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Abstract. A linear influence network is a broadly applicable concep-
tual framework in risk management. It has important applications in
computer and network security. Prior work on linear influence networks
targeting those risk management applications have been focused on equi-
librium analysis in a static, one-shot setting. Furthermore, the underlying
network environment is also assumed to be deterministic.

In this paper, we lift those two assumptions and consider a formu-
lation where the network environment is stochastic and time-varying.
In particular, we study the stochastic behavior of the well-known best
response dynamics. Specifically, we give interpretable and easily veri-
fiable sufficient conditions under which we establish the existence and
uniqueness of as well as convergence (with exponential convergence rate)
to a stationary distribution of the corresponding Markov chains.

Keywords: Game theory · Networks · Security · Stochastic stability

1 Introduction

The application of game theory to networks has received much attention in the
literature [1,2] in the past decade. The underlying model typically consists of
agents, connected by physical or virtual links, who must strategically decide on
some action given the actions of the other users and the network structure. The
well-founded motivations for this study and the specific applications examined
have spanned many fields such social or economic networks [3], financial networks
[4,5], and a diverse range (packets, robots, virtual machines, sensors, etc.) of
engineering networks [6–10]. These different contexts all have in common the
presence of inter-agent influences: the actions of individual agents can affect
others in either a positive or negative way, which are typically called externalities.
As a simple example, consider two web-enabled firms [11] that have customers in
common that use the same passwords on both sites. In this case, an investment
in computer system security from one firm naturally strengthens the security of
the other, resulting in larger effective investment of the other firm compared to
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its own, independent investment. On the other hand, this investment may shrink
the effective investment of a third firm (a competitor) in the same business, as
this enhanced security on the two firms makes the attack on the third firm more
attractive.

As another example, technology innovation is another instance where a net-
work of agents’ actions can produce inter-dependent effects on one another.
Here the concept of innovation risk glues together the investments made by
each agent: if a social media company (e.g. Facebook) is seeking to expand its
enterprise by innovating on new products, then a partnering video games (e.g.
Zynga) company whose games are played on that social media platform will be
benefited and will in turn benefit the social media company with its own invest-
ment. On the other hand, a similar effort made by another competing social
media company (e.g. Myspace) will cause negative impact on both of the prior
firms and will be negatively impacted by them as well.

In all these examples, this feature of inter-agent influences is captured by
a linear influence network, which was first employed in [11,12] to study and
manage the risk in computer security settings. In a nutshell and in the words
of [11], “[i]n this model, a matrix represents how one organization’s investments
are augmented by some linear function of its neighbors investments. Each ele-
ment of the matrix, representing the strength of influence of one organization
on another, can be positive or negative and need not be symmetric with respect
to two organizations.” [13] very recently generalized this interdependence model
to an influence network, where every agent’s action is augmented by some (arbi-
trary) function of its neighbors’ joint action to yield a final, effective action, thus
allowing for a general influence effect in terms of both directions and values.

We mention that in addition to the examples mentioned above, linear influ-
ence network model is a broadly applicable conceptual framework in risk manage-
ment. The seminal work [14] provides more applications (one in security assets
which generalizes [11] and another in vulnerabilities) and numerical examples
to illustrate the versatility and power of this framework, to which the readers
are referred to for an articulate exposition. On this note, we emphasize that
the application of game theory to security has many different dimensions, to
which the linear influence network model is but one. See [15] for an excellent
and comprehensive survey on this topic.

On the other hand, all the prior work on linear influence networks and the
applications [11–14,16] have been focused on equilibrium analysis in a static,
one-shot setting. Further, the influence matrix, which represents the underlying
network environment, is assumed to be deterministic. Although prior analyses
provide an important first step in gaining the insights, both of these assumptions
are somewhat stringent in real applications: agents tend to interact over a course
of periods and the influences are random and can fluctuate from period to period.
Consequently, we aim to incorporate these two novel elements into our study.

In this paper, we consider a stochastic formulation of the best response
dynamics by allowing the underlying network environment to be stochastic (and
time-varying) and study its stochastic behavior. In the deterministic network
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environment case [11,12,16], it is known that the best response dynamics has
the desired property of converging to the unique Nash equilibrium when the
influence matrix is strictly diagonally dominant. The linear influence network
represented by a strict diagonally dominant influence matrix has direct and
intuitive interpretations [11,12,16] in the applications and constitutes an impor-
tant class for study. Building on this observation, we aim to characterize the
stochastic behavior of the best response dynamics when the influence matrix is
sometimes strictly diagonally dominant and sometimes not. Our stochastic for-
mulation is a rather broad framework in that we do not impose any exogenous
bounds on each agent’s action, nor on the randomness of the network environ-
ment. Of course, the same stochastic stability results hold should one wish to
impose such constraints for a particular application.

We then give two sufficient conditions on the stochastic network environ-
ment that ensure the stochastic stability of the best response dynamics. These
conditions have the merits of being both easily interpretable and easily veri-
fiable. These two sufficient conditions (Theorem 3) serve as the main criteria
under which we establish the existence and uniqueness of as well as convergence
to a stationary distribution of the corresponding Markov chains. Furthermore,
convergence to the unique stationary distribution is exponentially fast. These
results are the most desired convergence guarantees that one can obtain for a
random dynamical system. These sufficient conditions include as a special case
the interesting and simultaneously practical scenario, in which we demonstrate
that the best response dynamics may converge in a strong stochastic sense, even
if the network itself is not strictly diagonally dominant on average.

2 Model Formulation

We start with a quick overview of the linear influence network model and the
games induced therein. Our presentation mainly follows [14,16]. After disusing
some of the pertinent results, we conclude this section with a motivating discus-
sion in Sect. 2.4 on the main question and the modeling assumptions we study
in this paper.

2.1 Linear Influence Network: Interdependencies and Utility

A linear influence network consists of a set of players each taking an action
xi ∈ [0,∞), which can be interpreted as the amount of investment made by
player i. The key feature of an influence network is the natural existence of
interdependencies which couple different players’ investments. Specifically, player
i’s effective investment depends not only on how much he invests, but on how
much each of his neighbors (those whose investments produce direct external
effects on player i) invests. A linear influence network is an influence network
where such interdependencies are linear.

We model the interdependencies among the different players via a directed
graph, G = {N , E} of nodes N and edges E . The nodes set N has N elements,
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one for each player i, i = 1 . . . N . The edges set E contains all edges (i, j) for
which a decision by i directly affects j. For each edge, there is an associated
weight, ψij ∈ R, either positive or negative, representing the strength of player i’s
influence on player j (i.e. how much player j’s effective investment is influenced
per player i’s unit investment). Consequently, the effective investment xeff

i of
player i is then xeff

i = xi +
∑

j �=i ψjixj .
We can then represent the above linear influence network in a compact way

via a single network matrix, W ∈ R
N×N , as follows:

Wij =

⎧
⎨

⎩

1 if i = j
ψji if (j, i) ∈ E
0 otherwise.

(1)

In particular, we call into attention that Wij represents the influence of player
j on player i. An example network and the associated W matrix are shown in
Fig. 1.

We can therefore rewrite the effective investment of player i as xeff
i = xi +

∑
j �=i ψjixj =

∑N
j=1 Wijxj . Written compactly in matrix forms, if x denotes

the vector of individual investments made by all the players, then the effective
investment is given by xeff = Wx.

1

2

3

4

0.35

0.15

0.1

0.15

−0.05

−0.25

W=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0.15 0 −0.05
0 1 −0.25 0.35
0 0 1 0.1
0 0 0.15 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Fig. 1. An instance of a linear influence network.

Each player i has an utility function that characterizes his welfare:

Ui(x) = Vi(x
eff
i ) − cixi. (2)
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The utility function has two components that admit a simple interpretation. Vi

gives the value that player i places on the total effective investment made (result-
ing from player i’s investment and the externalities coming from its neighbors.)
The second component is the cost on player i’s side for investing xi amount,
where ci is the relative trade-off parameter that converts the value and the cost
on the same scale.

Drawing from the literature on utility theory, we impose the following stan-
dard assumptions on the value function. Remark 1 gives an intuitive explanation
on those assumptions.

Definition 1. The continuously differentiable function Vi(·) : [0,∞) → R1 is
called admissible if the following conditions hold:

1. strictly increasing,
2. strictly concave,
3. V ′

i (0) > ci and
4. limx→∞ V ′

i (x) < ci.

Remark 1. Here we use the network security example to provide intuition on why
the assumptions constituting an admissible value function are natural. Here the
value function for each player (firm) can be viewed to represent the level of
its network security or the profitability derived from that level of security, as a
result of the total effective investment. The first condition says that if the total
effective investment made by a firm increases, then this level of security increases
as well. The second conditions says that the marginal benefit of more effective
investment is decreasing. The third condition says that it is always in the interest
of a firm to have a positive effective investment. The fourth condition says that
the marginal benefit of more effective investment will eventually drop below the
unit cost of investment.

For the remainder of the paper, we will assume each Vi is admissible.

2.2 Nash Equilibrium of the Induced Game: Existence, Uniqueness
and Convergence

With the above utility (payoff) function Ui, a multi-player single-stage complete-
information game is naturally induced. We proceed with the standard solution
concept Nash equilibrium (NE), defined here below:

Definition 2. Given an instance of the game (N , E ,W, {Vi}i∈N , {ci}i∈N ), the
investment vector x∗ is a (pure-strategy) Nash equilibrium if, for every player i,
Ui(x∗

i ,x
∗
−i) ≥ Ui(xi,x∗

−i),∀xi ∈ [0,∞), where x∗
−i is the vector of all investments

but the one made by player i.

1 If x < 0, we set Vi(x) = −∞, representing the fact that negative effective investment
is unacceptable.
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The existence and uniqueness of a NE in the induced game on a linear influ-
ence network has been studied and characterized in depth by [11,12,14,16],
where the connection is made between a NE and a solution to an appropriate
Linear Complementarity Problem (LCP), the latter being an extensively studied
problem [17]. As such, different classes of matrices (i.e. assumptions made on the
network matrix W) have been shown to lead to either existence or uniqueness
(or both) of a NE.

As has been emphasized by the previous work [11,12,14], a particular class
of network matrices W that deserve special and well-motivated attention is the
class of strictly diagonally dominant matrices, defined next.

Definition 3. Let W ∈ RN×N be a square matrix.

1. W is a strictly diagonally row dominant matrix if for every row i:∑
j �=i |Wij | < |Wii|.

2. W is a strictly diagonally column dominant matrix if its transpose is strictly
diagonally row dominant.

A strictly diagonally dominant matrix is either a strictly diagonally row domi-
nant matrix or a strictly diagonally column dominant matrix.

The class of strictly diagonally dominant matrices play a central role in linear
influence networks because they are both easily interpretable and present. For
instance, a strictly diagonally row dominant matrix represents a network where
each player’s influence on his own is larger than all his neighbors combined
influence on him. A strictly diagonally column dominant matrix represents a
network where each player’s influence on his own is larger than his own influence
on all of his neighbors combined. It turns out, as stated in the following theorem,
a strictly diagonally dominant influence matrix ensures the existence of a unique
Nash equilibrium. We mention in passing that although there are other classes
of matrices that ensure the existence of a unique Nash equilibrium (such as the
class of positive definite matrices), they do not have direct interpretations and
do not easily correspond to practical scenarios of an linear influence network.

Theorem 1. Let (N , E ,W, {Vi}i∈N , {ci}i∈N ) be a given instance of the game.
If the network matrix W is strictly diagonally dominant, then the game admits
a unique Nash equilibrium.

Proof. See [12,16].

2.3 Convergence to NE: Best Response Dynamics

The existence and uniqueness results of NE play an important first step in iden-
tifying the equilibrium outcomes of the single-stage game on linear influence
networks. The next step is to study dynamics for reaching that equilibrium
(should a unique NE exist), a more important one from the engineering perspec-
tive. An important class of dynamics is that of best response dynamics, which
in addition to being simple and natural, enjoys the attractive feature of being
model-agnostic, to be described below. We first define the best response function.
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Definition 4. The best response function gi(x) for player i is defined as:
gi(x) = arg maxxi≥0 Ui(xi,x−i). The best response function for the network
is denoted by g(x) = (g1(x), g2(x), . . . , gN (x))

In the current setting, we can obtain an explicit form for the best response
function. Let bi represent the (single) positive value at which V ′

i (·) = ci, which is
always guaranteed to uniquely exist due to the assumption that Vi is admissible.
Then, it can be easily verified that:

g(x) = max(0, (I − W)x + b). (3)

With the above notation, we are now ready to state best response dynamics
(formally given in Algorithm1): it is simply a distributed update scheme where in
each iteration, every player chooses its investment in response to the investments
his neighbors have chosen in the previous iteration. Note that each player i, in
order to compute its best response investment for the current iteration, need not
know what his neighboring players’ investments were in the previous iteration.
Instead, it only needs to know the combined net investments (

∑
j �=i ψjixj) his

neighbors has induced to him. This combined net investments can be inferred
since player i knows how much he invested himself in the previous iteration and
observes the current payoff he receives. This constitutes perhaps the single most
attractive feature of best response dynamics in the context of linear influence
network games: the model-agnostic property.

Algorithm 1. Best Response Dynamics
Given x(0) ≥ 0
t ← 0
for t = 1, 2, . . . do

Each player i: xi(t + 1) = gi(x(t))
end for

Writing the distributed update in Algorithm1 more compactly, we have:
x(t + 1) = g(x(t)) = max(0, (I − W)x(t) + b). It turns out that convergence for
x(t) is guaranteed when W is strictly diagonally dominant.

Theorem 2. If the network matrix W is strictly diagonally dominant, then the
best response dynamics in Algorithm1 converges to the unique NE.

Proof. See [12,16].

2.4 Motivation and Main Question of the Paper

The best response dynamics, for reasons mentioned before, have enjoyed pop-
ularity in prior work. However, the convergence property of the best response
dynamics rests on the crucial yet somewhat unrealistic assumption that the
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underlying network environment is fixed over time, i.e. W stays constant in
every time period. In practice, Wt encode the influence of players over its neigh-
bors and should be inherently dynamic and time-varying.

Here we lift this assumption by allowing Wt to be random and time-varying.
Consequently, using X(t) to denote the (random) investment vector at time t,
the best response dynamics should be re-written as:

X(t + 1) = max(0, (I − Wt)X(t) + b). (4)

Our principal goal in this paper is then to study the stochastic behavior
of the resulting power iterate {X(t)}∞

t=0 (which is now a stochastic process)
and to identify sufficient conditions under which stochastic stability is guaran-
teed. For simplicity, we assume that random network matrix Wt is iid. The iid
case, although simple, provides illuminating structural insights and can be easily
extended to the stationary and ergodic network environment environments case.

Observe that under iid assumption, the iterates {X(t)}∞
t=0 in the best

response dynamics form a Markov chain. Our principal focus in the next section
is to characterize conditions under which the Markov chain admits a unique sta-
tionary distribution with guaranteed convergence properties and/or convergence
rates. These results are of importance because they establish the stochastic sta-
bility (in a strong sense to be formalized later) of the best response dynamics in
the presence of random and time-varying network environments.

In addition, this stochastic process {X(t)}∞
t=0 can be generated in a variety of

ways, each corresponding to a different practical scenario. Section 3.2 makes such
investigations and presents two generative models and draw some interesting
conclusions.

3 Main Criteria for Stochastic Stability Under Random
Network Environment

In this section, we characterize the behavior of the best response dynamics under
stochastic (and time-varying) network environment and give the main criteria
for ensuring stochastic stability. Our focus here is to identify sufficient condi-
tions that are broad enough while at the same time interpretable and efficiently
verifiable.

Our assumption on the random network is rather mild: {Wt}∞
t=1 is drawn

iid according to some fixed distribution with bounded first moments from some
support set W ⊂ RN×N , where W can be either discrete or continuous. Alter-
natively, this means that each individual influence term Wij is absolutely inte-
grable: E[|Wij |] < ∞. It is understood that Wii = 1 for each W ∈ W since
one’s own influence on oneself should not fluctuate.
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3.1 Two Main Sufficient Conditions for Stochastic Stability

The state space for the Markov chain {X(t)}∞
t=1 will be denoted2 by X = RN

+ .
(X ,B(X )) is then the measurable space, where B(X ) is the Borel sigma algebra
on X , induced by some vector norm. Since all finite-dimensional norms are equiv-
alent (up to a constant factor), the specific choice of the norm shall not concern
as here since they all yield the same Borel sigma algebra3. The transition kernel
K(x,A) denotes the probability of transitioning in one iteration from x ∈ X
into the measurable set A ∈ B(X ). Kt(x,A) then denotes the t-step transition
probability. We use Kt(x, ·) to denote the probability measure (distribution) of
the random variable X(t) with the initial point at x.

Definition 5. Let ‖ · ‖ be any vector norm on Rn, A be a square matrix on
Rn×n, w be a strictly positive weight vector in Rn and v be a generic vector in
Rn.

1. The induced matrix norm ‖ · ‖ is defined by ‖A‖ = max‖x‖=1 ‖Ax‖.
2. The weighted l∞ norm with weight w is defined by ‖v‖w

∞ = maxi | vi

wi
|.

3. The weighted l1 norm with weight w is defined by ‖v‖w
1 =

∑n
i=1 | vi

wi
|.

Since we are using the same notation to denote both the vector norm and
the corresponding induced matrix norm, the context shall make it clear which
norm is under discussion. In the common special case where w is the all-one
vector, the corresponding induced matrix norms will be denoted conventionally
by ‖ · ‖1, ‖ · ‖∞. The following proposition gives known results about the induced
matrix norms ‖ · ‖w

1 , ‖ · ‖w
∞. See [18].

We are now ready to state, in the following theorem, our main sufficient
conditions for the bounded random network environment case. The proof4 is
omitted here due to space limitation.

Theorem 3. Let W be the random network matrix with bounded support from
which Wt is drawn iid. Assume that either one of the following two conditions
is satisfied:

1. There exists a strictly positive weight vector w such that E[log ‖I−W‖w
∞] < 0;

2. There exists a strictly positive weight vector w such that E[log ‖I−W‖w
1 ] < 0.

Then:

1. The Markov chain {X(t)}∞
t=0 admits a unique stationary distribution π(·).

2 Note that here we do not impose any bounds on the maximum possible investment by
any player. If one makes such an assumption, then X will be some compact subset of
RN

+ . All the results discussed in this section will still go through. For space limitation,
we will not discuss the bounded investment case. Further, note that the unbounded
investment case (i.e. without placing any exogenous bound on investments made by
any player) which we focus on here is the hardest case.

3 As we shall soon see, the two norms we will be using are weighted l1 norm and
weighted l∞ norm.

4 The proof utilizes the powerful framework presented in [19,20].
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2. The Markov chain converges to the unique stationary distribution
in Prokhorov metric irrespective of the starting point: ∀X(0) ∈
X , dρ(Kt(X(0), ·), π(·)) → 0 as t → ∞, where dρ(·, ·) is the Prokhorov metric5

induced by the Euclidean metric ρ.
3. The convergence has a uniform exponential rate: There exists an r (indepen-

dent of X(0)), with 0 < r < 1, such that ∀x ∈ X , there exists a constant
CX(0) > 0 such that dρ(Kt(X(0), ·), π(·)) ≤ CX(0)r

t,∀t.

Remark 2. First, note that E[log ‖I − W‖w
∞] < 0 is a weaker condition than

E[‖I − W‖w
∞] < 1, since by Jensen’s inequality, E[‖I − W‖w

∞] < 1 implies
E[log ‖I − W‖w

∞] < 0. Similarly, E[log ‖I − W‖w
1 ] < 0 is a weaker condition

than E[‖I − W‖w
1 ] < 1.

Second, it follows from basic matrix theory that any square matrix satisfies
‖A‖w

1 = ‖AT‖ 1
w∞. Consequently, the second sufficient condition can also be cast

in the first by taking the transpose and inverting the weight vector: There exists
a strictly positive weight vector w such that E[log ‖I − W‖w

1 ] < 0 if and only if
there exists a strictly positive weight vector w̃ such that E[log ‖(I−W)T‖w̃

∞] < 0.
Third, for a deterministic matrix A, one can efficiently compute its induced

weighted l1 and weighted l∞ norms. Further, for a fixed positive weight vector w
and a fixed distribution on W, one can also efficiently verify whether E[log ‖I −
W‖w

∞] < 0 holds or not (similar for E[log ‖I−W‖w
1 ] < 0). The most common and

natural weight vector is the all-ones vector in the context of strictly diagonally
dominant matrices. This point is made clear by the discussion in Sect. 3.1, which
also sheds light on the motivation for the particular choices of the induced norms
in the sufficient conditions.

3.2 A Generative Model: Discrete-Support Random Network
Environment

Here we proceed one step further and give an interesting and practical generative
model for the underlying random network for which there is a direct interpreta-
tion. In this generative model, we assume that each influence term Wij (i 
= j)
comes from a discrete set of possibilities. This is then equivalent to the network
matrix Wt being drawn from a discrete support set W = {W 1,W 2, . . . }. This
generative model of randomness has the intuitive interpretation that one player’s
influence on another can be one of the possibly many different values, where it
can be positive at one time and negative at another time.

In the special case that each W i in W is either strictly diagonally row dom-
inant or strictly diagonally column dominant, then stochastic stability is guar-
anteed, as given by the following statement.

5 Thi is the well-known metric that is commonly used to characterize the distance
between two probability measures [21]. Further, if (Ω, ρ) is a separable metric space,
as is the case in our application, then convergence in Prokhorov metric implies weak
convergence [21].
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Corollary 1. Let the support W be a set of strictly diagonally row dominant
matrices. Then for any probability distribution on W from which Wt is sampled,
the Markov chain {X(t)}∞

t=0 given by the best response dynamics satisfies the
following:

1. The Markov chain {X(t)}∞
t=0 admits a unique stationary distribution π(·).

2. The Markov chain converges to the unique stationary distribution
in Prokhorov metric irrespective of the starting point: ∀X(0) ∈
X , dρ(Kt(X(0), ·), π(·)) → 0 as t → ∞, where dρ(·, ·) is the Prokhorov metric
induced by the Euclidean metric ρ.

3. The convergence has a uniform exponential rate: There exists an r (indepen-
dent of X(0)), with 0 < r < 1, such that ∀x ∈ X , there exists a constant
CX(0) > 0 such that dρ(Kt(X(0), ·), π(·)) ≤ CX(0)r

t,∀t.

The same conclusions hold if W is a set of strictly diagonally column dominant
matrices.

Proof. Take the weight vector w = 1. Then since each W l ∈ W is strictly
diagonally row dominant, it follows that for each i,

∑
j �=i |W l

ij | < 1. Let i∗l be
the row that maximizes the row sum for W l: i∗l = arg maxi

∑
j �=i |W l

ij |, then for
every l,

∑
j �=i∗

l
|W l

ij | < 1.
Let P (l) be the probability that W = W l. Then, we have

E[‖I − W‖w
∞] =

∑

l

P (l)max
i

∑

j �=i

|W l
ij | =

∑

l

P (l)
∑

j �=i∗
l

|W l
ij | < 1.

Consequently, by Jensen’s inequality, E[log ‖I−W‖w
∞] < 0. Theorem 3 implies

the results.
The strictly diagonally column dominant case can be similarly established

using the weighted l1 norm.

It is important to mention that even if W does not solely consist of strictly
diagonally row dominant matrices, the stochastic stability results as given in
Corollary 1 may still be satisfied. As a simple example, consider the case where

W only contains two matrices W 1,W 2, where: W 1 =
[

1 2
2 1

]

, W 2 =
[

1 0.45
0.45 1

]

,

with the former and latter probabilities 0.5, 0.5 respectively. Then one can easily
verify that E[log ‖I − W‖∞] = −0.053 < 0. Consequently, Theorem 3 ensures
that all results still hold. Note that in this case, E[‖I − W‖∞] = 1.225 > 1.
Therefore, it is not a contraction on average.

So far, we have picked the particular all-ones weight vector w = 1 primarily
because it yields the maximum intuition and matches with the strictly diagonally
dominant matrices context. It should be evident that by allowing for an arbitrary
positive weight vector w, we have expanded the applicability of the sufficient
conditions given in the previous section, since in certain cases, a different weight
vector may need to be selected.
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4 Conclusions and Future Work

In addition to the conjecture we mentioned at the end of the previous section, we
mention in closing that although there are different classes of network matrices
that achieve existence and/or uniqueness of NE, it is not well-studied whether
the best response dynamics will converge to a NE in other classes of network
matrices (even if that class of network matrices guarantee the existence and
uniqueness of a NE). For instance, best response dynamics may not converge
when W is positive definite, although a unique NE is guaranteed to exist in that
case. Expanding on such convergence results can be interesting and worthwhile
and also shed additional light to the stochastic stability type of results.
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