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Abstract. We introduce a game-theoretic framework to compute opti-
mal and strategic security investments by multiple defenders. Each
defender is responsible for the security of multiple assets, with the inter-
dependencies between the assets captured by an interdependency graph.
We formulate the problem of computing the optimal defense allocation
by a single defender as a convex optimization problem, and establish
the existence of a pure Nash equilibrium of the game between multi-
ple defenders. We apply our proposed framework in two case studies
on interdependent SCADA networks and distributed energy resources,
respectively. In particular, we investigate the efficiency loss due to decen-
tralized defense allocations.

1 Introduction

Modern critical infrastructures have a large number of interdependent assets,
operated by multiple stakeholders each working independently to maximize
their own economic benefits. In these cyber-physical systems, interdependencies
between the assets owned by different stakeholders have significant implications
on the reliability and security of the overall system. For instance, in the elec-
tric grid, industrial control systems at the power generator are managed by a
different entity (the generator) than the smart meters deployed by the distribu-
tion utility companies. If certain components of these assets are from a common
vendor, then a sophisticated attacker can exploit potential shared vulnerabilities
and compromise the assets managed by these different entities [21].

Security interdependencies are often modeled in varying degrees of abstrac-
tions. While the attack graph formalism [7] captures detailed models of how an
attacker might exploit vulnerabilities within an enterprise network, representa-
tions of interdependencies in large-scale cyber-physical networks, such as the
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electric grid, are often captured in terms of coupled dynamical systems [12]. In
addition to the interdependencies, individual stakeholders are often myopic and
resource constrained, which makes identification and mitigation of vulnerabili-
ties in a large number of cyber and physical assets prohibitively expensive. Fur-
thermore, decentralized deployment of defense strategies by these self-interested
defenders often leads to increased security risks for the entire system.

In this paper we present a systematic framework that can be used to effi-
ciently compute optimal defense allocations under interdependencies. We model
the network security problem as a game between multiple defenders, each of
whom manages a set of assets. The interdependencies between these assets
are captured by an interdependency graph. Each defender minimizes her own
expected loss, where the attack probabilities of her assets are a function of her
own defense strategies, strategies of other defenders, and the interdependency
graph. In particular, attacker(s) are assumed to exploit the interdependencies to
target valuable assets in the network. We first establish the existence of a pure
Nash equilibrium in the game between self-interested defenders. For a general
class of defense strategies, we show that the problem of computing an optimal
defense allocation for a defender (i.e., her best response) is equivalent to solving
a convex optimization problem.

We evaluate the inefficiency of decentralized decision-making in two case
studies; the first is a SCADA system with multiple control networks managed
by independent entities, and the second is a distributed energy resource failure
scenario identified by the US National Electric Sector Cybersecurity Organi-
zation Resource (NESCOR). In both settings, we find that when entities have
similar risks but disparate budgets, the total expected loss at a Nash equilib-
rium can be much larger than the total expected loss under the socially optimal
solution. Furthermore, we show that it can be in the interest of a selfish actor
to defend assets that belong to another entity due to mutual interdependencies.

1.1 Related Work

Security games on networks with multiple defenders have recently been consid-
ered within the broad framework of Stackelberg security games [9,22]. A Stack-
elberg security game is defined as an extensive form leader-follower game where
a defender randomizes her defense allocations across multiple targets and an
attacker observes the randomized strategies and chooses the target with highest
successful attack probability. Several papers have considered multiple defend-
ers and network interdependencies within this framework [14–16]. A recurring
assumption in these papers is that the strategy space of a defender is discrete,
e.g., a node is either fully protected or is vulnerable. In contrast, we consider
defense strategies that are continuous variables. In addition, our work is related
to recent explorations of attack graph games [3], though the defense strategies
considered in that paper are very different from the ones explored here.

Our work is also related to the substantial body of literature on interdepen-
dent security games; [13] contains a comprehensive review. A common feature
in this line of work is that each node is an independent decision maker, i.e.,



Optimal and Game-Theoretic Deployment of Security Investments 103

a player is responsible for the defense of a single node in the graph. We relax
this assumption in this paper. In our formulation, a player is responsible for the
defense of multiple assets (nodes) in the (interdependency) graph.

Our game-theoretic formulation and analysis borrows ideas and techniques
from the literature on network interdiction games [8]. In the classical shortest
path interdiction game [8], there is an underlying network; an attacker aims to
find a path of shortest length from a given source to a target, while the defender
can interdict the attack by increasing the lengths of the paths. Extensions to
cases where multiple attackers and/or defenders operate on a given network are
few, with the exception of our recent work [19]. The model we propose in this
paper generalizes the formulation in [19] as we consider defenders who defend
multiple nodes and with possibly nonlinear cost functions. Finally, our paper has
a similar perspective as [5] as we develop a systems-theoretic framework that is
readily applicable in a broad class of interdependent network security settings.

2 Security Game Framework

Interdependency Graph: We represent the assets in a networked (cyber-
physical) system as nodes of a directed graph G = {V, E}, i.e., each node vi ∈ V
represents an asset. The presence of a directed edge (vj , vi) ∈ E indicates that
when the asset vj is compromised, it can be used to launch an attack on asset vi.
This attack succeeds with a probability pj,i ∈ (0, 1], independent of analogous
attack probabilities defined on the other edges. Without loss of generality, let s
be the source node from which an attacker launches the attack from outside the
network.1 We refer to such a graph as an interdependency graph.2

For an asset vi ∈ V, let Pi be the set of directed paths from the source s to vi
on the graph; a path P ∈ Pi is a collection of edges {(s, u1), (u1, u2), . . . , (uk, vi)}.
The probability that vi is compromised due to an attacker exploiting a given
path P ∈ Pi is

∏

(um,un)∈P

pm,n which is the product of probabilities (due to our

independence assumption) on the edges that belong to the path P .

Strategic Defenders: Let D be the set of defenders. A defender Dk ∈ D
is responsible for the security of a set Vk ⊆ V \ {s} of assets. For each asset
vm ∈ Vk, there is a financial loss Lm ∈ R≥0 that defender Dk incurs if vm
gets compromised. The defender can allocate its resources to reduce the attack
probabilities on the edges interconnecting different assets on the interdependency
graph, subject to certain constraints. We denote the feasible (defense) strategy
set of defender Dk as Xk ⊂ R

nk

≥0, where nk < ∞. We require that Xk is non-
empty, compact and convex. The defense resources reduce the attack success
probabilities on the edges. We will discuss the exact transformation of defense
allocation into the reduction of attack probabilities in the next subsection.
1 If there are multiple entry points to the network, we can add a source node s and

add edges from s to all entry points with attack probabilities equal to 1.
2 Interdependency graphs also capture essential features of attack graphs [3,7] where

the nodes represent intermediate steps in multi-stage attacks.
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Now, let x = [x1,x2, . . . ,x|D|] be a joint defense strategy of the defenders,
with xk ∈ Xk for every defender Dk. The attack success probability of an edge
(vj , vi) under this joint defense strategy is denoted as p̂j,i(x). The goal of each
defender Dk is to minimize the cost function given by

Ck(x) �
∑

vm∈Vk

Lm

⎛

⎝ max
P∈Pm

∏

(vj ,vi)∈P

p̂j,i(x)

⎞

⎠ , (1)

subject to xk ∈ Xk. In other words, a defender minimizes her expected loss,
where the probability of loss of an asset is given by the highest probability of
attack on any path from the source to that asset on the interdependency graph.

Strategic Attacker(s): Cyber-physical systems in the field face multiple strate-
gic adversaries with different objectives, capabilities and knowledge about the
system. As a result, detailed modeling of strategic attackers is challenging.
Nonetheless, a defender must be able to assess her security risks and allocate
defense resources under inadequate information about the attackers. This moti-
vates our choice of minimizing the worst case attack probabilities on an asset
in (1), which implicitly captures strategic attackers who aim to compromise
valuable assets and choose a plan of attack that has the highest probability of
success for each asset. The defender can assess her risk profile against attackers
of different capabilities by appropriately varying the probabilities on each edge.

As an example of a setting that can be modeled within our framework, con-
sider the SCADA based control system shown in Fig. 1. There are two control
subsystems, with interdependencies due to a shared corporate network and a
common vendor for the remote terminal units (RTUs). Figure 2 shows the result-
ing interdependency graph. We further discuss this setting in Sect. 3.

Fig. 1. A SCADA system diagram of two interacting control systems.
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Fig. 2. Interdependency graph for the SCADA system in Fig. 1.
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2.1 Defense Strategies

As noted above, the defense resources reduce the attack probabilities on the
edges of the interdependency graph. Accordingly, we introduce a transformation
matrix Tk : Rnk → R

|E| which maps a feasible defense strategy xk to a defense
allocation on edges. By appropriately defining the matrix Tk, we can capture
very general class of defense strategies. We discuss two such examples.

Edge-based defense strategy: In this case, a defender Dk allocates defense
resources on a subset of edges Ek ⊆ E of the graph G, and accordingly nk = |Ek|.
For example, Ek can represent all the edges that are incoming to a node in
Vk, i.e., defender Dk can reduce the attack probabilities of all the edges that are
incoming to the nodes under its ownership. Furthermore, an edge can potentially
be managed by multiple defenders. Under edge-based defense scenarios, we will
define the feasible strategy space of a defender Dk as Xk := {xk

j,i ∈ R≥0, (vj , vi) ∈
Ek|

∑
(vj ,vi)∈Ek

xk
j,i ≤ Bk}, where Bk is the total defense budget for defender Dk.

In this case, Tk has a sub-matrix which is an identity matrix of dimension |Ek|
and the other entities are equal to 0. An example of edge-based defense is when
a device inspects the incoming traffic depending on the traffic source.

Node-based defense strategy: In this case, a defender Dk allocates defense
resources to the set of nodes in Vk, and accordingly, nk = |Vk|. Specifically,
the defense resource xk

i being allocated to node vi implies that all the incoming
edges to vi in the graph G have a defense allocation xk

i , i.e., xk
j,i = xk

i for
every (vj , vi) ∈ E . Node-based defense strategy is motivated by moving target
defense techniques [10]. Here xi potentially represents the rate at which system
configurations (such as the IP-address) of a node vi are being updated. Here Tk

maps the allocation on a node into the edges that are incoming to it.
We now define the length or distance of an edge (vj , vi) in terms of the attack

probability as,
lj,i � − log(pj,i) ≥ 0. (2)

A higher probability of attack on an edge leads to smaller length for the edge.
In this paper, we assume that the defense allocations on an edge linearly

increase the length of the edge. Mathematically, let xj,i =
∑

(vj ,vi)∈Ek
xk
j,i =

∑
Dk∈D[Tkxk](j,i) denote the total defense allocation by all the defenders on the

edge (vj , vi). Then, the modified length of the edge under a joint strategy profile
x is given by

l̂j,i(x) � lj,i + xj,i =⇒ − log(p̂j,i(x)) = lj,i + xj,i (3)

=⇒ p̂j,i(x) � pj,ie
−xj,i , (4)

i.e., the total defense allocation on an edge xj,i leads to a relative reduction
of the corresponding attack success probability given by e−xj,i . This captures
diminishing effectiveness of defense allocations and leads to a tractable formu-
lation of the cost minimization problem (1). We denote the vector of modified
lengths of the graph under joint defense strategy x as L̂(x) = L+

∑
Dk∈D Tkxk,

where L is the vector of lengths in the absence of any defense allocation, given
by (2).
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2.2 Existence of a Pure Nash Equilibrium (PNE)

We first show the existence of a PNE in the game between multiple defenders,
each with a defender-specific transformation matrix Tk.

Proposition 1. The strategic game with multiple defenders where a defender
minimizes her cost defined in (1) possesses a pure Nash equilibrium.

Proof. From our transformation of attack probabilities into lengths on edges
given in (3) and (4), the probability of successful attack on a node vm ∈ Vk due
to a path P ∈ Pm and joint defense strategy x is equal to

∏

(uj ,ui)∈P

p̂j,i(x) = exp

⎛

⎝−
∑

(vj ,vi)∈P

[

lj,i +
∑

Dr∈D
[Trxr](j,i)

]⎞

⎠ ,

where exp(·) is the exponential function, i.e., exp(z) = ez. Accordingly, we can
express the cost function of a defender Dk, defined in (1), as a function of her
strategy xk and the joint strategy of other defenders x−k as

Ck(xk,x−k) =
∑

vm∈Vk

Lmexp

⎛

⎝− min
P∈Pm

∑

(vj ,vi)∈P

[
l̂j,i(x−k) + [Tkxk](j,i)

]
⎞

⎠ , (5)

where l̂j,i(x−k) = lj,i +
∑

Dr∈D,Dr �=Dk
[Trxr](j,i) for an edge (vj , vi).

Note that
∑

(vj ,vi)∈P

[
l̂j,i(x−k) + [Tkxk](j,i)

]
is an affine and, therefore, a

concave function of xk. The minimum of a finite number of concave functions is
concave [1]. Finally, exp(−z) is a convex and decreasing function of z. Since the
composition of a convex decreasing function and a concave function is convex,
Ck(xk,x−k) is convex in xk for any given x−k. Furthermore, the feasible strategy
set Xk is non-empty, compact and convex for every defender Dk. As a result, the
game is an instance of a concave game and has a PNE [18]. 
�

2.3 Computing the Best Response of a Defender

Let x−k be the joint defense strategy of all defenders other than Dk. Then the
best response of Dk is a strategy x∗

k ∈ Xk which minimizes her cost Ck(xk,x−k)
defined in (1). Let L̂(x−k) = L+

∑
Dr∈D,r �=k Trxr be the vector of edge lengths

under defense allocation x−k. We show that x∗
k can be computed by solving the

following convex optimization problem:

minimize
y∈R|V|,xk∈R

nk

∑

vm∈Vk

Lme−ym (6)

subject to Iy − Tkxk ≤ L̂(x−k), (7)
ys = 0, (8)
xk ∈ Xk, (9)
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where I is the node-edge incidence matrix of the graph G. Note that the con-
straint in (7) is affine. This formulation is motivated by similar ideas explored
in the shortest path interdiction games literature [8,19].

We refer to the vector {yu}u∈V as a feasible potential if it satisfies (7) for
every edge in the graph. In graphs without a negative cycle, the well known
Bellman-Ford algorithm for shortest paths corrects the inequality in (7) for an
edge in every iteration and terminates with a feasible potential [2]. In our setting,
the length of every edge is nonnegative. We now prove the following result.

Proposition 2. A defense strategy x∗
k ∈ Xk is the optimal solution of the prob-

lem defined in Eqs. (6)–(9) if and only if it is the minimizer of Ck(xk,x−k)
defined in (1).

Proof. Consider a feasible defense allocation vector xk ∈ Xk. The joint strategy
profile (xk,x−k) defines a modified length vector L̂(xk,x−k) = L̂(x−k) + Tkxk

on the edges of G. Now consider a feasible potential {yu}u∈V which satisfies (7).
A feasible potential exists, since the vector yu = 0 for every u ∈ V satisfies (7).

Now consider a P from s to a node vm ∈ Vk. Then, the feasible potential
at node vm satisfies yvm

− ys = yvm
≤ ∑

(uj ,ui)∈P l̂j,i(xk,x−k). In other words,
yvm

is a lower bound on the length of every path (and consequently the shortest
path) from s to vm. Furthermore, in the absence of negative cycles, there always
exists a feasible potential where yvm

is equal to the length of the shortest path
from s to vm [2, Theorem 2.14] (the solution of the Bellman-Ford algorithm).

Now let {x∗
k, {y∗

u}u∈V} be the optimal solution of the problem defined in Eqs.
(6)–(9) for a given x∗

−k. The length of every edge (uj , ui) at the optimal defense
allocation x∗

k is given by l̂j,i(x∗
k,x−k). We claim that y∗

vm
is equal to the length

of the shortest path from s to vm for every vm with Lm > 0. Assume on the
contrary that y∗

vm
is strictly less than the length of the shortest path from s to

vm, under the defense allocation x∗
k. From [2, Theorem 2.14] we know that there

exists a feasible potential {ŷu}u∈V such that ŷvm
is equal to the length of the

shortest path from s to vm for every node vm ∈ Vk with length of every edge
(uj , ui) given by l̂j,i(x∗

k,x−k). As a result, we have y∗
vm

< ŷvm
, and the objective

is strictly smaller at ŷvm
, contradicting the optimality of {x∗, {y∗

u}u∈V}.
Let P be a path from s to vm in the optimal solution, and let P ∗ be a path

of shortest length. The length of this path is given by

y∗
vm

≤
∑

(uj ,ui)∈P

l̂j,i(x∗
k,x−k) = −

∑

(uj ,ui)∈P

log(p̂j,i(x∗))

=⇒ e−y∗
vm ≥

∏

(uj ,ui)∈P

p̂j,i(x∗),

with equality for the path P ∗. Therefore the optimal cost of the problem defined
in Eqs. (6)–(9) is equal to the cost in (1). 
�

As a result, a defender can efficiently (up to any desired accuracy) compute
her optimal defense allocation given the strategies of other defenders. Further-
more, the problem of social cost minimization, where a central planner minimizes
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the sum of expected losses of all defenders, can be represented in a form that is
analogous to Eqs. (6)–(9) and can be solved efficiently.

However, proving theoretical guarantees on the convergence of best response-
based update schemes is challenging for the following reasons. First, the expected
loss of a defender represented in (5) is non-differentiable and we cannot apply
gradient-based update schemes. Second, in the equivalent formulation Eqs. (6)–
(9), the players’ cost minimization problems are coupled through their con-
straints. As a result, the problem belongs to the class of generalized Nash equi-
librium problems [4], which has very few general convergence results. We leave
further theoretical investigations of convergence of different dynamics to PNE
for future work.

3 Numerical Case Studies

We apply our proposed framework in two case studies. Our goal is to understand
the loss of welfare due to decentralized decision making by the defenders with
asymmetric defense budgets compared to the socially optimal defense allocation.
The social optimum corresponds to the solution computed by a central author-
ity as it minimizes the total expected loss of all the players. The ratio of the
highest total expected loss at any PNE and the total expected loss at the social
optimum is often used as a metric (Price of Anarchy) to quantify the inefficiency
of Nash equilibrium. We consider PNE strategy profiles obtained by iteratively
computing best responses of the players; the sequence of best response strategies
converged to a PNE in all of the experiments in this section. We use the MAT-
LAB tool CVX [6] for computing the best response of a defender and the social
optimum. In both the experiments, we randomly initialize the attack success
probabilities on the edges of the respective interdependency graphs.

3.1 An Interdependent SCADA Network with Two Utilities

We first consider the SCADA network shown in Fig. 1, based on NIST’s guide-
lines for industrial control systems [20]. As discussed earlier, there are two control
subsystems with interdependencies due to a shared corporate network and ven-
dors for RTUs. Each subsystem is owned by a different defender. The resulting
interdependency graph is shown in Fig. 2. The number in the name of a node
indicates the defender who owns it and the amount of loss to its owner, if it
is compromised. The corporate network is owned by both defenders. The com-
promise of the control network causes loss of the RTUs, and as a result, the
corresponding edges have an attack success probability 1 and are indefensible.

In our experiments, we keep the total defense budget fixed for the overall
system, and compare the resulting total expected loss (under this total bud-
get) at the social optimum with the expected loss that arises at a PNE when
each subsystem is defended independently. We consider an edge-based defense
strategy for all our results. In the decentralized defense case, we consider two
scenarios. First, the defenders can only defend edges that are incoming to a node



Optimal and Game-Theoretic Deployment of Security Investments 109

under their ownership. We refer to this scenario as individual defense. Second,
the defenders can jointly defend all the edges in the interdependency network,
i.e., a defender can defend an edge within the subsystem of the other defender.

We plot our results in Fig. 3a for a SCADA network where each utility has 3
RTUs. The total budget is 20, and we vary the budget of defender 1 as shown in
the x-axis of the plot. Defender 2 receives the remaining amount (20 minus the
budget of defender 1). We observe that the joint defense case leads to a smaller
total expected loss compared to the individual defense case at the respective
PNEs. The difference between the two cases is most significant when the bud-
gets of the two defenders are largely asymmetric. Our results show that it is
beneficial for a selfish decision maker with a large budget to defend parts of the
network owned by another defender with a smaller budget in presence of inter-
dependencies. As the asymmetry in budgets decreases, the expected losses under
joint defense and the individual defense approach the social optimum. This is
because the network considered is symmetric for the defenders. In Fig. 3b, we
plot analogous results when each utility has 30 RTUs with a total budget 40,
and observe similar trends in the respective expected losses.

Budget of Player 1
0 2 4 6 8 10

E
xp

ec
te

d 
Lo

ss

0

5

10

15

20

25

30

35

Social Optimum
Joint Defense
Individual Defense

(a) 3 RTUs per subsystem

Budget of Player 1
0 5 10 15 20

E
xp

ec
te

d 
Lo

ss

15

20

25

30

35

40

45

Social Optimum
Joint Defense
Individual Defense

(b) 30 RTUs per subsystem

Fig. 3. Comparison of total expected loss under the social optimal defense allocation
with the PNE strategies under joint and individual defense scenarios. The total budgets
across both defenders are 20 and 40, respectively.

3.2 Evaluation of a Distributed Energy Resource Failure Scenario

In our second case study, we consider a distributed energy resource failure sce-
nario, DER.1, identified by the US National Electric Sector Cybersecurity Orga-
nization Resource (NESCOR) [17]. We build upon the recent work by [11], where
the authors developed a tool CyberSAGE, which represents NESCOR failure sce-
narios as a security argument graph to identify the interdependencies between
different attack steps. We reproduce the security argument graph for the DER.1
scenario in Fig. 4. The authors of [11] note that applying all mitigations for the
DER.1 failure scenario can be expensive. Our framework enables computing the
optimal (and PNE) defense strategy under budget constraints.
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Note that the nature of interdependency in Fig. 4 is qualitatively different
from the setting in the previous subsection. In Fig. 4, the nodes in the interde-
pendency graph capture individual attack steps (similar to the representation in
attack graphs). In contrast, the nodes in Fig. 2 correspond to disparate devices in
the SCADA network. Furthermore, multiple attack steps can occur within a sin-
gle device; all the intermediate nodes that belong to a common device are shown
to be within a box in Fig. 4. For example, nodes w3, w4, w5, w6, w7 belong to the
Human-Machine Interface (HMI) of the photovoltaic (PV) system. The node S
represents the entry point of an attack, the nodes G0 and G1 represent the final
target nodes that compromise the PV and electric vehicle (EV) components of
the DER. A more detailed description is available in [11].

S

w9 w7

w8

w6 w5 w4 w3 w2 w1 G0

G

w18 w16

w17

w15 w14 w13 w12 w11 w10 G1

Fig. 4. Interdependency Graph of NESCOR DER.1 failure scenario [11]

We treat the security argument graph (Fig. 4) as the interdependency graph,
and compute the globally optimal and Nash equilibrium strategies for two classes
of defense strategies, (i) edge-based defense, where a player defends every edge
independently, and (ii) device-based defense (such as IP-address randomization),
where each device receives a defense allocation. In the second case, all the incom-
ing edges to the nodes that belong to a specific device receive identical defense
allocations. In the decentralized case, there are two players, who aim to protect
nodes G0 and G1, respectively. In addition, each player experiences an additional
loss if the other player is attacked successfully. This is captured by adding the
extra node G which has edges from both G0 and G1 with attack probabilities
equal to 1. Both players experience a loss if node G is compromised.

We plot the ratio of total expected losses under the socially optimal and
PNE strategy profiles, for both edge-based and device-based defense strategies,
in Figs. 5a and b, respectively. As the figures show, at a given total budget,
the ratio of the expected losses at the social optimum and at a PNE is smaller
when there is a larger asymmetry in the budgets of the individual players. In
other words, when the individual players have similar defense budgets, the total
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Fig. 5. The ratio of total expected losses of both defenders at the social optimum and
a PNE in the DER.1 failure scenario under two different defense strategies. The total
budget is divided among the two defenders, and defender 1 receives a percentage of the
total budget as indicated in the legend.

expected loss at Nash equilibrium is not much larger than the expected loss
under a globally optimal defense strategy.

4 Discussion and Conclusion

We presented a game-theoretic framework that enables systematic analysis of
security trade-offs in interdependent networked systems. For a general class of
defense strategies, the computation of optimal defense allocation for a defender
is equivalent to solving a convex minimization problem. We also proved the
existence of a pure Nash equilibrium for the game between multiple defenders.
The SCADA network and DER.1 case studies illustrate how our framework can
be used to study the security of interdependent systems at different levels of
abstraction, from individual attack steps in the DER.1 scenario to an entire
organization (vendor in the SCADA example) being abstracted to a single node.
Our framework can be readily applied in practice by individual stakeholders to
evaluate the effectiveness of different defense strategies and share information
with other defenders to decide when and to what degree cooperative defense
should be applied. The different levels of abstractions enable the creation of
models with the available information a defender has. For example, the SCADA
use case could be used to identify the degree to which the compromise of the
vendor will affect the security of a system. This could translate into adding secu-
rity requirements in procurement contracts with the vendors. In future, we will
apply our framework in large-scale cyber-physical systems. Establishing conver-
gence guarantees for best response dynamics and theoretical characterizations
of inefficiencies at Nash equilibria remain as challenging open questions.
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