledge since it is equal to (1 + 2M ∗ n). On the other hand, if ESpk

(ATij)
is instantly modified by a malicious party, this will lead to fail to decrypt the
result Scorei(bi, ATi) so the tampering activity could be found out.

6 Conclusion and Future Work

In this paper, we propose a secure reverse multi-attribute first-price auction
based on threshold Pallier cryptosystem, in which multiple servers cooperatively

390 J. Gao et al.

compute the sum of weighted attributes without knowing its real value. In our
work, the security definition is under semi-honest model which is a weak model
actually. Our future work could undertake to design a more robust scheme to
improve the protocol into malicious model, and decrease the cost of communi-
cation and computation.

Acknowledgement. The authors thank the editors and the anonymous reviewers for
their valuable comments. This research was supported by National Natural Science
Foundation of China (Nos.61472074, 61401083), the Doctoral Fund of Northeastern
University of Qinhuangdao (Grant No. XNB201410); the Fundamental Research Funds
for the Central Universities (Grant No. N130323005, L1523009); the Natural Science
Foundation of Hebei Province of China (Grant No. F2014501139, F2015501122); the
Doctoral Scientific Research Foundation of Liaoning Province (Grant No. F201501143).

References

1. Bellantuono, N., Ettorre, D., Kersten, G.E., Pontrandolfo, P.: Multi-attribute auc-
tion and negotiation for e-procurement of logistics. Group Decis. Negot. 23(3),
421–441 (2014)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1988)

3. Chen, Y., Qiu, L., Cao, T., Hu, Z.: A multi-attribute reverse auction decision mak-
ing model based on multi-objective programming. In: Xu, J., Cruz-Machado, V.A.,
Lev, B., Nickel, S. (eds.) Proceedings of the Eighth International Conference onMan-
agement Science and Engineering Management. AISC, vol. 280, pp. 73–81. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-55182-6 7

4. Damg̊ard, I., Koprowski, M.: Practical threshold RSA signatures without a trusted
dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 152–165.
Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6 10

5. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001). doi:10.1007/3-540-45472-1 7

6. Kikuchi, H., Hotta, S., Abe, K., Nakanishi, S.: Distributed auction servers resolving
winner and winning bid without revealing privacy of bids. In: Seventh International
Conference on Parallel and Distributed Systems: Workshops, pp. 307–312. IEEE
(2000)

7. Larson, M., Hu, C., Li, R., Li, W., Cheng, X.: Secure auctions without an auctioneer
via verifiable secret sharing. In: Proceedings of the 2015 Workshop on Privacy-
Aware Mobile Computing, pp. 1–6. ACM (2015)

8. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

9. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
10. Shi, W.: A sealed-bid multi-attribute auction protocol with strong bid privacy and

bidder privacy. Secur. Commun. Netw. 6(10), 1281–1289 (2013)

http://dx.doi.org/10.1007/978-3-642-55182-6_7
http://dx.doi.org/10.1007/3-540-44987-6_10
http://dx.doi.org/10.1007/3-540-45472-1_7
http://dx.doi.org/10.1007/3-540-48910-X_16

A Secure Reverse Multi-Attribute First-Price E-Auction Mechanism 391

11. Srinath, T., Kella, S., Jenamani, M.: A new secure protocol for multi-attribute
multi-round e-reverse auction using online trusted third party. In: 2011 Second
International Conference on Emerging Applications of Information Technology
(EAIT), pp. 149–152. IEEE (2011)

12. Srinath, T., Singh, M.P., Pais, A.R.: Anonymity and verifiability in multi-attribute
reverse auction. arXiv preprint (2011). arxiv:1109.0359

13. Suzuki, K., Yokoo, M.: Secure multi-attribute procurement auction. In: Song, J.-S.,
Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 306–317. Springer,
Heidelberg (2006). doi:10.1007/11604938 24

http://arxiv.org/abs/1109.0359
http://dx.doi.org/10.1007/11604938_24

Author Index

Acharya, Kamalesh 277

Cao, Zhenfu 3, 191
Chen, Rongmao 173
Chow, Sherman S.M. 340
Cui, Hui 19

Deng, Robert H. 19
Dutta, Ratna 277

Fuji, Hitoshi 207

Galbraith, Steven D. 373
Gao, Jun 384
Guo, Fuchun 39, 173

Han, Wenbao 3
Huang, Jianye 320
Huang, Qiong 320

Imamura, Kazuya 257
Iwata, Tetsu 257

Jiang, Peng 173
Jiang, Yinhao 39

Kawahara, Yuto 207
Kobayashi, Tetsutaro 207

Lai, Jianchang 173
Lai, Junzuo 19
Li, Changfeng 101
Li, Juyan 353
Li, Pengyan 83
Li, Sujuan 309
Li, Xingxin 130
Li, Yuxi 153
Li, Zengpeng 373
Liang, Kaitai 227
Lin, Muqing 153
Liu, Alex X. 153
Liu, Bin 61
Liu, Joseph K. 296

Lu, Ning 384
Luo, Xiling 296

Ma, Chunguang 353, 373
Ma, Rong 191
Mao, Jian 83
Minematsu, Kazuhiko 257
Mu, Yi 39, 227, 309

Ouyang, Weiping 353

Pan, Chunhua 320
Peng, Su 112

Ren, Yili 296

Shi, Wenbo 384
Sun, Zhibin 83
Susilo, Willy 39

Tian, Yangguang 227

Wang, Huaqun 101
Wang, Jian 130
Wang, Jiaqi 384
Wang, Xiaofen 173
Warinschi, Bogdan 61
Wu, Guowei 19
Wu, Libing 244
Wu, Qianhong 296

Xie, Yong 244
Xu, Jian 112
Xu, Zhiyan 244
Xu, Zifeng 112, 153

Yamamoto, Tomohide 207
Yang, Guomin 227
Yoneyama, Kazuki 207
Yoshida, Reo 207
Yu, Gang 3
Yu, Yong 227

Zeng, Guang 3
Zhang, Futai 309
Zhang, Jianhong 83
Zhang, Mingwu 309
Zhang, Peng 296

Zhang, Yubo 244
Zhao, Yongjun 340
Zhou, Fucai 112, 153
Zhu, Fang 384
Zhu, Youwen 130

394 Author Index

	Preface
	Organization Provable Security 2016
	Contents
	Attribute/Role-Based Cryptography
	Accountable Ciphertext-Policy Attribute-Based Encryption Scheme Supporting Public Verifiability and Nonrepudiation
	Abstract
	1 Introduction
	1.1 A Motivating Story
	1.2 Our Contribution
	1.3 Related Works
	1.4 Main Techniques
	1.5 Organizations

	2 Preliminaries
	2.1 Linear Secret Sharing Schemes
	2.2 Bilinear Pairings in Composite Order Groups
	2.3 CDH Problem in Composite Order Bilinear Group

	3 Accountable Ciphertext-Policy Attribute-Based Encryption
	3.1 Definition
	3.2 Security Models for CP-AABE

	4 A Concrete CP-AABE Construction
	5 Discussion
	5.1 Security Results
	5.2 Comparison

	6 Conclusion
	Acknowledgment
	References

	An Efficient and Expressive Ciphertext-Policy Attribute-Based Encryption Scheme with Partially Hidden Access Structures
	1 Introduction
	1.1 Challenges and Our Contributions
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Bilinear Pairings and Complexity Assumptions
	2.2 Access Structures and Linear Secret Sharing

	3 System Architecture and Security Model
	3.1 Framework
	3.2 Security Definitions

	4 Ciphertext-Policy Attribute-Based Encryption Scheme with Partially Hidden Access Structures
	4.1 Attribute Value Guessing Attack
	4.2 Construction
	4.3 Security Proof
	4.4 Performance Evaluation and Implementation

	5 Conclusions
	References

	Ciphertext-Policy Attribute Based Encryption Supporting Access Policy Update
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Roadmap

	2 Definitions
	2.1 Access Structure [6]
	2.2 CP-ABE Supporting Access Policy Update Definition

	3 Pairings and Complexity Assumption
	3.1 Bilinear Maps
	3.2 Complexity Assumption

	4 CP-ABE Supporting Attribute Addition Construction
	4.1 Description
	4.2 Security Analysis

	5 CP-ABE Supporting Attribute Revocation Construction
	5.1 Description
	5.2 Security Analysis

	6 Intractability of (n, S)-aMSE-DDH Assumptions
	6.1 Notations
	6.2 (n, S)-aMSE-DDH

	7 Conclusion
	References

	Universally Composable Cryptographic Role-Based Access Control
	1 Introduction
	2 Preliminaries
	3 A UC Security Definition for cRBAC
	4 UC Security Is Stronger Than Game-Based Security of cRBAC
	5 Impossibility of UC-secure cRBAC Scheme
	6 Conclusion
	A The Security Notions of cRBAC Schemes in [12]
	References

	Data in Cloud
	ID-based Data Integrity Auditing Scheme from RSA with Resisting Key Exposure
	1 Introduction
	2 System Model and Security Requirements
	2.1 System Model
	2.2 Mathematical Assumption
	2.3 Definition of Security Model

	3 Our ID-based Data Integrity Auditing Scheme
	3.1 Discussion
	3.2 Forward Security
	3.3 Security Proof

	4 Performance Analysis
	5 Conclusion
	References

	Efficient Dynamic Provable Data Possession from Dynamic Binary Tree
	1 Introduction
	1.1 Contributions
	1.2 Paper Organization

	2 Dynamic Binary Tree
	2.1 Binary Tree
	2.2 Insertion
	2.3 Deletion

	3 Model of Dynamic PDP
	4 The Proposed Dynamic PDP Scheme
	4.1 Bilinear Pairings
	4.2 The Concrete Dynamic PDP Scheme
	4.3 Performance Analysis

	5 Security Analysis
	6 Conclusion
	References

	Identity-Based Batch Provable Data Possession
	1 Introduction
	1.1 Motivation and Related Work
	1.2 Contributions
	1.3 Paper Organization

	2 Preliminaries
	2.1 Bilinear Pairings
	2.2 CDH Problem on G1

	3 Definitions
	3.1 System Model
	3.2 Security Model

	4 Construction
	4.1 Correctness

	5 Performance Analysis
	5.1 Computation
	5.2 Communication
	5.3 Simulation

	6 Security Analysis
	7 Conclusion
	References

	Secure Naïve Bayesian Classification over Encrypted Data in Cloud
	1 Introduction
	2 Preliminaries and System Model
	2.1 Naïve Bayesian Classification
	2.2 System Model
	2.3 Threat Model

	3 Our Proposed Scheme
	3.1 First Stage: Preparation
	3.2 Second Stage: Computing Class Label for the Encrypted Sample

	4 Evaluation
	4.1 Security
	4.2 Computation and Communication Complexity

	5 Related Work
	6 Conclusions
	References

	Searchable Encryption
	Integrity Preserving Multi-keyword Searchable Encryption for Cloud Computing
	Abstract
	1 Introduction
	2 Definition and Security Model
	2.1 Definitions
	2.2 Security Model

	3 Integrity Preserving Multi-keyword Searchable Encryption Scheme
	3.1 Dynamic Searchable Encryption
	3.2 Making Result Verifiable
	3.3 Explicit Construction

	4 Security Analysis
	4.1 Dynamic CKA2-Secure
	4.2 Unforgeability

	5 Conclusion
	Acknowledgement
	References

	Oblivious Keyword Search with Authorization
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Bilinear Pairing
	2.2 Algorithm Definition
	2.3 Security Notions
	2.4 Assumptions

	3 Oblivious Keyword Search with Authorization
	4 Security Analysis
	4.1 User Privacy
	4.2 Indistinguishability
	4.3 Accountability

	5 Conclusion
	References

	Efficient Asymmetric Index Encapsulation Scheme for Named Data
	1 Introduction
	1.1 Contribution
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Pairing Group
	2.3 DBDH and CDH Assumption
	2.4 The Leftover Hash Lemma

	3 Definition of Security Models
	3.1 Intuition
	3.2 Security Model for Anonymity
	3.3 Security Model for Function Privacy

	4 Application
	5 Scheme Construction
	6 Proof of Anonymity
	7 Proof of Function Privacy
	8 Conclusion and Future Work
	References

	Key Management
	Multi-cast Key Distribution: Scalable, Dynamic and Provably Secure Construction
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Pseudo-Random Function, and Twisted Pseudo-Random Function Trick
	2.3 Target-Collision Resistant Hash Function
	2.4 Public Key Encryption
	2.5 Ciphertext-Policy Attribute-Based Encryption
	2.6 Message Authentication Codes
	2.7 Decisional Diffie-Hellman Assumption

	3 Security Definition
	3.1 Protocol Participants and Initialization
	3.2 Session and State Information
	3.3 Adversary
	3.4 Freshness
	3.5 Security Experiment
	3.6 Summary of Our Security Definition

	4 New Dynamic Multi-cast Key Distribution Protocol Under Star Topology
	4.1 Design Principle
	4.2 System Setup
	4.3 Dist Phase
	4.4 Join Phase
	4.5 Leave Phase
	4.6 Update Phase

	5 Complexity for Users
	5.1 Computational Complexity
	5.2 Communication Complexity

	6 Security
	References

	One-Round Attribute-Based Key Exchange in the Multi-party Setting
	1 Introduction
	1.1 This Work
	1.2 Related Work

	2 Security Models
	2.1 Session Key Security
	2.2 Insider Security

	3 OAKE Protocol
	3.1 Preliminaries
	3.2 Building Blocks
	3.3 A Novel Hybrid Signcryption Scheme
	3.4 Our OAKE Protocol

	4 Security Analysis
	5 Conclusion
	References

	Strongly Secure Two-Party Certificateless Key Agreement Protocol with Short Message
	1 Introduction
	2 Preliminaries
	3 The Proposed Protocol
	4 Security Proof
	4.1 Security Proof on AI
	4.2 Security Proof on AII

	5 Performance Analysis
	6 Conclusion
	References

	Encryption
	Integrity Analysis of Authenticated Encryption Based on Stream Ciphers
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 AEAD and DAEAD
	2.3 Security Definitions

	3 Schemes
	4 Negative Results
	4.1 AEAD-{2a, 4a, 4b} and DAEAD-2a Are Not INT-CTXT Secure
	4.2 AEAD-2b and DAEAD-{1, 2} Are Not INT-RUP Secure

	5 Positive Results
	5.1 ChaCha20-Poly1305 Is INT-RUP Secure
	5.2 AEAD-{1, 2, 3, 4} Are INT-RUP Secure

	6 Conclusions
	A Proof of Theorem 1
	References

	Secure and Efficient Construction of Broadcast Encryption with Dealership
	1 Introduction
	2 Preliminaries
	2.1 Broadcast Encryption with Dealership
	2.2 Security Framework
	2.3 The Drawbacks of 11
	2.4 Complexity Assumptions

	3 Our KEMD Construction
	4 Security
	5 Efficiency
	6 Conclusion
	References
	A The BED Construction of 11

	Towards Certificate-Based Group Encryption
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Bilinear Maps
	2.2 Complexity Assumption

	3 Modelling CBGE
	3.1 The CBGE System
	3.2 Security Notions of CBGE

	4 The Proposal
	4.1 A Scheme Towards CBGE
	4.2 Efficiency

	5 Conclusion
	References

	Leakage Analysis
	Updatable Lossy Trapdoor Functions and Its Application in Continuous Leakage
	1 Introduction
	2 Preliminaries
	3 Updatable Lossy Trapdoor Function
	4 ElGamal-Like Public Key Encryption Scheme
	5 Continuous Leakage-Resilient LTF from the DDH Assumption
	6 Continuous Leakage-Resilient LTFs from the DCR Assumption
	7 Conclusion and Future Work
	References

	A Black-Box Construction of Strongly Unforgeable Signature Schemes in the Bounded Leakage Model
	1 Introduction
	1.1 Side-Channel Attacks
	1.2 Leakage-Resilient(LR) Models
	1.3 Leakage-Resilient Signature
	1.4 Generic Transformations Under Leakage Models
	1.5 Our Contributions

	2 Digital Signature
	2.1 Definition of Digital Signature
	2.2 Security Models

	3 Preliminaries
	3.1 Error Correcting Codes
	3.2 Cover Free Family
	3.3 Entropy

	4 Generic Transformation to sEUF-CMA Secure in the Leakage Setting
	5 Leakage Resilient Strong One-Time Signature Schemes
	5.1 The First Construction
	5.2 Another More Efficient Construction

	6 Conclusion
	References

	Towards Proofs of Ownership Beyond Bounded Leakage
	1 Introduction
	1.1 Deduplication
	1.2 Proofs of Ownership
	1.3 Bounded-Retrieval Model
	1.4 Our Contributions

	2 Background
	2.1 Notation
	2.2 Hash Functions and Collision-Resistance
	2.3 One-Way Function
	2.4 Hard-Core Predicate and Hard-Core Function

	3 Proof of Ownership
	3.1 System Model
	3.2 Syntactic Definition

	4 Our Constructions
	4.1 Our Basic Construction
	4.2 An Improved Construction
	4.3 Discussions

	5 Conclusion and Future Work
	References

	Homomorphic Encryption
	A Homomorphic Proxy Re-encryption from Lattices
	1 Introduction
	2 Preliminaries
	2.1 Subgaussian Distributions and Random Matrices
	2.2 Definition of PRE Security Model

	3 A Homomorphic PRE Scheme
	4 Security
	5 Conclusion
	References

	Preventing Adaptive Key Recovery Attacks on the GSW Levelled Homomorphic Encryption Scheme
	1 Introduction
	2 Preliminaries
	3 Gentry-Sahai-Waters Homomorphic Encryption
	3.1 Basic Tools
	3.2 GSW13 Scheme
	3.3 Security
	3.4 Key Recovery Attacks

	4 Multiple Secret Scheme (MGSW)
	4.1 The Scheme
	4.2 Correctness and Homomorphic Operations
	4.3 IND-CPA Security

	5 Security of the Multiple Secret GSW Scheme Against Adaptive Attacks
	6 Conclusion
	References

	A Secure Reverse Multi-Attribute First-Price E-Auction Mechanism Using Multiple Auctioneer Servers (Work in Progress)
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Paillier's Homomorphic Cryptosystem
	3.2 Threshold Paillier Cryptosystem
	3.3 Definition of Security

	4 Our Proposed Scheme
	4.1 System Initialization and Key Generation
	4.2 Multiple Attributes Encryption and Transmission
	4.3 Computing Scores of Bids Using Homomorphic Properties
	4.4 Share Decryption and Combining

	5 Security Analysis
	6 Conclusion and Future Work
	References

	Author Index

