
Strategies for Voter-Initiated Election Audits

Chris Culnane(B) and Vanessa Teague

Department of Computing and Information Systems,
Melbourne School of Engineering, University of Melbourne,

Parkville, VIC 3010, Australia
{christopher.culnane,vjteague}@unimelb.edu.au

Abstract. Many verifiable electronic voting systems are dependent on
voter-initiated auditing. This auditing allows the voter to check the con-
struction of their cryptographic ballot, and is essential in both gaining
assurance in the honesty of the constructing device, and ensuring the
integrity of the election as a whole. A popular audit approach is the
Benaloh Challenge [5], which involves first constructing the complete
ballot, before asking the voter whether they wish to cast or audit it.

In this paper we model the Benaloh Challenge as an inspection game,
and evaluate various voter strategies for deciding whether to cast or
audit their ballot. We shall show that the natural strategies for voter-
initiated auditing do not form Nash equilibria, assuming a payoff matrix
that describes remote voting. This prevents authorities from providing
voters with a sensible auditing strategy. We will also show that when
the constructing device has prior knowledge of how a voter might vote,
it critically undermines the effectiveness of the auditing. This is partic-
ularly relevant to internet voting systems, some of which also rely on
Benaloh Challenges for their auditing step.

A parallel version, in which the voter constructs multiple ballots and
then chooses which one to vote with, can form Nash equilibria. It still
relies on some uncertainty about which one the voter will choose.

1 Introduction

Verifiable electronic voting systems aim to provide strong integrity guarantees
and protection from tampering. In order to deliver this, they provide a number
of verifiability properties, namely, cast-as-intended and counted-as-cast. Cast-
as-intended means that the cast ballot accurately reflects the intentions of the
voter, it is verifiable if the voter has the opportunity to gain assurance that the
vote was cast in keeping with their intentions. Counted-as-cast means that the
cast ballots are correctly counted.

In this paper we are only interested in the first of these properties, cast-as-
intended. A popular technique for providing cast-as-intended verifiability is to

C. Culnane—Partially funded by Australian Research Council Discovery project
DP140101119 ‘More information for better utility; less information for better pri-
vacy’.

c© Springer International Publishing AG 2016
Q. Zhu et al. (Eds.): GameSec 2016, LNCS 9996, pp. 235–247, 2016.
DOI: 10.1007/978-3-319-47413-7 14



236 C. Culnane and V. Teague

provide an auditing step of ballots. Such a step aims to assure the voter that
ballot is correctly constructed, and will therefore accurately reflect their vote.
The exact methodology of the audit is dependent on the system, but broadly falls
into two categories, cut-and-choose [2] and the Benaloh Challenge [5]. The cut-
and-choose approach is applicable to systems that pre-construct ballot papers.
Such systems allow a voter to choose whether to audit or vote with the ballot
they are given. If they choose to audit, the ballot is opened and the voter may
check the construction of any cryptographic values. However, once a ballot has
been audited it cannot be used for voting, since this would break the privacy of
the voter and the secrecy of the ballot. Provided a sufficient number of audits
are performed, and assuming none fail and that the constructing device did
not know whether a particular ballot would be audited, there is a very high
probability that the ballots were honestly constructed. Crucially, the audit takes
place prior to the voter expressing any preferences. Such an approach is used in
Prêt à Voter [13] and Scantegrity [8].

The Benaloh Challenge is similar, except it is used in systems where ballots
are not pre-constructed. In such systems, a voter first enters their preferences
and constructs their encrypted ballot on a voting device, they are then given the
choice of whether they wish to vote or audit the constructed ballot. If they choose
to audit it, the ballot is opened, allowing the voter to check the cryptographic
construction of the ballot. Crucially, the audit takes place after the voter has
expressed their preferences. Like the cut-and-choose approach, once a ballot has
been opened it cannot be used for voting, and therefore the voter must construct
a new ballot to vote with. Such an approach is used in Helios [1], Wombat [4]
and Star-Vote [3]. Both approaches allow voters to repeat the audit step as many
times as they like—the protocol ends when the voter decides to cast their ballot.
As such, their final cast ballot will not be audited, and their assurance that it
has been cast-as-intended is based on having run a number of successful rounds
of auditing previously, or in the general case, that enough other people have run
successful rounds of auditing.

In this paper, we will evaluate Benaloh Challenges from a game theoretic
point of view using a game that describes the payoffs of a remote voting setting.
We analyze the effectiveness of various voter strategies when choosing whether
to cast or audit a constructed ballot, and the corresponding device strategies for
constructing a dishonest ballot. We will show that none of the natural strate-
gies for voter-initiated auditing, using Benaloh Challenges, form Nash equilibria.
This presents a particular problem for voting systems relying on such auditing,
since it precludes providing the voter with instructions on a sensible auditing
strategy. The provision of such advice, when it does not form a Nash equilib-
ria, can do more harm than good, creating a potential advantage for a cheating
device. This calls into question the validity of the cast-as-intended auditing in
verifiable remote electronic voting systems that utilise Benaloh Challenges. Mod-
elling an attendance voting setting, in which there is a higher penalty for device
misbehaviour, is important future work.



Strategies for Voter-Initiated Election Audits 237

A simple parallel variant, in which voters are instructed to make multiple
ciphertexts and then choose one to vote with, can form a Nash equilibrium.
However, this too needs careful analysis of the cheating machine’s ability to
guess which vote will be cast. The estimate must be correct or what seems to be
a Nash equilibrium might not be.

2 Voter-Initiated Auditing

We are primarily interested in voter-initiated auditing used in schemes that
construct encrypted ballots. As such, we shall focus on Benaloh Challenges [5],
which have been widely adopted as the auditing technique for such schemes.

2.1 Purpose of Auditing

Arguably the purpose of audits is not just to detect cheating, but to provide
an evidence trail after the fact to support an announced election outcome. For
example, Risk Limiting Audits [12] of a voter-verifiable paper trail provide a
statistical bound on the likelihood that an undetected error might have changed
the election outcome. We might hope to conduct a statistical assessment of the
transcript of a voter-initiated electronic auditing procedure, in order to produce
the same sort of guarantee. However, this work shows that such an assessment
would be very difficult to perform. In particular, a naive computation of the
probability of detection given the rate of auditing would give an incorrectly high
degree of confidence.

2.2 Origins of Benaloh Challenges

Benaloh Challenges were first introduced in [5], and later refined in [6]. Benaloh
Challenges are an auditing technique that can be used by voting systems that
construct encrypted ballots. They are commonly referred to as “cast-or-audit”,
on account of the technique involving first constructing an encrypted ballot, fol-
lowed by asking the voter whether they wish to cast or audit it. If the voter
chooses to cast the ballot it will be signed, or otherwise marked for voting, and
included in the tally. If the voter chooses to audit the ballot, the encryptions
are opened to allow the voter to verify that the ballot was correctly constructed
from their preferences. The Benaloh style of auditing has been widely adopted
in the verifiable voting field, in both theory and practice, including in Helios [1],
VoteBox [15], Wombat [4], and StarVote [3]. Of particular interest is Helios [1],
which is a web-based open-audit voting system, which has been used in bind-
ing elections, notably, the International Association for Cryptologic Research
(IACR) elections.



238 C. Culnane and V. Teague

2.3 Making Audit Data Public

Benaloh, in [6], makes no mention of whether the audit information is made
public. However, there is a discussion on providing assurance of integrity to a
wider population from a smaller random sample of audits. This would seem to
indicate the necessity that the auditing is made public, so as to enable that
wider population to inspect it. The original version of Helios [1] did not mention
the posting of audit data, however, in Helios V3 there is a provision for posting
audit data to the public bulletin board [10]. In Wombat [4] the audited ballot
must be shown to an election worker, and taken home to be checked, all of which
threatens the secrecy of the vote.

2.4 Revealing Voter Intent via an Audit

The auditing step, by its very nature, reveals a set of preferences and the cor-
responding ciphertext construction. If those preferences are a true reflection of
the voters intent, the audit will reveal the voters intent, and thus break ballot
secrecy. This is equally problematic whether the information is posted publicly,
or shown to an election official for checking.

If the voter is deciding after construction whether to vote or audit, as
described in [6], the voter will be obliged to always construct a ballot with their
true preferences, and as a result, any audit will break ballot secrecy. A simple
counter strategy is for the voter to construct a ballot with fake preferences to
audit. Crucially, this requires the voter to decide whether to cast or audit prior
to ballot construction. It is critical that the machine cannot distinguish between
a voter creating a genuine ballot and a voter constructing an audit ballot.

2.5 Indistinguishability of Real and Fake Ballots

The requirement for indistinguishability between a ballot that will be audited
and one that will be voted with is implicitly covered by an assumption in [6],
which states that it is crucial that the ballot encryption device does not receive
any information that may indicate the likelihood of a ballot being audited. How-
ever, realising this assumption presents a significant challenge, even in a secure
polling place. Whilst it seems possible that the voters identity could be hid-
den from the machine, it seems impossible to exclude global information from
being used to indicate whether a ballot will be cast or audited. Such information
could include voting preference patterns, geographical voting patterns and elec-
tion wide voter guidelines, all of which could be used to infer information about
whether a ballot is being constructed for voting or audit.

For example, it is easy to see how voters could easily fall into a pattern of
auditing one ballot, and if that succeeds, voting with the next. Such a pattern
has been seen in real-world elections using Helios, in [11] the authors analyse the
first IACR election, showing a clear pattern for performing zero or one audit,
but very rarely anymore.



Strategies for Voter-Initiated Election Audits 239

2.6 Benaloh Challenges in Remote Voting

Benaloh Challenges were proposed for the supervised voting setting, and not for
remote voting. Supervised voting refers to voting that takes place in a controlled
environment, for example, at a polling location on election day. Remote voting is
considered to be any voting that takes places outside of a controlled environment,
for example, voting from home over the internet. Helios [1] is a remote voting
system which constructs ballots on a voter’s own device. Such a device is likely
to be able to infer significant information about the behaviour, and therefore
voting preferences, of the user. In particular, since Helios was first designed in
2008, there has been a great increase in the intrusiveness of privacy invasion via
identifying individuals’ online behaviour [9]. It is clear that in the remote setting
it is feasible for the device to be able to predict the voting intention of the voter.
In the supervised setting, identifying an individual voter is unlikely, however,
identifying groups of voters, or general patterns, is still feasible.

The payoffs for cheating and the penalties for failure are also different in
the remote vs attendance setting. In the remote setting, typically only one or
two voters use the same device, and there is no independent check when cheat-
ing is detected; in the attendance setting, a successfully cheating device could
take hundreds or thousands of votes, and the penalties for cheating could be
severe. For the rest of the paper, we consider only the remote setting, leaving
the attendance game for future work.

3 The Game Theory Model - Inspection Game

We model the interaction as an inspection game in which the voter is the inspec-
tor and the device wins only if it cheats and is not inspected. Voters incur a small
cost for inspecting, a benefit from successfully casting the vote of their choice,
and a large cost for having their vote inaccurately recorded. The device (which
aims to cheat) benefits from getting away with casting a vote other than the
voter’s intention.

The voter begins with a true vote vt chosen from a publicly-known probability
distribution Π.

In the first step, the voter (V ) chooses a vote from the range of Π and sends
it to the device (D). The device then chooses whether to encode it truthfully
(T ) or falsely (F ), but this choice cannot be observed by V . Next, V may cast
the vote (C), in which case the game ends without revealing the device’s choice,
or she may audit the vote (A), so the device’s choice is revealed. If she audits
a truthfully-encoded vote, the process begins again. Otherwise, the game ends.
Payoffs for one step of the game are shown in Fig. 1. GV is a positive payoff
reflecting the voter’s successful casting of her intended ballot; −BV is the nega-
tive payoff when she is tricked into casting a vote other than vt. For the device,
GD is the positive payoff associated with successfully casting a vote other than
the voter’s intention; −BD is the negative payoff associated with being caught
cheating. The voter incurs a small cost −caudit for each audit.



240 C. Culnane and V. Teague

Voter(V )
Cast(C ) Audit(A)

Device (D)
Truthful(T ) (0, GV ) Add(0, −caudit); repeat .
False(F ) (GD, −BV ) (−BD, −caudit)

Fig. 1. Payoffs for one step of the game. If the device is truthful and the voter audits,
the game repeats.

Voter Payoff Device Payoff Description

ncast > nfalse −nfalsecaudit −BD Voter catches cheating device.
ncast = nfalse −(ncast − 1)caudit − BV GD Device successfully cheats.
ncast < nfalse −(ncast − 1)caudit + GV 0 Voter votes as intended.

Fig. 2. Payoffs for the extended game. The voter casts at step ncast; the device encodes
falsely (for the first and only time) at step nfalse

In order to model the repeated nature of the game, the voter’s strategy is a
sequence of n votes, followed by n choices to audit, then a final n + 1-th vote
that is cast. The device’s strategy is a sequence of choices to encode truthfully
or falsely, which may be random or may depend on what the voter has chosen.

Assumptions.

1. that caudit < BV ,
2. that (it’s common knowledge that) the voter never casts a vote other than vt,

Whatever the voter’s strategy, the first false encoding by the device ends the
game. We can therefore describe D’s strategy completely as a choice of nfalse,
the first step at which D encodes falsely, preceded by truthful rounds. Of course
this can be random, or can depend on the votes that the voter has requested
before then. The game’s outcome depends on whether nfalse is earlier, later, or
exactly equal to the round ncast in which the voter chooses to cast. This gives
us the payoff table, shown in Fig. 2, for the extended game.

3.1 Negative Results: Simple Sequential Strategies Do Not Form
Nash Equilibria

As expected in an inspection game, it is immediately clear that there is no pure
strategy equilibrium. Indeed, there is no equilibrium with a fixed value of n.

Lemma 1. If caudit < BV , there is no Nash equilibrium in which the voter’s
number of audits is fixed.

Proof. Suppose V always audits ncast − 1 times, and suppose this is a Nash
equilibrium with some strategy SD by the device D. Then SD must specify



Strategies for Voter-Initiated Election Audits 241

encoding untruthfully in the ncast-th round—otherwise there would be a strict
unilateral improvement by doing so. But this gives V a payoff of ncaudit − BV ,
which is bad. This could be improved to (n − 1) ∗ caudit by auditing at round
ncast, which is strictly better assuming that caudit < BV . ��

Also backward induction applies:

Lemma 2. Suppose there is a common-knowledge upper bound nmax on ncast.
If caudit < BV , then there is no Nash equilibrium in which the voter votes as
intended.

Proof. Backward induction. The device’s best response is to cheat at round nmax,
whenever the game gets that far, thus giving V the worst possible payoff. But
then V improves her payoff by never waiting until nmax, and instead casting at
round nmax − 1. The induction step is similar: if V is guaranteed not to audit at
round ni, then D should cheat at round ni, and V would improve her payoff by
casting at round ni − 1. ��
Lemma 3. There is no Nash equilibrium in which, for any n, the probability
that D encodes falsely at round n is zero.

Proof. V should always cast then, so D should always cheat then. ��
Now we can address our main question: whether information about the true

vote can influence the device’s success in getting away with cheating (and hence
both parties’ payoffs in the game).

Lemma 4. If −BD < 0, there is no Nash Equilibrium in which, with nonzero
probability, D falsely encodes a vote outside the support of Π.

Proof. Suppose SD is a device strategy and let n be the first round at which,
with nonzero probability, V chooses and D falsely encodes a vote outside the
support of Π. Then V will certainly audit this vote (by Assumption 2), leading
the device to a payoff of −BD, the worst possible. If D was always truthful, it
could guarantee a payoff of 0. ��
Lemma 5. If −BD < 0, then every device strategy in which, with nonzero prob-
ability, D falsely encodes a vote outside the support of Π, is weakly dominated.

Proof. Similar. Weakly dominated by the always-truthful strategy. ��
So whether we take the solution concept to be Nash Equilibrium or survival of

iterated deletion of weakly dominated strategies, we see that there is no solution
in which the device falsely encodes a vote that the voter could not possibly
intend to cast. This has important implications, particularly for voting from
home, where the device may have very accurate information about the voter’s
intentions. In many practical scenarios, Π is a point function—the device knows
exactly how the person will vote.



242 C. Culnane and V. Teague

Note that the argument does not hold if BD = 0, meaning that there is no
downside to being caught cheating.

The strategy most commonly recommended to voters is to toss a coin at each
stage and then, based on the outcome, to either cast their true vote vt or choose
some vote and audit it. We distinguish between a few such strategies:

TruthAndCoinToss. Always request vt; toss a coin to decide whether to cast
or audit.

PiAndCoinToss. Toss a coin to decide whether to cast or audit; in the case of
audit, choose a vote at random according to Π.

These two are the same if Π has only one nonzero probability.
On the device side, recall that the strategy is determined entirely by the

choice of which round to encode untruthfully in. We have already argued that
there is no Nash equilibrium in which there is an upper bound on nfalse

(Lemma 3). We first examine the equilibria in which the voter plays TruthAnd-
CoinToss. There is no new information communicated to the device as this
strategy plays out: SD consists entirely of a (static) probability distribution for
choosing nfalse.

We begin with the surprising result that there is no Nash equilibrium in
which V plays TruthAndCoinToss—the probability of detecting cheating
falls off too quickly.

Theorem 1. There is no Nash equilibrium in which V plays TruthAndCoin-
Toss.

Proof. We’re assuming that Pr(ncast = i) = 1/2i. Crucially, the game tree has
only one branch, the one in which the voter always requests the same vote. The
device’s strategy is therefore simply a probability distribution PD for nfalse. Its
expected payoff is

E(D’s payoff) =

∞∑

i=1

(
GDPr(ncast = i)PrD(nfalse = i)−BDPr(ncast > i)PrD(nfalse = i)

)

= (GD −BD)

∞∑

i=1

PrD(nfalse = i)/2i

(Note that the case in which ncast > i and nfalse = i gives D a zero payoff.)
This is strictly maximised by setting PrD(nfalse = 1) = 1, that is, falsely

encoding always on the first round. But then V could improve her payoff by
always auditing in round 1 (by Assumption 1, caudit < BV ). ��

The following corollary shows that, if the device knows exactly how the voter
is going to vote, the coin-tossing advice doesn’t produce a Nash equilibrium.

Corollary 1. If Π is a point function, then there is no Nash equilibrium in
which V plays PiAndCoinToss.

Proof. Immediate from Theorem 1



Strategies for Voter-Initiated Election Audits 243

This easily generalises to any exponentially-decreasing auditing strategy with
any coefficient. Suppose the voter, at round i, chooses to audit the vote with
probability r, and otherwise to cast. The generalised strategies are

TruthAndRandomChoice(r). Always request vt; audit with probability r,
otherwise cast.

PiAndRandomChoice(r). Audit with probability r, otherwise cast. In the case
of audit, choose a vote at random according to Π.

Again these are not part of any Nash equilibrium.

Lemma 6. There is no Nash equilibrium in which V plays TruthAnd
RandomChoice(r) for any r ∈ (0, 1).

Proof. First compute the probabilities of casting at or after round i:

Pr(ncast = i) = ri−1(1 − r).

Pr(ncast > i) = ri.

So we can recompute D’s expected payoff as

E(D’s payoff) =
∞∑

i=1

(
GDri−1(1 − r)PrD(nfalse = i) − BDriPrD(nfalse = i)

)

= [(1 − r)GD − rBD]

∞∑

i=1

PrD(nfalse = i)ri−1

= [(1 − r)GD − rBD]

(
PrD(nfalse = 1) + r

∞∑

i=2

PrD(nfalse = i)ri−2

)

≤ [(1 − r)GD − rBD] (PrD(nfalse = 1) + r(1 − PrD(nfalse = 1)))

≤ [(1 − r)GD − rBD]PrD(nfalse = 1) because r < 1.

Again, this is strictly maximised, to [(1−r)GD −rBD], when PrD(nfalse = 1) =
1. In other words, the device always cheats in the first round. This is clearly not
part of any Nash equilibrium in which the voter does not always audit. ��

This result generalises to Π being a more general distribution over possible
votes. Suppose the Voter’s strategy is PiAndRandomChoice(r). Suppose also
that the voter’s true vote vt is chosen according to Π. One way to think of
it is that Π represents the voter’s guess about what the machine guesses V ’s
distribution to be. In equilibrium, they should match.

Theorem 2. There is no Nash equilibrium in which V plays PiAndRandom
Choice(r) for any r ∈ (0, 1) or any probability distribution Π, assuming that
the true vote vt is also chosen according to Π.

Proof. Think about the tree of all possible sequences of vote requests, shown in
Fig. 3. The device’s strategy is described by a probability PD that takes a node
N in the tree and outputs a probability of playing F for the first time at N .



244 C. Culnane and V. Teague

i=1

Nb i=2

E(D)=PrD(Nb, false)
×[Π(V2)Π(V4)]r

i−1

×[(1 − r)GD − rBD]

V4

V2

Na i=1

E(D)=PrD(Na, false)
×Π(V3)r

i−1

×[(1 − r)GD − rBD]

V3

i=1

V4

i=1

V5

i=1

V2

i=2

V2 V3

Nc i=3

E(D)=PrD(Nc, false)
×[Π(V6)Π(V3)Π(V4)]r

i−1

×[(1 − r)GD − rBD]

V4V5 V6

V3 V4 V5 V6

V6

Fig. 3. Game tree

To be a meaningful probability distribution, we require that, along any (possibly
infinite) path p down the tree,

∑
N∈p PD(N, false) ≤ 1.

The probability of reaching node N at all, assuming that D is truthful until
then, is determined by V ’s strategy SV . The probability that a particular node
N is reached is simply the product of all the vote choices along that path, times
ri−1, where i is its depth in the tree (starting at 1).

Since a false encoding ends the game (one way or another), we can attach an
expected payoff to each node, representing D’s expected payoff from the game
ending at that node. Remember that when D is truthful it derives no payoff. For
example, in Fig. 3, the probability of reaching node Nb is [Π(V2)Π(V4)]r and the
probability the device plays false at that node is PrD(Nb, false). In general:

E(D’s payoff from node N) = [(1 − r)GD − rBD]PrD(N, false)PrSV (N is reached)

We claim that D’s best response to PiAndRandomChoice(r) is to play false
always at i = 1. In other words, to cheat at the first opportunity. To see why,
suppose instead that there is some best response PD−best, in which there is some
(parent) node Np at level i ≥ 1 such that



Strategies for Voter-Initiated Election Audits 245

∑

Nc a child of Np

PD−best(Nc, false) > 0.

But now D’s payoff can be strictly improved by shifting to strategy P ′
D−best

in which all the probabilities in Np’s children are shifted up to Np. Let α =∑
Nc a child of Np

PD−best(Nc, false). The improved strategy is:

P ′
D−best(N, false) =

⎧
⎨

⎩

PD−best(N, false) + α, when N = Np;
0 when N is a child of Np;
PD−best(N, false) otherwise.

This is strictly better than PD−best because the total probability of reaching
any of Np’s children is at most r (conditioned on having reached Np), which is
less than 1. The expected payoff is increased by at least (1−r)α[(1−r)GD−rBD].

Hence there is no best response to PiAndRandomChoice(r) other than
always playing false at the first opportunity. Hence PiAndRandomChoice(r)
is not part of any Nash equilibrium. ��

3.2 Positive Results: Parallel Strategies Can Form Nash Equilibria,
but only if the Device’s Probability of Guessing the Voter’s
Choice Is Small Enough

Now consider an apparently-slight variation: instead of auditing sequentially,
the voter makes some fixed number (k) of ciphertexts, chooses one at random
to cast, then audits the other k − 1. Again, if they’re all the same, the device
has no information about which one will be cast, but privacy is compromised;
if they’re not all the same then the voter has to simulate some distribution for
the k − 1 that are audited. In either case, if the device’s probability of guessing
correctly which vote will be cast is α, its expected payoff for cheating is

E(D’s payoff from cheating) = [αGD − (1 − α)BD]

If all the votes are identical, or if the device has no information about how
V will vote, then α = (k − 1)/k. Depending on whether its expected payoff for
cheating is positive or negative, it will be a Nash equilibrium either to cheat on
the most-likely-voted ciphertext, or not to cheat, and for the voter to audit as
instructed.

4 Conclusion

We have shown that none of the natural sequential strategies for voter-initiated
auditing form Nash equilibria in a game that captures remote (Internet) voting.

This is significant because voter-initiated auditing is probably the most
promising of strategies for verifiable Internet voting. The only alternatives are
codes [7,14], which require a secrecy assumption and hence a threshold trust



246 C. Culnane and V. Teague

assumption on authorities, and which anyway don’t work for complex ballots.
Preprinted auditable ballots [8,13] only work in polling places. We have shown
that voter-initiated auditing must be conducted with multiple parallel ballots,
rather than sequential challenges.

The next step is to repeat the analysis for a game that captures the payoffs
for polling-place voter-initiated auditing. This setting has a significantly higher
cost to the device for cheating, so probably has very different equilibria.

Acknowledgments. Thanks to Wojtek Jamroga, Ron Rivest, and Josh Benaloh for
interesting conversations about this work.

References

1. Adida, B.: Helios: web-based open-audit voting. USENIX Secur. Symp. 17, 335–
348 (2008)

2. Adida, B., Rivest, R.L.: Scratch & vote: self-contained paper-based cryptographic
voting. In: Proceedings of the 5th ACM Workshop on Privacy in Electronic Society,
pp. 29–40. ACM (2006)

3. Bell, S., Benaloh, J., Byrne, M.D., Debeauvoir, D., Eakin, B., Kortum, P., McBur-
nett, N., Pereira, O., Stark, P.B., Wallach, D.S., Fisher, G., Montoya, J., Parker,
M., Winn, M.: Star-vote: a secure, transparent, auditable, and reliable voting sys-
tem. In: 2013 Electronic Voting Technology Workshop/Workshop on Trustworthy
Elections (EVT/WOTE 2013). USENIX Association, Washington, D.C. https://
www.usenix.org/conference/evtwote13/workshop-program/presentation/bell

4. Ben-Nun, J., Fahri, N., Llewellyn, M., Riva, B., Rosen, A., Ta-Shma, A., Wikström,
D.: A new implementation of a dual (paper and cryptographic) voting system. In:
Electronic Voting, pp. 315–329 (2012)

5. Benaloh, J.: Simple verifiable elections. EVT 6, 5 (2006)
6. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. EVT

7, 14 (2007)
7. Chaum, D.: Surevote: technical overview. In: Proceedings of the workshop on trust-

worthy elections (WOTE 2001) (2001)
8. Chaum, D., Carback, R., Clark, J., Essex, A., Popoveniuc, S., Rivest, R.L., Ryan,

P.Y., Shen, E., Sherman, A.T.: Scantegrity II: end-to-end verifiability for optical
scan election systems using invisible ink confirmation codes. EVT 8, 1–13 (2008)

9. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.
(eds.) PETS 2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14527-8 1

10. Karayumak, F., Olembo, M.M., Kauer, M., Volkamer, M.: Usability analysis of
helios-an open source verifiable remote electronic voting system. In: EVT/WOTE
2011 (2011)

11. Kiayias, A., Zacharias, T., Zhang, B.: Ceremonies for end-to-end verifiable elections
(2015)

12. Lindeman, M., Stark, P.B.: A gentle introduction to risk-limiting audits. IEEE
Secur. Priv. 5, 42–49 (2012)

13. Ryan, P.Y., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter: a voter-
verifiable voting system. IEEE Trans. Inf. Forensics Secur. 4(4), 662–673 (2009)

https://www.usenix.org/conference/evtwote13/workshop-program/presentation/bell
https://www.usenix.org/conference/evtwote13/workshop-program/presentation/bell
http://dx.doi.org/10.1007/978-3-642-14527-8_1
http://dx.doi.org/10.1007/978-3-642-14527-8_1


Strategies for Voter-Initiated Election Audits 247

14. Ryan, P.Y.A., Teague, V.: Pretty good democracy. In: Christianson, B., Malcolm,
J.A., Matyáš, V., Roe, M. (eds.) Security Protocols 2009. LNCS, vol. 7028, pp.
111–130. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36213-2 15

15. Sandler, D., Derr, K., Wallach, D.S.: Votebox: a tamper-evident, verifiable elec-
tronic voting system. In: USENIX Security Symposium, vol. 4, p. 87 (2008)

http://dx.doi.org/10.1007/978-3-642-36213-2_15

	Strategies for Voter-Initiated Election Audits
	1 Introduction
	2 Voter-Initiated Auditing
	2.1 Purpose of Auditing
	2.2 Origins of Benaloh Challenges
	2.3 Making Audit Data Public
	2.4 Revealing Voter Intent via an Audit
	2.5 Indistinguishability of Real and Fake Ballots
	2.6 Benaloh Challenges in Remote Voting

	3 The Game Theory Model - Inspection Game
	3.1 Negative Results: Simple Sequential Strategies Do Not Form Nash Equilibria
	3.2 Positive Results: Parallel Strategies Can Form Nash Equilibria, but only if the Device's Probability of Guessing the Voter's Choice Is Small Enough

	4 Conclusion
	References


