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Preface

Communication and information technologies have evolved apace. Recent advances
feature greater ubiquity and tighter connectivity for systems exchanging increasingly
larger amounts of social, personal, and private information. Indeed, cyberspace, con-
structed on top of these technologies, has become integral to the lives of people,
communities, enterprises, and nation states.

Yet protecting the various assets therein to ensure cybersecurity is a difficult chal-
lenge. First, and no differently from physical security, a wide variety of agent utilities
abound, including adversarial and antithetical types. Second, being constructed upon
heterogeneous, large-scale, and dynamic networks, cyberspace is fairly complex,
offering adversaries a large attack surface and ample room for evasive maneuvers, even
within carefully designed network and software infrastructure. Nonetheless, security is
critical and warrants novel analytic, computational, and practical approaches to
thought, planning, policy, and strategic action so we can protect systems and the critical
assets they contain, minimize risks and maximize investments, and ultimately provide
practical and salable security mechanisms. Collectively our aim is to enhance the
trustworthiness of cyber-physical systems.

Recently the analytic and modeling framework of modern game theory has yielded
powerful and elegant tools for considering security and the effects of non-cooperative
and adversarial types. The problems of security and cybersecurity by necessity must
confront the challenging adversarial and worst-case outcomes. To address these,
researchers have brought to bear diverse methodologies from control, mechanism
design, incentive analysis, economics, and data science to co-evolve advances in game
theory, and to develop solid underpinnings of a science of security and cybersecurity.

The GameSec conference brings together academic, industry, and government
researchers to identify and discuss the major technical challenges and present recent
research results that highlight the connections between and among game theory,
control, distributed optimization, and economic incentives within the context of
real-world security, trust, and privacy problems. The past meetings of the GameSec
conference took place in Berlin, Germany (2010), College Park Maryland, USA
(2011), Budapest, Hungary (2012), Fort Worth Texas, USA (2013), Los Angeles, USA
(2014), and London, UK (2015). GameSec 2016, the 7th Conference on Decision and
Game Theory for Security took place in New York, USA, during November 2–4, 2016.
This year we extended the two-day format to a three-day program, allowing GameSec
to expand topic areas, include a special track and a poster session.

Since its first edition in 2010, GameSec has attracted novel, high-quality theoretical
and practical contributions. This year was no exception. The conference program
included 18 full and eight short papers as well as multiple posters that highlighted the
research results presented. Reviews were conducted on 40 submitted papers. The
selected papers and posters were geographically diverse with many international and
transcontinental authorship teams. Whith the geographical diversity underscoring the



global concern for and significance of security problems, the papers this year
demonstrated several international efforts formed to address them.

The themes of the conference this year were broad and encompassed work in the
areas of network security, security risks and investments, decision-making for privacy,
security games, incentives in security, cybersecurity mechanisms, intrusion detection,
and information limitations in security. The program also included a special track on
“validating models,” which aims to close the gap between theory and practice in the
domain, chaired by Prof. Milind Tambe. Each area took on critical challenges including
the detection/mitigation problems associated with several specific attacks to network
systems, optimal and risk-averse management of systems, the increased concern of data
integrity, leakage, and privacy, strategic thinking for/against adversarial types, adver-
sarial incentives and robust and novel designs to counter them, and acting/decision
making in partially informed adversarial settings.

Collectively the conference presents many novel theoretical frameworks and
impacts directly the consideration of security in a wide range of settings including:
advanced persistent threat (APT), auditing elections, cloud-enabled internet of con-
trolled things, compliance, crime and cyber-criminal incentives, cyber-physical sys-
tems, data exfiltration detection, data leakage, denial of service attacks (DOS), domain
name service (DNS), electric infrastructures, green security, Internet of Things (IoT),
intrusion detection systems (IDS), patrolling (police and pipeline), privacy technology,
routing in parallel link networks, secure passive RFID networks, social networking and
deception, strategic security investments, voting systems, and watermarking.

We would like to thank NSF for its continued support for student travel, which made
it possible for many domestic and international undergraduate and graduate students to
attend the conference. We would also like to thank Springer for its continued support
of the GameSec conference and for publishing the proceedings as part of their Lecture
Notes in Computer Science (LNCS) series. We hope that not only security researchers
but also practitioners and policy makers will benefit from this edition.

November 2016 Quanyan Zhu
Tansu Alpcan

Emmanouil Panaousis
Milind Tambe
William Casey
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Resilience of Routing in Parallel Link Networks

Eitan Altman1,2, Aniruddha Singhal2, Corinne Touati2(B), and Jie Li3

1 Université Côte d’Azur, Côte d’Azur, France
2 Inria, Grenoble, France

{Eitan.Altman,corinne.touati}@inria.fr
3 Faculty of Engineering, Information and Systems,

University of Tsukuba, Tsukuba, Japan
lijie@cs.tsukuba.ac.jp

Abstract. We revisit in this paper the resilience problem of routing
traffic in a parallel link network model with a malicious player using a
game theoretic framework. Consider that there are two players in the
network: the first player wishes to split its traffic so as to minimize its
average delay, which the second player, i.e., the malicious player, tries to
maximize. The first player has a demand constraint on the total traffic
it routes. The second player controls the link capacities: it can decrease
by some amount the capacity of each link under a constraint on the sum
of capacity degradation. We first show that the average delay function
is convex both in traffic and in capacity degradation over the parallel
links and thus does not have a saddle point. We identify best responses
strategies of each player and compute both the max-min and the min-
max values of the game. We are especially interested in the min max
strategy as it guarantees the best performance under worst possible link
capacity degradation. It thus allows to obtain routing strategies that are
resilient and robust. We compare the results of the min-max to those
obtained under the max-min strategies. We provide stable algorithms
for computing both max-min and min-max strategies as well as for best
responses.

1 Introduction

The current computer networks such as Internet architecture remain remark-
ably vulnerable to different security attacks and failures which may cause system
unaivabilities or performance degradation. It is a great challenge to provide ser-
vices under such security attacks and failures in computer networks. Resiliency
is the ability to provide and maintain an acceptable level of service in the face
of faults and challenges to normal operation [1].

In this paper, we study the resilience problem of routing traffic in a par-
allel link network model with a malicious player using game theory. Although
the network model looks simple, it could be taken as a typical one for a com-
puter network with general network configuration in which there are many paths
between a source node and a destination node and a path consists of several com-
munications.
c© Springer International Publishing AG 2016
Q. Zhu et al. (Eds.): GameSec 2016, LNCS 9996, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-47413-7 1



4 E. Altman et al.

Although our network is a simple one, the network resilience problem in the
network model is not a trivial one. We study the resilience problem of routing
traffic in a parallel link network model with a malicious player using a game
theoretic framework. Consider that there are two players in the network: the
first player wishes to split its traffic so as to minimize its average delay, which
the second player, i.e., the malicious player, tries to maximize. The first player
has a demand constraint on the total traffic it routes. The second player controls
the link capacities: it can decrease some amount of the capacity of each link
under a constraint on the sum of capacity degradation. We first show that the
average delay function is convex both in traffic and the capacity degradation
over the parallel links and thus does not have a saddle point. We identify best
responses strategies of each player and compute both the max-min and the min-
max value of the game. We are especially interested in the min-max strategy as
it guarantees the best performance under worst possible unknown link capacity
degradation. It thus allows to obtain routing strategies that are resilient and
robust. We compare the results of min-max to those obtained at max-min. We
provide numerical algorithms for computing both max-min and min-max values
and strategies as well as for best responses.

1.1 Related Work

We restrict in this paper our analysis to the framework of routing in a “parallel
link” network. This topology has long been a basic framework for the study of
routing, as it is a natural generic framework of load balancing among servers
in a network. The study of competitive routing in networks with parallel links
using game theory goes back to [2]. They were further studied in [3,4] and
many others. The only reference we know that studied adversarial behavior in
routing in a model similar to the max-min scenario is [5] but they do not propose
an algorithmic solution as we do here. On the other hand, to the best of our
knowledge, the min-max setting has not been studied before. While the max-
min problem has a water-filling structure, we show that the min-max policy has a
form which extends the water filling policy and we call it the “water distribution”
policy. We provide an algorithm for computing it.

2 System Model and Problem Formulation

Consider a set L = {1, ...,L} of parallel links between a common source s and
destination d as shown in Fig. 1.

Let the delay density over link � ∈ L of capacity C� be given by the following
function of the link flow xl:

D(x�, C�) �

⎧
⎨

⎩

1
C� − x�

if x� < C�,

+∞ otherwise.
(1)
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�2

�1

�L

s d

•••

Fig. 1. A system of parallel links

Let x be the flow vector, x = (x�, 1 ≤ � ≤ L). Define the system delay as the
average delay experienced by the flow on the different links:

D̂(x,C) �
∑

�∈L
x�D�(x�, C�). (2)

Such delay system model was already widely used to describe delay in
telecommunication network (see, e.g. [2]). In this paper, we address resilience
in routing for such networks.

The vector x is controlled so as to minimize the system delay under the
demand constraint:

∑

�∈L
x� = X. Meanwhile, suppose that the capacity C� of link

� is decreased to C� −δ� where δ� ∈ R+. In this case, the delay of link � becomes

D(x�, C� − δ�) =

⎧
⎨

⎩

1
C� − δ� − x�

if x� < C� − δ�,

+∞ otherwise.

Let δ be the degradation vector, δ = (δ�, 1 ≤ � ≤ L). The average system
delay is therefore given by

D̂(x,C − δ) �
∑

�∈L
x�D�(x�, Cl − δ�), (3)

and the worst degradation is therefore maxδ D̂(x,C−δ) subject to the constraint∑
�∈L δ� = Δ.
In this paper, we study a routing that would be robust under the worst

possible impact of removing an amount Δ of link capacities. Our objectives are
as follows:

Objective 1. For a given load vector x, identify the vector δ which is the most
harmful. This is addressed in Sect. 3.
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Objective 2. Conversely, for a given attack δ, identify the best possible response
x to capacity degradation. This is addressed in Sect. 4.

Objective 3. Determine the worst possible capacity degradation to arbitrary
flow vector. This is addressed in Sect. 5. More precisely, our problem can be
interpreted as a zero-sum game with x playing the role of the minimization
player’s action and δ the maximization player’s. If player Πδ is playing first,
then it will aim at finding the attack which reduces the system capacity most:

max
δ

min
x

D̂(x,C − δ) subject to

⎧
⎪⎪⎨

⎪⎪⎩

∑

�∈L
x� = X and

∑

�∈L
δ� = Δ.

(4)

Objective 4. Determine the flow vector x∗ which guaranties the best possible
performance under any possible capacity degradation response. This is addressed
in Sect. 6. That is, if player Πx is playing first, it will aim at choosing the flow
vector x∗ that guarantees the best possible performance under the worst possible
reaction of attack δ of player Πδ:

min
x

max
δ

D̂(x,C − δ) subject to

⎧
⎪⎪⎨

⎪⎪⎩

∑

�∈L
x� = X and

∑

�∈L
δ� = Δ.

(5)

A crucial question is whether the solutions of the latter two problems coin-
cide. The following result gives a clue:

Proposition 1. The average delay function D̂ is convex both in x and δ.

The proof is available in the technical report [6].
A very well studied class of games is that of concave-convex games, for which

the maximizing player’s optimization function is concave while the minimizer
player’s is convex. These games are known to have a value, that is their maximin
optimization (4) coincide with their minimax (5). However, in our scenario, the
game is convex-convex, and therefore the order at which the players are taking
decisions can affect the resulting equilibrium.

In the following, we shall obviously restrict to the case that
∑

�∈L C� > X+Δ
so that there exists a routing strategy with finite cost.

3 Optimal Attack in Response to Link Utilization

In this section, we consider the optimal strategy for player Πδ in response to a
given link usage x. That is:

δ∗(x) � arg max
δ≥0

D(x,C − δ), s.t
∑

�

δ� = Δ.
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The next theorem gives a characterization of the optimal reaction of player
Πδ: it is such that only a single link should be attacked, that is, the one inducing
the higher throughput degradation:

Theorem 1 (Optimal attack response). For any load vector x, there exists
a unique optimal reaction of player Πδ. It is such that:

δ∗
� (x) =

{
Δ if � = �∗

0 otherwise, with �∗ = arg max
�∈L

x�

(C� − x�)(C� − Δ − x�)
. (6)

Proof. For a given x vector, note that D̂ is convex in δ and defined on the convex
polytope P :

P � {(δ�)�∈L,∀�, 0 ≤ δ� ≤ Δ and
∑

�

δ� = Δ}

Define ei the unit vector, i.e. the vector of dimension L with all elements being
equal to 0 except for the ith element which is 1. Then P is the convex hull of a
set of L + 1 extreme points: {0 ∪ Δei, i ∈ L}.

Hence, for any point p of P , there exists non-negative α0, ..., αL such that
1 =

∑
�∈L α� and p = Δ

∑
� α�e�. Let �∗ = arg max� D̂(x,C − e�).

As D̂ is convex, then D̂(x,C − p) = D̂(x,C − Δ
∑

� α�e�) ≤
Δ

∑
� α�D̂(x,C − e�) ≤ Δ

∑
� α�D̂(x,C − e∗

� ) = ΔD̂(x,C − e∗
� ) which gives

Eq. (6).
The degradation of the delay induced by attacking link � is

x�

(
D̂�(Δ, x�) − D̂�(0, x�)

)
=

x�Δ
(C� − Δ − x�) (C� − x�)

which leads to the

desired result.

Corollary 1. The degradation induced by player Πδ on the total delay equals
to

Δx�∗

(C�∗ − x�∗)(C�∗ − Δ − x�∗)
.

Therefore, from Theorem 1, a straightforward algorithm can give the exact
optimal attack in 3 × L multiplications and L comparisons.

4 Optimal Link Utilization as Response to Some Attack

We now analyze the optimal link utilization in response to a choice of δ from
player Πδ, which is denoted by x∗(δ). Then, we seek:

x∗(δ) = arg min
x≥0

D(x,C − δ), subject to
∑

�

x� = X.

The next theorem gives a characterization of x∗(δ):
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Theorem 2 (Optimal link usage response). There exists a unique real value
K such that:

x∗
� (δ) =

{
C� − δ� − K

√
C� − δ� if � ∈ X ,

0 otherwise,
(7)

with X � {�, C� − δ� ≥ K2} and K �

∑

�∈X
(C� − δ�) − X

∑

�∈X

√
C� − δ�

. (8)

(Note the fixed point equation between the set of links used at the optimal
response X , and the quantity K.)

Proof. For given C and δ, consider the Lagrangian function

L(λ,x) = D̂(x,C − δ) − λ

(
∑

�∈L
x� − X

)

. (9)

Then, the optimal link usage response x∗ is solution of the optimization
problem min

x≥0
L(λ,x). Since x �→ L(λ,x) is convex, then

x∗ = arg min
x

L(λ,x) ⇔ ∂L(λ,x∗)
∂x∗

�

{≥ 0 ∀�
= 0 if x∗

� > 0.

Then

⎧
⎪⎪⎨

⎪⎪⎩

x∗
� = 0 ⇔ ∂L̂

∂x�
(λ,x|x� = 0) ≥ 0 ⇔ 1

C� − δ�
≥ λ,

x� > 0 ⇔ C� − δ� − x� =

√
C� − δ�

λ

(10)

which gives (7) by taking K = 1/
√

λ. Then, summing Eq. (7) over X yields
X =

∑

�∈X

(
C� − δ� − K

√
C� − δ�

)
, which allows us to express K as Eq. (8).

From this theorem, we can then derive the performance achieved at the opti-
mal link usage response:

Proposition 2 (Performance at the optimal link usage). At the optimal
x∗(δ), the total delay on any used link � (i.e. such that x∗

� > 0) is given by

x∗
� (δ)D�(x�, C� − δ�) � x∗

� (δ)
C� − δ� − x∗

� (δ)
=

√
C� − δ�

K
− 1

and the total delay is

D̂(x∗(δ),C − δ) =

(
∑

�∈X

√
C� − δ�

)2

∑

�∈X
(C� − δ�) − X

− |X |. (11)
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Proof. From (7), we have:

x∗
� (δ)

C� − δ� − x∗
� (δ)

=
C� − δ� − K

√
Cl − δ�

K
√

C� − δ�

=
√

C� − δ�

K
− 1.

Thus

D̂(x∗(δ),C − δ) =
∑

�∈X

(√
C� − δ�

K
− 1

)

=
(
∑

�∈X
√

C� − δ�)2
∑

�∈X
(C� − δ�) − X

− |X |.

In order to derive a powerful algorithmic solution, we need the following
characterization of the optimal link usage solution:

Proposition 3 (Optimal Usage Characterization). For each link �, define
the normalized delay as

ND�(x,C − δ) =
√

C� − δ�.D�(x,C − δ). (12)

Then, at the optimal x∗(δ):

ND�(x∗(δ),C − δ)
{

= K(X ) if C� − δ� ≥ 1/K2

≥ K(X ) if C� − δ� ≤ 1/K2 (13)

Proof. At the optimal response x∗(δ), we have, from Eq. (7), for any used link:

ND�(x∗(δ),C − δ) =
√

C� − δ�

C� − δ� − x∗
� (δ)

=
√

C� − δ�

K
√

C� − δ�

= 1/K.

For any unused link, we have:

ND�(x∗(δ),C − δ) =
√

C� − δ�.D�(x∗(δ),C − δ)

=
√

C� − δ�

C� − δ�
=

1√
C� − δ�

But from Eq. (10),
1

C� − δ�
≥ λ, i.e.

1√
C� − δ�

≥
√

λ = 1/K which concludes

the proof.

The proposed water-filling mechanism for the strategy of player Πx is given in
Algorithm 1. The links are initially sorted by decreasing capacity. The mechanism
gradually increases the amount of x� of the various links until reaching X.

More precisely, the algorithm proceeds with initialization of x as zero. At each
iteration of the algorithm, the set X is updated by checking for some potential
new candidates.

One can use a direct water-filling algorithm by using ε, a very small quantity,
representing the discretization of level increase in the water-filling algorithm.
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Algorithm 1. The algorithm of player Πx which defines an optimal strat-
egy in response to some attack.

Input: Vector C of channel capacities, Attack vector δ
Output: Load vector x

1 Sort links with decreasing capacity C� − δ�

2 TA ← 0 // The traffic allocated so far

3 Link ← 1 // The link index up to which we inject data

4 ε ← 0.001 // Set it to the desired accuracy

5 x ← 0 // The traffic vector

6 while TA < X do
7 while Link < L and ND1(x, C − δ) ≥ NDLink+1(x, C − δ) do
8 Link ++

9 x1 ← x1 + ε

10 K ←
√

C1 − δ1
C1 − δ1 − x1

11 for j = 2 to Link do

12 xj ← Cj − δj −
√

Cj−δj

K

13 Update TA ←
∑

�∈L
x�

14 return x

The algorithm would be a direct implementation of Proposition 3, that is, if the
current link was filled up to a level (in terms of ND) that is greater or equal
than that of next link, then variable Link is incremented so as to start filling the
next link. Then, the “for” loop would fill each link j by a small amount ηj which
is such that NDj(x + ηjej ,C − δ) − NDj(x,C − δ) = ε until X is exhausted.

The performance of such algorithm exhibits average performance though,
as the numerical precision errors in the level increases of the different links are
summed up over the different iterations and can end up in large inaccuracy if the
ratio x�/η� turns out to be large. Performance is significantly improved by using
one link (for instance that of greater capacity) as the point of reference of the
link level and setting up the other links levels accordingly. We propose another
variant of the algorithm where ε represents the discretization of x1. Then, at
each iteration of the algorithm, x1 is increased by ε, then K is updated and then
all links in X .

Then, the maximal error is Err ≤ ∑
�∈L |x�(x1) − x�(x1 + ε)| =

∑
�∈L |

√
Cj−δj

K(x1)
−

√
Cj−δj

K(x1+ε) | = ε√
C1−δ1

∑
�∈L

√
C� − δ�. Since the links are ordered

by decreasing capacity, then the error is bounded by Lε.
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5 Optimal Link Degradation Strategy to Unknown Link
Usage

Let us now consider that player Πδ is to choose its attack vector, without know-
ing the link usage chosen by player Πx. Then, a natural strategy of player Πδ

is to choose the attack vector that would guarantee the highest value of delay
under any action load x. Such strategy of player Πδ is commonly known as the
maxmin strategy and is given by Definition 1.

Definition 1. δ∗ is a maxmin strategy if it is solution of

Mm(C,X,Δ) : max
δ≥0

min
x≥0

D(x,C − δ),

s.t
∑

� x� = X,
∑

� δ� = Δ.
(14)

Note that this is equivalent to a two-player sequential game where player Πδ

plays first, followed by player Πx, after it observes the action of player Πδ.

5.1 Existence and Characterization of the Optimal Strategy

Theorem 3 shows that there exists a unique strategy for player Πδ and provides
a characterization of it.

Theorem 3. There exists a unique real value α such that the optimal strategy
for player Πδ is given by:

δ� =

{
C� − α if � ∈ D,
0 otherwise

with α =

∑
�∈D C� − Δ

|D| and D = {�|C� ≥ α}. (15)

The proof is given in the technical report [6].
Note that the optimal strategy for player Πδ is therefore to attack the links

of greater capacity in a way so that their remaining capacities (C� − δ�) are all
equal to α. Hence, the optimal strategy for player Πδ is independent on the
weight X of player Πx.

5.2 A Decreasing Water Filling Algorithm

Based on Theorem 3, we can derive an algorithm to compute the optimal strategy
of player Πδ, which is given in Algorithm 2.

Similarly to Algorithm 1, at each step of the algorithm, the links 1 to Link are
being filled. The algorithm ends whenever all links have been attacked or when
the attack level Δ has been exhausted. More precisely, at any stage of the loop,
the links 1 to Link are being filled until either the attack has been exhausted
(Line 9–10) or the water-level reaches that of the next link (Line 11–12).
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Algorithm 2. The algorithm of player Πδ which defines an optimal strat-
egy for unknown link usage.

Input: Vector C of channel capacities, of size L
Output: Attack vector δ

1 Sort links with decreasing capacity C�

2 Attack ← Δ // Amount of Δ left to be allocated

3 Link ← 1 // The link index up to which we attack

4 Diff ← 0 // Extra capacity of the current link to the next

5 η ← 0 // Amount to be allocated in each link

6 δ ← 0 // The attack vector

7 while Link ≤ L and Attack > 0 do
8 Diff = CLink − CLink+1

9 if (Link = L or Attack < Link × Diff) then
10 η ← Attack / Link
11 else
12 η ← Diff

13 Attack ← Attack −η. Link
14 for j = 1 to Link do
15 δj ← δj + η

16 Link ++

17 return δ

Yet, the algorithm differs drastically from Algorithm 1 in its form and com-
plexity. Indeed, from Eq. 15, all links � ∈ D are such that C� − δ�’s are equal,
which amounts to say that for i, j D, we have δi − δj = Ci − Cj . Hence, the dif-
ferent links are being filled at the same rate η, which allows us to simply derive
the level of exhaustion of Δ or when the set D is to be modified. As opposed to
Algorithm 1 which computes the solution with arbitrary precision, Algorithm 2
gives the exact solution. Further, the loop runs for at most L times and the
solution is obtained after at most O(L) multiplications and O(L2) additions.

Figure 2 shows a typical run of the algorithm, with a set of 5 links. There,
the algorithm terminates after 3 loops in the”while” command, as

∑
� δ� = Δ.

6 Optimal Link Usage Strategy with Unknown
Degradation Attack

We finally proceed to the case where player Πx chooses its routing strategy
without knowledge of the attack performed by player Πδ. Then, we consider its
strategy to be the one that has the best delay guarantee, i.e. the one such that
the delay it will suffer from is the lowest possible one in the worst case scenario
(i.e. where player Πδ has the strongest attack). The problem is referred to as
minmax and given below:
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C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

(a) (b) (c)

α

Fig. 2. Typical run of the water-filling algorithm. First, in (a), the channel with highest
capacity is filled so as to reach the level of the second. Then in (b) the two channels
of largest capacities are filled. Finally, in (c) as the total attack is exhausted before
reaching the level of C4, then channels 1 to 3 are equally filled with the remaining
attack.

Definition 2. x∗ is a minmax strategy if it is solution of:

mM(C,X,Δ) : min
x≥0

max
δ≥0

D(x,C − δ),

s.t
∑

�

x� = X,
∑

�

δ� = Δ. (16)

Note that the minmax strategy is also the optimal one in a scenario of a two-
player sequential game with perfect information where player Πx plays first
followed by player Πδ.

6.1 Existence and Characterization of the Optimal Strategy

The following theorem states the uniqueness of the solution and gives a charac-
terization:

Theorem 4. There exists a unique x∗ solution of Eq. (16). It is such that there
exists a unique α and λ such that

x∗
� =

⎧
⎪⎪⎨

⎪⎪⎩

C� − Δ
2 + Δ

2α

(

1 −
√

4αC�

Δ + (α − 1)2
)

if � ∈ CM ,

C� − √
C�/λ if � ∈ CI ,

0 otherwise.

(17)

with

CM �
{

� ∈ L, C� ≥ 1
λ

(
Δ − αΔ
Δ − α/λ

)2
}

CI �
{

� ∈ L,
1
λ

(
Δ − αΔ
Δ − α/λ

)2

≥ C� ≥ 1/λ

} (18)
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and the set of optimal responses δ∗ of player Πδ are:

{δ|∃�∗ ∈ CM ,∀� = �∗, δ� = 0 and δ�∗ = Δ} .

Proof. From Theorem 1, we can write

x∗ = arg min max
�∈L

D̂(x,C − Δe�)

= arg min
(

D̂(x,C)+max
�∈L

D�(x�, C�)−D�(x�, C� − Δ)
)

.

Hence, problem (16) is equivalent to the following equivalent constrained
optimization problem:

min
x,α

D(x,C) + α s.t.

⎧
⎨

⎩

∀x�,
Δx�

(C� − Δ − x�)(C� − x�)
≤ α,

x� ≥ 0, and
∑

� x� = X.
(19)

The corresponding Lagrangian is

L(x, α, λ, μ) =
∑

l

x�

C� − x�
+ α + λ(X −

∑

�

x�)

−
∑

�

μ�

(

α +
x�

C� − x�
− x�

C� − Δ − x�

)

with ∀�, x� ≥ 0, μ� ≥ 0.
Let CM be the set of links for which α + x�

C�−x�
− x�

C�−Δ−x�
= 0 and xM

� the
corresponding loads. Then, xM

� satisfies

xM
� Δ

(C� − Δ − xM
� )(C� − xM

� )
= α

i.e. xM
� = C� − Δ

2
+

Δ
2α

(

1 −
√

4α
C�

Δ
+ (α − 1)2

)

.

If � /∈ CM , then the Karush Kuhn Tucker conditions give that μ� = 0 and
hence the lagrangian reduce to Eq. (9). Then, Eq. (10) leads to Eq. (17).

Finally, � ∈ CM iff

xM
� ≤ xI

� i.e.
xM

� Δ

(C� − Δ − xM
� )(C� − xM

� )
≥ α

But
xM

� Δ

(C� − Δ − xM
� )(C� − xM

� )
=

λΔ
√

C� − Δ
√

λ√
C� − Δ

√
λ

.

Therefore

� ∈ CM iff C� ≥ 1
λ

(
Δ − αΔ
Δ − α/λ

)2

.
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Note that α represents the degradation induced by player Πδ. One can readily
check that α = 0 ⇔ CM = ∅ which leads to Eq. 8, that is the optimal strategy
for Πδ when there is no capacity degradation.

Algorithm 3. A water-distributed algorithm for optimal strategy of player
Πx with unknown attack
1 Sort links with decreasing capacity C�

2 ε ← 0.01, εα ← 0.1 // Set it to the desired accuracy

3 TA ← 0 // The traffic to be redistributed

4 �M ← 1 // The link index up to which we reduce the flow

5 �I ← 1 // The link index up to which we increase the flow

6 x ← Solution of Algorithm 1 with no attack (δ = 0)
7 α ← x1

C1−Δ−x1
− x1

C1−x1

8 value ← x1
C1−Δ−x1

+
∑L

l=2
xl

Cl−xl

9 prec ← value + 1
10 while value < prec do
11 α ← α − εα, prec ← value, �I ← �M

12 for � = 1 to �M do // Reduce all Links in M

13 TA ← TA + x�

14 x� ← C� − Δ
2

+ Δ
2α

(
1 −
√

4αC�
Δ

+ (α − 1)2
)

15 TA ← TA − x�

16 while TA > 0 do // Redistribute TA among the links

17 while �M < L and α ≤ D(x�M+1, C�M+1 − Δ) − D(x�M+1, C�M+1) do
18 �M + +

19 �I ← �M

20 while �I < L and ND�I (x, C) ≥ ND�I+1(x, C) do
21 �I + +

22 for j = �M + 1 to �I do

23 η ← ε(Cj − xj)
2

√
Cj + ε(Cj − xj)

24 xj ← xj + η
25 TA ← TA − η

26 value ← x1
C1−Δ−x1

+
∑L

l=2
xl

Cl−xl

6.2 An Algorithmic Solution

We use the equivalent optimization problem given in Eq. (19). Since it is a convex
optimization problem, standard optimization tools (e.g. a projected gradient
descent on the Lagrangian) can be used, although they exhibit poor performance,
in particular because of the nature of the needed projection and the system’s size.
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(a) Case C1 = 33: then
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(c) Case C1 = 55: then
CM = {1}, CI = ∅

Fig. 3. Different sets CM and CI . In the three examples, C2 = 30, X = 10 and Δ = 2.
The min-max solution is represented with the black point. In each plot, the two graphs
(red and blue) represent the overall delay that would be experienced by the user if the
attack was concentrated on a single link (1 and 2 respectively). (Color figure online)

Therefore, we propose an algorithm, in a similar vein to water-filling algorithms,
which we refer to as water-distributed algorithm. It can be seen as a water-filling
algorithm with a top cap on the water level (represented by α).

The mechanism is given by Algorithm 3. We initialize it by using Algorithm1
to compute the optimal allocation x if there was no attack. We deduce the initial
value of α.

We then iteratively decrease the value of α and compute the corresponding
allocation x. The algorithm ends when no gain in the delays is obtained.

Instead of computing the whole allocation at each iteration of the algorithm,
we compute the amount of flow which is removed to the links of CM as a con-
sequence of the decrease of α (lines 21 to 25) and then redistribute this amount
to the other links (Line 26 to 36).

6.3 Different CM and CI

Note that the set CM and CI both depend on the parameter X, Δ and the link
capacities C�, 1 ≤ � ≤ L.

As long as Δ > 0, the set CM is always non-empty (as it should include the
link of highest capacity). In contrast, the set CI can be empty or not. Further,
the set CM ∪CI may cover all links or not. The different situations are illustrated
in the scenario of Fig. 3. The system has a set of two links. In Fig. 3a both of
them are in CM . In this case, the set CI is empty. Figure 3c shows a scenario
where CI is also empty and CM consists of only the link of highest capacity.
Finally, Fig. 3b shows a case where CM only contains the link of higher capacity,
while the other one is in CI .

7 Conclusion

We have studied in this paper a game between a router that has a fixed demand
to ship and a malicious controller that affects the system capacity by some fixed
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amount and can decide how to split this among different links. It turned out to be
a non standard zero-sum game since the cost is convex for both the minimizer
and maximizer and thus does not have a saddle point. We thus focused on
computing the max-min and the min-max value and proposed efficient solution
algorithms. While the max-min problem is solved using a water-filling algorithm,
the solution of the minmax problem requires a more complex algorithm which we
call water-distributing algorithm. We plan in the future to extend the problem
to several players that try selfishly to minimize their cost in the presence of
adversarial capacity degradation controller.
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Abstract. Denial of Service (DoS) attacks prevent legitimate users from
accessing resources by compromising availability of a system. Despite
advanced prevention mechanisms, DoS attacks continue to exist, and
there is no widely-accepted solution. We propose a deception-based pro-
tection mechanism that involves game theory to model the interaction
between the defender and the attacker. The defender’s challenge is to
determine the optimal network configuration to prevent attackers from
staging a DoS attack while providing service to legitimate users. In this
setting, the defender can employ camouflage by either disguising a nor-
mal system as a honeypot, or by disguising a honeypot as a normal
system. We use signaling game with perfect Bayesian equilibrium (PBE)
to explore the strategies and point out the important implications for
this type of dynamic games with incomplete information. Our analy-
sis provides insights into the balance between resource and investment,
and also shows that defenders can achieve high level of security against
DoS attacks with cost-effective solutions through the proposed deception
strategy.

Keywords: Game theory · Deception · DoS attacks · Honeypot · Per-
fect Bayesian equilibrium · Security · Signaling game

1 Introduction

A denial of service (DoS) attack is an attempt to prevent legitimate users from
accessing resources. An attacker may target an entire network to cause tempo-
rary or permanent unavailability, reduce intended users’ bandwidth, or interrupt
access to a particular service or a system. The distributed DoS (DDoS) attacks
even make it more difficult to prevent and harder to recover. These attacks have
already become a major threat to the stability of the Internet [7]. In the survey
paper on DDoS attacks, Lau et al. [17] observe that as time has passed, the dis-
tributed techniques (e.g., Trinoo, TFN, Stacheldraht, Shaft, and TFN2K) have
c© Springer International Publishing AG 2016
Q. Zhu et al. (Eds.): GameSec 2016, LNCS 9996, pp. 18–38, 2016.
DOI: 10.1007/978-3-319-47413-7 2
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become more advanced and complicated. Many observers have stated that there
is currently no successful defense against a fully distributed DoS attack.

In addition, attackers have the advantage of time and stealth over defenders,
since an attacker can obtain information about a defender by pretending to be
a legitimate user. Thus, in order to counter this imbalance, deception can be
utilized to lead an attacker to take actions in the defender’s favor by sending
fake signals. This way, deception can be used to increase the relative cost of
attack, which in turn will delay the attacker because of the uncertainty. In the
meantime, the defender can work on solutions to defer and counter the potential
attacks. In this setting, although, both the defender and the attacker may spend
extra resources to understand the real intention of each other, from the defender’s
view point, this approach provides a means to mitigate DoS attacks.

Furthermore, the need for protection against DoS attacks extends beyond
employing routine intrusion detection system into the domain of survivability.
Survivability focuses on the provisioning of essential services in a timely manner
without relying on the guarantee that precautionary measures will always suc-
ceed against failures, accidents as well as coordinated attacks. It is not an easy
task to capture unprecedented DoS attacks while monitoring the entire traffic
and providing service to legitimate users. Some resources are to be allocated
for attacker detection and advanced tracking tools are to be utilized to protect
against patient, strategic and well organized attackers. At the end, it turns out
to be an optimization problem from the defender’s side about how to allocate the
limited resources in a way that the cost will be minimum while the deterrence
will be maximum. Similarly, the attacker will try to cause as much damage as
possible with limited resources.

In this paper, we propose a game-theoretical approach to model the interac-
tion between the defender and the attacker by deploying honeypots as a means to
attract the attacker and retrieve information about the attacker’s real intention.
A honeypot, unlike a normal system, is a computer system to trap the attacker
[3]. Honeypots produce a rich source of information by elaborating the attacker
intention and methods used when attackers attempt to compromise a seemingly
real server.

In addition to deploying honeypots, we employ deception in our dynamic
game in which players (i.e., defender and attacker) take turns choosing their
actions. In the scenario under study, the defender moves first by deciding whether
to camouflage or not, after which the attacker responds with attack, observe or
retreat actions. It is a game of incomplete information because of the attacker’s
uncertainty of system type. We determine the perfect Bayesian equilibria (PBE)
at which both players do not have incentives to deviate from the actions taken.

The contribution of this paper is two-fold: (1) A new defense framework
which proactively uses deception as a means to assist in developing effective
responses against unconventional, coordinated and complex attacks emanating
from adversaries. (2) Determination of the Bayesian equilibrium solutions for
this model and analyze the corresponding strategies of the players using a new
quantification method for the cost variables.
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We also show that deception is an optimal/best response action in some cases
where the attacker chooses not to attack a real server because of the confusion
caused in the signaling game. Furthermore, we include comprehensive graphics to
reflect the possible scenarios that may occur between an attacker and a defender.

The paper continues with the background information and related work on
the use of game theory in DoS attacks in Sect. 2. We give the details on the for-
mulation of our model, and specify the assumptions made and notations used in
this paper in Sect. 3. In Sect. 4, in case of an attack, the methods for quantifying
the damage to a defender and the benefit to an attacker are discussed. Then,
we continue with the analysis of PBE and document pooling and separating
equilibria in Sect. 5. Section 6 presents the equilibria solutions under various cir-
cumstances and find out important implications about the interaction between
a defender and an attacker. Section 7 compares our model with real-life systems,
and finally Sect. 8 summarizes our findings and gives an insight into how our
methodology could be improved further.

Occasionally, the feminine subject she is used to refer to the defender and he
to the attacker in the rest of the paper.

2 Background

In this section, we briefly review the basic elements of the game theoretical
approach, and relate them to our proposed solution.

2.1 Deception via Honeypots

Game theory has been used in the cyber-security domain ranging from wireless
sensor networks [14,28] to DoS attacks [1,18] and information warfare [13] in
general. Specifically for DoS attacks, after an attack plan is made by an attacker,
even though launching a DoS attack against a victim/defender is always preferred
regardless of system type (because of, say, its low cost), the attacker might prefer
not to attack if he cannot confirm if a system is of a normal type or a honeypot
[6,19].

Defenders can employ deception to increase the effectiveness of their defense
system and also to overcome a persistent adversary equipped with sophisticated
attack strategies and stealth.

Deception has been used in the military [8,24] and homeland security [29] to
protect information critical systems. When attackers cannot determine the type
of a system due to deception employed by the defender, they might want to post-
pone the attack or retreat conditionally. Additional resources might be required
to perceive the true system type. In other words, deception hampers the attack-
ers’ motivation by increasing the cost. In this paper, we explore the strategies for
the defender to estimate the expectations of an attacker and behave accordingly
in order to halt him from becoming excessively aggressive and launching DoS
attacks. Although we illustrate the solution for DoS attacks, the framework can
be used for addressing broader category of attacks in general.
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In the context of DoS attacks, a defender can deceive an attacker by deploying
several honeypots in her system, and behave as if the attack was successful.
However, an intelligent attacker can run simple scripts to understand the real
type of the system. For example, an attacker can measure simple I/O time delays
or examine unusual and random system calls on the defender server. Similarly,
temptingly obvious file names (e.g., “passwords”), and the addition of data in
memory as discussed in [10] can disclose the system type obviously [6]. On the
other hand, Rowe et al. [24] propose using fake honeypots (normal systems that
behave as honeypots) to make the job of detecting system type more complicated
for the attacker. It is also a form of deception in which the system is camouflaged
or disguised to appear as some other types [5].

Similarly, Pibil et al. [21] investigate how a honeypot should be designed
and positioned in a network in such a way that it does not disclose valuable
information but attracts the attacker for target selection. Also, La et al. [16]
analyze a honeypot-enabled network that comprises of IoTs to defend the sys-
tem against deceptive attacks. In this setting, the attacker might avoid attacking,
assuming that the system could be actually a honeypot. As this defensive strat-
egy becomes common knowledge between players, the attacker needs to expend
additional resources to determine a system’s true type.

Accordingly, a defender can use deception to halt the attacker from executing
his contingency plan until she is better prepared, or to effectively recover the
system to a secure state that patches all the vulnerabilities exploited by the
attacker in the current recovery cycle. The concept of deception is formulated
in greater detail in [23,30] as a multi-period game. In this paper, we use a
formulation method similar to Zhuang et al. [31] for single period games.

2.2 DoS Attacks from a Game-Theoretical Perspective

The studies that analyze DoS attacks from the game theoretical perspective
mostly applied game theory on wireless sensor networks (WSN) considering an
intrusion detector as defender and malicious nodes among the sensors as attack-
ers [18,28]. Malicious nodes are those sensors that do not forward incoming
packets properly.

Agah and Das [1] formulate the prevention of passive DoS attacks in wireless
sensor networks as a repeated game between an intrusion detector and nodes of
a sensor network, where some of these nodes act maliciously. In order to prevent
DoS, they model the interaction between a normal and a malicious node in
forwarding incoming packets, as a non-cooperative N player game.

Lye et al. [18] deal with interactions between an attacker and an administra-
tor of a web server. The game scenario begins with the attacker’s attempts to
hack the homepage, and the Nash equilibria are computed accordingly. By veri-
fying the usefulness of the approach with network managers, they conclude that
the approach can be applied on heterogeneous networks with proper modeling.
As for Hamilton et al. [13], they take the security issues from a very general per-
spective and discuss the role of game theory in information warfare. The paper
focuses mostly on areas relevant to tactical analysis and DoS attacks.
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Some of the studies that involve game theory about DoS attacks are dis-
cussed in a survey by Shen et al. [25]. Here the authors categorize them under
non-cooperative, cooperative and repeated game models. However, the use of
signaling game in DoS attacks is not mentioned under those categories as it is
a new area that we explore throughout this paper. Nevertheless, a theoretical
analysis of DDoS attacks is proposed using signaling game in [12]. They show
the effectiveness and feasibility of a defense strategy based on port and net-
work address hopping compared to packet filtering alone and do not employ any
deception. The study is very specific to certain conditions and lacks a compre-
hensive analysis of possible scenarios that may occur between an attacker and a
defender.

The work closest to ours is that of Carroll and Grosu [6] who also use signaling
game to investigate the interactions between an attacker and a defender of a
computer network. Honeypots are added to the network to enable deception, and
they show that camouflage can be an equilibrium strategy for the defender. We
extend this study to a broader aspect that includes DoS attacks and we not only
find out inequalities that must hold during the game with certain parameters but
also propose a parameter valuation mechanism to quantify benefits and damages
using existing security evaluations.

Although not directly related to DoS attacks, the authors in [26] study the
interactions between a malicious node and a regular node by using PBE to
characterize the beliefs the nodes have for each other. Since the best response
strategies depend on the current beliefs, the authors apply signaling game to
model the process of detecting the malicious nodes in the network.

Despite these studies end up with equilibrium points that represent how a
defender and an attacker would act under some conditions, the formulations of
the game require all parameters to be known in advance. Also, concrete model-
ing of DoS attacks requires involving various parameters and valuations of the
players to explore equilibria. In this paper, we propose a quantification method
with parametric functions under uncertain conditions (incomplete information).
This way, the number of all possible scenarios increases and the interactions
between players can be reflected in a more comprehensive manner.

3 Model Formulation

We start with a model of incomplete information in which only the defender has
private information. In particular, the defender is of a particular type normal
or honeypot. This private information is known by the defender herself but not
by the attacker. Although the defender’s type is not directly observable by the
attacker, the prior probability of her type is assumed to be common knowledge
to the attacker. We will let nature make the initial (zero-stage) move, randomly
drawing the defender’s type from the prior probability distribution.

A defender protects her network by deploying honeypots, which are traps
to detect unauthorized access. The defender can disguise normal systems as
honeypots and honeypots as normal systems. After the network is created, an
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attacker then attempts to compromise systems. The attacker can successfully
compromise normal systems, but not honeypots. If the attacker attempts to
compromise a honeypot, the defender observes the actions and can later improve
her defenses. We model this interaction between defender and attacker as a
signaling game as described next.

3.1 Assumptions

Although DoS (especially distributed DoS) attacks are launched by a mass
(army) of computers, we do restrict our attention to the case of a single central-
ized attacker where he can submit multiple requests to a server in parallel to
cause unavailability (the main purpose of DoS attacks) or temporarily unreach-
able server error. Thus, we do not address the case of decentralized attackers
(such as multiple hacker groups, countries or companies).

During the game, the attacker can update his knowledge about the defender
type after observing the signal sent by the defender. However, we do not include
any other types of observations (such as spying or probing attacks) for simplicity.
Finally, we assume that the players are fully rational, and want to maximize their
utilities.

3.2 Signaling Game with Perfect Bayesian Equilibrium

A signaling game is a dynamic game with two players: attacker and defender in
our case. The defender has a certain type which is set by nature. The defender
observes her own type to take an action during the game, while the attacker
does not know the type of the defender. Based on the knowledge of her own
type, the defender chooses to send a signal from a set of possible options. Then,
the attacker observes the signal sent by the defender and chooses an action from
a set of possible actions. At the end, each player gets the payoff based on the
defender’s type, the signal sent and the action chosen in response.

In our game, the nature decides the defender type to be either normal (N) or
honeypot (H). Based on the type, the defender makes truthful disclosure or sends
the deception signal. For example, when the defender sends ‘H’ signal (the apos-
trophe indicates the message is a signal) for N type, she informs the attacker as
if the system is slowing down and the attack is successful. The attacker receives
the signal ‘H’ or ‘N’ and decides whether to attack (A), observe (O) or retreat
(R). Both players will choose the option which yields the maximum utility con-
sidering all possibilities.

However, in game theory, sometimes Nash equilibrium results in some implau-
sible equilibria, such as incredible threats from the players. To deal with this type
of threats, the concept of PBE which is a strategy profile that consists of sequen-
tially rational decisions is utilized in a game with incomplete information. PBE
can be used to refine the solution by excluding theoretically feasible but not
probable situations [11].
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3.3 Notation and Problem Formulation

We define the notations as follows:

– A and D: Attacker (signal receiver) and defender (signal sender), respectively.
– θD is the nature’s decision of defender type.
– αN and αH are the probabilities of signaling ‘N’ which originates from a

normal type and a honeypot defender, respectively.
– μ refers to the attacker’s belief for the probability of receiving the signal ‘N’

from a normal type defender. Accordingly, (1 − μ) represents the probability
when the signal is ‘N’ but the defender type is honeypot.

– γ and (1 − γ) denote to the attacker’s belief for how likely the signal of ‘H’
might have originated from a normal type defender or a honeypot.

– ca and co are attacker’s cost of attacking and observing respectively where
ca, co � 0 (we do not incur any charges for retreating in this model).

– ba and bo correspond to benefit of attacking and observing where ba �
ca, bo � co.

– cc, cs, ch and cw are defender’s costs of compromise, signaling, honeypot and
being watched, respectively, where cc, cs, ch, cw � 0.

– bcs and bw are customer satisfaction on normal system and benefit of observing
the attacker on a honeypot, respectively.

– Rd is the service rate of the defender, and Ra, Ro are the attacking and observ-
ing rates of the attacker.

– C is the quantification factor for scaling the rates.

Table 1. Actions and posterior probabilities

αN = Pr(‘N’ | type N) (1 − αN ) = Pr(‘H’ | type N)

αH = Pr(‘N’ | type H) (1 − αH) = Pr(‘H’ | type H)

μ = Pr(type N | ‘N’) (1 − μ) = Pr(type H | ‘N’)

γ = Pr(type N | ‘H’) (1 − γ) = Pr(type H | ‘H’)

3.4 Sequence of Actions in an Extensive Form

Figure 1 illustrates the sequence of deception actions of the signaling game in
an extensive form. The nature decides the system type as normal (N) with
probability θD (top part of the figure) or honeypot (H) with probability 1 − θD

(bottom shaded part of the figure) and only defender knows it. The defender
can choose to disclose her real type by sending message N (top-left branch) or H
(bottom-right branch). On the other hand, she can choose to deceive the attacker
by signaling ‘H’ in normal type (top-right branch) or ‘N’ in honeypot (bottom-
left branch). The attacker receives the signal as ‘N’ or ‘H’ from the defender,
updates his posterior probability and takes an action accordingly.
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Fig. 1. Signaling game in extensive form

4 Quantification of Damage

We consider a game scenario in which the attacker is uncertain about the
defender’s asset valuation and the cost. In this section, we first quantify the
cost of a DoS attack to the defender and to the attacker, then solve the perfect
Bayesian equilibrium (PBE) using sequential rationality.

Basagiannis et al. [4] propose a probabilistic model to quantify the cost of a
DoS attack to the defender and to the attacker using Meadows’ framework [20].
Although the model makes the cost calculation by including a security protocol,
the costs for both parties generically reflect the level of resource expenditure
(memory, capacity, bandwidth) for the related actions. As the security level
increases, the cost of providing security on the defender’s side and the cost of
breaking security on the attacker’s side increase too. In [4], there is an analysis
of how defender/attacker costs change with respect to security level. We refer to
the high and low security level cases in Fig. 2a and b respectively. The security
level referred in [4] is determined by the complexity of a puzzle that the attacker
tries to solve by intercepting messages. In comparison of the processing costs at
high security level with low security level, the relative costs to the defender and
to the attacker can be approximated by the values specified in the figures for the
quantification of equilibrium points. For example, the processing costs at high
security level for 100 messages can be used to determine the cost of compromise
(cc) and cost of attacking (ca), e.g., cc = 4000 units and ca = 600 units. Similarly
considering the relative costs, the rewards at low level security can be used to
quantify the costs when the defender chooses to disclose her own type and the
attacker chooses to observe.

Moving forward with that analogy, the cost variables introduced in the exten-
sive form of the game turn out to be: cc = 4000 units, ca = 600 units, cw = 80
units and co = 30 units. We fit these values to estimate the service rate of
the defender so that our analysis can explore the degradation as a result of
the attacker’s strategies. We use the formula derived in [15] to measure the
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(a) High security level (b) Low security level

Fig. 2. Processing costs in high & low security levels [4]

satisfaction rate of customers (R) with respect to effective service rate:

U(R) = 0.16 + 0.8 ln(R − 3) (1)

Equation (1) quantifies the satisfaction of customers who visit the defender’s
resources (e.g., website) when she serves at a rate of R. The rate R can be
disrupted by an attack as the attacker’s aim is to cause unavailability for intended
customers. Using this equation helps us reflect the degradation when there is an
attack against the defender.

In [15], the maximum satisfaction is rated out of 5, we accept that value
as normal case for which Rd = 427.11. We assume that the decrease in service
rate will reduce the satisfaction of the customers, and eventually it will turn
out to be a negative cost for the defender. This way, the satisfaction rate can
be referred as the difference between the service rate of the defender and the
degradation caused by the attacker. However, since the costs referred in [4] are
of large magnitudes, to be able to properly measure the satisfaction rate, we
scale it with a quantification factor, C.

We refer to the cost of defender as the degradation in the satisfaction, which
corresponds to the difference between the satisfaction in normal case, C · U(Rd)
and attack case, C · U(Rd − Ra) or observe case, C · U(Rd − Ro). It can be
summarized as follows:

C · U(Rd) − C · U(Rd − Ra) = C · 0.8 · ln(
R − 3

R − Ra − 3
) = cc

C · U(Rd) − C · U(Rd − Ro) = C · 0.8 · ln(
R − 3

R − Ro − 3
) = cw

(2)

Also, we assume that the cost of attacker is proportional to the rate that they

send traffic to cause DoS attack:
Ra

Ro
=

ca

co
=

600
30

= 20.

Solving these equations, we end up with Ra = 389.31 and Ro = 19.46. Having
real values for the players’ rates helps us estimate the constants in the cost table
and make reasonable assumptions accordingly. Substituting the numeric values,
we set C = 1600 and cs = 50.
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As a result, we represent the players’ utilities for every action more accu-
rately. Figure 3 updates the notation used in extensive form as a function of
service/attack rate so that cost and benefit for each strategy are reflected to
both players in a precise manner. New constant values such as va, v1 and v2 are
introduced to reflect the conditional variables that arise based on the strategies
taken by the players, e.g., the original service rate (v1 · Rd) reduces to v2 · Rd

when signaling ‘H’ in normal type.

Fig. 3. Updated signaling game

5 Analysis of Perfect Bayesian Equilibrium

In a game with incomplete information, players might update their beliefs
through observations about types of the opponent. This belief updating process
must satisfy Bayes’ rule in which posterior probability is determined by the priori
and the likelihood of each type.

5.1 Separating Equilibria

In this section, we provide the steps to find out if there is a separating equilibrium
where defenders’ signals are different. We first examine the game depicted in
Fig. 4 where both defender types are truthful, i.e., normal type’s signal is ‘N’
and honeypot’s signal is ‘H’.

Based on the scenario, when the attacker receives the signal ‘N’ (on the left
side), he updates the posterior probability, μ:

μ =
θD · αN

θD · αN + (1 − θD) · αH
=

θD · 1
θD · 1 + (1 − θD) · 0

= 1
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Fig. 4. Perfect Bayesian equilibrium of (‘N’,‘H’) - (A,R)

With this strategy, the attacker assigns full probability to the normal type
defender because only the normal type defender can send signal ‘N’ in this sepa-
rating equilibrium setting. Using this posterior probability, the attacker chooses
a response among the three options (A, O, R) on the top-left side that yields the
highest payoff (by the sequential rationality). In this case, the attacker decides
to attack if cc − va · Ra ≥ 0 ⇒ Ra ≤ cc

va
, and similarly he decides to retreat if

Ra >
cc

va
.

We omit comparison of attack (A) with observe (O) option since cc > cw by
Eq. 2. When the attacker chooses to attack, we mark the corresponding branches
for both defender types on the top and bottom left side. Similarly, if the attacker
receives ‘H’, he believes that the signal comes from a honeypot by the posteriori
calculation:

γ =
θD · (1 − αN )

θD · (1 − αN ) + (1 − θD) · (1 − αH)
=

θD · 0
θD · 0 + (1 − θD) · 1

= 0

In this case, the attacker chooses to retreat (R) with 0 payoff among the
three options because A and O have negative values in Fig. 3. Accordingly, the
branches are shaded (top and bottom right) for both defender types in Fig. 4.

Once the actions are taken for both players, PBE seeks for any deviations
from the players’ decisions. In other words, if a player has incentive to change
the decision among the shaded branches, we say that PBE does not exist for
such a case. We first consider the scenario in which the attacher decides to
attack against receiving signal ‘N’ (shaded branches). The normal type defender
compares the utility of signaling ‘N’ (v1 ·Rd −cc) with signaling ‘H’ (v2 ·Rd −cs).
She does not deviate from the decision as long as:

v1 · Rd − cc ≥ v2 · Rd − cs ⇒ Rd ≥ cc − cs

(v1 − v2)
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Similarly, the honeypot type compares the shaded branches and does not deviate
if and only if:

−v4 · Rd ≥ bo − v3 · Rd − cs ⇒ Rd ≥ bo − cs

v3 − v4

Consequently, this separating equilibrium strategy (the defender plays (‘N’,‘H’)
and the attacker plays (A,R) represents a PBE of this incomplete information
game, if and only if:

Rd ≥ cc − cs

(v1 − v2)
, Rd ≥ bo − cs

v3 − v4
, Ra ≤ cc

va

Now we consider the scenario in which the attacher decides to retreat against
receiving signal ‘N’. In a similar way, both defender types seek for incentives to
deviate from current strategy by comparing the utility of signaling ‘N’ with that
of ‘H’. After substituting the payoffs, we conclude that she does not deviate if:

Rd ≤ cs

(v2 − v1)
, Rd ≤ cs

v4 − v3
, Ra ≥ cc

va
.

For illustration purposes, we show the exhaustive analysis of the strategy in
which the defenders signal (‘N’,‘H’) and the attacker responds by (A,R). All
separating equilibria (including the above solution) that satisfy PBE and the
corresponding conditions are listed in Table 2.

Table 2. Perfect Bayesian equilibrium for separating equilibria

(s1, s2), (a1, a2) Conditions μ, γ

E1 (‘N’,‘H’) - (A,R) Rd ≥ cc − cs
(v1 − v2)

, Rd ≥ bo − cs
v3 − v4

, Ra ≤ cc
va

1, 0

E2 (‘N’,‘H’) - (R,R) Rd ≤ cs
(v2 − v1)

, Rd ≤ cs
v4 − v3

, Ra >
cc
va

1, 0

E3 (‘H’,‘N’) - (A,R) Rd >
cc + cs

(v2 − v1)
, Rd >

bo + cs
v4 − v3

, Ra ≤ cc
va

0, 1

E4 (‘H’,‘N’) - (R,R) Rd >
cs

(v2 − v1)
, Rd >

cs
v4 − v3

, Ra >
cc
va

0, 1

s1 and s2 represent the signals sent by normal type and honeypot defend-
ers. a1 and a2 represent attacker’s responses against normal type and hon-
eypot defenders.

5.2 Pooling Equilibria

In this section, we provide the steps to find out potential PBEs where both
defender types send the same signal. We examine the scenario shaded on the left
half of Fig. 5 when both defender types send the signal ‘N’. The attacker updates
the posterior probability, μ in a similar way for which αN = 1 and αH = 1 based
on the definition in Table 1.
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Fig. 5. Perfect Bayesian equilibrium of (‘N’,‘N’) - (A,R)

μ =
θD · αN

θD · αN + (1 − θD) · αH
=

θD · 1
θD · 1 + (1 − θD) · 1

= θD

With this strategy, the attacker cannot distinguish between the defender
types, hence the announcements from the defenders are uninformative. In con-
trast to strategies in separating equilibria, the attacker cannot assign a full prob-
ability to a certain type, and must consider the nature’s probability (priori) θD

as a result of the updated μ value. In this scenario, the posteriori coincides with
the prior probability which is a common case in pooling equilibria [9].

After μ is updated, the attacker chooses between the actions. He chooses A,
if these conditions hold from Fig. 3:

θD(cc − va · Ra) + (1 − θD)(−va · Ra) ≥ θD(cw − va · Ro) + (1 − θD)(−va · Ro)

θD(cc − va · Ra) + (1 − θD)(−va · Ra) ≥ 0

which holds for

θD ≥ va · (Ra − Ro)
cc − cw

and θD ≥ Ra · va

cc

On the other hand, the attacker decides to observe (O) if:

θD <
va · (Ra − Ro)

cc − cw
θD ≥ Ro · va

cw

and finally he decides to retreat (R) if:

θD <
Ra · va

cc
and θD <

Ro · va

cw

Despite the probability of signaling ‘H’ is 0 for both defenders, the attacker
must still update γ to finish the game:

γ =
θD · (1 − αN )

θD · (1 − αN ) + (1 − θD) · (1 − αH)
=

θD · 0
θD · 0 + (1 − θD) · 0

=
0
0
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which is a special case where γ can have an arbitrary value (γ ∈ [0, 1]) because
the player is at a state which should not be reached in equilibrium [2]. To handle
such cases, we first set restrictions on the range of γ based on the attacker’s
decisions, then check whether there is a deviation in any of the defenders. For
example, let us assume that the attacker chooses to retreat when he receives
the signal ‘H’ on the right half of Fig. 5. Then, this equations must hold for the
retreat option to be optimal:

γ · 0 + (1 − γ) · 0 > γ(cc − va · Ra) + (1 − γ)(−va · Ra) ⇒ γ <
va · Ra

cc

γ · 0 + (1 − γ) · 0 > γ(cw − va · Ro) + (1 − γ)(−va · Ro) ⇒ γ <
va · Ro

cw

After setting the restrictions and assuming that the attacker has chosen to
attack against normal type defender (A in the first computation), we check if
there is deviation by the defender types by comparing the marked selections in
Fig. 5. Then, we can conclude that the PBE can be sustained with this scenario,
if these conditions hold:

v1 · Rd − cc ≥ v2 · Rd − cs ⇒ Rd ≥ cc − cs

v1 − v2

bo − v3 · Rd − cs ≥ −v4 · Rd ⇒ Rd ≤ bo − cs

v3 − v4

The remaining pooling equilibrium scenarios that satisfy PBE in the exhaus-
tive analysis are all listed in Table 3 with respective conditions.

6 Results

Using the valuations of players (e.g., cost variables, service rate), we explore
the Nash equilibria by finding out steady states where neither player has incen-
tives to deviate from the actions taken. We take all possibilities into account
for both defender types (normal and honeypot) and one attacker including the
nature’s decision, our results in Fig. 6 show that the equilibrium can be at 4
different settings based on the valuation of the players. In particular, when nor-
mal defender’s service rate is very high compared to the attacker (the square
� and triangle � area), the defender does not anticipate the use of deception
because the overhead caused by signaling is more than the damage the attacker
may cause. In response, when the attacker’s rate is comparable to defender’s
service rate (triangle � area), he wants to attack in normal type and retreat in
honeypot; whereas if the defender’s service rate is extremely high (the square
�), then the attacker chooses to retreat with certainty. That is, the attacker’s
utility which takes into account the prior belief (θD), the signal (s) and the
posterior probability (μ), makes it infeasible to attack. However, in the former
case (triangle � area), since the attack rate is relatively close to the defender’s
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service rate, the attacker finds initiatives to attack in the case where he receives
the signal ‘N’. In other words, the potential damage he may cause (if the target
is normal) is larger than the cost incurred on the attacker (in case he fails to
attack a normal server).

In pooling equilibria where defenders with different types all choose the same
signal to be sent (the diamond ♦ and circle © area), we see that if the attacker’s
rate is very close to the defender’s service rate (circle © area), the attacker
chooses to attack with certainty. If the attack succeeds, the damage to the
defender is huge and a permanent unavailability can occur on the server side.
However, even if the attacker’s rate is high enough in some cases (the diamond ♦),
the attacker may prefer retreating because of the likelihood that the defender’s

Table 3. Perfect Bayesian equilibrium for pooling equilibria

(s1, s2) - (a1, a2) Conditions Prior & Posterior*

E5 (‘N’,‘N’) - (A,A)
cs

v2 − v1
≥ Rd ≥ cs

v4 − v3
θD ≥ va · (Ra − Ro)

cc − cw
, θD ≥ Ra · va

cc
,

γ ≥ va · (Ra − Ro)

cc − cw
, γ ≥ va · Ra

cc
E6 (‘H’,‘H’) - (A,A)

cs

v4 − v3
> Rd >

cs

v2 − v1

E7 (‘N’,‘N’) - (A,O)
cs + cw − cc

v2 − v1
≥ Rd ≥ cs − bo

v4 − v3
θD ≥ va · (Ra − Ro)

cc − cw
, θD ≥ Ra · va

cc
,

γ <
va · (Ra − Ro)

cc − cw
, γ ≥ va · Ro

cwE8 (‘H’,‘H’) - (A,O)
cs − bo

v4 − v3
> Rd >

cs + cw − cc

v2 − v1

E9 (‘N’,‘N’) - (A,R)
bo − cs

v3 − v4
≥ Rd ≥ cc − cs

v1 − v2
θD ≥ va · (Ra − Ro)

cc − cw
, θD ≥ Ra · va

cc
,

γ <
va · Ra

cc
, γ <

va · Ro

cwE10 (‘H’,‘H’) - (A,R)
cc − cs

v1 − v2
> Rd >

bo − cs

v3 − v4

E11 (‘N’,‘N’) - (O,A)
cs + cc − cw

v2 − v1
≥ Rd ≥ cs + bo

v4 − v3
θD <

va · (Ra − Ro)

cc − cw
, θD ≥ Ro · va

cw

γ ≥ va · (Ra − Ro)

cc − cw
, γ ≥ va · Ra

ccE12 (‘H’,‘H’) - (O,A)
cs + bo

v4 − v3
> Rd >

cs + cc − cw

v2 − v1

E13 (‘N’,‘N’) - (O,O)
cs

v2 − v1
≥ Rd ≥ cs

v4 − v3
θD <

va · (Ra − Ro)

cc − cw
, θD ≥ Ro · va

cw

γ <
va · (Ra − Ro)

cc − cw
, γ ≥ va · Ro

cw
E14 (‘H’,‘H’) - (O,O)

cs

v4 − v3
> Rd >

cs

v2 − v1

E15 (‘N’,‘N’) - (O,R)
cw

v1 − v2
≥ Rd ≥ cs

v4 − v3
θD <

va · (Ra − Ro)

cc − cw
, θD ≥ Ro · va

cw

γ <
va · Ra

cc
, γ <

va · Ro

cw
E16 (‘H’,‘H’) - (O,R)

cs

v4 − v3
> Rd >

cw

v1 − v2

E17 (‘N’,‘N’) - (R,A)
cs + cc

v2 − v1
≥ Rd ≥ cs + bo

v4 − v3
θD <

Ra · va

cc
, θD <

Ro · va

cw

γ ≥ va · (Ra − Ro)

cc − cw
, γ ≥ va · Ra

ccE18 (‘H’,‘H’) - (R,A)
cs + bo

v4 − v3
> Rd >

cs + cc

v2 − v1

E19 (‘N’,‘N’) - (R,O)
cs + cw

v2 − v1
≥ Rd ≥ cs

v4 − v3
θD <

Ra · va

cc
, θD <

Ro · va

cw

γ <
va · (Ra − Ro)

cc − cw
, γ ≥ va · Ro

cwE20 (‘H’,‘H’) - (R,O)
cs

v4 − v3
> Rd >

cs + cw

v2 − v1

E21 (‘N’,‘N’) - (R,R)
cs

v2 − v1
≥ Rd ≥ cs

v4 − v3
θD <

Ra · va

cc
, θD <

Ro · va

cw

γ <
va · Ra

cc
, γ <

va · Ro

cw
E22 (‘H’,‘H’) - (R,R)

cs

v4 − v3
> Rd >

cs

v2 − v1
s1 and s2 represent the signals sent by normal type and honeypot defenders. a1 and a2 represent
attacker’s responses against normal type and honeypot defenders.
* γ becomes μ in the equation when defenders’ signals are (‘H’,‘H’)
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Fig. 6. Nash equilibria by attacker/defender rate & histogram

type is honeypot. In this case, the attacker not only fails to attack and consume
his resources but also is observed by the defender. In other words, the defender
takes advantage of the confusion caused on the attacker’s side by sending the
same signals to the attacker.

In Fig. 6, we remove the cases where the attacker’s rate exceeds the defender’s
service rate. Since those cases signify that the attack is already successful and the
defender cannot serve her customers, we do not include the equilibrium analysis
for the bottom right side of the figure.

Another interesting inference that can be drawn from Fig. 6 is that the
defender doesn’t anticipate signaling while the attacker’s rate is approximately
less than 50 % of the defender’s rate (the square � and triangle � area). This
result might depend on our game setting and the nature’s probability of choos-
ing defender type. Nevertheless, it is of paramount importance to point out that
the defender might not need to deploy honeypots if she believes the attacker’s
rate is below a certain threshold. That is, on the defender side, she can come
up with a tolerance rate that the attacker can consume up to without a major
degradation on customer satisfaction.

Now that we observe the interaction between the players, we can focus on
specific equilibrium cases and examine how they behave under different circum-
stances. Figure 7a and b show how the equilibria change when we modify the
nature’s probability of deciding if a system is of a normal type. We pick two
extreme cases where θD = 0.1 and θD = 0.9. In Fig. 7a, since the probability of
a system being normal type is very low (θD = 0.1), the server that the attacker
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targets is more likely to be a honeypot. Accordingly, we see that the attacker is
less likely to choose attacking, and all circles in Fig. 6 (©) turn into diamonds
(♦). Whereas, in Fig. 7b, the circles expand more and constitute a larger area as
the likelihood of a system being normal type is set high. The attacker anticipates
attacking whichever the signal he receives since the server that he will attack is
more likely to be a normal type. In other words, the overall benefit of attacking
(despite it can rarely be a honeypot) becomes an always-advantageous option for
the attacker, when the nature decides the probability of being a normal server
to be high (θD = 0.9).

Figure 8 shows how the equilibria change when we vary the signaling cost
by the defender rate (keeping Ra = 500 constant). The changes in equilibrium
points indicate important implications about how the players switch strategies
with respect to the parameters. The equilibria line where Rd = 500 begins
with honeypot defender’s deception strategy (plus sign +), but she switches
to truthful disclosure (diamond ♦) as the cost of signaling increases. From the
attacker’s perspective, as we increase the defender’s rate (Rd) while keeping
the cost of signaling low (cs = 0 or cs = 50), the attacker’s choices switch
first from fully attacking (A,A) (plus sign +) to (A,R) (square �) and then to
(R,R) (cross × or circle ◦) because the attacker’s degradation incurred on the
customer satisfaction becomes relatively smaller. Similarly, after a certain Rd

value (Rd ≥ 1000), the defenders do not involve (do not need) any deceptions
since the attacker retreats in both options because of the high defender rate.
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Fig. 8. Nash equilibria by cost of signaling & histogram

When we examine the strategies taken by both players in this work, we
see strategy O is never the best response. Since the game is single period and
the attacker takes action only once, naturally he never finds observing more
advantageous than other strategies. In game theory, this fact can be easily proven
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by the dominant strategy notion in which for every possible play of strategy O,
keeping everything else constant, there is at least one other strategy that yields
higher payoff. It can be seen in Fig. 3 that A is always more beneficial than
O for normal type defender after substituting the corresponding formulas and
constant values. Similarly, strategy R is the dominant strategy for the attacker
in response to the honeypot defender type. Therefore, O is a dominated strategy.

7 Discussion

For ease of calculation, the utility functions of the defender and the attacker are
kept simple in this study. However, the defender’s utility should be based not
only on the effect of the attacks but also the satisfaction of the customers she is
providing service to. In real systems (Fig. 9), attackers might not be able to drop
the entire traffic but only a part of it. Similarly, when the defender blocks certain
attackers, she may be preventing some legitimate users from accessing to servers,
too. Therefore, it is desirable to come up with an advanced and more capable
model which involves the satisfaction rate of customers and the degradation
caused by the attackers [22].

In our game, when the defender sends honeypot (H) signal for the normal
(N) type, she basically informs the attacker as if the system is slowing down
and the attack is successful. However, the system might send the same signal to
legitimate users and degrade their experience. Similarly, the defender can send
‘N’ signal even if the type is H to attract the attacker and have him attack
so that the defender can get information about his plans and strategies. This
option requires a forwarding mechanism for customers to access that server from
Domain Name Server (DNS). Since it is not a real system, the transactions to
that server are not turned into real actions, so the defender must be incurred a
cost to take the legitimate users to real servers after she makes sure they’re not
attackers.

Fig. 9. A generic network topology in DoS attack [27]

Similarly, the constant costs that set in our experiments, e.g., cs, va can be
converted into a function that may reflect more realistic effect on the equilibria.
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8 Conclusion and Future Work

We propose a new defense framework by proactively using deception as a means
to assist in developing effective responses to DoS-type attacks and threats ema-
nating from adversaries who may employ unconventional multi-stage stealth.
Furthermore, our methodology can be generalized to be used through a game-
theoretic formulation and simulation of any kind of attacks. We use game theory-
based approach to gain insights and recommendations so as to increase the prob-
ability of surviving advanced and complicated attacks. The framework itself is
concrete with quantification of the cost variables and can be generalized to pro-
tect critical enterprise systems such as data centers and database servers, and
military fault-tolerant mission-critical systems from a persistent adversary.

In this paper, for simplicity, we examine a single target/one period game
between an attacker and a defender. Investigation of multiple players (e.g., decen-
tralized attacks by various agents and bots) in multi-period (taking turns) games
is of paramount importance to explore the real-life scenarios taking place during
a distributed DoS attack. Employing an advanced network configuration and a
real-world DoS attack scenario for our model is also left as future work to involve
the satisfaction rate of customers and reflect effects of attacks on the defender.
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Abstract. We address the challenge of detecting and addressing
advanced persistent threats (APTs) in a computer network, focusing
in particular on the challenge of detecting data exfiltration over Domain
Name System (DNS) queries, where existing detection sensors are imper-
fect and lead to noisy observations about the network’s security state.
Data exfiltration over DNS queries involves unauthorized transfer of sen-
sitive data from an organization to a remote adversary through a DNS
data tunnel to a malicious web domain. Given the noisy sensors, previ-
ous work has illustrated that standard approaches fail to satisfactorily
rise to the challenge of detecting exfiltration attempts. Instead, we pro-
pose a decision-theoretic technique that sequentially plans to accumulate
evidence under uncertainty while taking into account the cost of deploy-
ing such sensors. More specifically, we provide a fast scalable POMDP
formulation to address the challenge, where the efficiency of the formu-
lation is based on two key contributions: (i) we use a virtually distrib-
uted POMDP (VD-POMDP) formulation, motivated by previous work
in distributed POMDPs with sparse interactions, where individual poli-
cies for different sub-POMDPs are planned separately but their sparse
interactions are only resolved at execution time to determine the joint
actions to perform; (ii) we allow for abstraction in planning for speedups,
and then use a fast MILP to implement the abstraction while resolving
any interactions. This allows us to determine optimal sensing strategies,
leveraging information from many noisy detectors, and subject to con-
straints imposed by network topology, forwarding rules and performance
costs on the frequency, scope and efficiency of sensing we can perform.

1 Introduction

Advanced persistent threats can be one of the most harmful attacks for any
organization with a cyber presence, as well as one of the most difficult attacks
to defend against. While the end goal of such attacks may be diverse, it is
often the case that intent of an attack is the theft of sensitive data, threatening
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Q. Zhu et al. (Eds.): GameSec 2016, LNCS 9996, pp. 39–61, 2016.
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the loss of competitive advantage and trade secrets as well as the leaking of
confidential documents, and endangerment of national security [4,13]. These
attacks are sophisticated in nature and often targeted to the vulnerabilities of a
particular system. They operate quietly, over long periods of time and actively
attempt to cover their tracks and remain undetected. A recent trend in these
attacks has relied on exploiting Domain Name System (DNS) queries in order to
provide channels through which exfiltration can occur [8,20]. These DNS based
exfiltration techniques have been used in well-known families of malware; e.g.,
FrameworkPOS, which was used in the Home Depot data breach involving 56
million credit and debit card information [2].

At a high level, DNS exfiltration involves an attacker-controlled malware
inside an organization’s network, an external malicious domain controlled by the
attacker, and a DNS server authoritative for the domain that is also controlled by
the same attacker. The malware leaks sensitive data by transmitting the data
via DNS queries for the domain; these queries traverse the DNS hierarchy to
reach the attacker controlled DNS server. Attackers can discretely transfer small
amounts of data over long periods of time disguised as legitimate user gener-
ated DNS queries. Detecting and protecting against such an attack is extremely
difficult as the exfiltration attempts are often lost in the high volume of DNS
query traffic and any suspicious activity will not be immediately obvious. In both
academia and industry, multiple detectors have been proposed to detect DNS
exfiltration. However, because of the sophisticated and covert nature of these
attacks, detectors designed to protect against these kinds of attacks either often
miss attacks or are plagued by high false positive rates, misclassifying legitimate
traffic as suspicious, and potentially overwhelming a network administrator with
suspicious activity alerts; these issues have been identified with machine learn-
ing based detectors [23], pattern matching based detectors [1] and information
content measuring detector [19].

We focus on the problem of rapidly determining malicious domains that
could be potentially exfiltrating data, and then deciding whether to block traffic
or not. In our problem, the defender observes a stream of suspicious DNS based
exfiltration alerts (or absence of alerts), and is tasked with inferring which of the
domains being queried are malicious, and determining the best response (block
traffic or not) policy. Unfortunately, as stated earlier, detectors are inherently
noisy and each single alert does not provide a high confidence estimate about
the security state. Thus, the defender needs to come up with a sequential plan
of actions while dealing with uncertainty in the network and in the alerts, and
must weight the cost of deploying detectors to increase their knowledge about
malicious domains with the potential loss due to successful attacks as well as the
cost of misclassifying legitimate network use. This problem of active sensing is
common to a number of cyber security problems; here we focus on the challenge
of data exfiltration over DNS queries.

There has been a large amount of work on how to deal with and make deci-
sion under uncertainty. Problems such as ours can be well modeled using Par-
tially Observable Markov Decision Process (POMDP) to capture the dynamics
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of real-world sequential decision making processes, and allow us to reason about
uncertainty and compute optimal policies in these types of environments. How-
ever a major drawback to these models is that they are unable to scale to solve
any problem instances of reasonable size. In order to be successful in the cyber
domain, such a models needs to be able to handle extremely large problem
instances, as networks are often extremely complex, with lots of moving parts.
Additionally, due to the salient nature of network states, we need to be able to
make decisions in real time in order to observe and quickly react to a potential
threat.

To address this challenge we make the following key contributions: (1) We
provide a formal model of the DNS data exfiltration problem. We propose a
new decision making framework using Partially Observable Markov Decision
Processes (POMDPs). (2) We address the scalability issued faced when dealing
with large networks by proposing a series of abstractions of the original POMDP.
These include using abstract action and observation space. (3) Another step in
the abstraction is a new paradigm for solving these models by factoring the
POMDP into several sub-POMDPs and solving each individual sub-POMDP
separately offline; this is motivated by previous work in distributed POMDPs
with sparse interactions. We provide techniques for policy aggregation to be
performed at runtime in order to combine the abstract optimal actions from
each sub-POMDP to determine the final joint action. We denote this model
as a virtually distributed POMDP (VD-POMDP). We provide conditions under
which our methods are guaranteed to result in the optimal joint policy, and
provide empirical evidence to show that the final policy still performs well when
these conditions do not hold. (4) Finally we provide experimental evaluation
of our model in a real network testbed, where we demonstrate the ability to
correctly identify real attacks.

2 Background and Related Work

We split our discussion of the required background and related work for this
paper along two broad categories that are covered in the two sub-sections below.

2.1 DNS Exfiltration

Sensitive data exfiltration from corporations, governments, and individuals is on
the rise and has led to loss of money, reputation, privacy, and national secu-
rity. For example, attackers stole 100 million credit card and debit card infor-
mation via breaches at Target and Home Depot [11]; a cluster of breaches at
LinkedIn, Tumblr, and other popular web services led to 642 million stolen pass-
words [5]; and the United States Office of Personnel Management (OPM) data
breach resulted in 21.5 million records, including security clearance and finger-
print information, being stolen [27].

In the early days, exfiltration happened over well known data transfer pro-
tocols such as email, File Transfer Protocol (FTP), and Hypertext Transfer
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Protocol (HTTP) [13]. The seriousness of the problem has led to several “data
loss prevention (DLP)” products from the security industry [15,24] as well as
academic research for monitoring these protocols [7,10]. These solutions monitor
email, FTP, and other well known protocols for sensitive data transmission by
using keyword matching, regular expression matching, and supervised learning.

The increased monitoring of the protocols has forced attackers to come up
with ingenious ways of data exfiltration. One such technique used very suc-
cessfully in recent years is exfiltration over DNS queries [1,20]. Since DNS is
fundamental to all Internet communication, even the most security conscious
organizations allow DNS queries through their firewall. As illustrated in Fig. 1,
an adversary establishes a malicious domain, evil.com, and infects a client in
an organization with malware. To exfiltrate a data file, the malware breaks the
file into blocks, b1, b2, · · ·, bn, and issues a sequence of DNS queries, b1.evil.com,
b2.evil.com, · · ·, bn.evil.com. If their responses are not cached, the organization’s
DNS server will forward them to the nameserver authoritative for evil.com; at
this point, the adversary controlling the authoritative nameserver can recon-
struct the data file from the sequence of blocks.

Malware infected

device

Organization’s 

DNS server

b1.evil.com

b2.evil.com

b3.evil.com

……
bn.evil.com

Authoritative Name 
Server for evil.com

F
I
R
E
W
A
L
L

b1.evil.com

b2.evil.com

b3.evil.com

……
bn.evil.com

Fig. 1. Data exfiltration over DNS.

The data transmission is covert and can be accomplished by various means
such as a particular sub-domain query meaning bit 1 and another sub-domain
query meaning bit 0, or even the timing between queries can leak information.
By compressing the data at the client, and by varying query lengths and the
time interval between successive queries an adversary can adjust the bandwidth
of the communication channel. The adversary could choose to transfer data
as quickly as possible (long and rapid domain queries) or slowly (short queries
spaced apart in time), depending on the intent behind the attack. To further hide
exfiltration activity, the data blocks can be encrypted by the client before the
queries are issued, and decrypted by the adversary. Further, the adversary can
encode instructions within its responses to establish a two-way communication
tunnel.

Hence building a reliable DNS exfiltration detector is extremely challenging.
A recent work on building a detector for DNS exfiltration using measurement
of information content of a DNS channel provides techniques that we use to
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build the low level detector in our problem setting [19]. Apart from this work in
academia, there has been some work in the industry that use various heuristics
to build low level detectors for DNS exfiltration [1]; examples of such heuristics
are lengths of DNS queries and responses, sizes of query and response packets,
entropy of DNS queries, total volume of DNS queries from a device, and total
volume of DNS traffic to a domain. As far as we know, we are the first to build
a cost based sequential planning tool that uses the imperfect low level detectors
to determine if a domain is involved in exfiltrating data over DNS.

2.2 POMDP

There has been a large amount of work on how to deal with and make decisions in
stochastic environments under uncertainty using POMDPs. However, it is known
that offline POMDP solving is intractable for large problems [9,14,18] and given
our fast response requirements an online POMDP solver is also not feasible [21].
We show empirically that our original POMDP is simply impractical to solve
for even a small network of 3–4 computers. Thus, in this paper, we focus on
speeding up the offline POMDP solving by performing a series of abstractions
of the original POMDP. Our technique of solving the POMDP is inspired by
conflict resolution techniques in solving distributed POMDP [12,17] and distrib-
uted POMDPs with sparse interactions [25,26]. While our VD-POMDP does
not have an inherent distributed structure, we break up the original POMDP
into multiple domain specific POMDPs to build a virtually distributed POMDP;
this allows for scalability. However, instead of resolving conflicts at runtime or
using sparse interaction (which does not exist in our split POMDPs), we modify
our action space so that the actions output by each domain specific POMDP is
at a higher level of abstraction. With these abstract actions from each POMDP
we provide a fast technique to come up with the joint action by combining the
abstract actions at execution time. The main difference with existing work on
POMDP and distributed POMDP is that we reason about policies at execution
time, allowing efficient “groundlevel” implementation of abstract policy recom-
mendation from multiple virtual POMDPs. Further, the abstraction of actions is
possible in our problem due to the special relation between detecting malicious
domains and sensing of traffic on a network node (see Model section for details).

While, the main step in VD-POMDP compaction is based on similar ideas
of factored POMDPs used in past literature [16], our approach critically differs
as we do not just factor the belief state of the POMDP, but split it into multiple
POMDPs per domain. Also, distinct from general distributed POMDP [6] the
multiple agents (for each domain) do not share a common reward function and
neither is the reward function a sum of each of their rewards (Table 1).

3 Model

The local computer network can represented as a graph G(N,E), where the
nodes N correspond to the set of hosts in the network, with edges E if com-
munication between the hosts is allowed. Each node n has a particular value vn
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Table 1. Notation

G(N, E) Graph representing network

vn Value of data at the nth node

v[d] Average value of the set of channels to the dth domain

wn Volume of traffic at the nth node

w[d] Total volume of the set of channels to the dth domain

d The dth domain

Xd True {0, 1} state of the dth domain

Md Estimated {0, 1} state of the dth domain

X Set of all Xd random variables

ck =< n, . . . d > kth channel from node n to domain d

C[d] Subset of channels ending with the dth domain

C Set of all channels

τk Threshold set for channel ck

an Binary variable indicating if node n is sensed or not

zk Binary variable indicating if channel ck is sensed or not

Ωk {0, 1} observation on kth channel

Ω[d] Subset of observations for channels ending with the dth domain

corresponding to the value of data stored at that computer. At any point in time
t each node has a variable traffic volume of requests wt

n passing through it. We
assume there are D domains, where for tractability we assume D is the number
of domains that have ever been queried for the given computer network. DNS
queries made from internal nodes in the network are forwarded to special nodes,
either access points or internal DNS servers, and then forwarded to external
servers from these points. A channel ck over which exfiltration can occur is then
a path, starting at source node, where the query originated, traveling through
several nodes in the network and finishing at a target domain d. The total num-
ber of channels is K. We use n ∈ ck to denote any node in the path specified
by ck.

Let Xd be a random binary variable denoting whether domain d is malicious
or legitimate. We assume that a malicious domain will always be malicious, and
that legitimate domains will not become compromised; this means that the state
Xd does not change with time. Even though legitimate domains get compromised
in practice, attackers often use new malicious domains for DNS exfiltration since
an attacker needs to control both a domain and the authoritative name server
for a domain to successfully carry out exfiltration. In other words, legitimate
domains that get compromised are rarely used in DNS exfiltration. Hence in
our model, it is reasonable to assume that domains don’t change their states.
We call the active sensing problem, the challenge of determining the values of
Xd. In order to do this we may place detectors at nodes in the network; the
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c1c2 c3c4

c1,c2 c3 c4

d1 d2

n1 n2

src2 src4src1 src3

Fig. 2. Example of a network with two domains, 4 source hosts and 4 channels. Chan-
nels c1, c2, c3 go from sources 1, 2, and 3 to domain d1 while channel c4 goes from
source 4 to domain d2. We may consider the situation where we can only turn on one
detector at any time step, either at node n1 or n2, and choose to sense on channels {c1,
c2} or {c3, c4}. We can additionally chose thresholds τj for each channel. Each source
host has a value vn and each node n has traffic volume wn.

state of a detector (off/on) at any node in the network is an ∈ {0, 1}. Each
detector monitors all the channels passing through that particular node, i.e., all
ck : n ∈ ck. We use the binary variable zk to indicate if channel ck is monitored.
We can set discrete thresholds individually for each channel; lower thresholds
correspond to higher sensitivity to information flow out of any particular channel.
Because each channel is associated with a domain, we set a threshold τk for each
channel. We use |τ | to denote the number of discrete threshold choices available.
We then get observations in the form of alerts for each channel Ωk ∈ {0, 1}.
The probability of receiving an alert for any channel is characterized by some
function α(τk) if the channel is malicious and β(τk) if the channel is legitimate.
Finally, the defender classifies the state of domain d as malicious or legitimate,
indicated by Md.

3.1 The POMDP Model

Our POMDP model is a tuple (S,A, T,Ω,O,R) with state space S, action space
A, state transition function T , observation space Ω, observation probabilities O
and reward function R. Additionally define the average value of the channels
to domain d as v[d] =

∑

n:n∈C[d]

vn

|C[d]| . Below we list the details of components

of POMDP model. The state captures the true security state of every domain
and the actions specify the thresholds for monitoring each channel, the nodes to
be monitored and the decision about which domains are classified as malicious.
As we assume the security state of the system does not change, the transition
function is straightforward.
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States S = 〈X1, . . . XD〉
Actions A = Ac × An × Ad where 〈τ1, . . . τK〉 ∈ Ac, 〈a1 . . . aN 〉 ∈ An

and 〈M1 . . . MD〉 ∈ Ad

Transision T (s′, s) =

{
1 iff s′ = s

0 else

Next, we obtain an observation Ωk for each channel, and as stated earlier for
each channel the probability of an alert is given by functions α and β. We state
the probability first for the observations for each domains, and then for all the
observations using independence across domains.

Observations Ω = 〈Ω1 . . . ΩK〉

Observation Prob O(Ω[d]|Xd, A) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∏

k:k∈C[d]∧zk=1

α(τk)
Ωk (1 − α(τk))

1−Ωk if Xd = 1

∏

k:k∈C[d]∧zk=1

β(τk)
Ωk (1 − β(τk))

1−Ωk if Xd = 0

0 else

O(Ω|X, A) =
∏

d

O(Ω[d]|Xd, A[d])

Finally, the reward for the POMDP is given by the following equation:

R(S, A) = −
(

∑

d

(
Xd(1 − Md)v[d] + (1 − Xd)Mdw[d]

)
+

N∑

n

anwn

)

The reward contains two cost components: the first component has two terms
for each domain that specify the penalty for mislabeling a domain and the second
component is the cost of sensing over the nodes. When a malicious domain d is
labeled safe then the defender pays a cost v[d], i.e., the average value of channels
going to domain d; in the opposite mislabeling the defender pays a cost w[d], i.e.,
a cost specified by loss of all traffic going to domain d. While this POMDP model
captures all relevant elements of the problem, it is not at all tractable. Consider
the input variables to this model, the number of domains D, the number of nodes
N and the number of channels k. The state space grows as O(2D), the action
space is O(2N |τ |K2D) and the observation space is O(2K). This full formulation
is exponential in all the input variables and cannot scale to larger, realistic
network instances (we also show this experimentally in the Evaluation Section).
In order to reduce the combinatorial nature of the observation space, action space
and state space, we introduce a compact representation for the observation and
action space and a factored representation for the state space that results in
splitting the POMDP into multiple POMDPs.

4 POMDP Abstraction

We represent the POMDP compactly by using three transformations: (1) we
use the same threshold for very channel going to the same domain and change
the action space from sensing on nodes to sensing on channels, (2) reduce the
observation space by noting that only the number of alerts for each domain are
required and not which of the channels generated these alerts and (3) factoring
the whole POMDP by domains, then solve a POMDP per domain and combine
the solutions at the end. Next, we describe these transformations in details.
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Abstract Actions. We can reduce the action space by (1) enforcing that the
same threshold is set for all channels going to the same domain and (2) by
reasoning about which channels to sense over instead of which nodes to sense
on. The first change reduces the action space from a |τ |K dependance to |τ |D,
where |τ | is the discretization size of the threshold for the detector. The new set
of threshold actions is then Ac = 〈τ1, . . . τD〉. The second change replaces the set
of actions on nodes An with a set of actions on channels Ak = 〈sk[1] . . . sk[D]〉,
where sk[d] is the number of channels to be sensed out of the |C[d]| channels that
end in domain d. This changes the action space complexity from 2N to |C[d]|D.
Then the action space is given by

Actions A = Ac × Ak × Ad

where 〈τ1, . . . τD〉 ∈ Ac, 〈sk[1] . . . sk[D]〉 ∈ Ak and 〈M1 . . . MD〉 ∈ Ad.

In order to properly compute the reward we need to compute the cost of any
action in Ak. To do this we need to build a lookup table mapping each action
in Ak to an action in An, and hence obtain the cost of actions in Ak. Because
we will always choose the lowest cost way to sense on a number of channels,
the action of sensing a specified number of channels can be mapped to the set
of nodes that minimizes the cost of sensing the specified number of channels.
We can compute this using the following mixed integer linear program (MILP)
mincost(〈sk[i] . . . sk[D]〉).

min
zk,an

∑

n

anwn (1)

zk ≤
∑

n∈ck

an ∀k ∈ {1, . . . , K} (2)

∑

ck∈C[d]

zk ≥ sk[d] ∀d ∈ {1, . . . , D} (3)

zk ∈ {0, 1} an ∈ {0, 1} (4)

The mincost(〈sk[1] . . . sk[D]〉) MILP needs to be solved for every action
〈sk[1] . . . sk[D]〉 ∈ Ak, i.e., we need to fill in a table with O(|C[d]|D)
entries. If we take the example network in Fig. 2, the old action space
is An = {{∅}, {n1}, {n2}, {n1, n2}}, and the new action space is Ak =
{{0, 0}, {1, 0}, {2, 0}, {3, 0}, {0, 1}, {1, 1}, {2, 1}, {3, 1}}. In order to map back
to the representation using nodes, we build the mapping: {0, 0} → ∅, {1, 0} →
{n1}, {2, 0} → {n1}, {3, 0} → {n1}, {0, 1} → {n2}, {1, 1} → {n1, n2}, {2, 1} →
{n1, n2}, {3, 1} → {n1, n2}. However, the problem of converting from number of
channels to nodes (stated as mincost(〈sk[1] . . . sk[D]〉) above) is not easy as the
following theorem shows:

Theorem 1. The problem of converting from number of channels to nodes is
NP hard to approximate to any factor better than ln |N |.
Proof. We perform a strict approximation preserving reduction from the set
cover problem. Consider a set cover problem. We are given a universe of m
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elements E and u subsets of E: U . Form a node nu for each subset u ∈ U and
a domain de for each element e ∈ E. For any particular element e and any node
containing that element, connect it to the domain de. Then, these connections,
say from l nodes, defines l channels each starting from a node and ending in dm.
For any domain d choose sk[d] = 1, i.e., at least one channel needs to be sensed.
It can be easily seen that for any channel ck in this network there is a unique
node it passes through: call it n(k). Choose wn = 1. Then, the optimization
problem to be solved is the following:

min
zk,an

∑

n

an (5)

zk ≤ an(k) ∀k ∈ {1, . . . ,K} (6)
∑

ck∈C[d]

zk ≥ 1 ∀d ∈ {1, . . . , D} (7)

zk ∈ {0, 1} an ∈ {0, 1} (8)

First, we prove that the constraints of this optimization specify a choice of
subsets (nodes) the union of which equals the set E. Since all channels going to
domain d corresponds to a unique element e and at least one channel going to d
is chosen (Eq. 7), this implies at least one node containing e is selected (Eq. 6).
Thus, the set of nodes (hence subsets) contains all elements e.

Given, the feasible space is given by a set of subsets (nodes) the union of
which produces E, the objective clearly produces the minimum number of such
sets. Also, any approximate solution with guarantee α maps to an α approximate
solution of the set cover problem. The theorem follows from the lack of better
than lnn approximatability of set cover. �

Abstract Observations. As we only reason about the state of each domain in
the network, not each individual channel, we can aggregate the observation in
order to reduce the observation space. Thus, instead of recording which channel
generated an alert, we only record total number of alerts per domain. Given there
are |C[d]| channels going to domain d then the observations for each domain lie
in {0 . . . |C[d]|}. This observation space for each domain is then linear in the
number of channels O(|C[d]|). The full joint observation space is exponential in
the number of domains O(|C[d]|D).

The set of observations is then Ω = 〈Ω1, . . . , ΩD〉 where Ωd ∈ {0 . . . |C[d]|}
corresponding to the number of alerts from all |C[d]| channels going to domain
d. Because there is now multiple way for us to get this single observation, the
observation probability function for each domain also needs to be modified.

O(Ωd|Xd, A) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
sk[d]

Ωd

)

α(τd)Ωd(1 − α(τd))
sk[d]

−Ωd if Xd = 1
(

sk[d]

Ωd

)

β(τd)Ωd(1 − β(τd))
sk[d]

−Ωd if Xd = 0

0 else
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VD-POMDP Factored Representation. Looking at both the observation
probability function as well as the belief update, we can consider a factored rep-
resentation of this POMDP, by factoring these by domains. If we then separate
out these factored components and create a new sub-agent for each factor, so
that we now have a total of D POMDP’s, we can greatly reduce the state space,
observation space and action space for each individual sub agent. The model for
each of these individual POMDP is then given as follows.

States S = Xd

Actions A = τd × {0, . . . , |C[d]|} × Md

Transition T (s′, s) =

{
1 iff s′ = s

0 else

Observations Ω = 〈Ω1, . . . , ΩD〉 where Ωd ∈ {0, . . . , |C[d]|}

O(Ωd|Xd, A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(sk[d]

Ωd

)
α(τd)Ωd (1 − α(τd))

sk[d]
−Ωd

if Xd = 1(sk[d]

Ωd

)
β(τd)Ωd (1 − β(τd))

sk[d]
−Ωd

if Xd = 0

0 else

Reward R(S,A) = −
(
Xd(1 − Md)v[d] + (1 − Xd)Mdw[d] + mincost(sk[d]

)
)

The complexity of the state space is reduced to O(1), the action space is
O(|τ ||C[d]|) and the observation space is O(|C[d]|). Table 2 shows the comparative
complexities of the original POMDP model and the VD-POMDP model. As
we use channels as actions for each domain specific POMDP, we still need to
construct the lookup table to map channels as actions to nodes as actions in
order to obtain the cost of each action on channels. Factoring the model in the
way described above also simplifies the construction of this lookup table from
actions on channels to actions on nodes, and hence computing mincost(sk[d]) can
be done in a much simpler way for the VD-POMDPs. We solve a similar (MILP)
as in (2)–(4) but for each VD-POMDP for domain d; thus, we only need to fill
in a table with O(|C|) entries, one for each of the sk[d] actions for each domain
d. The new MILP formulation is given in Eqs. 10–12. Observe that unlike the
MILP (2)–(4) used to build the lookup table for the original POMDP, this MILP
is solved for a fixed domain d.

Table 2. Complexities of full and VD-POMDP models with original and compact
representations.

Full POMDP VD-POMDP

Original Abstract

State O(2D) O(2D) O(1)

Action O(2N |τ |K2D) O(|C[d]|D|τ |D2D) O(2|C[d]||τ |)
Observation O(2K) O(|C[d]|D) O(|C[d]|)
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min
zk,an

∑

n

anwn (9)

zk ≤
∑

n∈Ck

an (10)

∑

ck∈C[d]

zk ≥ sk[d] (11)

zk ∈ {0, 1} an ∈ {0, 1} (12)

While the above optimization is much more simpler than the corresponding
optimization for the original POMDP, it is still a hard problem:

Theorem 2. The problem of coverting the number of channels to nodes for each
VD-POMDP is NP Hard.

Proof. We reduce from the min knapsack problem. The min knapsack problem
is one where the objective is to minimize the value of chosen items subject to
a minimum weight W being achieved, which is a well known hard problem.
Also, wlog, we can assume weights of items and W to be integers. Given a min
knapsack with n items of weights w′

i and value vi and min weight bound W form
an instance of our problem with n nodes (mapped to items) and each node i
having w′

i channels going directly to domain d. It can be easily seen that for any
channel ck in this network there is a unique node it passes through: call it n(k).
Each node i also has traffic wi = vi. Also, sk[d] = W . Then, the optimization
problem being solved is

min
zk,an

∑

n

anvn subject to zk ≤ an(k),
∑

ck∈C[d]

zk ≥ W, zk ∈ {0, 1}, an ∈ {0, 1}

Note that in the constraints, whenever a node is selected an(k) = 1 then making
all wi channels in it one makes the weight constraints less tight. Thus, any values
of an, zk satisfying the constraints specify a set of nodes such that the sum of its
weights is ≥ W . Coupled with the fact that the objective minimizes the values
of selected nodes, the solution to this optimization is a solution for the min
knapsack problem. �

Policy Execution: The solutions to each of these VD-POMDP’s give us an action
〈M∗

d , τ∗
d , s∗

k[d]
〉 corresponding to a labeling of malicious or legitimate for that

particular domain d, the threshold, and the desired number of channels to sense
over. However, at execution time we need to turn on detectors on nodes. Thus,
in order to aggregate these factored actions to determine the joint action to take
at execution, we need to map the output from each POMDP back to a set of
sensing actions on nodes. This can be easily accomplished by solving a single
instance of the larger MILP (2)–(4) with the sk[d] values set to s∗

k[d]
(Fig. 3).

We emphasize here the importance of using the abstract channels as actions
instead of nodes. The possibly alternate approach with nodes as action for each
sub-POMDP and just taking union of the nodes output by each domain specific
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n1 n2 n3

d1 d2 d3

Fig. 3. Sample network with 3 domains, 3 nodes and 5 sources. The dashed lines are
channels to domain d1 the dotted line is the channel to domain d2 and the solid lines
are channels to d3.

POMDP, when the channels are not disjoint, can result in over sensing. Consider
the example below, where there are 4 channels going to domains d1 and d3 and
one to d2 and let us currently be in a belief state where the optimal action for
domain d1 and d3 would be to sense on 2 channels out of the 4 going to each
domain and the optimal action for d2 is to sense on the one channel. Working
in an action space of nodes, the VD-POMDP for d1 would choose to sense on
node n1, the VD-POMDP for d3 would choose to sense on n3 as it has the lowest
amount of traffic for 2 channels and the one for d2 would choose to sense on n2

as it is the only option. Taking the union of these would result in all the sensors
being turned on. However, we can see that choosing only to sense on node n2

satisfies the sensing requirements of all three separate VD-POMDPs.
Next, we identify a condition under which the solution from the larger MILP

is optimal. In the next section, we show empirically that even when this condition
is not met our approach is close to optimal.

Theorem 3. The above described technique of aggregating solutions of the VD-
POMDPs is optimal for the original POMDP iff the solution to the MILP (2)–(4)
for any VD-POMPD policy action results in an equality for the constraint (3).

Proof. First, with the standard representation the global value function given
in Eqs. 13 and 14, cannot generally be fully decomposed by domain due to the
Rn(an) term which couples the actions for each domain through the sending cost.
The decomposition is only possible in special instances of the problem, such as if
network of channels were completely disconnected. The action of selecting nodes
can be partitioned by domains as an[d] . Then, the cost associated with sensing
on the nodes could be written as a sum of domain dependent terms Rn(an) =∑

d Rn[d](an[d]). Also, all actions (threshold, choice of nodes and decision about
each domain) are now partitioned by domain, thus any action a is a combination
of actions per domain ad. Let bd denote the belief state for domain d. The choice
of nodes in this case should just be a union of the nodes chosen by each POMDP
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as seen from the value function as each domain dependent component can be
optimized separately.

V ∗ = max
a

[
R(b, a) + γ

∑
Ω

P (Ω|b, a)V ∗(b, a, Ω)

]
(13)

= max
a

[∑
d

(
Rd(bd, Md)

)
+ Rn(an) + γ

∑
Ω

∏
d

P (Ωd|bd, τd)V ∗(b, a, Ω)

]
(14)

= max
a

[∑
d

(
Rd(bd, Md) + Rn[d] (an[d] )

)
+ γ
∑
Ω

∏
d

P (Ωd|bd, τd)V ∗(b, a, Ω)

]

(15)

= max
a

⎡
⎣∑

d

(
Rd(bd, ad)

)
+ γ

∑
d,Ωd

P (Ωd|bd, ad)V ∗
d (bd, ad, Ωd)

⎤
⎦ =

∑
d

V ∗
d (16)

where V ∗
d = max

ad

⎡
⎣Rd(bd, ad) + γ

∑
Ωd

P (Ωd|bd, ad)V ∗
d (bd, ad, Ωd)

⎤
⎦ (17)

If we instead use the compact representation of the action space, and let the
actions simply be the number of channels to be sensed on and equality is obtained
for the constraint (3) for any action from each domain specific POMDP (i.e.,
each sk[d] can be implemented), then the value function can be decomposed by
domain, because the term Rn(an) is replaced by the

∑
d mincost(sk[d]), which can

be factored by domain and does not couple the VD-POMDP’s. Reconstructing
the joint policy then just amounts to finding the best action from each POMDP
and taking a union of these individual actions. We then just need to map back
to the representation of actions on nodes, by solving the MILP (2)–(4).

V ∗ = max
ad

⎡
⎣∑

d

(
Rd(bd, ad) + mincost(sk[d]

)
)

+ γ
∑
d,Ωd

P (Ωd|bd, ad)V ∗
d (bd, ad, Ωd)

⎤
⎦ =

∑
d

V ∗
d

�

5 VD-POMDP Framework

Here we explain at a high level, the VD-POMDP framework as applied to the
data exfiltration problem, and how it is implemented. With the VD-POMDP,
entire planning model is broken up into two parts as depicted in Fig. 4. The first
is the offline factoring and planning, where the POMDP is factored into several
sub-agents, and each solved individually. Second is the online policy aggregation
and execution, where the policies of each sub-agent are aggregated as each of
them choose actions to perform.

In order to build the VD-POMDP for data exfiltration problem, we first
construct the network graph, based on the topology of the actual computer
network we are modeling as well as the set of domains under consideration,
shown at point (a) in Fig. 4. Then at (b), for each domain in our network,
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we construct a separate POMDP sub-agent. In order to do this we solve the
MILP mincost(skd

) for each agent, in order to abstract away from the network
layer and construct the compact representation of the network. At point (c) each
individual POMDP agent is solved, offline, ignoring the presence of the other
agents to obtaining a policy for each domain.

N
e
tw

o
rk

mincost(sk2 )

mincost(sk1 )

mincost(sk3 )

d2

d1

d3

< τd2 , sk[d2]
, Md2 >

< τd1 , sk[d1]
, Md1 >

< τd3 , sk[d3]
, Md3 >

mincost(< sk1 , sk2 , sk3 >) < Ac, An, Ad >

Ω

︷ ︸︸ ︷

offline

︷ ︸︸ ︷

online

a b c d

e f

Belief UpdatePOMDP

Fig. 4. Flowchart for the data exfiltration VD-POMDP

The policies are then aggregated in an online fashion, shown at point (d) in
Fig. 4 to obtain a joint action (f). At each time step the agents receive obser-
vations from the network and update their beliefs individually. Each agent then
presents the individual action to be performed consisting of a number of chan-
nels to be sensed on, a threshold for sensing and a classification of malicious
or legitimate for their respective domain. The required number of channels for
each agent is then fed into the MILP mincost(〈sk[i] . . . sk[D]〉) to determine the
set of nodes to be sensed on. The agents then again receive observations from
the resulting set of detectors and iterate through this process again.

Policy aggregation is performed online as it would be infeasible to do offline
policy aggregation for all but the smallest policies. If aggregation were to be per-
formed offline, we would need to consider every possible combination of actions
from each policy and then solve the MILP mincost(〈sk[i] . . . sk[D]〉) for each of
these, in order to compute the combinatorially large joint policy. Because the
MILP is fast to solve, it does not result in much overhead when these joint
actions are computed in an online fashion.

It is important to note here that the policy we compute is not an optimal
sequence of actions, but rather a mapping of belief state to actions. This distinc-
tion is important, as it may be the case that, upon policy aggregation, there is
no feasible implementation of the individual action. In such a scenario, an agent
may choose an action to sense on a subset of k channels; however, given the
sensing requirements of the other agents, the agent in question may actually get
to sense on more channels than they had initially wanted. The agent may then
end up in a belief state that they had not originally planned for, but because
we are solving for the entire belief space, we still know how to behave optimally.
Additionally, from Theorem 3, we know that the joint action will only be optimal
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if we can exactly implement each individual action, and no agent get to sense
on more channels than it requests. Our policy aggregation may then result in
a suboptimal joint action being taken, however, we show later in Sect. 6, that
even when the optimality condition does not hold, we can still achieve good
performance.

6 Evaluation

We evaluate our model using three different metrics: runtime, performance, and
robustness. We first look at the runtime scalability of VD-POMDP model, vary-
ing the size of several synthetic network as well as the number of domains and
compare to the standard POMDP model. We then evaluate the performance
of the VD-POMDP, measuring how quickly it can classify a set of domains as
malicious or legitimate, as well as computing the accuracy of correct classifica-
tions. For small network sizes, we compare the performance of the VD-POMDP
to the original model and look at the performance of the VD-POMDP on larger
synthetic networks.

Synthetic Networks. In order to test a variety of network sizes we created
synthetic networks using a tree topology. Leaf nodes in the tree network corre-
spond to source computers. Channels travel upwards from these nodes to the
root of the tree; for each domain we create one such channel on each source
computer. The size of the network is varied by varying the depth and branching
factor of the tree.

6.1 DETER Testbed Simulation

We also evaluated the performance of our model using a real network, by running
simulations on the DETER testbed. The DETER testbed provides capabilities
of simulating a real computer network with virtual machines and simulating
agents that perform tasks on each computer. Every agent is specified in a custom
scripting language, and allows simulating attackers, defender and benign users.
For our simulation we simulated legitimate DNS queries as well as launched
real attacks. We performed a simple attack, by attempting to exfiltrate data
from a file to a chosen malicious domain by embedding data from the file into
the DNS queries. We conducted the attack using the free software Iodine [3]
which allows for the creation of IP tunnels over the DNS protocol in order to
generate these DNS queries. We were provided with 10 virtual machines, from
which we formed a tree topology with 7 of them as host computers and sources
of traffic. We then built and implemented a real time data exfiltration detector
based off of the techniques proposed in [19]. The detector uses off the shelf
compression algorithms like gzip in order to measure the information content
of any channel in the network. We then set a cut off threshold for the level of
allowable information content in any channel. Channels exceeding this threshold
are flagged as malicious. While we chose to use this specific detector to generate
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observations for our model, it is important to note that any other methods for
detecting exfiltration would have been equally viable.

6.2 Runtime

We first look at runtimes needed to solve the original model compared to our
VD-POMDP model with increasing number of domains. Unless otherwise stated,
all test used a threshold discretization of 2. We used an offline POMDP solver
ZMPD [22] to compute policies; however, any solver which computes policies for
the entire belief space may be used. The largest network we were able to solve
for with the original model was one of only 3 nodes. For larger than 2 domains
with discount factors γ = −0.2 and all cases with γ = −0.4 and γ = −0.8 the
original POMDP did not finish solving in 24 h and is shown cut off at the 24 h
mark in Fig. 5a. Consistent with the complexities in Table 2, in Fig. 5a we see
the runtimes on the y-axis increase exponentially with the number of domains
on the x-axis, for the original POMDP. If the VD-POMDP models are solved in
parallel, runtimes do not vary with increasing domain. If the models are solved
sequentially, then we would see only a linear increase in runtime. However in the
case where networks have the channels uniformly distributed among all hosts,
i.e. there exists one channel from every host to every domain, then the models
become identical, and it becomes only necessary to solve one of them.

We show the scalability of computing policies for the VD-POMDP in Fig. 5a.
On the y-axis, in log scale we have the runtime in seconds, and on the x-axis, also
in log scale we have the number of nodes in the network, achieved by varying
both the depth and branching factor of our tree network structure. We can see
that there appears to be a linear scaling with the size of the network. We also
show in Fig. 5d the time it takes to build the network, the lookup table of costs
computed by repeatedly solving (10)–(12) and pomdp files to be fed to the solver.
This time corresponds to the steps (a) and (b) in Fig. 4. On the y-axis we have
again the runtime and on the x-axis the number of nodes in the network.

Figure 5c shows the runtime for computing the policy of a single factored
agent with increasing action space. The runtime is shown on the y-axis in sec-
onds, while the increasing action space is measured by the threshold discretiza-
tion on the x-axis. We first divided the space of possible true positive and true
negative rates into a number of segments equal to the discretization number. For
each discretization level, we then combinatorially formed all the true positive and
true negative pairs possible within that discretization number and averaged over
the runtimes, in order to ensure that we were not only testing easy cases, where
one choice threshold was dominant over another.

6.3 Performance

We evaluate the performance of the model by looking at the reward, the number
of time steps taken to classify all domains and the accuracy of the classifications.
For each test, we averaged the values over 100 simulations. Table 3 compares
the performance of the original POMDP model with the VD-POMDP model.
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Fig. 5. Runtime results

The largest tests we could run using the full POMDP were on a network of
3 nodes with a total of two domains, while solving the model with a discount
factor of γ = 0.2. The VD-POMDP model performs as well in terms of accuracy
and time compared to the full POMDP model. We show a normalized average
reward, computed by dividing the total reward by the number of time steps
taken to classify the domains to better compare the models. Since we stop the
simulation after all the domains have been classified, the total reward is not the
expected infinite horizon reward, so simulations which run for different amounts
of time will have had the chance to accumulate different amounts of reward. The
normalized reward is meant to give a better indication of what the long term
average reward would be, which would be a much fairer comparison. We also
looked at the VD-POMDP solved with a discount factor of γ = 0.8, where we can
clearly see the benefit of longer term planning. Although this VD-POMDP takes
longer to classify both domains, it has a perfect accuracy and lower normalized
reward than the other two models. This shows that the model is placing more
value on potential future information, by preferring to wait and collect more
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alerts before making a final decision. This is clearly the better choice as we see
a much better accuracy. It is clear that it is necessary to be able to plan for
the future to perform well in this kind of domain; it is therefore necessary to be
able to solve for large planning horizons, something that we cannot do using just
the original POMDP model. This demonstrates the merit of the VD-POMDP
framework, as solving this problem with a simple POMDP framework is clearly
infeasible.

Table 3. Comparing performance of full POMDP model to factored model on a small
test network of 3 nodes, with 2 domains. One domain is malicious and the other domain
is legitimate.

Model Timesteps to classify Attack traffic accuracy User traffic accuracy Normalized reward

Full POMDP γ = 0.2 11.814 0.948 0.979 −470.594

VD-POMDP γ = 0.2 11.144 0.944 0.961 −675.100

VD-POMDP γ = 0.8 29.044 1.0 1.0 −386.982

Looking at just the VD-POMDP we test performance on a variety of larger
networks in Table 4. Each of the synthetic networks are tested with 50 domains,
averaged over 30 trials. The DETER network is tested with 100 domains aver-
aged over 30 trials. For the DETER network, we used two thresholds, and deter-
mined the true and false positive rates of our detector by letting it monitor traffic
at each threshold setting and observing the number of alerts obtained for each
channel. We found our simple implementation of the detector had true positive
rates of α(τ1) 
 0.35, α(τ2) 
 0.45 and true negative rates of β(τ1) 
 0.8,
α(τ2) 
 0.7, and these were the parameters used in the model for this experi-
ment as well as all the synthetic ones. We can see that, although the synthetic
simulations all perform extremely well, and have a perfect accuracy, the deter
simulation occasionally misclassifies legitimate traffic. This is due to the uncer-
tainty in the characterization of the detector, as network traffic is variable and
may not always follow a static distribution. Observations for the synthetic exper-
iments were drawn from the distributions that the VD-POMDP had planned for,
while in the DETER experiments, traffic did not always follow the input dis-
tributions. However, even with this uncertainty, the model still performs well
in this realistic network setting. A more sophisticated implementation of this
detector along with a more intensive characterization would even further boost
the performance.

Table 4. Performance of the factored model on larger networks.

Network Timesteps to classify Attack traffic accuracy User traffic accuracy Normalized reward

Synthetic 40 nodes 4.079 1.0 1.0 −13523275.239

Synthetic 85 nodes 3.252 1.0 1.0 −15514333.580

Synthetic 156 nodes 3.235 1.0 1.0 −22204095.194

Synthetic 341 nodes 3.162 1.0 1.0 −21252069.929

DETER 5.3076 1.0 0.995 −6835.588
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Time Action Observations
# Channels τ Md

1 64 1 0 23
2 62 1 0 23
3 3 0 0 0
4 5 0 0 2
5 8 0 0 2
6 18 0 0 4
7 0 0 0 0

Fig. 6. Trace of a run on a network of 85
nodes of a single legitimate domain.

We also show an example of the
diversity of actions chosen by the VD-
POMDP. In Fig. 6 we show a trace
of the actions taken by a single agent
planning for a single domain. We show
the number of channels chosen to
sense on, the choice of threshold, along
with the classification of the domain.
We also show the observations, which
the number of channels that triggered
alerts. The simulation ends when no
more channels are to be sensed on. We
can see the agent varying the number
of channels as well as the threshold of the detector, as they become more and
more sure that they domain is legitimate.

6.4 Robustness

Lastly, we looked at the robustness of our model to errors in the input parame-
ter. As evidenced with the DETER experiment, the model requires known false
positive and true positive rates for the detector. While it may be reasonable to
assume that with enough monitoring, it is possible to get accurate measures of
false positive rates in a network by simply running the detector on known legit-
imate traffic for long periods of time, it is more difficult to characterize the true
positive rates, as attacks can take many forms and exfiltration can occur over
varying rates. In order to test the robustness of our model, we solved for the
policy using one set of rates and then tested the model in simulation against a
variety of actual rates. For our tests, the model was solved with a true negative
rate of 0.8 and true positive rate of 0.55. We then drew alerts from a range
of distributions for the true positive and negative rates as shown in Fig. 7 on
the y-axis and x-axis respectively. The metrics used to measure robustness are
shown as a heat-map for each true positive, true negative pair.

In Fig. 7a performance of the model was tested by looking at the percent of
incorrect legitimate domain classifications i.e. the percent of legitimate domains
flagged as malicious. In all cases except for one, all legitimate domains were
correctly flagged as non-malicious, and in one case legitimate domains were mis-
classified in only 0.4 % of the trials. In Fig. 7b the percent of correct malicious
domain classifications is shown, where in all but two cases, the correct domain
was always identified. Figure 7c shows the number of time steps taken to classify
all the domains, while Fig. 7d shows the average reward (in this case a penalty)
for the simulations. We can see that the model is robust to mischaracterization of
the detectors, where the only dips in performance occur when either the detector
has a low true negative rate and when the error in both the true positive and
negative rates are large.
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Fig. 7. Testing the robustness with respect to error in the planned true positive and
true negative rate.

7 Conclusion and Future Work

We demonstrated the effectiveness of POMDP based planning tool in mak-
ing intelligent decisions to tackle the problem of DNS based data exfiltration.
These decisions were made by aggregating information from multiple noisy detec-
tors and using sequential planning under uncertainty based reasoning. In doing
so, we also proposed a new class of POMDPs called VD-POMDP that uses
domain characteristics to split the POMDP into sub-POMDPs and allows for
abstract actions in each sub-POMDP that can then be easily converted to a
full joint action at execution time. VD-POMDP allows scaling up our approach
to real world sized networks. The approach also detects attacks in near real
time, thereby providing options to minimize the damage from such attacks.
More generally, we believe that our approach applies to other security detec-
tion and response problems such as exfiltration over other protocols like HTTP
and intrusion detection. While this work is an important step in addressing the
problem of APT’s in a realistic and scalable manner, we recognize that having
a non-adaptive adversary is a simplification of the potentially complex interac-
tion between attacker and defender in this environment. Building an appropriate
adversary model, and considering the underlying game in this domain is a key
avenue for future work in this area.
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Abstract. RFID networks are becoming an integral part of the emerging
Internet of Things (IoT) era. Within this paradigm passive RFID networks have
emerged as low cost energy-efficient alternatives that find applicability in a wide
range of applications. However, such RFID networks and devices, due to their
limited capabilities, can easily become vulnerable to several intrusive actions. In
this paper, the problem of proactively protecting a passive RFID network from
security threats imposed by intruders that introduce high interference to the
system resulting in the possible disruption of the network’s proper operation is
investigated. Passive RFID tags are associated with a well-designed utility
function reflecting on one hand their goal to have their signal properly
demodulated by the reader, and on the other hand their risk level of participating
in the network, stemming from their hardware characteristics among others, thus
characterizing them as normal or intruder tags. An interference mitigation risk
aware (IMRA) problem is introduced aiming at maximizing each tag’s utility
function, thus implicitly enforcing tags to conform to a more social behavior.
Due to its nature, the proposed problem is formulated as a non-cooperative game
among all the tags (normal and intruders) and its Nash equilibrium point is
determined via adopting the theory of supermodular games. Convergence of the
game to its Nash equilibrium is also shown. A distributed iterative and
low-complexity algorithm is proposed in order to obtain the Nash equilibrium
point and the operational effectiveness of the proposed approach is evaluated
through modeling and simulation.

Keywords: Intruders � Interference mitigation � Passive RFID networks �
Risk � Game theory

1 Introduction

Radio Frequency Identification (RFID) technology aims at tagging and identifying an
object. The concept of RFID is envisioned as part of the Internet of Things and has
been recently used in numerous applications from asset tracking to supply chain
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management and from medication compliance and home navigation for the elderly and
cognitively impaired to military troop movements monitoring. RFID networks are
exposed to a broader attack surface given their IoT nature, thus it is of great interest not
only to develop security mechanisms that can protect critical data from harm (e.g. data
encryption techniques), but also the application of intelligent control mechanisms that
will enable an RFID network to work properly and in a reliable manner with minimum
intervention [1].

An RFID basic characteristic is the conversion of a set of objects into a mobile
network of nodes, which is of dense and ad-hoc nature and it is mainly utilized for
objects tracking, environmental monitoring and events triggering [2]. The fundamental
components of an RFID network are: (a) the RFID reader/interrogator and (b) the RFID
tag, which can be either active or passive or semi-passive. The RFID reader commu-
nicates with the RFID tags via emitting radio waves and receiving signals back from
the tags. The active RFID tags and semi-passive RFID tags embed a radio signal
transceiver and an internal power source. The main advantages of active RFID tags are
that they can activate themselves regardless of the presence of a reader in proximity,
while providing greater operating range and supporting advanced functionalities
compared to passive RFID tags. On the other hand, their main disadvantages are their
high cost and significant environmental limitations due to the presence of the battery,
i.e., large size, and their high transmission power [3]. Therefore, passive RFID tags
emerge as the most energy-efficient, inexpensive solution to build an RFID network.
Their low transmission power backscatter commands and low cost make them suitable
for a wide range of IoT applications.

1.1 Motivation

A passive RFID network consists of a number of RFID readers and a number of passive
RFID tags. The RFID tags have no on-board power source and derive their reflection
power from the signal of an interrogating reader. A passive RFID tag is activated by the
reader’s forward/transmission power, which is much more powerful than the
reverse/reflection power sent back by the tag to the reader. Each tag must be able to
reflect sufficient amount of power to the reader, which is mapped to a targeted
signal-to-interference-plus-noise ratio (SINR), in order for its signal to be demodulated
by the reader. The reflection power of all passive RFID tags within the RFID network
contribute to the overall existing interference, which consequently drives the tags to
reflect with even more power (while their maximum reflection power is limited) to
ensure the demodulation of their signal at the reader.

Within such a passive RFID network, a security threat with respect to the reliable
operation of the system is the presence of one or more intruding passive RFID tags that
could act as interferers. In other words, such “attacker/intruder tags” can take advan-
tages of their position in the network and their hardware characteristics may simply
introduce strong interference in the rest of the passive RFID tags’ reflections rendering
their signals hard or almost impossible to be demodulated at the RFID reader side.
Taking into account the difficulty in identifying those intruder-tags and eventually
removing them from the network an alternative strategy in dealing with this problem is
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to reduce the potential harm that they can impose on the system. This can be achieved
by enforcing the tags to conform to a more social behavior with respect to their
reflection behavior (for example, not using unnecessarily high reflection power), thus
limiting the potential risks. The latter may range from simply wasting unnecessarily
power to completely disturbing the proper operation of the system by making some
objects impossible to be tracked.

Passive RFID tags share the same system bandwidth towards reflecting back their
signal to the reader. Thus, increased level of interference caused by the rest of the tags
will enforce a tag to increase also its reflection power in order to achieve a desired
power level (which is translated to a target SINR value) that eventually will enable the
demodulation of its signal by the reader. Therefore, passive RFID tags compete with
each other to determine their optimal reflection powers that enable their signal
demodulation. Masked or disguised intruder-tags pretending to act as normal passive
RFID tags, tend to introduce high interference level to the passive RFID network, thus
disrupting or even causing failure of its proper operation. Furthermore, due to the
distributed nature of passive RFID networks and the absence of a single administrative
entity to control tags’ reflection powers, while considering the potential risk level
associated with the operation of each tag, distributed solutions should be devised in
order to secure the reliable operation of the RFID networks and impose on participating
entities to adhere to proper operation rules and behavior.

1.2 Contributions and Outline

In this paper, the problem of risk-aware mitigation of interference imposed by intruders
in passive RFID networks is studied and treated via a game theoretic approach.
Envisioning the Internet of Things (IoT) and battery-free wireless networks as key part
of the emerging 5G era, the system model of a passive RFID network is initially
introduced (Sect. 2.1). A utility-based framework is adopted towards representing
passive RFID tag’s goal to have its signal being properly demodulated by the reader,
while simultaneously considering its reflection power and its corresponding risk level –
the latter being mapped to tag’s hardware related characteristics (Sect. 2.2). Due to the
distributed nature of the proposed interference mitigation risk aware (IMRA) problem,
it has been formulated as a non-cooperative game among passive RFID tags, which can
be either normal or intruder-tags (Sect. 3.1) and IMRA game’s Nash equilibrium point
is determined (Sect. 3.2). The convergence of the IMRA game to the Nash equilibrium
is shown (Sect. 4), while a non-cooperative distributed low-complexity and iterative
algorithm is presented to determine the Nash equilibrium of the IMRA game (Sect. 5).
The performance of the proposed approach is evaluated in detail through modeling and
simulation (Sect. 6), while related research work from the recent literature is presented
in Sect. 7. Finally, Sect. 8 concludes the paper.
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2 System Model

2.1 Passive RFID Networks

Figure 1 presents the considered topology of a passive RFID network. An RFID reader
is assumed to activate the N ¼ Nn þNin passive RFID tags, which reflect back their
information in order for their signal to be demodulated by the reader. The number of
normal passive RFID tags is denoted by Nn, while the number of intruder-tags is Nin.
Respectively, the set of normal RFID tags is denoted by Sn and the corresponding set of
intruder-tags by Sin. The overall set of passive RFID tags within the network is
S ¼ Sn [ Sin. Representative real life examples of this assumed topology include:
(a) monitoring stock availability on retail shelves, (b) identifying books in shelves of
library systems, and (c) monitoring the military equipment supply chain.

RFID reader’s transmission power is assumed to be fixed, i.e. PR, depending on its
technical characteristics. In the examined topology, a simplified RFID network has
been considered, consisting of one RFID reader and multiple passive RFID tags, which
can be either normal or intruder-tags. The proposed framework can be easily extended
to multiple RFID readers and multiple tags, while each one of the tags will be asso-
ciated to its nearest RFID reader. Let Pi; i ¼ 1; 2; . . .N denote the reflection power of
the ith, i 2 S ¼ Sn [ Sin passive RFID tag, where Pi 2 Ai;Ai ¼ 0;PMax

i

� �
. The maxi-

mum feasible reflection power PMax
i of each tag depends on: (a) the characteristics of

the topology (e.g. distance di between the RFID reader and the tag) and (b) tag’s
hardware characteristics. Assuming single hop communication among the reader and
the tag, the upper bound of passive RFID tag’s reflection power is:

PMax
i ¼ PR � GR � Gi:Ki

k
4pdi

� �2

ð1Þ

where PR is the transmission power of the RFID reader R communicating directly with
the ith passive RFID tag, GR and Gi are the RFID reader’s and passive RFID tag’s
directional antenna’s gain, respectively, Ki is the backscatter gain of the ith tag and the

factor k
4pdi

� �2
describes the free space path loss.

In a backscatter communication system, i.e. communication from the N passive
RFID tags to the reader, the signal-to-interference-plus-noise ratio (SINR), ci, must
meet a required threshold ctargeti for the tag’s signal to be able to be demodulated by the
reader. The SINR at the RFID reader R for each passive RFID tag i; i 2 S ¼ Sn [ Sin is
given by [12]:

ci ¼
hiPiP

j 6¼i
hjPj þ n

ð2Þ
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where hi represents the channel loss from the ith tag to the reader and n contains the
background noise. The term

P
j6¼i

hjPj denotes the RFID network interference at the RFID

reader when receiving data from the ith tag.

2.2 Utility Function

Towards formulating passive RFID tag’s behavior under a common optimization
framework, the concept of utility function is adopted. Each passive RFID tag (either
normal or intruder) is associated with a utility function, which consists of two parts:
(a) the pure utility function and (b) the risk function. The pure utility function repre-
sents the tag’s degree of satisfaction in relation to the achievement of the targeted SINR
ctargeti and the corresponding power consumption. The risk function represents the risk
level (with respect to its impact and potential harm to the system) of each passive RFID
tag considering its reflection power and its hardware characteristics, i.e., directional
antenna’s gain Gi and backscatter gain Ki. It is noted that a passive RFID tag is
considered as a potential attacker/intruder of the overall RFID network if it introduces
high level of interference due to its hardware characteristics, thus it should be penalized
for its malicious and non-social behavior. The latter could result in increased reflection
power Pi from the rest of the tags. Considering that PMax

i is limited it could be the case
that the tags cannot achieve their targeted SINR and consequently the reader will be
unable to demodulate their signal. Therefore, the risk function provides the means to
enforce the tags to conform to a more social behavior and limiting the potential impact
of an intruder. Also note that an intruder will be masking its presence and behavior, and
other than trying to impose high interference in the rest of the tags and therefore disrupt
the normal system operation, its behavior will look normal to avoid being detected.

Based on the above discussion, each passive RFID tag’s utility function can be
formulated as follows:

Fig. 1. Passive RFID network – library system example.
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UiðPi;P�iÞ ¼ UpureðPi;P�iÞ � R Gi;Ki;Pi
� 	 ð3Þ

where Upureð�Þ denotes passive RFID tag’s pure utility function and R �ð Þ its risk
function. As it was discussed above, Upureð�Þ reflects the tradeoff between achieving the
target SINR and the necessary corresponding reflection power, while considering the
imposed interference by the rest of the tags. The risk function is introduced as a cost
function penalizing the tags, which present non-social/malicious behavior and tend to
damage/attack the RFID network via introducing high interference level due to their
increased reflection power. Thus, the penalty increases for the tags that try to reflect
with high power and have privilege against other tags due to their hardware
characteristics.

Throughout the rest of the paper, without loss of generality and for presentation
purposes, we consider the following passive RFID tag’s utility function:

UðPi;P�iÞ ¼ fiðciÞ
Pi

� Gi � Ki � Pi ð4Þ

where fiðciÞ is a sigmoidal-like function with respect to ci, where the inflection point is
mapped to the target SINR ctargeti of the i; i 2 S tag. For presentation purposes, we set

fiðciÞ ¼ 1� e�Acið ÞM , where A, M are real valued parameters controlling the slope of
the sigmoidal-like function.

3 Interference Mitigation Risk Aware (IMRA) Game

3.1 Problem Formulation

Let GIMRA ¼ S; Aif g; Uið�Þf g½ � denote the corresponding non-cooperative interference
mitigation risk aware game, where S ¼ 1; 2; . . .;Nf g is the index set of the passive
RFID tags, Ai ¼ 0;PMax

i

� ��RN is the strategy set of the ith passive RFID tag and Uið�Þ
is its utility function, as defined before. Each passive RFID tag aims at maximizing its
utility via determining its reflection power Pi in a non-cooperative manner. Thus, the
Interference Mitigation Risk Aware (IMRA) game can be expressed as the following
maximization problem:

IMRA gameð Þ
max
Pi2Ai

Ui ¼ max
Pi2Ai

UiðPi;P�iÞ; 8i 2 S

s:t: 0\Pi �PMax
i

ð5Þ

The solution of the IMRA game determines the optimal equilibrium for the RFID
system, consisting of the individual decisions of each passive RFID tag (either normal or
intruder-tag), given the decisions made by the rest of the tags in the passive RFID
network. The solution of the IMRA game is a vector of passive RFID tags’ reflection
powersP� ¼ ðP�

1;P
�
2; . . .;P

�
NÞ 2 A,A ¼ [Ai; i 2 S ¼ Sn [ Sin, whereP�

i is the reflection
power of tag i. The Nash equilibrium approach is adopted towards seeking analytically
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the solution of the non-cooperative IMRA game. Based on this approach, which is most
widely used for game theoretic problems, we have the following definition.

Definition 1. The power vector P� ¼ ðP�
1;P

�
2; . . .;P

�
NÞ 2 A, A ¼ [Ai; i 2 S ¼ Sn [ Sin,

is a Nash equilibrium of the IMRA game, if for every i 2 S ¼ Sn [ Sin
UiðP�

i ;P
�
�iÞ�UiðPi;P

�
�iÞ for all Pi 2 Ai.

The interpretation of the above definition of Nash equilibrium point is that no
passive RFID tag, either normal or intruder-tag, has the incentive to change its strategy
(i.e., reflection power), due to the fact that it cannot unilaterally improve its perceived
utility by making any change to its own strategy, given the strategies of the rest of the
tags. Moreover, it is concluded that the existence of a Nash equilibrium point guarantees
a stable outcome of the IMRA game, while on the contrary the non-existence of such an
equilibrium point is translated to an unstable and unsteady situation of the RFID system,
stemming from high risk and interference levels imposed by the intruder-tags.

Furthermore, note that the utility function introduced in Eqs. (3) and (4) is generic
enough to capture both normal and intruder-tags behavior, however it is not charac-
terized by desirable properties, e.g., quasi-concavity. Therefore, alternative techniques
from the field of game theory should be adopted in order to prove the existence of Nash
equilibrium for the IMRA game.

3.2 Towards Determining the Nash Equilibrium

Towards proving the existence of at least one Nash equilibrium of the IMRA game, the
theory of supermodular games is adopted. Supermodular games are of great interest as
an optimization and decision making tool, due to the fact that they encompass many
applied models, they tend to be analytically appealing since they have Nash equilibria
and they have the outstanding property that many solutions yield the same predictions
[13]. Moreover, supermodular games comply very well with intruder-tags’ behavior in
the IMRA game, due to the fact that they are characterized by strategic complemen-
tarities, i.e., when one intruder-tag takes a more competitive and aggressive action (i.e.,
increase its reflection power), then the rest of the tags want to follow the same behavior,
causing the RFID system to be led to borderline operation.

Considering the Interference Mitigation Risk Aware (IMRA) problem studied in
this paper, we examine a single-variable supermodular game, which is defined as
follows:

Definition 2. A game G ¼ S; Aif g; Uið�Þf g½ � with strategy spaces Ai 	 <, 8i 2 S ¼
Sn [ Sin is supermodular if for each i; i 2 S, the utility function UiðPi;P�iÞ has
non-decreasing differences (NDD) in ðPi;P�iÞ [13].

The property of non-decreasing differences (NDD) for the objective function
UiðPi;P�iÞ is formally defined as follows.

Definition 3. The objective function UiðPi;P�iÞ has non-decreasing differences
(NDD) if for all P�i �P0

�i, the difference UiðPi;P�iÞ � UiðPi;P0
�iÞ is non-decreasing in

Pi. Moreover, if the objective function UiðPi;P�iÞ is smooth (i.e., it has derivatives of all
orders), then it has non-decreasing differences in ðPi;P�iÞ if and only if
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@2Ui Pð Þ
@Pi@Pj

� 0; j 6¼ i; j; i 2 S ð6Þ

Examining the IMRA game as it has been formulated in relation (5), it is observed
that it is not a supermodular game according to Definition 3, due to the exogenous risk
factors Gi;Ki included in the objective function. Therefore, the strategy space of each
passive RFID tag should be slightly modified, in order to show that condition (6) holds
true, so that the resulting game is supermodular.

Theorem 1. The IMRA game’s utility function UiðPi;P�iÞ as defined in (4) has

non-decreasing differences (NDD) in ðPi;P�iÞ, i.e. @2Ui Pð Þ
@Pi@Pj

� 0; j 6¼ i; j; i 2 S, if and

only if

ci 2
lnM
A

; þ1

 �

ð7Þ

Proof. Towards showing that the IMRA game’s utility function has non-decreasing
differences (NDD) in ðPi;P�iÞ, the sign of the second order partial derivative, i.e.
@2Ui Pð Þ
@Pi@Pj

, is examined as follows:

@2Ui Pð Þ
@Pi@Pj

¼ AM
P2
i

hiP
j6¼i

hjPj þ n
c2i e

�Aci 1� e�Aci
� 	M�2

1�Me�Aci
� 	

It is noted that the term AM
P2
i

hiP
j 6¼i

hjPj þ n
c2i e

�Aci is non-negative for all ci � 0. Moreover,

considering the term 1� e�Acið ÞM�2, we have: 1� e�Acið ÞM�2 � 0 , ci � 0. Further-
more, considering the sign of the term 1�Me�Acið Þ, we have:
1�Me�Acið Þ� 0 , ci � lnM

A .
Based on the above, it is concluded that the IMRA game’s utility function

UðPi;P�iÞ ¼ fiðciÞ
Pi

� Gi � Ki � Pi has non-decreasing differences in ðPi;P�iÞ, if ci � lnM
A .
∎

Based on Definitions 2 and 3 and Theorem 1, we easily conclude the following.

Theorem 2. The IMRA game GIMRA ¼ S; Aif g; Uið�Þf g½ � is supermodular in a modi-
fied strategy space A0

i ¼ PMin
i ;PMax

i

� � 	 Ai, where PMin
i is derived from ci � lnM

A .
At this point, it should be noted that the constraint ci � lnM

A is not an additional
constraint to the initial formulation of the IMRA game, due to the fact that the target
SINR value ctargeti introduced in Sect. 2 is equivalent to the value ctargeti ¼ lnM

A .
Specifically, it has already been explained in Sect. 2 that ctargeti is mapped to the

inflection point of fiðciÞ. Thus, we have: @
2fiðciÞ
@c2i

¼ 0 , ctargeti ¼ lnM
A . The meaning of the
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above description is that the passive RFID tag should have sufficient reflection power
Pi 2 0;PMax

i

� �
such that ci � ctargeti is ensured in order for its signal to be demodulated

by the reader. Thus, assuming an ideal scenario where we do not have intruder-tags and
the topology is favorable (i.e., not relatively extremely large distances for an RFID
network) so as tag’s available power Pi 2 0;PMax

i

� �
is sufficient in order to be read by

the reader, then each tag’s goal is to achieve an SINR value greater or at least equal to
the target one, i.e., ci � ctargeti . Therefore, in the case that intruder-tags introduce high
interference resulting in violation of the condition ci � ctargeti ¼ lnM

A , this is essentially
translated to no guarantee of Nash equilibrium existence (i.e., unstable situation of the
RFID system), thus some or even all tags will not achieve ctargeti and consequently their
signal will not be demodulated, and as a consequence the reader’s objective will not be
fulfilled.

Theorem 2, i.e., proving that the IMRA game is supermodular in the modified
strategy space A0

i 	 Ai; 8i 2 S ¼ Sn [ Sin, guarantees the existence of a non-empty set
of Nash equilibria [13]. Therefore, the following holds true:

Theorem 3. The modified IMRA game G0
IMRA ¼ S; A0

i

� �
; Uið�Þf g� �

has at least one
Nash equilibrium, which is defined as follows:

P�
i ¼ argmax

Pi2A0
i

UiðPi;P�iÞ ð8Þ

It should be noted that Theorem 3 guarantees the existence of at least one Nash
equilibrium, while this point is not necessarily unique. Practically, the best response in
(8) can be solved via single variable calculus utilizing the Extreme Value Theo-
rem [14], and the most energy-efficient Nash equilibrium (i.e. the Nash equilibrium
characterized by less reflection power Pi, while guaranteeing the target SINR ctargeti ) is
adopted by each passive RFID tag.

4 Convergence of the IMRA Game

In this section, we prove the convergence of the interference mitigation risk aware
(IMRA) game to a Nash equilibrium point, as this is determined by relation (8).
Towards this direction, the best response strategy of each passive RFID tag i; i 2 S ¼
Sn [ Sin is denoted by BRi and is given as follows:

BRi Pið Þ ¼ argmax
Pi2A0

i

Ui Pi;P�ið Þ ¼ P�
i ð9Þ

As shown in [15], the fundamental step for showing the convergence of the IMRA
game to a Nash equilibrium, as obtained by Eq. (8), is to show that the best response
function BRðPÞ is standard. In general, a function is characterized as standard if for all
P[ 0, where P ¼ P1;P2; . . .;PNð Þ, the following conditions/properties hold true:
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(i) Positivity: BRðPÞ[ 0;
(ii) Monotonicity: if P0 �P then BRðP0Þ �BRðPÞ;
(iii) Scalability: for all a > 1, aBRðPÞ�BRðaPÞ.

Theorem 4. The modified IMRA game G0
IMRA ¼ S; A0

i

� �
; Uið�Þf g� �

converges to a
Nash equilibrium, as expressed in (8).

Proof. As presented in Eq. (9) each passive RFID tag’s best response strategy is the
argument of the maximum of the tag’s utility function with respect to the reflection
power Pi 2 A0

i. Considering all the passive RFID tags participating in the IMRA game,
we have BRðPÞ ¼ BR1ðP1Þ;BR2ðP2Þ; . . .;BRNðPNÞð Þ ¼ ðP�

1;P
�
2; . . .;P

�
NÞ. Towards

proving that the best response function BRðPÞ is standard, the corresponding afore-
mentioned properties can be easily shown:

(i) P ¼ P1;P2; . . .;PNð Þ[ 0, thus BRðPÞ[ 0;
(ii) if P0 �P then via Eq. (9), i.e., BRi Pið Þ ¼ P�

i we conclude that BRðP0Þ �BRðPÞ;
(iii) for all a > 1, then via Eq. (9), i.e., BRi Pið Þ ¼ P�

i we conclude that
BRðP0Þ �BRðP0Þ, where the equality holds true. ∎

Based on Theorem 4, it is guaranteed that the IMRA game converges to a stable
situation, i.e. to a Nash equilibrium point. Detailed numerical results with respect to the
convergence of the proposed IMRA game to a Nash equilibrium are presented in
Sect. 6.

5 The IMRA Algorithm

Passive RFID networks, as part of the Internet of Things, are characterized by their
distributed nature and the absence of any central entity that can take decisions about the
actions of the passive RFID tags on their behalf. Thus, each RFID tag should determine
in a distributed manner its equilibrium reflection power after being activated by the
reader. Except for its hardware characteristics and its channel loss, which is
customized/personal information already known by each tag, the only supplementary
necessary information, towards determining the equilibrium powers, is the overall
network interference which is broadcasted by the reader to the tags. Therefore, in this
section we propose a distributed iterative and low complexity algorithm in order to
determine the Nash equilibrium point(s) of the IMRA game. The proposed IMRA
algorithm runs every time the RFID reader activates the passive RFID tags in order to
collect their information.
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6 Numerical Results and Discussions

In this section, we provide some numerical results illustrating the operation, features
and benefits of the proposed overall framework and in particular the IMRA algorithm.
Furthermore, the efficiency and effectiveness of the proposed approach is demonstrated
via representative comparative scenarios.

Specifically, in Sect. 6.1 we initially demonstrate the convergence of the proposed
Interference Mitigation Risk Aware (IMRA) algorithm. Moreover, the convergence
time of the algorithm in terms of required iterations is studied and indicative real
time-values are provided in order to show its applicability in realistic passive RFID
scenarios. Then, in Sect. 6.2, the advantages of adopting the IMRA framework, in
terms of controlling intruder-tags reflection power, are presented. The results obtained
by the proposed IMRA approach are compared against two alternatives, namely: (a) the
case where passive RFID tags reflect with their maximum available reflection power
without considering any interference mitigation and/or power control scheme (in the
following referred to as Max Reflection Scenario), and (b) the case where the IMRA
adopts a more strict risk aware policy by the tags (e.g., convex risk function with
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respect to tag’s reflection power) enforcing intruders in a more strict manner, compared
to a linear risk aware policy, to adopt a social behavior (in the following referred to as
IMRA - Convex Risk Scenario). Finally, in Sect. 6.3, an evaluation of intruders’
impact on system’s reliability and effectiveness is provided for the IMRA framework
and the results are compared to the corresponding outcome from the Max Reflection
Scenario, described above.

Throughout our study, we consider a passive RFID network consisting of one RFID
reader and N ¼ Nn þNin passive RFID tags. RFID reader’s transmission power is
fixed, i.e., PR ¼ 2W and also the gain of its antenna is considered to be GR ¼ 6 dBi.
The minimum received power by the RFID reader, in order to demodulate the received
signal from the tags is assumed PTH ¼ �15 dBm and corresponds to the passive RFID
tag’s target SINR ctargeti . The passive RFID network operates at f ¼ 915MHz. The
channel loss from the ith tag to the reader is formulated using the simple path loss
model, hi ¼ ci=dai , where di is the distance of tag i from the reader, a is the distance loss
exponent (e.g. a = 4) and ci is a log-normal distributed random variable with mean 0
and variance r2 ¼ 8ðdB) [12]. The normal passive RFID tags are characterized by their
backscatter gain Ki;n ¼ 60% and the gain of their directional antenna is Gi;n ¼ 12 dBi,
while the corresponding values for the intruder-tags are: Ki;in ¼ 90% and
Gi;in ¼ 16 dBi. The topology that has been considered in Sects. 6.1 and 6.2, corre-
sponds to a shelve of a library (equivalently it could be a part of any linear supply
chain) containing N = 100 passive RFID tags and the distance di among the reader and
each tag ranges in the interval [0.2 m, 1.5 m].

6.1 Convergence Evaluation of the IMRA Algorithm

We assume that the RFID network consists of Nn = 100 = N passive RFID tags while
for demonstration purposes only in the following we present the behavior of 10 tags
that are placed in increasing distance from the RFID reader. Figure 2 illustrates tags’
reflection powers’ evolution as a function of the iterations required for the IMRA

Fig. 2. IMRA algorithm’s convergence (10 selected tags presented in the graph).
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algorithm to converge at game’s G0
IMRA Nash equilibrium point. It should be noted that

the same results hold true in terms of necessary iterations for convergence, if
intruder-tags were residing in the network, while the absolute values of their reflection
powers would be different.

The corresponding results reveal that the convergence of the proposed IMRA
algorithm is very fast since less than thirty-five iterations are required in order to reach
the equilibrium for all tags, starting from randomly selected feasible initial reflection
powers. Moreover, for all practical purposes we notice that in less than twenty five
iterations the values of the reflection powers have approximately reached their corre-
sponding equilibrium values. The IMRA algorithm was tested and evaluated in an Intel
(R) Core (TM) 2 DUO CPU T7500 @ 2.20 GHz laptop with 2.00 GB available RAM
and its runtime was less than 0.5 ms, thus it can be easily adopted in a realistic
scenario. Furthermore, given the distributed nature of the IMRA algorithm, i.e., the
calculations are made by each RFID tag, its runtime does not depend on the number of
passive RFID tags residing in the RFID network, therefore it is quite a scalable
approach in single hop communication passive RFID networks.

6.2 Improving System Operational Efficiency Through Interference
Mitigation

As it has been presented and discussed in detail in this paper, one of the main reasons
that can disturb the proper operation of an RFID network (in terms of properly reading
the passive RFID tags) is the presence of intruder-tags that are enabled with favorable
hardware characteristics and thus being able to reflect with high reflection power and
increase the network interference. Therefore, the IMRA framework can control the
harm that intruder-tags can cause to the network via introducing a risk aware function,
which penalizes more the intruders compared to the normal tags.

Figure 3 presents the sum of intruders’ reflection power as a function of the per-
centage of intruders within the network, while normal tags are replaced by intruders. As
mentioned before, three comparative scenarios are presented:

(i) Max Reflection Scenario: each tag (either normal or intruder) reflects with its
maximum feasible reflection power.

(ii) IMRA – Linear Risk Scenario: the IMRA framework presented in this paper,
where the risk function is linear with respect to the reflection power, i.e.,
R Gi;Ki;Pið Þ ¼ Gi � Ki � Pi.

(iii) IMRA – Convex Risk Scenario: the IMRA framework adopts a convex risk
function which in essence penalizes more the intruder-tags, i.e.,
R Gi;Ki;Pið Þ ¼ Gi � Ki � ePi.

Based on the results of Fig. 3, it is clearly observed that the IMRA framework
decreases considerably the impact of the intruder-tags on the network via keeping their
reflection powers at low levels, thus mitigating the interference caused by them.
Moreover, it is observed that as the risk function becomes more strict, thus imposing an
even more social behavior to the intruders, the sum of intruders’ reflection powers can

74 E.E. Tsiropoulou et al.



be further decreased. Therefore, based on the potential threat that an RFID network is
expected to confront, different risk functions can be adopted, resulting in better level of
protection.

6.3 Evaluation of Intruders’ Impact on System Reliability
and Effectiveness

Towards studying the impact of intruders on system’s reliability and effectiveness, a
detailed comparative study between the Max Reflection Scenario and the IMRA –

Linear Risk Scenario is presented. A simplified topology has been considered as
presented in Fig. 4 towards keeping most of the parameters the same among the passive
RFID tags (e.g., distance from the reader), thus observing the impact of replacing
normal RFID tags with intruders. The tags with x symbol refer to those tags that do not
achieve their target SINR, while the tags with √ symbol are those that can be read by the
reader. The star-tag depicts the intruder.

In Fig. 5, the results reveal that in the Max Reflection Scenario, the intruder-tag that
replaces a normal tag, dominates the rest of the tags and achieves to be read by the
RFID reader, due to its comparatively larger reflection power. In parallel, it causes high
interference to the network, thus normal RFID tags cannot be read, due to the fact that
their maximum available reflection power is not sufficient to overcome the imposed
interference. Observing the multiple examples in Fig. 5 for different number of
intruders in the Max Reflection Scenario, we conclude that the intruder-tags achieve to
be read, while the normal tags fail. However, this is completely undesirable due to the
fact that an intruder-tag may reflect erroneous or misleading data, or alternatively few
intruder-tags suffice to cause the non-reading of many normal tags.

On the other hand, the IMRA – Linear Risk Scenario achieves to isolate the
intruder-tags and not read them, while it enables the RFID reader to properly read the
normal tags. This observation stems from the fact that intruder tags are penalized via
the linear risk function towards reducing their reflection power, which becomes quite

Fig. 3. Sum of Intruders’ reflection power as a function of the percentage of intruders.
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Fig. 4. Circle topology with N = 10 passive RFID tags and d = 0.4 m.

Fig. 5. Read (√) and non-read tags (x) for different numbers of intruders ( ).
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low so that it is not sufficient to enable the intruder-tag to be read by the reader. This
outcome is of great practical importance because it can be adopted as a methodology to
isolate intruder-tags and support RFID network’s proper operation.

7 Related Work

Towards guaranteeing the non-disruptive reliable operation of a passive RFID network
two critical dimensions should be considered: (a) energy-efficiency and (b) risk level of
RFID devices, mainly for the following reasons:

(i) The maximum RFID reader’s transmission power is limited by regulations [4]
and it is the only source power enabling the RFID network’s operation, thus it
should be utilized/spent in a sophisticated manner.

(ii) RFID readers’ and tags’ emissions and reflections, respectively, can cause
interference in the passive RFID network (resulting in limited read range and
inaccurate reads) and in the neighboring systems.

(iii) The optimization of readers’/tags’ transmission/reflection power contributes to
readers’ energy saving, prolonging passive RFID network’s lifetime, building an
energy-efficient network and extending passive RFID tags’ reflection range.

(iv) Malicious passive RFID tags characterized by high risk level can cause great
interference levels in the passive RFID network, thus threatening its proper
operation.

Several frameworks have been proposed in the recent literature in order to deal with
energy-efficiency and/or secure and reliable operation mainly in active RFID networks
(i.e. including active or semi-passive RFID tags). In [5], a security solution for RFID
supply chain systems has been proposed via classifying the supply chain environments
in two categories, i.e. weak and strong security mode. A set of RFID protocols, e.g., tag
reading, security mode switching, secret updating protocols, are introduced to enable
the dual security modes. The authors in [6], propose a key management protocol to
ensure the privacy of the RFID reader and tags in the communication channel among
tags, reader and backend server. The European research project BRIDGE [7] has
focused its efforts in providing security technology that supports RFIDs’ potential in
mitigating existing business and security process risks. In [8], a trusted platform
module is introduced only for the RFID readers, which constitute the core root of trust
measurement for the overall framework.

Additional research works have targeted their efforts mainly to the power control
and energy-efficiency improvement problem. In [9], a power control mechanism of
RFID reader’s transmission power considering the proximity and motion sensors
towards detecting an RFID tag in reader’s range is presented. In [10], an energy-
efficient RFID tags inventory algorithm is proposed towards adjusting RFID reader’s
transmission power via automatically estimating the number of tags in its coverage
area. In [11], a dynamic power algorithm is introduced, where a Received Signal
Strength Indication (RSSI) receiver is employed at RFID reader’s side to measure the
strength of the received signal and adapt RFID reader’s transmission power accord-
ingly. In [12], two heuristic power control algorithms are presented considering the
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interference measured at each RFID reader or its achieved signal-to-interference ratio
(SIR), respectively, as local feedback parameters in order to adapt RFID readers’
transmission power.

The proposed framework in this paper differs from the aforementioned approaches
associated with the secure and reliable operation of an RFID network in the sense that
the IMRA framework capitalizes on power control and interference management
techniques in order to mitigate potential risks introduced by intruding passive RFID
tags. Its main novelty is that the IMRA approach proactively protects the RFID net-
work from malicious behaviors of passive RFID tags, thus supporting its proper and
non-disturbed operation. Based on an interference mitigation risk aware technique,
masked or disguised intruder-tags pretending to act as normal within the RFID network
are enforced to conform to a social-behavior, otherwise their existence can be a priori
identified due to their increased reflection power levels. As such, the IMRA framework
is able to contribute towards securing the proper and reliable operation of the RFID
network reducing the threat and harm stemming from intruder-tags.

8 Concluding Remarks and Future Work

In this paper, the problem of mitigating the interference imposed by the intruders
towards protecting the proper operation of passive RFID networks has been studied.
Passive RFID networks are characterized by limited available power, thus they can
become vulnerable to intruder-tags, which cause high interference to the network,
resulting in inability of reading passive RFID tags. Passive RFID tags are characterized
as normal or intruders and all of them adopt a well-designed utility function, which
reflects their goal of being read by the reader, while it also captures their risk level
depending on their hardware characteristics. An Interference Mitigation Risk Aware
(IMRA) problem is formulated as a maximization problem of each tag’s utility function
and solved based on a game theoretic approach, i.e., supermodular games. The Nash
equilibrium of the IMRA game (i.e., vector of passive RFID tags’ reflection powers) is
determined and a distributed algorithm towards calculating it is introduced. Indicative
numerical results show the superiority of the proposed framework and more specifi-
cally its important attribute to identify and isolate the intruder-tags from the network.

Though in the current work as a proof of concept we focused on simple topologies
where for example only one reader exists in the network, as part of our current research
work we are performing additional extensive simulations in order to evaluate the
performance of the proposed approach under more complex topologies, including
additional variable (mobile) readers. The additional power overhead imposed to the
tags by introducing the risk function can be further investigated and quantified. To
further validate the applicability of our proposed interference mitigation risk aware
framework, this framework should be also tested either in experimental IoT infras-
tructures or realistic large scale passive RFID networks, e.g., library systems, ware-
houses, etc. Furthermore, the IMRA framework can be extended in multi-hop
(tag-to-tag communication) passive RFID networks, where the constraints of tags’
maximum reflection powers and the appropriate communication path/route should be
considered and investigated. Moreover, the utility-based framework that has been
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proposed in this work can be utilized towards implementing a utility-based
risk-aware/secure routing protocol in passive tag-to-tag RFID networks. In addition,
different forms and/or expressions of the utility functions should be investigated in
order to better represent scenarios where different RFID tags with different criticality
and priority are included in the system or alternatively to express intruders’ utilities
with differentiated forms compared to those of normal tags. Finally, part of our current
and future research work in this area, considers additional game theoretic analysis
where a team of intruders is strategically placing themselves and acting so as to induce
maximum damage in the network, while the proposed network control and manage-
ment framework attempts to react against such malicious attempts, by minimizing if not
totally eliminating the potential damage. Given the distributed nature of the emerging
IoT paradigm, additional types of attacks may be considered including localized ones
that mainly aim at damaging a subset of RFIDs only.
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Abstract. In this paper, we consider a Stackelberg security game (SSG)
where a defender can simultaneously protect m out of n targets with
n > m from an adversary that uses a quantal response (QR) to decide
which target to attack. The main contribution consists in introducing risk
aversion in the defender’s behavior by using an entropic risk measure.
Our work extends the work in [20] to a model that considers a risk averse
defender. In addition we improve the algorithms used in [20] by reducing
the number of integer variables, outlining how this adapts to arbitrary
linear constraints. Computational results are presented on large scale
artificial instances, showing the qualitative advantages of using a risk
measure rather than the expected value.

Keywords: Stackelberg security games · Risk averse optimization ·
Entropic risk measure · Quantal response

1 Introduction

In this paper, we introduce risk aversion in a special class of Stackelberg games
[16]. In airport security or coast guard patrol, security forces - the leader or
defender - has limited capacity to defend a finite set of targets against human
adversaries - the followers or attackers. A Stackelberg game is defined as a game
where the leader decides a mixed strategy to maximize its utility, taking into
account that the follower will observe this strategy and in turn decide its action
to maximize its utility. In this situation, it is crucial to use resources wisely to
minimize the damage done to the targets. Hence, an accurate knowledge of the
attackers’ behavior is key. Standard models assume a perfectly rational attacker
that maximizes its utility knowing the defense strategy [7,11], or that can devi-
ate slightly from the optimal attack [12]. Nevertheless, it is commonly accepted
that humans take decisions that are in general different from the policy that
optimizes a given reward function [1]. Consequently, assuming a highly intelli-
gent adversary can lead to weak defense strategies, that fail to take advantage of
knowledge of the attacker. The work presented in [9] assumes that human adver-
saries do not behave rationally, sometimes selecting actions that do not maximize
c© Springer International Publishing AG 2016
Q. Zhu et al. (Eds.): GameSec 2016, LNCS 9996, pp. 83–100, 2016.
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their utility. The model in [9] assumes attackers follow a quantal response (QR).
This idea models the decision probability of an attacker with a logit distribution
derived from discrete choice theory. This model is parametrized with a degree
of rationality and in fact, considers perfect rationality or indifference as special
cases. Furthermore, it is strongly backed in the literature and in practice by
its superior ability to model human behavior [5,14,18,19]. A polynomial time
algorithm is presented in [20] to solve the problem of finding an optimal - in
expectation - defense strategy against QR adversaries in SSG solving a poly-
nomial number of continuous convex optimization problems. In this work, we
present a natural extension of this expected utility maximization approach, by
including risk aversion in the objective of the defender.

In a security domain, worst case outcomes can require more attention than
average, more common events. For instance most smuggling activities could
involve commercial goods or drugs, while a worst case outcome could arise from
a terrorist group smuggling materials or people for a large scale attack. Focusing
on expected outcomes can divert resources from potential catastrophic events to
addressing more common threats. Admittedly, only considering a catastrophic
event could also be inefficient, as the resources would be concentrated on events
that might never occur. It becomes therefore important to balance likely out-
comes with rare but catastrophic ones. The literature on risk measures provides
various models of incorporating risk in decision models, usually in a parametriz-
able form to gauge the tradeoffs of considering expected outcomes or catastrophic
ones. Toward this objective, we use an Entropic risk measure [13] that amplifies
the importance of bad outcomes that are under a determined threshold. The
entropic risk measure of parameter α > 0 of a random variable X is defined by
α lnE

[
e

X
α

]
. Scenarios whose corresponding payoff are larger than the value α

contribute more to this risk measure. Therefore, the parameter α corresponds
to a payoff value of risky outcomes and must be chosen carefully to tune the
risk aversion level of the decision maker. Using an Entropic risk measure gives a
solution that reduces the possible bad outcomes, thus reducing the variance that
the solution observes over the possible outcomes. For example, consider Table 1,
where we compare the solutions obtained for an example that will be explained
in Sect. 3. Here, the solution that optimizes the Entropic risk measure, x̃ has a
slightly worse expected value but has a much better variability and worst case
than the solution that optimizes the expected value, x∗. We show in this work
that the best defense strategy for a defender that optimizes an Entropic risk
measure against a QR adversary can be found in polynomial time using the
change of variables introduced in [20]. Further, we present a computationally
fast algorithm to solve the resulting sequence of convex optimization problems.

We structured the rest of the paper as follows: in the next section we present
the results of [20] to solve the SSG with a risk neutral defender and an adversary
that uses a QR strategy. In Sect. 3 we present a polynomial time algorithm for the
problem when introducing risk aversion. Section 4 describes an algorithm that
solves a generalization of the original problem by solving O

(
ln 1

ε

)
convex min-

imization problems when additional linear constraints with positive coefficients
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Table 1. Comparison of x∗ vs. x̃

E V Worst case P

x∗ 0.245 4.980 0.192

x̃ 0.233 4.546 0.159

Difference −4.9 % −8.7 % −16.9 %

are involved. In the same section, we introduce a further generalization of the
original problem when additional linear constraints with arbitrary coefficients
are involved, and propose a solution framework solving a succession of O

(
ln 1

ε

)

Mixed Integer Linear Programming problems. We show experimental results in
Sect. 5 on large scale artificial instances and compare the performance of state
of the art algorithms with the methods presented in this work. We present our
conclusions in Sect. 6.

2 Quantal Response Equilibria in Security Games

We first consider a SSG with a single leader (defender) maximizing its expected
utility and a single attacker following a QR as was considered in [20]. If the
follower attacks target i ∈ {1, . . . , n} and the defender blocks the attack, then
the reward of the defender is R̄i � 0 and the penalty of the attacker is Pi � 0.
On the other hand, if there is an attack on an undefended target i ∈ {1, . . . , n},
the defender receives a penalty P̄i � 0 but the attacker obtains a reward Ri � 0.
Taking the role of the defender we want to know how to maximize our utility
using a total of m < n resources to cover the n targets.

2.1 Problem Formulation

Let xi ∈ [0, 1] be the frequency of protecting target i. It follows that the expected
utility of the defender and the attacker when the target i is attacked are respec-
tively Ūi(xi) = xiR̄i +(1−xi)P̄i and Ui(xi) = xiPi +(1−xi)Ri. Assuming that
the attacker is not perfectly rational and follows a QR of rationality factor λ > 0
[9], the probability that target i is attacked is given by:

yi(x) =
eλUi(xi)

n∑

j=1

eλUj(xj)

. (1)

Perfect rationality (λ �−→ +∞) and indifference (λ �−→ 0) of the adversary can
be represented as limiting cases of the QR model in Eq. (1). We will see later
that for theoretical complexity and computational tractability purposes, it is
better to use the following alternative form by dividing by eλR both numerator
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and denominator in (1):

yi(x) =
eλ(Ui(xi)−R)

n∑

j=1

eλ(Uj(xj)−R)

where R := max
i∈{1,...,n}

Ri. The defender solves the following nonlinear and non-

convex optimization problem to maximize its expected utility:

max
x∈[0,1]n

{
n∑

i=1

yi(x)Ūi(xi) :
n∑

i=1

xi � m

}

.

In other words, the problem solved by the defender is as follows:

max
x∈[0,1]n

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i=1

βie
−γixi

(
P̄i + δixi

)

n∑

i=1

βie−γixi

:
n∑

i=1

xi � m

⎫
⎪⎪⎬

⎪⎪⎭

(2)

where βi := eλ(Ri−R) � 0, γi := λ(Ri − Pi) � 0 and δi := R̄i − P̄i � 0.

2.2 Solution Approach

The authors in [20] present the following polynomial time algorithm to solve (2).
First, given two functions N : X ⊆ R

n �−→ R and D : X ⊆ R
n �−→ R

+\{0},
they establish that for any r ∈ R we have:

w∗ := max
x∈X

{

w(x) :=
N(x)
D(x)

}

� r ⇔ ∀x ∈ X : N(x) − rD(x) � 0 (3)

The equivalence (3) suggests the following scheme to solve approximately the
optimization problem (2): Given a lower bound L and an upper bound U of w∗,
we can find an ε-optimal solution of (2) by successively solving

max
x∈X

{N(x) − rD(x)}

with at most log2
U−L

ε different values of r using a binary search. At each step
of the binary search, the following problem has to be solved:

max
x

n∑

i=1

βie
−γixi

(
P̄i + δixi

)− r
n∑

i=1

βie
−γixi

s.t.:
n∑

i=1

xi � m

xi ∈ [0, 1],∀i ∈ {1, . . . , n}
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Using the invertible change of variables: zi := e−γixi (i.e., xi := − 1
γi

ln zi) the
problem to solve can be rewritten as the following convex optimization problem:

max
z

−
n∑

i=1

δiβi

γi
zi ln zi +

n∑

i=1

(
P̄i − r

)
βizi

s.t.: −
n∑

i=1

1
γi

ln zi � m

zi ∈ [e−γi , 1] ,∀i ∈ {1, . . . , n}

Proposition 1. We can approximately solve Problem (2) at ε precision in
O
(
ln R̄−P̄

ε

)
binary search iterations, where

R̄ := max
i∈{1,...,n}

R̄i and P̄ := min
i∈{1,...,n}

P̄i.

Proof. First, Lr :=

n∑

i=1
βie

−γi
m
n (P̄i+δi

m
n )

n∑

i=1
βie

−γi
m
n

and Ur := R̄ are respectively lower and

upper bounds for the optimal value of problem (2). Because we are maximizing,
the expected value of any feasible solution provides a lower bound. In particular,
we obtain Lr evaluating the uniform strategy xi = m

n . We obtain Ur noticing
that Ui(xi) � R̄i � R̄ and the yi(x) sum one. In consequence, the binary search
in r reaches an ε-optimal solution in at most O

(
ln Ur−Lr

ε

)
iterations. Finally,

given that Ui(xi) � P̄i � P̄ and the yi(x) sum one, we know that Lr � P̄ ,
obtaining the complexity bound.

We will refer to this problem as the basic model with only the resource
constraint for Expected value maximization (EXP-B). We will now show that
we can use this methodology to solve a generalization of (2) where the defender
is risk averse.

3 Risk Averse Defender

A natural extension of the last model is to assume that the defender is risk averse
with respect to the attacker’s actions, i.e.: the defender prefers to minimize the
risk associated to have bad outcomes even if it can imply a lower expected payoff.

3.1 Motivation

We motivate the risk averse model with the example that gave the results pre-
sented in the Introduction. Lets consider the case where we have n = 2 targets,
a single resource m = 1 and the attacker has a rationality factor λ = 0.25. We
describe the payoffs in Table 2. Putting aside the QR strategy of the attacker,
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Table 2. Example’s payoffs

R̄i = Ri P̄i = Pi

i = 1 3 −1

i = 2 1 −3

we can remark that for both players, the average payoff of the first target is
higher than the second one (1 > −1). We can write the formulation (2) of this
simple example as the following optimization problem:

max
0�x1,x2�1

ex1−0.75(4x1 − 1) + ex2−0.25(4x2 − 3)
ex1−0.75 + ex2−0.25

The objective function attains its maximum value at x∗ = (0.505, 0.495). Notice
that the worst case scenario occurs when target 2 is attacked. Now let us
compare the properties of this optimal solution against the following solution
x̃ = (0.450, 0.550) as shown in Table 1. We can see that using the defense strat-
egy x̃ instead of x∗, we can improve the worst case scenario’s probability to
occur by 16.9 % at the cost of losing 4.9 % on the average payoff. Moreover, the
variance of the payoffs is reduced by 8.7 %, meaning that the payoffs have less
variability when using strategy x̃. In consequence, there are other solutions that
might provide a better tradeoff between risky and expected outcomes. Depend-
ing on the risk aversion of the defender, maximizing an expected utility might
not be a reasonable approach.

3.2 Problem Formulation

In the following, we assume that the leader is risk averse and wants to minimize
an entropic risk measure. The entropic risk measure of parameter α > 0 of
a random variable X is defined by α lnE

[
e

X
α

]
. In our case, the uncertainty

comes from the mixed strategies of both defender and attacker: xi and yi(x) are
respectively interpreted as the probability of target i being defended and the
probability of target i being attacked. In other words, given a defense mixed
strategy x, the entropic risk of the defender can be defined as follows:

Eα(x) := α ln
n∑

i=1

yi(x)
(
xie

− R̄i
α + (1 − xi) e− P̄i

α

)
. (4)

Notice that the defender wants to avoid high losses: consequently his objective
is to minimize the risk of getting high negative payoffs. We consider that the
situation in which no target is attacked can be represented as attacking a dummy
target with moderate payoffs. In a risk measure this action would contribute little
to the payoff of the defender. With this definition at hand the leader wants to
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solve the following optimization problem:

min
x∈[0,1]n

{

Eα(x) :
n∑

i=1

xi � m

}

. (5)

It can be proven that the expected value maximization model of Sect. 2 is a
limiting case of the last problem as

α lnE

[
e

X
α

]
�−→

α→+∞ E[X].

We will see later that for theoretical complexity and computational tractability
purposes, it is useful to use the following alternative form instead of (4) by
factorizing the term inside the logarithm by e−P̄ :

Eα(x) = α ln
n∑

i=1

yi(x)
(
xie

− R̄i−P̄

α + (1 − xi) e− P̄i−P̄

α

)
− P̄ .

Defining R̃i := e− R̄i−P̄

α , P̃i := e− P̄i−P̄

α and θi := P̃i − R̃i � 0, the entropic risk
of some mixed defense strategy x can be rewritten as:

Eα(x) := α ln

⎛

⎜
⎜
⎝

n∑

i=1

βie
−γixi

(
P̃i − θixi

)

n∑

i=1

βie−γixi

⎞

⎟
⎟
⎠− P̄ .

And given that t → α ln t is non decreasing and P̄ is a constant, the general
problem the defender solves is equivalent to the following problem:

min
x∈[0,1]n

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i=1

βie
−γixi

(
P̃i − θixi

)

n∑

i=1

βie−γixi

:
n∑

i=1

xi � m

⎫
⎪⎪⎬

⎪⎪⎭

. (6)

Which is very similar to the expected value maximization problem (2) described
in the last section. We will refer to this problem as the basic model with only
the resource constraint for Entropy minimization (ENT-B).

3.3 Solution Approach

Proposition 2. We can solve problem (6) using a binary search in r that solves
at each iteration the following problem:

w(r) := min
z

n∑

i=1

βizi

(
P̃i − r + θi

γi
ln zi

)
(7)

s.t.: −
n∑

i=1

1
γi

ln zi � m (8)

zi ∈ [e−γi , 1] ,∀i ∈ {1, . . . , n} (9)

Which is a convex minimization problem.
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Proof. Given that problem (6) is a fractional programming problem, we can
solve it with binary search as in the risk neutral case of the last section. At each
iteration of the binary search, we have to solve the following problem:

min
x∈[0,1]n

{
n∑

i=1

βie
−γixi

(
P̃i − r − θixi

)
:

n∑

i=1

xi � m

}

.

Using the invertible change of variables zi := e−γixi , the problem we have to
solve is (7–9). As in Subsect. 2.2, it is easy to see that the feasible set is convex
and given that θi, γi � 0 and t �−→ t ln t is convex, the objective function is
convex as well.

Proposition 3. We can approximately solve Problem (6) to a precision ε in
O
(
ln R̄−P̄

ε

)
binary search iterations.

Proof. Similar to the proof of Proposition 1,

Lr := e− R̄−P̄
α and Ur :=

n∑

i=1

βie
−γi

m
n

(
P̃i − θi

m
n

)

n∑

i=1

βie−γi
m
n

are respectively lower and upper bounds for the optimal value of problem (6).
Recalling that we want to minimize the complete entropic risk measure (see
Problem (5)) and not solving problem (6) considered for convenience, the binary
search stops after at most O

(
ln α lnUr−α lnLr

ε

)
iterations to reach an ε-optimal

solution for the original problem. Using again the fact that for any defense
strategy x the yi(x) are probabilities, e− P̄−P̄

α = 1 is an upper bound of Ur,
hence α ln Ur � 0. Moreover, α log Lr = P̄ − R̄, thus obtaining the complexity
bound.

In this section, we proved that we could find a ε-optimal strategy for risk averse
and risk neutral defenders solving for both problems a succession of at most
O
(
ln R̄−P̄

ε

)
convex optimization problems, which can be done in polynomial

time.

4 An Extended Model

In practice, we can face additional operational constraints. For example, some
targets i and j cannot be defended at the same time, leading to the following
additional constraint xi +xj � 1, or precedence constraints, allowing target i to
be defended only if target j is defended: xi � xj .

Without loss of generality, in the remainder of this paper we will only consider
minimization problems of the form

w(r) := min
x∈[0,1]n

{

wr(x) :=
n∑

i=1

wr
i (xi) : Ax � b

}

(10)
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where in the case of Expected value maximization, we have:

wr
i (xi) := βie

−γixi
(
r − P̄i − δixi

)

and in the case of Entropy minimization, we have:

wr
i (xi) := βie

−γixi

(
P̃i − r − θixi

)

4.1 Linear Inequality Constraints with Positive Coefficients

First, lets consider a set of additional linear inequalities Ax � b with positive
coefficients aij � 0 and right-hand sides bj � 0. The problem to solve is still a
fractional programming problem, and as such we can use the same binary search
based approach in r to guess its optimal value. The resulting problem to solve
during each iteration of the binary search is then (10).

Proposition 4. Computing w(r) can be achieved solving a convex optimization
problem. As a direct consequence, we can solve the original problem by solving
O
(
ln R̄−P̄

ε

)
convex optimization problems.

Proof. We already proved that using the change of variables xi := − 1
γi

ln zi,

the objective function was convex. Let
n∑

i=1

aijxi � bj be the j-th constraint of

Ax � b. When applying the change of variables we obtain: −
n∑

i=1

aij

γi
ln zi � bj .

Given that aij � 0 for every i ∈ {1, . . . , n}, the constraint remains convex. As

in the unconstrained case, it takes at most O
(
ln R̄−P̄

ε

)
binary search iterations

in r to reach an ε-optimal solution.

We will refer to this problem as the model with extra linear inequality con-
straints with positive coefficients for the Entropy minimization (ENT-PLC) and
the Expected value maximization (EXP-PLC).

4.2 General Linear Constraints

We now consider a problem with general linear constraints Ax � b with arbitrary
signs. This model will be referred to as the model with extra linear constraints
with arbitrary coefficients for the Entropy minimization (ENT-ALC) and the
Expected value maximization (EXP-ALC). First, notice that we cannot use the
change of variable zi := e−γixi in problem (10) as some constraints would turn
nonconvex. However, the only issue of Problem (10) is the nonconvexity of its
objective function:

wr(x) :=
n∑

i=1

wr
i (xi)

where wr is separable in x. There are several generic methods in the literature
[15] that allow to piecewise linearly approximate it by approximating each wr

i .
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Proposition 5. Given a partition l = t0 < t1 < . . . < tK = u of [l, u] we can
approximate f : [l, u] → R as follows:

f(x) ≈ f̄(x) := min
xk,zk

f (t0) +
K∑

k=1

(f (tk) − f (tk−1) xk)

s.t.: x = t0 +
K∑

k=1

xk (tk − tk−1)

x1 � 1
xK � 0

xk+1 � zk � xk, ∀k ∈ {1, . . . , K − 1}
zk ∈ {0, 1}, ∀k ∈ {1, . . . , K − 1}

This way of approximating by a piecewise linear function is known as an incre-
mental model [3]. We will refer to this way of approximating the objective func-
tion as the Incremental Piecewise Linear approximation (IPL).

In the next proposition, we present a way to model the piecewise linear
approximation with less binary variables on an arbitrary partition of [0, 1], as
described in [15].

Proposition 6. Given a partition l = t0 < t1 < . . . < tK = u of [l, u] we can
approximate f : [l, u] → R as follows:

f(x) ≈ f̄(x) := min
λk,zl

K∑

k=0

λkf (tk)

s.t.: x =
K∑

k=0

λktk

K∑

k=0

λk = 1
∑

p∈S+
K(l)

λp � zl, ∀l ∈ {1, . . . , L(K)}
∑

p∈S−
K(l)

λp � 1 − zl, ∀l ∈ {1, . . . , L(K)}

zl ∈ {0, 1}, ∀l ∈ {1, . . . , L(K)}
λk � 0, ∀k ∈ {1, . . . , K}

where L(K) = 
log2 K� and for any l ∈ {1, . . . , L(K)}:
S+

K(l) := {p ∈ {0, . . . ,K} : ∀q ∈ QK(p), (BK(q))l = 1}
S−

K(l) := {p ∈ {0, . . . ,K} : ∀q ∈ QK(p), (BK(q))l = 0}
where QK(p) := {q ∈ {1, . . . , K} : p ∈ {q − 1, q}}, BK : {1, . . . ,K} �−→
{0, 1}L(K) is a bijective mapping such that for all q ∈ {1, . . . , K − 1}, BK(q)
and BK(q + 1) differ in at most one component (See reflected binary or Gray
code in [4]). Such a Gray code can be found quickly by the recursive algorithm
of [8].
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The main advantage of this formulation resides in the fact that it uses only

log2 K� extra binary variables instead of K to model each piecewise linear
approximation at the same precision. We will refer to this way of approximat-
ing the objective function as the Logarithmic Piecewise Linear approximation
(LPL).

For each target i ∈ {1, . . . , n}, we use a partition 0 = ti0 < ti1 < . . . < tiK =
1 of [0, 1].

Proposition 7. The IPL approximation applied to problem (10) leads to the
following MIP:

min
xi,xik,zik

n∑

i=1

(

wr
i (ti0) +

K∑

k=1

(wr
i (tik) − wr

i (ti,k−1) xik)
)

s.t.: Ax � b

xi ∈ [0, 1], ∀i ∈ {1, . . . , n}

xi = ti0 +
K∑

k=1

xik (tik − ti,k−1) , ∀i ∈ {1, . . . , n}
xi1 � 1, ∀i ∈ {1, . . . , n}
xiK � 0, ∀i ∈ {1, . . . , n}

xi,k+1 � zik � xik, ∀k ∈ {1, . . . , K − 1},∀i ∈ {1, . . . , n}
zik ∈ {0, 1}, ∀k ∈ {1, . . . , K − 1},∀i ∈ {1, . . . , n}

Proposition 8. The LPL approximation applied to problem (10) leads to the
following MIP:

min
xi,λik,zil

n∑

i=1

K∑

k=0

λikwr
i (tik)

s.t.: Ax � b

xi ∈ [0, 1], ∀i ∈ {1, . . . , n}

xi =
K∑

k=0

λiktik ,∀i ∈ {1, . . . , n}
K∑

k=0

λik = 1, ∀i ∈ {1, . . . , n}
∑

p∈S+
K(l)

λip � zil, ∀l ∈ {1, . . . , L(K)},∀i ∈ {1, . . . , n}
∑

p∈S−
K(l)

λip � 1 − zil, ∀l ∈ {1, . . . , L(K)},∀i ∈ {1, . . . , n}

zil ∈ {0, 1}, ∀l ∈ {1, . . . , L(K)},∀i ∈ {1, . . . , n}
λik � 0, ∀k ∈ {1, . . . , K},∀i ∈ {1, . . . , n}

5 Computational Results

The algorithms presented in this paper were coded in C programming lan-
guage and run over a cluster node of 2.4 GHz with 6 Gb RAM. All the convex
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optimization problems were solved using the callable library of IPOPT [10,17],
using as a subroutine the linear solver HSL [6]. All the Mixed Integer Linear
Programming problems were solved using the callable library of CPLEX [2].

5.1 Instance Generation and Parameters

We solved all our problems at relative precision 10−8 for the subproblems in r,
and at 10−6 relative precision for the binary search in r. and tested the algorithms
with a rationality coefficient for the attacker λ = 0.76 as reported in [19].

The rewards (respectively penalties) of both defender and attacker were
drawn uniformly in ]0, 10] (respectively [−10, 0[); notice that we did not assume
zero sum games. We considered instances with a number of targets with n ∈
{1, 2, 5, 7, 10}·103 and a number of resources m = n

10 . The parameter α captures
an absolute risk aversion and penalizes greatly defense strategies whose bad real-
izations exceed α, so noticing that α has units - the same as the payoffs - we
selected the parameter α of the Entropic risk measure α ∈ {1, 2, 5, 7}. Notice
that α is a very subjective measure of the risk aversion of the decision maker
and as such, it can be difficult to adjust in practice.

In the case of the more general problems with linear constraints with positive
coefficients, we generated disjunctive constraints of the type

∑

i∈D

xi � 1. In the

case of general linear constraints, we generated precedence constraints of the
type xi � xj for some pairs (i, j) ∈ P ⊂ {1, . . . , n}2. We generated n/20 such
constraints with |D| = n/20 and the set of indices D in each constraint was drawn
uniformly in {1, . . . , n}. For the precedence constraints, we randomly generated
n/10 pairs (i, j) uniformly in {1, . . . , n}2. Finally, we partitioned [0, 1] using
uniform grids having K ∈ {16, 32} segments to piecewise linearly approximate
the objective function in the most general model. It was proved in [20] that using
uniform grids, the solution obtained is an O

(
1
K

)
-optimal solution for (10).

To analyze the influence of each parameter, we took as a base case n = 103,
m = 100 and α = 5. We then vary n and α independently and repeat the
experiment 50 times.

5.2 Algorithmic Performances

We solved the following problems: (1) the basic model with only the resource
constraint for the entropy (ENT-B) and the expected value (EXP-B), (2) the
model with extra linear inequality constraints with positive coefficients for the
entropy (ENT-PLC) and the expected value (EXP-PLC) and (3) the model with
extra linear constraints with arbitrary coefficients for the entropy (ENT-ALC)
and the expected value (EXP-ALC). We solved ENT-B and EXP-B with IPOPT,
the incremental piecewise linear approximation (IPL) and the logarithmic piece-
wise linear approximation (LPL), ENT-PLC and EXP-PLC with IPOPT, IPL
and LPL and ENT-ALC and EXP-ALC with IPL and LPL.
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Basic model (B). In the most simple setting, we can see in Fig. 1 that IPOPT
is always superior in terms of execution time and solution quality. Further, we
can see that LPL is always faster than IPL by a wide margin. Finally, we can
see that taking K = 32 pieces provides a significant precision advantage. The
parameter α has no real effect on the execution time nor the precision achieved.
For this basic model, we will use IPOPT as the reference method to solve it.

Fig. 1. Model B: execution time [s] (left) and objective value (right) vs. n

PLC model. Adding linear constraint with positive coefficients, we can see in
Fig. 2 that IPOPT is also always superior in terms of execution time and solution
quality. Surprisingly, IPL16 is faster than LPL32, even though the number of
binary variables of the latter is three times lower than the former. Nevertheless,
the numerical precision of LPL32 is higher than IPL16 and thus return better
solutions. Again, the parameter α has no real effect on the execution time nor the
precision achieved. For this model, we will use IPOPT as the reference method
as well.

Fig. 2. Model PLC: execution time [s] (left) and objective value (right) vs. n

ALC model. Adding linear constraint with arbitrary coefficients, we can obtain
from the results depicted in Fig. 3 the same conclusions as in the PLC model:
for the same level of precision, LPL is faster than IPL. The entropy parameter α
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Fig. 3. Model ALC: execution time [s] (left) and objective value (right) vs. n

does have an influence on the execution time, as shown in Fig. 4. We can notice
that the more risk averse the defender is - i.e.: the lower the parameter α is - the
incremental model IPL is faster than the logarithmic model LPL. In order to
check which model is the most adequate to solve large scale instances, we may
check in a future work if this tendency of IPL being faster than LPL still holds
for larger instances than our current base case (n = 1000).

Fig. 4. Model ALC: execution time [s] (left) and objective value (right) vs. α

During each iteration in r, it is crucial to have a sufficiently close estimate
of the optimal objective value, hence the precision of 10−8 used to solve each
subproblem. In effect, a wrong guess about its sign would make the binary search
in r pick the wrong half-space. Besides the fact that the solutions found are better
with a higher K this explains further why the final solution found is better. For
this ALC model, we will use IPL32 as the reference method to solve it.

5.3 Qualitative Results

To compare a risk neutral defense policy with a risk averse one, we want to see
if there is some kind of stochastic dominance of a risk averse strategy versus
a risk neutral one. To do so, we want to compare the payoffs distributions of
the defender depending on its risk aversion. In a real situation, the defender
can cover m targets out of n and the attacker targets a single place. The only
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possible outcomes for the defender are: (1) being attacked on a defended target
i with payoff V = R̄i > 0 or (2) being attacked on an undefended target i with
payoff V = P̄i < 0. Consequently, if we assume that all the payoffs R̄i and P̄i

are different the only values possible are in

V ∈ {V1 < V2 < . . . < V2n−1 < V2n} =
n⋃

i=1

{
R̄i, P̄i

}

Moreover, given a mixed defense strategy x ∈ [0, 1]n and the associated QR
y(x) ∈ [0, 1]n, the probability to block an attack at target i is:

P
[
V = R̄i

]
= xiyi(x)

and the probability to undergo an attack at a defenseless target i is:

P
[
V = P̄i

]
= (1 − xi)yi(x)

This way we can compute the probability distribution of the payoff of any
defender with QR adversary without sampling a large number of simulations.
For each instance solved, we report the expected value of the optimal solution,
its variance, worst case payoff probability and Value at Risk (VaR) at level 10 %.

In Figs. 5 and 6, we compare some indicators of the minimizers of the entropic
risk measure of parameter α = 5 and the expected value maximizers. More specif-
ically, in Fig. 5 we can see that the loss in expected value and the improvement
in the payoff variance implied by the use of the entropy minimizers stay constant
(>−10 % and <−35 %) in the basic model (B) but decrease with the number of
targets for the extended models PLC and ALC. This can be explained by the
fact that the additional constraints are increasingly restraining and do not let a
lot of slack with respect to the possible solutions attainable.

Fig. 5. Difference [%] in expected payoff (left) and payoff variance (right) between
minimizers of Eα=5 and minimizers of E vs. n

The same can be said of the results depicted in Fig. 6 where the Worst case
probability and the VaR10% remain relatively constant (>−50 % and <−20 %)
in the basic model but get smaller with the number of targets for PLC and ALC.
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Fig. 6. Difference [%] in worst case probability (left) and VaR10% (right) between
minimizers of Eα=5 and minimizers of E vs. n

In Figs. 7 and 8, we compare the same indicators of the minimizers of the
entropic risk measure of different parameters α with the expected value maxi-
mizers’ ones. In both figures we can see that for all three models the difference
between the expected value maximizers and entropy minimizers gets smaller
when α gets bigger. In effect, as mentioned in Sect. 3 the behavior of the entropic
risk measure tends to that of an expected value. Still, we can see that it is possi-
ble to tune the desired degree of aversion quite easily by adjusting the parameter
α depending on the amount of expected value we are ready to lose.

Fig. 7. Difference [%] in expected payoff (left) and payoff variance (right) between
minimizers of Eα and minimizers of E vs. α

Finally, to further show the advantages of using an entropy minimizing
defense strategy instead of an expected value maximizing one, we show in Fig. 9
the cumulative distributions of minus the payoffs of the entropy minimizing
defense strategies for several parameters α against the expected value maxi-
mizing defense strategy for one instance of the base case. We can see that the
expected value maximizing strategy is stochastically dominated on the worst
cases by the entropy minimizing defense strategies. Furthermore, the higher the
risk aversion factor α is, the lighter the ‘tail’ of bad realizations of the probability
distribution will be. Once more, we can notice that in the ALC model, the effect
of the risk aversion is attenuated in comparison with the basic model B.
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Fig. 8. Difference [%] in worst case probability (left) and VaR10% (right) between
minimizers of Eα and minimizers of E vs. α

Fig. 9. Payoffs’ cumulative distributions of the minimizers of Eα and maximizers of E
in the basic model (left) and in ALC model (right)

6 Conclusions

In this paper, we extended the classic model of Stackelberg security games
with quantal response (SSGQR) to a risk averse setting for the defender. We
extended the model when linear inequalities with positive coefficients are added,
and proved we could solve it solving a succession of convex minimization prob-
lems. We further extended the problem when arbitrary linear inequalities are
added, and presented two ways of finding an approximate defense strategy solv-
ing a succession of MIPs. Computational results showed that minimizing an
Entropic risk measure instead of maximizing the expected value can be advan-
tageous from a qualitative point of view, allowing to significantly reduce the
overall payoff variance and the probability of bad scenarios to occur.

In a future work, we would like to extend the model presented in this paper
to a multiple attackers context and further improve the piecewise linear approx-
imation models taking advantage of the convex parts of the objective function,
and use smarter partitions than an uniform grid.
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References

1. Camerer, C., Ho, T.-H., Chong, J.-K.: A cognitive hierarchy model of games. Q.
J. Econ. 119(3), 861–898 (2004)

2. CPLEX. V12. 1: User Manual for CPLEX (2009)
3. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press,

Princeton (1963)
4. Gilbert, E.: Gray codes and paths on the n-Cube. Bell Syst. Tech. J. 37(3), 815–826

(1958)
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Abstract. We introduce a game-theoretic framework to compute opti-
mal and strategic security investments by multiple defenders. Each
defender is responsible for the security of multiple assets, with the inter-
dependencies between the assets captured by an interdependency graph.
We formulate the problem of computing the optimal defense allocation
by a single defender as a convex optimization problem, and establish
the existence of a pure Nash equilibrium of the game between multi-
ple defenders. We apply our proposed framework in two case studies
on interdependent SCADA networks and distributed energy resources,
respectively. In particular, we investigate the efficiency loss due to decen-
tralized defense allocations.

1 Introduction

Modern critical infrastructures have a large number of interdependent assets,
operated by multiple stakeholders each working independently to maximize
their own economic benefits. In these cyber-physical systems, interdependencies
between the assets owned by different stakeholders have significant implications
on the reliability and security of the overall system. For instance, in the elec-
tric grid, industrial control systems at the power generator are managed by a
different entity (the generator) than the smart meters deployed by the distribu-
tion utility companies. If certain components of these assets are from a common
vendor, then a sophisticated attacker can exploit potential shared vulnerabilities
and compromise the assets managed by these different entities [21].

Security interdependencies are often modeled in varying degrees of abstrac-
tions. While the attack graph formalism [7] captures detailed models of how an
attacker might exploit vulnerabilities within an enterprise network, representa-
tions of interdependencies in large-scale cyber-physical networks, such as the
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electric grid, are often captured in terms of coupled dynamical systems [12]. In
addition to the interdependencies, individual stakeholders are often myopic and
resource constrained, which makes identification and mitigation of vulnerabili-
ties in a large number of cyber and physical assets prohibitively expensive. Fur-
thermore, decentralized deployment of defense strategies by these self-interested
defenders often leads to increased security risks for the entire system.

In this paper we present a systematic framework that can be used to effi-
ciently compute optimal defense allocations under interdependencies. We model
the network security problem as a game between multiple defenders, each of
whom manages a set of assets. The interdependencies between these assets
are captured by an interdependency graph. Each defender minimizes her own
expected loss, where the attack probabilities of her assets are a function of her
own defense strategies, strategies of other defenders, and the interdependency
graph. In particular, attacker(s) are assumed to exploit the interdependencies to
target valuable assets in the network. We first establish the existence of a pure
Nash equilibrium in the game between self-interested defenders. For a general
class of defense strategies, we show that the problem of computing an optimal
defense allocation for a defender (i.e., her best response) is equivalent to solving
a convex optimization problem.

We evaluate the inefficiency of decentralized decision-making in two case
studies; the first is a SCADA system with multiple control networks managed
by independent entities, and the second is a distributed energy resource failure
scenario identified by the US National Electric Sector Cybersecurity Organi-
zation Resource (NESCOR). In both settings, we find that when entities have
similar risks but disparate budgets, the total expected loss at a Nash equilib-
rium can be much larger than the total expected loss under the socially optimal
solution. Furthermore, we show that it can be in the interest of a selfish actor
to defend assets that belong to another entity due to mutual interdependencies.

1.1 Related Work

Security games on networks with multiple defenders have recently been consid-
ered within the broad framework of Stackelberg security games [9,22]. A Stack-
elberg security game is defined as an extensive form leader-follower game where
a defender randomizes her defense allocations across multiple targets and an
attacker observes the randomized strategies and chooses the target with highest
successful attack probability. Several papers have considered multiple defend-
ers and network interdependencies within this framework [14–16]. A recurring
assumption in these papers is that the strategy space of a defender is discrete,
e.g., a node is either fully protected or is vulnerable. In contrast, we consider
defense strategies that are continuous variables. In addition, our work is related
to recent explorations of attack graph games [3], though the defense strategies
considered in that paper are very different from the ones explored here.

Our work is also related to the substantial body of literature on interdepen-
dent security games; [13] contains a comprehensive review. A common feature
in this line of work is that each node is an independent decision maker, i.e.,
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a player is responsible for the defense of a single node in the graph. We relax
this assumption in this paper. In our formulation, a player is responsible for the
defense of multiple assets (nodes) in the (interdependency) graph.

Our game-theoretic formulation and analysis borrows ideas and techniques
from the literature on network interdiction games [8]. In the classical shortest
path interdiction game [8], there is an underlying network; an attacker aims to
find a path of shortest length from a given source to a target, while the defender
can interdict the attack by increasing the lengths of the paths. Extensions to
cases where multiple attackers and/or defenders operate on a given network are
few, with the exception of our recent work [19]. The model we propose in this
paper generalizes the formulation in [19] as we consider defenders who defend
multiple nodes and with possibly nonlinear cost functions. Finally, our paper has
a similar perspective as [5] as we develop a systems-theoretic framework that is
readily applicable in a broad class of interdependent network security settings.

2 Security Game Framework

Interdependency Graph: We represent the assets in a networked (cyber-
physical) system as nodes of a directed graph G = {V, E}, i.e., each node vi ∈ V
represents an asset. The presence of a directed edge (vj , vi) ∈ E indicates that
when the asset vj is compromised, it can be used to launch an attack on asset vi.
This attack succeeds with a probability pj,i ∈ (0, 1], independent of analogous
attack probabilities defined on the other edges. Without loss of generality, let s
be the source node from which an attacker launches the attack from outside the
network.1 We refer to such a graph as an interdependency graph.2

For an asset vi ∈ V, let Pi be the set of directed paths from the source s to vi
on the graph; a path P ∈ Pi is a collection of edges {(s, u1), (u1, u2), . . . , (uk, vi)}.
The probability that vi is compromised due to an attacker exploiting a given
path P ∈ Pi is

∏

(um,un)∈P

pm,n which is the product of probabilities (due to our

independence assumption) on the edges that belong to the path P .

Strategic Defenders: Let D be the set of defenders. A defender Dk ∈ D
is responsible for the security of a set Vk ⊆ V \ {s} of assets. For each asset
vm ∈ Vk, there is a financial loss Lm ∈ R≥0 that defender Dk incurs if vm
gets compromised. The defender can allocate its resources to reduce the attack
probabilities on the edges interconnecting different assets on the interdependency
graph, subject to certain constraints. We denote the feasible (defense) strategy
set of defender Dk as Xk ⊂ R

nk

≥0, where nk < ∞. We require that Xk is non-
empty, compact and convex. The defense resources reduce the attack success
probabilities on the edges. We will discuss the exact transformation of defense
allocation into the reduction of attack probabilities in the next subsection.
1 If there are multiple entry points to the network, we can add a source node s and

add edges from s to all entry points with attack probabilities equal to 1.
2 Interdependency graphs also capture essential features of attack graphs [3,7] where

the nodes represent intermediate steps in multi-stage attacks.
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Now, let x = [x1,x2, . . . ,x|D|] be a joint defense strategy of the defenders,
with xk ∈ Xk for every defender Dk. The attack success probability of an edge
(vj , vi) under this joint defense strategy is denoted as p̂j,i(x). The goal of each
defender Dk is to minimize the cost function given by

Ck(x) �
∑

vm∈Vk

Lm

⎛

⎝ max
P∈Pm

∏

(vj ,vi)∈P

p̂j,i(x)

⎞

⎠ , (1)

subject to xk ∈ Xk. In other words, a defender minimizes her expected loss,
where the probability of loss of an asset is given by the highest probability of
attack on any path from the source to that asset on the interdependency graph.

Strategic Attacker(s): Cyber-physical systems in the field face multiple strate-
gic adversaries with different objectives, capabilities and knowledge about the
system. As a result, detailed modeling of strategic attackers is challenging.
Nonetheless, a defender must be able to assess her security risks and allocate
defense resources under inadequate information about the attackers. This moti-
vates our choice of minimizing the worst case attack probabilities on an asset
in (1), which implicitly captures strategic attackers who aim to compromise
valuable assets and choose a plan of attack that has the highest probability of
success for each asset. The defender can assess her risk profile against attackers
of different capabilities by appropriately varying the probabilities on each edge.

As an example of a setting that can be modeled within our framework, con-
sider the SCADA based control system shown in Fig. 1. There are two control
subsystems, with interdependencies due to a shared corporate network and a
common vendor for the remote terminal units (RTUs). Figure 2 shows the result-
ing interdependency graph. We further discuss this setting in Sect. 3.

Fig. 1. A SCADA system diagram of two interacting control systems.
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2.1 Defense Strategies

As noted above, the defense resources reduce the attack probabilities on the
edges of the interdependency graph. Accordingly, we introduce a transformation
matrix Tk : Rnk → R

|E| which maps a feasible defense strategy xk to a defense
allocation on edges. By appropriately defining the matrix Tk, we can capture
very general class of defense strategies. We discuss two such examples.

Edge-based defense strategy: In this case, a defender Dk allocates defense
resources on a subset of edges Ek ⊆ E of the graph G, and accordingly nk = |Ek|.
For example, Ek can represent all the edges that are incoming to a node in
Vk, i.e., defender Dk can reduce the attack probabilities of all the edges that are
incoming to the nodes under its ownership. Furthermore, an edge can potentially
be managed by multiple defenders. Under edge-based defense scenarios, we will
define the feasible strategy space of a defender Dk as Xk := {xk

j,i ∈ R≥0, (vj , vi) ∈
Ek|

∑
(vj ,vi)∈Ek

xk
j,i ≤ Bk}, where Bk is the total defense budget for defender Dk.

In this case, Tk has a sub-matrix which is an identity matrix of dimension |Ek|
and the other entities are equal to 0. An example of edge-based defense is when
a device inspects the incoming traffic depending on the traffic source.

Node-based defense strategy: In this case, a defender Dk allocates defense
resources to the set of nodes in Vk, and accordingly, nk = |Vk|. Specifically,
the defense resource xk

i being allocated to node vi implies that all the incoming
edges to vi in the graph G have a defense allocation xk

i , i.e., xk
j,i = xk

i for
every (vj , vi) ∈ E . Node-based defense strategy is motivated by moving target
defense techniques [10]. Here xi potentially represents the rate at which system
configurations (such as the IP-address) of a node vi are being updated. Here Tk

maps the allocation on a node into the edges that are incoming to it.
We now define the length or distance of an edge (vj , vi) in terms of the attack

probability as,
lj,i � − log(pj,i) ≥ 0. (2)

A higher probability of attack on an edge leads to smaller length for the edge.
In this paper, we assume that the defense allocations on an edge linearly

increase the length of the edge. Mathematically, let xj,i =
∑

(vj ,vi)∈Ek
xk
j,i =

∑
Dk∈D[Tkxk](j,i) denote the total defense allocation by all the defenders on the

edge (vj , vi). Then, the modified length of the edge under a joint strategy profile
x is given by

l̂j,i(x) � lj,i + xj,i =⇒ − log(p̂j,i(x)) = lj,i + xj,i (3)

=⇒ p̂j,i(x) � pj,ie
−xj,i , (4)

i.e., the total defense allocation on an edge xj,i leads to a relative reduction
of the corresponding attack success probability given by e−xj,i . This captures
diminishing effectiveness of defense allocations and leads to a tractable formu-
lation of the cost minimization problem (1). We denote the vector of modified
lengths of the graph under joint defense strategy x as L̂(x) = L+

∑
Dk∈D Tkxk,

where L is the vector of lengths in the absence of any defense allocation, given
by (2).



106 A.R. Hota et al.

2.2 Existence of a Pure Nash Equilibrium (PNE)

We first show the existence of a PNE in the game between multiple defenders,
each with a defender-specific transformation matrix Tk.

Proposition 1. The strategic game with multiple defenders where a defender
minimizes her cost defined in (1) possesses a pure Nash equilibrium.

Proof. From our transformation of attack probabilities into lengths on edges
given in (3) and (4), the probability of successful attack on a node vm ∈ Vk due
to a path P ∈ Pm and joint defense strategy x is equal to

∏

(uj ,ui)∈P

p̂j,i(x) = exp

⎛

⎝−
∑

(vj ,vi)∈P

[

lj,i +
∑

Dr∈D
[Trxr](j,i)

]⎞

⎠ ,

where exp(·) is the exponential function, i.e., exp(z) = ez. Accordingly, we can
express the cost function of a defender Dk, defined in (1), as a function of her
strategy xk and the joint strategy of other defenders x−k as

Ck(xk,x−k) =
∑

vm∈Vk

Lmexp

⎛

⎝− min
P∈Pm

∑

(vj ,vi)∈P

[
l̂j,i(x−k) + [Tkxk](j,i)

]
⎞

⎠ , (5)

where l̂j,i(x−k) = lj,i +
∑

Dr∈D,Dr �=Dk
[Trxr](j,i) for an edge (vj , vi).

Note that
∑

(vj ,vi)∈P

[
l̂j,i(x−k) + [Tkxk](j,i)

]
is an affine and, therefore, a

concave function of xk. The minimum of a finite number of concave functions is
concave [1]. Finally, exp(−z) is a convex and decreasing function of z. Since the
composition of a convex decreasing function and a concave function is convex,
Ck(xk,x−k) is convex in xk for any given x−k. Furthermore, the feasible strategy
set Xk is non-empty, compact and convex for every defender Dk. As a result, the
game is an instance of a concave game and has a PNE [18]. 
�

2.3 Computing the Best Response of a Defender

Let x−k be the joint defense strategy of all defenders other than Dk. Then the
best response of Dk is a strategy x∗

k ∈ Xk which minimizes her cost Ck(xk,x−k)
defined in (1). Let L̂(x−k) = L+

∑
Dr∈D,r �=k Trxr be the vector of edge lengths

under defense allocation x−k. We show that x∗
k can be computed by solving the

following convex optimization problem:

minimize
y∈R|V|,xk∈R

nk

∑

vm∈Vk

Lme−ym (6)

subject to Iy − Tkxk ≤ L̂(x−k), (7)
ys = 0, (8)
xk ∈ Xk, (9)
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where I is the node-edge incidence matrix of the graph G. Note that the con-
straint in (7) is affine. This formulation is motivated by similar ideas explored
in the shortest path interdiction games literature [8,19].

We refer to the vector {yu}u∈V as a feasible potential if it satisfies (7) for
every edge in the graph. In graphs without a negative cycle, the well known
Bellman-Ford algorithm for shortest paths corrects the inequality in (7) for an
edge in every iteration and terminates with a feasible potential [2]. In our setting,
the length of every edge is nonnegative. We now prove the following result.

Proposition 2. A defense strategy x∗
k ∈ Xk is the optimal solution of the prob-

lem defined in Eqs. (6)–(9) if and only if it is the minimizer of Ck(xk,x−k)
defined in (1).

Proof. Consider a feasible defense allocation vector xk ∈ Xk. The joint strategy
profile (xk,x−k) defines a modified length vector L̂(xk,x−k) = L̂(x−k) + Tkxk

on the edges of G. Now consider a feasible potential {yu}u∈V which satisfies (7).
A feasible potential exists, since the vector yu = 0 for every u ∈ V satisfies (7).

Now consider a P from s to a node vm ∈ Vk. Then, the feasible potential
at node vm satisfies yvm

− ys = yvm
≤ ∑

(uj ,ui)∈P l̂j,i(xk,x−k). In other words,
yvm

is a lower bound on the length of every path (and consequently the shortest
path) from s to vm. Furthermore, in the absence of negative cycles, there always
exists a feasible potential where yvm

is equal to the length of the shortest path
from s to vm [2, Theorem 2.14] (the solution of the Bellman-Ford algorithm).

Now let {x∗
k, {y∗

u}u∈V} be the optimal solution of the problem defined in Eqs.
(6)–(9) for a given x∗

−k. The length of every edge (uj , ui) at the optimal defense
allocation x∗

k is given by l̂j,i(x∗
k,x−k). We claim that y∗

vm
is equal to the length

of the shortest path from s to vm for every vm with Lm > 0. Assume on the
contrary that y∗

vm
is strictly less than the length of the shortest path from s to

vm, under the defense allocation x∗
k. From [2, Theorem 2.14] we know that there

exists a feasible potential {ŷu}u∈V such that ŷvm
is equal to the length of the

shortest path from s to vm for every node vm ∈ Vk with length of every edge
(uj , ui) given by l̂j,i(x∗

k,x−k). As a result, we have y∗
vm

< ŷvm
, and the objective

is strictly smaller at ŷvm
, contradicting the optimality of {x∗, {y∗

u}u∈V}.
Let P be a path from s to vm in the optimal solution, and let P ∗ be a path

of shortest length. The length of this path is given by

y∗
vm

≤
∑

(uj ,ui)∈P

l̂j,i(x∗
k,x−k) = −

∑

(uj ,ui)∈P

log(p̂j,i(x∗))

=⇒ e−y∗
vm ≥

∏

(uj ,ui)∈P

p̂j,i(x∗),

with equality for the path P ∗. Therefore the optimal cost of the problem defined
in Eqs. (6)–(9) is equal to the cost in (1). 
�

As a result, a defender can efficiently (up to any desired accuracy) compute
her optimal defense allocation given the strategies of other defenders. Further-
more, the problem of social cost minimization, where a central planner minimizes
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the sum of expected losses of all defenders, can be represented in a form that is
analogous to Eqs. (6)–(9) and can be solved efficiently.

However, proving theoretical guarantees on the convergence of best response-
based update schemes is challenging for the following reasons. First, the expected
loss of a defender represented in (5) is non-differentiable and we cannot apply
gradient-based update schemes. Second, in the equivalent formulation Eqs. (6)–
(9), the players’ cost minimization problems are coupled through their con-
straints. As a result, the problem belongs to the class of generalized Nash equi-
librium problems [4], which has very few general convergence results. We leave
further theoretical investigations of convergence of different dynamics to PNE
for future work.

3 Numerical Case Studies

We apply our proposed framework in two case studies. Our goal is to understand
the loss of welfare due to decentralized decision making by the defenders with
asymmetric defense budgets compared to the socially optimal defense allocation.
The social optimum corresponds to the solution computed by a central author-
ity as it minimizes the total expected loss of all the players. The ratio of the
highest total expected loss at any PNE and the total expected loss at the social
optimum is often used as a metric (Price of Anarchy) to quantify the inefficiency
of Nash equilibrium. We consider PNE strategy profiles obtained by iteratively
computing best responses of the players; the sequence of best response strategies
converged to a PNE in all of the experiments in this section. We use the MAT-
LAB tool CVX [6] for computing the best response of a defender and the social
optimum. In both the experiments, we randomly initialize the attack success
probabilities on the edges of the respective interdependency graphs.

3.1 An Interdependent SCADA Network with Two Utilities

We first consider the SCADA network shown in Fig. 1, based on NIST’s guide-
lines for industrial control systems [20]. As discussed earlier, there are two control
subsystems with interdependencies due to a shared corporate network and ven-
dors for RTUs. Each subsystem is owned by a different defender. The resulting
interdependency graph is shown in Fig. 2. The number in the name of a node
indicates the defender who owns it and the amount of loss to its owner, if it
is compromised. The corporate network is owned by both defenders. The com-
promise of the control network causes loss of the RTUs, and as a result, the
corresponding edges have an attack success probability 1 and are indefensible.

In our experiments, we keep the total defense budget fixed for the overall
system, and compare the resulting total expected loss (under this total bud-
get) at the social optimum with the expected loss that arises at a PNE when
each subsystem is defended independently. We consider an edge-based defense
strategy for all our results. In the decentralized defense case, we consider two
scenarios. First, the defenders can only defend edges that are incoming to a node
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under their ownership. We refer to this scenario as individual defense. Second,
the defenders can jointly defend all the edges in the interdependency network,
i.e., a defender can defend an edge within the subsystem of the other defender.

We plot our results in Fig. 3a for a SCADA network where each utility has 3
RTUs. The total budget is 20, and we vary the budget of defender 1 as shown in
the x-axis of the plot. Defender 2 receives the remaining amount (20 minus the
budget of defender 1). We observe that the joint defense case leads to a smaller
total expected loss compared to the individual defense case at the respective
PNEs. The difference between the two cases is most significant when the bud-
gets of the two defenders are largely asymmetric. Our results show that it is
beneficial for a selfish decision maker with a large budget to defend parts of the
network owned by another defender with a smaller budget in presence of inter-
dependencies. As the asymmetry in budgets decreases, the expected losses under
joint defense and the individual defense approach the social optimum. This is
because the network considered is symmetric for the defenders. In Fig. 3b, we
plot analogous results when each utility has 30 RTUs with a total budget 40,
and observe similar trends in the respective expected losses.
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Fig. 3. Comparison of total expected loss under the social optimal defense allocation
with the PNE strategies under joint and individual defense scenarios. The total budgets
across both defenders are 20 and 40, respectively.

3.2 Evaluation of a Distributed Energy Resource Failure Scenario

In our second case study, we consider a distributed energy resource failure sce-
nario, DER.1, identified by the US National Electric Sector Cybersecurity Orga-
nization Resource (NESCOR) [17]. We build upon the recent work by [11], where
the authors developed a tool CyberSAGE, which represents NESCOR failure sce-
narios as a security argument graph to identify the interdependencies between
different attack steps. We reproduce the security argument graph for the DER.1
scenario in Fig. 4. The authors of [11] note that applying all mitigations for the
DER.1 failure scenario can be expensive. Our framework enables computing the
optimal (and PNE) defense strategy under budget constraints.
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Note that the nature of interdependency in Fig. 4 is qualitatively different
from the setting in the previous subsection. In Fig. 4, the nodes in the interde-
pendency graph capture individual attack steps (similar to the representation in
attack graphs). In contrast, the nodes in Fig. 2 correspond to disparate devices in
the SCADA network. Furthermore, multiple attack steps can occur within a sin-
gle device; all the intermediate nodes that belong to a common device are shown
to be within a box in Fig. 4. For example, nodes w3, w4, w5, w6, w7 belong to the
Human-Machine Interface (HMI) of the photovoltaic (PV) system. The node S
represents the entry point of an attack, the nodes G0 and G1 represent the final
target nodes that compromise the PV and electric vehicle (EV) components of
the DER. A more detailed description is available in [11].

S

w9 w7

w8

w6 w5 w4 w3 w2 w1 G0

G

w18 w16

w17

w15 w14 w13 w12 w11 w10 G1

Fig. 4. Interdependency Graph of NESCOR DER.1 failure scenario [11]

We treat the security argument graph (Fig. 4) as the interdependency graph,
and compute the globally optimal and Nash equilibrium strategies for two classes
of defense strategies, (i) edge-based defense, where a player defends every edge
independently, and (ii) device-based defense (such as IP-address randomization),
where each device receives a defense allocation. In the second case, all the incom-
ing edges to the nodes that belong to a specific device receive identical defense
allocations. In the decentralized case, there are two players, who aim to protect
nodes G0 and G1, respectively. In addition, each player experiences an additional
loss if the other player is attacked successfully. This is captured by adding the
extra node G which has edges from both G0 and G1 with attack probabilities
equal to 1. Both players experience a loss if node G is compromised.

We plot the ratio of total expected losses under the socially optimal and
PNE strategy profiles, for both edge-based and device-based defense strategies,
in Figs. 5a and b, respectively. As the figures show, at a given total budget,
the ratio of the expected losses at the social optimum and at a PNE is smaller
when there is a larger asymmetry in the budgets of the individual players. In
other words, when the individual players have similar defense budgets, the total
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Fig. 5. The ratio of total expected losses of both defenders at the social optimum and
a PNE in the DER.1 failure scenario under two different defense strategies. The total
budget is divided among the two defenders, and defender 1 receives a percentage of the
total budget as indicated in the legend.

expected loss at Nash equilibrium is not much larger than the expected loss
under a globally optimal defense strategy.

4 Discussion and Conclusion

We presented a game-theoretic framework that enables systematic analysis of
security trade-offs in interdependent networked systems. For a general class of
defense strategies, the computation of optimal defense allocation for a defender
is equivalent to solving a convex minimization problem. We also proved the
existence of a pure Nash equilibrium for the game between multiple defenders.
The SCADA network and DER.1 case studies illustrate how our framework can
be used to study the security of interdependent systems at different levels of
abstraction, from individual attack steps in the DER.1 scenario to an entire
organization (vendor in the SCADA example) being abstracted to a single node.
Our framework can be readily applied in practice by individual stakeholders to
evaluate the effectiveness of different defense strategies and share information
with other defenders to decide when and to what degree cooperative defense
should be applied. The different levels of abstractions enable the creation of
models with the available information a defender has. For example, the SCADA
use case could be used to identify the degree to which the compromise of the
vendor will affect the security of a system. This could translate into adding secu-
rity requirements in procurement contracts with the vendors. In future, we will
apply our framework in large-scale cyber-physical systems. Establishing conver-
gence guarantees for best response dynamics and theoretical characterizations
of inefficiencies at Nash equilibria remain as challenging open questions.
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3. Durkota, K., Lisý, V., Bošanský, B., Kiekintveld, C.: Approximate solutions for
attack graph games with imperfect information. In: Khouzani, M.H.R., Panaousis,
E., Theodorakopoulos, G. (eds.) GameSec 2015. LNCS, vol. 9406, pp. 228–249.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-25594-1 13

4. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper.
Res. 175(1), 177–211 (2010)

5. Fielder, A., Panaousis, E., Malacaria, P., Hankin, C., Smeraldi, F.: Game theory
meets information security management. In: Cuppens-Boulahia, N., Cuppens, F.,
Jajodia, S., Abou El Kalam, A., Sans, T. (eds.) SEC 2014. IAICT, vol. 428, pp.
15–29. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55415-5 2

6. Grant, M., Boyd, S., Ye, Y.: CVX: Matlab software for disciplined convex pro-
gramming (2008)

7. Homer, J., Zhang, S., Ou, X., Schmidt, D., Du, Y., Rajagopalan, S.R., Singhal,
A.: Aggregating vulnerability metrics in enterprise networks using attack graphs.
J. Comput. Secur. 21(4), 561–597 (2013)

8. Israeli, E., Wood, R.K.: Shortest-path network interdiction. Networks 40(2), 97–
111 (2002)

9. Jain, M., Conitzer, V., Tambe, M.: Security scheduling for real-world networks. In:
AAMAS, pp. 215–222 (2013)

10. Jajodia, S., Ghosh, A.K., Subrahmanian, V., Swarup, V., Wang, C., Wang, X.S.:
Moving Target Defense II. Application of Game Theory and Adversarial Modeling.
Advances in Information Security, vol. 100, p. 203. Springer, New York (2013)

11. Jauhar, S., Chen, B., Temple, W.G., Dong, X., Kalbarczyk, Z., Sanders, W.H.,
Nicol, D.M.: Model-based cybersecurity assessment with nescor smart grid failure
scenarios. In: 21st Pacific Rim International Symposium on Dependable Comput-
ing, pp. 319–324. IEEE (2015)

12. Kundur, D., Feng, X., Liu, S., Zourntos, T., Butler-Purry, K.L.: Towards a frame-
work for cyber attack impact analysis of the electric smart grid. In: IEEE Smart-
GridComm, pp. 244–249 (2010)

13. Laszka, A., Felegyhazi, M., Buttyan, L.: A survey of interdependent information
security games. ACM Comput. Surv. (CSUR) 47(2), 23:1–23:38 (2014)

14. Letchford, J., Vorobeychik, Y.: Computing randomized security strategies in net-
worked domains. In: Applied Adversarial Reasoning and Risk Modeling 2011, vol.
06 (2011)

15. Letchford, J., Vorobeychik, Y.: Optimal interdiction of attack plans. In: AAMAS,
pp. 199–206 (2013)

16. Lou, J., Smith, A.M., Vorobeychik, Y.: Multidefender security games. arXiv
preprint arXiv:1505.07548 (2015)

17. Electric sector failure scenarios and impact analyses, National Electric Sector
Cybersecurity Organization Resource, EPRI (2014)

18. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person
games. Econometrica: J. Econometric Soc. 33(3), 520–534 (1965)

19. Sreekumaran, H., Hota, A.R., Liu, A.L., Uhan, N.A., Sundaram, S.: Multi-agent
decentralized network interdiction games. arXiv preprint arXiv:1503.01100 (2015)

http://dx.doi.org/10.1007/978-3-319-25594-1_13
http://dx.doi.org/10.1007/978-3-642-55415-5_2
http://arxiv.org/abs/1505.07548
http://arxiv.org/abs/1503.01100


Optimal and Game-Theoretic Deployment of Security Investments 113

20. Stouffer, K.: Guide to industrial control systems (ICS) security. NIST special pub-
lication 800-82, 16-16 (2011)

21. Emerging threat: Dragonfly/Energetic Bear - APT Group (2014). http://www.
symantec.com/connect/blogs/emerging-threat-dragonfly-energetic-bear-apt-group,
Symantec Official Blog. Accessed 15 Aug 2016

22. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons
Learned. Cambridge University Press, New York (2011)

http://www.symantec.com/connect/blogs/emerging-threat-dragonfly-energetic-bear-apt-group
http://www.symantec.com/connect/blogs/emerging-threat-dragonfly-energetic-bear-apt-group


Dynamics on Linear Influence Network Games
Under Stochastic Environments

Zhengyuan Zhou1(B), Nicholas Bambos1,2, and Peter Glynn1,2

1 Department of Electrical Engineering, Stanford University,
Stanford, CA 94305, USA
zyzhou@stanford.edu

2 Department of Management Science and Engineering, Stanford University,

Stanford, CA 94305, USA

Abstract. A linear influence network is a broadly applicable concep-
tual framework in risk management. It has important applications in
computer and network security. Prior work on linear influence networks
targeting those risk management applications have been focused on equi-
librium analysis in a static, one-shot setting. Furthermore, the underlying
network environment is also assumed to be deterministic.

In this paper, we lift those two assumptions and consider a formu-
lation where the network environment is stochastic and time-varying.
In particular, we study the stochastic behavior of the well-known best
response dynamics. Specifically, we give interpretable and easily veri-
fiable sufficient conditions under which we establish the existence and
uniqueness of as well as convergence (with exponential convergence rate)
to a stationary distribution of the corresponding Markov chains.

Keywords: Game theory · Networks · Security · Stochastic stability

1 Introduction

The application of game theory to networks has received much attention in the
literature [1,2] in the past decade. The underlying model typically consists of
agents, connected by physical or virtual links, who must strategically decide on
some action given the actions of the other users and the network structure. The
well-founded motivations for this study and the specific applications examined
have spanned many fields such social or economic networks [3], financial networks
[4,5], and a diverse range (packets, robots, virtual machines, sensors, etc.) of
engineering networks [6–10]. These different contexts all have in common the
presence of inter-agent influences: the actions of individual agents can affect
others in either a positive or negative way, which are typically called externalities.
As a simple example, consider two web-enabled firms [11] that have customers in
common that use the same passwords on both sites. In this case, an investment
in computer system security from one firm naturally strengthens the security of
the other, resulting in larger effective investment of the other firm compared to
c© Springer International Publishing AG 2016
Q. Zhu et al. (Eds.): GameSec 2016, LNCS 9996, pp. 114–126, 2016.
DOI: 10.1007/978-3-319-47413-7 7
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its own, independent investment. On the other hand, this investment may shrink
the effective investment of a third firm (a competitor) in the same business, as
this enhanced security on the two firms makes the attack on the third firm more
attractive.

As another example, technology innovation is another instance where a net-
work of agents’ actions can produce inter-dependent effects on one another.
Here the concept of innovation risk glues together the investments made by
each agent: if a social media company (e.g. Facebook) is seeking to expand its
enterprise by innovating on new products, then a partnering video games (e.g.
Zynga) company whose games are played on that social media platform will be
benefited and will in turn benefit the social media company with its own invest-
ment. On the other hand, a similar effort made by another competing social
media company (e.g. Myspace) will cause negative impact on both of the prior
firms and will be negatively impacted by them as well.

In all these examples, this feature of inter-agent influences is captured by
a linear influence network, which was first employed in [11,12] to study and
manage the risk in computer security settings. In a nutshell and in the words
of [11], “[i]n this model, a matrix represents how one organization’s investments
are augmented by some linear function of its neighbors investments. Each ele-
ment of the matrix, representing the strength of influence of one organization
on another, can be positive or negative and need not be symmetric with respect
to two organizations.” [13] very recently generalized this interdependence model
to an influence network, where every agent’s action is augmented by some (arbi-
trary) function of its neighbors’ joint action to yield a final, effective action, thus
allowing for a general influence effect in terms of both directions and values.

We mention that in addition to the examples mentioned above, linear influ-
ence network model is a broadly applicable conceptual framework in risk manage-
ment. The seminal work [14] provides more applications (one in security assets
which generalizes [11] and another in vulnerabilities) and numerical examples
to illustrate the versatility and power of this framework, to which the readers
are referred to for an articulate exposition. On this note, we emphasize that
the application of game theory to security has many different dimensions, to
which the linear influence network model is but one. See [15] for an excellent
and comprehensive survey on this topic.

On the other hand, all the prior work on linear influence networks and the
applications [11–14,16] have been focused on equilibrium analysis in a static,
one-shot setting. Further, the influence matrix, which represents the underlying
network environment, is assumed to be deterministic. Although prior analyses
provide an important first step in gaining the insights, both of these assumptions
are somewhat stringent in real applications: agents tend to interact over a course
of periods and the influences are random and can fluctuate from period to period.
Consequently, we aim to incorporate these two novel elements into our study.

In this paper, we consider a stochastic formulation of the best response
dynamics by allowing the underlying network environment to be stochastic (and
time-varying) and study its stochastic behavior. In the deterministic network
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environment case [11,12,16], it is known that the best response dynamics has
the desired property of converging to the unique Nash equilibrium when the
influence matrix is strictly diagonally dominant. The linear influence network
represented by a strict diagonally dominant influence matrix has direct and
intuitive interpretations [11,12,16] in the applications and constitutes an impor-
tant class for study. Building on this observation, we aim to characterize the
stochastic behavior of the best response dynamics when the influence matrix is
sometimes strictly diagonally dominant and sometimes not. Our stochastic for-
mulation is a rather broad framework in that we do not impose any exogenous
bounds on each agent’s action, nor on the randomness of the network environ-
ment. Of course, the same stochastic stability results hold should one wish to
impose such constraints for a particular application.

We then give two sufficient conditions on the stochastic network environ-
ment that ensure the stochastic stability of the best response dynamics. These
conditions have the merits of being both easily interpretable and easily veri-
fiable. These two sufficient conditions (Theorem 3) serve as the main criteria
under which we establish the existence and uniqueness of as well as convergence
to a stationary distribution of the corresponding Markov chains. Furthermore,
convergence to the unique stationary distribution is exponentially fast. These
results are the most desired convergence guarantees that one can obtain for a
random dynamical system. These sufficient conditions include as a special case
the interesting and simultaneously practical scenario, in which we demonstrate
that the best response dynamics may converge in a strong stochastic sense, even
if the network itself is not strictly diagonally dominant on average.

2 Model Formulation

We start with a quick overview of the linear influence network model and the
games induced therein. Our presentation mainly follows [14,16]. After disusing
some of the pertinent results, we conclude this section with a motivating discus-
sion in Sect. 2.4 on the main question and the modeling assumptions we study
in this paper.

2.1 Linear Influence Network: Interdependencies and Utility

A linear influence network consists of a set of players each taking an action
xi ∈ [0,∞), which can be interpreted as the amount of investment made by
player i. The key feature of an influence network is the natural existence of
interdependencies which couple different players’ investments. Specifically, player
i’s effective investment depends not only on how much he invests, but on how
much each of his neighbors (those whose investments produce direct external
effects on player i) invests. A linear influence network is an influence network
where such interdependencies are linear.

We model the interdependencies among the different players via a directed
graph, G = {N , E} of nodes N and edges E . The nodes set N has N elements,
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one for each player i, i = 1 . . . N . The edges set E contains all edges (i, j) for
which a decision by i directly affects j. For each edge, there is an associated
weight, ψij ∈ R, either positive or negative, representing the strength of player i’s
influence on player j (i.e. how much player j’s effective investment is influenced
per player i’s unit investment). Consequently, the effective investment xeff

i of
player i is then xeff

i = xi +
∑

j �=i ψjixj .
We can then represent the above linear influence network in a compact way

via a single network matrix, W ∈ R
N×N , as follows:

Wij =

⎧
⎨

⎩

1 if i = j
ψji if (j, i) ∈ E
0 otherwise.

(1)

In particular, we call into attention that Wij represents the influence of player
j on player i. An example network and the associated W matrix are shown in
Fig. 1.

We can therefore rewrite the effective investment of player i as xeff
i = xi +

∑
j �=i ψjixj =

∑N
j=1 Wijxj . Written compactly in matrix forms, if x denotes

the vector of individual investments made by all the players, then the effective
investment is given by xeff = Wx.
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Fig. 1. An instance of a linear influence network.

Each player i has an utility function that characterizes his welfare:

Ui(x) = Vi(x
eff
i ) − cixi. (2)
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The utility function has two components that admit a simple interpretation. Vi

gives the value that player i places on the total effective investment made (result-
ing from player i’s investment and the externalities coming from its neighbors.)
The second component is the cost on player i’s side for investing xi amount,
where ci is the relative trade-off parameter that converts the value and the cost
on the same scale.

Drawing from the literature on utility theory, we impose the following stan-
dard assumptions on the value function. Remark 1 gives an intuitive explanation
on those assumptions.

Definition 1. The continuously differentiable function Vi(·) : [0,∞) → R1 is
called admissible if the following conditions hold:

1. strictly increasing,
2. strictly concave,
3. V ′

i (0) > ci and
4. limx→∞ V ′

i (x) < ci.

Remark 1. Here we use the network security example to provide intuition on why
the assumptions constituting an admissible value function are natural. Here the
value function for each player (firm) can be viewed to represent the level of
its network security or the profitability derived from that level of security, as a
result of the total effective investment. The first condition says that if the total
effective investment made by a firm increases, then this level of security increases
as well. The second conditions says that the marginal benefit of more effective
investment is decreasing. The third condition says that it is always in the interest
of a firm to have a positive effective investment. The fourth condition says that
the marginal benefit of more effective investment will eventually drop below the
unit cost of investment.

For the remainder of the paper, we will assume each Vi is admissible.

2.2 Nash Equilibrium of the Induced Game: Existence, Uniqueness
and Convergence

With the above utility (payoff) function Ui, a multi-player single-stage complete-
information game is naturally induced. We proceed with the standard solution
concept Nash equilibrium (NE), defined here below:

Definition 2. Given an instance of the game (N , E ,W, {Vi}i∈N , {ci}i∈N ), the
investment vector x∗ is a (pure-strategy) Nash equilibrium if, for every player i,
Ui(x∗

i ,x
∗
−i) ≥ Ui(xi,x∗

−i),∀xi ∈ [0,∞), where x∗
−i is the vector of all investments

but the one made by player i.

1 If x < 0, we set Vi(x) = −∞, representing the fact that negative effective investment
is unacceptable.



Dynamics on Linear Influence Network 119

The existence and uniqueness of a NE in the induced game on a linear influ-
ence network has been studied and characterized in depth by [11,12,14,16],
where the connection is made between a NE and a solution to an appropriate
Linear Complementarity Problem (LCP), the latter being an extensively studied
problem [17]. As such, different classes of matrices (i.e. assumptions made on the
network matrix W) have been shown to lead to either existence or uniqueness
(or both) of a NE.

As has been emphasized by the previous work [11,12,14], a particular class
of network matrices W that deserve special and well-motivated attention is the
class of strictly diagonally dominant matrices, defined next.

Definition 3. Let W ∈ RN×N be a square matrix.

1. W is a strictly diagonally row dominant matrix if for every row i:∑
j �=i |Wij | < |Wii|.

2. W is a strictly diagonally column dominant matrix if its transpose is strictly
diagonally row dominant.

A strictly diagonally dominant matrix is either a strictly diagonally row domi-
nant matrix or a strictly diagonally column dominant matrix.

The class of strictly diagonally dominant matrices play a central role in linear
influence networks because they are both easily interpretable and present. For
instance, a strictly diagonally row dominant matrix represents a network where
each player’s influence on his own is larger than all his neighbors combined
influence on him. A strictly diagonally column dominant matrix represents a
network where each player’s influence on his own is larger than his own influence
on all of his neighbors combined. It turns out, as stated in the following theorem,
a strictly diagonally dominant influence matrix ensures the existence of a unique
Nash equilibrium. We mention in passing that although there are other classes
of matrices that ensure the existence of a unique Nash equilibrium (such as the
class of positive definite matrices), they do not have direct interpretations and
do not easily correspond to practical scenarios of an linear influence network.

Theorem 1. Let (N , E ,W, {Vi}i∈N , {ci}i∈N ) be a given instance of the game.
If the network matrix W is strictly diagonally dominant, then the game admits
a unique Nash equilibrium.

Proof. See [12,16].

2.3 Convergence to NE: Best Response Dynamics

The existence and uniqueness results of NE play an important first step in iden-
tifying the equilibrium outcomes of the single-stage game on linear influence
networks. The next step is to study dynamics for reaching that equilibrium
(should a unique NE exist), a more important one from the engineering perspec-
tive. An important class of dynamics is that of best response dynamics, which
in addition to being simple and natural, enjoys the attractive feature of being
model-agnostic, to be described below. We first define the best response function.
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Definition 4. The best response function gi(x) for player i is defined as:
gi(x) = arg maxxi≥0 Ui(xi,x−i). The best response function for the network
is denoted by g(x) = (g1(x), g2(x), . . . , gN (x))

In the current setting, we can obtain an explicit form for the best response
function. Let bi represent the (single) positive value at which V ′

i (·) = ci, which is
always guaranteed to uniquely exist due to the assumption that Vi is admissible.
Then, it can be easily verified that:

g(x) = max(0, (I − W)x + b). (3)

With the above notation, we are now ready to state best response dynamics
(formally given in Algorithm1): it is simply a distributed update scheme where in
each iteration, every player chooses its investment in response to the investments
his neighbors have chosen in the previous iteration. Note that each player i, in
order to compute its best response investment for the current iteration, need not
know what his neighboring players’ investments were in the previous iteration.
Instead, it only needs to know the combined net investments (

∑
j �=i ψjixj) his

neighbors has induced to him. This combined net investments can be inferred
since player i knows how much he invested himself in the previous iteration and
observes the current payoff he receives. This constitutes perhaps the single most
attractive feature of best response dynamics in the context of linear influence
network games: the model-agnostic property.

Algorithm 1. Best Response Dynamics
Given x(0) ≥ 0
t ← 0
for t = 1, 2, . . . do

Each player i: xi(t + 1) = gi(x(t))
end for

Writing the distributed update in Algorithm1 more compactly, we have:
x(t + 1) = g(x(t)) = max(0, (I − W)x(t) + b). It turns out that convergence for
x(t) is guaranteed when W is strictly diagonally dominant.

Theorem 2. If the network matrix W is strictly diagonally dominant, then the
best response dynamics in Algorithm1 converges to the unique NE.

Proof. See [12,16].

2.4 Motivation and Main Question of the Paper

The best response dynamics, for reasons mentioned before, have enjoyed pop-
ularity in prior work. However, the convergence property of the best response
dynamics rests on the crucial yet somewhat unrealistic assumption that the
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underlying network environment is fixed over time, i.e. W stays constant in
every time period. In practice, Wt encode the influence of players over its neigh-
bors and should be inherently dynamic and time-varying.

Here we lift this assumption by allowing Wt to be random and time-varying.
Consequently, using X(t) to denote the (random) investment vector at time t,
the best response dynamics should be re-written as:

X(t + 1) = max(0, (I − Wt)X(t) + b). (4)

Our principal goal in this paper is then to study the stochastic behavior
of the resulting power iterate {X(t)}∞

t=0 (which is now a stochastic process)
and to identify sufficient conditions under which stochastic stability is guaran-
teed. For simplicity, we assume that random network matrix Wt is iid. The iid
case, although simple, provides illuminating structural insights and can be easily
extended to the stationary and ergodic network environment environments case.

Observe that under iid assumption, the iterates {X(t)}∞
t=0 in the best

response dynamics form a Markov chain. Our principal focus in the next section
is to characterize conditions under which the Markov chain admits a unique sta-
tionary distribution with guaranteed convergence properties and/or convergence
rates. These results are of importance because they establish the stochastic sta-
bility (in a strong sense to be formalized later) of the best response dynamics in
the presence of random and time-varying network environments.

In addition, this stochastic process {X(t)}∞
t=0 can be generated in a variety of

ways, each corresponding to a different practical scenario. Section 3.2 makes such
investigations and presents two generative models and draw some interesting
conclusions.

3 Main Criteria for Stochastic Stability Under Random
Network Environment

In this section, we characterize the behavior of the best response dynamics under
stochastic (and time-varying) network environment and give the main criteria
for ensuring stochastic stability. Our focus here is to identify sufficient condi-
tions that are broad enough while at the same time interpretable and efficiently
verifiable.

Our assumption on the random network is rather mild: {Wt}∞
t=1 is drawn

iid according to some fixed distribution with bounded first moments from some
support set W ⊂ RN×N , where W can be either discrete or continuous. Alter-
natively, this means that each individual influence term Wij is absolutely inte-
grable: E[|Wij |] < ∞. It is understood that Wii = 1 for each W ∈ W since
one’s own influence on oneself should not fluctuate.
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3.1 Two Main Sufficient Conditions for Stochastic Stability

The state space for the Markov chain {X(t)}∞
t=1 will be denoted2 by X = RN

+ .
(X ,B(X )) is then the measurable space, where B(X ) is the Borel sigma algebra
on X , induced by some vector norm. Since all finite-dimensional norms are equiv-
alent (up to a constant factor), the specific choice of the norm shall not concern
as here since they all yield the same Borel sigma algebra3. The transition kernel
K(x,A) denotes the probability of transitioning in one iteration from x ∈ X
into the measurable set A ∈ B(X ). Kt(x,A) then denotes the t-step transition
probability. We use Kt(x, ·) to denote the probability measure (distribution) of
the random variable X(t) with the initial point at x.

Definition 5. Let ‖ · ‖ be any vector norm on Rn, A be a square matrix on
Rn×n, w be a strictly positive weight vector in Rn and v be a generic vector in
Rn.

1. The induced matrix norm ‖ · ‖ is defined by ‖A‖ = max‖x‖=1 ‖Ax‖.
2. The weighted l∞ norm with weight w is defined by ‖v‖w

∞ = maxi | vi

wi
|.

3. The weighted l1 norm with weight w is defined by ‖v‖w
1 =

∑n
i=1 | vi

wi
|.

Since we are using the same notation to denote both the vector norm and
the corresponding induced matrix norm, the context shall make it clear which
norm is under discussion. In the common special case where w is the all-one
vector, the corresponding induced matrix norms will be denoted conventionally
by ‖ · ‖1, ‖ · ‖∞. The following proposition gives known results about the induced
matrix norms ‖ · ‖w

1 , ‖ · ‖w
∞. See [18].

We are now ready to state, in the following theorem, our main sufficient
conditions for the bounded random network environment case. The proof4 is
omitted here due to space limitation.

Theorem 3. Let W be the random network matrix with bounded support from
which Wt is drawn iid. Assume that either one of the following two conditions
is satisfied:

1. There exists a strictly positive weight vector w such that E[log ‖I−W‖w
∞] < 0;

2. There exists a strictly positive weight vector w such that E[log ‖I−W‖w
1 ] < 0.

Then:

1. The Markov chain {X(t)}∞
t=0 admits a unique stationary distribution π(·).

2 Note that here we do not impose any bounds on the maximum possible investment by
any player. If one makes such an assumption, then X will be some compact subset of
RN

+ . All the results discussed in this section will still go through. For space limitation,
we will not discuss the bounded investment case. Further, note that the unbounded
investment case (i.e. without placing any exogenous bound on investments made by
any player) which we focus on here is the hardest case.

3 As we shall soon see, the two norms we will be using are weighted l1 norm and
weighted l∞ norm.

4 The proof utilizes the powerful framework presented in [19,20].
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2. The Markov chain converges to the unique stationary distribution
in Prokhorov metric irrespective of the starting point: ∀X(0) ∈
X , dρ(Kt(X(0), ·), π(·)) → 0 as t → ∞, where dρ(·, ·) is the Prokhorov metric5

induced by the Euclidean metric ρ.
3. The convergence has a uniform exponential rate: There exists an r (indepen-

dent of X(0)), with 0 < r < 1, such that ∀x ∈ X , there exists a constant
CX(0) > 0 such that dρ(Kt(X(0), ·), π(·)) ≤ CX(0)r

t,∀t.

Remark 2. First, note that E[log ‖I − W‖w
∞] < 0 is a weaker condition than

E[‖I − W‖w
∞] < 1, since by Jensen’s inequality, E[‖I − W‖w

∞] < 1 implies
E[log ‖I − W‖w

∞] < 0. Similarly, E[log ‖I − W‖w
1 ] < 0 is a weaker condition

than E[‖I − W‖w
1 ] < 1.

Second, it follows from basic matrix theory that any square matrix satisfies
‖A‖w

1 = ‖AT‖ 1
w∞. Consequently, the second sufficient condition can also be cast

in the first by taking the transpose and inverting the weight vector: There exists
a strictly positive weight vector w such that E[log ‖I − W‖w

1 ] < 0 if and only if
there exists a strictly positive weight vector w̃ such that E[log ‖(I−W)T‖w̃

∞] < 0.
Third, for a deterministic matrix A, one can efficiently compute its induced

weighted l1 and weighted l∞ norms. Further, for a fixed positive weight vector w
and a fixed distribution on W, one can also efficiently verify whether E[log ‖I −
W‖w

∞] < 0 holds or not (similar for E[log ‖I−W‖w
1 ] < 0). The most common and

natural weight vector is the all-ones vector in the context of strictly diagonally
dominant matrices. This point is made clear by the discussion in Sect. 3.1, which
also sheds light on the motivation for the particular choices of the induced norms
in the sufficient conditions.

3.2 A Generative Model: Discrete-Support Random Network
Environment

Here we proceed one step further and give an interesting and practical generative
model for the underlying random network for which there is a direct interpreta-
tion. In this generative model, we assume that each influence term Wij (i 
= j)
comes from a discrete set of possibilities. This is then equivalent to the network
matrix Wt being drawn from a discrete support set W = {W 1,W 2, . . . }. This
generative model of randomness has the intuitive interpretation that one player’s
influence on another can be one of the possibly many different values, where it
can be positive at one time and negative at another time.

In the special case that each W i in W is either strictly diagonally row dom-
inant or strictly diagonally column dominant, then stochastic stability is guar-
anteed, as given by the following statement.

5 Thi is the well-known metric that is commonly used to characterize the distance
between two probability measures [21]. Further, if (Ω, ρ) is a separable metric space,
as is the case in our application, then convergence in Prokhorov metric implies weak
convergence [21].
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Corollary 1. Let the support W be a set of strictly diagonally row dominant
matrices. Then for any probability distribution on W from which Wt is sampled,
the Markov chain {X(t)}∞

t=0 given by the best response dynamics satisfies the
following:

1. The Markov chain {X(t)}∞
t=0 admits a unique stationary distribution π(·).

2. The Markov chain converges to the unique stationary distribution
in Prokhorov metric irrespective of the starting point: ∀X(0) ∈
X , dρ(Kt(X(0), ·), π(·)) → 0 as t → ∞, where dρ(·, ·) is the Prokhorov metric
induced by the Euclidean metric ρ.

3. The convergence has a uniform exponential rate: There exists an r (indepen-
dent of X(0)), with 0 < r < 1, such that ∀x ∈ X , there exists a constant
CX(0) > 0 such that dρ(Kt(X(0), ·), π(·)) ≤ CX(0)r

t,∀t.

The same conclusions hold if W is a set of strictly diagonally column dominant
matrices.

Proof. Take the weight vector w = 1. Then since each W l ∈ W is strictly
diagonally row dominant, it follows that for each i,

∑
j �=i |W l

ij | < 1. Let i∗l be
the row that maximizes the row sum for W l: i∗l = arg maxi

∑
j �=i |W l

ij |, then for
every l,

∑
j �=i∗

l
|W l

ij | < 1.
Let P (l) be the probability that W = W l. Then, we have

E[‖I − W‖w
∞] =

∑

l

P (l)max
i

∑

j �=i

|W l
ij | =

∑

l

P (l)
∑

j �=i∗
l

|W l
ij | < 1.

Consequently, by Jensen’s inequality, E[log ‖I−W‖w
∞] < 0. Theorem 3 implies

the results.
The strictly diagonally column dominant case can be similarly established

using the weighted l1 norm.

It is important to mention that even if W does not solely consist of strictly
diagonally row dominant matrices, the stochastic stability results as given in
Corollary 1 may still be satisfied. As a simple example, consider the case where

W only contains two matrices W 1,W 2, where: W 1 =
[

1 2
2 1

]

, W 2 =
[

1 0.45
0.45 1

]

,

with the former and latter probabilities 0.5, 0.5 respectively. Then one can easily
verify that E[log ‖I − W‖∞] = −0.053 < 0. Consequently, Theorem 3 ensures
that all results still hold. Note that in this case, E[‖I − W‖∞] = 1.225 > 1.
Therefore, it is not a contraction on average.

So far, we have picked the particular all-ones weight vector w = 1 primarily
because it yields the maximum intuition and matches with the strictly diagonally
dominant matrices context. It should be evident that by allowing for an arbitrary
positive weight vector w, we have expanded the applicability of the sufficient
conditions given in the previous section, since in certain cases, a different weight
vector may need to be selected.
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4 Conclusions and Future Work

In addition to the conjecture we mentioned at the end of the previous section, we
mention in closing that although there are different classes of network matrices
that achieve existence and/or uniqueness of NE, it is not well-studied whether
the best response dynamics will converge to a NE in other classes of network
matrices (even if that class of network matrices guarantee the existence and
uniqueness of a NE). For instance, best response dynamics may not converge
when W is positive definite, although a unique NE is guaranteed to exist in that
case. Expanding on such convergence results can be interesting and worthwhile
and also shed additional light to the stochastic stability type of results.
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Abstract. A pipeline network can potentially be attacked at any point
and at any time, but such an attack takes a known length of time. To
counter this, a Patroller moves around the network at unit speed, hoping
to intercept the attack while it is being carried out. This is a zero-sum
game between the mobile Patroller and the Attacker, which we analyze
and solve in certain cases.

Keywords: Patrolling · Zero-sum game · Networks

1 Introduction

A game theoretic model of patrolling a graph was recently introduced in [1], in
which an Attacker chooses a node of a graph to attack at a particular time and
a Patroller chooses a walk on the nodes of the graph. The game takes place in
discrete time and the attack lasts a fixed number of time units. For given mixed
strategies of the players, the payoff of the game is the probability that the attack
is intercepted by the Patroller: that is, the probability that the Patroller visits
the node the Attacker has chosen during the period in which the attack takes
place. The Patroller seeks to maximize the payoff and the Attacker to minimize
it, so the game is zero-sum.

In [1], several general results of the game are presented along with solu-
tions of the game for some particular graphs. This work is extended in [5], in
which line graphs are considered. The game is surprisingly difficult to solve on
the line graph, and the optimal policy for the Patroller is not always, as one
might expect, the strategy that oscillates to and fro between the terminal nodes.
Rather, depending on the length of time required for the attack to take place,
it may be optimal for the Patroller to stay around the two ends of the line with
some positive probability.
c© Springer International Publishing AG 2016
Q. Zhu et al. (Eds.): GameSec 2016, LNCS 9996, pp. 129–138, 2016.
DOI: 10.1007/978-3-319-47413-7 8
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In this paper we present a new continuous game theoretic model of patrolling,
in a similar spirit to [1], but on a continuous network, so that the attack may
take place at any point of the network (not just at nodes). We also model time
as being continuous, rather than discrete. This is a better model for a situation
in which a pipeline may be disrupted at any point.

At first glance, this might appear to be a more complicated game to analyze.
However, it turns out that continuity simplifies matters, and we are able to solve
the game for Eulerian networks (Sect. 3) and for line networks (Sect. 4). The
solution of the game on the line network is considerably easier to derive than
for the discrete analogue, and we also show that the value of the latter game
converges to that of the former as the number of nodes of the graph approaches
infinity.

A game theoretical approach to patrolling problems has been successful in
real life settings, for example in [6,7]. Other work on game theoretic models of
patrolling a network include [2,4].

2 Definition of the Game

We start by defining a continuous time patrolling game, where the Patroller
moves at unit speed along a network Q with given arc lengths, and the Attacker
can attack at any point of the network (not just at nodes). In this section we
define the game formally and describe each of the players’ strategy spaces.

The network Q can be viewed as a metric space, with d(x, y) denoting the
arc length distance, so we can talk about ‘the midpoint of an arc’ and other
metric notions. We assume that the game has an infinite time horizon and that a
Patroller pure strategy is a unit speed (Lipshitz continuous) path w : [0,∞) → Q,
in particular, one satisfying

d (w (t) , w (t′)) ≤ |t − t′|, for all t, t′ ≥ 0.

For the Attacker, a pure strategy is a pair [x, I] , where x ∈ Q and I ⊂ [0,∞)
is an interval of length r. It is sometimes useful to identify I with its midpoint y,
where I = Iy = [y − r/2, y + r/2] . Thus y ∈ [r/2,∞).

The payoff function, taking the Patroller as the maximizer, is given by

P (w, {x, y}) =
{

1 if w (t) = x for some t ∈ Iy,
0 otherwise. (1)

Hence the value, if it exists, is the probability that the attack is intercepted.
Note that in this scenario the pure strategies available to both players are
uncountably infinite, so the von Neuman minimax theorem no longer applies.
Furthermore, the payoff function is not continuous (in either variable), so min-
imax theorems using that property also don’t apply. For example, if w is the
constant function x, then P (w, [x, I]) = 1, however an arbitrarily small pertur-
bation of w or x can have P (w′, [x′, I]) = 0. However, in the examples we study
in this paper we show that the value exists by explicitly giving optimal strategies
for the players.
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3 General Results

We start by giving upper and lower bounds for the value of the game for general
networks. First, we define the uniform attack strategy.

Definition 1. The uniform attack strategy chooses to attack in the time
interval [0, r] at a uniformly random point on Q. More precisely, the probability
the attack takes place in a region A of the network is proportional to the total
length of A.

We use the uniform attack strategy to deduce a simple lower bound on the value
of the game. We denote the total length of Q by μ.

Lemma 1. The uniform attack strategy guarantees that the probability P of
interception is no more than r/μ.

We also define a natural strategy for the Patroller. Recall that a Chinese
Postman Tour (CPT) of the network Q is a minimum length tour that contains
every point of Q. We denote the length of a CPT by μ̄. It is well known [3] that
there are polynomial time algorithms (polynomial in the number of nodes of the
network) that calculate μ̄. It is easy to see that μ̄ ≤ 2μ, since doubling each arc
of the network results in a new network whose nodes all have even degree and
therefore contains an Eulerian tour.

Definition 2. Fix a CPT, w : [0,∞) → Q that repeats with period μ̄. The
uniform CPT strategy w̄ : [0,∞) → Q for the Patroller is defined by

w̄(t) = w(t + T ),

where T is chosen uniformly at random from the interval [0, μ̄]. In other words,
the Patroller chooses to start the CPT at a random point along it.

This strategy gives an upper bound on the value of the game.

Lemma 2. The uniform CPT strategy guarantees that the probability P of inter-
ception is at least r/μ̄.

Lemmas 1 and 2 give upper and lower bounds on the value of the game. If the
network is Eulerian (that is, the network contains a tour that does not repeat
any arcs) then μ = μ̄ and Lemmas 1 and 2 imply that the value of the game is
r/μ = r/μ̄. We sum this up in the theorem below.

Theorem 1. The value V of the game satisfies

r

μ̄
≤ V ≤ r

μ
.

If the network is Eulerian then both bounds are tight, V = r/μ = r/μ̄, the
uniform attack strategy is optimal for the Attacker and the uniform CPT strategy
is optimal for the Patroller.
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Writing P ∗ for the probability the uniform CPT strategy intercepts the attack,
we note that since it is true for any network that μ̄ ≤ 2μ, we have

V ≤ r

μ
≤ 2

(
r

μ̄

)

= 2P ∗.

This shows that the value of the game is no more than twice the interception
probability guaranteed by the uniform CPT strategy.

4 Solution on the Line Network

We now give a complete solution to the game on a line of unit length, that is the
closed unit interval [0, 1]. The Attacker picks a point x ∈ [0, 1] and an interval
I ⊂ [0,∞) of length r. The Patroller picks a unit speed walk w on the unit
interval, w : R+ → [0, 1]. The attack is intercepted if w(t) = x, for some t ∈ I.
We assume 0 ≤ r ≤ 2, otherwise the Patroller can always intercept the attacks
by oscillating between the endpoints of the unit interval.

4.1 The Case r > 1

We begin by assuming the attack interval r is relatively large compared to the
size of the line, in particular when r > 1. We shall see that the following strategies
are optimal.

Definition 3. Let the diametrical Attacker strategy be defined as follows:
choose y uniformly in [0, 1] and attack equiprobably at one of the endpoints x = 0
or 1 during the time interval I = [y, y + r].

For the Patroller, the oscillation strategy is defined as the strategy where
the Patroller randomly picks a point x on the unit interval and a random direc-
tion and oscillates from one endpoint to the other.

We note that the oscillation strategy is simply the uniform CPT strategy
as defined in Definition 2, and thus ensures a probability P ≥ r/μ̄ = r/2 of
interception, by Lemma 2.

We can show that the diametrical strategy ensures the attack will not be
intercepted with probability any greater than r/2.

Lemma 3. If r ≥ 1 and the Attacker adopts the diametrical strategy then for
any path w the attack is intercepted with probability P ≤ r/2.

We have the following corollary:

Theorem 2. The diametric Attacker strategy and the oscillation strategy are
optimal strategies and give value V = r/2.

Proof. This follows directly from Lemmas 2 and 3.
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4.2 The Case r ≤ 1

Now we consider the case of r ≤ 1. In this case r is small compared to 1 (the size
of the unit interval), thus the Patroller stays at the end with some probability
and oscillates between the endpoints of the unit interval with the remaining
probability.

Let q be the quotient and ρ the remainder when r divides 1. Thus 1 = rq+ρ,
where q is an integer and 0 ≤ ρ < r. Let k = r + ρ. We first define the Attacker
strategies.

Definition 4. Consider the following Attacker strategy, which we call r-attack
strategy, that is performed at a random point in time, here we start it at time
0:

1. Attack at points E = {0, r, 2r, . . . , (q − 1)r, 1}, starting attacks equiprobably
between times [0, r], each with total probability r

1+r . We call these the exter-
nal attacks.

2. Attack at the midpoint of (q − 1)r and 1, which is the point 1 − r+ρ
2 = 1 − r

2 ,
starting the attack equiprobably between times

[
r−ρ
2 , r+ρ

2

]
with total probability

ρ
1+r . We call this the internal attack.

The attacks are shown in Fig. 1. The horizontal axis is time and the vertical
axis is the unit interval.

Fig. 1. The r-attack strategy is shown. The starting points of the attacks are shown
in red. (Color figure online)

Let f(t) be the probability of interception at an external attack point if the
Patroller is present there at time t. Let g(t) be this probability for the internal
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Fig. 2. The probability of interception at each point in time t is shown both for external
attacks, f(t), and for internal attacks, g(t), for the r-attack strategy.

attack point. These probability functions for the r-attack strategy are shown in
Fig. 2.

The functions f and g are as follows:

f(t) =

⎧
⎨

⎩

t
1+r , t ∈ [0, r]
2r−t
1+r , t ∈ [r, 2r]
0, t ∈ [2r,∞)

(2)

g(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, t ∈ [
0, r−ρ

2

]

t− r−ρ
2

1+r , t ∈ [
r−ρ
2 , r+ρ

2

]

ρ
1+r , t ∈ [

r+ρ
2 , 2r − r+ρ

2

]

2r− r−ρ
2 −t

1+r , t ∈ [
2r − r+ρ

2 , 2r − r−ρ
2

]

0, t ∈ [
2r − r−ρ

2 ,∞)

(3)

We now define some Patroller strategies.

Definition 5. Consider the Patroller strategies where the Patroller plays a mix-
ture of oscillations of the interval [0, 1] (the big oscillations) with probability
1

1+r , and oscillations of the intervals
[
0, r

2

]
and

[
1 − r

2 , 1
]
(the small oscil-

lations) with probability of r
2(1+r) on each. We call this mixed-oscillation

strategy.

The mixed oscillation strategy is shown in Fig. 3. Note that the small oscilla-
tions have period r and thus intercept all attacks in the respective intervals. By
attacking at 0 or 1 the Attacker secures r

2(1+r) + r
2 × 1

1+r = r
1+r , since the big

oscillation intercepts attacks at the endpoints with probability r
2 . Any attacks in

the open intervals
(
0, r

2

)
and

(
1 − r

2 , 1
)
, are dominated by attacks at endpoints.
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Attacking in
[

r
2 , 1 − r

2

]
secures an interception probability of 2r

2 × 1
1+r = r

1+r ,
since at points in

[
r
2 , 1 − r

2

]
, the big oscillation in each of its period time intervals

of length 2, it intercepts attacks that start at two time intervals each of length
r. Hence, V ≥ r

1+r .

Fig. 3. The mixed oscillation strategy, where the horizontal axis is time and the vertical
axis is the unit interval.

Theorem 3. If r ≤ 1, then the r-attack strategy and the mixed-oscillation strat-
egy are optimal and the value of the game is V = r

1+r .

4.3 Relation to Discrete Patrolling Game

The discrete analogue of our game, introduced in [1] was solved for line graphs in
[5]. It is interesting (and reassuring) to find that the value of the discrete game
converges to the value of the continuous game as the number of nodes tends to
infinity.

We briefly describe the set-up of the discrete game. The game is played on
a line graph with n nodes in a discrete time horizon T = {1, 2, . . . , T}. The
Attacker chooses an attack node at which to attack and a set of m successive
time periods in T , which is when the attack takes place. The Patroller chooses
a walk on the graph. As in the continuous case, the payoff of the game, which
the Attacker seeks to minimize and the Patroller to maximize, is the probability
that the Patroller visits the attack node while the attack is taking place.

The value of the game depends on the relationship between n and m, and
the solution divides into 5 cases (see Theorem 6 of [5]). We are interested in
fixing the ratio r = m/n and letting n tend to infinity, therefore the solution of
two of the cases of the game from [1] are irrelevant: in particular the case when
m = 2, and the case when n = m + 1 or n = m + 2. The case n < (m + 2)/2
(corresponding to the case r ≥ 2 in the continuous case) is also uninteresting,
since then the value is 1. Therefore we are left with two cases, whose solutions
we summarize below.

Theorem 4 (From Theorem 6 of [5]). The value V of the discrete patrolling
game on the line is
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1. V = m/(2n − 2) if (m + 1)/2 ≤ n ≤ m + 1, and
2. V = m/(n + m − 1) if n ≥ m + 3, or n = m + 2 and m ≥ 3 is odd.

We now consider the behaviour of the value of the discrete game as n → ∞,
assuming that the ratio r = m/n is fixed. In the first case of Theorem 4, as
n → ∞, the condition (m + 1)/2 ≤ n ≤ m + 2 becomes 1 ≤ r ≤ 2 and we have

V =
m

2n − 2
=

r

2 − 2/n
→ r

2
,

as n → ∞. This corresponds to the solution of the continuous game as given in
Theorem 2.

In the second case of Theorem 4, as n → ∞, the condition on m becomes
r ≤ 1 and we have

V =
m

n + m − 1
=

r

1 + r − 1/n
→ r

1 + r
,

as n → ∞. Again, this corresponds to the solution of the continuous game as
given in Theorem 3.

5 Conclusion

We have introduced a new game theoretic model of patrolling a continuous
network in continuous time, analagous to the discrete patrolling game introduced
in [1]. We have given general bounds on the value of the game and solved it in
the case that the network is Eulerian or if it is a line.

We are optimistic that our results on the line network can be extended to a
larger class of networks, such as stars or trees, and we conjecture that the value
of the game is r/μ̄ for any tree network with diameter D such that D ≤ r ≤ μ̄,
where μ̄ is the length of a CPT of the network.

Appendix: Omitted Proofs

Proof of Lemma 1. The attack must be taking place during the time interval
[0, r]. Let A be the set of points that the Patroller intercepts in this time interval.
Then clearly A must have length no greater than r and so the probability the
attack takes place at a point in A is r/μ. It follows that P ≤ r/μ. �	

Proof of Lemma 2. Suppose the attack starts at time t0 at some point x ∈ Q.
Then the attack is certainly intercepted if w̄ is at x at time t0. Let tx ∈ [0, μ̄] be
such that w(t0 + tx) = x, so that the attack is intercepted by w̄ if T = tx. Let
A be the set of times t ∈ [0, μ̄] such that tx − r ≤ t ≤ tx or t ≥ tx + μ̄ − r, so
if T ∈ A, then the attack is intercepted by w̄. But the measure of A is r, so the
probability that T is in A is r/μ̄ and hence P ≥ r/μ̄. �	
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Proof of Lemma 3. Take a Patroller path w. We can assume that w starts at an
endpoint, otherwise it is weakly dominated by a strategy that does. To see this,
suppose the Patroller starts at an interior point before traveling directly to an
endpoint, arriving there at time t < 1. Now consider the Patroller strategy that
is the same but in the time interval [0, t] the Patroller remains at the endpoint.
Then clearly the second strategy intercepts the same set of attacks as the first
one. Without loss of generalization we assume w starts at x = 0.

We only need to consider the path in the time interval [0, 1 + r], after which
time the attack has been completed with probability 1. Since r < 2 the walk
cannot go between the two ends more than twice, so there are three possibilities.

The first is that w stays at x = 0 for the whole time, in which case the
probability the attack is intercepted is P = 1/2 ≤ r/2.

The second possibility is that w stays at x = 0 for time t1, then goes to
x = 1 and stays there for time t2. We can assume it takes the Patroller time
1 to go between the endpoints since any path taking longer than that would
be dominated, so t1 + t2 = r. The attack is intercepted at x = 0 if it starts
sometime during [0, t1], which has probability (1/2)t1. It is intercepted at x = 1
if it ends sometimes during [1 + r − t2, 1 − r], which has probability (1/2)t2.
Hence P = (1/2)(t1 + t2) = r/2.

The final possibility is that w stays at x = 0 for time t1, then goes directly
to x = 1 for time t2, then goes directly back to x = 0 for time t3, in which case
we must have t1 + t2 + t3 = r − 1. This time the attack is intercepted at x = 0
in the case of either of the two mutually exclusive events that it starts in [0, t1]
or ends in [1 + r − t3, 1 − r], which have total probability (1/2)(t1 + t3). If the
attack takes place at x = 1, it must be taking place during the whole of the
time interval [1, r]. But w must reach x = 1 sometime during this time interval,
since it must have time to travel from x = 0 to x = 1 and back again, and hence
intercepts the attack with probability 1. So the overall probability the attack is
intercepted is (1/2)(t1 + t3) + 1/2 ≤ (1/2)(t1 + t2 + t3) + 1/2 = r/2. �	

Proof of Theorem 3. We already showed that r/(1 + r) is a lower bound for
the value and now we show that it is also an upper bound. Now, suppose that
the Attacker plays the r-attack strategy. The Patroller could:

1. Stay at any attack point but will not win with probability greater than r
1+r .

2. Travel between consecutive external attacks and if possible try to reach the
internal attack: Suppose the Patroller is at point 0 up to time t: If t ∈ [0, r]
and then leaves for point r, she will reach point r at times in the range [r, 2r].
This gives total interception probability f(t) + f(t + r) = t

1+r + 2r−(t+r)
1+r =

r
1+r . Note that if the Patroller continues to the next attack along the unit
interval, if it is the internal attack she will reach it at times greater than
r + r+ρ

2 = 2r − r−ρ
2 , when the internal attack has been completed, and if

it is an external attack she will reach it at time greater than 2r, where all
external attacks have been completed. If t ∈ [r, 2r] then all attacks at point
0 have been intercepted but the Patroller arrives at point r after all attacks
have been completed, which gives interception probability of r

1+r .
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3. Travel between last two external attacks, crossing internal attack in the mid-
dle (this is the same as doing a roundtrip from one of the last external
attacks to the internal attack and back): Suppose the Patroller leaves point
(q − 1)r at time t, toward the internal attack point and the last external
attack point 1: If t ∈ [0, r − ρ], she will reach the internal attack point at
times

[
r+ρ
2 , r − ρ + r+ρ

2

]
=

[
r+ρ
2 , 2r − r+ρ

s

]
, and she will reach the exter-

nal attack at point 1 at times [r + ρ, 2r]. This sums to a probability of
f(t) + g

(
t + r + ρ

2

)
+ f(t + r + ρ) = t

1+ r + ρ
1+r + 2r−(t+r+ρ)

1+r = r
1+r . If t ∈

[r−ρ, r], she will reach the internal attack point at times
[
2r − r+ρ

2 , 2r − r−ρ
2

]
,

and the external attack point 1 at times greater than 2r. This sums to a

probability of f(t) + g
(
t + r+ρ

2

)
= t

1+r +
2r− r−ρ

2 −(t+ r+ρ
2 )

1+r = r
1+r . Finally, if

t ∈ [r, 2r], the Patroller will intercept all attacks at point (q−1)r and will not
make it in time for the internal attack nor the attack at point 1, this gives
the desired probability. �	
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Abstract. Police departments worldwide are eager to develop better
patrolling methods to manage the complex and evolving crime landscape.
Surprisingly, the problem of spatial police patrol allocation to optimize
expected crime response time has not been systematically addressed in
prior research. We develop a bi-level optimization framework to address
this problem. Our framework includes novel linear programming patrol
response formulations. Bender’s decomposition is then utilized to solve
the underlying optimization problem. A key challenge we encounter is
that criminals may respond to police patrols, thereby shifting the distrib-
ution of crime in space and time. To address this, we develop a novel iter-
ative Bender’s decomposition approach. Our validation involves a novel
spatio-temporal continuous-time model of crime based on survival analy-
sis, which we learn using real crime and police patrol data for Nashville,
TN. We demonstrate that our model is more accurate, and much faster,
than state-of-the-art alternatives. Using this model in the bi-level opti-
mization framework, we demonstrate that our decision theoretic app-
roach outperforms alternatives, including actual police patrol policies.

Keywords: Decision theoretic policing · Crime modeling · Survival
analysis · Bender’s decomposition

1 Introduction

Prevention, response and investigation are the three major engagements of
police. Ability to forecast and then effectively respond to crime is, therefore,
the holy grail of policing. In order to ensure that crime incidents are effectively
handled, it is imperative that police be placed in a manner that facilitates quick
response. Effective police placement, however, needs crime prediction as a pre-
requisite. This is one of the reasons why predicting crime accurately is of utmost
importance. While a number of techniques have been proposed for characterizing
and forecasting crime, optimizing response times has not been addressed so far,
to the best of our knowledge.
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-47413-7 9
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Our goal is to develop a rigorous optimization-based approach for optimal
police placement in space in order to minimize expected time to respond to crime
incidents as they occur. For the time being, we assume that a generative model
for crime is available; we describe such a model, calibrated on real crime and
police patrol data, in Sect. 4. The key challenge we face is that crime locations
and timing are uncertain. Moreover, for a given placement of police resources in
space, optimizing crime incident response for a collection of known incidents is
itself a non-trivial optimization problem. What makes this problem particularly
challenging is that criminals are affected by police, as they avoid committing
crimes if the chances of being caught are high; consequently, we expect that police
placement will impact spatial and temporal distribution of crime incidents. Our
model, therefore, has both decision and game theoretic features, even though
we make use of a data-driven generative model of crime that accounts for the
impact of police locations, rather than relying on rationality as underpinning
criminal behavior.

Formally, we frame the problem of police patrol optimization as a regularized
two-stage stochastic program. We show how the second-stage program (comput-
ing optimal response to a fixed set of crime incidents) can be formulated as a
linear program, and develop a Bender’s decomposition method with sample aver-
age approximation for the overall stochastic program. To address the fact that
the top-level optimization decisions actually influence the probability distribu-
tion over scenarios for the second-level crime response optimization problem, we
propose a novel iterative stochastic programming algorithm, IBRO, to compute
approximate solutions to the resulting bi-level problem of finding optimal spa-
tial locations for police patrols that minimize expected response time. We show
that our model outperforms alternative policies, including the response policy
in actual use by a US metropolitan police department, both in simulation and
on actual crime data.

In order to validate our model of police response, we develop a novel crime
forecasting model that is calibrated and evaluated using real crime and police
patrol data in Nashville, TN. Crime prediction has been extensively studied,
and several models for it have been proposed. These include visualization tools,
primarily focused on hotspots, or areas of high crime incidence [2], spatial clus-
ter analysis tools [15,17], risk-terrain models [10], leading indicator models [4],
and dynamic spatial and temporal models [9,19,23]. A major shortcoming of the
existing methods is that they do not allow principled data-driven continuous-
time spatial-temporal forecasting that includes arbitrary crime risk factors. For
example, while risk-terrain modeling focuses on spatial covariates of crime, it
entirely ignores temporal factors, and does not offer methods to learn a genera-
tive model of crime from data. The work by Short et al. [19] on dynamic spatial-
temporal crime modeling, on the other hand, does not readily allow inclusion of
important covariates of crime, such as locations of pawn shops and liquor stores,
weather, or seasonal variations. Including such factors in a spatial-temporal
model, however, is critical to successful crime forecasting: for example, these
may inform important policy decisions about zoning and hours of operation for
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liquor stores, and will make the tool more robust to environmental changes that
affect such variables. To address these concerns, validate our model, and forecast
crimes, we propose a stochastic generative model of crime which is continuous in
time and discretized in space, and readily incorporates crime covariates, bridg-
ing an important gap in prior art. Our model leverages survival analysis to learn
a probability density over time for predicting crime. After creating a model to
predict crime, we evaluate its performance by comparing it with a natural adap-
tation of the Dynamic Spatial Disaggregation Approach (DSDA) algorithm [9]
and an Dynamic Bayes Network method [23] using automated abstraction [22].

1.1 Related Work

There has been an extensive literature devoted to understanding and predict-
ing crime incidence, involving both qualitative and quantitative approaches. For
example, a number of studies investigate the relationship between liquor out-
lets and crime [20,21]. Many of the earlier quantitative models of crime focus on
capturing spatial crime correlation (hot spots), and make use of a number of sta-
tistical methods towards this end [15,17]; these are still the most commonly used
methods in practice. An alternative approach, risk-terraine modeling, focuses on
quantifiable environmental factors as determinants of spatial crime incidence,
rather than looking at crime correlation [10]. These two classes of models both
have a key limitation: they ignore the temporal dynamics of crime. Moreover,
environmental risk factors and spatial crime analysis are likely complementary.
Our approach aims to merge these ideas in a principled way.

Recently, a number of sophisticated modeling approaches emerged aiming to
tackle the full spatio-temporal complexity of crime dynamics. One of these is
based on a spatio-temporal differential equation model that captures both spa-
tial and temporal crime correlation [16,18]. These models have two disadvan-
tages compared to ours: first, they do not naturally capture crime co-variates,
and second, they are non-trivial to learn from data [16], as well as to use in
making predictions [18]. Another model in this general paradigm is Dynamic
Spatial Disaggregation Approach (DSDA) [9], which combines an autoregressive
model to capture temporal crime patterns with spatial clustering techniques to
model spatial correlations. The model we propose is significantly more flexible,
and combines spatial and temporal predictions in a principled way by using
well-understood survival analysis methods. Recently, an approach has been pro-
posed for modeling spatial and temporal crime dynamics using Dynamic Bayes
Networks [22,23]. This approach necessitates discretization of time, as well as
space. Moreover, despite significant recent advances, scalability of this framework
remains a challenge.

2 Optimizing Police Placement

Our goal is to address a fundamental decision theoretic question faced by police:
how to allocate limited police patrols so as to minimize expected response time
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to occurring crime. In reality, this is a high-dimensional dynamic optimization
problem under uncertainty. In order to make this tractable in support of practical
decision making, we consider a simplified two-stage model: in the first stage,
police determines spatial location of a set of patrol vehicles, P , and in the second
stage, vehicles respond to crime incidents which occur. The decisions in the first
stage are made under uncertainty about actual crime incidents, whereas for
second-stage response decisions, we assume that this uncertainty is resolved. A
key strategic consideration in police placement is its impact on crime incidence.
In particular, it is well known that police presence has some deterrence effect on
crime, which in spatio-temporal domains takes two forms: reduced overall crime
frequency, and spatial crime shift [12,19]. We assume below that the effect of
police presence on crime distribution is captured in a stochastic crime model.
Later, we describe and develop the stochastic crime model where we use real
crime and police patrol data.

We present the problem formulation of allocating police given a stochastic
generative model of crime. We divide the available area under police patrol into
discrete grids. Formally, we define q as the vector of police patrol decisions, where
qi is the number of police vehicles place in grid i. Let s be a random variable
corresponding to a batch of crime incidents occurring prior to the second stage.
The two-stage optimization problem for police placement then has the following
form:

min
q

Es∼f [D(q; s)], (1)

where D(q; s) is the minimal total response time of police located according
to q to crime incidents in realization s, which is distributed according to our
crime distribution model f described in Sect. 4, associated with each grid (and
the corresponding spatial variables). The model implicitly assumes that crime
occurrence is distributed i.i.d. for each grid cell, conditional on the feature vector,
where the said feature vector captures the inter-dependence among grids. While
the crime prediction model is continuous in time, we can fix a second-stage
horizon to represent a single time zone (4-hour interval), and simply consider
the distribution of the crime incidents in this interval.

The optimization problem in Eq. (1) involves three major challenges. First,
even for a given s, one needs to solve a non-trivial optimization problem of
choosing which subset of vehicles to send in response to a collection of spatially
dispersed crime incidents. Second, partly as a consequence of the first, comput-
ing the expectation exactly is intractable. Third, the probability distribution of
future crime incidents, f , depends on police patrol locations q through the fea-
tures that capture deterrence effects as well as spatial crime shift to avoid police.
We address these problems in the following subsections.

2.1 Minimizing Response Time for a Fixed Set of Crime Incidents

While our goal is to minimize total response time (where the total is over the
crime incidents), the information we have is only about spatial locations of crime
and police in discretized space. As a result, we propose using distance traveled
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as a proxy. Specifically, if a police vehicle located at grid i is chosen to respond
to an incident at grid j, the distance traveled is dij , distance between grids i and
j. Assume that these distances dij are given for all pairs of grids i, j. Next, we
assume that a single police vehicle is sufficient to respond to all crime incidents
in a particular grid j. This is a reasonable assumption, since the number of crime
incidents in a given cell over a 4-hour interval tends to be relatively small, and
this interval is typically sufficient time to respond to all of them.

Given this set up, we now show how to formulate this response distance
minimization problem as a linear integer program by mapping it to two classical
optimization problems: the transportation [1] and k-server problems [3].

In the transportation problem, there are m suppliers, each with supply si, n
consumers, each with demand rj , and transportation cost cij between supplier i
and consumer j. The goal is to transport goods between suppliers and consumers
to minimize total costs. To map crime response to transportation, let police
vehicles be suppliers, crime incidents be consumers, and let transportation costs
correspond to distances dij between police vehicle and crime incident grids, with
each grid being treated as a node in the network. While the transportation
problem offers an effective means to compute police response, it requires that
the problem is balanced: supply must equal demand. If supply exceeds demand,
a simple modification is to add a dummy sink node. However, if demand exceeds
supply, the problem amounts to the multiple traveling salesman problem, and
needs a different approach.

To address excess-demand settings, we convert the police response to a more
general k-server problem. The k-server problem setting involves k servers in space
and a sequence of m requests. In order to serve a request, a server must move
from its location to the location of the request. The k-server problem can be
reduced to the problem of finding minimum cost flow of maximum quantity in
an acyclic network [3]. Let the servers be s1, ..., sk and the requests be r1, ..., rm.
A network containing (2 + k + 2m) nodes is constructed. In the formulation
described in [3], each arc in the network has capacity one. The arc capacities
are modified in our setting, as described later in the problem formulation. The
total vertex set is {a, s1, ..., sk, r1, ..., rm, r

′
1, ..., r

′
m, t}. a and t are source and sink

respectively. There is an arc of cost 0 from a to each of si. From each si, there is
an arc of cost dij to each rj , where dij is the actual distance between locations
i and j. Also, there is an arc of cost 0 from each si to t. From each ri, there
is an arc of cost −K to each r

′
i, where K is an extremely large real number.

Furthermore, from each r
′
i, there is an arc of cost dij to each rj where i < j

in the given sequence. In our setting, servers and requests correspond to grids
with police and crime respectively. In the problem setting we describe, G is the
set of all the nodes in the network. We term the set {si ∀i ∈ G} as G1, the set
{ri ∀i ∈ G} as G2 and the set {r

′
i ∀i ∈ G} as G3. The structure of the network is

shown in Fig. 1, which shows how the problem can be framed for a setting with
6 discrete locations. Shaded nodes represent the presence of police and crime in
their respective layers.
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Fig. 1. Network structure

The problem of finding placement of k-servers in space to serve an unordered
set of requests is the same as the multiple traveling salesperson problem (mTSP),
a generalization of the TSP problem, which is NP-hard. The offline k-server prob-
lem gets around this by having a pre-defined sequence of requests. By sampling
crimes from the spatio-temporal model, although we can create a sequence of
crimes by ordering them according to their times of occurrence, this sequence
need not necessarily provide the least time to respond to all the crimes. In order
to deal with this problem, we leverage the fact that crimes are relatively rare
events. In order to find the ordering of crimes that provides the least response
time, we solve the problem for each possible ordering of crimes. Despite this, the
k-server solution approach is significantly less scalable than the transportation
formulation. Consequently, we make use of it only in the (rare) instances when
crime incidents exceed the number of available police.

2.2 Stochastic Programming and Sample Average Approximation
for Police Placement

Now that we have two ways of addressing the problem of minimizing response
time given a known set of crime incidents, we consider the original problem of
optimizing allocation of police patrols. As a first step, we point out that the
resulting stochastic program is intractable in our setting because of the large
space of possible crime incident realizations. We therefore make use of sample
average approximation, whereby we estimate the expectation using a collection of
i.i.d. crime incident realization samples (henceforth, scenarios) generated accord-
ing to f . For each scenario, we represent the presence of crimes in the grids by a
binary vector z and total available police by k. The decision variable, xs

ij refers
to the number of police vehicles traveling from grid i to grid j in scenario s.
Under such a setting, the optimization program with transportation problem in
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the second level can be formulated as:

min
q

∑

s∈S

⎡

⎣min
xs≥0

∑

ij

dijx
s
ij

⎤

⎦ (2a)

s.t. : qi ∈ Z+ ∀i ∈ G
∑

i∈G

qi = k (2b)

∑

j∈G

xs
ij = qi, ∀i ∈ G,∀s ∈ S (2c)

∑

i∈G

xs
ij = zs

j , ∀j ∈ G,∀s ∈ S, (2d)

xs
ij ≥ 0 ∀i, j ∈ G (2e)

The optimization program leveraging the k-server problem, on the other
hand, can be formulated as:

min
q

∑

s∈S

⎡

⎣min
xs≥0

∑

ij

dijx
s
ij

⎤

⎦ (3a)

s.t. : qi ∈ Z+ ∀i ∈ G (3b)
∑

j∈{G2,t}
xs

ij = qi ∀i ∈ G1,∀s ∈ S (3c)

∑

i∈G

xs
ij = zs

j ∀j ∈ G2,∀s ∈ S (3d)

∑

j∈G

xs
ij −

∑

l∈G

xs
li = si ∀i ∈ G,∀s ∈ S where si =

⎧
⎪⎨

⎪⎩

k if i = a

−k if i = t

0 otherwise
(3e)

xs
ij ≤ 1 ∀i, j ∈ {i, j ∈ G}\{{i, j ∈ G and i = a and j ∈ G1}

∪ {i, j ∈ G and i ∈ G1 and j = t}},∀s ∈ S (3f)
xs

ij ≥ 0 ∀i, j ∈ G,∀s ∈ S (3g)

The overall optimization problem then becomes

min
q≥0

Es∼f

⎡

⎣1(k ≥ ms) min
xs∈C

s(q)
1

∑

ij

dijx
s
ij + 1(k < ms) min

xs∈C
s(q)
2

∑

ij

dijx
s
ij

⎤

⎦ (4)

where C
s(q)
1 includes the Constraints 2c, 2d, and C

s(q)
2 includes Constraints 3c, 3d

and 3e, as well as the capacity constraints, for all realizations of crime incidents
s, that are drawn from the distribution f .

We propose to solve this stochastic program using Bender’s decomposition [1].
The first step is to represent the inner (lower-level) optimization problems using



146 A. Mukhopadhyay et al.

their duals, which for the transportation problem, is represented as:

max
α,β

∑

i∈G

qiα
s
i +

∑

j∈G

zs
jβ

s
j (5a)

s.t. : dij − αs
i − βs

j ≥ 0 ∀i, j ∈ G, (5b)

where {αs
1, ..., α

s
g} are the dual variables for Constraints 2c and βs

1, ..., β
1
g are dual

variables for Constraints 2d. The dual for the k-server problem is represented
as:

max
λ,δ,f,c

−
∑

i∈G1

λs
i qi −

∑

j∈G2

δs
jzj −

∑

i,j∈Cc

cs
ij −

∑

i∈G

fs
i si (6a)

s.t. (6b)
1(i, j ∈ Cλ)λs

i + 1(i, j ∈ Cδ)δs
j + fs

i − fs
j + 1(i, j ∈ Cc)cs

ij + dij ≥ 0 ∀i, j ∈ G

(6c)

where
i, j ∈ Cλ if i, j ∈ G and i ∈ G1, j ∈ {G2, t}

i, j ∈ Cδ if i, j ∈ G and i ∈ G2

i, j ∈ Cc if i, j ∈ {i, j ∈ G}\{{i, j ∈ G and i = a and j ∈ G1}
∪{i, j ∈ G and i ∈ G1 and j = t}}

We introduce dual variables λs
i , ..., λ

s
k for constraints 3c, δs

i , ..., δ
s
m for con-

straints 3d, fs
i , ..., fs

n for constraints 3e and cs
11, c

s
12..., c

s
nn for constraints 3f.

By construction, the primal transportation problem always has a feasible
solution as it is balanced, and the primal k-server problem always has a feasible
solution provided

∑
i qi > 0, which is ensured by always having a budget greater

than 0. Consequently, there always exists an optimal dual solution which is
one of the (finite number of) extreme points of the polyhedron comprised from
Constraints 5b and 6c for the corresponding problems. Since these constraints do
not depend on the police patrol allocation decisions q, the set of extreme points
of the constraint polyhedra Es = {(λs, δs, fs, cs)} and Es = {αs, βs} for both
the problems are independent of q. Thus, we can then rewrite the stochastic
program as

min
q

∑

s∈S

⎡

⎣1(k < ms){ max
(λs,δs,fs,cs)∈Es

−
∑

i∈G1

λs
i qi −

∑

j∈G2

δs
jzj −

∑

i,j∈Cc

cs
ij

−
∑

i∈G

fs
i si} + 1(k ≥ ms){max

α,β

∑

i∈G

qiα
s
i +

∑

j∈G

zs
jβ

s
j }

⎤

⎦

(7)



Optimal Allocation of Police Patrol Resources 147

Since Es is finite, we can rewrite it as

min
q,us

∑

s

us (8a)

s.t. : qi ∈ Z+ ∀ i ∈ G

us ≥ −
∑

i∈G1

λs
i qi −

∑

j∈G2

δs
jzj −

∑

i,j∈Cc

cs
ij −

∑

i∈G

fs
i si ∀ s, (λs, δs, fs, cs) ∈ Ẽs

(8b)

us ≥
∑

i∈G

qiα
s
i +

∑

j∈G

zs
jβ

s
j ∀ s, (αs, βs) ∈ Ẽs (8c)

where Ẽs is a subset of the extreme points which includes the optimal dual
solution and Constraints 8b and 8c are applicable based on whether the partic-
ular scenario is mapped to the transportation problem or the k-server problem.
Since this subset is initially unknown, Bender’s decomposition involves an iter-
ative algorithm starting with empty Ẽs, and iterating solutions to the problem
with this subset of constraints (called the master problem), while generating
and adding constraints to the master using the dual program for each s, until
convergence (which is guaranteed since Es is finite).

A problem remains with the above formulation: if police vehicles signifi-
cantly outnumber crime events, we only need a few of the available resources to
attain a global minimum, and the remaining vehicles are allocated arbitrarily.
In practice, this is unsatisfactory, as there are numerous secondary objectives,
such as overall crime deterrence, which motivate allocations of police which are
geographically diverse. We incorporate these considerations informally into the
following heuristic objectives:

– There should be more police coverage in areas that observe more crime, on
average, and

– Police should be diversely distributed over the entire coverage area.

We incorporate these secondary objectives by modifying the objective function
in (3b) to be

min
q

−γhiqi + κqi + min
xs≥0

∑

s∈S

∑

ij

dijx
s
ij (9)

where hi is the observed frequency of crimes in grid i and γ and κ are parameters
of our model. The first term γhiqi forces the model to place police in high crime
grids. The second term κqi penalizes the placement of too many police vehicles
in a grid and thus forces the model to distribute police among grids.

2.3 Iterative Stochastic Programming

Bender’s decomposition enables us to solve the stochastic program under the
assumption that f is stationary. A key challenge identified above however, is
that the distribution of future crime actually depends on the police placement
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policy q. Consequently, a solution to the stochastic program for a fixed set of
samples s from a distribution f is only optimal if this distribution reflects the
distribution of crime conditional on q, turning stochastic program into a fixed
point problem. We propose to use an iterative algorithm, IBRO (Iterative Ben-
der’s Response Optimization) (Algorithm 1), to address this issue. Intuitively,
the algorithm provides police repeated chances to react to crimes, while updat-
ing the distribution of crimes given current police positions. In the algorithm,
MAX ITER is an upper limit on the number of iterations, e is the set of all
evidence (features) except police presence and τ |z is the response time to crime
z. q and z, as before, refer to vectors of police placements and crime locations
and qi|zi refers to police placement given a particular set of crimes.

Algorithm 1. IBRO
1: INPUT: q0: Initial Police Placement
2: OUTPUT: q∗: Optimal Police Placement
3: for i = 1..MAX ITER do
4: Sample Crime zi from f(t|e, qi−1)
5: Find Optimal Police Placement qi|zi by Stochastic Programming.
6: Calculate Ei(τ |zi)
7: if Ei(τ |zi) > Ei−1(τ |zi−1) then
8: Return qi−1

9: end if
10: if |Ei(τ |zi) − Ei−1(τ |zi−1)| ≤ ε then
11: Return qi
12: end if
13: end for
14: Return qi

3 Crime and Police Data

In order to validate the decision theoretic model above, we used the following
data to learn the parametric model of crime described in Sect. 4. We use bur-
glary data from 2009 for Davidson County, TN, a total of 4,627 incidents, which
includes coordinates and reported occurrence times. Observations that lacked
coordinates were geo-coded from their addresses. In addition, we used police
vehicle patrol data for the same county, consisting of GPS dispatches sent by
county police vehicles, for a total of 31,481,268 data points, where each point
consists of a unique vehicle ID, time, and spatial coordinates. A total of 624
retail shops that sell liquor, 2494 liquor outlets, 41 homeless shelters, and 52
pawn shops were taken into account. We considered weather data collected at
the county level. Additional risk-terrain features, included population density,
housing density, and mean household income at a census tracts level.



Optimal Allocation of Police Patrol Resources 149

4 Continuous-Time Crime Forecasting

4.1 Model

Crime models commonly fall into three categories: purely spatial models, which
identify spatial features of previously observed crime, such as hot spots (or crime
clusters), spatial-temporal models which attempt to capture dynamics of attrac-
tiveness of a discrete set of locations on a map, and risk-terrain models, which
identify key environmental determinants (risk factors) of crime, and create an
associated time-independent risk map. A key gap in this prior work is the lack of
a spatial-temporal generative model that can capture both spatial and temporal
correlates of crime incidents, such as time of day, season, locations of liquor out-
lets and pawn shops, and numerous others. We propose to learn a density f(t|w)
over time to arrival of crimes for a set of discrete spatial locations G, allowing
for spatial interdependence, where w is a set of crime co-variates.

A natural choice for this problem is survival analysis [6] which allows us
to represent distribution of time to events as a function of arbitrary features.
Formally, the survival model is ft(t|γ(w)), where ft is a probability distribution
for a continuous random variable T representing the inter-arrival time, which
typically depends on covariates w as log(γ(w)) = ρ0+

∑
i ρiwi. A key component

in a survival model is the survival function, which is defined as S(t) = 1−Ft(t),
where Ft(t) is the cumulative distribution function of T . Survival models can
be parametric or non-parametric in nature, with parametric models assuming
that survival time follows a known distribution. In order to model and learn
f(t) and consequently S(t), we chose the exponential distribution, which has
been widely used to model inter-arrival time to events and has the important
property of being memoryless. We use Accelerated Failure Model (AFT) for
the survival function over the semi-parametric Cox’s proportional hazard model
(PHM) and estimate the model coefficients using maximum likelihood estimation
(MLE), such that in our setting, S(t|γ(w)) = S(γ(w) t). While both the AFT and
PHM models measure the effects of the given covariates, the former measures it
with respect to survival time and the latter does so with respect to the hazard.
The AFT model thus allows us to offer natural interpretations regarding how
covariates affect crime rate.

A potential concern in using survival analysis in this setting is that grids
can experience multiple events. We deal with this by learning and interpreting
the model in a way that the multiple events in a particular grid are treated as
single events from multiple grids and prior events are taken into consideration
by updating the temporal and spatial covariates.

In learning the survival model above, there is a range of choices about its
spatial granularity, from a single homogeneous model which captures spatial het-
erogeneity entirely through the model parameters w, to a collection of distinct
models fi for each spatial grid i ∈ G. For a homogeneous model it is crucial to
capture most of the spatial variation as model features. Allowing for a collec-
tion of distinct models fi, on the other hand, significantly increases the risk of
overfitting, and reduces the ability to capture generalizable spatially-invariant
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Table 1. Variables for crime prediction

Type of feature Sub-type Variable Description

Temporal Temporal cycles Time of day Each day was divided into 6 equal time

zones with binary features for each.

Weekend Binary features to consider whether crime

took place on a weekend or not.

Season Binary features for winter, spring, summer

and fall seasons.

Weather Mean temperature Mean temperature in a day

Rainfall Rainfall in a day

Snowfall Snowfall in a day

Effect of police Police presence Number of police vehicles passing through a

grid and neighboring grids over past 2 h

Spatial Risk-Terrain Population density Population density (Census Tract Level)

Household income Mean household income (Census Tract

Level)

Housing density Housing density (Census Tract Level)

Spatial-Temporal Spatial correlation Past crime Separate variables considered for each

discrete crime grid representing the

number of crimes in the last two days,

past week and past month. We also

looked at same crime measures for

neighbors of a grid.

Effect of police Crime spillover Number of police vehicles passing in the past

two hours through grids that are not

immediately adjacent, but farther away

knowledge about crime co-variates. To balance these considerations, we split the
discrete spatial areas into two coarse categories: high-crime and low-crime, and
learned two distinct homogeneous models for these. We do this by treating the
count of crimes for each grid as a data point and then splitting the data into
two clusters using k-means clustering.

The next step in the modeling process is to identify a collection of features
that impact crime incidence, which will comprise the co-variate vector w. In
doing this, we divide the features into temporal (those that only change with
time), spatial (those capturing spatial heterogeneity), and spatio-temporal (fea-
tures changing with both time and space).

4.2 Temporal Features

Temporal Crime Cycles: Preliminary analysis and prior work [7,13] were
used to identify the set of covariates, such as daily, weekly and seasonal cycles,
that affect crime rate. Crime rates have also been shown to depend on seasons
(with more crime generally occurring in the summer) [14]. Thus, we consider
seasons as binary features. In order to incorporate crime variation throughout
the day, each day was divided into six zones of four hours each, captured as
binary features. Similarly, another binary feature was used to encode weekdays
and weekends.

Temporal Crime Correlation: It has previously been observed that crime
exhibits inter-temporal correlation (that is, more recent crime incidents increase
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thelikelihood of subsequent crime). To capture this aspect, we used recent crime
counts in the week and month preceding time under consideration.

Weather: It is known that weather patterns can have a significant effect on
crime incidence [5]. Consequently, we included a collection of weather-related
features, such as rainfall, snowfall, and mean temperature.

Police Presence: The final class of features that are particularly pertinent
to our optimization problem involves the effect of police presence on crimes.
Specifically, it is often hypothesized that police presence at or near a location
will affect future crime at that location [12]. We try to capture this relationship,
by including a feature in the model corresponding to the number of police vehicles
passing within the grid, as well as its immediate neighboring grid cells, over the
previous two hours.

4.3 Spatial and Spatio-Temporal Features

Risk-Terrain Features: We leveraged the risk-terrain modeling frame-
work [10], as well as domain experts, to develop a collection of spatial features
such as population density, mean household income, and housing density at the
census tract level. We used the location of pawn shops, homeless shelters, liquor
stores, and retail outlets that sell liquor as the observed spatial-temporal vari-
ables (note that temporal variation is introduced, for example, as new shops
open or close down).

Spatial Crime Correlation: One of the most widely cited features of crime is
its spatial correlation (also referred to as repeat victimization [11]), a phenom-
enon commonly captured in hot-spotting or spatial crime clustering techniques.
We capture spatial correlation as follows. For each discrete grid cell in the space
we first consider the number of crime incidents over the past two days, past
week, and past month, as model features, capturing repeat victimization within
the same area. In addition, we capture the same features of past crime incidents
for neighboring grid cells, capturing spatial correlation.

Spatial Effects of Police Presence: Aside from the temporal effect of police
on crime (reducing its frequency at a particular grid cell), there is also a spa-
tial effect. Specifically, in many cases criminals may simply commit crime else-
where [8]. To capture this effect, we assume that the spillover of crime will occur
between relatively nearby grid cells. Consequently, we add features which mea-
sure the number of police patrol units over the previous two hours in grid cells
that are not immediately adjacent, but are several grid cells apart. In effect,
for a grid cell, we hypothesize that cells that are very close push crime away or
reduce it, whereas farther away grids spatially shift crime to the concerned grid,
causing spillover effects. The list of all the variables is summarized in Table 1.



152 A. Mukhopadhyay et al.

5 Results

5.1 Experiment Setup

We used python and R to learn the model parameters, with rpy2 acting
as the interface between the two. We make direct comparison of our model
to the discrete-time non-parametric Dynamic Bayes Network model [22,23] and
the DSDA continuous-time model [9]. We used CPLEX version 12.51 to solve
the optimization problem described in Sect. 2. The experiments were run on a
2.4 GHz hyperthreaded 8-core Ubuntu Linux machine with 16 GB RAM.

5.2 Evaluation of Crime Prediction

Our first step is to evaluate the ability of our proposed continuous-time model
based on survival analysis to forecast crime. Our parametric model is simpler (in
most cases, significantly) than state-of-the-art alternatives, and can be learned
using standard maximum likelihood methods for learning survival models. More-
over, it is nearly homogeneous: only two distinct such models are learned, one
for low-crime regions, and another for high-crime regions. This offers a signif-
icant advantage both in interpretability of the model itself, as well as ease of
use. Moreover, because our model incorporates environmental factors, such as
locations of pawn shops and liquor stores, it can be naturally adapted to situ-
ations in which these change (for example, pawn shops closing down), enabling
use in policy decisions besides police patrolling. On the other hand, one may
expect that such a model would result in significant degradation in prediction
efficacy compared to models which allow low-resolution spatial heterogeneity. As
we show below, remarkably, our model actually outperforms alternatives both in
terms of prediction efficacy, and, rather dramatically, in terms of running time.

For this evaluation, we divided our data into 3 overlapping datasets, each of
7 months. For each dataset, we used 6 months of data as our training set and
1 month’s data as the test set. For spatial discretization, we use square grids of
sides 1 mile throughout, creating a total of 900 grids for the entire area under
consideration. While our model is continuous-time, we draw a comparison to
both a continuous-time and a discrete-time models in prior art. However, since
these are not directly comparable, we deal with each separately, starting with the
continuous-time DSDA model. We refer to the DSDA model simply as DSDA,
the model based on a Dynamic Bayes Network is termed DBN, and our model
is referred to as PSM (parametric survival model).

Prediction Effectiveness Comparison with DSDA. Our first experiments
involve a direct performance comparison to a state-of-the-art DSDA model due
to Ihava et al. [9]. We chose this model for two reasons. First, DSDA provides
a platform to make a direct comparison to a continuous time model. Second, it
uses time series modeling and CrimeStat, both widely used tools in temporal
and spatial crime analysis.
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We introduce the underlying concept of the model before comparing our
results. DSDA segregates temporal and spatial aspects of crime prediction and
learns them separately. In the temporal model, days like Christmas, Halloween,
and football match days that are expected to show deviation from the usual crime
trend are modeled using hierarchical profiling (HPA) by using the complement
of the gamma function:

y = ap − bpt
cp−1e−dpt

where y is observed count, t is time and ap, bp, cp and dp are the parameters to
be estimated using ordinary least squares (OLS).

All other days are initially assumed to be part of a usual average weekly
crime rate, which is modeled using the following harmonic function

y = aa − bat + cat2 +
26∑

i=1

[

da cos
(

iπt

26

)

+ ea sin
(

iπt

26

)]

where ya is the weekly crime average, t is time and aa, ba, ca, da and ea are the
parameters that are estimated using OLS. Then, the deviations are calculated
from the observed data and these are again modeled using the harmonic func-
tion. This forms the deterministic part of the model f(t). The error Z from
the observed data is modeled using seasonal ARIMA, and the final model is
y = f(t) + Z. The spatial component of DSDA was evaluated using STAC [9],
which is now a part of CrimeStat [15].

In order to make a comparative analysis, we considered a natural adaptation
of the HPA-STAC model, which enables us to compare likelihoods. We use the
outputs (counts of crime) from the HPA model as a mean of a Poisson random
variable, and sample the number of crimes from this distribution for each day. For
the spatial model, HPA-STAC outputs weighted clusters in the form of standard
deviation ellipses, a technique used commonly in crime prediction. Here, we
consider that:

P (xi) = P (c(xi))P (xc(xi)
i )

where P (xi) is the likelihood of a crime happening at a spatial point xi which
belongs to cluster ci, P (c(xi)) is the probability of choosing the cluster to which
point xi belongs from the set of all clusters and P (xc(xi)

i ) is the probability of
choosing point xi from its cluster ci. We assume that P (xci

i ) ∝ 1
Areac(xi)

. Finally,
we assume that the total likelihood is proportional to the product of the spatial
and temporal likelihoods.

Figure 2 shows the comparison of DSDA log-likelihood (on test data) for
the three datasets described above. Indeed, our model outperforms DSDA in
both the temporal and the spatial predictions by a large margin (overall, the
improvement in log-likelihood is 25–30 %).

Prediction Effectiveness Comparison with the Dynamic Bayes-
Network Model. Next, we compare our model to the framework proposed by
Zhang et al. [23], which looks at crime prediction by learning a non-parametric
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Fig. 2. Likelihood comparison of PSM vs. DSDA.

Dynamic Bayes Network (DBN) representation, and applying abstraction tech-
niques to improve scalability [22]. The DBN includes three sets of state vari-
ables: numbers of police vehicles in each grid i at time t, denoted by Dit,
the number of criminals in grid i at time t, Xit, and the number of crimes
Yit in each grid i at time t. The main assumptions of this DBN are that (a)
police vehicle dynamics are known (so they are not random variables), (b) loca-
tions of criminals at time t + 1 only depends on patrol and criminal (but not
crime) locations at time t, and (c) crime incidents at time t only depend on
locations of criminals and police at time t. Consequently, the problem involves
learning two sets of transition models: P (Xi,t+1|D1,t, ...,DN,t,X1,t, ...,XN,t) and
P (Yi,t|D1,t, ...,DN,t,X1,t, ...,XN,t) for all grid cells i, which are assumed to be
independent of time t. Since the model involves hidden variables X, Zhang et
al. learn it using the Expectation-Maximization framework. While the model is
quite general, Zhang et al. treat X, Y , and D as binary.

Since our proposed model is continuous-time, whereas Zhang et al. model
is in discrete-time, we transform our model forecasts into a single probability
of at least one crime event occurring in the corresponding interval. Specifically,
we break time into 8-hour intervals (same temporal discretization as used by
Zhang et al.), and derive the conditional likelihood of observed crime as follows.
Given our distribution f(t|w) over inter-arrival times of crimes, and a given time
interval [t1, t2], we calculate the probability of observing a crime in the interval
as F (t ≤ t2|w) − F (t ≤ t1|w), where F represents the corresponding cumulative
distribution function (cdf).

To draw the most fair comparison to DBN, we use an evaluation metric
proposed by Zhang et al. [22] which is referred to as accuracy. Accuracy is
calculated as a measure of correct predictions made for each grid and each time-
step. For example, if the model predicts a probability of crime as 60% for a
target, and the target experiences a crime, then the accuracy is incremented
by 0.6. Formally, let pi be the predicted likelihood of observing a crime count
for data point i. Then accuracy is defined as 1

m

∑
i pi, where i ranges over the

discrete-time sequence of crime counts across time and grids and m the total
number of such time-grid items.
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Fig. 3. Accuracy comparison between PSM and Abstract DBN. (a) Varying data sub-
sets. (b) Varying the number of grids.

Figure 3(a) shows the results of accuracy comparison (with the accuracy mea-
sure defined above) between the DBN model and our model (PSM). We can
observe that both models perform extremely well on the accuracy measure, with
our model very slightly outperforming DBN. We also make comparisons by vary-
ing the number of grids, shown in Fig. 3(b), starting around downtown Nashville
and gradually moving outwards. Our model outperforms DBN in all but one
case, in which the accuracies are almost identical.

Runtime Comparison with DSDA and DBN. We already saw that our
PSM model, despite its marked simplicity, outperforms two state-of-the-art fore-
casting models, representing continuous-time and discrete-time prediction meth-
ods, in terms of prediction efficacy. An arguably more important technical advan-
tage of PSM over these is running time. Figure 4 shows running times (of train-
ing) for PSM, DSDA, and DBN (using the abstraction scheme proposed by
Zhang et al. [22]). The DBN framework is significantly slower than both DSDA
and PSM. Indeed, PSM running time is so small by comparison to both DSDA
and DBN that it is nearly invisible on this plot.

Fig. 4. Runtime comparison (seconds) between DSDA, Abstract DBN, and PSM.
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5.3 Effectiveness of the Response Time Optimization Method

Next, we evaluate the performance of our proposed framework combining iter-
ative stochastic programming with sample average approximation. To do this,
we randomly select timezones of 4 h each from our dataset and sample 100 sets
of crimes for each. In practice, although the number of police vehicles is signifi-
cantly higher than the number of crimes in a 4-hour zone, all police vehicles are
not available for responding to a specific type of crimes, due to assigned tasks.
We consider a maximum of a single police vehicle per grid and we consider that
only a fraction (1/6th) of the them are available to respond to burglaries. In
order to simulate the actual crime response by the police department (in order
to evaluate actual spatial allocation policy of police vehicles within our data),
we greedily assign the closest police vehicle to a crime in consideration.

Our first evaluation uses our crime prediction model f to simulate crime
incidents in simulation, which we use to both within the IBRO algorithm, as
well as to evaluate (by using a distinct set of samples) the policy produced
by our algorithm in comparison with three alternatives: a baseline stochastic
programming method (using Bender’s decomposition) which ignores the fact
that distribution of crimes depends on the police allocation (STOCH-PRO), (b)
actual police location in the data (Actual), and (c) randomly assigning police
vehicles to grids (Random). Figure 5(a) demonstrates that IBRO systematically
outperforms these alternatives, usually by a significant margin.

Fig. 5. Response times (lower is better): (a) using simulated crimes, (b) observed
crimes.

Our next experiment evaluates performance of IBRO in comparison to others
with respect to actual crime incident data. Note that this is inherently disad-
vantageous to IBRO in the sense that actual data is not adaptive to the police
location as accounted for by IBRO. Nevertheless, Fig. 5(b) shows that IBRO
typically yields better police patrol location policies than either actual (in the
data) or random.
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6 Conclusion

We develop a novel bi-level optimization method for allocating police patrols in
order to minimize expected crime incident response time. Our approach makes
use of stochastic programming, with a Bender’s decomposition and constraint
generation framework offering a scalable solution approach. Moreover, we intro-
duce a novel iterative stochastic programming algorithm which allows us to
account for the dependence of the spatio-temporal crime incidence distribution
on police location. To evaluate this optimization framework, we presented a
novel discrete-space continuous-time model for forecasting crime as a function of
a collection of co-variates which include vehicular police deployment. Our model,
which makes use of survival analysis, allows for spatial as well as temporal crime
correlation, and effectively captures the effect of police presence both temporally
and spatially. This model is learned from burglary incident data in a major US
metropolitan area. Our experiments demonstrate that this model outperforms
state of the art continuous- and discrete-time crime prediction models both in
terms of prediction effectiveness and running time.
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Abstract. In the last decade, the power grid has increasingly relied on
the communication infrastructure for the management and control of
grid operations. In a previous work, we proposed an analytical model for
identifying and hardening the most critical communication equipment
used in the power system. Using non-cooperative game theory, we mod-
eled the interactions between an attacker and a defender and derived
the minimum defense resources required and the optimal strategy of the
defender that minimizes the risk on the power system. In this paper, we
aim at validating the model using data derived from real-world existing
systems. In particular, we propose a methodology to assess the values of
the parameters used in the analytical model to evaluate the impact of
equipment failures in the power system and attacks in the communica-
tion infrastructure. Using this methodology, we then validate our model
via a case study based on the polish electric power transmission system.

Keywords: Cyber-physical system · Non-cooperative game theory ·
SCADA security

1 Introduction

The power grid stands as one of the most important critical infrastructures on
which depends an array of services. It uses a Supervisory Control and Data
Acquisition (SCADA) system to monitor and control electric equipment. Tradi-
tionally, the reliability of the power grid and the security of the ICT infrastruc-
ture are assessed independently using different methodologies, for instance [1]
and [2] respectively for electric and ICT infrastructures. More recently, a grow-
ing body of research has been dedicated to the modeling of interdependencies
in critical infrastructures, focusing in particular on communication and elec-
tric systems. For example, Laprie et al. [3] proposed a qualitative model to
address cascading, escalating, and common cause failures due to interdependen-
cies between these infrastructures. In the case of quantitative models, we can
c© Springer International Publishing AG 2016
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distinguish two main categories: analytical-based and simulation-based models.
In the first category of models, we find the work of Buldyrev et al. [4] in which
a theoretical framework was developed to study the process of cascading fail-
ures in interdependent networks caused by random initial failures of nodes. In
simulation-based models, the main techniques used include agent-based [5], petri
nets [6] and co-simulation [7].

In complex interdependent systems, the interactions between the attacker
and the defender play an important role in defining the optimal defense strat-
egy. In this context, game theory offers a mathematical framework to study
interactions between different players with the same or conflicting interests. For
example, Law et al. [8] investigate false data injection attacks on the power grid
and formulate the problem as a stochastic security game between an attacker and
a defender. Amin et al. [9] present a framework to assess risks to cyber-physical
systems when interdependencies between information and physical systems may
result in correlated failures.

In [10], we proposed an analytical model based on game theory for optimizing
the distribution of defense resources on communication equipment taking into
account the interdependencies between electric and communication infrastruc-
tures. Due to the abstract nature of such analytical models, assessing their
relevance in real-world scenarios is a challenging task. In this paper, we pro-
pose a methodology for assessing the values of the parameters in the analytical
model related to the electric and communication infrastructures, and validate
our approach on a case study based on the polish electric transmission sys-
tem. Throughout the paper, the communication system refers to the telecom-
munication infrastructure responsible of controlling and monitoring the electrical
system.

The paper is organized as follows. In Sect. 2, we present a slight adaptation
of the analytical model presented in [10]. In Sect. 3, we propose an approach to
evaluate the values of a number of parameters used in the analytical model. In
Sect. 4, we validate our model via a case study based on the polish electric power
transmission system. Finally, we conclude the paper in Sect. 5.

2 A Game Theoretical Model for Security Risk
Management of Interdependent ICT and Electric
Systems

In this section, we briefly recall our analytical model for identifying critical
communication equipment used to control the power grid that must be hardened.
The proofs are omitted, and we refer the reader to [10] for complete details.

2.1 Interdependency Model

We refer by initial risk, the risk on a node before the impact of an accident or
an attack propagates between system nodes. We will denote by rei (0) and rcj(0)
the initial risk on electrical node i and communication equipment j respectively.
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We assume that initial risk on a system node is a nonnegative real number and
has been evaluated using risk assessment methods.

We use the framework proposed in [11] as a basis to represent the risk
dependencies using a graph-theoretic approach. We model the interdependency
between the electrical and the communication infrastructures as a weighted
directed interdependency graph D = (V, E, f ), where V = {v1, v2, ..., vN} is a
finite set of vertices representing the set of electrical and communication nodes,
E is a particular subset of V 2 and referred to as the edges of D, and f : E → R

+

is a function where f(eij) refers to the weight associated with the edge eij .
Let V = {T e, T c} where T e = {v1, v2, ..., vNe

} represents the set of electri-
cal nodes in the grid and T c = {vNe+1, vNe+2, ..., vNe+Nc

} represents the set of
communication nodes. Let D be represented by the weighted adjacency matrix
M = [mij ]N×N defined as follows:

M =
(

B D
F S

)

where B = [bij ]Ne×Ne
, D = [dij ]Ne×Nc

, F = [fij ]Nc×Ne
, and S = [sij ]Nc×Nc

.
Matrix M represents the effects of nodes on each other and is a block matrix
composed of matrices B, D, F and S. Elements of these matrices are nonnegative
real numbers. Without loss of generality, we assume that these matrices are
left stochastic matrices. Therefore, for each node k, we evaluate the weight of
other nodes to impact node k. For example, matrices B and S represent the
dependency between electrical nodes and communication nodes respectively.

2.2 Risk Diffusion and Equilibrium

We consider that the first cascading effects of an attack on communication equip-
ment take place in the communication infrastructure itself. We introduce a metric
tc in the communication system that refers to the average time for the impact
of an attack on communication equipment to propagate in the communication
infrastructure. In this model, as opposed to our model in [10], we do not con-
sider the average time te in the electrical system that refers to the average time
elapsed between the failure of a set of electric equipment and the response time
of safety measures or operators manual intervention to contain the failures and
prevent them from propagating to the entire grid.

Let Re(t) = [rei (t)]Ne×1 and Rc(t) = [rci (t)]Nc×1 be the electrical and com-
munication nodes risk vectors at time t respectively. We take discrete time steps
to describe the evolution of the system. Let Sl = [slij ]Nc×Nc

be the l-th power of
the matrix S. At attack step r, the payoff is decreased by a factor of γr

c . In fact,
we consider that each action of the attacker in the system increases the proba-
bility of him being detected. Let the matrix Smax = [smax

ij ]Nc×Nc
represents the

maximum impact of an attack on communication equipment to reach commu-
nication nodes during time tc, where smax

ij = max
l=1,...,�tc�

γl
cs

l
ij . Let Smax

n be the

normalized matrices of Smax with respect to their rows s.t. ∀j,
∑

i

smax
n ij = 1.
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We take a similar approach to [11] by balancing the immediate risk and the
future induced one. Let β and τ refer to the weight of the initial risk on commu-
nication nodes and the weight of the diffused risk from electric nodes to commu-
nication nodes at time t = 0 respectively, and δ the weight of future cascading
risk w.r.t. the value of the total risk on communication nodes. We can prove that
the iterative system of the cascading risk converges and an equilibrium solution
exists whenever δ < 1 and is given by Rc∗ = (I − δH)−1(βRc(0) + τDTRe(0)),
where H = Smax

n FBD, and β, τ , and δ are nonnegative real numbers and
β + τ + δ = 1.

2.3 Security Game

We formulate the problem as a non-cooperative game and analyze the behavior
of the attacker and the defender at the Nash equilibrium (NE), in which none
of the players has an incentive to deviate unilaterally. The attacker’s/defender’s
objective is to distribute attack/defense resources on the communication nodes
in order to maximize/minimize the impact of attacks on the power system. We
consider the worst-case scenario where both players have complete knowledge of
the architecture of the system.

We associate for each communication equipment, a load li that represents the
amount of computational work the equipment performs. Let L = diag(li)Nc×Nc

be the load matrix. Let W = [wij ]Nc×Nc
be the redundancy matrix where ∀i,

wii = −1 and
∑

j,j �=i

wij ≤ 1. If i �= j, wij represents the fraction of the load of

node i, node j will be responsible of processing when node i is compromised.
The utility Ua and Ud of the attacker and the defender respectively are as

follows:

Ua(p, q) = pRc∗
D (eT − qT ) − pRc

D(0)CapT − ψpL(WqT − I(eT − 2qT ))

Ud(p, q) = −pRc∗
D (eT − qT ) − qRc

D(0)CdqT + ψpL(WqT − I(eT − 2qT ))

where p = [pi]1×Nc
refers to the attacker’s strategy where 0 ≤ pi ≤ 1 is the

attack resource allocated to target i ∈ T c, q = [qj ]1×Nc
refers to the defender’s

strategy where 0 ≤ qj ≤ 1 is the defense resource allocated to target j ∈ T c,
Rc

D(0), Rc∗
D , Ca and Cd are diagonal matrices and Ca and Cd refer to the cost

of attacking and defending communication nodes respectively, I is the identity
matrix, and e = (1, ..., 1)1×Nc

.
The players’ utilities are composed of three parts: the payoff of an attack, the

cost of attacking/defending, and the impact of redundant equipment in ensuring
the control of the power system when a set of communication nodes is compro-
mised. ψ ∈ [0, 1] is a function of the probability that backup equipment are able
to take charge of the load of compromised communication equipment.

We analyze the interactions between the attacker and the defender as a one-
shot game [12] in which players take their decisions at the same time.
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Theorem 1. A unique NE of the one-shot game exists and is given by:

q∗ =
1
2
e(Rc∗

D + ψL)(Rc
D(0)Ca)−1M [

1
2
MT (Rc

D(0)Ca)−1M + 2Rc
D(0)Cd]−1

p∗ = e(Rc∗
D + ψL)[

1
2
M(Rc

D(0)Cd)−1MT + 2Rc
D(0)Ca]−1

where M = Rc∗
D + ψL(W + 2I)

We also analyze the interactions between players as a Stackelberg game [12].
In our case, the defender is the leader who tries to secure communication equip-
ment in order to best protect the power system. We have the following theorem:

Theorem 2. The game admits a unique Stackelberg equilibrium (pS , qS) given
by:

qS = e(Rc∗
D + ψL)(Rc

D(0)Ca)−1M(Q + 2Rc
D(0)Cd)−1

pS =
1
2
e(Rc∗

D + ψL)(Rc
D(0)Ca)−1[I − M(Q + 2Rc

D(0)Cd)−1MT (Rc
D(0)Ca)−1]

where Q = MT (Rc
D(0)Ca)−1M

3 Parameters Evaluation

In this section, we present our approach to assess the impact of attacks in the
electric and communication infrastructures, and therefore evaluate matrices B
and S respectively. While the problem of the assessment of the other parameters
of the model remains, we discuss at the end of this section potential avenues for
their evaluation.

3.1 Evaluation of Matrix B

We assess the impact of cascading failures in the power grid by solving power
flow equations using the DC power flow approximation [13]. Following a similar
approach as in [14], we simulate individual failures and assess their impact on
the power grid such as identifying generators with insufficient capacities to meet
the demand and overloaded lines.

In our model, we analyze the impact of tripping transmission lines or loosing
generators on the power grid. The flowchart diagram in Fig. 1 shows the cascad-
ing algorithm used in our model to analyze the impact of tripping transmission
lines. In general, this could have a significant impact on the power grid and
could lead to the formation of islands in the electric system. In our algorithm,
we shut down islands where the demand (denoted as d in Fig. 1) exceeds the
maximum generation capacity in the island (denoted as max(g) in Fig. 1). We
then solve the DC power flow problem in the electric transmission system using
MATPOWER [15] and check the existence of overloaded lines. These lines are
tripped and the process is repeated until a balanced solution emerges. Similarly,
we assess the impact of loosing generators on the power grid.
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Fig. 1. Flowchart of the cascade algorithm in the case of tripped transmission lines

In our approach, we consider the worst-case scenario where load shedding is
not an option when we conduct our analysis of the impact of cascading failures
on the power grid. Further work taking into account more fine grained analysis
of the behavior of the power grid will allow us to quantify more precisely the
values of elements of matrix B.

3.2 Evaluation of Matrix S

To address the challenge of evaluating the impact of cyber attacks on the commu-
nication infrastructure, attack graphs [16] are a promising solution to generate
all possible attack steps to compromise a target node. These graphs could be
used in conjunction with risk assessment methods to evaluate the impact of each
attacker action on the communication infrastructure.

Let G = (X , E) be an attack graph where X refers to the set of nodes in the
graph and E refers to the set of edges. In our case, a node x ∈ X in the graph
refers to a state of the attacker in the system, and an edge e = (xi, xj) ∈ E refers
to an action executed by the attacker after which the state of the attacker in the
system transits from xi to xj . A state of the attacker refers to his knowledge at
a particular time of the topology and the configuration of the system, the set of
access levels acquired on equipment, and the set of credentials at his disposal.
G represents all attack paths that can be used by the attacker to compromise a
set of equipment or services in the system. In [17], we defined such graph and
implemented a proof of concept for constructing it.

Let θrlm be the number of paths of length r an attacker can use to com-
promise communication equipment m from communication equipment l. Let
Θlm =

∑

r
γr
c θ

r
lm refer to the impact metric of a communication equipment l on a

communication node m. Θlm is a measure of the cumulated impact on commu-
nication equipment m of an attack originating from equipment l. We consider
that each action of the attacker in the system increases the probability of him
being detected. Therefore, at attack step r, the payoff is decreased by a factor
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of γr
c representing the uncertainty for the attacker of getting the payoff of the

rth future attack step. In this case, slm =
Θlm

∑

i

Θim
, where S = [slm]Nc×Nc

.

3.3 Other Parameters

In our case study, we rely on experts’ knowledge to evaluate matrices D and
F , which represent the dependency relation on communication nodes by electric
nodes and vice versa respectively. However, at the end of the case study in the
next section, we conduct a sensitivity analysis to evaluate errors in the outputs
of our model to estimation errors on the values of the elements of matrix F .

In our model, we introduced parameters β and τ , which represent the weight
of the initial risk on communication nodes and the weight of the diffused risk from
electric equipment to communication equipment at time t = 0 respectively, and δ
which reflects the weight of future cascading risk w.r.t. the value of the total risk
on communication equipment. These parameters can be evaluated as a result of
the application of a risk assessment method coupled with quantitative metrics
derived from the attack graph of the communication infrastructure. In fact,
depending on the assessment of the efficiency of deployed defense mechanisms in
thwarting threats, the value of β and τ w.r.t. δ can be adjusted. In particular,
by analyzing the attack graph, we can evaluate the probability of compromising
critical communication equipment given existing defense measures in the system.

4 Case Study

In this section, we validate our model on a case study based on the dataset of
the polish electric transmission system at a peak load in the summer of 2004
provided in the MATPOWER computational package [15]. The dataset consists
of 420 generators and 3504 transmission lines. The analysis of an electric system
at a peak load is important, as it allows us to assess the maximum impact on
the power grid as a result of a cyber attack.

4.1 System Architecture

We made a number of assumptions on the architecture of the communication
infrastructure that we use in our case study to assess the impact of attacks
on the power grid. In addition, to simplify our analysis, we combined a set of
communication equipment in a single communication node depending on their
functions, thus reducing the number of nodes to be represented in each electric
transmission system control center. Let Y represent the polish electric transmis-
sion system. We assume that Y is controlled by 10 TSO (Transmission System
Operator) control centers. Each center controls 42 generators and about 350
transmission lines in a specific area of the power grid. We assume that commu-
nication equipment in control centers are vulnerable to attacks, and the attacker
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has enough resources and both players know the architecture of the system. As
we study the impact of attacks on the power grid in the worst-case scenario, this
assumption holds. A unique TSO ICT control center is introduced to manage
all communication equipment in TSO control centers.

TSO ICT Control Center. In the TSO ICT control center, four types of com-
munication equipment are represented. A Time Server synchronizes the clocks in
all communication equipment. A Domain and Directory Service manages access
controls on communication equipment. The Remote Access Application is used
by ICT administrators to access equipment remotely via secured connections.
Finally, the Configuration Management System is responsible of pushing OS
and software updates to equipment. Updates can be installed automatically or
require specific authorizations on equipment performing critical operations.

TSO Area Control Centers. We represent four types of communication equip-
ment in each TSO area control center: a SCADA HMI, a SCADA server, a
SCADA frontend and a SCADA historian. The SCADA HMI is a human-machine
interface that provides a graphics-based visualization of the controlled area of
the power system. The SCADA server is responsible of processing data collected
from sensors in the power grid and sending appropriate control commands back
to electric nodes. The SCADA frontend is an interface between the SCADA
server and electric nodes control equipment. It formats data in order to be sent
through communication channels and to be interpreted when received by con-
trol equipment and vice versa. Finally, the SCADA historian is a database that
records power state events.

Impact Matrix. We use the algorithm presented in the previous section to
assess the impact of stopping generators or tripping transmission lines on the
electric transmission system and compute matrix B. We rely on experts’ knowl-
edge to evaluate matrices F and D. In the communication infrastructure, we
consider that each equipment in a TSO control center is also the backup of an
equipment in another TSO control center.

In this case study, we assume that the values of the initial risk on communi-
cation equipment have been computed, and for each communication equipment,
the cost to defend is always greater than the cost to attack. We fix β = 0.4, τ = 0,
δ = 0.6, and ψ = 0.5. Therefore, the future cascading risk has more weight than
initial risk w.r.t. the value of the total risk on communication equipment.

4.2 Results

Figure 2 shows the value of risk on communication equipment in each TSO area
control center after the impact of attacks propagates in the interdependent com-
munication and electric infrastructures. We can notice that the highest risk val-
ues in TSO control centers are on SCADA servers. In particular, risk values on
SCADA servers in TSO 1 and TSO 2 control centers are significantly higher
than risk values on SCADA servers in the other TSO control centers.
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Fig. 2. Risk on communication equipment in TSO area control centers

Table 1 presents the results of the one-shot and Stackelberg games between
the attacker and the defender for the TSO ICT and TSO area 1 and area 2
control centers.

Table 1. Nash Equilibrium

rc∗
i One-Shot game Stackelberg game

p∗ q∗ pS qS

T
S
O

IC
T Time Server 2.547 0.287 0.972 0.146 0.986

Domain Server 2.885 0.183 0.972 0.093 0.986

Remote App. 2.089 0.202 0.966 0.103 0.9823

Config. Manag. 3.073 0.21 0.985 0.106 0.992

T
S
O

1

SCADA Fontend 0.226 0.275 0.537 0.15 0.591

SCADA Server 0.844 0.295 0.688 0.156 0.744

SCADA Historian 0.266 0.315 0.515 0.177 0.584

SCADA HMI 0.305 0.329 0.51 0.187 0.586

T
S
O

2

SCADA Fontend 0.339 0.302 0.648 0.162 0.697

SCADA Server 1.888 0.213 0.895 0.108 0.909

SCADA Historian 0.379 0.344 0.618 0.189 0.684

SCADA HMI 0.451 0.358 0.631 0.197 0.7

One-Shot game. From Fig. 2 and Table 1, we notice that the Time, Configu-
ration and Domain Servers have the highest risk values. These equipment are
often connected to the internet which significantly increases their attack surface.
In addition, given their functions, compromising these equipment could lead to
important disruptions in the communication infrastructure. As a result, at equi-
librium, the defender allocates a large amount of defense resources to protect
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these equipment. However, this does not prevent the attacker from allocating
attack resources on these equipment considering their potential impact on the
power grid in the case of a successful attack.

The utilities of the attacker and the defender in the one-shot game are Ua =
0.941 and Ud = −6.151 respectively. In our case study, we noticed that in the case
where the values of risk on equipment in two different TSO control centers are
similar, the attacker/defender allocate more resources to attack/defend backup
equipment. Therefore, by attacking backup equipment, the attacker improves
the efficiency of his attacks and increases the probability of succeeding in his
attempts to disrupt the power system. On the other hand, the defender responds
by allocating more defense resources to protect backup equipment.

Stackelberg game. The utilities of the attacker and the defender in the Stack-
elberg game are US

a = 0.307 and US
d = −5.746 respectively. Compared to the

one-shot game, the defender allocates more defense resources on each commu-
nication equipment, which forces the attacker to reduce his attack resources
on these equipment. In fact, an additional security investment by the defender
by 2.908 reduced the attacker’s allocated resources by 6.082. As a result, from
the point of view of the defender, the benefits of operating at the Stackelberg
equilibrium outweigh the additional cost of increasing security investments on
communication equipment.

Impact of redundancies. Figure 3 shows the variation of total attack and
defense resources w.r.t. the weight of the existence of redundancies in players’
utility functions ψ. We notice that ψ has a negative effect on the total amount of
resources allocated by the attacker. This is consistent with the fact that increas-
ing the weight of redundancies in player’s utilities leaves the attacker with fewer
choices to achieve a better payoff since the defender will increase the protection of
backup equipment. In addition, we notice that when the value of ψ increases, the
difference between the one-shot and Stackelberg games total defense resources
allocation decreases.

Figure 4 shows the variation of the attacker and the defender strategies on
two communication equipment in TSO area 2 control center w.r.t. variation of
elements of the redundancy matrix W . We analyze the behavior of the attacker
and the defender when varying elements wij , the fraction of the load of node i,
node j will be responsible of processing when node i is compromised. We notice
that the behavior of the attacker and the defender depends on the type of the
communication equipment. For example, the behavior of both players does not
change significantly with respect to W for critical equipment such as the SCADA
server. However, this behavior is different for the other equipment in TSO area
2 control center. Finally, increasing wij leads both the attacker and the defender
to decrease their attack and defense resources on communication equipment.

Sensitivity Analysis. We conducted a sensitivity analysis of the diffused risk
Rc∗, the NE in the one-shot game, and the Stackelberg equilibrium w.r.t. the
values of the initial risk Rc(0) and the elements of matrices S and F . We averaged
the results of 10000 iterations. At each iteration, we assume that a random
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Fig. 4. Variation of attack and defense resources on TSO 2 w.r.t. redundancy matrix W

number of elements of Rc(0) deviate from their correct values by ±10% (sign of
the deviation is chosen randomly). We repeat the experiment taking into account
errors in a random number of elements in matrices S and F .

Sensitivity to Rc(0). The maximum error on the values of Rc∗ was around
4%. The attacker strategy seems more sensitive than the defender strategy with
respect to errors in Rc(0) at equilibrium. In the one-shot game, the maximum
error on the attacker strategy was about 4.1% whereas the error on the defender
strategy was about 2.1%. However, in the Stackelberg game, we noticed that the
maximum error on the attacker strategy has increased compared to the one-shot
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game and was about 5.1%. In the case of the defender, the maximum error has
decreased and was about 1.2%.

Sensitivity to matrices S and F. The maximum error on the values of Rc∗

was around 3.4%. We do not note a significant change in the maximum errors on
the attacker and defender strategies in the case of the one-shot game compared
to the Stackelberg game. The maximum error on the attacker and defender
strategies was about 2.1% and 1.3% respectively.

5 Conclusion

In [10], we presented a quantitative model, based on game-theoretic analysis,
to assess the risk associated with the interdependency between the cyber and
physical components in the power grid. In this paper, we proposed a method
to evaluate the values of parameters used in our model to assess the impact
of equipment failures in the power system and attacks in the communication
infrastructure. We rely on experts’ knowledge to assess all the other parameters
of our model. However, the structure of player’s utility functions, taking into
account the existence of backups in the communication system, allows us to
characterize analytically players’ strategies at the NE. Therefore, we are able to
evaluate potential changes in the behavior of players to estimation errors on the
values of a set of model parameters. We validated our model via a case study
based on the polish electric transmission system.
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Abstract. We propose a model, based on the work of Brock and
Durlauf, which looks at how agents make choices between competing
technologies, as a framework for exploring aspects of the economics of
the adoption of privacy-enhancing technologies. In order to formulate a
model of decision-making among choices of technologies by these agents,
we consider the following: context, the setting in which and the pur-
pose for which a given technology is used; requirement, the level of pri-
vacy that the technology must provide for an agent to be willing to use
the technology in a given context; belief, an agent’s perception of the
level of privacy provided by a given technology in a given context; and
the relative value of privacy, how much an agent cares about privacy in
this context and how willing an agent is to trade off privacy for other
attributes. We introduce these concepts into the model, admitting het-
erogeneity among agents in order to capture variations in requirement,
belief, and relative value in the population. We illustrate the model with
two examples: the possible effects on the adoption of iOS devices being
caused by the recent Apple–FBI case; and the recent revelations about
the non-deletion of images on the adoption of Snapchat.

1 Introduction

Recent high-profile events—such Snowden’s revelations about surveillance and
the dispute between Apple and the FBI—have demonstrated the increasing sig-
nificance of privacy concerns for individuals, organizations, and governments. As
privacy-enhancing technologies become more widely available, and are increas-
ingly incorporated into consumer products such as messaging apps, it is interest-
ing and important to understand the factors affecting the adoption by consumers
of different technologies. In this paper, we propose a model of how agents make
choices between competing technologies, as a framework for exploring aspects of
the economics of the adoption of privacy-enhancing technologies.

Acquisti et al. [3] deliver an excellent up-to-date survey of the economics of
privacy. They provide for historical evolution of the economic theory of privacy
from its early beginnings—starting with Posner [15,16] and Stigler [19], arguing

c© Springer International Publishing AG 2016
Q. Zhu et al. (Eds.): GameSec 2016, LNCS 9996, pp. 175–194, 2016.
DOI: 10.1007/978-3-319-47413-7 11



176 T. Caulfield et al.

in favour of limiting privacy in the name of market efficiency—to the coun-
terexamples where improved privacy (i.e., restrictions on the access to private
information) may be welfare improving. According to Acquisti et al. [3]:

‘Privacy is, after all, a process of negotiation between public and private,
a modulation of what a person wants to protect and what she wants to
share at any given moment and in any given context.’

Other work has considered the role of privacy in technology adoption (for
example, [17]) or considered economic factors affecting privacy [20] or privacy-
enhancing technology adoption [1,2].

We introduce a characterization of privacy based on four key factors: context,
the setting in which, and the purpose for which, a given technology is used;
requirement, the level of privacy that the technology must provide for an agent
to be willing to use the technology in a given context; belief, an agent’s perception
of the level of privacy provided by a given technology in a given context; and the
relative value of privacy, how much an agent cares about privacy in this context
and how willing an agent is to trade off privacy for other attributes.

We introduce these concepts into the proposed model, admitting hetero-
geneity among agents in order to capture variations in requirement, belief, and
relative value in the population.

In categorizing the agents’ different attitudes to privacy we adopt the useful
classification of Harris and Westin [9,14], who divide the agents into three groups
based upon their own perceptions of the value of their own privacy:

The Fundamentalist. Fundamentalists are generally distrustful of orga-
nizations that ask for their personal information, worried about the accu-
racy of computerized information and additional uses made of it, and are
in favour of new laws and regulatory actions to spell out privacy rights
and provide enforceable remedies. They generally choose privacy controls
over consumer-service benefits when these compete with each other. About
25 % of the public are privacy Fundamentalists.

The Pragmatist. Pragmatists weigh the benefits to themes of vari-
ous consumer opportunities and services, protections of public safety or
enforcement of personal morality against the degree of intrusiveness of per-
sonal information sought and the increase in government power involved.
They look to see what practical procedures for accuracy, challenge and cor-
rection of errors the business organization or government agency follows
when consumer or citizen evaluations are involved.
They believe that business organizations or government should “earn” the
public’s trust rather than assume automatically that they have it. And,
where consumer matters are involved, they want the opportunity to decide
whether to opt out of even non-evaluative uses of their personal informa-
tion as in compilations of mailing lists. About 57 % of the public fall into
this category.
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The Unconcerned. The Unconcerned are generally trustful of organi-
zations collecting their personal information, comfortable with existing
organizational procedures and uses are ready to forego privacy claims to
secure consumer-service benefits or public-order values and not in favour
of the enactment of new privacy laws or regulations. About 18 % of public
fall into this category.

Sharing personal information may be perceived as risky or costly— facili-
tating identity theft, inviting unwanted attention by individuals or institutions,
and possibly introducing limited participation in certain activities (e.g., exclu-
sion from health insurance). Such negative impacts are known and the degree
of aversion to the loss of privacy will differ between individuals depending upon
their preferences and context.

The model—taking into account the privacy characteristics of competing
technologies and the preferences of agents—indicates the expected levels of adop-
tion of the competing technologies in different contexts. For example, sending
different types of content with different levels of sensitivity over a service, such as
Snapchat. By varying the parameters of the model—reflecting the characteris-
tics of the technologies and the attitudes of the decision-making consumers—we
explore how these factors influence the adoption of the different technologies.

In Sect. 2, we introduce the basic Brock-Durlauf model upon which our
work is based. We also explain briefly our extension, from previous work [7],
of this model to encompass multiple attributes. In Sect. 3, we present our main
theoretical contribution. Using our analysis of the key characteristics of pri-
vacy, together with Westin’s characterization of attitudes towards privacy, we
adapt our extended Brock-Durlauf set-up to model the adoption of privacy-
enhancing technologies. In Sect. 4, we discuss two examples. First, the recent
dispute between between Apple and the FBI [4] and, second, Snapchat, explor-
ing the effects of the population’s changing beliefs about and requirements for
privacy. Finally, in Sect. 5, we summarize our analysis.

2 Background: The Brock–Durlauf Model

Brock and Durlauf model a market where various technologies compete for adop-
tion by a number of agents. The agents choose which technology to adopt based
on the technologies’ relative profitabilties as well as the strength of the technolo-
gies’ social externalities; that is, how much the value of a technology increases
as the number of other agents choosing it increases. This last feature makes
the model particularly useful for looking at communication technologies—which
form a large part of PETS—because the value of a technology increases with the
number of people you can communicate with using it. The model can also look
at exongenously-imposed policy, in the form of incentives or taxation, as well as
increasing profitabilities through technological progress.
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2.1 The Basic Brock–Durlauf Model

The basic model consists of M different technologies competing in a market for
adoption by N agents. The utility for an agent of a technology γ in time period
t is given by

uγ,t = λγ + ργxγ,t (1)

where λγ is the profitability of the technology, xγ,t is the fraction of agents using
technology γ at time t, and ργ > 0 gives the strength of the social externalities.
A low value of ργ means the utility of the technology will not increase much
as adoption rises; a high value means that the social component, ργxγ,t, can
influence the utility of the technology significantly.

In the model, each agent i experiences their own utility from their choice,
ũγ,i,t = uγ,t + εγ,i,t, plus noise, where the noise term εγ,i,t represents a ran-
dom private component of utility and is independent and identically distributed
across agents and known to the agent when it makes its decision. If the noise
follows a double exponential distribution, then, as the number of agents tends to
infinity, the probability that an agent will adopt technology γ at time t—which
is equivalent to that technology’s share of the market—converges to

xγ,t =
eβuγ,t−1

∑M
j=1 eβuj,t−1

. (2)

See [7] for more explanation of this equation.
The parameter β is inversely proportional to the variance of the noise, ε, and

characterises the degree to which choices made by the agents are determined by
the deterministic components of utility. As β → 0, choices are totally random
and each technology will tend towards an equal share of the market; as β → ∞,
choices have no random component and the agents will all choose to adopt the
technology providing the highest utility.

In Brock and Durlauf [5,6], the agents make decisions based on their expec-
tations of the decisions of others in the same time period. The model can then be
used to find the adoption equilibria. In contrast, we wish to look at the dynam-
ics of adoption over time. Instead of using agents’ expectations about others’
decisions in the same time period, agents use information about the levels of
adoption in the previous time period, as shown by the use of uc,t−1 in Eq. 2.

The original definition of utility for a technology, in Eq. 1, can be expanded
to include a component determined by a policy-maker. This can represent, for
example, some form of taxation or incentive designed to increase the adoption
of a particular technology.

uγ,t = λγ + ργxγ,t − τγ(x1,t, . . . , xM,t) (3)

This policy component takes the form of a function, τγ(x1,t, . . . , xM,t), for
each different technology γ and gives the level of incentive or taxation based on
the adoption shares of all the technologies in the market. This means that, for
example, a policy-maker could apply an incentive to a technology that decreases
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as it becomes more widely adopted. Policies that tax one technology and use the
benefits to promote another can be modelled by using opposite-signed functions
on the two technologies.

Switching costs can also be added to the model by introducing asynchronous
updating. That is, a portion α of the agents do not switch technologies in each
time period, simulating the retarding effect switching costs have on the speed
with which new technologies are adopted:

xγ,t = αxγ,t−1 + (1 − α)
eβuγ,t−1

∑M
j=1 eβuj,t−1

. (4)

Equilibria. The model allows for equilibria; that is, where the share of adoption
in one time period is the same as the previous time period. For low values of ρ,
there will only be one equilibrium point. For higher values, it is possible to have
multiple equilibria. In general, the model will, over time, approach one of the
equilibrium points.

Except in the case where β = ∞, a technology will never have all of the
share of the market or become extinct: some (possibly very small) portion of the
population will continue to choose it.

2.2 Extension to Multiple Attributes

In [7], we looked at how the Brock–Durlauf model could be applied to the adop-
tion of encryption technologies. A key point from this work is that representing
technologies with a single attribute, profitability, is not suitable for creating use-
ful models about encryption adoption. Instead, it is necessary to use multiple
attributes which better represent the technologies and the way decisions to use
them are made. Multi-attribute utility theory is explained in [13] and applied to
security in [11].

This is achieved by adapting the model to use a set of attributes, A. Now,
the utility for each technology (Eq. 1) becomes

uγ,t =
∑

a∈A

vγ,a + ργxγ,t, (5)

where vγ,a is the value of attribute a for technology γ.
Similarly, including policy, Eq. 3 becomes

uγ,t =
∑

a∈A

vγ,a + ργxγ,t − τγ(x1,t, . . . , xM,t). (6)

The attributes used depend on the technologies being modelled and the pur-
pose for which the models are intended. In [7], we used three attributes: monetary
cost, functionality, and usability.
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3 Modelling Privacy

The basic approach of the model as described in Sect. 2 is not adequate for
modelling the adoption of privacy-enhancing technologies. The model must be
extended to capture the characteristics of privacy. This represents a significant
enrichment of the model to capture a more complex collection of interacting
factors, including heterogeneity of agents.

In this section, we first discuss these characteristics; then, we describe how
the model is extended to include them. Finally, we discuss the effects of different
choices of parameters.

3.1 The Characteristics of Privacy

We consider a society of decision-making entities who wish to protect the privacy
of certain information that they own in a range of contexts in which they interact
with the providers of goods and services. These interactions are typically enabled
by technologies with differing privacy-protecting characteristics.

Some transactions are more sensitive than others for some individuals. For
example, some individuals will choose to use online banking services, in which
private information is potentially exposed to the public internet, and some will
prefer to perform their financial transactions in person at a branch of their bank,
where the immediate exposure is limited to the specific bank employees involved.

We can deconstruct this situation in different ways. It may be the user of
online banking simply does not place a high value on their privacy or it may be
that they do place a high value on their privacy, but also believe that the bank’s
systems provide adequate protection for their judgement of value of their privacy.
Similarly, the in-branch user may believe that the online privacy protections do
not provide adequate protection for their judgement of the value of their privacy.

This set-up illustrates two characteristics that we need to incorporate into
our model: first, that agents have a judgement of the value of their privacy; and,
second, that they have beliefs about the ability of a given technology to protect
their privacy given their judgement of its value.

These two examples illustrate the use of particular technologies to access
services in specific contexts. In general, services, such as banking, will accessed
in different contexts. For example, the user of online banking may be willing use
the service from a personal computer at home, but not from a shared public
computer: their belief about the level of protection is dependent on the context.

So, in order to formulate a model of decision-making among choices of tech-
nologies by these agents, we must consider what are the relevant characteristics
of privacy in this context.

– Context : the setting in which and the purpose for which a given technology is
used.

– Requirement : the level of privacy that the technology must provide for an
agent to be willing to use the technology in a given context.
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– Belief : an agent’s perception of the level of privacy provided by a given tech-
nology in a given context.

– Relative value of privacy : how much an agent cares about privacy in this
context and how willing an agent is to trade off privacy for other attributes

Attitudes to privacy have been classified into three groups—fundamentalist,
pragmatist, and unconcerned—by Westin [9,21]. The final characteristic above,
the relative value of privacy, includes the idea of a trade-off between privacy
and other attribrutes. The Westin groups provide a convenient way in which to
organize agents into groups with simliar trade-off preferences. The examples in
Sect. 4 illustrate this organization.

3.2 An Adoption Model Using the Privacy Characteristics

We can capture these characteristics of privacy in the model by making some
changes to its structure.

First, we can capture context by increasing the granularity of the model—
instead of looking at technologies’ share of the market, we can look at how
adoption is shared between technologies’ use in different contexts. Each technol-
ogy is divided into multiple technology–context components, and the model now
looks at how agents choose between these.

We introduce a set of all of these components, C, with subsets Cγ containing
all of the components for technology γ. Now, we define uc,t to be the utility
of component c, rather than a technology. Similarly, xc,t is now the share of a
component, not a technology, at time t.

The total share of a technology γ is now given by the sum of its components:

xγ,t =
∑

c∈Cγ

xc,t. (7)

As an example, consider a cloud storage technology, where users can keep
backups of their files. This could be divided into three different contexts based
on its use for different purposes: storing photos, storing documents, and using
it to do both of these. Each context offers different advantages (and so has
different values for its attributes), and for each context agents may have different
requirements for privacy. One agent might feel that photos require more privacy
their than documents do, whereas another might feel the opposite.

In the model up to this point, agents have been homogenous in terms of the
utility they receive from a technology, with the only difference coming from εc,i,t,
the private utility they receive from the noise. Modelling privacy requires hetero-
geneity: each agent has different preferences towards privacy, different require-
ments, and a different willingness to trade privacy for other attributes.

We add this to the model by giving each agent i a value bc,i ∈ [0, 1] for
their belief about how well a component preserves or provides privacy, a value
rc,i ∈ [0, 1] for the agent’s required level of privacy for a component, and a
value wc,i > 0 as a weight indicating the relative importance of privacy (in a
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component) to other attributes in the model. The utility function used in the
model then becomes

uc,i,t = πg(i)(bc,i, rc,i, wc,i) +
∑

a∈A

vc,a + ρcxc,t − τc(x1,t, . . . , xM,t). (8)

where g(i) gives the group an agent belongs to and πg(i)(bc,i, rc,i, wc,i) is a trade-
off function that specifies how the utility an agent recieves from privacy changes
for varying levels or belief, requirement, and value of privacy—essentially, how
willing they are to trade privacy for other attributes.

Introducing the idea of a group here provides a convenient way of represent-
ing different attitudes towards security, and allows us to capture ideas such as
Westin’s [9,21] groups. In theory, each agent could belong to its own group, each
with a different trade-off function, but it would be immensely difficult to get
the data required to fit a function to each participant in a study, for example.
Agents in a group share the same trade-off function, meaning that they respond
to different values of belief and requirements about privacy in the same way.

In this paper, we divide the population of agents into three groups, based
on Westin’s classifications of attitudes about privacy. Each group has a differ-
ent trade-off function, which are shown in Fig. 1. For those unconcerned about
privacy, there is little difference between components that meet requirements
and those that do not. For pragmatists, any component that satisfies require-
ments receives the full utility value, with a linear trade-off for those that do
not. For fundamentalists, there is very steep decline in utility value—quickly
going negative—for components for which beliefs about privacy do not meet
requirments. The trade-off functions are

πfund(bc,i, rc,i, wc,i) = wc,i
0.5 + tanh(10(bc,i − rc,i + 0.1))

1.5
(9)

πprag(bc,i, rc,i, wc,i) =

{
wc,i bc,i − rc,i > 0
wc,i(bc,i − rc,i + 1) bc,i − rc,i ≤ 0

(10)

πunco(bc,i, rc,i, wc,i) = 0.1wc,i(bc,i − rc,i) + 0.9. (11)

We can update Eq. 3 to account for the heterogeniety by summing over the
population of agents. Now, the share of each technology–context component is
given by

xc,t =
1
N

N∑

i=1

eβuc,i,t−1

∑C
j=1 eβuj,i,t−1

. (12)

Each agent here has an equal weight (1/N) and represents an equal share of
the population, but this could easily be changed so that agents have different
weights, making them representative of different proportions of the population.
This might be useful, for example, when polling a population, where some agents’
characteristics have a greater likelihood.
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Fig. 1. Trade-off functions for each of the Westin groups. The figure shows the utility
received from privacy given the difference in beliefs and requirements when privacy
value is 1.

3.3 Parameters

Sample size. In the examples below, we approximate the distribution of pref-
erences about privacy, including requirements, beliefs, and values by using beta
distributions to represent the distribution of values in the population. We then
sample from these distributions to create a collection of agents with heterogenous
properties.

As the sampling is random, the points chosen can influence the behaviour of
the model. We ran 100 trials for each of a number of different sample sizes in
order to observe the magnitude of this influence. Figure 2 shows the mean and
±2σ values for each of the sample sizes.

As expected, the variance of the low sample sizes is higher than for the larger
sample sizes. For 100 samples, the 5 %–95 % range is 0.03491; for 5000 it is 0.0053,
and for 10000 samples it is 0.0030. We use 10000 samples in all examples below.

The β parameter. The parameter β is inversely related to the variance of
the noise εγ,i,t, which is a private component of the utility an agent gets for a
particular choice of technology γ. As the variance of the noise grows—so, as β
grows smaller—the less the other, deterministic components of utility matter.
Conversely, as β grows larger and the variance of the noise decreases, agents
increasingly make their choice based on the deterministic parts of the utility
function.

Figure 3 shows the adoption over time for a technology for different values of
β. The technology shown is slightly more profitable than the competing technol-
ogy, but all other values are the same. For low β, the more profitable technology
shares the market with its competitor evenly. As β grows, more agents adopt
the more profitable technology.

In the examples below, we use a value β = 3.0.

Social effects. The parameter ρc controls the strength of social effects for a
component. Figure 4 shows the effect of different values of ρ on the adoption
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Fig. 2. Demonstration of the effect of sample size. The figure shows the mean and ±2σ
for samples sizes of 100, 500, 1000, 2500, 5000, and 10000.

curve (plotting xt against xt+1) of a technology. Both technologies use the same
parameter values (including ρ), except for profitability, which is slightly higher
for the technology shown.

As the value of ρ grows, the utility of a technology increases with increased
adoption. High values of ρ amplify increases in utility from adoption.

Also shown in the figure is a diagonal line where xt = xt+1, meaning that
the system is in equilibrium. For the lower values of ρ the adoption curves only
have one equilibrium, meaning that adoption will approach this point over time.
When ρ = 1, there are three equilibria: two stable points, low and high, and
a third, unstable point near x = 0.4. If the initial state is below the unstable
equilibrium, adoption will move towards the lower equilibrium; if it is higher
than the unstable equilibrium, adoption will move towards to the higher stable
equilibrium.

4 Examples

We discuss in detail two examples. First, we consider the recent dispute been
Apple and the FBI [4], with the purpose of demonstrating how beliefs and
requirements about privacy influence adoption. Second, we consider Snapchat
(www.snapchat.com, accessed 03/03/2016), a picture-messaging app which
promised that images were available only for brief periods time, but for which
it transpired that images were in fact retained [18]. We use this example to
demonstrate the role of context in privacy decision-making regarding the use of
the technology.

www.snapchat.com
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Fig. 3. Demonstration of the effect of
parameter β. With a high β, the adop-
tion of the more profitable technology
is greater.
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parameter ρ.

Both of these examples are intended to be illustrative of the theoretical
model. It would of course be valuable to condition the examples on empirical
data. However, such data collection and analysis, requiring substantial dedicate
effort, is beyond our current scope. The paper by Brock and Durlauf [6] shows
how the basic model can be fitted by maximum likelihood estimation; in princi-
ple, our extensions can be given a similar analysis.

Building on our discussion in Sect. 3, we remark that the example discussed
there—namely access to banking services—would also provide an examples of
the issues discussed in this section.

The model is implemented using the julia language [12].

4.1 Apple v FBI

In California, there is an ongoing case between Apple and the FBI, where the
FBI is investigating the San Bernardino killings and wishes to access one of the
killer’s locked and encrypted iPhones. The FBI is seeking a court order, under
the All Writs Act, to compel Apple to assist in unlocking the device, possibly
by creating and signing a custom firmware image that would allow the FBI to
brute-force the password easily. Apple has argued against the FBI and the case
has generated a great amount of media coverage.

For this example, we are interested in the effects this media coverage. Apple
has publicly stated during the course of the case that it believes firmly in the
privacy of its customers; this can be viewed as a strong signal about the level
of privacy provided by Apple products and agents may update their beliefs in
response, resulting in a change of technology choice. We will use the model to
explore how adoption changes in response to shifting beliefs about the privacy
a technology provides, shifting requirements, and shifts in both of these simul-
taneously.
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Set-up. In this example, we look at two technologies competing against each
other, without considering any distinct contexts. The first technology is Apple’s
iPhone, and we look at its adoption when competing against Android phones.

For simplicity, we do not consider any attributes other than cost in this
example; we assume that usability and functionality are essentially equivalent
between the devices. Cost, on the other hand, differs: Apple devices tend to me
more expensive than the bulk of android phones. Accordingly, we use a value of
1.1 for Apple and 1.5 for Android.

The value of ρ indicates how much the utility agents gain from adopting a
technology increases as more agents begin to use it. In the case of mobile phones,
they are largely interoperable with each other, and many of the applications
written for them are present on both Apple and Android devices, suggesting
that the value of ρ should be low. However, there are functions on the phone,
such as Apple’s iMessage, which increase in utility as more people use them,
meaning that there is some social effect present. For this example, then, we use
a value of ρ = 0.5 for both technologies.

We need to make some assumptions about the distributions of values, beliefs,
and requirements of security in the population. First, Fig. 5 shows the distribu-
tions we are using for the value of privacy. There is a seperate distribution for
each of the three Westin categories. We assume that fundamentalists are more
likely to place a higher value on privacy than the pragmatic and the uncon-
cerned. Similarly, we assume that it is more likely that the pragmatic have a
higher value of privacy than the unconcerned. For this example, we say that
privacy fundamentalists form 25 % of the population, pragmatists 55 %, and the
unconcerned the remaining 20 %.

Next, Fig. 6 shows the distributions from which requirements about privacy
are drawn. Again, we assume that fundamentalists are likely to have higher
requirements than the pragmatic, and the pragmatic are likley to have higher
requirements than the unconcerned.

Finally, we look at the distributions from which we sample values for belief
about the privacy provided by the different technologies. These distributions of
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belief are shared by the entire population and are not segmented into Westin
groups. Figure 7 shows the distributions; agents are more likely to believe that
an Apple phone provides a greater level of privacy compared to Android than
vice versa.

Changing Beliefs. Now, we will examine what are the likely effects on adoption
of a shift in beliefs about the privacy provided by Apple phones. As stated above,
the shift is a hypothetical one caused by the media attention around the Apple
v FBI case and Apple’s public stance on privacy. As such, we will look at how
adoption changes for different magnitudes in shifts in belief to understand the
range of possible effects.

We model the shifts in beliefs by changing the distribution of beliefs in the
population and randomly sampling again. We look at four different distributions
of beliefs about the privacy of Apple phones; we do not alter the distribution
for Android phones. The different distributions are show in Fig. 8, labeled 1–4,
each with increasing probability of a higher belief about privacy. The first is the
same distribution shown in Fig. 7.

Table 1. Equilibrium Apple share values for shifts in belief.

Shift Equilibrium

1 (orig.) 0.1402

2 0.1585

3 0.1667

4 0.1806

The resulting adoption curves are shown in Fig. 9. The shifts in belief about
the privacy provided by Apple phones result in increased adoption. Table 1 shows
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Fig. 9. Adoption curves for the different levels of belief.

Table 2. Equilibrium Apple share values for shifts in requirement.

Shift Equilibrium

1 (orig.) 0.1417

2 0.1429

3 0.1451

4 0.1429

the equilibrium values for the four shifts. The base case, 1, shows Apple with a
14 % share of the market—intentionally close to the actual share in 2015 [10].

With each shift, the share of the market grows, showing that agents receive
greater utility from technology that better meets their requirements and thus
switch.
Changing Requirements. Next, we consider what happens if the media cov-
erage increases agents’ awareness of the need for privacy, resulting in a shift in
requirements. As we are using different distributions of requirements for each
of the Westin categories, we need to shift all three distributions to model the
change in requirements. These are shown in Fig. 10. In each case, the distrib-
utions shift to the right, making higher values for the requirement for privacy
more likely.

The adoption curves for the shifts in requirement are shown in Fig. 11. Unlike
the shifts in beliefs, the shifts in requirements do not result in increased adoption.
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levels of belief and requirements.
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Fig. 13. Adoption over time for dif-
ferent contexts. The revelation about
Snapchat’s non-deletion of messages
occurs after time t = 5.

Table 3. Equilibrium Apple share values for shifts in belief and requirement.

Shift Equilibrium

1 (orig.) 0.1400

2 0.1634

3 0.1840

4 0.2011

As Table 2 shows, there is a fractional increase, indicating that some agents are
switching technologies, but this could also be explained by sampling variance.

This behaviour is expected, when considering the way the model is con-
structed. The previous shift in belief change the value for just Apple technology,
increasing its utility. This shift in requirements changes the requirements for
both Apple and Android, meaning that any relative changes will be smaller.
Agents of the pragmatic or unconcerned types will not experience a large rela-
tive change in utility when requirements shift—any increase for Apple is likely to
be too small to overcome the utility derived from cost. The only fundamentalist
agents that would change technologies are those for whom both technologies met
their requirements before the shift and only Apple after the shift.
Changing Beliefs and Requirements. Here, we look at what happens if there
are shifts in both belief and requirement simultaneously. We use the same shifts
as previously shown in Figs. 8 and 10.

Figure 12 shows the adoption curves when both belief and requirements are
shifted. The equilibrium values are shown in Table 3. The increase in adoption
here is greater than in the shift of beliefs or requirements alone. The combination
of shifting both beliefs and requirements results in a relative increase in utility
for Apple.
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4.2 Snapchat

In this example, we explore the use of contexts and how privacy affects in which
contexts agents choose to use technology by looking at the ephemeral picture
messaging application Snapchat. This is a widely used application that gives its
users the ability to control how long the messages they send can be seen by the
recipients, after which the messages are deleted. However, the messages are not
deleted securely, and can still be recovered after they have disappeared from the
application.

Set-up. Roesner et al. [18] survey users of Snapchat, asking which types of con-
tent users send and how they feel about privacy. They give the breakdown of
the study participants into Westin groups (39.4 % fundamentalist, 45.7 % prag-
matist, 12.6 % unconcerned) and report how many users primarily send sexual
content (1.6 %) and how many have sent sexual content (14.2 %).

We use these values directly in this example. We model three different con-
texts: sending only explicit content, sending only non-sensitive content, and using
the technology for both. We say that Snapchat is competing against another sim-
ilar application (which has the same contexts), but Snapchat initially has the
majority share of adoption, around 90 %.

We assume that the values of usability and cost are the same for both tech-
nologies, but there is a difference in the utility received from functionality. For
Snapchat, we assign using it for only explicit content the value 0.9; for mixed
explicit and non-sensitive use 1.5, and for non-sensitive use only 1.54. For the
competing technology, in the same order, we use the values 0.8, 1.2, and 1.44.
These values were chosen so that the model roughly matches the values reported
in Roesner et al. [18]. The values for the explicit-only and mixed-content use
contexts are less than the non-sensitive context. This is because—even though
an agent using the technology for both types of content technically has greater
functionality—the proportion of agents who actually generate explicit content is
very small and the attribute values reflect the utility received by the population
of agents.

Since we are looking at messaging applications, the value of social effects is
very high: the utility of such an application increases with the number of people
you can contact using it. As such, we use a value of ρ = 1.

The distributions used for beliefs, requirements, and values are the same
initially for the two technologies. Fundamentalists are likely to have very high
requirements and to place a high value on privacy for the explicit and mixed-
content messaging contexts, and higher-than-average requirements for non-
sensitive messaging. The unconcerned have the lowest requirements and values,
and the pragmatists are in between the two other groups.

Change in beliefs. We model the revelation that Snapchat messages are not
securely deleted and can be recovered as a shock which causes a downward shift
in belief about the privacy provided by Snapchat. Beliefs about the competing
product do not change.
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Figure 13 shows the share of adoption of the various components of Snapchat
and its competitor over time, as well as the total market share for Snapchat. The
shock occurs after time t = 5.

Table 4. Adoption of different components before and after Snapchat’s non-deletion
of messages is revealed.

Before After

Snapchat explicit 0.014 0.011

Snapchat mixed 0.119 0.094

Snapchat non-sensitive 0.742 0.764

Comp. explicit 0.014 0.028

Comp. mixed 0.038 0.032

Comp. non-sensitive 0.074 0.071

Total snapchat 0.874 0.869

The initial values, before the shock, are close to the values reported in Roesner
[18]. Out of Snapchat’s share—not the total share—1.5 % use it for explicit
messages only, compared to 1.6 % in Roesner, and 13.2 % use it for mixed content,
compared to 14.2 %.

Table 4 shows the values of adoption for the different components before and
after the shock. The use of Snapchat for explicit messaging decreases from 1.4 %
to 1.1 %. Similarly, the use of Snapchat for mixed explicit and non-sensitive
messaging declines from 11.9 % to 9.4 %. The use of Snapchat in a non-sensitive
context actually increases, from 74.2 % to 76.4 %, showing that agents who have
a high level of privacy requirement in the explicit or mixed-conent messaging
contexts no longer use the technology in those contexts when they believe that
their privacy requirements are no longer being met.

Snapchat’s total share declines post-shock from 87.4 % to 86.9 %. The agents
that switched technologies to the competitor did so for explicit messaging, which
grew from 1.4 % to 2.8 %. The beliefs about the security of the competing product
did not change, so agents wishing to use the technology for explicit content were
willing to swtich to a product with less functionality that met their privacy
requirements.

5 Conclusions

We have discussed the characteristics of privacy from the point of view the
economic agent:

– Context : the setting in which and the purpose for which a given technology is
used;
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– Requirement : the level of privacy that the technology must provide for an
agent to be willing to use the technology in a given context;

– Belief : an agent’s perception of the level of privacy provided by a given tech-
nology in a given context;

– Relative value of privacy : how much an agent cares about privacy in this
context and how willing an agent is to trade off privacy for other attributes.

We have incorporated these characteristics into a model of technology adoption
by a society of heterogenous decision-making agents.

Our analysis is based on Harris and Westin’s classification of agents as Fun-
damentalist, Pragmatist, and Unconcerned. For each of these groups, we have
assigned a function that determines the utility an agent derives from a tech-
nology, depending upon the agent’s beliefs about how effectively the technology
meets their requirements for protecting their privacy.

We have presented two main examples. First, to demonstrate the effects of
changing beliefs and requirements, we have considered the signal of concern for
privacy suggested by ongoing Apple v FBI dispute. Second, we have demon-
strated the model’s use to capture context by considering the change in types
of messages that are prevalent on Snapchat before and after a change in beliefs
about the level of privacy provided.

The literature on economic modelling of privacy and its role in technology
adoption is quite limited, with [8] and the references therein providing a good
guide. We believe the present paper represents a useful contribution in that we
identify key characteristics, create a model that is capable of capturing them,
and explore, with examples, their significance.

The model we have presented here allows preferred attributes for particular
agents to be specified. Future work might employ empirical studies of the prefer-
ences, beliefs, and requirements of actual agents and incorporate this data into
the model. Similarly, the trade-off functions used for the Westin groups might
be derived from empirical studies.

The model as presented includes a policy component that is not exploited
in this paper. Further work might explore the role of policy in the adoption of
privacy-enhancing technologies.
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Abstract. One of the particularly daunting issues in the cybersecurity
domain is information leakage of business or consumer data, which is
often triggered by multi-stage attacks and advanced persistent threats.
While the technical community is working on improved system designs
to prevent and mitigate such attacks, a significant residual risk remains
that attacks succeed and may not even be detected, i.e., they are stealthy.

Our objective is to inform security policy design for the mitigation of
stealthy information leakage attacks. Such a policy mechanism advises
system owners on the optimal timing to reset defense mechanisms, e.g.,
changing cryptographic keys or passwords, reinstalling systems, installing
new patches, or reassigning security staff.

We follow a game-theoretic approach and propose a model titled Fli-
pLeakage. In our proposed model, an attacker will incrementally and
stealthily take ownership of a resource (e.g., similar to advanced persis-
tent threats). While her final objective is a complete compromise of the
system, she may derive some utility during the preliminary phases of the
attack. The defender can take a costly recovery move and has to decide
on its optimal timing.

Our focus is on the scenario when the defender can only partially elim-
inate the foothold of the attacker in the system. Further, the defender
cannot undo any information leakage that has already taken place dur-
ing an attack. We derive optimal strategies for the agents in FlipLeakage
and present numerical analyses and graphical visualizations.

1 Introduction

Security compromises which cause information leakage of business or consumer
data are a particularly challenging problem in the cybersecurity domain. Affected
businesses frequently struggle to recover once the consequences of a breach
become apparent such as a competitor outpacing them in a race for the next inno-
vation, or data troves appearing on cybercriminal marketplaces and eventually
impacting consumer confidence. For example, data about small and medium-
sized businesses suggests that approximately 60 % fail within six months after a
data breach [3].
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Businesses struggle for multiple reasons to prevent information leakage. In
particular, the increasing prevalence of well-motivated, technically capable, and
well-funded attackers who are able to execute sophisticated multi-stage attacks
and advanced persistent threats (APT) poses significant challenges to prevent
information leakage. Such attacks may take time to execute, but they will even-
tually succeed with high likelihood. In a recent talk, the Chief of Tailored Access
Operations, National Security Agency, characterized the mindset of these attack-
ers in the following way: “We are going to be persistent. We are going to keep
coming, and coming, and coming [12].”

Further, carefully orchestrated attacks as employed during corporate, cyber-
criminal or nation-state sponsored cyber-espionage and sabotage (see Stuxnet
[4]) change our understanding of the likelihood to reliably detect stealthy attacks
before it is too late. Estimates for how long attacks remain undetected are dire.
For example, a recent presentation by the CEO of Microsoft suggested that the
time until detection of a successful attack is on average over 200 days [21].

All of these observations emphasize the need to reason about the suitable
response to stealthy attacks which cause continued information leakage. We know
that perfect security is too costly; and even air-gaped systems are vulnerable to
insider risks or creative technical approaches. Another mitigation approach is to
limit the impact of attacks by resetting system resources to a presumed safe state
to lower the chances of a perpetual undetected leak. However, in most scenarios
such actions will be costly. For example, they may impact productivity due to
system downtime or the need to reissue cryptographic keys, passwords or other
security credentials. As such, determining the best schedule to reset defense
mechanisms is an economic question which needs to account for monetary and
productivity costs, strategic and stealthy attacker behavior, and other important
facets of information leakage scenarios such as the effectiveness of the system
reset. To address this combination of factors, we propose a new game-theoretic
model called FlipLeakage.

In our proposed model, an attacker has to engage in a sustained attack effort
to compromise the security of a system. Our approach is consistent with two
scenarios. On the one hand, the attacker may conduct surveillance of the system
to collect information that will enable a security compromise, e.g., by pilfering
traffic for valuable information, or by gathering information about the system
setup. On the other hand, the attacker may incrementally take over parts of a
system, such as user accounts, parts of a cryptographic key, or collect business
secrets to enable further attack steps. In both scenarios, persistent activity and
the accumulated information will then enable the attacker to reach her objective
to compromise the system and to acquire the primary business secret; if the
defender does not interfere by returning the system to a presumed safe state.

In Fig. 1, we provide an initial abstract representation of the studied strategic
interaction between an attacker and a defender. The attacker initiates sustained
attack efforts at t1, t2, and t3 right after the defender’s moves, where each time
she also starts gaining information about the system. After accumulating suf-
ficient information about the system, the attacker will be able to compromise
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it. The attacker’s benefit until the security compromise is completed is repre-
sented as a triangle, which represents the value of the leaked information during
the attack execution. After the compromise, the attacker continues to receive
benefits from the compromised system which is represented as a rectangle.

The defender can take a recovery action (to reset the resource to a presumed
safe state) and can thereby stop the attack. In our model, we consider the sce-
nario when the defender only partially eliminates the foothold of the attacker
in the system. In Fig. 1 those defensive moves occur at t1, t2, and t3. Further,
the defender cannot undo any information leakage that has already taken place
during an attack.

In our model, we focus on periodic defensive moves for the defender. That
means the time between any two consecutive moves is assumed the same moti-
vated by practical observations for security policy updates of major software
vendors such as Microsoft and Oracle which we will discuss in detail in Sect. 3.
Within this context, we aim to determine the defender’s best periodic defen-
sive strategies when the moves of the attacker are unobservable to the defender,
i.e., the attacks succeed to be stealthy. At the same time, we assume that the
attacker can observe the defender’s moves. The latter assumption rests on two
observations. On the one hand, the attacker will be cut off from access to a par-
tially compromised system when a recovery move takes place. On the other hand,
many defensive moves may actually be practically observable for attackers, e.g.,
when a patch for a software system becomes available which makes a particular
attack strategy impractical. The scenario under investigation is a security game
of timing, e.g., we are studying when players should move to act optimally.

Attacker

Defender

t1 t2

t

t3

Fig. 1. FlipLeakage is a two-player game between an attacker and a defender competing
with each other to control a resource. t1, t2, and t3 represent the defender’s move times.
During the time when the attacker launches her attack, she incrementally benefits from
information leakage which is shown as red triangles. (Color figure online)

In the following, we provide a brief summary overview over our contributions.

• We develop a game-theoretic model titled FlipLeakage. In our model, an
attacker will incrementally take ownership of a resource (e.g., similar to
advanced persistent threats). While her final objective is a complete com-
promise of the system, she may derive some utility during the preliminary
phases of the attack. The defender can take a costly periodic mitigation move
and has to decide on its optimal periodic timing.
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• We consider the scenario when the defender only partially eliminates the
foothold of the attacker in the system. Further, the defender cannot undo
any information leakage that has already taken place during an attack.

• We derive optimal strategies for the agents in our model and present numerical
analyses and graphical visualizations. One of our findings corroborates an
intuition: the higher the defensive cost, the slower the defender’s periodic
move rhythm. Moreover, our numerical observations imply that the defender
moves faster when the attacker’s average time to totally compromise the
defender’s system is lower.

In the presence of stealthy attacks and information leakage, defenders have
to set a schedule for updating and resetting their defense mechanisms without
any feedback about the occurrence of attacks. This poses significant challenges
for the design of new methods to mitigate such attacks. The objective of our
theoretical model is to provide a systematic approach for the defender’s best
schedule to reset his system to a presumed safe state to lower the chances of a
perpetually undetected leak. As such, our work provides important steps towards
building a rigorous model for an optimal defender’s response to these unknowns.

Roadmap: The rest of our paper is organized as follows. We discuss related
work in Sect. 2. In Sect. 3, we develop the FlipLeakage model followed by payoff
calculations in Sect. 4. We analyze our proposed model in Sect. 5. In Sect. 6, we
present numerical examples. Finally, we conclude our paper in Sect. 7.

2 Related Work

Game theory is widely used in cybersecurity and privacy scenarios to study
interdependencies [7,10,13,27], and dynamic interactions between defenders and
attackers of varying complexity [5,17,19]. One recently emphasized aspect of
security games is the consideration of when to act to successfully mitigate
attacks. In particular, the issue of optimally timing defensive actions to success-
fully thwart stealthy attacks has attracted attention in the cybersecurity domain
with the introduction of the FlipIt game [2,29] which broadens the games of tim-
ing literature initiated in the cold-war era [1,28]. In what follows, we provide a
brief description of the FlipIt game as well as theoretical follow-up research.

FlipIt is a two-player game between a defender and an attacker competing
with each other to control a resource which generates a payoff to the owner of
the resource. Moves to take over the resource, i.e., flips, are costly [2,29]. In [29],
the authors studied the FlipIt game with different choices of strategy profiles
and aimed to calculate dominant strategies and Nash equilibria of the game in
different situations. Pham and Cid [26] extended the FlipIt game by considering
that players have the ability to check the state of the resource before their moves.

Feng et al. [6] and Hu et al. [9] modified the FlipIt game by considering
insiders in addition to external adversaries. Zhang et al. [31] studied the FlipIt
game with resource constraints on both players. Pawlick et al. extended the
FlipIt game with characteristics of signaling games [25]. Wellman and Prakash
developed a discrete-time model with multiple, ordered states in which attackers
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may compromise a server through cumulative acquisition of knowledge rather
than in a one-shot takeover [30].

The original FlipIt paper assumed that the players compete with each other
for one resource. Laszka et al. [14] addressed this limitation by modeling mul-
tiple contested resources in a game called FlipThem. Other authors extended
this game by considering a threshold for the number of contested resources
which need to be compromised to achieve the attacker’s objective [18]. In a
similar way, a variation of the game has been proposed with multiple defend-
ers [24]. Laszka et al. [15,16] studied timing issues when the attacker’s moves
are non-instantaneous. Moreover, they considered that the defender’s moves are
non-covert and the attacker’s type can be targeting and non-targeting. Johnson
et al. [11] investigate the role of time in dynamic environments where an adver-
sary discovers vulnerabilities based on an exogenous vulnerability discovery
process and each vulnerability has its corresponding survival time.

Complementing these theoretical analyses, Nochenson and Grossklags [22]
as well as Grossklags and Reitter [8] study human defensive players when they
interact with a computerized attacker in the FlipIt framework.

Our work differs from the previous FlipIt literature regarding two key con-
siderations. First, we take into account the problem of information leakage and
propose a more realistic game-theoretic framework for defender’s best time to
update his defense mechanism. We propose a model in which an attacker will
incrementally take ownership of a resource. Note that the attacker’s goal is to
compromise the defender’s system completely, but she may acquire already some
benefit during the initial steps of her attack. Second, we consider the possibility
of the defender’s defense strategy not being able to completely eliminate the
attacker’s foothold in the system. As a result, our work overcomes several signif-
icant simplifications in the previous literature which limited their applicability
to realistic defense scenarios.

3 Model Definition

In this section, we provide a description of the FlipLeakage model which is a
two-player game between a defender (D) and an attacker (A). We use the term
resource for the defended system, but also for the target of the attack which
will leak information during the attack and after the successful compromise. The
attack progresses in a stealthy fashion. However, the defender can regain partial
control over a compromised resource by taking a defensive recovery move (e.g.,
a variety of system updates).

In the FlipLeakage model, we emphasize the following aspects which we will
discuss below: (1) uncertainty about the time of compromising the defender’s
resource entirely, (2) process of information leakage, (3) quality of defen-
sive moves, (4) strategies of both players, and (5) other parameters which are
necessary for our model.

Uncertainty About Attack Launch and Success Timings: In FlipLeakage,
the defender is the owner of the resource at the beginning of the game. The
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resource is in a secure state, when it is completely controlled by the defender.
However, due to the stealthy nature of many practically deployed attacks, e.g.,
related to cyber-espionage and advanced persistent threats, it is reasonable to
assume that the defender cannot acquire any information about the time when
an attack is launched as well as its success [21].

In contrast, we assume that the attacker can observe the time of a defender’s
move. One motivating practical example for this consideration is that many
software companies publicly announce the arrival of new patches for previously
discovered vulnerabilities. Hence, an attacker could infer when a certain system
weakness is not available anymore. It follows that we model asymmetry with
respect to knowledge between the two players.

Furthermore, we differentiate between the time of launching an attack and
the time of an attack’s full effectiveness (i.e., the resource is completely compro-
mised). It is worth mentioning that the value of this time difference is not known
to both the defender and the attacker. Hence, this time difference is represented
by a random variable tA with probability density function fA(tA). The value
of tA depends on many factors such as the defender’s defense strategy and the
attacker’s ability to compromise the defender’s system.

The gap between these two factors can be interpreted as the attacker requir-
ing a nontrivial amount of time and effort to control the resource completely,
e.g., to gather leaked information from the resource and to conduct subsequent
attack steps. Further, the time of launching an attack can be understood as the
time that the attacker starts to gather information from the defender to execute
the attack successfully (e.g., by conducting surveillance of the system setup or
pilfering traffic to collect information that will enable a security compromise).
For simplicity, we assume that the value of tA is chosen according to a random
variable, but it is constant during each round of the attack. For future work, we
are going to consider the case where the values of tA are different for each round
of the attack. Note that we assume that other important parameters of the game
are common knowledge between the players. The extension of the framework to
uncertainty about game-relevant parameters is subject of future work

Process of Information Leakage: After initiation of the attack move, the
attacker’s reward until a complete compromise is accomplished is based on the
percentage of the whole resource which is currently controlled by the attacker.
For this purpose, we consider a function gA(t) (which is increasing on the range
[0, 1]). gA(t) can also be interpreted as the normalized amount of leaked informa-
tion accessible to the attacker over time which can be used by her to improve her
attack effectiveness. Recall that the time of completing an attack successfully is
represented by a random variable tA. It follows that the function gA(t) should
be dependent on tA. In doing so, we define a general function gA(t) reaching
to 1 (i.e., the amount at which the attacker would control the whole resource
completely) at one unit of time. We represent, as an example, a simple ver-
sion of this function in the left-hand side of Fig. 2. To represent the described
dependency, we use then the function gA (t/tA) for the reward calculation for
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1 1

t t 1

Fig. 2. The attacker’s reward function during the time of completing an attack suc-
cessfully depends on tA. To show this dependency in our model, we define a function
as shown on the left-hand side of this figure with one unit of time to reach 1. The figure
on the right-hand side is gA (t/tA) representing this dependence.

the attacker during the time of completing the attack successfully, i.e., as shown
on the right-hand side of Fig. 2.

Defense Quality: In FlipLeakge, we consider the quality of the defender’s
recovery action (or alternatively the ability of the attacker to transfer infor-
mation from a previous attack to the next attempt). That is, the defender’s
recovery action does not guarantee regaining complete control over the resource,
so that the attacker has an initial advantage (during the next attack attempt)
and retains a foothold in the system. In other words, the defender’s defense
strategy cannot entirely eliminate previous attacks’ effects. Motivating examples
for this imperfect recovery model are advanced persistent threats. These attacks
are typically driven by human staff who intelligently make use of any available
and gathered information during the next multi-stage attack step which may
include an initial compromise, foothold establishment, reconnaissance, etc. In
this scenario, any recovery move by the defender will frequently only partially
remove the attacker from the system, or at the very least cannot eliminate any
information advantage by the attacker. In the FlipLeakage game, we introduce
a new random variable, i.e., α with range [0, 1], to represent the fraction of
retained control over the previously compromised resource by the attacker after
the defender’s recovery move.

In the worst case, the defender’s recovery move does not impact the level of
the resource being controlled by the attacker (i.e., α = 1). In contrast, α = 0 rep-
resents the situation when the defender’s recovery is perfect. Then, the attacker
has to start with a zero level of knowledge during her next attack. We model α as
a continuous random variable with PDF fα(.) in which α chooses values between
zero and one, i.e., α ∈ [0, 1]. Note that in the FlipLeakage model, the attacker
never starts with a higher level than the level attained in the most recent com-
promise attempt, i.e., we assume that defense moves are not counterproductive.
For simplicity, we assume that the random variable α takes its value after the
first attack and it remains constant during the game. For future work, we will
consider the case where the values of α are completely independent from each
other in each step of the attack.

Players’ Strategies: In FlipLeakage, we assume that the defender moves
according to periodic strategies, i.e., the time interval between two consecutive
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moves is identical and denoted by δD. In what follows, we provide two examples
to show that in practice, several major software vendor organizations update
their security policies in a periodic manner to underline the practical relevance
of this assumption.

The first example that we take into account are Microsoft’s security policy
updates which are known as Patch Tuesday, i.e., according to [20], “Microsoft
security bulletins are released on the second Tuesday of each month.” We visu-
alize the time differences among security updates from March 14th, 2015, until
March 12th, 2016, which is shown in Fig. 3(a). In this figure, the vertical axis
represents the number of security updates for each update instance. On the hor-
izontal axis, 0 represents the first security update we take into account which
took place on March 14th, 2015. Based on this figure, Microsoft security policy
updates are almost perfectly periodic. We only observe two dates with out-of-
schedule security updates. These two security updates are corresponding to an
update for Internet Explorer and a vulnerability in a Microsoft font driver which
allowed remote code execution.

Another example are Oracle’s critical patch updates. These updates occur in
January, April, July, and October of each year. To visualize the time differences
between updates, which are shown in Fig. 3(b), we consider Oracle’s critical
patch updates from 13 July, 2013, to January 19, 2016, based on available infor-
mation at [23]. We calculate the time differences between two consecutive patch
updates in terms of days and divided this number by 30 in order to calculate
an approximate difference in months. In this figure, 1 along the vertical axis
represents the occurrence of a patch update. We observe that Oracle’s policy for
critical patch updates is almost periodic.1
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Fig. 3. In practice, many organizations update their system according to periodic
strategies. As examples, we provide two organizations: (1) Microsoft and (2) Oracle.

1 Note that in our model, we do not consider the case where a software vendor has the
ability to conduct out-of-schedule security updates. We are going to consider this
issue in future work.
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In the FlipLeakage model, we assume that the attacker moves right after the
defender. We follow with this assumption the results of [16] who showed that
in the scenario of a defender with a periodic strategy, the best strategy for the
attacker, who has the ability to observe the defender’s defense strategy, is to
move right after the defender.

Other Parameters: The cost of the defender’s recovery moves and the
attacker’s attack moves are represented by cD and cA, respectively, and we
assume that they do not change over time. Examples of the defender’s moves
are changes of passwords, reinstallations of systems, and the application of new
patches. Taking steps to incrementally infer cryptographic keys, brute-force pass-
words, or to inject malware are examples of the attacker’s moves.

Once the attacker controls the resource completely, she receives an immediate
reward which is represented by a constant value IA. The rationale behind the
introduction of this parameter is that once the attacker infers the defender’s
secret such as a cryptographic key, she can, for example, decrypt secret messages
which she has collected.

For the time that the attacker (defender) controls the resource completely, we
assume that the defender’s (attacker’s) reward is equal to zero and the attacker
(defender) receives BA (BD) per unit of time controlling the resource. For exam-
ple, these incremental earnings for the attacker represent newly arriving mes-
sages which can be decrypted with the compromised key. Note that the resource
is controlled by the attacker completely after a successful attack and before the
next recovery move by the defender.

4 Payoff Model

In this section, we develop the payoff functions for the FlipLeakage model based
on what we presented in Sect. 3.

The time required to execute an attack successfully is defined by a continuous
random variable with PDF fA. We consider one of the realizations of this random
variable as tA. Moreover, the time between two consecutive defender’s moves is
represented by δD. Based on the tA realization, we have two possible cases, i.e.,
tA ≥ δD and tA < δD. In what follows, we consider each of these two cases
separately and then combine them according to the probability of each case to
propose the payoff function.

Case 1: tA < δD
In this case, the attacker can complete her attack before the defender’s

recovery move. Hence, she receives the immediate reward for compromising the
resource completely, i.e., IA, as well as the reward for controlling the resource
completely, i.e., BA.

In our model, we assume that the attacker’s control over the resource does
not fall to zero right after the defender’s recovery move. As discussed in Sect. 3,
we have introduced a new parameter, α, and described the resulting changes
to players’ payoffs. For tA < δD, the attacker controls the resource completely
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before the next recovery move by the defender. Then, right after the defender’s
move, the attacker controls a fraction α of the resource. For the remainder of
the resource to be taken over, i.e., (1 − α), the attacker can gain control based
on gA (t/tA). Hence, the attacker’s benefit for this period is then based on α +
(1 − α) gA (t/tA). The attacker’s payoff is as follows:

u1
A(tA, α, δD) =

∫ tA

0

(

α + (1 − α) gA

(
t

tA

))

dt + IA + BA(δD − tA) − cA

δD
.

(1)
In the above equation, based on our discussion in Sect. 3, the first term in the

numerator represents the attacker’s benefit due to information leakage. Note that
the utility function is divided by δD, since this function is the average attacker’s
payoff over time.

Since the defender’s move time is greater than the attacker’s time of complet-
ing an attack successfully, the defender only receives a partial benefit during the
period when the attacker is in the process of completing her attack. Therefore,
the defender’s payoff is as follows:

u1
D(tA, α, δD) =

∫ tA

0

(

1 −
(

α + (1 − α) gA

(
t

tA

)))

dt − cD

δD
. (2)

Both payoff functions, i.e., Eqs. 1 and 2, are a function of tA which is a
random variable with PDF fA as well as δD. Therefore, we need to calculate
the expected value of both payoff functions. Note that these expected payoff
functions are conditional, i.e., they are a function of a random variable tA given
that tA < δD. The conditional expected payoffs for these two functions are
calculated as follows:

u1
A(α, δD) =

∫ δD

0

u1
A(tA, α, δD)fA(tA)dtA
∫ δD

0

fA(tA)dtA

, (3)

u1
D(α, δD) =

∫ δD

0

u1
D(tA, α, δD)fA(tA)dtA
∫ δD

0

fA(tA)dtA

. (4)

Defender’s and attacker’s payoffs are both functions of α and δD. Finally, the
probability of tA < δD is calculated as follows:

P [tA < δD] =
∫ δD

0

fA(tA)dtA. (5)
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Case 2: tA ≥ δD
In contrast to the previous case, the attacker cannot get the immedi-

ate reward as well as the benefit from controlling the resource completely.
In this case, the attacker only reaches gA (δD/tA) level of control over the
resource upon the defender’s recovery move, and her reward is then equal to
αgA (δD/tA) right after the defender’s move. The attacker gains her control for
the rest of the resource, i.e., (1 − α), based on gA (t/tA). Hence, during the
time between two consecutive defender’s moves, the attacker’s benefit is equal
to αgA (δD/tA)+ (1 − α) gA (t/tA). Note that the upper integral bound changes
into δD from tA compared to the previous case.

u2
A(tA, α, δD) =

∫ δD

0

(

αgA

(
δD
tA

)

+ (1 − α) gA

(
t

tA

))

dt − cA

δD
. (6)

The defender’s payoff function is almost equivalent to Eq. 2 except the upper
bound for the integral is changed into δD. Hence, the defender’s payoff is as
follows:

u2
D(tA, α, δD) =

∫ δD

0

(

1 −
(

αgA

(
δD
tA

)

+ (1 − α) gA

(
t

tA

)))

dt − cD

δD
. (7)

Both players’ payoffs are functions of tA, α, and δD. We take the conditional
expectation over parameter tA in order to calculate the average payoffs with
respect to tA for this condition. The resulting equations are:

u2
A(α, δD) =

∫ ∞

δD
u2

A(tA, α, δD)fA(tA)dtA
∫ ∞

δD
fA(tA)dtA

, (8)

u2
D(α, δD) =

∫ ∞

δD
u2

D(tA, α, δD)fA(tA)dtA
∫ ∞

δD
fA(tA)dtA

. (9)

Furthermore, the probability that the required time by the attacker to com-
promise the resource entirely is greater than the time between two consecutive
recovery moves is given by:

P [tA ≥ δD] =
∫ ∞

δD
fA(tA)dtA. (10)

By taking into account the probability of occurrence of each condition as well
as their corresponding payoffs, we can calculate the defender’s and the attacker’s
payoff functions which are represented by the following equations, respectively.

uD(α, δD) = P [tA ≥ δD]u2
D(α, δD) + P [tA < δD]u1

D(α, δD), (11)
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uA(α, δD) = P [tA ≥ δD]u2
A(α, δD) + P [tA < δD]u1

A(α, δD). (12)

In the above equation, each player’s payoff is a function of α and δA. As
mentioned before, α is a random variable whose range is in [0, 1] with PDF
fα(.). Therefore, we can calculate the expected value of the defender’s and the
attacker’s payoff functions with respect to α being represented in the following
equations, respectively.

uD(δD) =
∫ 1

0

uD(α, δD)fα(α)dα, (13)

uA(δD) =
∫ 1

0

uA(α, δD)fα(α)dα. (14)

5 Analytical Results

In the previous section, we have developed the general payoff functions for the
FlipLeakage model. Our payoff calculations are general and can be applied to
many cybersecurity problems and we did not quantify any of the parameters
being used in our model. For our analyses in this paper, we quantify gA(.),
fA(.), and fα(.), but we believe that the concrete functions we use still allow
for meaningful insights about the stealthy information leakage scenarios. The
instantiations of the other parameters in our proposed models would be specific
to the concrete scenario under consideration, e.g., the corresponding cost for
each player as well as the benefits.

To model the time of the attacker completing her attack successfully, we con-
sider an exponential distribution with rate parameter λA. The rationale behind
choosing an exponential distribution for the random variable tA is the memory-
less feature of this distribution. Due to the memoryless condition, if the defender
knows that his system is not compromised entirely at a specific time, it does not
give any further information to the defender about the time of the next poten-
tial compromise. Moreover, the exponential distribution is a widely accepted
candidate to model waiting times for event-driven models. The exponential dis-
tribution with rate parameter λA is as follows:

fA(tA) =

{
λAe−λAtA if tA ≥ 0
0 if tA < 0.

(15)

Moreover, for the random variable α ∈ [0, 1], we consider the uniform distri-
bution, since the defender does not have any knowledge about the ability of the
attacker to use previously leaked information and, accordingly, all values are pos-
sible with the same probability. The uniform distribution, fα(.), is represented
in Eq. 16.

fα(α) =

{
1 if 0 ≤ α ≤ 1
0 Otherwise.

(16)
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The attacker’s reward function during the time to launch her attack success-
fully can be represented by a linear function:

gA

(
t

tA

)

=

⎧
⎨

⎩

t

tA
if 0 ≤ t ≤ tA

0 Otherwise.
(17)

In the following, we provide our lemmas and theorem based on our payoff
calculation and the specification described above. First, the defender’s and the
attacker’s best responses are stated in Lemma 1 and Lemma 2, respectively.
Then, we propose the Nash equilibrium of the game being stated in Theorem 1.

Lemma 1. The defender’s best response is as follows:

– The defender plays a periodic strategy with period δ�
D which is the solution of

Eq. 18, if the corresponding payoff is non-negative, i.e., uD(δ�
D) ≥ 0, and it

yields a higher payoff compared to other solutions of Eq. 18.

BRD = e−λAδD

(
1
4

− 3
4
λAδD +

3
4
λA +

1
4λAδ2D

)

+
1
δ2D

(

cD − 1
4λA

)

− 3
4
λAΓ (0, λAδD) = 0.

(18)

– The defender drops out of the game (i.e., the player does not move anymore)
if Eq. 18 has no solution for δD.

– The defender drops out of the game if the solutions of Eq. 18 yield a negative
payoffs, i.e., uD(δD) < 0.

Note that in Lemma 1, Γ (0, λAδD) represents a Gamma function which is
defined as follows:

Γ (s, x) =
∫ ∞

x

ts−1e−tdt. (19)

Proof of Lemma 1 is provided in Appendix A.1.
Lemma 1 exhibits how we should calculate the defender’s time between his

two consecutive moves. As we see in Eq. 18, the defender’s best response is a
function of cD and λA.

Lemma 2 describes the attacker’s best response in the FlipLeakage game.

Lemma 2. In the FlipLeakage game model, the attacker’s best response is:

– The attacker moves right after the defender if cA < M (δ) where

M (δD) =
3
4
δDλAΓ (0, δDλA) + IA + BAδD +

3
4λA

+ BA

(

δD +
1

λA

)

e−δDλA

−
(

IA + BAδD +
3
4

(

δD +
1

λA

))

e−δDλA − BA
λA

.

(20)
– The attacker drops out of the game if cA > M (δ).
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– Otherwise, i.e., cA = M (δ), dropping out of the game and moving right after
the defender are both the attacker’s best responses.

The proof of Lemma 2 is provided in Appendix A.2. This lemma identifies
conditions in which the attacker should move right after the defender, not move
at all, and be indifferent between moving right after the defender and not moving
at all. Note that the attacker’s decision depends on cA, δD, λA, IA, and BA.

The following theorem describes the Nash equilibria of the FlipLeakage game
based on our described lemmas.

Theorem 1. The FlipLeakage game’s pure Nash equilibria can be described as
follows.
A. If Eq. 18 has a solution, i.e., δ�

D, yielding the highest positive payoff for the
defender compared to other solutions (if other solutions exist), then the following
two outcomes apply:

1- If cA ≤ M(δD), then there is a unique pure Nash equilibrium in which the
defender moves periodically with period δ�

D and the attacker moves right after
the defender.

2- If cA > M(δD), then there exists no pure Nash equilibrium.
B. If Eq. 18 does not have a solution or the solutions of this equation yield a

negative payoff for the defender, i.e., uD (δD) < 0, then there exists a unique pure
Nash equilibrium in which the defender does not move at all and the attacker
moves once at the beginning of the FlipLeakage game.

The proof of Theorem 1 is provided in Appendix A.3.
In this theorem, in the first case, the defender’s cost is lower than his benefit

when he moves according to the solution of Eq. 18 and the attacker’s cost is
lower than Eq. 20. Hence, the attacker moves right after the defender’s periodic
move. In the second case, if the defender moves periodically, it is not beneficial
for the attacker to move at all. Therefore, it is better for the defender to not
move at all. But, if the defender does not move at all, the attacker can move
once at the beginning of the game and control the resource for all time. However,
as a result, the defender should move in order to hinder this situation. Because
of this strategic uncertainty, in this scenario a Nash equilibrium does not exist.
The third case represents the situation where the defender’s benefit is lower than
his cost for defending the resource. Then, it is beneficial for him to not move at
all, and because of that the attacker has to move only once at the beginning of
the game.

6 Numerical Illustrations

In this section, we provide selected numerical illustrations for our theoretical
findings. First, we represent the defender’s best response curves, i.e., Eq. 18, as
well as the defender’s payoff for different defender’s cost values, i.e., cD, which are
depicted in Fig. 4. Then, we illustrate the defender’s best responses for different
values of cD and λA in Fig. 5.
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Fig. 4. The defender’s best response curves and the corresponding payoff functions for
different values of cD are represented in (a) and (b), respectively. These two figures
depict the situation that Eq. 18 has a solution, but the corresponding payoff may be
negative.

We plot Eq. 18, i.e., the defender’s best response curve, for different values of
cD, i.e., cD = {0.2, 0.4, 0.7, 1, 1.5}, and λA = 0.3 in Fig. 4(a). We illustrate the
defender’s payoff for these values in Fig. 4(b), as well. For all of these different
cDs, Eq. 18 has a solution. But as we see in Fig. 4(b), the defender’s payoffs are
negative for cD = {0.7, 1, 1.5} for all values of δD. Therefore, the defender will
drop out of the game given these defense costs. For lower values of cD, i.e., cD
= {0.2,0.4}, the defender’s best responses are to move periodically with period
0.8711 and 1.4681, respectively. This also provides us with the intuition that
the higher the defender’s costs are, the slower will be the defender’s moves. To
examine this intuition, we calculate the defender’s best responses for different
values of cD.

Figure 5(a) represents the defender’s best response for different values of
defense costs in which λA = 0.5. This figure corroborates our intuition that
the higher the defense costs are, the slower will be the defender’s move period.
When the cost of defense is high, the defender’s best response is to drop out of
the game which is represented as δ�

D = 0 in Fig. 5(a).
We are also interested to see the relation between λA and δD. We represent

this relation in Fig. 5(b). It is worth mentioning that an exponential distrib-
ution with parameter λA has mean being equal to 1/λA. In the FlipLeakage
game, a higher value of λA means that the attacker will successfully compro-
mise the defender’s system faster on average which is corresponding to 1/λA.
Figure 5(b) represents the defender’s best response for different values of λA
for specific defender’s cost, i.e., cD = 0.3. This figure shows that the faster the
attacker can completely compromise the defender’s system on average, the faster
will be the defender’s periodic move. In other words, the defender moves faster
when the attacker’s average time to successfully compromise the defender’s sys-
tem is faster. But if the attacker’s average time to successfully compromise the
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Fig. 5. The impact of cD and λA on the defender’s best response

defender’s system is too fast, the rational choice for the defender is to drop out
of the game.

7 Conclusion

In this paper, we have proposed a novel theoretical model to provide guidance for
the defender’s optimal defense strategy when faced with a stealthy information
leakage threat. In our model, an attacker will incrementally take ownership of a
resource (e.g., as observed during advanced persistent threats). While her final
objective is a complete compromise of the system, she may derive some utility
during the preliminary phases of the attack. The defender can take a costly
mitigation move and has to decide on its optimal timing.

In the FlipLeakage game model, we have considered the scenario when the
defender only partially eliminates the foothold of the attacker in the system. In
this scenario, the defender cannot undo any information leakage that has already
taken place during an attack. We have derived optimal strategies for the agents
in this model and present numerical analyses and graphical visualizations.

We highlight two observations from our numerical analyses which match well
with intuition. First, the higher the defender’s cost, the slower is the defender’s
periodic move. The second observation is that the faster the attacker’s aver-
age time to compromise the defender’s system completely (i.e., higher λA), the
faster is the defender’s periodic move. In addition, our model also allows for
the determination of the impact of less-than-optimal strategies, and compara-
tive statements regarding the expected outcomes of different periodic defensive
approaches in practice, when information about the attacker and her capabilities
is extremely scarce. As this problem area is understudied but of high practical
significance, advancements that allow a rigorous reasoning about defense moves
against stealthy attackers are of potentially high benefit.

In future work, we aim to conduct theoretical and numerical analyses using
insights from data about practical information leakage scenarios. However, our
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current study is an important first step to reason about frequently criticized
system reset policies to prevent information leakage in high-value systems. Reset
policies have to provide an expected utility in the absence of concrete evidence
due to the stealthiness of attacks which can be challenging to articulate. Our
work also illustrates the positive deterrence function of system reset policies
from a theoretical perspective. Further, we aim to consider a more general case
in which the values of tA and α are different in each step of the attack. In future
work, we will also consider the case where a defender (e.g., a software vendor)
has the ability to provide out-of-schedule security updates besides the periodic
one.

Acknowledgments. We appreciate the comments from the anonymous reviewers. An
earlier version of this paper benefited from the constructive feedback from Aron Laszka.
All remaining errors are our own.

A Proof

A.1 Proof of Lemma 1

Based on our payoff calculation, i.e., Eq. 13, as well as the quantified parameters,
i.e., gA(.), fA(.), and fα(.), the defender’s payoff is:

uD(δD) =
1
δD

(
1

4λA

(
1 − e−λAδD

) − cD

)

+
3
4
e−λAδD − 3

4
λAδDΓ (0, λAδD)

(21)
To find the maximizing time between two consecutive defender’s moves (if

there exist any), we take the partial derivative of Eq. 21 with respect to δD and
solve it for equality to 0 as follows:

∂uD
∂δD

= − 1
δ2D

(
1

4λA
− cD − 1

4λA
e−λAδD

)

+
1
4
e−λAδD

−3
4
λAδDe−λAδD − 3

4
λAΓ (0, λAδD) +

3
4
λAe−λAδD = 0

(22)

Note that Eq. 18 is neither increasing nor decreasing on δD. Therefore, we
have three possibilities for the above equation: (1) no solution, (2) one solution,
and (3) more than one solution. When there is no solution, the defender’s best
response is to drop out of the game. In the case of one solution, the defender
moves periodically with δD, i.e., the solution of Eq. 18 if the resulting payoff is
non-negative. When there is more than one solution, the defender plays peri-
odically with the solution with the highest non-negative payoff. Otherwise, the
defender drops out of the game. ��
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A.2 Proof of Lemma 2

In order to calculate the attacker’s payoff, we first calculate the following based
on Eq. 12.

uA(α, δD) =
1
δD

((
1 + α

2
− BA

)(
1

λA
− 1

λA
e−λAδD − δDe−λAδD

)

+ (BAδD + IA)
(
1 − e−λAδD

)
+

1 + α

2
δDλAΓ (0, δDλA) − cA

)

.
(23)

According to Eq. 14, the attacker’s payoff is as follows.

uA(δD) =
1
δD

((
3
4

− BA

)(
1

λA
− 1

λA
e−λAδD − δDe−λAδD

)

+ (BAδD + IA)
(
1 − e−λAδD

)
+

3
4
δDλAΓ (0, δDλA) − cA

)

.
(24)

The attacker moves right after the defender if her payoff is positive, i.e.,
uA(δD) > 0. If the attacker’s payoff is negative, her reward is lower than her
cost. Then, a rational player does not have any incentive to actively participate
in the game. Hence, the attacker drops out of the game. If uA(δD) = 0, the
attacker is indifferent between moving right after the defender or dropping out
of the game. By considering Eq. 24 and uA(δD) ≥ 0, we can derive Eq. 20. ��

A.3 Proof of Theorem 1

In Lemma 1, we have provided the best response for the defender. The defender
has two choices: periodic move or dropping out of the game. Similarly, according
to Lemma 2, the attacker has two choices for her best response: she moves right
after the defender or drops out of the game. Note that Nash equilibrium is a
mutual best response.

In doing so, we first consider the case where the defender’s best response is
to drop out of the game (this means that Eq. 18 does not have any solution(s)
giving non-negative payoff(s)). Therefore, the attacker’s best choice is to move
only once at the beginning of the game.

The other choice for the defender, according to Lemma 1, is to move period-
ically when Eq. 18 has a solution which yields a positive payoff. By calculating
δ�
D using this equation, we insert this value to Eq. 20 and compare it with cA.

Based on Lemma 2, the attacker has two possible choices. First, if cA ≤ M(δD),
the attacker will initiate her attack right after the defender’s move. Hence, the
Nash equilibrium is to move periodically from the defender side and the attacker
should initiate her attack right after the defender’s move. Second, if cA > M(δD),
the attacker will drop out of the game. In this case, the best response for the
defender is to never move. Since he controls the resource all the time without
spending any cost. But, if the defender never moves, then it is beneficial for the
attacker to move at the beginning of the game. Hence, this situation is not a
Nash equilibrium. ��
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Abstract. We introduce a zero-sum game problem of soft watermark-
ing: The hidden information (watermark) comes from a continuum and
has a perceptual value; the receiver generates an estimate of the embed-
ded watermark to minimize the expected estimation error (unlike the
conventional watermarking schemes where both the hidden informa-
tion and the receiver output are from a discrete finite set). Applica-
tions include embedding a multimedia content into another. We study
here the scalar Gaussian case and use expected mean-squared distortion.
We formulate the problem as a zero-sum game between the encoder &
receiver pair and the attacker. We show that for linear encoder, the opti-
mal attacker is Gaussian-affine, derive the optimal system parameters in
that case, and discuss the corresponding system behavior. We also pro-
vide numerical results to gain further insight and understanding of the
system behavior at optimality.

1 Introduction

Watermarking (also termed as information or data hiding throughout the paper)
refers to altering an input signal to transmit information in a hidden fashion
while preserving the perceptual quality. The watermarked signal is then subject
to an attack which “sabotages” the receiver. We focus here on “robust” water-
marking (unlike steganography or fragile watermarking): The decoder aims to
recover the embedded watermark as accurately as possible, even in the presence
of (potentially malicious) attacks as long as they preserve the perceptual quality.

Robust watermarking has been an active area of research for nearly two
decades, with applications ranging from security-related ones (such as copyright
protection, fingerprinting and traitor tracing) to the ones aiming conventional
tasks related to multimedia management and processing (such as database anno-
tation, in-band captioning, and transaction tracking). Since the underlying task
is to transmit the (hidden) information by means of a watermark, the resulting
scheme falls within the category of information transmission problems and can
be analyzed using techniques from communications and information theory - see
[1] for an overview of data hiding from such a perspective.

Furthermore, the presence of an intelligent attacker enables a game theoretic
perspective: Encoder, decoder, and attacker can be viewed as players where
c© Springer International Publishing AG 2016
Q. Zhu et al. (Eds.): GameSec 2016, LNCS 9996, pp. 215–234, 2016.
DOI: 10.1007/978-3-319-47413-7 13
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the encoder and decoder share a common utility and their gain is exactly the
loss of the attacker, thereby resulting in a zero-sum game. In [2,3], the authors
formulated the problem of (robust) information hiding as a game between the
encoder & decoder and the attacker; using an information-theoretic approach,
they derived expressions for the maximum rate of reliable information transmis-
sion (i.e., capacity) for the i.i.d. (independent identically distributed) setup. An
analogous approach has been used to extend these results to colored Gaussian
signals in [4].

To the best of our knowledge, so far all of the robust watermarking approaches
have assumed that the information to be transmitted is an element of a discrete
finite (usually binary) set. This is because of the fact that in most intended appli-
cations, the watermark is aimed to represent an identity for usage or ownership
(or simply permission to use in case of verification problems). Consequently, the
receiver is usually designed to decode the embedded watermark (or in case of
verification problems detect the presence or absence of a watermark), resulting
in a joint source-channel coding problem, where the channel coding counter-
part refers to the reliable transmission of the watermark and the source coding
counterpart refers to the lossy compression of the unmarked source. In [2–4],
following the conventional joint source-channel coding paradigm of information
theory, an error event is said to occur if the decoded watermark is not the same
as the embedded watermark (hence a hard decision).

In contrast with prior art, in this paper we propose a setup where the informa-
tion to be transmitted is from a continuum and there is an associated perceptual
value. As such, the receiver acts as an estimator, whose goal is to produce an esti-
mate of the hidden information from the same continuum (rather than a decoder
or detector that reaches a hard decision). Applications include the cases where
we hide one multimedia signal inside another (such as embedding one smaller
low-resolution image inside another larger high-resolution image, or hiding an
audio message inside a video, etc.). In such cases, the receiver output is from a
continuum as well and there is no hard decision made by it (unlike the prior art
in robust watermarking); hence the receiver provides a solution to a soft decision
problem1,2. Accordingly, we use the term “soft watermarking” to refer to such
data hiding problems. Therefore, unlike the prior art where the fundamental
problem is joint source-channel coding, in this case we have a joint source-source
coding problem where the encoder needs to perform lossy compression on both
the unmarked source and the data to be hidden.

As a first step toward our long-term goal of studying the soft watermarking
problem in its full generality, we consider here a simpler version of the broad
1 This distinction is reminiscent of the differentiation between hard and soft decoding

methods in classical communication theory.
2 One alternative approach for this problem may involve using a separated setup,

where we first apply lossy compression to the information to be hidden that possesses
perceptual value, and subsequently embed the compression output into the unmarked
host using a conventional capacity-achieving data hiding code. It is not immediately
clear which approach is superior; a comparative assessment constitutes part of our
future research.
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Fig. 1. The problem setting.

soft watermarking problem to gain insight: we confine ourselves to the scalar-
Gaussian case where we use expected squared error as the distortion metric. In
the future, our aim is to address the asymptotically high dimensional vector
case (i.e., information-theoretic setting) with a general class of distributions
associated with arbitrary distortion metrics.

In Sect. 2, we introduce the notation and provide the problem formulation.
In Sect. 3, we present the main results: In Sect. 3.1, we show that Gaussian-affine
attack mapping is optimal for the class of linear encoders; in Sect. 3.2, we derive
optimal system parameters for such encoder and attacker classes; in Sect. 3.3,
we discuss the system properties at optimality, provide bounds and analyze
asymptotic behavior. We present numerical results in Sect. 4 and concluding
remarks in Sect. 5.

2 Preliminaries

2.1 Notation

Let R and R
+ denote the respective sets of real numbers and positive real num-

bers. Let E(·) denote the expectation operator.
The Gaussian density with mean μ and variance σ2 is denoted as N (

μ, σ2
)
.

All logarithms in the paper are natural logarithms and may in general be complex
valued, and the integrals are, in general, Lebesgue integrals.

2.2 Problem Definition

A generic model of the problem is presented in Fig. 1. We consider independent
scalar Gaussian random variables X ∼ N (

0, σ2
x

)
and S ∼ N (

0, σ2
s

)
to denote

the watermark (the data to be hidden) and the signal, respectively.
A deterministic mapping of X and S is transmitted over the channel gener-

ated by the encoder3. Let the transmitter strategy be denoted by g(·, ·), which is

3 In classical (information-theoretic) watermarking literature, a pseudo-random key
sequence is shared between the encoder and the decoder, mainly to render the
attacker strategies memoryless. In this paper, we do not consider the key sequence
in the problem formulation since our formulation is based on single-letter strategies.
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an element of the space ΓT , of real-valued Borel measurable functions satisfying:

E
{
( g(X,S) − S)2

} ≤ PE . (1)

We note that this is a classical constraint that limits the distortion incurred by
the watermark embedding process.

The attacker (also termed as the jammer) has access to the output of the
transmitter, U = g(X,S), and outputs a random transformation of U , denoted
by Y , i.e., assigns a probability measure, μ, on the output Y that satisfies

∞∫

−∞
E

{
(Y − U)2|Y }

dμ(Y ) ≤ PA (2)

We denote the class of all associated probability measures μ for the jammer by
M. We note that the constraint (2) corresponds to the classical distortion con-
straint on the attacker used in the watermarking literature (see e.g., [2, Eq. 13],
[3, Eq. 2.2]): It aims to guarantee that the attacker does not distort the water-
marked signal beyond a perceptually acceptable level. Thus, in our framework,
the attacker has two (possibly conflicting) objectives: (i) maximize the distortion
between the watermark and its generated estimate by the decoder (cf. (3)), and
(ii) maintain the usability of the attack output from a perceptual point of view
(captured by (2)).

Note that, the constraint (2) differs from the traditional power constraint in
classical communication (jamming) games, where the constraint on the attacker
arises due to the physical limitations on the communication channel and can be
formulated as a power constraint on the attack output Y (i.e., an upper bound on
E

(
Y 2

)
) [6]. Since such physical limitations do not exist in our current problem

formulation, such a constraint is not immediately applicable to our setup4. Also
note that, in assessing the perceptual quality of Y , as a first step and following
[2,3], we take U as the benchmark for the attacker to compare. Alternatively,
it is plausible to use S as the benchmark (see e.g., “type-S” constraint in [4,
Eq. 2.3]), which implies imposing an upper bound on E (S − Y )2 and constitutes
part of our future research as well.

We consider the power constraints (1, 2) in the expectation form, mainly
for tractability purposes. Constraints for each realization (in almost sure sense)
were also used in the literature [2], but are beyond the scope of our treatment
here.

The receiver applies a Borel-measurable transformation h(Y ) on its input Y ,
so as to produce an estimate X̂ of X, by minimizing the squared error distortion
measure

J (g, h, μ) =

∞∫

−∞
E

{
(h(Y ) − X)2|Y }

dμ(Y ) (3)

4 The investigation of a potential relationship between (2) and imposing an upper
bound on E

(
Y 2
)

for the data hiding setup constitutes part of our future research.
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We denote the class of all Borel-measurable mappings h (·) to be used as the
receiver mapping by ΓR. Joint statistics of X and S, and all objectives are
common knowledge.

The common objective of the transmitter and the receiver is to minimize J
by properly choosing g ∈ ΓT and h ∈ ΓR, while the objective of the attacker is
to maximize J over the choice of μ ∈ M. Since there is a complete conflict of
interest, this problem constitutes a zero-sum game.

However, this game does not have a value, since the lower value of the game

J̄ = sup
μ∈M

inf
g∈ΓT
h∈ΓR

J(g, h, μ)

is not well defined. This is because the attacker cannot guarantee that (2) is
satisfied without knowing the encoder strategy g since the value of the left hand
side of (2) depends on the joint distribution of U and Y which is impacted
by g5. Hence our main focus is on the following minimax optimization problem
which corresponds to the upper value of the game (which in fact safeguards
the transmitter-receiver pair against worst attacks and is more relevant for the
problem at hand)

J∗ = inf
g∈ΓT
h∈ΓR

sup
μ∈M

J(g, h, μ). (4)

Note that, the aforementioned formulation implies that the encoder mapping g (·)
is known by the attacker. Note also that for each g ∈ ΓT , we have a zero-sum
game between the attacker and the receiver. This subgame has a well-defined
value6, and hence, inf and sup operators can be interchanged, and further they
can be replaced by min and max, respectively, i.e., (4) is equivalent to

J∗ = inf
g∈ΓT

max
μ∈M

min
h∈ΓR

J(g, h, μ), (5)

which we consider throughout the rest of the paper. In other words, there is
no loss for the encoder-decoder team to determine and announce the decoder
mapping before the attacker picks its own mapping, or there is no gain for the
decoder to know the attacker mapping a priori.

5 One way to get around this problem is to introduce soft constraints into the objective
of the attacker. Then, the problem is no longer a zero-sum game. Another way is to
define the attacker constraint for each realization, in almost sure sense, in which case
the attacker can satisfy its constraint for any encoding strategy. These are beyond
the scope of this paper.

6 This is a zero-sum game where the objective is linear (hence, concave) in the attacker
mapping for a fixed decoder map, and the optimal decoder mapping is unique (condi-
tional mean) for a given attacker mapping. M is weak*-compact, and the minimizing
h can be restricted to a compact subset of ΓR (with (3) bounded away from zero);
hence a saddle point exists due to the standard min-max theorem of game theory in
infinite-dimensional spaces [7].
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3 Main Results

Given Y , the encoder mapping g (·), and the attacker mapping μ (·), the decoder’s
goal is to calculate the estimate X̂ (Y ) of X so as to minimize the expected

squared error distortion measure (cf. (3)) J = E

[
X − X̂ (Y )

]2
. The minimizer

here is the well-known MMSE (minimum mean squared error) estimate of X
given Y : X̂MMSE (Y ) = E (X|Y ). Then, the resulting problem is

inf
g

max
μ

J = E

[
X − X̂MMSE (Y )

]2
(6)

subject to the constraints (1, 2). In Sect. 3.1, we show that, in the sense of (6),
the optimal functional form of μ is a “jointly-Gaussian-affine mapping” provided
that the functional form of the encoder is linear. Using this result, in Sect. 3.2
we solve the problem (6) within the class of linear encoder mappings subject to
(1, 2)7 and characterize the parameters of the corresponding system. In Sect. 3.3,
we provide a detailed discussion on the optimality results presented in Sect. 3.2.

3.1 On Optimal Functional Forms of the Encoder and Attacker

We first focus on a special case as an auxiliary step, where the encoder mapping
is the identity operator, g (X,S) = X, together with a “generalized” version
of the constraint (2), where an upper bound is imposed on E (Y − aU)2 for an
arbitrary a ∈ R. We present the corresponding optimality result of this special
case in Lemma 1. We then use Lemma 1 as an auxiliary step to reach the main
result of this section (Lemma 2), which states that the Gaussian-affine attack
mapping is optimal for the class of linear encoders under the constraint (2).

Lemma 1. Given the encoder strategy of U = g (X,S) = X, the solution to

max
μ

E

[
X − X̂MMSE (Y )

]2
(7)

subject to an upper bound on E (Y − aU)2 for some a ∈ R is of the form Y =
κU + Z where Z ∼ N (

0, σ2
z

)
is independent of U .

Proof. Define C (mXY ,mY Y )
�
=

{
μ

∣
∣Eμ (XY ) = mXY ,Eμ

(
Y 2

)
= mY Y

}
, where

Eμ (·) denotes expectation with respect to the joint distribution of X and Y ,

induced by the attack mapping μ (·). Next, define X̂ ′ (Y )
�
= E(XY )

E(Y 2) Y . Thus, by

definition, X̂ ′ (Y ) := X̂ ′
C (Y ) is the same for all μ ∈ C (mXY ,mY Y ) given a pair

(mXY ,mY Y ). This further implies that, for any given μ ∈ C (mXY ,mY Y ),

E

[
X − X̂MMSE,μ (Y )

]2
≤ E

[
X − X̂ ′

C (Y )
]2

(8)

7 As such, the result provided in Sect. 3.2 forms an upper bound on the solution of
(6); see Remark 1 in Sect. 3.3 for a further discussion.
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by the definition of the MMSE estimate. The upper bound of (8) is achieved when
X and Y are jointly Gaussian, in which case X̂MMSE = X̂LMMSE = X̂ ′

C , which
is a well-known result. Thus, we conclude that among all the attack strategies
which yield the same E (XY ) and E

(
Y 2

)
, the one (if exists) that renders X and

Y jointly Gaussian achieves the maximum cost, thereby being the optimal choice
for the attacker. A similar reasoning was used in Lemma 1 of [8] for a zero-delay
jamming problem.

Next, note that, for any given μ ∈ C (mXY ,mY Y ) and σ2
x = E

(
X2

)
, we have

Eμ [Y − aU ]2 = Eμ [Y − aX]2 = mY Y − 2amXY + σ2
x,

implying that all elements of C (mXY ,mY Y ) yield the same E (Y − aU)2.
Let μ∗ be a solution to (7) subject to an upper bound on E (Y − aU)2.

Assuming existence, let μ′ be an element of C (
Eμ∗ (XY ) ,Eμ∗

(
Y 2

))
that ren-

ders X and Y jointly Gaussian. Due to the aforementioned arguments, we have

E

[
X − X̂MMSE,μ∗ (Y )

]2
= E

[
X − X̂MMSE,μ′ (Y )

]2
= E

[
X − X̂ ′

C (Y )
]2

and

that Eμ∗ [Y − aU ]2 = Eμ′ [Y − aU ]2. Hence, if μ′ exists, it is optimal.
Existence: Consider the mapping Y = κU + Z = κX + Z for some κ and

Z ∼ N (
0, σ2

z

)
independent of X. Then, straightforward algebra reveals that κ =

E (XY ) /σ2
x and σ2

z = E
(
Y 2

)−[E (XY )]2 /σ2
x. Hence, given σ2

x, there is a one-to-
one mapping between the pairs of

(
E (XY ) ,E

(
Y 2

))
and

(
κ, σ2

z

)
. Consequently,

for any given
(
E (XY ) ,E

(
Y 2

))
, we can find

(
κ, σ2

z

)
that guarantees the existence

of μ′ that renders X and Y jointly Gaussian. This completes the proof. ��

Lemma 2. Given the linear encoder strategy of U = g (X,S) = αX + βS for
some α, β ∈ R, the solution to

max
μ

E

[
X − X̂MMSE (Y )

]2
, (9)

subject to E (Y − U)2 ≤ PA, is of the form Y = κU + Z, where Z ∼ N (
0, σ2

z

)

is independent of U .

Proof. Let T denote the MMSE estimate of X given U : T
�
= X̂MMSE (U). First,

note that for any attack mapping μ and for any function p (·), (X − T ) is orthog-
onal to p (Y ):

E [(X − T (U)) p (Y )] = EU

{
E

[
Xp (Y )

∣
∣U

] − E
[
T (U) p (Y )

∣
∣U

]}

= EU

{
E

[
X

∣
∣U

]
E

[
p (Y )

∣
∣U

] − T (U)E
[
p (Y )

∣
∣U

]}
(10)

= 0, (11)

where (10) follows from the fact that X ↔ U ↔ Y forms a Markov chain in
the specified order, and (11) follows from recalling that E

[
X

∣
∣U

]
= T (U) by

definition. This implies
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J = E

[
X − X̂MMSE (Y )

]2
= E

[
X − T (U) + T (U) − X̂MMSE (Y )

]2

= E [X − T (U)]2 + E

[
T (U) − X̂MMSE (Y )

]2
, (12)

where (12) follows from the fact that the estimation error (X − T ) is orthogonal
to any function of U and Y (cf. (11)). Since E [X − T (U)]2 is invariant in μ,

maximizing J over μ is equivalent to maximizing E

[
T (U) − X̂MMSE (Y )

]2
over

μ. Furthermore, since U is linear in X and they are jointly Gaussian, MMSE
coincides with LMMSE, implying that θT (U) = U for some θ ∈ R. Therefore,
(9) is equivalent to

max
μ

E

[
T − X̂MMSE (Y )

]2
, (13)

subject to E (Y − θT )2 ≤ PA. By Lemma 1, we know the solution to (13): At
optimality, Y = κ′T + Z where Z ∼ N (

0, σ2
z

)
is independent of T . But since T

is linear in U , this is equivalent to the statement of the lemma. ��

3.2 Characterization of Optimal System Parameters

Motivated by Lemma 2, throughout the rest of the paper we confine ourselves
to the class of linear mappings for the encoder (14) and jointly-Gaussian-affine
mappings for the attacker (15):

U = g (X,S) = αX + βS, (14)
Y = κU + Z, (15)

where X ∼ N (
0, σ2

x

)
, S ∼ N (

0, σ2
s

)
, Z ∼ N (

0, σ2
z

)
are all independent of each

other. The decoder generates the (L)MMSE estimate of X given Y :

X̂LMMSE (Y ) = X̂MMSE (Y ) = E (X |Y ) =
E (XY )
E (Y 2)

Y, (16)

with the corresponding mean-squared error cost function

J := J (g, h, μ) = E

[
X − X̂LMMSE (Y )

]2
= E

(
X2

)−[E (XY )]2 /E
(
Y 2

)
. (17)

Using (14, 15, 17) in (1, 2, 5), the resulting equivalent problem to (5) is given
by

minα,β∈R maxκ∈R,σ2
z∈R+ J (18)

s.t. E (U − S)2 ≤ PE and E (Y − U)2 ≤ PA, (19)

where we have replaced “inf” with “min”, since g is restricted to linear maps
and the cost function is bounded from below by zero (thus restricting g to a
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compact set without any loss of generality). Note that, the parameters α, β
(resp. the parameters κ, σ2

z) constitute the degrees of freedom for the encoder
(resp, the attacker) given its linear (resp. affine) nature. Also, the first (resp.
the second) constraint in (19) represents the power constraint for the encoder
(resp. the attacker), equivalent to (1) (resp. (2)) to ensure the perceptual fidelity
of the marked signal U (resp. the attacked signal Y ) under the aforementioned
parametrization. In Theorem1, we provide the solution to the minimax problem
(18) under the constraints (19). Our results are given using the parametrization

via σ2
u

�
= E

(
U2

)
. A summary of the results of Theorem 1 is given in Table 1.

Theorem 1. The solution to the minimax soft watermarking problem (18) sub-
ject to the constraints (19) is as follows:
(a) For PA ≤ (

σs +
√

PE

)2, at optimality σ2
u is the unique positive root of the

depressed cubic polynomial

f
(
σ2

u

) �
= σ6

u − σ2
u

[(
σ2

s − PE

)2
+ 2PA

(
σ2

s + PE

)]
+ 2PA

(
σ2

s − PE

)2
, (20)

in the interval of
[
max

(
PA,

(
σs − √

PE

)2
)

,
(
σs +

√
PE

)2
]
. The corresponding

optimal values of the system parameters are

β =
1
2

σ2
u + σ2

s − PE

σ2
s

, (21)

α =

√
√
√
√

[(
σs +

√
PE

)2 − σ2
u

] [
σ2

u − (
σs − √

PE

)2
]

4σ2
sσ2

x

, (22)

κ = 1 − PA

σ2
u

, σ2
z = PAκ. (23)

leading the corresponding optimal value of the cost function as

J = σ2
x − σ4

xα2
(
σ2

u − PA

)

σ4
u

(24)

(b) If PA >
(
σs +

√
PE

)2, then at optimality we have κ = 0, σ2
z ∈ [

0, PA − σ2
u

]

is arbitrary, where
σ2

u = α2σ2
x + β2σ2

s < PA

for any α, β ∈ R such that α2σ2
x + (β − 1)2 σ2

s ≤ PE. In that case, the corre-
sponding value of the cost function is given by J = σ2

x.

Proof. We first characterize the cost function J (cf. (17)) and the power con-
straints (19) under the given parameterization. Given (14, 15) and the indepen-
dence of X, S, Z, we have

E (XY ) = κE (XU) = κασ2
x, (25)

E
(
Y 2

)
= E (κU + Z)2 = κ2σ2

u + σ2
z . (26)
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Using (25, 26) in (17), we get

J = σ2
x − σ4

x

κ2α2

κ2σ2
u + σ2

z

. (27)

Furthermore, using (14, 15), we can rewrite (19) as

E (U − S)2 = E [αX + (β − 1) S]2 = α2σ2
x + (β − 1)2 σ2

s ≤ PE , (28)

E (Y − U)2 = E [(κ − 1) U + Z]2 = (κ − 1)2 σ2
u + σ2

z ≤ PA, (29)

where
σ2

u = E (U)2 = E [αX + βS]2 = α2σ2
x + β2σ2

s . (30)

Step 1 (Inner Optimization): For any given fixed α, β, we focus on the innermost
maximization problem of (18) subject to the constraint (29). Using (27), we
observe that an equivalent problem is

min
κ∈R,σ2

z∈R+
JA, (31)

subject to (29), where J = σ2
x − σ4

xJA, and

JA
�
=

κ2α2

κ2σ2
u + σ2

z

. (32)

First, consider the special case of κ = 0: In that case, the attacker erases
all the information about the original signal and the watermark and we would
have JA = 0. Since JA is lower-bounded by zero by definition, this would be the
optimal policy for the attacker as long as (29) can be satisfied for κ = 0. In that
case, we have E (Y − U)2

∣
∣
κ=0

= σ2
u +σ2

z per (29). Since the attacker can choose
σ2

z arbitrarily small but cannot alter σ2
u, we arrive at

if α, β ∈ R are such that PA ≥ σ2
u, then

κopt = 0, σ2
z,opt ∈ [

0, PA − σ2
u

]
is arbitrary, and JA,opt = 0, Jopt = σ2

x. (33)

Thus, for the rest of the proof, we consider PA < σ2
u and κ 
= 0. In that case, we

can rewrite JA = α2

σ2
u+σ2

z/κ2 , and an equivalent problem to (31) is

max
κ∈R\{0},σ2

z∈R+
J ′

A, (34)

subject to (29) where JA = α2

σ2
u+J ′

A
and J ′

A

�
= σ2

z/κ2. Next, note that, for all
κ ∈ R\{0}, J ′

A and left hand side of (29) are both monotonic increasing in σ2
z .

Thus, the constraint (29) is active at optimality, which yields

σ2
z = PA − (κ − 1)2 σ2

u. (35)

Using (35) and the re-parametrization of t
�
= 1/κ in the definition of J ′

A, we get

J ′
A =

σ2
z

κ2
=

PA − (κ − 1)2 σ2
u

κ2
=

(
PA − σ2

u

)
t2 + 2σ2

ut − σ2
u. (36)
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Since PA < σ2
u, J ′

A is concave in t. Hence, maximization of (36) subject to (35)
admits a unique solution, given by

topt = − σ2
u

PA − σ2
u

⇔ κopt =
σ2

u − PA

σ2
u

, (37)

which is equivalent to the first equation in (23). Using this result in (35) yields

σ2
z,opt = PA − (κopt − 1)2 σ2

u = PA − P 2
A

σ2
u

, (38)

which is equivalent to the second equation in (23). Note that, σ2
u > PA implies

the positivity of κopt and σ2
z,opt per (37) and (38), respectively. Using (37, 38)

in the cost function definitions, we get

J ′
A,opt

�
= J ′

A

∣
∣
κ=κopt,σ2

z=σ2
z,opt

=
σ2

z,opt

κ2
opt

=
PA

κopt
=

PAσ2
u

σ2
u − PA

, (39)

JE
�
= JA,opt = JA

∣
∣
κ=κopt,σ2

z=σ2
z,opt

=
α2

σ2
u + J ′

A,opt

=
α2

(
σ2

u − PA

)

σ4
u

, (40)

J = σ2
x − σ4

xJE . (41)

Note that (24) directly follows from using (40) in (41).
Step 2 (Outer Optimization): Next, given the solution to the inner optimiza-
tion problem of (18) in (40), we proceed with solving the corresponding outer
optimization problem, given by

max
α,β∈R

JE , (42)

subject to the constraint (28) and σ2
u > PA.

First, we show that, without loss of generality (w.l.o.g.) we can assume α, β ≥
0. Define the left hand side of (28) as a bivariate function of (α, β):

q (α, β)
�
= α2σ2

x + (β − 1)2 σ2
s . (43)

Note that both JE and q are even functions of α. So, w.l.o.g. we can assume
α ≥ 0. Furthermore, for any β < 0, we have (β − 1)2 = (|β| − 1)2 + 2|β|. Hence,
for any α ∈ R and β < 0, we have q (α, β) = q (α, |β|)+2|β|σ2

s . This implies that
for any β < 0, [q (α, β) ≤ PE ] ⇒ [q (α, |β|) ≤ PE ]. Combining this observation
with the fact that JE is an even function of β, we reach the conclusion that
w.l.o.g. we can assume β ≥ 0.

Next, we show that for σ2
u > PA, the constraint (28) is active at optimality.

In order to do that, we examine the behavior of both JE and q with respect
to α2 (noting that there is a one-to-one mapping between α and α2 since we
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assume α ≥ 0 w.l.o.g.). We have

∂q

∂α2
= σ2

x > 0, (44)

∂JE

∂α2
=

σ2
u − PA

σ4
u

+ α2 ∂σ2
u

∂α2

σ4
u − 2σ2

u

(
σ2

u − PA

)

σ8
u

,

=
1
σ6

u

[(
σ2

u − PA

)
β2σ2

s + α2σ2
xPA

]
> 0, (45)

where (45) follows from using (30) and recalling that σ2
u > PA by assumption.

Now, the monotonicity results (44, 45) jointly imply that, at optimality the
encoder will choose α as large as possible for any fixed β provided that the power
constraint (28) is satisfied. Therefore, the constraint (28) is active at optimality.

Using the fact that the constraint is active at optimality, we have

PE = E (U − S)2 = q (α, β) = α2σ2
x + β2σ2

s + (1 − 2β) σ2
s ,

= σ2
u + (1 − 2β) σ2

s , (46)

where (46) follows from (30). Using (46), we get (21).
Our next goal is to rewrite JE (cf. (40)) as a function of σ2

u, and accordingly
formulate the problem (42) as a univariate maximization problem in terms of
σ2

u. Using (21) in (30), we obtain

σ2
u = α2σ2

x +
1
4

(
σ2

u + σ2
s − PE

σ2
s

)2

σ2
s = α2σ2

x +

(
σ2

u + σ2
s − PE

)2

4σ2
s

. (47)

Using (47), we get

α2 =
4σ2

sσ2
u − (

σ2
u + σ2

s − PE

)2

4σ2
sσ2

x

= −
[
(σu − σs)

2 − PE

] [
(σu + σs)

2 − PE

]

4σ2
sσ2

x

(48)

= − 1
4σ2

sσ2
x

[

σ2
u −

(
σs +

√
PE

)2
] [

σ2
u −

(
σs −

√
PE

)2
]

(49)

=
− [

σ2
u − (

σ2
s + PE

)]2 + 4PEσ2
s

4σ2
sσ2

x

. (50)

Using (49), we get (22). Also, the analysis of the constraint α2 ≥ 0 yields

[
α2 ≥ 0

] ⇔
[(

σs −
√

PE

)2

≤ σ2
u ≤

(
σs +

√
PE

)2
]

, (51)

which directly follows from (49). Moreover, (51) and the constraint
(
σ2

u > PA

)

jointly imply that, if PA >
(
σs +

√
PE

)2, the feasible set for the problem (42)
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is empty. In that case, the encoder cannot generate a powerful enough marked
signal U such that σ2

u > PA. Then, at optimality the attacker chooses κ = 0
and erases U (i.e., (33) is valid). As a result, if PA >

(
σs +

√
PE

)2 (which is
equivalent to

√
PA − √

PE > σs), Theorem 1(b) holds.
On the other hand, if

[

PA <
(
σs +

√
PE

)2
]

⇔
[√

PA −
√

PE < σs

]
, (52)

the problem (42) reduces to

maxσ2
u

JE

(
σ2

u

)
(53)

s.t. max
[
PA,

(
σs − √

PE

)2
]

≤ σ2
u ≤ (

σs +
√

PE

)2
, (54)

where

JE

(
σ2

u

)
= −

{[
σ2

u − (
σ2

s + PE

)]2 − 4PEσ2
s

}(
σ2

u − PA

)

4σ2
sσ2

xσ4
u

, (55)

which follows from using (50) in (40).
Next we quantify asymptotic behavior of JE which will be useful in charac-

terizing properties of its extrema. We proceed by first defining the numerator of
JE as N

(
σ2

u

) �
= −

{[
σ2

u − (
σ2

s + PE

)]2 − 4PEσ2
s

} (
σ2

u − PA

)
. Then, we reach

lim
σ2

u→0
JE

(
σ2

u

)
= lim

σ2
u→0

(
σ2

s − PE

)2
PA

4σ2
sσ2

xσ4
u

→ ∞, (56)

lim
σ2

u→∞
JE

(
σ2

u

)
= lim

σ2
u→∞

∂2N/∂
(
σ2

u

)2

8σ2
sσ2

x

→ −∞, (57)

lim
σ2

u→−∞
JE

(
σ2

u

)
= lim

σ2
u→−∞

∂2N/∂
(
σ2

u

)2

8σ2
sσ2

x

→ ∞, (58)

where (56) follows from (55), and (57, 58) follow from noting ∂2N
∂(σ2

u)
2 = −6σ2

u +

4
(
σ2

s + PE

)
+ 2PA.

Next note that, JE

(
σ2

u

)
has 3 roots: PA,

(
σs − √

PE

)2,
(
σs +

√
PE

)2. The
first one is obvious with a direct inspection of (55); the second and third roots
directly follow from noting the equality of (49) and (50), and using that in (55).

Assuming that the feasible set for the problem (42) is non-empty, i.e., (52)
holds, (52, 56, 57, 58) jointly imply

{
0 < σ2

u < min
[
PA,

(
σs − √

PE

)2
]}

⇒ JE

(
σ2

u

)
> 0,

{
min

[
PA,

(
σs − √

PE

)2
]

< σ2
u < max

[
PA,

(
σs − √

PE

)2
]}

⇒ JE

(
σ2

u

)
< 0,

{
max

[
PA,

(
σs − √

PE

)2
]

< σ2
u <

(
σs +

√
PE

)2
}

⇒ JE

(
σ2

u

)
> 0, (59)

{(
σs +

√
PE

)2
< σ2

u

}
⇒ JE

(
σ2

u

)
< 0.
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Table 1. Summary of Theorem 1: Characterization of the scalar-Gaussian soft water-
marking system at optimality. The first (leftmost) column indicates the condition that
leads to the operation regime specified in the second column (see Remark 2 of Sect. 3.3
for the description and a discussion on “trivial” and “non-trivial” policies); the third
and fourth columns show the corresponding values of the encoder and attacker para-
meters at optimality, respectively. Note that, in case of Theorem 1(b), while there are
infinitely many choices of encoder parameters, the choice of α = 0, β = 1 +

√
PE/σ2

s

is a sensible one and maintains continuity between regions (see Remark 3 of Sect. 3.3
for details).

Condition Operation

regime and cost

Encoder parameters Attacker

parameters
[

PA ≤
(

σs +
√

PE

)2
]

⇐⇒
[√

PA −√PE ≤ σs

]
Non-trivial

Theorem1(a)

J = σ2
x −

σ4
xα2

(
σ2

u−PA

)

σ4
u

σ2
u unique root of

f
(

σ2
u

)
(20) s.t.

max

(

PA,
(

σs −√PE

)2
)

≤ σ2
u ≤

(
σs +

√
PE

)2

α given by (22),

β = 1
2

(

1 +
σ2

u−PE
σ2

s

)

κ = 1 −
PA
σ2

u
, σ2

z =

PAκ.

[

PA >
(

σs +
√

PE

)2
]

⇐⇒
[√

PA −√PE > σs

]
Trivial The-

orem1(b)

J = σ2
x

Any α, β ∈ R s.t. α2σ2
x +

(β − 1)2 σ2
s ≤ PE , σ2

u =

α2σ2
x + β2σ2

s < PA

κ = 0,

σ2
z ≤ PA −

σ2
u

Thus, there are a total of 3 extrema of JE (·). The one that is of interest to us,
i.e., the one which satisfies (54), is a maximizer by (59). Furthermore, there is
a unique such stationary point within the feasible region of (54). In order to
calculate this maximizer, we take the derivative of (55) with respect to σ2

u. After
some straightforward algebra we get

(−4σ2
sσ2

xσ4
u

)
dJE

dσ2
u

= f
(
σ2

u

)
, where f (·) is

a depressed cubic polynomial and is given by (20). The solution of (53) is then
given by the unique positive root of (20) which falls in the region specified by
(54). Recall that this is the solution if (52) are satisfied. This completes the proof
of part (a) of Theorem 1. ��

3.3 Discussion on the System Behavior at Optimality

Remark 1 (On Optimality of Theorem1). Per Lemma 2, the results
reported in Theorem 1 describe the optimal system characterization when the
encoder is confined to the class of linear mappings (cf. (14)). Hence, in the sense
of (17), our results form an upper bound on the optimal system performance
within an arbitrary class of encoder mappings. Investigation of the tightness
of this bound constitutes part of our future research. Throughout the rest of
the paper, when we refer to optimality, we mean optimality in the sense of
Theorem 1.

Remark 2 (Trivial and Non-trivial Policies)
(a) We say that “the (optimal) system is trivial” if, at optimality, the attacker
erases all the information on the mark-embedded signal U and only retains
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information on the additive noise Z. This coincides with having Y = Z (i.e.,
κ = 0). Conversely, we have a “non-trivial system” if the attacked signal Y
contains information on the marked signal U (i.e., κ > 0) at optimality.
(b) The case of non-trivial system happens if we have σ2

u > PA at optimality
(due to the arguments leading to (33)). This is possible if and only if PA ≤
(
σs +

√
PE

)2 (or equivalently
√

PA − √
PE ≤ σs) (cf. (52)). In this case, given

σ2
s and PE , the encoder is able to design α and β such that the power of the

marked signal U is larger than the power constraint PA and is able to transmit
information about X through the channel. This case is covered in part (a) of
Theorem 1. Conversely, if PA >

(
σs +

√
PE

)2 (or equivalently
√

PA−√
PE > σs),

we have the case of trivial system, and it is impossible for the encoder to design U
to exceed PA. Then, the optimal attacker can affored to erase U , thus essentially
sending noise to the decoder. This case is covered in part (b) of Theorem1.

Corollary 1 (Power Constraints). In the non-trivial regime (Theorem1(a)),
the encoder and decoder power constraints (19) are both active.

Corollary 2 (Cost Ordering). At optimality, the cost of the non-trivial
regime is upper-bounded by the cost of the trivial regime, σ2

x.

Corollary 3 (Existence and Uniqueness). In the non-trivial regime, the
optimal system parameters specified in Theorem1(a) are guaranteed to exist and
they are essentially unique.8

Corollaries 1, 2 and 3 directly follow from the proof Theorem1. Specifically,
Corollary 1 is a consequence of arguments following (34, 45), Corollary 2 follows
from using PA ≤ σ2

u in (24), and Corollary 3 is because of (59) and the arguments
following it.

Remark 3 (On Optimal Encoding Parameters in case of the Trivial
System). In case of a trivial system, by Theorem 1(b), there are infinitely many
combinations of system parameters that achieve optimality. Among those, one
choice for the encoder that is intuitively meaningful is to choose α = 0 and β =
1+

√
PE/σ2

s . This choice corresponds to having U = βS such that E (U − S)2 =
(β − 1)2 σ2

s = PE , i.e., the encoder chooses not to send any information on
the watermark X and chooses the scaling factor β such that the first power
constraint in (19) is satisfied with equality. Note that, such a choice ensures
continuity between the values of the system parameters at optimality across
non-trivial and trivial regions (cf. Remark 4).

Remark 4 (On Optimal Operation Regimes)
(a) Variation with respect to system inputs: For PE ≥ PA, the system always
operates at the non-trivial mode at optimality since

√
PA − √

PE ≤ 0 ≤ σs. For

8 In the proof of Theorem 1, all expressions that involve α are, in fact, functions of α2;
therefore if α∗ is optimal, so is −α∗. To account for such multiple trivial solutions,
we use the term “essential uniqueness”.
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fixed σ2
s and PE , as PA increases, the strength of the attack channel increases

and the attacker is able to act with a better “budget”. As PA increases, when
we reach PA =

(
σs +

√
PE

)2 + ε for an arbitrarily small ε > 0, the feasible
region for the encoder becomes the empty set (cf. (54)) and a transition from
the non-trivial mode to the trivial mode occurs. Conversely, for fixed PA and for
fixed PE (resp. σ2

s), as σ2
s (resp. PE) increases, we observe a transition from the

non-trivial region to the trivial region.
(b) Continuity between the regions: Suppose we have a system that is initially

in the non-trivial region with PA <
(
σs +

√
PE

)2. Then, we have

lim
PA↑(σs+

√
PE)2

σ2
u = PA =

(
σs +

√
PE

)2

, (60)

lim
PA↑(σs+

√
PE)2

β =
1
2

σ2
s − PE +

(
σs +

√
PE

)2

σ2
s

= 1 +

√
PE

σ2
s

, (61)

lim
PA↑(σs+

√
PE)2

α = 0, (62)

lim
PA↑(σs+

√
PE)2

κ = lim
PA↑(σs+

√
PE)2

σ2
z = 0, (63)

lim
PA↑(σs+

√
PE)2

J = σ2
x, (64)

where (60) follows from noting that the feasible region (54) converges to the
singleton PA =

(
σs +

√
PE

)2, (61, 62) follow from using σ2
u =

(
σs +

√
PE

)2

in (21, 22), respectively, and (63, 64) follow from using σ2
u = PA in (23, 24),

respectively. Note that, the attack parameters (63) and the optimal cost value
(64) readily satisfy continuity with their unique counterparts of Theorem1(b).
Furthermore, it can be shown that the encoder parameters (61, 62) achieve
optimality in the trivial regime (cf. Remark 3).

Remark 5 (Performance Bounds). We focus here on deriving bounds on
the cost for the more interesting case of Theorem 1(a) when

(√
PA − √

PE

)
<

σs. Note that (24), and problem construction clearly imply the bounds of
0 ≤ J ≤ σ2

x. The upper bound is tight and can be attained for PA =
(
σs +

√
PE

)2. In order to obtain a potentially tighter lower bound, we ini-
tially proceed with deriving an upper bound on α. Consider the polynomial
g

(
σ2

u

) �
=

[(
σs +

√
PE

)2 − σ2
u

]
·

[
σ2

u − (
σs − √

PE

)2
]
. Then, it is straightfor-

ward to show that g (·) is concave and that ∂g
σ2

u
= −2σ2

u +
(
σs − √

PE

)2 +
(
σs +

√
PE

)2 = −2σ2
u +2

(
σ2

s + PE

)
. Hence g (·) is maximized for σ2

u = σ2
s +PE .

Using this in (22) yields the following upper bound on α:

α ≤

√
√
√
√g (σ2

u)
∣
∣
∣
σ2

u=σ2
s+PE

4σ2
sσ2

x

=

√
PE

σ2
x

. (65)
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Furthermore, using (65) on (24), we get

J ≥ σ2
x

[

1 − PE
σ2

u − PA

σ4
u

]

. (66)

Define h
(
σ2

u

) �
= σ2

u−PA

σ4
u

. It is straightforward to show that for σ2
u ≥ PA, h (·) is

concave and the maximizer is 2PA, which yields h
(
σ2

u

) ≤ 1
4PA

. Using this result
in (66) and combining it with the previously mentioned bounds, we get

max
(

0, σ2
x

(

1 − PE

4PA

))

≤ J ≤ σ2
x. (67)

We thus have a non-trivial lower bound for J if PA > PE/4.

Remark 6 (Role of the Watermark Power σ2
x). A quick inspection of

Theorem 1 reveals that the optimal operational mode of the resulting system
depends on σ2

s , PA, and PE , and is independent of the watermark power σ2
x.

Intuitively, this is because of two reasons: First, because of the nature of the
underlying problem, we do not impose any distortion constraint between X and
any other variable in the system. Next, the scaling parameter α can be used to
adjust the contribution of the watermark (cf. (14)) to make it arbitrarily large
or arbitrarily small. Indeed, (22) implies the following: For fixed σ2

s , PA, PE , if
a pair of

(
α1, σ

2
x,1

)
is optimal in the sense of Theorem 1, then so is another pair

(
α2, σ

2
x,2

)
if and only if α1σx,1 = α2σx,2. On the other hand, σ2

x directly affects
the value of the resulting cost J .

Remark 7 (Asymptotics - Large Signal Case). It is possible to obtain
some asymptotics when σ2

s � PE , PA. In that case, the system will operate at
the non-trivial mode at optimality (governed by Theorem1(a)). Then, (20) can
be written as

f
(
σ2

u

) ∼ σ6
u −σ2

u

(
σ4

s + 2PAσ2
s

)
+2PAσ2

s =
(
σ2

u − σ2
s

) (
σ4

u + σ2
uσ2

s − 2PA

)
. (68)

Thus, at optimality, using σ2
s � PE , PA, we have

σ2
u ∼ σ2

s , (69)

β ∼
[
1
2

σ2
u + σ2

s

σ2
s

]

∼ 1, (70)

α ∼

√
√
√
√

[(
σs +

√
PE

)2 − σ2
s

] [
σ2

s − (
σs − √

PE

)2
]

4σ2
sσ2

x

=

√
PE

σ2
x

, (71)

J ∼
[

σ2
x − σ4

x

α2

σ2
s

]

∼
[

σ2
x

(

1 − PE

σ2
s

)]

(72)

where (69) follows from the fact that σ2
s is the unique root of (68) in the region

of interest, (70) and (71) follow from using (69) in (21) and (22), respectively,
(72) follows from using (69, 71) in (24).
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Fig. 2. System behavior at optimality as a function of σ2
s for the case of σ2

x = 10;
solid, dashed, dash-dotted, and dotted lines represent the cases of (PA = 1, PE = 16),
(PA = 1, PE = 4), (PA = 4, PE = 1), (PA = 16, PE = 1), respectively. By Remark 3 of
Sect. 3.3, we use α = 0 and β = 1 +

√
PE/σ2

s in case of a trivial system.

4 Numerical Results

In this section, we numerically illustrate the behavior of the optimal scalar-
Gaussian soft watermarking system as a function of the power of the unmarked
signal, σ2

s . The results are presented in Figs. 2 and 3 for a fixed watermark power
σ2

x = 10 owing to the discussion in Remark 6. Because of the linear relationship
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between κ and σ2
z , we do not show σ2

z vs σ2
s plots since κ vs σ2

s plots are already
present.

In Fig. 2, solid, dashed, dash-dotted and dotted lines correspond to
the cases of (PA = 1, PE = 16), (PA = 1, PE = 4), (PA = 4, PE = 1), and
(PA = 16, PE = 1), respectively. Here,

– (a) and (b) show J vs σ2
s for the whole range and for σ2

s small, respectively;
– (c) and (d) show σ2

u vs σ2
s for the whole range and for σ2

s small, respectively;
– (e), (f), and (g) show α, β and κ as functions of σ2

s , respectively.

By Theorem 1, the system always operates in the non-trivial mode for PA ≤
PE (solid and dashed lines), and it operates in the trivial mode for σ2

s ≤
(√

PA − √
PE

)2 for PA > PE , i.e., trivial mode for σ2
s ≤ 1 for (PA = 4, PE = 1)

(dash-dotted line) and σ2
s ≤ 9 for (PA = 16, PE = 1) (dotted line), which is

clearly observable in panel (b). Note the continuity in the behavior of all system
elements during the transition between trivial and non-trivial regions.

In Fig. 3, solid and dashed lines represent true values and large-signal approx-
imations for PA = PE = 1. As expected, the large-signal approximation becomes
more accurate as σ2

s increases.
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Fig. 3. System behavior at optimality as a function of σ2
s for the case of σ2

x = 10, PA =
PE = 1; solid and dashed lines represent true values and large signal approximation
(cf. Remark 7 of Sect. 3.3), respectively.
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5 Conclusions

We have introduced the zero-sum game problem of soft watermarking where the
hidden information has a perceptual value and comes from a continuum, unlike
the prior literature on robust data hiding where the focus has been on cases where
the hidden information is an element of a discrete finite set. Accordingly, the
receiver produces a soft estimate of the embedded information in the proposed
setup. As a first step toward this new class of problems, we focus in this paper
on the scalar-Gaussian case with the expected squared estimation error as the
cost function and analyze the resulting zero-sum game between the encoder &
decoder pair and the attacker. Expected distortion constraints are imposed both
on the encoder and the attacker to ensure the perceptual quality. Restricting
the encoder mapping to be linear in the watermark and the unmarked host, we
show that the optimal attack mapping is Gaussian-affine. We derive closed-form
expressions for the system parameters in the sense of minimax optimality. We
further discuss properties of the resulting system in various aspects, including
bounds and asymptotic behavior, and provide numerical results.

Our future work includes an information-theoretic analysis of the problem
considered here, and extensions to settings with privacy and security constraints
(see e.g., [5] for an analysis under privacy constraints).
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Abstract. Many verifiable electronic voting systems are dependent on
voter-initiated auditing. This auditing allows the voter to check the con-
struction of their cryptographic ballot, and is essential in both gaining
assurance in the honesty of the constructing device, and ensuring the
integrity of the election as a whole. A popular audit approach is the
Benaloh Challenge [5], which involves first constructing the complete
ballot, before asking the voter whether they wish to cast or audit it.

In this paper we model the Benaloh Challenge as an inspection game,
and evaluate various voter strategies for deciding whether to cast or
audit their ballot. We shall show that the natural strategies for voter-
initiated auditing do not form Nash equilibria, assuming a payoff matrix
that describes remote voting. This prevents authorities from providing
voters with a sensible auditing strategy. We will also show that when
the constructing device has prior knowledge of how a voter might vote,
it critically undermines the effectiveness of the auditing. This is partic-
ularly relevant to internet voting systems, some of which also rely on
Benaloh Challenges for their auditing step.

A parallel version, in which the voter constructs multiple ballots and
then chooses which one to vote with, can form Nash equilibria. It still
relies on some uncertainty about which one the voter will choose.

1 Introduction

Verifiable electronic voting systems aim to provide strong integrity guarantees
and protection from tampering. In order to deliver this, they provide a number
of verifiability properties, namely, cast-as-intended and counted-as-cast. Cast-
as-intended means that the cast ballot accurately reflects the intentions of the
voter, it is verifiable if the voter has the opportunity to gain assurance that the
vote was cast in keeping with their intentions. Counted-as-cast means that the
cast ballots are correctly counted.

In this paper we are only interested in the first of these properties, cast-as-
intended. A popular technique for providing cast-as-intended verifiability is to
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provide an auditing step of ballots. Such a step aims to assure the voter that
ballot is correctly constructed, and will therefore accurately reflect their vote.
The exact methodology of the audit is dependent on the system, but broadly falls
into two categories, cut-and-choose [2] and the Benaloh Challenge [5]. The cut-
and-choose approach is applicable to systems that pre-construct ballot papers.
Such systems allow a voter to choose whether to audit or vote with the ballot
they are given. If they choose to audit, the ballot is opened and the voter may
check the construction of any cryptographic values. However, once a ballot has
been audited it cannot be used for voting, since this would break the privacy of
the voter and the secrecy of the ballot. Provided a sufficient number of audits
are performed, and assuming none fail and that the constructing device did
not know whether a particular ballot would be audited, there is a very high
probability that the ballots were honestly constructed. Crucially, the audit takes
place prior to the voter expressing any preferences. Such an approach is used in
Prêt à Voter [13] and Scantegrity [8].

The Benaloh Challenge is similar, except it is used in systems where ballots
are not pre-constructed. In such systems, a voter first enters their preferences
and constructs their encrypted ballot on a voting device, they are then given the
choice of whether they wish to vote or audit the constructed ballot. If they choose
to audit it, the ballot is opened, allowing the voter to check the cryptographic
construction of the ballot. Crucially, the audit takes place after the voter has
expressed their preferences. Like the cut-and-choose approach, once a ballot has
been opened it cannot be used for voting, and therefore the voter must construct
a new ballot to vote with. Such an approach is used in Helios [1], Wombat [4]
and Star-Vote [3]. Both approaches allow voters to repeat the audit step as many
times as they like—the protocol ends when the voter decides to cast their ballot.
As such, their final cast ballot will not be audited, and their assurance that it
has been cast-as-intended is based on having run a number of successful rounds
of auditing previously, or in the general case, that enough other people have run
successful rounds of auditing.

In this paper, we will evaluate Benaloh Challenges from a game theoretic
point of view using a game that describes the payoffs of a remote voting setting.
We analyze the effectiveness of various voter strategies when choosing whether
to cast or audit a constructed ballot, and the corresponding device strategies for
constructing a dishonest ballot. We will show that none of the natural strate-
gies for voter-initiated auditing, using Benaloh Challenges, form Nash equilibria.
This presents a particular problem for voting systems relying on such auditing,
since it precludes providing the voter with instructions on a sensible auditing
strategy. The provision of such advice, when it does not form a Nash equilib-
ria, can do more harm than good, creating a potential advantage for a cheating
device. This calls into question the validity of the cast-as-intended auditing in
verifiable remote electronic voting systems that utilise Benaloh Challenges. Mod-
elling an attendance voting setting, in which there is a higher penalty for device
misbehaviour, is important future work.



Strategies for Voter-Initiated Election Audits 237

A simple parallel variant, in which voters are instructed to make multiple
ciphertexts and then choose one to vote with, can form a Nash equilibrium.
However, this too needs careful analysis of the cheating machine’s ability to
guess which vote will be cast. The estimate must be correct or what seems to be
a Nash equilibrium might not be.

2 Voter-Initiated Auditing

We are primarily interested in voter-initiated auditing used in schemes that
construct encrypted ballots. As such, we shall focus on Benaloh Challenges [5],
which have been widely adopted as the auditing technique for such schemes.

2.1 Purpose of Auditing

Arguably the purpose of audits is not just to detect cheating, but to provide
an evidence trail after the fact to support an announced election outcome. For
example, Risk Limiting Audits [12] of a voter-verifiable paper trail provide a
statistical bound on the likelihood that an undetected error might have changed
the election outcome. We might hope to conduct a statistical assessment of the
transcript of a voter-initiated electronic auditing procedure, in order to produce
the same sort of guarantee. However, this work shows that such an assessment
would be very difficult to perform. In particular, a naive computation of the
probability of detection given the rate of auditing would give an incorrectly high
degree of confidence.

2.2 Origins of Benaloh Challenges

Benaloh Challenges were first introduced in [5], and later refined in [6]. Benaloh
Challenges are an auditing technique that can be used by voting systems that
construct encrypted ballots. They are commonly referred to as “cast-or-audit”,
on account of the technique involving first constructing an encrypted ballot, fol-
lowed by asking the voter whether they wish to cast or audit it. If the voter
chooses to cast the ballot it will be signed, or otherwise marked for voting, and
included in the tally. If the voter chooses to audit the ballot, the encryptions
are opened to allow the voter to verify that the ballot was correctly constructed
from their preferences. The Benaloh style of auditing has been widely adopted
in the verifiable voting field, in both theory and practice, including in Helios [1],
VoteBox [15], Wombat [4], and StarVote [3]. Of particular interest is Helios [1],
which is a web-based open-audit voting system, which has been used in bind-
ing elections, notably, the International Association for Cryptologic Research
(IACR) elections.
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2.3 Making Audit Data Public

Benaloh, in [6], makes no mention of whether the audit information is made
public. However, there is a discussion on providing assurance of integrity to a
wider population from a smaller random sample of audits. This would seem to
indicate the necessity that the auditing is made public, so as to enable that
wider population to inspect it. The original version of Helios [1] did not mention
the posting of audit data, however, in Helios V3 there is a provision for posting
audit data to the public bulletin board [10]. In Wombat [4] the audited ballot
must be shown to an election worker, and taken home to be checked, all of which
threatens the secrecy of the vote.

2.4 Revealing Voter Intent via an Audit

The auditing step, by its very nature, reveals a set of preferences and the cor-
responding ciphertext construction. If those preferences are a true reflection of
the voters intent, the audit will reveal the voters intent, and thus break ballot
secrecy. This is equally problematic whether the information is posted publicly,
or shown to an election official for checking.

If the voter is deciding after construction whether to vote or audit, as
described in [6], the voter will be obliged to always construct a ballot with their
true preferences, and as a result, any audit will break ballot secrecy. A simple
counter strategy is for the voter to construct a ballot with fake preferences to
audit. Crucially, this requires the voter to decide whether to cast or audit prior
to ballot construction. It is critical that the machine cannot distinguish between
a voter creating a genuine ballot and a voter constructing an audit ballot.

2.5 Indistinguishability of Real and Fake Ballots

The requirement for indistinguishability between a ballot that will be audited
and one that will be voted with is implicitly covered by an assumption in [6],
which states that it is crucial that the ballot encryption device does not receive
any information that may indicate the likelihood of a ballot being audited. How-
ever, realising this assumption presents a significant challenge, even in a secure
polling place. Whilst it seems possible that the voters identity could be hid-
den from the machine, it seems impossible to exclude global information from
being used to indicate whether a ballot will be cast or audited. Such information
could include voting preference patterns, geographical voting patterns and elec-
tion wide voter guidelines, all of which could be used to infer information about
whether a ballot is being constructed for voting or audit.

For example, it is easy to see how voters could easily fall into a pattern of
auditing one ballot, and if that succeeds, voting with the next. Such a pattern
has been seen in real-world elections using Helios, in [11] the authors analyse the
first IACR election, showing a clear pattern for performing zero or one audit,
but very rarely anymore.
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2.6 Benaloh Challenges in Remote Voting

Benaloh Challenges were proposed for the supervised voting setting, and not for
remote voting. Supervised voting refers to voting that takes place in a controlled
environment, for example, at a polling location on election day. Remote voting is
considered to be any voting that takes places outside of a controlled environment,
for example, voting from home over the internet. Helios [1] is a remote voting
system which constructs ballots on a voter’s own device. Such a device is likely
to be able to infer significant information about the behaviour, and therefore
voting preferences, of the user. In particular, since Helios was first designed in
2008, there has been a great increase in the intrusiveness of privacy invasion via
identifying individuals’ online behaviour [9]. It is clear that in the remote setting
it is feasible for the device to be able to predict the voting intention of the voter.
In the supervised setting, identifying an individual voter is unlikely, however,
identifying groups of voters, or general patterns, is still feasible.

The payoffs for cheating and the penalties for failure are also different in
the remote vs attendance setting. In the remote setting, typically only one or
two voters use the same device, and there is no independent check when cheat-
ing is detected; in the attendance setting, a successfully cheating device could
take hundreds or thousands of votes, and the penalties for cheating could be
severe. For the rest of the paper, we consider only the remote setting, leaving
the attendance game for future work.

3 The Game Theory Model - Inspection Game

We model the interaction as an inspection game in which the voter is the inspec-
tor and the device wins only if it cheats and is not inspected. Voters incur a small
cost for inspecting, a benefit from successfully casting the vote of their choice,
and a large cost for having their vote inaccurately recorded. The device (which
aims to cheat) benefits from getting away with casting a vote other than the
voter’s intention.

The voter begins with a true vote vt chosen from a publicly-known probability
distribution Π.

In the first step, the voter (V ) chooses a vote from the range of Π and sends
it to the device (D). The device then chooses whether to encode it truthfully
(T ) or falsely (F ), but this choice cannot be observed by V . Next, V may cast
the vote (C), in which case the game ends without revealing the device’s choice,
or she may audit the vote (A), so the device’s choice is revealed. If she audits
a truthfully-encoded vote, the process begins again. Otherwise, the game ends.
Payoffs for one step of the game are shown in Fig. 1. GV is a positive payoff
reflecting the voter’s successful casting of her intended ballot; −BV is the nega-
tive payoff when she is tricked into casting a vote other than vt. For the device,
GD is the positive payoff associated with successfully casting a vote other than
the voter’s intention; −BD is the negative payoff associated with being caught
cheating. The voter incurs a small cost −caudit for each audit.
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Voter(V )
Cast(C ) Audit(A)

Device (D)
Truthful(T ) (0, GV ) Add(0, −caudit); repeat .
False(F ) (GD, −BV ) (−BD, −caudit)

Fig. 1. Payoffs for one step of the game. If the device is truthful and the voter audits,
the game repeats.

Voter Payoff Device Payoff Description

ncast > nfalse −nfalsecaudit −BD Voter catches cheating device.
ncast = nfalse −(ncast − 1)caudit − BV GD Device successfully cheats.
ncast < nfalse −(ncast − 1)caudit + GV 0 Voter votes as intended.

Fig. 2. Payoffs for the extended game. The voter casts at step ncast; the device encodes
falsely (for the first and only time) at step nfalse

In order to model the repeated nature of the game, the voter’s strategy is a
sequence of n votes, followed by n choices to audit, then a final n + 1-th vote
that is cast. The device’s strategy is a sequence of choices to encode truthfully
or falsely, which may be random or may depend on what the voter has chosen.

Assumptions.

1. that caudit < BV ,
2. that (it’s common knowledge that) the voter never casts a vote other than vt,

Whatever the voter’s strategy, the first false encoding by the device ends the
game. We can therefore describe D’s strategy completely as a choice of nfalse,
the first step at which D encodes falsely, preceded by truthful rounds. Of course
this can be random, or can depend on the votes that the voter has requested
before then. The game’s outcome depends on whether nfalse is earlier, later, or
exactly equal to the round ncast in which the voter chooses to cast. This gives
us the payoff table, shown in Fig. 2, for the extended game.

3.1 Negative Results: Simple Sequential Strategies Do Not Form
Nash Equilibria

As expected in an inspection game, it is immediately clear that there is no pure
strategy equilibrium. Indeed, there is no equilibrium with a fixed value of n.

Lemma 1. If caudit < BV , there is no Nash equilibrium in which the voter’s
number of audits is fixed.

Proof. Suppose V always audits ncast − 1 times, and suppose this is a Nash
equilibrium with some strategy SD by the device D. Then SD must specify
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encoding untruthfully in the ncast-th round—otherwise there would be a strict
unilateral improvement by doing so. But this gives V a payoff of ncaudit − BV ,
which is bad. This could be improved to (n − 1) ∗ caudit by auditing at round
ncast, which is strictly better assuming that caudit < BV . ��

Also backward induction applies:

Lemma 2. Suppose there is a common-knowledge upper bound nmax on ncast.
If caudit < BV , then there is no Nash equilibrium in which the voter votes as
intended.

Proof. Backward induction. The device’s best response is to cheat at round nmax,
whenever the game gets that far, thus giving V the worst possible payoff. But
then V improves her payoff by never waiting until nmax, and instead casting at
round nmax − 1. The induction step is similar: if V is guaranteed not to audit at
round ni, then D should cheat at round ni, and V would improve her payoff by
casting at round ni − 1. ��
Lemma 3. There is no Nash equilibrium in which, for any n, the probability
that D encodes falsely at round n is zero.

Proof. V should always cast then, so D should always cheat then. ��
Now we can address our main question: whether information about the true

vote can influence the device’s success in getting away with cheating (and hence
both parties’ payoffs in the game).

Lemma 4. If −BD < 0, there is no Nash Equilibrium in which, with nonzero
probability, D falsely encodes a vote outside the support of Π.

Proof. Suppose SD is a device strategy and let n be the first round at which,
with nonzero probability, V chooses and D falsely encodes a vote outside the
support of Π. Then V will certainly audit this vote (by Assumption 2), leading
the device to a payoff of −BD, the worst possible. If D was always truthful, it
could guarantee a payoff of 0. ��
Lemma 5. If −BD < 0, then every device strategy in which, with nonzero prob-
ability, D falsely encodes a vote outside the support of Π, is weakly dominated.

Proof. Similar. Weakly dominated by the always-truthful strategy. ��
So whether we take the solution concept to be Nash Equilibrium or survival of

iterated deletion of weakly dominated strategies, we see that there is no solution
in which the device falsely encodes a vote that the voter could not possibly
intend to cast. This has important implications, particularly for voting from
home, where the device may have very accurate information about the voter’s
intentions. In many practical scenarios, Π is a point function—the device knows
exactly how the person will vote.
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Note that the argument does not hold if BD = 0, meaning that there is no
downside to being caught cheating.

The strategy most commonly recommended to voters is to toss a coin at each
stage and then, based on the outcome, to either cast their true vote vt or choose
some vote and audit it. We distinguish between a few such strategies:

TruthAndCoinToss. Always request vt; toss a coin to decide whether to cast
or audit.

PiAndCoinToss. Toss a coin to decide whether to cast or audit; in the case of
audit, choose a vote at random according to Π.

These two are the same if Π has only one nonzero probability.
On the device side, recall that the strategy is determined entirely by the

choice of which round to encode untruthfully in. We have already argued that
there is no Nash equilibrium in which there is an upper bound on nfalse

(Lemma 3). We first examine the equilibria in which the voter plays TruthAnd-
CoinToss. There is no new information communicated to the device as this
strategy plays out: SD consists entirely of a (static) probability distribution for
choosing nfalse.

We begin with the surprising result that there is no Nash equilibrium in
which V plays TruthAndCoinToss—the probability of detecting cheating
falls off too quickly.

Theorem 1. There is no Nash equilibrium in which V plays TruthAndCoin-
Toss.

Proof. We’re assuming that Pr(ncast = i) = 1/2i. Crucially, the game tree has
only one branch, the one in which the voter always requests the same vote. The
device’s strategy is therefore simply a probability distribution PD for nfalse. Its
expected payoff is

E(D’s payoff) =

∞∑
i=1

(
GDPr(ncast = i)PrD(nfalse = i)−BDPr(ncast > i)PrD(nfalse = i)

)

= (GD −BD)

∞∑
i=1

PrD(nfalse = i)/2i

(Note that the case in which ncast > i and nfalse = i gives D a zero payoff.)
This is strictly maximised by setting PrD(nfalse = 1) = 1, that is, falsely

encoding always on the first round. But then V could improve her payoff by
always auditing in round 1 (by Assumption 1, caudit < BV ). ��

The following corollary shows that, if the device knows exactly how the voter
is going to vote, the coin-tossing advice doesn’t produce a Nash equilibrium.

Corollary 1. If Π is a point function, then there is no Nash equilibrium in
which V plays PiAndCoinToss.

Proof. Immediate from Theorem 1
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This easily generalises to any exponentially-decreasing auditing strategy with
any coefficient. Suppose the voter, at round i, chooses to audit the vote with
probability r, and otherwise to cast. The generalised strategies are

TruthAndRandomChoice(r). Always request vt; audit with probability r,
otherwise cast.

PiAndRandomChoice(r). Audit with probability r, otherwise cast. In the case
of audit, choose a vote at random according to Π.

Again these are not part of any Nash equilibrium.

Lemma 6. There is no Nash equilibrium in which V plays TruthAnd
RandomChoice(r) for any r ∈ (0, 1).

Proof. First compute the probabilities of casting at or after round i:

Pr(ncast = i) = ri−1(1 − r).

Pr(ncast > i) = ri.

So we can recompute D’s expected payoff as

E(D’s payoff) =
∞∑

i=1

(
GDri−1(1 − r)PrD(nfalse = i) − BDriPrD(nfalse = i)

)

= [(1 − r)GD − rBD]

∞∑

i=1

PrD(nfalse = i)ri−1

= [(1 − r)GD − rBD]

(
PrD(nfalse = 1) + r

∞∑

i=2

PrD(nfalse = i)ri−2

)

≤ [(1 − r)GD − rBD] (PrD(nfalse = 1) + r(1 − PrD(nfalse = 1)))

≤ [(1 − r)GD − rBD]PrD(nfalse = 1) because r < 1.

Again, this is strictly maximised, to [(1−r)GD −rBD], when PrD(nfalse = 1) =
1. In other words, the device always cheats in the first round. This is clearly not
part of any Nash equilibrium in which the voter does not always audit. ��

This result generalises to Π being a more general distribution over possible
votes. Suppose the Voter’s strategy is PiAndRandomChoice(r). Suppose also
that the voter’s true vote vt is chosen according to Π. One way to think of
it is that Π represents the voter’s guess about what the machine guesses V ’s
distribution to be. In equilibrium, they should match.

Theorem 2. There is no Nash equilibrium in which V plays PiAndRandom
Choice(r) for any r ∈ (0, 1) or any probability distribution Π, assuming that
the true vote vt is also chosen according to Π.

Proof. Think about the tree of all possible sequences of vote requests, shown in
Fig. 3. The device’s strategy is described by a probability PD that takes a node
N in the tree and outputs a probability of playing F for the first time at N .
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i=1

Nb i=2

E(D)=PrD(Nb, false)
×[Π(V2)Π(V4)]r

i−1

×[(1 − r)GD − rBD]

V4

V2

Na i=1

E(D)=PrD(Na, false)
×Π(V3)r

i−1

×[(1 − r)GD − rBD]

V3

i=1

V4

i=1

V5

i=1

V2

i=2

V2 V3

Nc i=3

E(D)=PrD(Nc, false)
×[Π(V6)Π(V3)Π(V4)]r

i−1

×[(1 − r)GD − rBD]

V4V5 V6

V3 V4 V5 V6

V6

Fig. 3. Game tree

To be a meaningful probability distribution, we require that, along any (possibly
infinite) path p down the tree,

∑
N∈p PD(N, false) ≤ 1.

The probability of reaching node N at all, assuming that D is truthful until
then, is determined by V ’s strategy SV . The probability that a particular node
N is reached is simply the product of all the vote choices along that path, times
ri−1, where i is its depth in the tree (starting at 1).

Since a false encoding ends the game (one way or another), we can attach an
expected payoff to each node, representing D’s expected payoff from the game
ending at that node. Remember that when D is truthful it derives no payoff. For
example, in Fig. 3, the probability of reaching node Nb is [Π(V2)Π(V4)]r and the
probability the device plays false at that node is PrD(Nb, false). In general:

E(D’s payoff from node N) = [(1 − r)GD − rBD]PrD(N, false)PrSV (N is reached)

We claim that D’s best response to PiAndRandomChoice(r) is to play false
always at i = 1. In other words, to cheat at the first opportunity. To see why,
suppose instead that there is some best response PD−best, in which there is some
(parent) node Np at level i ≥ 1 such that
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∑

Nc a child of Np

PD−best(Nc, false) > 0.

But now D’s payoff can be strictly improved by shifting to strategy P ′
D−best

in which all the probabilities in Np’s children are shifted up to Np. Let α =∑
Nc a child of Np

PD−best(Nc, false). The improved strategy is:

P ′
D−best(N, false) =

⎧
⎨

⎩

PD−best(N, false) + α, when N = Np;
0 when N is a child of Np;
PD−best(N, false) otherwise.

This is strictly better than PD−best because the total probability of reaching
any of Np’s children is at most r (conditioned on having reached Np), which is
less than 1. The expected payoff is increased by at least (1−r)α[(1−r)GD−rBD].

Hence there is no best response to PiAndRandomChoice(r) other than
always playing false at the first opportunity. Hence PiAndRandomChoice(r)
is not part of any Nash equilibrium. ��

3.2 Positive Results: Parallel Strategies Can Form Nash Equilibria,
but only if the Device’s Probability of Guessing the Voter’s
Choice Is Small Enough

Now consider an apparently-slight variation: instead of auditing sequentially,
the voter makes some fixed number (k) of ciphertexts, chooses one at random
to cast, then audits the other k − 1. Again, if they’re all the same, the device
has no information about which one will be cast, but privacy is compromised;
if they’re not all the same then the voter has to simulate some distribution for
the k − 1 that are audited. In either case, if the device’s probability of guessing
correctly which vote will be cast is α, its expected payoff for cheating is

E(D’s payoff from cheating) = [αGD − (1 − α)BD]

If all the votes are identical, or if the device has no information about how
V will vote, then α = (k − 1)/k. Depending on whether its expected payoff for
cheating is positive or negative, it will be a Nash equilibrium either to cheat on
the most-likely-voted ciphertext, or not to cheat, and for the voter to audit as
instructed.

4 Conclusion

We have shown that none of the natural sequential strategies for voter-initiated
auditing form Nash equilibria in a game that captures remote (Internet) voting.

This is significant because voter-initiated auditing is probably the most
promising of strategies for verifiable Internet voting. The only alternatives are
codes [7,14], which require a secrecy assumption and hence a threshold trust
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assumption on authorities, and which anyway don’t work for complex ballots.
Preprinted auditable ballots [8,13] only work in polling places. We have shown
that voter-initiated auditing must be conducted with multiple parallel ballots,
rather than sequential challenges.

The next step is to repeat the analysis for a game that captures the payoffs
for polling-place voter-initiated auditing. This setting has a significantly higher
cost to the device for cheating, so probably has very different equilibria.

Acknowledgments. Thanks to Wojtek Jamroga, Ron Rivest, and Josh Benaloh for
interesting conversations about this work.
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Abstract. Many real-world security problems can be modeled using
Stackelberg security games (SSG), which model the interactions between
a defender and attacker. Green security games focus on environmental
crime, such as preventing poaching, illegal logging, or detecting pollu-
tion. A common problem in green security games is to optimize patrolling
strategies for a large physical area such as a national park or other pro-
tected area. Patrolling strategies can be modeled as paths in a graph
that represents the physical terrain. However, having a detailed graph to
represent possible movements in a very large area typically results in an
intractable computational problem due to the extremely large number
of potential paths. While a variety of algorithmic approaches have been
explored in the literature to solve security games based on large graphs,
the size of games that can be solved is still quite limited. Here, we intro-
duce abstraction methods for solving large graph-based security games
and integrate these methods with strategy generation techniques. We
demonstrate empirically that the combination of these methods results
in dramatic improvements in solution time with modest impact on solu-
tion quality.

Keywords: Security · Green security · Abstraction · Contraction ·
Game theory

1 Introduction

We face many complex security threats with the need to protect people,
infrastructure, computer systems, and natural resources from criminal and ter-
rorist activity. A common challenge in these security domains is making the best
use of limited resources to improve security against intelligent, motivated attack-
ers. The area of green security focuses on problems related to protecting wildlife
and natural resources against illegal exploitation, such as poaching and illegal
logging. Resource limitations are particularly acute in fighting many types of
environmental crime, due to a combination of limited budgets and massive areas
c© Springer International Publishing AG 2016
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that need surveillance and protection. For example, it is common for small num-
bers of rangers, local police, and volunteers to patrol protected national parks
that may cover thousands of square miles of rugged terrain [22].

Work on green security games [7,11] has proposed formulating the problem of
finding optimal patrols to prevent environmental crime as a Stackelberg security
game [25]. In these games, the defender (e.g., park ranger service) must decide
on a randomized strategy for patrolling the protected area, limited by the geo-
graphic constraints and the number of available resources. The attacker (e.g.,
poacher) selects an area of the park to attack based on the intended target and
knowledge of the typical patrolling strategy (e.g., from previous observations
and experience). Green security games are used to find randomized patrolling
strategies that maximize environmental protection given the resources available.

Green security games typically model the movement constraints for the
defender patrols using a graph representing the physical terrain. Unfortunately,
this leads to a major computational challenge because the number of possible
paths for the defender grows exponentially with the size of the graph. Enu-
merating all possible combinations of paths for multiple resources makes the
problem even more intractable [29,35]. Several algorithms have been proposed
in the literature to solve these games more efficiently [24,28]. Most of these rely
on incremental strategy generation (known as double oracle algorithms, or col-
umn/constraint generation) to solve an integer programming formulation of the
problem without enumerating the full strategy space. The most recent applica-
tion called PAWS [10] approaches the scalability issue by incorporating cutting
plane and column generation techniques.

Here, we take a new approach that combines strategy generation methods
with automated game abstraction methods based on graph contraction. The
idea of using automated abstraction has been very successful in solving other
types of very large games, such as computer poker [16,17,19,20,40]. The basic
idea of our game abstraction is motivated by graph contraction techniques used
to speed up pathfinding and other computations on graphs. When we apply
graph contraction to a green security game, it dramatically reduces the strategy
space for the defender, leading to lower solving time. To improve scalability
even further we integrate graph contraction with strategy generation to create
a new class of algorithms capable of solving very large green security games.
We evaluate our new algorithms on graph-based security games motivated by
the problems encountered in green security domains, including some based on
real world data sets. The experiments show that we can dramatically improve
solution times by using abstraction in combination with strategy generation,
leading to high-quality approximations within seconds even for graphs with a
thousand nodes.

2 Related Work

The first approach to compute security resource allocations was to find a ran-
domized strategy after enumerating all possible resource allocations [29], which
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is used by the Los Angeles Airport Police in an application called ARMOR [30].
A more compact form of security game representation was used [25] to develop a
faster algorithm (IRIS [35]), which is used for scheduling by the Federal Marshal
Service (FAMS). ASPEN [24] was introduced to deal with the exponential size
of games with complex scheduling constraints by using a branch-and-price app-
roach. Most recently, to tackle more massive games an approach based on cutting
planes was introduced [38] to make the solution space more manageable. Game
theoretic algorithms are also used to secure ports [32] and trains [39]. Recently,
successful deployment of game theoretic applications motivated researchers to
use game theory in green security domains [7,21,37]. This led to new game model
called GSG [11]. Assumptions about the attacker being able to fully observe the
defender strategy can be unrealistic in some cases, so partial observability and
bounded rationality have been introduced to make the attacker model better
fit the practice. Defender payoff uncertainty has also been addressed with these
issues in an algorithm called ARROW [28]. Despite the models and algorithms
introduced, how to handle the large strategy space in GSGs remains a challenge.
In this paper, we introduce abstraction techniques to address this problem. Many
abstraction techniques have been developed for extensive form games with uncer-
tainty including both lossy [31] and lossless [18] abstraction. There has been some
work which gives bounds on the error introduced by abstraction [26]. There are
also imperfect recall abstractions that consider hierarchical abstraction [8] and
Earth mover’s distance [13].

Graph contraction techniques [14] have been used to achieve fast routing in
road networks, where contraction acts as a pre-processing step. This method
has been improved using fast bidirectional Dijkstra searches [15,34]. A time-
dependent contraction algorithm has also been introduced for time-dependent
road networks [5]. Graph contraction has also been used in imperfect informa-
tion security games with infinite horizon where the area is patrolled by a single
robot [4]. In this paper, we leverage insights from graph contraction to handle
the large strategy space in GSGs. Another recent closely related work [23] uses
cut-based graph contraction and also column generation approach for restricting
the strategy space, but for a different type of security model based on checkpoint
placement for urban networks.

3 Domain Motivation

Illegal activities such as poaching pose a major threat to biodiversity across all
types of habitats, and many species such as rhinos and tigers. A report [1] from
the Wildlife Conservation Society (WCS) on May 2015 stated that the elephant
population in Mozambique has shrunk from 20, 000 to 10, 300 over the last five
years. Elephants were recently added to the IUCN Red List [2]. Marine species
also face danger due to illegal fishing and overfishing, causing harm to the peo-
ple of coastal areas who depend on fishing for both sustenance and livelihood.
According to World Wide Fund for Nature (WWF), the global estimated finan-
cial loss due to illegal fishing is $23.5 billion [3]. Organizations like WCS are
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(a) Mean numbers of
elephants/0.16km2 in Queen
Elizabeth National Park, Uganda

(b) A graph representation of a grid-based GSG
(a patrolling path is shown in red).

Fig. 1. Domain example and game model.

studying strategies for combating environmental crime that include patrols of
both land and sea habitats to detect and deter poaching. PAWS [10] is a new
application based on green security games that helps to design patrolling strate-
gies to protect wildlife in threatened areas. The area of interest is divided into
grid cells that capture information about the terrain, animal density, etc. Each
grid cell is a potential target for the poachers. The patroller plans a route to
protect the targets along a path. However, if the grid cell is too large (e.g., 1 km
by 1 km) or the terrain is complex, it is very difficult for the patroller to patrol
even a single grid cell without any detailed path provided in the cell. There-
fore, a fine-grained discretization is often required, leading to a large number
of targets and a exponential number of patrol routes that existing solvers can-
not handle. PAWS handles this problem by pre-defining a limited set of routes
based on domain knowledge of features like ridgelines and streams, which can be
found based on elevation changes. We also observe that in many green security
domains, there is a high variance in the importance of the targets. For example,
Fig. 1(a) shows the mean number of elephants in each area of a grid represent-
ing the Queen Elizabeth National Park in Uganda [12]. There are many cells
that have no animal count at all, and if there is minimal activity it is very inef-
ficient to consider these areas as targets to patrol (or poach). This motivates
our abstraction-based approach to make it computationally feasible to directly
analyze high-fidelity maps for green security without preprocessing.

4 Game Model and Basic Solution Technique

A typical green security game (GSG) model is specified by dividing a protected
wildlife area into grid based cells, as shown in Fig. 1(a). Each cell is considered
a potential target ti where an attacker could attempt a poaching action. We
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transform this grid-based representation into a graph as shown in Fig. 1(b). Each
node represents a target ti.

Definition 1. A GSG Graph is a graph G = (V,E) where each node ti ∈ V is
associated with a patrolling distance sti and each edge eij ∈ E is associated with
a traveling distance d(i, j). There exists a base node B ∈ V . A feasible patrolling
path is a sequence of consecutive nodes that starts and ends with B, with a total
distance that does not exceed the distance limit dmax.

For example, in Fig. 1(b), st1 = 100 m. This means that to protect target t1,
the patroller needs to patrol for a distance 100 m within target t1. d(2, 3) = 1 km
indicates the distance from target t2 to t3. The defender patrols to protect every
target on the patrolling path. Therefore, the total distance of a path is the sum
of patrolling and travel distance. Typically the patrol starts in a base station and
ends in the same base station. For example, a patrolling path is shown in Fig. 1(b)
where the patrol starts at t0 and traverses through targets t1 → t6 → t9 → t4
and ends back in target t0.

The defender has a limited number of resources R, each of which can be
assigned to at most one patrolling path that covers a set of targets t ∈ T . So
the defender’s pure strategies are the set of joint patrolling paths Jm ∈ J . Each
joint patrolling path Jm assigns each resource to a specific path. We denote a
patrolling path by pk and the base target by tb. The length of pk is constrained
by dmax.

We use a matrix P = PJmt = (0, 1)n to represent the mapping between
joint patrolling paths and the targets covered by these paths, where PJmt repre-
sents whether target t is covered by the joint patrolling path Jm. We define the
defender’s mixed strategy x as a probability distribution over the joint patrolling
paths J where xm is the probability of patrolling a joint patrolling path Jm. The
coverage probability for each target is ct =

∑
Jm

PJmtxm.
If target t is protected then the defender receives reward U c

d(t) when the
attacker attacks target t, otherwise a penalty Uu

d (t) is given. The attacker receives
reward Uu

a (t) if the attack is on an area where the defender is not patrolling,
or penalty U c

a(t) if the attack is executed in a patrolled area. These values can
be based on the density of the animals in the area attacked, as a proxy for the
expected losses due to poaching activities. We focus on the zero-sum game case
where U c

d(t) = U c
a(t) = 0 and Uu

d (t) = −Uu
a (t). In the rest of the paper, we also

refer to Uu
a (t) as the utility of target t.

We use the Stackelberg model for GSG. In this model, the patroller, who
acts as defender, moves first and the adversary observes the defender’s mixed
strategy and chooses a strategy afterwards. The defender tries to protect targets
T = t1, t2, ..., tn from the attackers by allocating R resources. The attacker
attacks one of the T targets. We focus on the case where the attacker is perfectly
rational and compute the Strong Stackelberg Equilibrium (SSE) [6,27,36], where
the defender selects a mixed strategy (in this case a probability distribution x
over joint patrolling paths Jm), assuming that the adversary will be able to
observe the defender’s strategy and will choose a best response, breaking ties in
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favor of the defender. Given a defender’s mixed strategy x and the corresponding
coverage vector c, the expected payoff for the attacker is

Ua(c, t) = max
t∈T

{(1 − ct)Uu
a (t)} (1)

It is possible to solve this problem by enumerating all feasible joint patrolling
paths [24]. In the case of zero-sum games, the optimal patrolling strategy for the
defender can be determined by solving the following linear program (LP).

min
x,k

k (2)

(1 − Px)Uu
a ≤ k (3)

∑

i
xi ≤ 1 (4)

x ≥ 0 (5)

Equation 2 represents the objective function, which minimizes the expected pay-
off for the attacker, or equivalently, maximizes the expected payoff for the
defender. Constraint 4 makes sure that the probability distribution over the
joint patrolling paths does not exceed one. The solution of the LP is a probabil-
ity distribution x over the joint patrolling paths J , and this is the strategy the
defender commits to. The attacker will choose the target with highest expected
utility, as shown in Constraints 3. This formulation does not scale well to large
games due to the exponential number of possible joint paths as the graph grows
larger.

5 Solving GSG with Abstraction

Our approach combines the key ideas in double oracle methods and graph con-
traction. There are often relatively few important targets in a GSG. For example,
the key regions of high animal density are relatively few, and many areas have
low density, as shown in Fig. 1(a). This suggests that many targets in the game
can be removed to simplify the analysis while retaining the important features
of the game.

We describe our approach in three stages. First, we describe our method for
contracting a graph by removing nodes and calculating a new set of edges to
connect these nodes that retains the shortest path information. This contracted
graph can be solved using any existing algorithm for GSG; as a baseline, we use
the LP on the full set of paths. Second, we describe a single-oracle approach for
finding the set of targets that must be included in the contracted game. This
method restricts the set of targets to a small set of the highest-valued targets, and
iteratively adds in additional targets as needed. Finally, we describe the double-
oracle algorithm. This uses the same structure as the single oracle, but instead of
solving each restricted game optimally, we restrict the defender’s strategy space
and use heuristic oracles to iteratively generate paths to add to the restricted
game.
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(a) Unnecessary nodes 5, 6, 9 (b) Edge 8− > 5− > 2 to be
removed

(c) New shortcut path 8− > 2 (d) Final graph after contraction
of node 5, 6, 9

Fig. 2. Instant Contraction procedure for different nodes

5.1 Graph Contraction

We first describe how we construct an abstracted (simplified) graph for a
restricted set of target nodes. Essentially, we remove all of the nodes except the
restricted set, and then add additional edges to make sure the shortest paths are
preserved.

Many graph contraction procedures used in pathfinding remove nodes one
by one, but we use a contraction procedure that removes the nodes in one step.
Suppose we have decided to remove the set of nodes Tu ∈ T . We find all the
neighbors of set Tu, denoted as V . Next we try to find the shortest paths between
each pair of nodes (vi, vj) ∈ V that traverse through nodes Tu where vi and vj
are not adjacent. We use Floyd-Warshall algorithm [9] to find the shortest paths
for all the nodes in V using only nodes Tu. If the length of the shortest path does
not exceed dmax, we add an edge (vi, vj) in the contracted graph, with distance
equals the length of the shortest path.

Theorem 1. The contraction process described in Algorithm1 preserves the
shortest paths for any pair of nodes that are not removed in the original graph.
Formally, given a graph G = (T,E) and a subset of nodes Tu, Algorithm1 pro-
vides a contracted graph G′ = (T \Tu, E′) and the length of the shortest path for
any pair of nodes (vi, vj) ∈ T \ Tu in G′ is the same as in G.

Proof sketch: First, ∀(vi, vj) ∈ T \ Tu, the shortest path in G′ can be easily
re-mapped to a path in G, and thus is a candidate for the shortest path in
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G. Therefore, the shortest path in G′ is no shorter than that in G. Second,
∀(vi, vj) ∈ T \Tu, it can be shown that the shortest path in G can also be mapped
to a path in G′. Let P = t1 → t2 → ... → tK be the shortest path between vi
and vj in G (t1 = vi, tK = vj). Let tk1 and tk2 be any two nodes in P such that
tk1 ∈ V , tk2 ∈ V and tk ∈ Tu,∀k1 < k < k2. Then P̄ = tk1 → tk1+1 → . . . → tk2
has to be a shortest path linking tk1 and tk2. Since tk1 and tk2 are in V and P̄
only traverses through nodes in Tu, an edge (tk1, tk2) with the same length of P̄
is added to G′ according to Algorithm 1. Therefore, P can be mapped to a path
P ′ in G′ with the same length. As a result, the shortest path in G is no shorter
than that in G′. Combine the two statements, the length of the shortest path
for any pair of nodes (vi, vj) ∈ T \ Tu in G′ is the same as in G. ��

Figure 2 shows how the contraction works. Figure 2(a) shows the removed
nodes Tu = (5, 6, 9). The neighbor set of Tu is V = (0, 1, 2, 4, 7, 8, 10, 12, 13, 14).
For convenience we show a breakdown of the step in Fig. 2(b) where the edge
(8 → 5 → 2) is shown and in Fig. 2(c) where the edge (8 → 5 → 2) is replaced
with shortcut 8 → 2. Figure 2(d) shows the final stage of the graph after contract-
ing nodes 5, 6, 9. Algorithm 1 shows pseudocode for the contraction procedure.

Algorithm 1. Instant Contraction Procedure
1: procedure InstantContractGraph �
2: G ← Graph() � Initiate the graph to contract
3: nd ← ContractedNodes() � Get the nodes to contract
4: nnei ← ComputeNeighbors(nd)
5: apsp ← AllPairShortestPath(G, nd, paths)
6: for v ← neighbors.pop() do
7: for v′ ← neighbors.pop() do

8: if v �= v
′
&notadjacent(v, v′) then

9: d ← apsp[v][v′]
10: path ← getPath(paths, v, v′)
11: if d ≤ dmax then � if d is less than the distance limit
12: UpdateNeighbors(v, v′, path, d)
13: v.AddNeighbor(v′, path)
14: v′.AddNeighbor(v, path)
15: RemoveAllContractedNodes(G, nd)

Reverse Mapping. When we solve a GSG with a contracted graph (e.g., using
the standard LP), the paths found in the solution must be mapped back to the
paths in the original graph so they can be executed. This is because a single
edge in the abstract path can correspond to a path of several nodes in the
original graph. In Algorithm1, when the contracted graph is constructed, the
corresponding path in the original graph of each edge being added is already
recorded, and is the basis the reverse mapping.
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5.2 Single-Oracle Algorithm Using Abstraction

We begin by describing a basic “single oracle” algorithm that restricts only the
attacker’s strategy space (i.e., the number of targets). The basic observation
that leads to this approach is based on the notion of an attack set. In the
Stackelberg equilibrium solution to a security game, there is a set of targets that
the attacker is willing to attack; this is the set that the defender must cover
with positive probability. All other target have maximum payoffs lower than the
expected payoff for the attacker in the equilibrium solution, so the attacker will
never prefer to attack one of these targets, even though it is left unprotected. If
we could determine ahead of time which set of targets must be covered in the
solution, we could simply apply graph contraction to this set of targets, solve
the resulting game, and be guaranteed to find the optimal solution.

Algorithm 2. Single Oracle With Abstraction (SO)
Input: original graph G, target utility Ui, ∀i ∈ V
Output: defender mixed strategy x and coverage vector c
1: T̄=GreedyCoverR(G) � Find initial set of targets to be considered in the

restricted graph
2: Set current graph Gc = G
3: repeat
4: Gt =Contract(Gc, T̄ ) � Contract graph
5: (u, xt, ct) = Solve(Gt) � Solve restricted graph, get attacker’s expected utility

u, defender strategy xt, coverage vector ct
6: v = AttEU(Gc, ct) � Calculate actual attacker’s expected utility on current

graph
7: if v == u then
8: Break
9: Gc =ContractWithThreshold(Gc, u) � Remove targets with utility < u

10: if Gc is small enough then
11: (u, x, c) = Solve(Gc) � Solve Gc directly
12: Break
13: Add at least one additional target into T̄
14: until 1 < 0

Our approach is to start by considering only a small set of targets T̄ , perform
contraction, and solve the abstracted game for this small set of targets. If the
attacker expected value in the solution is lower than the value the attacker
can get from attacking the best target that was not included in the restricted
game, we add at least one (and possible more than one) additional target to the
restricted game and repeat the process. Targets are added in decreasing order
of the attacker’s payoff for attacking the target if it is not protected at all. If
we solve a restricted game and the attacker’s expected value is greater than the
unprotected values of all remaining targets, we can terminate having found the
correct attack set and the optimal solution.
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The initial set of targets to be considered is determined by GreedyCoverR
(GCR). First consider the case where there is only one patroller. We use an
algorithm named GC1 to find a greedy patrolling path. GC1 greedily inserts
targets to the path and asks the patroller to take the shortest path to move from
one target to the next target. The targets are added sequentially in a descending
order of the target utility. GC1 terminates when the distance limit constraint is
violated. GCR calls GC1 R times to find greedy paths for R patrolling resources.
If the greedy paths can cover the top K targets, GCR returns the set of targets
whose utility is no less than the utility of the (K + 1)th target. This is because
a restricted graph with the top K targets can be perfectly protected given the
greedy paths, and therefore the patroller can try to protect more targets.

Algorithm 2 shows psuedocode for this procedure. Clearly, u is non-decreasing
and v is non-increasing with each iteration. For a value of u in any iteration, we
can claim that any target whose utility is smaller than u can be safely removed as
those targets will never be attacked (attacker will not deviate if those targets are
added to the small graph). The function Contract(G, T̄ ) completes two tasks.
First, it removes targets that are not in T̄ , and second, refine the graph by
removing dominated targets. In each iteration, u provides a lower bound of the
attacker’s expected utility in the optimal solution (optimal defender strategy)
and v provides an upper bound. If v == u, it means current solution is the
optimal. Line 13 adds at least one target to the set T̄ . Figure 3 illustrates the
algorithm on an example graph. Figure 3 illustrates Algorithm 2 with an example.

5.3 Double Oracle Graph Contraction

The single oracle methods can prevent us from having to solve the full graph
with the complete set of targets. However, it still assumes that we use an exact,
exhaustive method to solve the smaller abstracted graphs. For very large prob-
lems, this may still be too slow and use too much memory. To address this
we introduce the Double Oracle method that also restricts the defender’s strat-
egy space when solving the abstracted graphs. This basic idea (a version of
column generation) has been widely used in security games literature [24,33].
Algorithm 3 outlines the procedure.

The outer loop is based on the single oracle method, and gradually adds
targets to the restricted set. However, each time we solve the problem for a new
contracted graph, we also start from a restricted set of possible paths for the
defender. We then solve the “Master” problem (i.e., the original LP), but only
with this restricted set of paths. If the solution to this restricted problem already
implies that we need to add more targets (because the attacker’s payoff is lower
than the next best target), we do so and start over with a new, larger contracted
graph. Otherwise, we solve a “Slave” problem to find at least one new path to
add to the restricted problem, and then go back to solve the Master again. This
process terminates when we cannot add any additional paths to the Master that
would improve the payoff for the defender (and lower it for the attacker).

To guarantee that we have found the optimal solution, the slave should always
return a new path to add that has the minimum reduced cost. The reduced cost
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(a) (b)

(c) (d)

Fig. 3. Example of Single-oracle Algorithm. The numbers shown in the nodes represent
the index and the utility of the target. Node 10 is the base node and the defender has
only one patrol resource. (a): Original graph (distance limit = 4), which is also the initial
current graph Gc. Red lines indicate the greedy route, which determines T̄ = {10, 9, 8}.
(b): First restricted graph Gt and the corresponding optimal defender strategy (taking
the route 10 → 8 → 10 with probability 0.47), which leads to u = 4.23 and v = 7. (c):
Updated current graph Gc, which is achieved by removing all nodes with utility ≤ u
(i.e., nodes 2, 3, 4) and then removing dominated targets (node 7 is dominated by node
9 and node 6 is dominated by node 8). (d): Second restricted graph Gt with updated
T̄ = {10, 9, 8, 5}, which leads to u = v = 4.58 and the termination of the algorithm.
(Color figure online)

of a new joint path Jm is rJm
= −∑

i yiU
u
a (i)PJm,i − ρ, where yi refers to the

dual variable of the ith constraint in the original LP (3), and ρ is the dual
variable of constraint 4. The joint path with the most negative reduced cost
improves the objective the most. If the reduced cost of the best new joint path is
non-negative, then the current solution is optimal. In fact, finding the joint path
with the lowest reduced cost is equivalent to solving the following combinatorial
optimization problem:

Definition 2. In the coin collection problem, a GSG graph G = (V,E) is given,
and each node ti is associated with a number of coins, denoted as Yi. When a
node is covered by a patrolling path, the coins on the node will be collected and
can be collected at most once. The goal is to find a feasible joint path that collects
the most number of coins.

When Yi = yiU
u
a (i), the optimal solution of the coin collection problem is the

joint path with the lowest reduced cost. The coin collection problem is NP-hard
based on a reduction form the hamiltonian cycle problem (details omitted for
space). Designing efficient algorithms for finding the optimal or a near-optimal
solution of the coin collection problem can potentially improve the scalability
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Algorithm 3. Double Oracle With Abstraction (DO)
Input: original graph G, target utility Ui, ∀i ∈ V
Output: defender mixed strategy x and coverage vector c
1: Sort the targets according to attacker’s reward Tsrt=sortTargets()

2: Get the list of initial targets using GCR from Tsrt, Tcur = GreedyCoverR()

3: repeat
4: Set temporary graph where Gt and all targets ti ∈ Gt is also in Tcur

5: Generate initial set of paths using GreedyPathR, scur = GPR(Gt)
6: repeat
7: Solve SSG for Gt, get mixed strategy xt, coverage vector ct, and attacker’s

expected utility u = AttEU(Gt, ct)
8: Calculate actual attacker’s expected utility on original graph v =

AttEU(G, ct)
9: if u < v then

10: Break
11: Generate paths using st = GreedyPathR()
12: Append paths scur = scurUst
13: if st == 0 then
14: Break
15: until 1 < 0
16: Find attack target in G attackTarget(G, ct)
17: Add next n e.g. n = 5 targets to Tcur from Tsrt − Tcur

18: until u >= v and no more path can be added to scur

of using the double oracle method to find the exact optimal solution to GSG.
However, here we are interested in maximizing scalability for the DO approach
combined with abstraction, so we designed heuristic methods for the slave that
are very fast, but will not necessarily guarantee the optimal solution. More specif-
ically, we use Algorithm 4 as a heuristic approach for solving the coin collection
problem.

6 Experimental Evaluation

We present a series of experiments to evaluate the computational benefits and
solution quality of our solution methods. We begin by evaluating the impact
of abstraction in isolation, and then provide a comparison of many different
variations of our methods on synthetic game instances. Finally, we test our best
algorithms on large game instances using real-world data, demonstrating the
ability to scale up to real world problems.

6.1 Graph Abstraction

We begin by isolating the effects of abstraction from the use of strategy genera-
tion (using either the single or double-oracle framework). The baseline method
solves a graph-based security game directly using the standard optimization
formulation, enumerating all joint patrolling paths directly on the full graph.
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Algorithm 4. GreedyPathR (GPR)
1: procedure GreedyCover-CoinCollection
2: Initialize best joint path set Jbest

3: for iter = 0 to 99 do
4: if iter == 0 then
5: T list ← sort(T \ B, Y ) � Get a sorted list with decreasing Yi

6: else
7: T list ← shuffle(T \ B) � Get a random ordered list
8: Yr ← Y � Initialize the coins remained
9: for j = 1 to R do

10: Initialize the current patrol route Qj

11: for each target ti in T list with Yr(i) > 0 do � Check all uncovered
targets

12: Insert ti to Qj while minimizing the total distance
13: if total distance of Qj exceeds dmax then
14: remove ti from Qj

15: for each target ti in Qj do
16: Yr(i) = 0
17: if {Q1, ..., QR} collects more coins than Jbest then
18: update Jbest

19: return Jbest

We compare this to first applying our graph abstraction method to the game,
and then using the same solver to find the solution to the abstracted graph.
We compare the methods on both solution quality and runtime. To mea-
sure the amount of error introduced we introduce an error metric denoted by
epsilon(ε) = [Ud(c,a)−U ′

d(c,a)]
Ud(c,a)∗100 , where U ′

d(c, a) is the expected payoff for defender
when using contraction and Ud(c, a) ≥ U ′

d(c, a).
For our experiments we used 100 randomly generated, 2-player security games

intended to capture the important features of green security games. Each game
has 25 targets (nodes in the graph). Payoffs for the targets are chosen uniformly
at random from the range −10 to 10. The rewards for the defender or attacker
are positive and the penalties are negative. We set the distance constraint to 6.
In the baseline solution the is no contraction. For different levels of abstraction
the number of contracted nodes (#CN) varies between the values: (0, 2, 5, 8, 10).
Figure 4 shows us how contraction affects contraction time (CT), solution time
(ST) and reverse mapping time (RMT). CT only consider the contraction pro-
cedure, ST considers the construction of the P matrix and the solution time for
the optimization problem, and RMT considers time to generate the P matrix
for the original graph from the solution to the abstracted game.

We first note that as the graph becomes more contracted ST takes much less
time, as shown in Fig. 4. The next experimental result presented in Fig. 5 shows
how much error is introduced as we increase the amount of contraction and the
amount of time we can save by using contraction.
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Fig. 4. Effect of contraction on times CT, ST and RMT

Fig. 5. Effect of contraction on Epsilon and runtime saved

6.2 Comparison of Solution Algorithms

We now present results comparing the solution quality and runtimes of different
versions of our solution algorithm on graph-based security games of increasing
size. We focus on grid-based graphs, which are typical of open-area patrolling
problems like those in wildlife protection domains. For the experiments we gener-
ated 20 sample games for each size of game. For simplicity, the distance between
every node and it’s neighbors is set to 1. The patroller has two resources to
conduct patrols in each case, and the distance constraint on the paths varies
depending on the game size.

All of the games are zero-sum. We randomly assign payoffs to the targets.
In wildlife protection, it is typical for there to be a relatively small number of
areas with high densities of animal/poaching activity. To reflect this low density
of high-valued targets, we partition the targets into high and low value types,
with values uniformly distributed in the ranges of [0, 4] and [8, 10], respectively.
We assign 90 % of the targets values from the low range, and 10 % values from
the high range.

We break down the runtime into three different components: (1) The time
to contract graphs, ContractionTime (CT), (2) The time to solve optimization
problems, SolvingTime (ST), and (3) the total runtime, TotalTime (TT). All
runtimes are given in milliseconds. EPd denotes the expected payoff for defender.
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We compare out methods to two baselines that solve the original optimiza-
tion problem with no contraction by enumerating joint patrolling paths. The
first one enumerates all paths and directly solves the problem, while the second
algorithm uses column generation to iteratively add joint paths (but does not use
contraction). All algorithms that use the path sampling heuristic generate 1000
sample paths. We considered different combinations of the heuristics for both
the Single Oracle (SO) and Double Oracle (DO) formulations. In Double Oracle,
there are three modules where heuristic approaches can be used: (1) selecting the
initial set of targets for the restricted graph; (2) selecting initial paths for solving
the restricted graph; (3) in column generation, adding paths that can improve
the solution for the restricted graph. The first two modules are also needed in
Single Oracle. We discuss the heuristic approaches tested for these three mod-
ules. First, for selecting the initial set of targets, we test GreedyCover1 (GC1)
and GreedyCoverR (GCR). Second, for selecting initial paths for the restricted
graph, we enumerate all the paths (denoted as All paths) for small scale prob-
lems. In addition, we test GreedyPathR (GPR) and GreedyPath3 (GP3). When
using GPR for selecting initial paths, we use target utility as the number of
coins on the targets. GreedyPath3 (GP3) initialize the set of paths by listing the
shortest paths from the base to a target and back to base for each target. Third,
to add new paths in column generation, we test GPR and random sampling of
paths (denoted as sample path).

We present the runtime and solution quality data for our algorithms as we
increase the size of the game, considering game sizes of 25, 50, 100 and 200
targets. Tables 1, 2, 3 and 4 show the results for each of these four cases, respec-
tively. We had a memory limitation of 16 GB, and many of the algorithms were
not able to solve the larger problems within this memory limit. We include only
the data for algorithms that successfully solved all of the sample games for a
given size within the memory limit.

We note that the baseline algorithms are only able to solve the smallest
games within the memory limit. Even for these games, the single and double

Table 1. Performance comparison, #target = 25 and dmax = 8

Algorithm #targets dmax #remaining targets EPd CT ST TT

DO + GC1 + GPR + LP + GPR 25 8 13 6.759 2 11 69

DO + GCR + GPR + LP + GPR 25 8 14 5.8845 2 12 65

DO + GC1 + GP3 + LP + GPR 25 8 12 7.2095 3 22 44

DO + GCR + GP3 + LP + GPR 25 8 10 7.1865 2 15 38

DO + GC1 + GPR + LP + Sample Paths 25 8 14 7.481 2 14 165

DO + GCR + GPR + LP + Sample Paths 25 8 14 7.3955 2 14 205

DO + GC1 + GP3 + LP + Sample Paths 25 8 14 7.605 3 97 267

DO + GCR + GP3 + LP + Sample Paths 25 8 14 7.587 2 99 283

SO + GC1 + IC + All paths + LP 25 8 12 7.702 1 105 632

SO + GCR + IC + All paths + LP 25 8 14 7.702 2 135 827

SO + GCR + IC + GP3 + LP 25 8 11 2.05 4 10 33

No contraction + No column generation 25 8 25 7.702 0 1417 14140

No contraction + Column generation 25 8 25 7.702 0 1480 14661



266 A. Basak et al.

Table 2. Performance comparison, #target = 50 and dmax = 20

Algorithm #targets dmax #remaining targets EPd CT ST TT

DO + GC1 + GPR + LP + GPR 50 20 30 5.018 9 1313 1981

DO + GCR + GPR + LP + GPR 50 20 29 5.8195 7 461 790

DO + GC1 + GP3 + LP + GPR 50 20 28 7.4945 14 187 292

DO + GCR + GP3 + LP + GPR 50 20 27 7.6415 8 162 261

DO + GC1 + GPR + LP + Sample Paths 50 20 30 5.794 9 280 4154

DO + GCR + GPR + LP + Sample Paths 50 20 29 6.4185 6 167 3925

DO + GC1 + GP3 + LP + Sample Paths 50 20 20 6.8935 6 2194 4499

DO + GCR + GP3 + LP + Sample Paths 50 20 23 6.777 6 1570 4330

BA + GCR + IC + GP3 + LP 50 20 22 0.75 5 26 1113

Table 3. Performance comparison, #target = 100 and dmax = 29

Algorithm #targets dmax #remaining targets EPd CT ST TT

DO + GC1 + GPR + LP + GPR 100 29 51 6.5135 51 5753 8433

DO + GCR + GPR + LP + GPR 100 29 51 6.193 38 2170 3392

DO + GC1 + GP3 + LP + GPR 100 29 48 7.0545 52 766 1084

DO + GCR + GP3 + LP + GPR 100 29 47 7.2435 37 659 1017

DO + GC1 + GPR + LP + Sample Paths 100 29 50 6.098 46 1792 25017

DO + GC1 + GP3 + LP + Sample Paths 100 29 20 5.4735 13 2200 4420

DO + GCR + GP3 + LP + Sample Paths 100 29 30 5.0745 12 2596 5864

oracle methods using abstraction are all dramatically faster, and many of the
variations come close to finding the optimal solutions. As we scale up the game
size, the single oracle methods are not able to solve the game within the memory
limit. For the largest games, the double oracle methods without sampled paths
are still able to solve the problems to find good solutions, and do so very quickly.
The third and fourth variation consistently show the best overall performance,
with a good tradeoff between solution quality and speed.

We conduct a second experiment on large, 200-target graphs with the
same distance and resource constraints but a different distribution of payoffs.
For this experiment we have three payoff partitions, with the value ranges:
[0, 1], [2, 8], [9, 10]. The ratio of target values in these ranges is 80 %, 10 % and
10 %, respectively. Table 5 shows the results. In comparison with Table 5, the
DO algorithms (especially variations 3 and 4) are even faster, though in this
case variation 1 and 2 do result in higher solution qualities. The distribution of
payoffs has a significant effect on the algorithm performance, and as expected,

Table 4. Performance comparison, #target = 200 and dmax = 45

Algorithm #targets dmax #remaining targets EPd CT ST TT

DO + GC1 + GPR + LP + GPR 200 45 85 6.5355 345 10360 17904

DO + GCR + GPR + LP + GPR 200 45 83 6.501 287 5307 9657

DO + GC1 + GP3 + LP + GPR 200 45 72 6.551 270 2658 4156

DO + GCR + GP3 + LP + GPR 200 45 70 6.656 189 2274 3603
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Table 5. Performance comparison with 3 partition in payoff, #target = 200 and
dmax = 45

Algorithm #targets dmax #remaining targets EPd CT ST TT

DO + GC1 + GPR + LP + GPR 200 45 44 8.621 110 8177 12363

DO + GCR + GPR + LP + GPR 200 45 43 8.6085 73 3796 5275

DO + GC1 + GP3 + LP + GPR 200 45 40 7.7445 96 595 906

DO + GCR + GP3 + LP + GPR 200 45 40 7.7075 70 721 1058

the DO variations with abstraction are most effective when there is a relatively
small fraction of important targets and a large number of unimportant ones.

Next we present figures to visualize the runtime differences among different
solution algorithms. Again, only algorithms that were able to complete within the
memory bound are shown. Figures 6(a)–(c) show the TotalTime, Contraction-
Time and SolvingTime comparison respectively among Double Oracle methods
and Basic Abstraction Methods with the baseline algorithms. The figures show
the same patterns of scalability discussed previously.

(a) TotalTime(TT). (b) ContractionTime(CT).

(c) SolvingTime(ST).

Fig. 6. Runtime comparison among solvers.

Next we visualize the solution quality of our proposed algorithms in com-
parison with the baseline algorithms. The experiment setup is the same as the
previous experiment. Figure 7 shows that we were able to compare the solution
quality properly for #target = 25 since the baseline algorithms were able to fin-
ish. The Basic Abstraction methods except the one which uses GP3 were able to
compute the exact solution. All of the Double Oracle methods are suboptimal,
but typically provide good approximations.
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Fig. 7. Solution quality evaluation

Table 6. Results of using abstraction in real world data

#targets dmax #remaining targets EPd CT ST TT

100 5000 56 25.83 121 303 789

200 8000 88 25.79 67 926 1678

500 15000 92 18.56 1928 1107 4403

1000 18000 100 16.29 12302 2072 18374

For the final experiments we used real world data. We test our algorithms
on grid-based graphs constructed from elevation and animal density information
from a conservation area in Southeast Asia. The area is discretized into a grid
map with each grid cell of size 50 m by 50 m. The problem has a large number
of targets and feasible patrol routes when considering a practical distance limit
constraint (often 5 km–20 km). We tested with four different game sizes, and
the result shows that the proposed algorithm can solve real-world scale GSGs
efficiently (see Table 6). Only DO4 was used for this experiment since it provides
superior performance than others. The payoff range for the targets were [0, 90].

7 Conclusion

Green security games are being used to help combat environmental crime by
improving patrolling strategies. However, the applications of GSG are still lim-
ited due to the computational barriers of solving large, complex games based
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on underlying graphical structures. Existing applications require manual pre-
processing to come up with suitably abstract games that can be solved by exist-
ing solvers. We address this problem by designing the first algorithm for solving
graph-based security games that integrates automated abstraction techniques
with strategy generation methods. Our algorithm is the first to be able to provide
high-quality solutions to very large green security games (thousands of nodes) in
seconds, potentially opening up many new applications of GSG while avoiding
the need for some of the arbitrary, manual abstraction stages when generating
game models. With additional work to develop fast exact slave algorithms, we
should also be able to provide exact solutions using this approach to large GSG.
We also plan to investigate approximate slave formulations with performance
bounds, using abstraction to compute solution concepts from behavioral game
theory such as quantal response equilibrium, and applying our algorithms to
real-world applications in green security games.

Acknowledgement. We would like to thank to our partners from Rimba and
Panthera for providing the real world data set. This work was supported by the NSF
under Grant No. IIS-1253950.
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Abstract. Research on security games has focused on settings where
the defender must protect against either a single adversary or multi-
ple, independent adversaries. However, there are a variety of real-world
security domains where adversaries may benefit from colluding in their
actions against the defender, e.g., wildlife poaching, urban crime and
drug trafficking. Given such adversary collusion may be more detrimen-
tal for the defender, she has an incentive to break up collusion by play-
ing off the self-interest of individual adversaries. As we show in this
paper, breaking up such collusion is difficult given bounded rationality of
human adversaries; we therefore investigate algorithms for the defender
assuming both rational and boundedly rational adversaries. The con-
tributions of this paper include (i) collusive security games (COSGs),
a model for security games involving potential collusion among adver-
saries, (ii) SPECTRE-R, an algorithm to solve COSGs and break col-
lusion assuming rational adversaries, (iii) observations and analyses of
adversary behavior and the underlying factors including bounded ratio-
nality, imbalanced- resource-allocation effect, coverage perception, and
individualism/collectivism attitudes within COSGs with data from 700
human subjects, (iv) a learned human behavioral model that incorpo-
rates these factors to predict when collusion will occur, (v) SPECTRE-
BR, an enhanced algorithm which optimizes against the learned behav-
ior model to provide demonstrably better performing defender strategies
against human subjects compared to SPECTRE-R.

Keywords: Stackelberg security game · Collusion · Human behavior
model · Amazon mechanical turk

1 Introduction

Models and algorithms based on Stackelberg security games have been deployed
by many security agencies including the US Coast Guard, the Federal Air Mar-
shal Service, and Los Angeles International Airport [23] in order to protect
against attacks by strategic adversaries in counter-terrorism settings. Recently,
security games research has explored new domains such as wildlife protection,
where effective strategies are needed to tackle sustainability problems such as
illegal poaching and fishing [4].
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Crucially, though, most previous work on security games assumes that dif-
ferent adversaries can be modeled independently [10,11,18]. However, there are
many real-world security domains in which adversaries may collude in order to
more effectively evade the defender. One example domain is wildlife protection.
Trade in illicit wildlife products is growing rapidly, and poachers often collude
both with fellow poachers and with middlemen who help move the product to
customers [26]. These groups may coordinate to gain better access to informa-
tion, reduce transportation costs, or reach new markets. This coordination can
result in higher levels of poaching and damage to the environment. Additionally,
connections have been observed between illicit wildlife trade and organized crime
as well as terrorist organizations, and thus activities such as poaching can serve
to indirectly threaten national security [27].

Another example domain is the illegal drug trade where international crime
syndicates have increased collusive actions in order to facilitate drug trafficking,
expand to distant markets, and evade local law enforcement [1]. In some cases,
drug traders must collude with terrorist organizations to send drugs through
particular areas. More broadly, expansion of global transportation networks and
free trade has motivated collusion between criminal organizations across different
countries [20]. A third example of a domain with collusive actions is the “rent-a-
tribe” model in the payday lending industry. Authorities in the US attempt to
regulate payday lenders which offer extremely high interest rates to low-income
borrowers who cannot obtain loans from traditional banks. Recently, payday
lenders have begun to operate in partnership with Native American tribes, which
are exempt from state regulations. Thus, regulators seek policies which prevent
collusion between payday lenders and Native American tribes [8].

Despite mounting evidence of the destructive influence of collusive behavior,
strategies for preventing collusion have not been explored in the security games
literature (there are some recent exceptions, which we discuss in Sect. 2). Further-
more, analysis of collusive adversary behaviors is complicated by the bounded
rationality of human adversaries; such analysis with data from human players is
also missing in the security games literature. To address these limitations and
improve defender performance by combating collusion between adversaries, this
paper (i) introduces the COllusive Security Game (COSG) model with three
players: one defender and two adversaries with the potential to collude against
the defender, (ii) provides a baseline algorithm, SPECTRE-R, which optimizes
against collusive adversaries assuming them to be perfectly rational, (iii) ana-
lyzes data from an experiment involving 700 human subjects, (iv) proposes a
data driven human behavioral model based on these factors to predict the level
of collusion between human adversaries, and (v) develops a novel algorithm,
SPECTRE-BR, which optimizes against the learned behavior model to better
prevent collusion between adversaries (and as a result, outperforms SPECTRE-
R). Indeed, we find that human adversaries are far from perfectly rational when
deciding whether or not to collude. Our experiments show that defenders can
improve their utility by modeling the subjective perceptions and attitudes which
shape this decision and crafting strategies tuned to prevent collusion.
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2 Background and Related Work

The Stackelberg Security Game model, introduced almost a decade ago, has led
to a large number of applications and has been discussed widely in the literature
[12,17,23]. All of these works consider adversaries as independent entities and
the goal is for a defender (leader) to protect a set of targets with a limited set
of resources from a set of adversaries (followers)1. The defender commits to a
strategy and the adversaries observe this strategy and each select a target to
attack. The defender’s pure strategy is an assignment of her limited resources
to a subset of targets and her mixed strategy refers to a probability distribution
over all possible pure strategies. This mixed strategy is equivalently expressed
as a set of coverage probabilities, 0 ≤ ct ≤ 1, that defender will protect each
target, t [12]. Defender’s utility is denoted by Uu

Θ(t) when target t is uncovered
and attacked by the adversary and by U c

Θ(t) if t is covered and attacked by the
adversary. The payoffs for the attacker are analogously written by Uu

Ψ (t) and
U c

Ψ (t). The expected utilities of the defender, UΘ(t, C), and attacker, UΘ(t, C)
for the defender coverage vector C, are then computed as follows:

UΘ(t, C) = ct · U c
Θ(t) + (1 − ct)Uu

Θ(t) (1)
UΨ (t, C) = ct · U c

Ψ (t) + (1 − ct)Uu
Ψ (t) (2)

The solution concept for security games involves computing a strong Stackel-
berg equilibrium (SSE) which assumes that the adversaries maximize their own
expected utility and break ties in favor of the defender [11,23].

Given this basic information about SSG, we next start a discussion of related
work. Security game models where an adversary is capable of attacking multiple
targets simultaneously have been explored in [13,29]. To address cooperation
between adversaries, [7] introduced a communication network based approach
for adversaries to share their skills and form coalitions in order to execute more
attacks. However, no previous work on security games has conducted behavioral
analysis or considered the bounded rationality of human adversaries in deciding
whether to collude in the first place.

Another area of related work, as well as one that provides concepts that
we will use in this paper for modeling and analyzing adversary behaviors in
COSGs is that of behavioral models in game theory [3]. This area is particularly
relevant given our focus on modeling human adversaries in this paper. In real-
world settings, it is useful to model human adversaries as not strictly maximiz-
ing their expected utility, but rather, as their choosing strategies stochastically
[14]. Quantal response equilibrium (QRE) is a solution concept based on the
assumption of bounded rationality [15]. The intuition behind the QR model is
that the higher the expected utility for an action, the higher the probability of
the adversary selecting that action. SUQR [19] has been proposed as an exten-
sion of QR and seen to outperform QR in modeling human adversaries [28].

1 We use the convention in the security game literature where the defender is referred
as “she” and an adversary is referred to as “he”.
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This model is used in this paper to predict the probability of attack at each
target. The logit function shown in Eq. 3 is the most common specification for
QR and SUQR functional form where qt is the probability of choosing strategy
t among all possible strategies in set of T .

qt =
eÛΨ (t,C)

∑

t∈T

eÛΨ (t,C)
(3)

In SUQR model, ÛΨ (t, C) refers to subjective utility, and it replaces expected
utility. Subjective utility in SUQR is defined as a linear combination of key
domain features including the defender’s coverage probability and the adver-
sary’s reward and penalty at each target which are respectively weighted by ω1,
ω2 and ω3. These are assumed to be the most salient features in the adversary’s
decision-making process.

ÛΨ (t, C) =ω1 · ct + ω2 · Uu
Ψ (t) + ω3 · U c

Ψ (t) (4)

Another relevant aspect of bounded rationality is how humans weight prob-
abilities. Prospect Theory (PT) proposes that individuals overweight low prob-
abilities and underweight high probabilities; essentially, probabilities are trans-
formed by an inverse S-shaped function [9,25]. Various functional forms have
been proposed to capture this relationship [9,25]. Later work, specific to secu-
rity games, has found the opposite of what Prospect Theory suggests: human
players underweight low probabilities and overweight high probabilities [10]. This
corresponds to an S-shaped weighting function. In either case, incorporating a
model of probability perception allows the defender to exploit inaccuracies in
the adversary’s reasoning. Human subject experiments have been conducted for
security games to test both bounded rationality and probability weighting [10],
but have never included the collusive actions investigated in this paper.

Additionally, humans’ decisions in strategic settings can be influenced by the
relative advantage of participants. According to Inequity Aversion (IA) theory
humans are sensitive to inequity of outcome regardless of whether they are in the
advantaged or disadvantaged situation and they make decisions in a way that
minimizes inequity [5]. Inequity aversion has been widely studied in economics
and psychology and is consistent with observations of human behavior in stan-
dard economic experiments such as the dictator game and ultimatum game in
which the most common choice is to split the reward 50-50 [2]. Along these lines
and contrary to the theoretical predictions, IA theory also supports our analyses
in the security game domain.

Finally, the personal attitudes and attributes of participants can also influ-
ence their interactions in strategic settings. A key characteristic is the well-
established individualism-collectivism paradigm, which describes cultural differ-
ences in the likelihood of people to prioritize themselves versus their in-group
[22]. This paper is the first to provide analysis of human adversary behavior
in security games using individualism-collectivism paradigm. Specifically, those
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who identify as part of collectivistic cultures, compared to people in individ-
ualistic cultures, tend to identify as part of their in-groups, prioritize group-
level goals, define most relationships with in-group members as communal, and
are more self-effacing. Individualism-collectivism can be reliably measured using
psychometrically-validated survey instruments [24].

3 Illustrative Motivating Domain: Wildlife Poaching
Game

As an illustrative motivating domain for the work reported in this paper, we
focus on the challenge of wildlife poaching. Wildlife poaching poses a serious
threat to the environment as well as national security in numerous countries
around the world and is now estimated to be worth $5 billion annually. The
most common types of illicitly poached and traded wildlife products include
elephant ivory, rhino horn, tiger parts, and caviar [16]. Biodiversity loss, invasive
species introduction, and disease transmission resulting from illicit wildlife trade
can all have disastrous impacts on the environment. Evidence [26] confirms that
collusive actions (e.g., cost sharing for storage, handling, and transportation of
goods) among adversaries can increase the rate of poaching and cause further
damage to the environment. Modeling this as a security game, the defender is a
ranger whose goal is to allocate patrolling resources optimally over the targets.
The adversaries are poachers or illegal traders who execute attacks, possibly
in collusion with one another. To better understand collusion in the wildlife
poaching domain, we designed a game for human subjects to play on Amazon
Mechanical Turk (AMT). Participants were asked to play our game in different
settings and answer survey questions. Afterwards, their actions were analyzed
using the theories explained above, allowing us to test assumptions about the
rationality of human adversaries.

3.1 Game Overview

In our game, human subjects are asked to play the role of a poacher in a national
park in Africa. The entire park area (see Fig. 1) is divided into two sections
(right and left) and each human subject can only attack in one section (either
right or left); however, they can explore the whole park to obtain information
about the other player’s situation. To ensure repeatability of the experiments,
the other side is played by a computer, not a real player. Since our goal is to
study human adversaries, we do not reveal the identity of the other player to
the human subjects. This creates a more realistic environment since the subjects
believe that they are playing against another human. Each section of the park
is divided into a 3 × 3 grid, giving each player nine potential targets to attack.

There are different numbers of hippopotamus distributed over the area which
indicate the animal density at each target. The adversary’s reward at each target
is equal to the animal density at that target; hereafter, reward and animal den-
sity are used interchangeably. Players are able to view the probability of success
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Fig. 1. Poachers vs. Rangers game: Right side of the park is assigned to the player
and the left side is assigned to Bob who is the other fellow poacher. Payoffs for each
marked target are shown.

and failure, as well as the reward and penalty, at any target on either section
of the park as shown on the sides of the Fig. 1. To help the human subjects
better visualize the success/failure percentages (i.e., defender coverage) for each
sub-regions, we overlaid a heat-map of the success probability on Google Maps
imagery of the park. Also, to help the players understand the collusion mecha-
nism, we provided a table that summarizes all possible payoffs for both colluding
and not colluding. The human subjects may decide to attack “individually and
independently” or “in collusion” with the other player. In both situations, they
will attack different sections separately but if both agree to attack in collusion,
they will share all of their payoffs with each other equally.

3.2 Experimental Procedure

To enhance understanding of the game, participants were provided with a back-
ground story and detailed instructions about the game and then asked to play
one trial game to become familiar with the game interface and procedures. After
the trial game, participants played a validation game to ensure that had they
read the instructions and were fully aware of the rules and options of the game.
For our analysis, we included only players whose performance in the validation
game passed a set of baseline criteria. Lastly, subjects played the main game
for the analysis. After finishing all of the games, participants answered a set of
survey questions.

In each individual game, the human player is given a set amount of time to
explore the park and make decisions about: (i) whether to collude with the other
player or not and (ii) which region of the park to place their snare. While the
other player is a computer, it is suggested that they are actually another human.
To make the first decision, a question appears on the screen which asks whether
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the human player is inclined to collude or not. After answering this question, a
message appears on the screen that indicates whether collusion was preferred by
both players or not. Collusion occurs only if it is preferred by both players. It
is worth noting that the human participant has no opportunity to communicate
with or learn about the other player. Next, players are asked to choose a target in
their own region to attack. As before, players cannot communicate about which
target to attack.

We analyze two situations: one where the human attacker is placed in an
advantaged situation, with fewer defender resources protecting his side of the
park than the other; and a disadvantaged situation, which is the reverse. In each
situation, as we mentioned, we first check if the player is inclined to collude.
Next, we designed a computer agent with rational behavior to play as the second
adversary; thus there is an algorithm generating defender strategies, and two
adversaries (one a human and one a computer agent). This computer agent seeks
collusion when it is placed on the disadvantaged side and refuses collusion when
it is in advantaged situation (Choosing a computer agent as a second player let us
to avoid requiring coordination between two human players in the experiments).
To simplify the analysis, we assume that the second stage of decision making
(where each adversary chooses a target to attack) depends on his own inclination
for collusion and does not depend on the attitude of the other adversary.

Consequently, there are four possible types of human adversaries in this game:
(i) a disadvantaged attacker who decides to collude, DA-C, (ii) a disadvantaged
attacker who decides not to collude, DA-NC, (iii) an advantaged attacker who
decides to collude, A-C, and (iv) an advantaged attacker who decides not to
collude, A-NC.

We tested different defender mixed strategies based on both the assump-
tion of rationality and bounded rationality given by a behavioral model intro-
duced in Sect. 6. For each strategy deployed on AMT, we recruited a new set
of participants (50 people per setup) to remove any learning bias and to test
against a wider population. Using the rational model for adversaries, four differ-
ent defender strategies were deployed for each reward structure. The data sets
collected from rational model deployments were used to learn the parameters of
the bounded rationality model. This learning mimics the fact that in the real
world, often data about past poaching incidents is available to build models of
poacher behavior [18]. Players were given a base compensation of $0.50 for par-
ticipating in the experiment. In order to incentivize the players to perform well,
we paid each player a performance bonus based on the utility that they obtained
in each game. This bonus had a maximum total value of $1.32 and a minimum
of $0.04.

3.3 Game Payoff Design

This “Poachers vs. Rangers” game is a three-player security game with 9 targets
available to each adversary. There is one defender with m resources to cover all
the 18 targets (sub-regions in the park) and there are two adversaries that can
attack a side of the park. An adversary’s reward at each cell for an uncovered
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(a) RS1 (b) RS2

Fig. 2. Reward (animal density) structures deployed on AMT. Darker green shows
higher reward. (Color figure online)

attack is equal to the animal density at that cell and the penalty at each cell for a
covered attack is equal to −1. We deployed two different reward structures, RS1
and RS2, shown in Figs. 2(a) and (b). In both of these symmetric structures,
both players have an identical 3 × 3 reward distribution. In RS1 animal density
is concentrated along the central axis of the park and is covered by 3 defender
resources and in RS2 animal density is concentrated toward the center of each
half of the park and is covered by 4 defender resources. We assumed a bonus of 1
for collusion in both set-ups; this bonus is added to the payoff for each successful
attack if both attackers decide to collude. Section 4 gives further mathematical
description and motivates the introduction of this bonus. This game is zero-sum,
i.e., at each target the uncovered payoffs for the attacker and defender sum to
zero.

4 Collusive Security Game Model

In the collusive security game which we study in this paper, there is one defender,
Θ, and multiple adversaries, Ψ1, ..., ΨN , where N is the total number of attackers.
Similarly to standard Stackelberg Security Games [23], the defender is the leader
and the attackers are the followers. In this subsection, we focus on the games
with one defender and two adversaries, such that adversaries can attack separate
targets, but they have two options: (i) attack their own targets individually
and earn payoffs independently or (ii) attack their own targets individually but
collude with each other and share all of the payoffs equally. If the attackers decide
to collude, the utility for a successful attack increases by ε. This reward models
many of the example domains where adversaries operate in different geographic
areas or portions of a supply chain, and so do not directly compete over the same
targets. Instead, they choose to combine their operations or share information
in some way which produces extra utility exogenous to the targets themselves.

To precisely define the model, let T = {t1, ..., tn} be a set of targets. T is
partitioned into disjoint sets T1 and T2 which give the targets accessible to the
first (resp. second) attacker. The defender has m resources, each of which can
be assigned to cover one target. Since we consider games with no scheduling
constraints [29], the set of defender pure strategies is all mappings from each of
the m resources to a target. A mixed strategy is a probability distribution over
such schedules, and can be compactly represented by a coverage vector C which
gives the probability that each target is covered. Each attacker pure strategy is
the combination of a choice of target to attack and the decision of whether or not
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to collude. Since the attackers choose their strategies after the defender, there
is always an equilibrium in which they play only pure strategies [11]. Hence, we
encapsulate the targets which are attacked in a set of binary variables at, t ∈ T ,
where the variables corresponding to the targets which are attacked are set to 1.

We denote the utility that the defender receives when target t is attacked
by Uu

Θ(t) if t is uncovered, and U c
Θ(t) if t is covered. The payoffs for the ith

attacker are analogously written Uu
Ψi

(t) and U c
Ψi

(t). Suppose that the attackers
select target t1 ∈ T1 and t2 ∈ T2. Since each may be covered or uncovered, four
different outcomes are possible. Table 1 summarizes the players’ payoffs in all
possible cases when the attackers do not collude (the first two columns) and
collude (the last two columns). In this table the first row indicates the payoffs
when both targets are uncovered and both adversaries are successful. The second
and third rows show the payoffs when only one attacker succeeds and the last
row indicates the case of failure for both attackers.

Table 1. Payoffs table for individual and collusive attacks

Payoffs for individual attacks Payoffs for collusive attacks

Attackers: Ψ1, Ψ2 Defender: Θ Each attacker: Ψ1 or Ψ2 Defender: Θ

Uu
Ψ1

(t1), Uu
Ψ2

(t2) Uu
Θ(t1) + Uu

Θ(t2) (Uu
Ψ1

(t1) + Uu
Ψ2

(t2) + 2ε)/2 Uu
Θ(t1) + Uu

Θ(t2) − 2ε

Uu
Ψ1

(t1), Uc
Ψ2

(t2) Uu
Θ(t1) + Uc

Θ(t2) (Uu
Ψ1

(t1) + Uc
Ψ2

(t2) + ε)/2 Uu
Θ(t1) + Uc

Θ(t2) − ε

Uc
Ψ1

(t1), Uu
Ψ2

(t2) Uc
Θ(t1) + Uu

Θ(t2) (Uc
Ψ1

(t1) + Uu
Ψ2

(t2) + ε)/2 Uc
Θ(t1) + Uu

Θ(t2) − ε

Uc
Ψ1

(t1), Uc
Ψ2

(t2) Uc
Θ(t1) + Uc

Θ(t2) (Uc
Ψ1

(t1) + Uc
Ψ2

(t2))/2 Uc
Θ(t1) + Uc

Θ(t2)

If the attackers collude with each other, they share all of their utility equally.
Additionally, they receive a bonus reward, ε, for any successful attack. As we
focus on zero-sum games for the experiments, this bonus value is deducted from
the defender’s payoff. Further, while we assume that adversaries who choose
to collude split their combined payoff equally, it is important to note that the
algorithms we present are easily generalized to accommodate arbitrary payoff
splits. There are two principal reasons as to why we specify a 50-50 split in this
work. First, this division is motivated by inequity aversion theory, as outlined
earlier. Second, our focus here is on the factors which lead individuals to collude
in the first place, not on the bargaining process which decides their allocation of
the rewards (a topic which is itself the subject of a great deal of work in game
theory and psychology). Since the reward structures we consider are symmetric
between the players, an equal distribution of rewards is a natural assumption.
Thus, we can isolate the factors which lead subjects to enter into collusion instead
of confounding the decision to collude with an additional bargaining process.

For a given coverage vector C defender’s utility at each target ti attacked
individually by attacker i is defined by Eq. 1. By replacing Θ with Ψ , the same
notation applies for the expected utility of the attacker.

UΘ(ti, C) = cti
· U c

Θ(ti) + (1 − cti
)Uu

Θ(ti) (5)
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Now we introduce our solution concept for COSGs, the Collusive Security Equi-
librium (CSE), which generalizes the SSE to the case of multiple attackers.
Let the defender’s strategy be a coverage vector C, and the attackers’ strate-
gies g1 and g2 be functions from coverage vectors to T × {collude, not collude}.
Recall that a strategy profile forms an SSE if (1) the attacker and defender play
mutual best responses and (2) the attacker breaks ties in favor of the defender.
In COSGs, each attacker’s best response depends on the other, since the decision
of whether or not to collude depends on the utility the other attacker will obtain.
Essentially, any fixed C induces a game between the attackers; the defender sets
the attackers’ payoff at each target via their resource allocation. The following
conditions define a CSE:

1. C is a best response to g1 and g2.
2. g1(C) and g2(C) form a Nash equilibrium in the game where each target’s

utility is UΨ (t, C).
3. Both attackers play collude if they obtain strictly greater utility in a (collude,

collude) equilibrium than (not collude, not collude) equilibrium.
4. The attackers break ties between equilibria which satisfy (1)–(3) in favor of

the defender.

The first two conditions are analogous to the best response conditions for
SSE. In particular, when the followers play a Nash equilibrium (Condition 2),
each is playing a best response to the fixed strategies of the other two players.
Condition 3 removes the trivial equilibrium where neither attacker chooses to
collude because they cannot gain unless the other attacker also decides to collude.
Condition 4 enforces the normal SSE condition that remaining ties are broken
in favor of the defender.

5 SPECTRE-R: Optimal Defender Strategy for Rational
Adversaries

SPECTRE-R (Strategic Patrolling to Extinguish Collaborative ThREats from
Rational adversaries) takes a COSG as input and solves for an optimal defender
coverage vector corresponding to a CSE strategy through a mixed integer linear
program (MILP). This MILP is based on the ERASER formulation introduced
by Kiekintveld et al. [11]. The original formulation was developed for SSGs
with one defender and one adversary. We extend these ideas to handle collusion
between two adversaries via the MILP in Eqs. 6–20. It is important to note
that while the rewards structures we consider in the experiments are zero sum,
the MILP we give applies to general sum games. Additionally, our methods
are not restricted to the case of two adversaries. In the online appendix2, we
provide a generalization of this MILP to COSGs with N adversaries. Since a
naive extension would entail a number of constraints which is exponential in N ,
we conduct more detailed analysis of the structure of the game, which allows

2 https://www.dropbox.com/s/kou5w6b8nbvm25o/nPlayerAppendix.pdf?dl=0.

https://www.dropbox.com/s/kou5w6b8nbvm25o/nPlayerAppendix.pdf?dl=0
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us to formulate a MILP with only O(N3) constraints. However, this analysis is
also deferred to the appendix as our experimental focus is on COSGs with two
adversaries.

max d s.t. (6)
anc

t , ac
t , α1, α2, β ∈ {0, 1} (7)

ct ∈ [0, 1] (8)
∑

t∈T

ct ≤ m
∑

ti∈Ti

anc
ti

= 1
∑

ti∈Ti

ac
ti

= 1 (9)

U c
Θ(t1, t2, C) = UΘ(t1, C) + UΘ(t2, C)−
(1 − ct1)ε − (1 − ct2)ε (10)

Unc
Θ (t1, t2, C) = UΘ(t1, C) + UΘ(t2, C) (11)

d − U c
Θ(t1, t2, C) ≤ (1 − ac

t1)Z + (1 − ac
t2)Z + (1 − β)Z (12)

d − Unc
Θ (t1, t2, C) ≤ (1 − anc

t1 )Z + (1 − anc
t2 )Z + βZ (13)

U c
Ψi

(ti, C) = UΨi
(ti, C) + (1 − cti

)ε (14)
Unc

Ψi
(ti, C) = UΨi

(ti, C) (15)
0 ≤ kc

i − U c
Ψi

(ti, C) ≤ (1 − ac
ti

)Z (16)
0 ≤ knc

i − Unc
Ψi

(ti, C) ≤ (1 − anc
ti

)Z (17)

− αiZ ≤ knc
i − 1

2
(kc

1 + kc
2) ≤ (1 − αi)Z (18)

β ≤ αi (19)
(α1 + α2) ≤ β + 1 (20)

We now proceed to an explanation of the above MILP which is named as
SPECTRE-R algorithm in this paper and optimizes defender utility, d, against
collusive adversaries. In all equations, nc stands for not colluding cases and c
stands for colluding cases, and Z is a large constant. Additionally, constraints
with free indices are repeated across all possible values, e.g. i = 1, 2 or t ∈ T .
Equation 7 defines the binary decision variables. ac

t and anc
t whether each tar-

get would be attacked if the corresponding adversary chooses to collude or not
collude, respectively. α1 and α2 indicate each adversary’s decision of whether to
collude. β is indicates whether collusion actually occurs; it is one if and only if
both α1 and α2 are one. ct, introduced in Eq. 8 is the defender coverage proba-
bility at target t. Equation 9 enforces the defender resource constraint, and that
the attackers each select exactly one target. Equations 10 and 11 calculate the
defender expected utilities at each target in the case of collusion and no collu-
sion. Equations 12 and 13 define the defender’s final expected payoff based on
which target is attacked in each case.

Equations 14 and 15 define the expected utility of the attackers in colluding
and non-colluding situations. Equations 16 and 17 constrain the attackers to
select a strategy in attack set of C in each situation. Equation 18 requires each
attacker to collude whenever they obtain higher utility from doing so. Lastly,
Eqs. 19 and 20 set β = α1 ∧ α2.
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Proposition 1. Any solution to the above MILP is a CSE.

Proof. We start by showing that the followers play a Nash equilibrium as
required by condition (2). Let (a∗

ti
, α∗

i ) be the action of one of the followers
produced by the MILP where ti is the target to attack and αi is the decision of
whether to collude. Let (ati

, αi) be an alternative action. We need to show that
the follower cannot obtain strictly higher utility by switching from (a∗

ti
, α∗

i ) to
(ati

, αi). If α∗
i = αi, then Eqs. 16 and 17 imply that ati

already maximizes the
follower’s utility. If α∗

i �= αi then Eq. 18 implies that (a∗
ti

, α∗
i ) yields at least as

much utility as (ati
, 1 − α∗

i ), for the ati
which maximizes the follower’s utility

given that they make the opposite decision about collusion. So, (a∗
ti

, α∗
i ) yields

at least as much utility as (ati
, αi), and condition (2) is satisfied. For condition

(3), note that in Eq. 18, both followers compute the utility for collusion assuming
that the other will also collude. So, if follower i would be best off with β = 1,
the MILP requires that αi = 1. Thus, if both followers receive strictly highest
utility in an equilibrium with β = 1, both will set α = 1. In all other cases,
the objective is simply maximizing d, which satisfies conditions (1) and (4) by
construction.

The following observations and propositions hold for the games with sym-
metric reward distribution between the two adversaries.

Observation 1. The defender optimizes against rational adversaries by enforc-
ing an imbalance in resource allocation between the sides and preventing collu-
sion.

In SPECTRE-R, the key idea for preventing collusion between two adver-
saries is to impose a resource imbalance between their situations. This places one
adversary in an advantaged condition and the other in a disadvantaged condi-
tion. Assuming perfectly rational adversaries, we expect that the disadvantaged
adversary will always seek to collude, and the advantaged attacker will always
refuse (provided the imbalance outweighs the bonus ε). In other words, the opti-
mal solution provided by SPECTRE-R satisfies θ �= 0 where θ = |x1 − x2|,
xi =

∑
ti∈Ti

cti
is difference in total resource allocation to the two sides. This

approach incentivizes one attacker to refuse to collude by putting them in a
better position than the other.

To analyze the effect of the imbalance in resource allocation on defender
expected payoff, we added another constraint to the MILP formulation shown
in Eq. 21 forces a resource imbalance at an arbitrary level, δ. For the case of
symmetric reward distribution, WLOG, we can fix the first attacker to be the one
who receives higher payoff and simply linearize the following equation; however
generally, we can divide the equation into two separate linear constraints.

|knc
1 − knc

2 | = δ (21)

Observation 2. By varying δ, the following cases can occur:
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1. For δ < δ∗, knc
i − 1

2
(kc

1 + kc
2) < 0 for both attackers and consequently αi = 1

for i = 1, 2. In other words, the defender is not able to prevent collusion
between the attackers and β = 1.

2. For δ = δ∗, knc
1 −1

2
(kc

1+kc
2) = 0 for one of the attackers and knc

2 −1
2
(kc

1+kc
2) <

0 for the other one, so consequently α1 can be either 0 or 1 and α2 = 1. In
this case, the followers break ties in favor of the leader, so α1 = 0 and β = 0.

3. For δ > δ∗, knc
1 − 1

2
(kc

1 + kc
2) > 0 for one of the attackers and consequently

α1 = 0. For the other attacker knc
2 − 1

2
(kc

1 + kc
2) < 0 and α2 = 1. In other

words, the defender is able to prevent collusion between the attackers and
β = 0.

Proposition 2. The switch-over point, δ∗, introduced in the Observation 2 is
lower bounded by 0 and upper bounded by 2ε.

Proof. Using Eq. 17, we know that at any target ti, knc
i ≥ Unc

Ψi
(ti, C). If we

assume that the attacker attacks target tci with coverage cc
ti

by adding and
subtracting a term as ε(1 − cc

ti
), we can conclude that knc

i ≥ kc
i − ε(1 − cc

ti
).

Consequently, kc
1 + kc

2 ≤ knc
1 + knc

2 + ε(1 − cc
t1) + ε(1 − cc

t2). On the other hand,

according to Observation 2.2, at δ = δ∗, we have knc
1 − 1

2
(kc

1+kc
2) = 0. Combining

these last two equations, we will get (knc
1 −knc

2 ) ≤ ε(1−cc
t1)+ε(1−cc

t2). The LHS
is equal to δ∗ and the RHS can be rearranged as 2ε− ε(cc

t1 + cc
t2), so we will have

δ∗ ≤ 2ε−ε(cc
t1 +cc

t2). Given the fact that coverage at each target is in range [0, 1],
the upper bound for −(cc

t1+cc
t2) will be zero. Finally, by aggregating these results,

we can conclude that δ∗ ≤ 2ε. Following the same analysis, the lower bound for
δ∗ can be found starting from kc

1 + kc
2 ≥ knc

1 + knc
2 + ε(1 − cnc

t1 ) + ε(1 − cnc
t2 )

and as a result, 0 ≤ δ∗.

Given the facts presented in Proposition 2, by enforcing an imbalance of max-
imum 2ε, the defender will be able to prevent collusion. These bounds can be
tighter, if we have more information about the distribution of reward at targets.
For instance, if reward distribution over targets is close enough to uniform dis-
tribution, then the average coverage on each side will be c̄t1 = 2x1

n and c̄t2 = 2x2
n ,

where x1 and x2 are fraction of resources assigned to each side and there are n
2

targets on each side. As a result, −(cc
t1 +cc

t2) ≈ −(c̄t1 + c̄t2). So we will be able to
find an approximate upper bound of 2ε(1− m

n ), where m = x1 +x2. This implies
that when the ratio of m

n is large, less imbalance in resource allocation is needed
to prevent collusion. In the human subject experiments that will be discussed
in the next section, we also observed that with a wider range of rewards (RS2
compared to RS1 in Fig. 5(a) in OBSERVATION A) over targets, it becomes
harder to prevent collusion between attackers.

SIMULATION 1. Simulation results of SPECTRE-R algorithm for the two
games introduced in Sect. 3 are shown in Figs. 3(a) and (b) for different values
of the bonus ε. We vary δ along the x axis, and show the defender loss on the



Divide to Defend: Collusive Security Games 285

(a) RS1: Def. Exp. Loss vs. δ vs. ε (b) RS2: Def. Exp. Loss vs. δ vs. ε

Fig. 3. Simulation results of SPECTRE-R: Defender Expected Loss vs. resource imbal-
ance

y axis. In all of the plots, for each epsilon value, there is a δ value (indicated
with gray vertical lines) at which collusion breaks and also a δ∗ value (which
corresponds to an optimal resource imbalance θ∗) at which collusion is broken
and defender loss is minimized (indicated with solid black vertical lines). The
higher the benefit of collusion, the larger the loss of the defender. Note that
before collusion is broken, imposing a resource imbalance sometimes increases
the defender’s loss (see plots for ε = 3) because the defender deviates from
the optimal coverage probabilities for a traditional SSG without reaping the
benefit of reduced cooperation. Similarly, note that defender loss increases for
δ > δ∗ since cooperation is already broken, so the defender only suffers by further
reducing coverage on the advantaged player. This emphasizes the importance of
precision in modeling and recognizing the optimal δ for allocating resources in
real-world settings.

6 Human Behavioral Approach

6.1 COSG Model for Bounded Rational Adversaries

While for perfectly rational adversaries the calculations shown in Fig. 3 would
hold, our observations from human subject experiments did not match this
expectation; the probability of collusion varied continuously with the level of
asymmetry in the adversary’s’ situations. To address this problem, we propose a
two layered model which is able to predict (i) the probability of collusion between
the adversaries and (ii) the probability of attack over each target for each type
of adversary. These layers account for ways in which human behavior experi-
mentally differed from perfect rationality. We then use this model to generate
the corresponding optimal patrol schedule.

Probability of attack over targets: We use a separate set of SUQR parame-
ters for each adversary introduced in Sect. 3.1 to reflect differences in decision
making. A generalized form of subjective expected utility is defined in Eq. 22
which is a linear function of the modified defender coverage, ĉti

at target ti,
the uncovered payoff of the attacker, Uu

Ψi
(ti), the bonus for collusion ε and the
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covered payoff of the attacker U c
Ψi

(ti). β is the attackers’ decision variable about
collusion. A vector of ωβ

i = (ωβ
i,1, ω

β
i,2, ω

β
i,3) is assigned to each adversary. Each

component of ωβ
i indicates the relative weights that the adversary gives to each

feature.

ÛΨi
(ti, β) = ωβ

i,1.ĉti
+ ωβ

i,2.(U
u
Ψi

(ti) + β.ε) + ωβ
i,3.U

c
Ψi

(ti) (22)

The modified coverage probability, ĉti
, is defined based on Prospect Theory

mentioned in Sect. 2 and is related to the actual probability, cti
, via Eq. 23,

where γ and η determine the elevation and curvature of the S-shaped function
[6], respectively. These functions are plotted in Sect. 7.3.

ĉti
=

ηcγ
ti

ηcγ
ti

+ (1 − cti
)γ

(23)

By the SUQR model mentioned in Sect. 2, the probability (conditioned on the
decision about collusion) that the adversary, i, will attack target ti is given by:

qti
(Ĉ | β) =

eÛΨi
(ti,Ĉ,β)

∑

ti∈Ti

eÛΨi
(ti,Ĉ,β)

(24)

For each attacker, the SUQR weight vector ωβ
i , and the probability perception

parameters γβ
i and ηβ

i are estimated via maximum likelihood (MLE) using data
collected from the human subject experiments. This resembles obtaining past
data on poaching as mentioned in Sect. 3.2 to learn these parameters.

Probability of offering to collude: We propose a model which is intuitively
based on SUQR to predict the probability of offering collusion by each adversary
from a behavioral perspective. Different from the rational behavior model (see
Fig. 3) where collusion is deterministic, this model assumes that the attackers
make stochastic decisions concerning collusion.

The probability of collusion for each adversary is calculated using Eq. 25.
Here, Ū c

Ψi
=

∑
i∈N

∑
ti∈Ti

ÛΨi
(ti, β = 1)/(N.|Ti|) is the average adversary utility

over all targets for a collusive attack and Ūnc
Ψi

=
∑

ti∈Ti
ÛΨi

(ti, β = 0)/|Ti| is the
average adversary utility over all targets for an individual attack.

qi(β = 1) =
eŪc

Ψi

e
Ūc

Ψi + e
Ūnc

Ψi

(25)

The coefficients in ωβ
i are learned for advantaged and disadvantaged attackers

and β = 0, 1 using MLE and data collected from human subject experiments.

6.2 SPECTRE-BR: Optimal Defender Strategy for Bounded
Rational Adversaries

The two above mentioned models are incorporated in SPECTRE-BR (Strate-
gic Patrolling to Extinguish Collaborative ThREats from Boundedly Ratio-
nal adversaries) to generate the defender optimal strategy by maximizing the



Divide to Defend: Collusive Security Games 287

expected utility of the defender given in Eq. 26 where the defender expected
utility is computed as UΘ(ti, C, β) = cti

· U c
Θ + (1 − cti

)(Uu
Θ + βε) for target ti,

mixed strategy C and the collusion variable β. In this equation, C represents the
set of all possible coverage vectors. We define q(β=1) = min(q1(β=1), q2(β=1))
and q(β =0)=1−q(β =1). This assumption is supported by the fact that collu-
sive attacks happen only when both parties are sufficiently inclined to collude,
and the advantaged player will always be less inclined to offer collusion.

max
C∈C

⎛

⎝
N∑

i=1

∑

ti∈Ti

1∑

β=0

UΘ(ti, C, β)qti
(C | β)q(β)

⎞

⎠ (26)

7 Human Subject Experiments

To determine how the behavior of human players differs from perfect rational-
ity, we recruited participants from Amazon Mechanical Turk to play the game
described in Sect. 3. Each experiment used 50 participants. Here we report on
the results.

7.1 Resource Imbalance Effect on Collusion

HYPOTHESIS A. There exists a switch-over δ∗ value, at which it is not
rational for the adversaries to collude. Consequently, collusion will be broken
completely.

METHOD A. Given the intuition from the rational adversary model, the
defender achieves higher expected utility by breaking collusion between the two
adversaries. The main idea for preventing collusion was to place one adversary
in the advantaged condition so he will avoid collusion. The corresponding opti-
mal strategy results in an asymmetry between the maximum expected utilities
on both sides which we referred to as δ. This δ is correlated with the differ-
ence between aggregated defender coverage on both sides, θ which is defined in
Observation 2. Figure 4(a) illustrates this relationship by plotting δ on the x axis
against the total resource imbalance on the y axis for RS2. As δ increases, the
resource imbalance also increases. To see how deviating from balanced resource
allocation affects human adversaries’ decisions about collusion, we ran human
subjects experiments on AMT for various δ values for two reward structures RS1
and RS2. Figures 4(b) and (c) illustrate two sample mixed strategy (defender
coverage over targets) that we deployed on AMT for RS2. In Fig. 4(b), resources
are distributed symmetrically, while in Fig. 4(c) δ was set equal to 1 and one
side is covered more than the other. Next, as shown in Fig. 5(a), for each reward
structure, we tested 4 different coverage distribution i.e., δ ∈ {0, 1, 2, 3}. For
each defender strategy we recruited 50 AMT workers. It is worth noting that
the models introduced in this paper are valid for both symmetric and asymmet-
ric payoff structures; however, we show the simulation results and experiments
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(a) θ vs δ (b) δ = 0, RS2 (c) δ = 1, RS2

Fig. 4. Defender strategy deployed on AMT and resource imbalance

(a) Collusion level (b) Average defender loss. SPECTRE-
BR outperforms the rational model.

Fig. 5. Collusion level and average defender loss

for the symmetric case to hold the effect of other variables constant and focus
mostly on the distribution of security resources.

OBSERVATION A. The experiments showed that for human adversaries,
there is no switch-over point or sharp change in behavior as predicted in Fig. 3
when assuming rational adversaries. Rather, the probability of offering collu-
sion decreased smoothly as δ increased for both RS1 and RS2. This completely
contradicts the results assuming a rational adversary as seen in Fig. 3. These
results are shown in Fig. 5(a). δ varies on the x axis while the y axis shows the
probability of collusion. For advantaged attackers (denoted RS1-A and RS2-A
in Fig. 5(a)), we observe a smooth decline in collusion as δ increases. However,
for disadvantaged attackers (RS1-DA and RS2-DA), we did not observe a signif-
icant change in the level of collusion; the disadvantaged attacker always offered
to collude with high probability.

ANALYSIS A. The previous observation has several implications: (i) for small
values of δ there were a considerable number of human players in advantaged
situations who refused to collude despite the fact that collusion was rational.
(ii) For large values of δ, there were a considerable number of human players in
advantaged situations who chose to collude despite the fact that collusion was
an irrational decision in that situation. This behavior might indicate that the
bounded rationality model might be a better fit than the model assuming full
rationality when modeling collusive adversaries.
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7.2 SPECTRE-BR Outperforms Model Assuming Perfectly
Rational Adversaries

HYPOTHESIS B. A lower probability of collusion decreases defender loss.

METHOD B. See method A.

OBSERVATION B. Figure 5(b) shows the average defender loss obtained by
different strategies for both reward structures, RS1 and RS2. Strategies gener-
ated based on the human behavior model (SPECTRE-BR) are labeled “HBM”,
while the other bars represent strategies generated by the MILP from Sect. 4
using the specified δ. Figure 5(b) shows the empirical utility obtained by each
strategy. We calculated the average loss from human players who were in the
advantaged and disadvantaged position and who decided to collude and not col-
lude. Figure 5(b) plots the average of these losses weighted according to the fre-
quencies with which players decided to collude, observed in the experiments. We
see that the human behavior model obtains uniformly lower loss than the perfect
rationality model. In nearly all populations, the difference in utility between the
strategies generated by the human behavioral model and those generated by the
MILP is statistically significant (p < 0.05). Table 2 gives t-test results from com-
paring the utility obtained by the human behavioral model against each other
strategy.

Table 2. Statistical significance (t-Test p values for SPECTRE-BR and rational strate-
gies)

RS Rational Strategies (δ)

δ = 0 δ = 1 δ = 2 δ = 3

1 3.8 × 10−2 6.6 × 10−4 4.0 × 10−3 4.6 × 10−3

2 3.5 × 10−6 1.9 × 10−3 2.6 × 10−1 5.1 × 10−2

ANALYSIS B. Importantly, Fig. 5(b) shows that breaking collusion does not
always decrease defender loss. For example, in RS2, defender loss is lower at
δ = 2 compared to δ = 3; however, the chance of collusion (as seen in Fig. 5a)
is higher for δ = 2. Hence, simply decreasing the level of collusion (which is
correlated with an increase in δ per OBSERVATION A) may not always be
optimal for the defender.

7.3 Defender Coverage Perception

HYPOTHESIS C. Human adversaries’ probability weightings follow S-shaped
curves independent of their decision about collusion.

METHOD C. Parameters of S-curves, γ and η in Eq. 23 are learned for the
data sets described in METHOD A using the techniques presented in Sect. 6.
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OBSERVATION C. Figures 6(a) and (b) show the probability weighting func-
tions learned for the disadvantaged and advantaged adversaries for both groups
who are colluding and not colluding for RS1. In these figures the defender cov-
erage varies along the x axis, and the attackers’ perceptions of defender coverage
are shown along the y axis. Figures 6(c) and (d) show the same for RS2.

ANALYSIS C. There are two main points in these results: (i) probability
weightings followed S-shaped curves, contradicting prospect theory [9,25], i.e.,
low probabilities are underweighted and high probabilities are overweighted.
(ii) Probability perceptions differed between those who decided to collude and
not to collude. This analysis supports the use of SPECTRE-BR because humans’
probability weightings are indeed nonlinear.

7.4 Individualism vs. Collectivism

HYPOTHESIS D. Human adversaries who are collectivists are more likely to
collude than individualists in nearly all cases.

METHOD D. All of the participants in our experiments were presented with
a survey after playing the game. Eight questions were selected from the 16-item
individualism-collectivism scale. Questions with the highest factor loading were
selected because prior research shows that these are the most accurate indica-
tors of individualism vs. collectivism [21]. Players responded on a scale from 1
(strongly disagree) to 7 (strongly agree). These responses were used to create
a player’s OI:OC (overall individualism to overall collectivism) ratio as follows.
First, the sum of a player’s collectivism responses, c, from collectivism-oriented
questions, qj and individualistic responses, i, from individualism-oriented ques-
tions, mk were calculated as c =

∑4
j=1 qj ,

{
qj ∈ R

+ : 1 ≤ qj ≤ 7
}

and
i =

∑4
k=1 mk,

{
mk ∈ R

+ : 1 ≤ mk ≤ 7
}
. A player’s OI:OC ratio is simply

i/c. A player is called an individualist if his OI:OC ratio falls above the median
OI:OC score for all players, otherwise he is called a collectivist. We next explore
how decisions differ between the two groups. Also please note that the order effect
on individualism vs. collectivism analysis is discussed in the online appendix3

due to space consideration.

OBSERVATION D. The data confirmed that regardless of setting, collec-
tivists are more likely to collude than individualists. This principle was applica-
ble regardless of a player’s reward structure, the game’s δ value, and whether
a player was predetermined to play in an advantaged or disadvantaged state.
Figure 7 shows the chance of collusion on the y axis versus δ on the x axis for
our two reward structures and in situations where the human is in the advantaged
and then disadvantaged situations; we see that the chance of offering collusion
for collectivists is always higher than individualists. There is one exception in
Fig. 7(c), δ = 2, where the chance of collusion for collectivists and individualists
is approximately the same (a difference of less than 0.1 is observed). This single
case can be considered an exception to the general rule.
3 https://www.dropbox.com/s/uk9wqrdfq85vhk9/ICAppendix.pdf?dl=0.

https://www.dropbox.com/s/uk9wqrdfq85vhk9/ICAppendix.pdf?dl=0
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(a) RS1: DA (b) RS1: A (c) RS2: DA (d) RS2: A

Fig. 6. Probability perception curves learned based on PT

ANALYSIS D. Due to factors like morality, social systems, cultural pat-
terns, personality, etc. collectivists may prefer working with a fellow player [24]
regardless of reward structure and delta value. However, the fact that collusion
decreases as delta value increases has valuable implications. In security games,
this means that adopting more rigorous defender strategies has the effect of
dissolving collusion amongst attacker groups regardless of their OI:OC ratio.
However, it is important to notice that if attackers have a relatively high OI:OC
ratio (meaning they are individualists), the defender strategies given here are
even more effective at preventing collusion. Please see the appendix for more
individualism/collectivism analysis.

(a) RS1: A (b) RS2: A

(c) RS1: DA (d) RS2: DA

Fig. 7. Cooperation level for collectivists and individualists. RS1 and RS2 indicate the
reward structure, while A and DA indicate that a player was on the advantaged or
disadvantaged side.
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8 Conclusion

This paper addresses the problem of collusion between adversaries in security
domains from a game-theoretic and human behavioral perspective. Our contri-
butions include: (i) the COSG model for security games with potential collusion
among adversaries, (ii) SPECTRE-R to solve COSGs and break collusion assum-
ing rational adversaries, (iii) observations and analyses of adversary behavior
and the underlying factors including bounded rationality, imbalanced-resource-
allocation effect, coverage perception, and individualism/collectivism attitudes
within COSGs with data from 700 human subjects, (iv) a human behavioral
model learned from the data which incorporates these underlying factors, and
(v) SPECTRE-BR to optimize against the learned behavior model to provide
better defender strategies against human subjects than SPECTRE-R.

Acknowledgement. This research is supported by MURI grant W911NF-11-1-0332.
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Abstract. In the wake of an increasing number in targeted and com-
plex attacks on enterprise networks, there is a growing need for timely,
efficient and strategic network response. Intrusion detection systems pro-
vide network administrators with a plethora of monitoring information,
but that information must often be processed manually to enable deci-
sions on response actions and thwart attacks. This gap between detection
time and response time, which may be months long, may allow attackers
to move freely in the network and achieve their goals. In this paper, we
present a game-theoretic approach for automatic network response to an
attacker that is moving laterally in an enterprise network. To do so, we
first model the system as a network services graph and use monitoring
information to label the graph with possible attacker lateral movement
communications. We then build a defense-based zero-sum game in which
we aim to prevent the attacker from reaching a sensitive node in the
network. Solving the matrix game for saddle-point strategies provides us
with an effective way to select appropriate response actions. We use sim-
ulations to show that our engine can efficiently delay an attacker that is
moving laterally in the network from reaching the sensitive target, thus
giving network administrators enough time to analyze the monitoring
data and deploy effective actions to neutralize any impending threats.

1 Introduction

In the wake of the increasing number of targeted and complex network attacks,
namely Advanced Persistent Threats (APTs), organizations need to build more
resilient systems. Resiliency is a system’s ability to maintain an acceptable level
of operation in light of abnormal, and possibly malicious, activities. The key
feature of resilient systems is their ability to react quickly and effectively to
different types of activities. There has been an ever-increasing amount of work
on detecting network intrusions; Intrusion Detection Systems (IDSs) are widely
c© Springer International Publishing AG 2016
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deployed as the first layer of defense against malicious opponents [10]. However,
once alarms have been raised, it may take a network administrator anywhere
from weeks to months to effectively analyze and respond to them. This delay
creates a gap between the intrusion detection time and the intrusion response
time, thus allowing attackers a sometimes large time gap in which they can move
freely around the network and inflict higher levels of damage.

An important phase of the life cycle of an APT is lateral movement, in
which attackers attempt to move laterally through the network, escalating their
privileges and gaining deeper access to different zones or subnets [2]. As today’s
networks are segregated by levels of sensitivity, lateral movement is a crucial part
of any successful targeted attack. An attacker’s lateral movement is typically
characterized by a set of causally related chains of communications between
hosts and components in the network. This creates a challenge for detection
mechanisms since attacker lateral movement is usually indistinguishable from
administrator tasks. It is up to the network administrator to decide whether a
suspicious chain of communication is malicious or benign. This gap between the
detection of a suspicious chain and the administrator’s decision and response
allows attackers to move deeper into the network and thus inflict more damage.
It is therefore essential to design response modules that can quickly respond to
suspicious communication chains, giving network administrators enough time to
make appropriate decisions.

Intrusion Response Systems (IRSs) combine intrusion detection with network
response. They aim to reduce the dangerous time gap between detection time
and response time. Static rule-based IRSs choose response actions by matching
detected attack steps with a set of rules. Adaptive IRSs attempt to dynami-
cally improve their performance using success/failure evaluation of their previ-
ous response actions, as well as IDS confidence metrics [21,23]. However, faced
with the sophisticated nature of APTs, IRSs are still unable to prevent net-
work attacks effectively. Rule-based systems can be easily overcome by adaptive
attackers. Adaptive systems are still not mature enough to catch up with the
increased complexity of APTs.

In this paper, we present a game-theoretic network response engine that
takes effective actions in response to an attacker that is moving laterally in an
enterprise network. The engine receives monitoring information from IDSs in the
form of a network services graph, which is a graph data structure representing
vulnerable services running between hosts, augmented with a labeling function
that highlights services that are likely to have been compromised. We formulate
the decision-making problem as a defense-based zero-sum matrix game that the
engine analyzes to select appropriate response actions by solving for saddle-point
strategies. Given the response engine’s knowledge of the network and the location
of sensitive components (e.g., database servers), its goal is to keep the suspicious
actors as far away from the sensitive components as possible. The engine is not
guaranteed to neutralize threats, if any, but can provide network administrators
with enough time to analyze suspicious movement and take appropriate neutral-
ization actions. The decision engine will make use of the monitoring information
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to decide which nodes’ disconnection from the network would slow down the
attacker’s movements and allow administrators to take neutralizing actions.

An important feature of our approach is that, unlike most IRSs, it makes
very few pre-game assumptions about the attacker’s strategy; we only place a
bound on the number of actions that an attacker can make within a time period,
thus allowing us to model the problem as a zero-sum game. By not assuming
an attacker model beforehand, our engine can avoid cases in which the attacker
deviates from the model and uses its knowledge to trick the engine and cancel
the effectiveness of its actions. We show that our engine is effectively able to
increase the number of attack steps needed by an attacker to compromise a
sensitive part of the network by at least 50 %. Additionally, in most cases, the
engine was able to deny the attacker access to the sensitive nodes for the entire
period of the simulation.

The rest of this paper is organized as follows. We describe the motivation
behind our work in Sect. 2. We then present an overview of our approach and
threat model in Sect. 3. Section 4 formally presents the response engine and the
algorithms we use. We discuss implementation and results in Sect. 5. We review
past literature in Sect. 6, which is followed by presentation of challenges and
future directions in Sect. 7. We conclude in Sect. 8.

2 Motivation

The life cycle of an APT consists of the following steps [2,7,11]. The first is
intelligence gathering and reconnaissance, which is followed by the establishment
of an entry point into the target system. Subsequently, the attacker establishes
a connection to one or more command and control (C&C) servers, and uses
these connections to control the remainder of the operation. Following C&C
establishment is lateral movement, wherein the attacker gathers user credential
and authentication information and moves laterally in the network in order to
reach a designated target. The last step includes performance of specific actions
on the targets, such as data exfiltration or even physical damage [13].

Lateral movement allows attackers to achieve persistence in the target net-
work and gain higher privileges by using different tools and techniques [2]. In a
number of recent security breaches, the examination of network logs has shown
that attackers were able to persist and move laterally in the victim network,
staying undetected for long periods of time. For example, in the attack against
the Saudi Arabian Oil Company, the attackers were able to spread the malware
to infect 30,000 personal machines on the company’s network through the use
of available file-sharing services [8]. In the Ukraine power grid breach, attackers
used stolen credentials to move laterally through the network and gain access to
Supervisory Control and Data Acquisition (SCADA) dispatch workstations and
servers. The attackers had enough privileges to cause more damage to the public
power grid infrastructure [14]. Furthermore, through the use of USB sticks and
exploitation of zero-day vulnerabilities in the Windows operating system, the
Stuxnet malware was able to move between different workstations in an Iranian
nuclear facility until it reached the target centrifuge controllers [13].
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Early detection of lateral movement is an essential step towards thwarting
APTs. However, without timely response, attackers can use the time gap between
detection and administrator response to exfiltrate large amounts of data or inflict
severe damage to the victim’s infrastructure. It took network administrators two
weeks to effectively neutralize threats and restore full operation to the Saudi
Arabian Oil Company’s network [8]. Furthermore, attackers attempt to hide
their lateral movement through the use of legal network services such as file
sharing (mainly Windows SMB), remote desktop tools, secure shell (SSH) and
administrator utilities (such as the Windows Management Instrumentation) [2].
This stealthy approach makes it harder for network administrators to decide
whether the traffic they are observing is malicious lateral movement or benign
user or administrative traffic.

In this work, we present a game-theoretic approach for autonomous network
response to potentially malicious lateral movement. The response actions taken
by our engine aim to protect sensitive network infrastructure by keeping the
attacker away from it for as long as possible, thus giving network administrators
enough time to assess the observed alerts and take effective corrective actions to
neutralize the threats.

3 Overview

We assume, in our framework, the presence of network level IDSs (such as
Snort [20] and Bro [1]) that can provide the response engine with the neces-
sary monitoring information. The response engine maintains the state of the
network in the form of a network services graph, a graph data structure that
represents the active services between nodes in the network. It then uses IDS
information to define a labeling function over the graph that marks suspicious
nodes and communications used for a possible compromise. Using the labels, the
engine observes chains of communications between likely compromised nodes.
Such chains are considered suspicious and require the engine to take immediate
response actions. The engine considers all suspicious chains as hostile; its goal is
to prevent any attackers from reaching specified sensitive nodes in the network,
typically database servers or physical controllers.

From the observed states, the response engine can identify compromised
nodes and possible target nodes for the attacker. It will take response actions
that disconnect services from target nodes so that it prevents the attacker from
reaching the sensitive node. This step can provide the network administrators
with enough time to assess the IDS alerts and take appropriate actions to neu-
tralize any threats. Figures 1 and 2 illustrate high-level diagrams of our response
engine and a sample observed network state with 10 nodes, respectively.

Our threat model allows for the presence of a sophisticated attacker that has
already established an entry point in an enterprise network, typically using spear
phishing and social engineering, and aims to move laterally deeper into the net-
work. Starting from a compromised node, the attacker identifies a set of possible
target nodes for the next move. We assume that the attacker compromises one



298 M.A. Noureddine et al.

Fig. 1. Our defender model. The defense module uses IDS alerts and monitoring data
along with observed attacker steps to build a network model. Trying to protect a
sensitive node σ, it builds a zero-sum game and solves for the saddle-point strategies
in order to select an appropriate response action a. The Response Deployment module
is then responsible for the implementation of a in the network.

Fig. 2. An illustration of our game model. The attacker has compromised 3 nodes in
the network, and has four potential targets to compromise next. The defender, seeing
the three compromised nodes, has to decide where the attacker is going to move next
and disconnect services from the node, thus slowing down the attack.

node at a time in order to avoid detection. We argue that this assumption is
reasonable since attackers typically want to use legitimate administrator tools
to hide their lateral movement activities [24]. Therefore, unlike computer worms
that propagate widely and rapidly [26], lateral movement tends to be targeted,
slow and careful. We will explore more sophisticated types of attackers with
multi-move abilities in our future work.

Figure 2 illustrates an example network services graph with ten nodes, where
an attacker has established a point of entry and already compromised three
nodes. We highlight the target nodes that the attacker can choose to compro-
mise next. We assume no prior knowledge of the strategy by which the attacker
will choose the next node to compromise. Building our response engine on the
assumption of like-minded attackers would lead to a false sense of security, since
attackers with different motives would be able to overcome the responses of our
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engine, or possibly use them to their own advantage. Therefore, we formulate
a defense-based game that attempts to protect a sensitive node in the network,
regardless of the goals that the attacker is trying to achieve.

4 The Response Engine

In this section, we formally introduce our response decision-making problem
and its formulation as a zero-sum game. We provide formal definitions for the
network state, attack and response actions, and attack and response strategies,
and then present how we build and solve the matrix game. We formulate the
response engine’s decision-making process as a complete information zero-sum
game, in which the players are the engine and a potentially malicious attacker.
We assume that both players take actions simultaneously, i.e., no player observes
the action of the other before making its own move. In what follows, without loss
of generality, we use the term attacker to refer to a suspicious chain of lateral
movement communications. The response engine treats all communication chains
as malicious and takes response actions accordingly. We use the terms defender
and response engine interchangeably.

4.1 Definitions

Definition 1 (Network services graph). A network services graph (NSG) is
an undirected graph G = <V,E> where V is the set of physical or logical nodes
(workstations, printers, virtual machines, etc.) in the network and E = V × V
is a set of edges.

An edge e = (v1, v2) ∈ E represents the existence of an active network service,
such as file sharing, SSH, or remote desktop connectivity, between nodes v1 and
v2 in the network.

For any v ∈ V , we define a neighborhood(v) as the set

neighborhood(v) = {u ∈ V |∃(u, v) ∈ E} (1)

Definition 2 (Alert labeling function). Given an NSG G = <V,E>, we
define an Alert Labeling Function (ALF) as a labeling function � over the nodes
V and edges E of G such that

For v ∈ V, �(v) =
{
True iff v is deemed compromised,
False otherwise.

(2)

For e = (u, v) ∈ E, �(e) =
{
True iff �(u) = True ∧ �(v) = True,
False otherwise.

(3)
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A suspicious chain is then a sequence of nodes {v1, v2, . . . , vk} such that
⎧
⎨

⎩

v1, v2, . . . , vk ∈ V,
(vi, vi+1) ∈ E ∀i ∈ {1, . . . , k − 1}, and
�(vi) = True ∀i ∈ {1, . . . , k}

We assume that an ALF is obtained from monitoring information provided by
IDSs such as Snort [20] and Bro [1]. A suspicious chain can be either a malicious
attacker moving laterally in the network, or a benign legal administrative task.
The goal of our response engine is to slow the spread of the chain and keep
it away from the sensitive infrastructure of the network, thus giving network
administrators enough time to assess whether the chain is suspicious or not, and
take appropriate corrective actions when needed.

Definition 3 (Network state). We define the state of the network as a tuple
s = (Gs = <Vs, Es>, �s) where Gs is an NSG and �s is its corresponding ALF.
We use S to refer to the set of all possible network states.

For a given network state s, we define the set of vulnerable nodes Vs as

Vs =

⎧
⎨

⎩
u |

⎛

⎝u ∈
⋃

v∈Vs∧�s(v)=True

neighborhood(v)

⎞

⎠ ∧ �s(u) = False

⎫
⎬

⎭
(4)

Definition 4 (Attack action). Given a network state s ∈ S, an attack action
ae is a function over the ALFs, in which a player uses the service provided by
edge e = (v, v′) such that �s(v) = True and v′ ∈ Vs, in order to compromise
node v′. Formally we write

ae(�s) = �′ such that �′(v′) = True ∧ �′(e) = True (5)

For a network state s, the set of possible attack actions As is defined as

As = {ae | e = (u, v) ∈ Es ∧ �s(u) = True ∧ v ∈ Vs} (6)

Definition 5 (Response action). Given a network state s, a response action
dv is a function over the NSG edges, in which a player selects a node v ∈ Vs, and
disconnects available services on all edges e = (u, v) ∈ Es such that �s(u) = True.
Formally, we write

dv(Es) = E′ such that E′ = Es\ {(u, v) ∈ Es | �s(u) = True} (7)

For a network state s, we define the set of all possible response actions Ds as

Ds = {dv|v ∈ Vs} (8)

Definition 6 (Response strategy). Given a network state s with a set of
response actions Ds, a strategy pr : Ds −→ [0, 1]|Ds| where

∑
dv∈Ds

pr(dv) = 1
is a probability distribution over the space of available response actions.
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A response strategy pr is a pure response strategy iff

∃ dv ∈ Ds such that pr(dv) = 1 ∧ (∀dv′ �= dv, pr(dv′) = 0) (9)

A response strategy that is not pure is a mixed response strategy. Given a network
state s, after solving a zero sum game, the response engine samples its response
action according to the computed response strategy.

Definition 7 (Attack strategy). Given a network state s and a set of attack
actions As, an attack strategy pa : As −→ [0, 1]|A| where

∑
ae∈As

pa(ae) = 1 is
a probability distribution over the space of available attack actions As.

Definition 8 (Network next state). Given a network state s, a response
action dv ∈ Ds for v ∈ Vs, and an attack action ae ∈ As for e = (u,w) ∈ Es,
using Eqs. (5) and (7), we define the network next state (nns) as a function
S × Ds × As −→ S where

nns(s, dv, ae) = s′ where

{
(Gs′ = <Vs, dv(Es)>, �s) iff v = w,
(Gs′ = <Vs, dv(Es)>, ae(�s)) otherwise

(10)

4.2 Formulation as a Zero-Sum Game

The goal of our response engine is to keep an attacker, if any, as far away from a
network’s sensitive node (database server, SCADA controller, etc.) as possible.
In the following, we assume that the engine is configured to keep the attacker
at least threshold nodes away from a database server σ containing sensitive
company data. The choices of threshold and σ are determined by the network
administrators prior to the launch of the response engine.

Figure 3 shows the steps taken by our response engine at each time epoch
t0 < t1 < t2 < . . . < t. In every step, the defender constructs a zero-sum
defense-based matrix game and solves it for the saddle-point response strategy
from which it samples an action to deploy. Assume that in a network state
s, the response engine chooses to deploy action dv ∈ Ds for v ∈ Vs, and the

1: for each time epoch t0 < t1 < t2 < . . . do
2: (1) Obtain network state s = (Gs, �s).
3: (2) Compute the sets of possible attack and response actions As and Ds

4: (3) Compute the payoff matrix Ms = BUILD GAME(As, Ds, threshold, σ)
5: (4) Compute the equilibrium response strategy p̂r

6: (6) Sample response action dv ∈ Ds from p̂r

7: end for

Fig. 3. The steps taken by our response engine at each time epoch. The engine first
obtains the state of the network from the available monitors, and uses it to compute
the sets of possible attack and response actions As and Ds. It then builds the zero-sum
game matrix Ms using Algorithm 1, and solves for the equilibrium response strategy
p̂s. It finally samples a response action dv from p̂s that it deploys in the network.
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attacker chooses to deploy action ae ∈ As for e = (u,w) ∈ Es. In other words,
the defender disconnects services from node v in the network while the attacker
compromises node w starting from the already compromised node u. If v = w,
then the attacker’s efforts were in vain and the response engine was able to
guess correctly where the attacker would move next. However, when v �= w,
the attacker would have successfully compromised the node w. Note that this is
not necessarily a loss, since by disconnecting services from certain nodes on the
path, the response engine might be redirecting the attacker away from the target
server σ. Furthermore, by carefully selecting nodes to disconnect, the engine can
redirect the attacker into parts of the network where the attacker can no longer
reach the target server σ, and thus cannot win the game. The attacker wins the
game when it is able to reach a node within one hop of target server σ. The
game ends when (1) the attacker reaches σ; (2) either player runs out of moves
to play; or (3) the attacker can no longer reach σ.

Let sp(u, σ) be the length of the shortest path (in number of edges) in Gs

from node u to the target server σ. We define the payoffs for the defender in
terms of how far the compromised nodes are from the target server σ. A positive
payoff indicates that the attacker is more than threshold edges away from σ. A
negative payoff indicates that the attacker is getting closer to σ, an undesirable
situation for our engine. Therefore, we define the payoff for the defender when the
attacker compromises node w as sp(w, σ)−threshold. If sp(w, σ) > threshold
then the attacker is at least sp(w, σ)−threshold edges away from the defender’s
predefined dangerous zone. Otherwise, attacker is threshold − sp(w, σ) edges
into the defender’s dangerous zone. Moreover, when the defender disconnects a
node w that the attacker wanted to compromise, two cases might arise. First,
if sp(w, σ) = ∞, i.e., w cannot reach σ, then it is desirable for the defender
to lead the attacker into w, and thus the engine assigns dw a payoff of 0 so
that it wouldn’t consider disconnecting w. Otherwise, when sp(w, σ) < ∞, by
disconnecting the services of w, the defender would have canceled the effect of
the attacker’s action, and thus considers it a win with payoff sp(w, σ) < ∞.

Algorithm 1 illustrates how our response engine builds the zero-sum matrix
game. For each network state s, the algorithm takes as input the set of response
actions Ds, the set of attack actions As, the defender’s threshold, and the target
server to protect σ. The algorithm then proceeds by iterating over all possible
combinations of attack and response actions and computes the defender’s payoffs
according to Eq. (11). It then returns the computed game payoff matrix Ms with
dimensions |Ds| × |As|.

Formally, for player actions dv ∈ Ds and ae ∈ As where v ∈ Vs and e =
(u,w) ∈ Es, we define the response engine’s utility as

ud(dv, ae) =

⎧
⎨

⎩

0 iff v = w ∧ sp(w, σ) = ∞
sp(w, σ) iff v = w ∧ sp(w, σ) < ∞
sp(w, σ) − threshold iff v �= w

(11)

Since the game is zero-sum, the utility of the attacker is ua(ae, dv) = −ud(dv, ae).
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Algorithm 1. Algorithm Ms = BUILD GAME (Ds,As, threshold, σ)
1: Inputs: Ds, As, threshold, σ
2: Outputs: Zero-sum game payoff matrix Ms

3: for each response action dv ∈ Ds do
4: for each attack action ae ∈ As do
5: let e ← (u, w)
6: if v = w then
7: if sp(w, σ) = ∞ then
8: Ms(v, w) ← 0
9: else

10: Ms(v, w) ← sp(w, σ)
11: end if
12: else
13: Ms(v, w) ← sp(w, σ) − threshold

14: end if
15: end for
16: end for

For a response strategy pr over Ds and an attack strategy pa over As, the
response engine’s expected utility is defined as

Ud(pr,pa) =
∑

dv∈Ds

∑

ae∈As

pr(dv)ud(dv, ae)pa(ae) (12)

Similarly, the attacker’s expected payoff is Ua(pa,pr) = −Ud(pr,pa).
In step 4 of Fig. 3, the response engine computes the saddle-point response

strategy p̂r from which it samples the response action to deploy. p̂r is the best
response strategy that the engine could adopt for the worst-case attacker. For-
mally, for saddle-point strategies p̂r and p̂a,

Ud(p̂r, p̂a) ≥ Ud(pr, p̂a) for all pr, and
Ua(p̂a, p̂r) ≤ Ua(pa, p̂r) for all pa (13)

Finally, the engine chooses an action dv ∈ Ds according to the distribution p̂r

and deploys it in the network. In this paper, we assume that response actions are
deployed instantaneously and successfully at all times; response action deploy-
ment challenges are beyond the scope of this paper.

5 Implementation and Results

We implemented a custom Python simulator in order to evaluate the performance
of our proposed response engine. We use Python iGraph [9] to represent NSGs,
and implement ALFs as features on the graphs’ vertices. Since the payoffs for
the response engine’s actions are highly dependent on the structure of the NSG,
we use three different graph topology generation algorithms to generate the
initial graphs. The Waxman [25] and Albert-Barabási [3] algorithms are widely
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used to model interconnected networks, especially for the evaluation of different
routing approaches. In addition, we generate random geometric graphs, as they
are widely used for modeling social networks as well as studying the spread of
epidemics and computer worms [17,19]. Because of the lack of publicly available
data sets capturing lateral movement, we assume that the Waxman and Albert-
Barabási models provide us with an appropriate representation of the structural
characteristics of interconnected networks.

We use the geometric graph models in order to evaluate the performance
of our engine in highly connected networks. We pick the initial attacker point
of entry in the graph ω and the location of the database server σ such that
sp(ω, σ) = d, where d is the diameter of the computed graph. This is a rea-
sonable assumption, since in APTs, attackers usually gain initial access to the
target network by targeting employees with limited technical knowledge (such
as customer service representatives) through social engineering campaigns, and
then escalate their privileges while moving laterally in the network.

We implement our response engine as a direct translation of Fig. 3 and Algo-
rithm1, and we use the Gambit [16] Python game theory API in order to solve for
the saddle-point strategies at each step of the simulation. We use the NumPy [12]
Python API to sample response and attack actions from the computed saddle-
point distributions. As stated earlier, we assume that attack and response actions
are instantaneous and always successful, and thus implement the actions and
their effects on the network as described in the network next-state function in
Eq. (10).

We evaluate the performance of our response engine by computing the aver-
age percentage increase in the number of attack steps (i.e., compromises) needed
by an adversary to reach the target server σ. We compute the average increase
with respect to the shortest path that the attacker could have adopted in the
absence of the response engine. Formally, let k be the number of attack steps
needed to reach σ and d be the diameter of the NSG; then, the percentage
increase in attack steps is k−d

d ×100. If the attacker is unable to reach the target
server, we set the number of attack steps k to the maximum allowed number of
rounds of play in the simulation, which is 40 in our simulations.

In addition, we report on the average attacker distance from the server σ as
well as the minimum distance that the attacker was able to reach. As discussed
earlier, we measure the distance in terms of the number of attack steps needed
to compromise the server. A minimum distance of 1 means that the attacker was
able to successfully reach σ. We also report and compare the average achieved
payoff for the defender while playing the game. We ran our simulations on a Mac-
book Pro laptop running OSX El Capitan, with 2.2 GHz Intel Core i7 proces-
sors and 16 GB of RAM. We start by describing our results for various defender
threshold values for an NSG with 100 nodes, and then fix the threshold value
and vary the number of nodes in the NSG. Finally, we report on performance
metrics in terms of the time needed to perform the computation for various NSG
sizes.
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5.1 Evaluation of threshold Values

We start by evaluating the performance of our response engine for various values
of the threshold above which we would like to keep the attacker away from
the sensitive node σ. We used each graph generation algorithm to generate 10
random NSGs, simulated the game for threshold ∈ {1, 2, 3, 4, 5, 6}, and then
computed the average values of the metrics over the ten runs.

Table 1 shows the structural characteristics in terms of the number of vertices,
average number of edges, diameter, and maximum degree of the graphs gener-
ated by each algorithm. All of the graphs we generated are connected, with the
geometric graphs showing the largest levels of edge connectivity, giving attackers
more space to move in the network. The Waxman and Barabási generators have
lower levels of edge connectivity, making them more representative of network
services topologies than the geometric graphs are.

Table 1. Characteristics of generated NSGs (averages)

NSG Generator |V | |E| Diameter Max Degree

Barabási 100 294 4 50.2

Waxman 100 336.6 4.9 13.7

Geometric 100 1059.8 5.2 34.5

Figure 4a shows the average percentage increase in attacker steps needed
to reach the target (or reach the simulation limit) for the various values of
threshold. The results show that in all cases, our engine was able to increase
the number of steps needed by the attacker by at least 50 %. Considering only
the Waxman and Barabási graphs, the engine was able to increase the number
of steps needed by the attacker by at least 600 %. This is a promising result that
shows the effectiveness of our engine, especially in enterprise networks. Further,
the results show that smaller values for threshold achieve a greater average
increase in attacker steps. This is further confirmed by the average defender
payoff curves shown in Fig. 4b, in which smaller values of threshold achieve
greater payoffs. In fact, this result is a direct implication of our definition of
the payoff matrix values in Eq. (11). The smaller the values of threshold, the
more the engine has room to take actions that have a high payoff, and the more
effective its strategies are in keeping the attacker away from the server.

Figures 4c and d show the average distance between the attacker and the
server, and the minimum distance reached by the attacker, respectively. For
the Waxman and Barabási graphs, the results show that our engine keeps the
attacker, on average, at a distance close to the graph’s diameter, thus keeping
the attacker from penetrating deeper into the network. For both types of graphs,
Fig. 4d confirms that the attacker was unable to reach the target server (average
minimum distance ≥ 1).
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(a) Average % increase in attack steps (b) Average defender payoff

(c) Average attacker distance from σ (d) Attacker’s minimum distance from σ

Fig. 4. Performance evaluation of our response engine with varying threshold values.
a shows that our engine was able to increase the number of compromises needed by
the attacker by at least 55 %. b illustrates that the zero-sum game’s payoff for the
defender decreases almost linearly as the threshold increases. c shows that the average
attacker’s distance from σ is very close to the NSG’s diameter, while d shows that, with
the exception of the geometric NSG, our engine was able to keep that attacker from
reaching the target data server σ. It was able, however, in the geometric NSG case, to
increase the number of compromises needed to reach σ by at least 55 %.

In the case of the geometric graphs, Fig. 4d shows that the attacker was
almost always able to reach the target server. We attribute this attacker success
to the high edge connectivity in the geometric graphs. Although our engine is
able to delay attackers, because of the high connectivity of the graph, they may
find alternative ways to reach the server. Nevertheless, our response engine was
always able to cause at least a 50 % increase in the number of attack steps needed
to reach the server.

In summary, the results show that our response engine is able to effec-
tively delay, and on average prevent, an attacker that is moving laterally in the



A Game-Theoretic Approach 307

network from reaching the target database server. It was effectively able to
increase the number of attack steps needed by the adversary by at least 600 %
for the graphs that are representative of real-world network topologies. In addi-
tion, even when the graphs were highly connected, our engine was still able to
increase the attacker’s required amount of attack steps by at least 50 %.

5.2 Scalability

Next, we measured the scalability of our response engine as the network grew
in size. We varied the number of nodes in the network from 100 to 300 in steps
of 50 and measured the average percentage increase in attack steps as well as
the attacker’s average distance from the target σ. Figure 5 shows our results
for averages measured over five random NSGs generated by each of the NSG
generation algorithms. We set the defender’s threshold values to those that
achieved a maximum average increase in attack steps as shown in Fig. 4a, which
are 5 for geometric NSGs, 2 for Barabási NSGs, and 3 for Waxman NSGs.

As shown in Fig. 5a, our response engine can scale well as the size of the net-
work increases, providing average percentage increases in attack steps between
550 % and 700 % for Waxman NSGs, 750 % and 1150 % for Barabási NSGs, and
50 % and 220 % for geometric NSGs. These results show that as the number of
nodes, and thus the number of connection edges, increases in the network, our
engine is able to maintain high-performance levels and delay possible attackers,
even when they have more room to evade the engine’s responses and move lat-
erally in the network. This is further confirmed by the results shown in Figs. 5b
and c. For the Waxman and Barabási NSGs, the response engine is always capa-
ble of keeping the attacker at an average distance from the target server equal to
the diameter of the graph. For the geometric NSGs, the attacker is always capa-
ble of getting close to and reaching the target server, regardless of the diameter
of the graph. Our engine, however, is always capable of increasing the number
of attack steps required by at least 50 %, even for larger networks.

5.3 Computational Performance

Finally, we evaluated the computational performance of our game engine as
the scale of the network increased from 100 to 300 nodes. We used the same
values for threshold as in the previous subsection, and measured the average
time to solve for the saddle-point strategies as well as the average size of the
matrix game generated during the simulation. Since all of the payoff matrices
we generated are square, we report on the number of rows in the matrix games.
The rows correspond to the number of available attack or response actions for
the players (i.e., for a state s, we report on |As| = |Ds|). Our engine makes use
of the ExternalLogitSolver solver from the Gambit software framework [16] to
solve for the saddle-point strategies at each step of the simulation. In computing
our metrics, we averaged the computation time and matrix size over 10 random
graphs from each algorithm, and we limited the number of steps in the simulation
(i.e., the number of game turns) to 10.
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(a) Average % increase in attack steps (b) Average attacker distance from σ

(c) Average graph diameter

Fig. 5. Performance evaluation of our response engine with increasing number of nodes
in the network. a shows that our engine maintains high levels of performance even
when the network grows larger. The engine is also capable of keeping the attacker at
an average distance close to the graph’s diameter in the cases of the Waxman and
Barabási NSGs, as shown in b and c.

Figure 6b shows that for all NSG-generation algorithms, the size of the payoff
matrices for the generated zero-sum game increases almost linearly with the
increase in the size of the nodes in the network. In other words, the average
number of available actions for each player increases linearly with the size of
the network. Consequently, Fig. 6a shows that the computational time needed
to obtain the saddle-point strategies scales very efficiently with the increase in
the size of the network; the engine was able to solve 50 × 50 matrix games in
15 s, on the average. The short time is a promising result compared to the time
needed by an administrator to analyze the observed alerts and deploy strategic
response actions.

In summary, our results clearly show the merits of our game engine in slowing
down the advance of an attacker that is moving laterally within an enterprise
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(a) Average time (s) to solve matrix game (b) Average size of the matrix game

Fig. 6. Computational performance evaluation of the engine for larger networks. Our
response engine scales well with the increase in the size of the network.

network, and its ability to protect a sensitive database server effectively from
compromise. For all of the NSG-generation algorithms, our engine was able to
increase the number of attack steps needed by an attacker to reach the sensitive
server by at least 50%, with the value increasing to 600% for the Waxman and
Barabási NSG-generation algorithms. The results also show that our engine is
able to maintain proper performance as networks grow in size. Further, the com-
putational resources required for obtaining the saddle-point strategies increased
linearly with the number of the nodes in the network.

6 Related Work

Several researchers have tackled the problem of selecting cyber actions as
a response to intrusions. The space can be divided into three parts; auto-
mated response through rule-based methods, cost-sensitive methods, and secu-
rity games.

In rule-based intrusion response, each kind of intrusion alert is tagged with
a suitable response. The static nature of rule-based intrusion response makes
it predictable and limits its ability to adapt to different attacker strategies.
Researchers have extended rule-based intrusion response systems to become cost-
sensitive; cost models range from manual assessment of costs to use of depen-
dency graphs on the system components to compute a response action’s cost.
In all of those cases, the process of selecting a response minimizes the cost of
response actions over a set of predefined actions that are considered suitable for
tackling a perceived threat. Stakhanova surveyed this class of systems in [26].
While cost-sensitive intrusion response systems minimize the cost of responding,
they are still predictable by attackers, and a large effort is required in order to
construct the cost models.

Bloem et al. [6] tackled the problem of intrusion response as a resource allo-
cation problem. Their goal was to manage the administrator’s time, a critical
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and limited resource, by alternating between the administrator and an imperfect
automated intrusion response system. The problem is modeled as a nonzero-sum
game between automated responses and administrator responses, in which an
attacker gain (utility) function is required. Obtaining such functions, however,
is hard in practice, as attacker incentives are not known. The problem of finding
attacker-centric metrics was tackled by ADAPT [22]. The ADAPT developers
attempted to find a taxonomy of attack metrics that require knowledge of the
cost of an attack and the benefit from the attack. ADAPT has created a frame-
work for computing the metrics needed to set up games; however, assigning
values to the parameters is still more of an art than a science.

Use of security games improved the state of IRSs, as they enabled modeling
of the interaction between the attacker and defender, are less predictable, and
can learn from previous attacker behavior [5,15]. In [4], the authors model the
security game as a two-player game between an attacker and a defender; the
attacker has two actions (to attack or not attack), and the defender has two
actions (to monitor or not monitor). The authors consider the interaction as a
repeated game and find an equilibrium strategy. Nguyen et al. [18] used fictitious
play to address the issue of hidden payoff matrices. While this game setup is
important on a high level and can be useful as a design guideline for IDSs, it
does not help in low-level online response selection during a cyber attack.

To address the issue of high level abstraction in network security games,
Zonouz [28] designed the Response and Recovery Engine (RRE), an online
response engine modeled as a Stackelberg game between an attacker and a
defender. Similar to work by Zhu and Başar [27], the authors model the sys-
tem with an attack response tree (ART); the tree is then used to construct a
competitive Markov decision process to find an optimal response. The state of
the decision process is a vector of the probabilities of compromise of all the
components in the system. The authors compute the minimax equilibrium to
find an optimal response. The strategy is evaluated for both finite and infinite
horizons. Scalability issues are tackled using finite lookahead. The game, how-
ever, has several limitations: (1) the model is sensitive to the assigned costs;
(2) the model required a priori information on attacks and monitoring (condi-
tional probabilities) which is not available; and (3) the system uses a hard-to-
design ART to construct the game.

7 Discussion and Future Work

The goals of our response engine are to provide networked systems with the
ability to maintain acceptable levels of operation in the presence of potentially
malicious actors in the network, and to give administrators enough time to ana-
lyze security alerts and neutralize any threats, if present. Our results show that
the engine is able to delay, and often prevent, an attacker from reaching a sensi-
tive database server in an enterprise network. However, the response actions that
our engine deploys can have negative impacts on the system’s provided services
and overall performance. For example, disconnecting certain nodes as part of our
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engine’s response to an attacker can compromise other nodes’ ability to reach
the database service. This can have severe impacts on the system’s resiliency,
especially if it is part of a service provider’s infrastructure. In the future, we
plan to augment our engine with response action cost metrics that reflect their
impact on the network’s performance and resiliency. We plan to add support for
a resiliency budget that the engine should always meet when making response
action decisions. In addition, we will investigate deployment challenges for the
response actions. We envision that with the adoption of Software Defined Net-
works (SDNs), the deployment of such actions will become easier. Our engine
can be implemented as part of the SDN controller, and can make use of an SDN
control protocols to deploy its response actions.

In the context of APTs, attackers are often well-skilled, stealthy, and highly
adaptive actors that can adapt to the changes in the network, including the
response actions deployed by our engine. We will investigate more sophisticated
models of attackers, specifically ones that can compromise more than one node
in each attack step, and can adapt in response to our engine’s deployed actions.
In addition, knowledge of the attacker’s strategies and goals would provide our
response engine with the ability to make more informed strategic decisions about
which response actions to deploy. Therefore, we plan to investigate online learn-
ing techniques that our engine can employ in order to predict, with high accu-
racy, an attacker’s strategies and goals. However, the main challenge that we
face in our framework’s design and implementation is the lack of publicly avail-
able datasets that contain traces of attackers’ lateral movements in large-scale
enterprise networks. In addition to simulations, we will investigate alternative
methods with which we can evaluate our response engine and the learning tech-
niques that we devise. Such methods can include implementation in a real-world,
large-scale testbed.

8 Conclusion

Detection of and timely response to network intrusions go hand-in-hand when
secure and resilient systems are being built. Without timely response, IDSs are
of little value in the face of APTs; the time delay between the sounding of IDS
alarms and the manual response by network administrators allows attackers to
move freely in the network. We have presented an efficient and scalable game-
theoretic response engine that responds to an attacker’s lateral movement in
an enterprise network, and effectively protects a sensitive network node from
compromise. Our response engine observes the network state as a network ser-
vices graph that captures the different services running between the nodes in the
network, augmented with a labeling function that captures the IDS alerts con-
cerning suspicious lateral movements. It then selects an appropriate response
action by solving for the saddle-point strategies of a defense-based zero-sum
game, in which payoffs correspond to the differences between the shortest path
from the attacker to a sensitive target node, and an acceptable engine safety dis-
tance threshold. We have implemented our response engine in a custom simulator
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and evaluated it for three different network graph generation algorithms. The
results have shown that our engine is able to effectively delay, and often stop,
an attacker from reaching a sensitive node in the network. The engine scales
well with the size of the network, maintaining proper operation and efficiently
managing computational resources. Our results show that the response engine
constitutes a significant first step towards building secure and resilient systems
that can detect, respond to, and eventually recover from malicious actors.
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Abstract. We present a dynamic game framework to model and design
defense strategies for advanced persistent threats (APTs). The model is
based on a sequence of nested finite two-person zero-sum games, in which
the APT is modeled as the attempt to get through multiple protective
shells of a system towards conquering the target located in the center
of the infrastructure. In each stage, a sub-game captures the attack and
defense interactions between two players, and its outcome determines the
security level and the resilience against penetrations as well as the struc-
ture of the game in the next stage. By construction, interdependencies
between protections at multiple stages are automatically accounted for
by the dynamic game. The game model provides an analysis and design
framework to develop effective protective layers and strategic defense-in-
depth strategies against APTs. We discuss a few closed form solutions
of our sequential APT-games, upon which design problems can be for-
mulated to optimize the quality of security (QoS) across several layers.
Numerical experiments are conducted in this work to corroborate our
results.

1 Introduction

The recent advances in the information and communications technologies (ICTs)
have witnessed a gradual migration of many critical infrastructures such as elec-
tric power grid, gas/oil plants and waste water treatment into open public net-
works to increase its real-time situational awareness and the operational effi-
ciency. However, this paradigm shift has also inherited existing vulnerabilities
of ICTs and posed many challenges for providing information assurance to the
legacy systems. For example, the recent computer worm, Stuxnet, have been
spread to target Siemens Supervisory Control And Data Acquisition (SCADA)
systems that are configured to control and monitor specific industrial processes.
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Q. Zhu et al. (Eds.): GameSec 2016, LNCS 9996, pp. 314–326, 2016.
DOI: 10.1007/978-3-319-47413-7 18



GADAPT: A Sequential Game-Theoretic Framework 315

Cyber security mechanisms need to be built into multiple layers of the system
to protect critical assets against security threats.

Traditional design of security mechanisms relies heavily on cryptographic
techniques and the secrecy of cryptographic keys or system states. However,
the landscape of system security has recently evolved considerably. The attacks
have become more sophisticated, persistent and organized over the years. The
attackers can use a wide array of tools such as social engineering and side channel
information to steal the full cryptographic keys, which violates the key secrecy
assumption in cryptographic primitives. This type of attacks is often referred
to as Advanced Persistent Threats (APTs), which can persist in a system for a
long period of time, advance stealthy and slowly to maintain a small footprint
and reduce detection risks.

In this work, we present a dynamic game framework to capture the distinct
feature of APTs in control systems. The objective of using game theory for
APT is a paradigm shift from designing perfect security to prevent attacks to
strategic planning and design of security mechanisms that allow systems to adapt
and mitigate its loss over time. The interactions between an stealthy attacker
and the system can be modeled through a sequence of nested zero-sum games
in which the attacker can advance or stay at each stage of the game, while the
system designer aims to detect and thwart the attack from reaching the target
or the most critical assets located at the center of the infrastructure.

The nested feature of the game integrates multiple layers of the infrastructure
together. At each layer, a sub-game captures the local attack and defense inter-
actions, and its outcome determines the security level and the resilience against
APT penetrations at the current stage, as well as the structure of the game in the
next layer. The nested structure enables a holistic integration of multiple layers
of the infrastructure, which often composed of cyber-layer communications and
networking protocol and the physical-layer control and automation algorithms.
The nested structure can also capture different domains within one layer of the
infrastructure. For example, an APT can advance from the domain of enterprise
Intranet to the domain of utility networks at the cyber layer of an infrastructure.

Another distinct feature of the model is to capture the dynamic behaviors
of APT and its dynamic interactions with different layers of the systems at
distinct stages. The dynamic game framework allows the system to adapt to the
real-time observations and information collected at each stage and implement
an automated policy that will enable the system to adjust its security response
at different stages. The game model also provides a computational and design
framework to develop effective protective layers and strategic defense-in-depth
strategies against APTs. We discuss a few closed form solutions of our sequential
APT-games, upon which design problems can be formulated to optimize the
quality of security (QoS) across several layers.

Below, we present related work, and Sect. 2 introduces the dynamic nested
sequential game model for APT and presents the analytical results of the equi-
librium analysis. Section 3 focuses on the design of security mechanism enabled
by the framework. The paper is concluded in Sect. 4.
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Related Work: Game-theoretic methods have been widely used in modeling
attacker-defender interactions in communication networks [1–4] and cyber-
physical systems [5–8]. The application of game theory to APT has been recently
studied in [9,10]. Game-theoretic techniques provide a natural framework to cap-
ture the dynamic and strategic conflicting objectives between an APT who aims
to inflict maximum damage on the network and a defender who aims to maxi-
mize its utility while minimizing his risk [11]. In [9], FlipIt game is proposed as
the framework for “Stealthy Takeover,” in which players compete to control a
shared resource. In [10], a game-of-games structure is proposed to compose the
FlipIt game together with a signaling game to capture the stealthy behaviors
between an attacker and a cloud user. Our work is also related to the recent
literature on proactive cyber defense mechanisms to defend against intelligent
and adaptive adversaries by reducing cyber-system signatures observed by the
adversaries and increasing their cost and difficulty to attack. Different types
of proactive mechanisms have been investigated including moving target defense
[12,13], randomization techniques [14–17], deception [18–20], and software diver-
sity [21–23]. Game theory provides a scientific framework to address the security
mechanism design of proactive cyber security.

2 APTs as Inspection Games

The game is defined as a walk on a directed acyclic graph G = (V,E). This graph
is created from the infrastructure directly, but may also be derived from an attack
graph (related to the infrastructure). Let v0 ∈ V be the smallest node w.r.t. the
topological ordering of G. For the APT game, we think of v0 as the target node
that the adversary seeks to reach against the actions of the defender. In G, define
the k-th level set Lk as the set of nodes that are equidistantly separated from
v0 by k edges. Formally, we can think of Lk as a “concentric circle” in the graph
around v0, with L0 = {v0}. The game starts with the adversary located at the
outermost level Lk, in which a local game is played towards reaching the next
level Lk−1.

Within each level, the concrete game structure is determined by the particular
nodes located at distance k and their vulnerabilities (whose exploits are the
strategies for the opponent player). At any such (fixed) stage, the strategies for
both players depend on which physical parts of the system (computers, routers,
etc.) are located at distance k, which vulnerabilities can be exploited for these,
and which counteractions can be adopted to prevent attacks.

This view defines a sequence of k games, Gk, Gk−1, . . . , G1, where in every
game Gi, the attacker has two possible actions, which are either to move onwards
to the next level, or to stay at the current level, e.g., to gather necessary infor-
mation for the next steps and/or to remain undetected upon being idle (and
thus not noticeable; like a “dropper” malware). The payoffs in each case depend
on the chances to successfully enter the next game Gi−1 in case of a “move”,
or to become detected in case of a “stay”. Let the attacker be player 2 in our
inspection game.



GADAPT: A Sequential Game-Theoretic Framework 317

The defender, acting as player 1, can choose any component v ∈ V in the
graph G for inspection, which results in one out of two results: (1) it can (even
unknowingly) close an existing backdoor that the adversary was using (this would
be a “catch” event), or (2) it can have chosen the wrong spot to check, so the
adversary’s outside connection up to its current position in the G remains intact
(this would be a “miss” event). It is important to stress the stealthiness of the
situation here, as the spot inspections by player 1 may neither indicate the
current nor past presence of the attacker at a node. That is, the defender’s
(player 1’s) actual move in the game comprises two steps: it randomly chooses
a node to inspect, and then resets it to a valid reference state (e.g., patch it,
update its configuration, completely reinstall it, etc.). If there was a backdoor at
a node being active, the defender’s action may have closed it, even though the
defender itself never noticed this success.

The adversary, once having successfully entered game Gi, maintains a path in
the graph from the outermost level Lk up to the current level Li (with 1 ≤ i < k)
in G. Call a particular such path Pi ⊆ V , and define it to be a set of consecutive
nodes in G. Whichever node player 1 chooses to inspect, the attacker looses the
game at this stage (but not the overall game) if any node in Pi is inspected
(as the backdoor is closed by then), no matter if it decided to stay or move.
The likelihood for this event to happen is determined by the randomized rule by
which nodes for inspections are being selected, which is the behavior that player
1 seeks to optimize using game theory.

If the attacker decides to stay and remains uncaught, this leaves his current
profit unchanged, since it took it no closer to its goal. If the adversary decides
to move and remains uncaught, this adds to his revenue, since it now is in game
Gi−1. If the backdoor is closed by an inspection (the path Pi is broken), then
the game ends, returning the so-far collected payoff for the adversary, and the
respective negative value for the defender (zero-sum). The zero-sum assumption
is convenient here for providing a valid worst-case assessment without requiring
a payoff (incentive) model for the attacker. It thus simplifies the modeling at the
cost of possibly giving a pessimistic security assessment (if the attacker is less
malicious than presumed). In any case, the game automatically ends once G1 is
won, returning the maximal revenue/loss to the attacker/defender.

To illustrate the modeling, consider the generic SCADA infrastructure as
depicted in Fig. 1. The distance (level) in the game is determined by the number
of access controls (e.g., firewalls) between the attacker and the underlying utility
controller nodes (e.g., valves in the water supply, which are shown as �� in Fig. 1).
To define the games on each stage, a topological vulnerability analysis may be
used to dig up possible exploits related to each component, so as to define the
opponent’s action set and the respective countermeasures. An example output of
such an analysis could look like shown in Fig. 1, with the most important part for
our game modeling being the vulnerability assessment. This can, for example, be
done using a CVSS scoring. Although the score is only for comparative purposes
and is devoid of a physical meaning as such, it can be taken as a qualitative
indication of severity, on which an “informed guess” for the probability of an
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Fig. 1. Example SCADA infrastructure for APT modeling

exploit to happen can be based. This will become handy when the inspection
game model is defined.

Let 1 ≤ n ≤ k be the stage of the game, where k is the maximal distance
between the attacker and its goal (i.e., the number of stages in the gameplay).
Our model is essentially a version of a sequential inspection game (with reversed
roles) in the sense that

– Up to k “inspections” are possible,
– but an “inspection” here means a penetration attempt for the attacker, seeking

to get to game Gn−1 from Gn.
– the defender (player 1) then takes any (reasonable) number of random checks

on the infrastructure towards maximizing security.

Let I(n) denote the equilibrium payoff in the game at stage n, then – for sim-
plicity – let us think of only two actions for each player, which are to defend
or not to defend (spot checking by player 1), or to penetrate or stay (player 2).
Obviously, if player 1 does not defend (inspect), then the attacker will success-
fully get from Gn to Gn−1 upon a penetration attempt (outcome I(n − 1)), or
will stay where it is (outcome I(n)). In both cases, we assume an investment of
c for an attack and a cost of z to remain idle. Likewise, if player 1 defends, then
an attack will succeed with a certain likelihood p, and an inactive (“staying”)
attacker will go undetected with likelihood q. Upon detection, the attacker looses
all that has been accomplished so far (revenue −I(n)), or retains I(n) since the
attacker stays where it is. The payoff structure can be described by the matrix
displayed in Fig. 2. Both parameters p and q may explicitly depend on (and can
be tailored to) the stage n.

It is reasonable to assume a cyclic structure in this game, since:
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Fig. 2. Sequential 2-player game model for advanced persistent threats

– if “stay” is a pure strategy equilibrium for the attacker, then there is nothing
to actively defend, since the attacker has no incentive to get to the center.

– if “penetrate” is a pure strategy equilibrium for the attacker, then “defend”
is the rational choice for player 1. In that case, we get a recurrence equation
I(n) = p(n) · I(n − 1) + (1 − p(n)) · I(n) − c with the closed form solution
I(n) = −c · n + I(0).

– obviously, “do not defend” cannot be a pure strategy equilibrium, since this
would defeat the whole purpose of security.

– if “defend” is a pure strategy equilibrium for the defender, then our goal would
be designing the system such that the attacker has an incentive to refrain from
attacking continuously. As in the first case, a characteristic property of APTs
is their stealthiness, so that an attacker will not expose her/himself to the risk
of getting detected upon too much activity.

Under this assumption, we find I(n) to be given by the recursion

I(n) =

√
(2c(1 − q) + 2(q − 1)I(n − 1) − pz + z)2 + 8(p − 1)(q − 1)zI(n − 1)

4(q − 1)

+
−2cq + 2c + 2qI(n − 1) − 2I(n − 1) − pz + z

4(q − 1)
. (1)

Technically, we can directly obtain I(n) under the assumption of a unique equi-
librium in mixed strategies, but this assumption needs to be verified. Thus, take
I(n) as “given”, and let us take the reverse route of starting from (1) as a mere
definition for I(n), and verify it to be a valid equilibrium of the sequential game
in Fig. 2. To this end, we need to assure that I(n), upon substituting it into the
payoff matrix, induces a circular structure and hence a unique mixed equilib-
rium. This equilibrium can then (independently) be calculated by well-known
closed-form formulas, whose result will match our definition (1). To materialize
this plan, we need a preliminary result:

Lemma 1. Assume I(n) to be defined by (1), and take I(0) > 0, as well as 0 <
p, q < 1 and c, z > 0 all being constant. Then, I(n) is monotonously decreasing,
and I(n) ≤ 0 for all n ≥ 1.

Proof. (sketch) First, we can show that I(1) < 0 whenever I(0) > 0 (under the
stated hypotheses on p, q, c, z), and then induct on n, while using the implication
[I(n) ≤ I(n − 1)] → [I(n + 1) ≤ I(n)] for n ≥ 1. ��



320 S. Rass and Q. Zhu

The conclusion made by the lemma is indeed practically meaningful, considering
that the sequential game is played “backwards” from n to stage n − 1 to stage
n−2, etc. To reach the center (payoff I(0)), the attacker has to invest something,
hoping to get refunded with the value I(0) upon conquering the goal. Thus, the
sign of I(n) ≤ 0 for n ≥ 1 indicates the a-priori imprest before the reward is
gained when the game ends.

By refining the hypothesis of Lemma 1, we obtain a sufficient condition for
the payoff structure induced by I(n) to have a unique mixed equilibrium:

Proposition 1. Let p, q, c, z in Fig. 2 be constants, and assume 0 < p < 1, 0 <
q < 1/2, c > 0, z > 0 as well as c · q + p

2 · z < c. Then, I(n) as defined by (1) with
the initial condition 0 < I(0) < c

p + z
2(q−1) has a unique equilibrium in mixed

strategies for all n ≥ 1 in the sequential game as defined by Fig. 2.

Proof. (sketch) Let the payoff structure be A =
(

a b
c d

)

and define the predicate

Q(A) := (a < b) ∧ (c > d) ∧ (a < c) ∧ (b > d) as an indicator for a circular
preference structure. It is a matter of easy yet messy algebra to show that Q(A)
holds under the stated assumptions, together with the upper bound I(n) ≤ 0
implied by Proposition 1 for n ≥ 1. Hence, by backsubstituting (1) into the
payoff matrix (Fig. 2), we have the circular structure being guaranteed, which
then implies the existence of only one equilibrium in mixed strategies. ��
Corollary 1. Under the conditions of Proposition 1, I(n) as given by (1) gives
the unique equilibrium value in the n-th stage of the game, with the respective
equilibrium strategies obtained from the resulting payoff structure (with I(n) and
I(n − 1) being substituted).

Proof. This immediately follows by computing the equilibrium value from the
payoff structure using the closed form formula, which is valid for matrices without
a saddle-point in mixed strategies. Specifically, using the notation as in the
proof of Proposition 1, and Q(A) then its saddle-point value is given by v(A) =
det(A)/N , with N = a − b − c + d. The equilibrium strategies are found as
(p∗, 1 − p∗) and (q∗, 1 − q∗) with p∗ = (d − c)/N and q∗ = (d − b)/N . The
corollary then follows by writing down v(A) as a quadratic equation in I(n)
and I(n − 1), solving for I(n), and observing that one of the two solutions
matches (1). In fact, using the parameter configuration as given in Example 1,
we get an immediate counter-example showing that the second solution of the
quadratic equation defining I(n) does not yield a payoff matrix with a circular
preference structure. ��
Note that the likelihood p may indeed depend on the stage n in reality, and is
determined by the equilibrium payoff in the n-th stage. Formally, we may think
of this value to depend on n via the game Gn being defined with indicator-valued
loss functions. That is, the game Gn is defined with payoffs from {0, 1} to indicate
either a successful penetration (outcome 1) or a successful defense (outcome 0),
so that the (long-run) average revenue is the probability to successfully get from
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the n-th stage to stage n−1. The shape of the game Gn depends on the number
rn of possible exploits and the number sn of countermeasures at level n. Since
both action sets are finite, and if the success or failure of a countermeasure can be
meaningfully determined, the game Gn ∈ {0, 1}sn×rn is actually a matrix game
over {0, 1}. Then, we can set p(n) := val(Gn), when val denotes the saddle-point
value of Gn. The parameter c shown above captures costs associated with the
penetration attempt. Likewise, the parameter q(n) and the cost z are specified
in an analogous way. They describe the likelihood of being detected during an
idle phase of information gathering, and the cost for the attacker in playing the
strategy “stay”.

Example 1. In many infrastructures, one (not exclusive) purpose of firewalls is
to concentrate traffic at a single entry or exit point. So, if the firewall sepa-
rates stage n from stage n − 1 (cf. Fig. 1), the “local” game Gn is played at
the intersection point between the networks. The defending player 1 is herein
the totality of countermeasures against unauthorized traffic, say, packet filters
(the firewall directly), but also intrusion detection mechanisms, access control,
or similar. Likewise, player 2 is the intruder having various options to penetrate
the barrier between stage n and stage n− 1, such as forged emails, conquering a
local computer, etc. Table 1 lists some of the particular scenarios that may pos-
sibly define game Gn. In practice, we recommend resorting to specific catalogues
of vulnerabilities and respective countermeasures, such as are provided by the
ISO27000 norm [24] or related.

Table 1. Lists of defense and attack actions, as two separate lists (same rows thus do
not reflect any correspondence between defender’s and attacker’s actions).

Defender action Attacker action

d1 : Inspect packets (intrusion detection) a1 : Use open ports

d2 : Check firewall filter rules a2 : Zero-day exploits

d3 : Update firewall firmware a3 : Drop sleeping trojan

d4 : Local malware scans a4 : Use shared network drive
being accessible from stage
n− 1 and stage n

d5 : Reinstall computer a5 : Email spoofing

...
...

The gameplay itself would be defined as a 0-1-valued matrix in which each
scenario is assigned an outcome of either “success” or “failure”. However, many
of these actions are inherently probabilistic in the sense that there is no 100 %
detection rate of the intrusion detection, malware scan, or similar. Other mea-
sures like reinstalling a computer from a reference image, however, may indeed
have a guarantee to wipe out all malware (unless a virulent email stored else-
where is re-opened and re-infect the machines). If the defense strategy is a local
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Fig. 3. Example sequential game equilibrium I(n)

malware scan (strategy d4), then we may have likelihood p43 to succeed in find-
ing a sleeping trojan (attack strategy a5). Similarly, reinstalling the computer
afresh removes the trojan, i.e., has success rate 1 in the scenario (d5, a4). Check-
ing a firewall rule from time to time (defense action d2) would in turn be effec-
tive against exploits of open ports (attack action a1), provided that those are
not in permanent legitimate use. The outcome of this scenario can then be
taken as a probability p22, with its value assessed upon expert ratings of this
threat/vulnerability combination. The resulting matrix defining the game Gn

would then end up as the labeled matrix A ∈ [0, 1]n×n with values ranging over
the entire unit interval.

Likewise, if the attacker decides to remain stealthy, it pays less z ≤ c that upon
trying to penetrate, but plays a different game G′

n (with its own strategies and
outcomes, depending on how the defender acts). Its saddle-point value q(n) :=
val(G′

n) then tells the likelihood of being detected. If the attacker tried to remain
stealthy and is detected, the game terminates with the path Pn being closed,
so that the full lot of I(n) is lost. It is an easy matter of solving this equation
numerically for computing the value I(n) at several stages, starting from I(0).

Example 2. Figure 3 displays a solution to I(n) for the parameter set p = 0.7, q =
0.1, c = 20, z = 10 and I(0) = 15 (note that the parameters satisfy the hypothe-
sis of Proposition 1). The second ordinate (on the right) refers to the equilibrium
strategies by specifying the likelihoods to play “defend” (for player 1) and “pen-
etrate” for player 2. As expected, the defense is becoming more intense in the
proximity of the center. Likewise, the attacker is best advised to behave more
aggressively when the goal (stage 0) is near.

3 Design Problems

Practically, altering the infrastructure towards enhancing security amounts to
changing one or more individual stage games Ai,A

′
i, say by adding a firewall,

reconfiguring a surveillance or intrusion detection system, etc. Towards automat-
ing this process, we may think of the possible changes being modeled by decision
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variables that influence the parameters in the respective stage-game matrix; cf.
Example 1. Call their entirety a vector θ. The result is an update to the para-
meters p, q, c and z depending on the particular values of the decision variables,
either by making the detection probability higher (increase p, q), or increase the
cost to penetrate (raise c) or stay undetected (raise z).

Essentially, we thus have a design problem to optimize the parameters p, q, c, z
in an expectedly resource-constrained manner. To formalize the matter, recall
that p(n), q(n) have been defined as the values of the games Gn, G′

n played
within the n-th stage of the protection. Each value is thus the optimum of the
linearly constrained program p(n) = maxx(v) subject to An · xn ≤ bn, where
the matrix An and vector bn are defined to resemble the well-known constraints
on the variables (v,x), where x = (x1, . . . , xn) ranges over all mixed strategies
on the strategy space of player 1 (the defender in our game Gn). Likewise, we
can abstractly write q(n) = maxy(u) subject to A′

n · x′
n ≤ b′

n, with (u,x′)
determining the value u and optimal mixed strategy x′ in game G′

n.
The problem of optimizing the value of the sequential game I can come in

different flavours. The difference is in the goal expression, which can be:

– I(k), e.g., the value of the game at the outermost stage: this is a static design
problem and refers to optimizing the protection from an external perspective.

– I(k) for some large but fixed k: this is also a static optimization problem and
attempts to optimize an approximation to the limit that the sequence I(n)
approaches when n tends to infinity (i.e., the limit then measures the overall
strength of protection irrespectively of the number of stages and games).

– I as a function of n ∈ {1, . . . , k}: Optimizing I(n) over all stages defines a
dynamic optimization problem. Note that we exclude I(0) here as this mea-
sures the value of the innermost asset, and thus may be fixed a priori.

We will leave the particular details and issues of solving these various kinds of
optimizations as an interesting route of future research. Here, let us complete our
discussion by adding the constraints that the above optimization problems are
subject to. The decision variables over which the optimization is done are only
implicitly available here and primarily define the values of the inner sub-games
G1, G

′
1, G2, G

′
2, . . . , Gk, G

′
k, Gk, G

′
k. Let us assume all of them to be

– finite (as there are clearly not infinitely many attack and defense strategies
available),

– and zero-sum (for the sake of the sequential game becoming a worst-case model
across the entire infrastructure).

The vector of decision variables θ defines a sequence of game-matrices A1(θ),
A′

1(θ), A2(θ), A′
2(θ), . . ., Ak(θ), A′

k(θ). The n-th such pair of matrices An(θ),
A′

n(θ) give rise to two linear optimization problems with constraint matrices
Bn,B′

n, that again depend on the (not necessarily all) decision variables θ. We
omit this dependence hereafter to simplify our notation.

The constraints to the infrastructure design problem are found by gluing
together the constraints for the stage-games, resulting in a (large) block matrix
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B = diag(B1,B
′
1,B2,B

′
2, . . . ,Bk,B

′
k). The overall optimization is then over

the vector θ and subject to the constraint B(θ) ·x ≤ b, with the right-hand side
vector b collecting the constraints from all the optimization problems (including
the variables p(n), q(n) for all stages), defining the respective games. The goal
function in this problem is the solution to the sequential game model. This
solution can be worked out numerically (which we assume as feasible, since there
are not too many stages to be expected in real life).

4 Conclusion and Outlook

Modeling advanced persistent threats by game theory is a so far largely open
issue, and the inherent nature of an APT to be stealthy and highly tailored to the
particular infrastructure makes accurate modeling into a challenge. To account
for this, we designed a simple 2 × 2-game on top of individual games within an
infrastructure, so that the sub-games define the overall APT sequential game
model. In this way, we can accurately model the infrastructure at hand, while
retaining an analytically and numerically feasible game-theoretic model. As our
experiments indicated, the model, despite its simplicity, provides a quite rich
dynamics, which under slight alterations even exhibits interesting phenomena
like the convergence of the equilibrium values as the number of stages in the game
increases (e.g., such as is observed when some of the cost parameters are allowed
with negative values to reflect a gain in some situations). An analytic treatment
of this is currently in progress, and will be reported in companion work. As
a byproduct, the model allows to define design-problems to optimize security
investments to mitigate APT risks. This route of usage is particularly interesting
for practitioners, seeking to improve the resilience of an IT-infrastructure.
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Abstract. The development of advanced wireless communication tech-
nologies and smart embedded control devices makes everything con-
nected, leading to an emerging paradigm of the Internet of Controlled
Things (IoCT). IoCT consists of two layers of systems: cyber layer and
physical layer. This work aims to establish a holistic framework that
integrates the cyber-physical layers of the IoCT through the lens of con-
tract theory. For the cyber layer, we use a FlipIt game to capture the
cloud security. We focus on two types of cloud, high-type and low-type,
in terms of their provided quality of service (QoS). The cloud’s type is of
private information which is unknown to the contract maker. Therefore,
the control system administrator (CSA) at the physical layer needs to
design a menu of two contracts for each type of service provider (SP)
due to this asymmetric information structure. According to the received
contract, SP decides his cyber defense strategy in the FlipIt game of
which the Nash equilibrium determines the QoS of the cloud, and fur-
ther influences the physical system performance. The objective of CSA
is to minimize the payment to the cloud SP and the control cost jointly
by designing optimal contracts. Due to the interdependence between the
cyber and physical layers in the cloud-enabled IoCT, we need to address
the cloud security and contract design problems in an integrative man-
ner. We find that CSA always requires the best QoS from two types of
cloud. In addition, under the optimal contracts, the utilities of both SPs
are constants. Furthermore, no contracts will be offered to the cloud if
the resulting service cannot stabilize the physical system.

1 Introduction

Driven by the advances in sensing, processing, storage and cloud technologies,
sensor deployments are pervasive, and thus an increasing amount of information
is available to devices in the Internet of Things (IoT) [1]. With the emerging
of smart home and smart cities in which physical systems play a critical role,
the sensing, actuation and control of devices in the IoT have given rise to an
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expanded term: Internet of Controlled Things (IoCT). A cloud-enabled IoCT
allows heterogeneous components to provide services in an integrated system. For
an instance, cloud resources can provide data aggregation, storage and processing
for the physical systems.

Figure 1 shows a framework of the cloud-enabled IoCT. The sensors associ-
ated with devices can send data to the remote controllers through up-links, and
the control commands can be sent back to the actuator via down-links. Both up-
link and down-link are enabled by the cloud. This framework provides an efficient
approach to remote control of systems due to the integration of cloud. Basically,
the cloud-enabled IoCT can be divided into two parts including the cyber layer
and physical layer. The cloud at the cyber layer faces cyber threats. Malicious
attackers may steal or infer keys used to authenticate sensors or controllers in
the cloud-enabled IoCT. These types of attacks are categorized as advanced per-
sistent threats (APTs) [2], since they lead to complete compromise of the cloud
without the detection of network administrators. To address APTs in the cloud-
enabled IoCT, we use a FlipIt game-theoretic framework in which the system
administrator reclaims the control of the cloud by renewing the password [9].
Therefore, the cloud security level corresponds to the renewing frequency of the
cloud defender at cyber layer.

Fig. 1. Illustration of the cloud-enabled Internet of controlled things. The sensors asso-
ciated with physical devices can send data to the remote controllers, and the control
commands can be sent back to the actuators. Both directions of communications are
enabled by the cloud in the middle layer. The cloud faces cyber threats, and we use a
FlipIt game-theoretic model to capture its security. The security level of cloud impacts
the communication quality and therefore influences the control system performance.

At the physical layer, the control systems use optimal control to minimize
the control cost. As shown in Fig. 1, the performance of the physical system is
closely related to the security of cloud. To use the cloud resources, the control
system administrator (CSA) should make a contract with the cloud owner or
service provider (SP). Various cloud companies have different quality of services
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(QoS) in terms of the cloud security. In this paper, we focus on two types of
cloud including high-type and low-type. The CSA has no knowledge about the
type of cloud that nature picks which is private information of the cyber layer.
Therefore, CSA needs to design two contracts for each type of cloud SP. We
find the optimal contracts by formulating a mechanism design problem. At the
cyber layer, based on the received contract, cloud SP designs cyber defense
strategy, and the resulting Nash equilibrium of FlipIt game determines the
QoS. The optimal controller of physical system is designed according to the
received communication quality. In addition, the control system performance
and the payment to the cloud SP together guide the contract design of CSA.
The interdependencies between the cyber and physical layers make the contract
design and cloud protection coupled, and thus should be addressed jointly.

The applications of the proposed cloud-enabled IoCT framework and the
adopted contract-based approach are massive, such as remote surgery, control
of mobile robotic networks, remote 3D printing, smart home automation, and
networking in smart grids [4–8].

The main contributions of this paper are summarized as follows:

1. We propose a cloud-enabled IoCT framework which includes cyber-physical
layers, and it is suitable for remote control.

2. We use contract theory to study the strategic behaviors of control system
administrator and cloud service provider based on the emerging trend of
everything as a service in IoCT.

3. The cloud security is modeled by a FlipIt game of which the equilibrium is
determined by accepted contracts. The designed contracts of CSA take the
control system performance and cloud service payment into account jointly.

4. In terms of the type of cloud SP, we obtain the optimal contract for CSA
under asymmetric information through mechanism design.

1.1 Related Work

Cloud-enabled networked control systems are becoming popular and have been
investigated in a number of fields including 3D printers [4], robotics [5] and smart
grid [8]. The security issues in the networked control systems have been studied in
[3,4] through using a multi-layer game-theoretic framework. In addition, in terms
of the cyber security, the authors in [9] have proposed a FlipIt game model
to capture the stealthy and complete compromise of attackers via advanced
persistent threats.

Contract design has a rich literature in economics and operation research
which has been widely applied to financial markets [10–12], insurances [13,14]
and supply chains [15,16]. Contract-based approach has been adopted in vari-
ous application domains including cyber-physical control systems [17,18], power
and vehicle networks [19], environmental services [20] and smart cities [21]. To
develop reliable software, engineers in the area of system and software engineer-
ing have taken contract-based method to enable their design [22,23].
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One major class of contract design problems have the asymmetric information
structure between two entities. For example, in the risk management of supply
chains [15,16,24], the suppliers have a number of types which is an unknown
information to the buyer. Thus, the buyer needs to design a menu of contracts in
terms of the type of the supplier. Our work captures the asymmetric information
structure between the cloud SP and CSA, and designs optimal contracts in the
cloud-enabled Internet of controlled things.

1.2 Organization of the Paper

The rest of this paper is organized as follows. Section 2 introduces the optimal
control of the physical layer and formulates the contract design problem. Analy-
sis of the FlipIt game in the cloud and the optimal control of physical systems
are given in Sect. 3. Section 4 designs the optimal contracts for the control sys-
tem administrator under asymmetric information. Case studies are presented in
Sect. 5, and Sect. 6 concludes the paper.

2 Problem Formulation

In this section, we first present a bi-level framework that captures the features
of the contract design for cloud-enabled IoCT. Then, we formulate the problem
which includes the optimal control of physical systems, a two-person nonzero-
sum FlipIt game for the cloud protection and the contract between the control
system administrator and the cloud service provider.

2.1 Bi-level Framework

The proposed bi-level framework including the cyber and physical layers is shown
in Fig. 2. In the cyber layer, a FlipIt game-theoretic framework [9] is adopted to
capture the interactions between the defender and attacker and hence model the
cloud security. The outcome of the FlipIt game determines the communication
quality provided to the control system. In terms of the quality of service that
cyber layer offers, the cloud can be divided into two types including high-type
(H-type) and low-type (L-type).

At the physical layer, the systems use the optimal control based on the
received communication service. In addition, since CSA has no information about
the type of the cloud that nature picks, he needs to design two types of contracts:
(p̄H , pH , qH , vH) and (p̄L, pL, qL, vL), where p̄i is the transfer payment from the
physical system; pi is the unit payment of service; qi is the targeted commu-
nication quality; and vi is a positive parameter corresponding to the penalty
of degraded service, for i ∈ {H,L}. Detailed contract design is introduced in
Sect. 2.4.

The offered contracts to the cloud layer influence the strategy of the cyber
defender in the FlipIt game, and this feedback structure makes the decision-
makings of the cloud SP and the CSA interdependent.
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Fig. 2. Bi-level framework for the optimal contract design in the cloud-enabled IoCT.
The cyber layer uses a FlipIt game to capture the interactions between the defender
and attacker, and then determines the communication quality provided to the control
system based on the offered contract from the physical layer. The physical systems in
the lower layer adopt optimal control based on the received communication quality.
The loop structure makes the decision-makings of two layers correlated.

2.2 Optimal Control of the Physical System

The control system with discrete-time dynamics under unreliable communication
links can be captured by

xk+1 = Axk + αkBuk + wk, (1)
yk = βkCxk, (2)

for k = 0, 1, ..., where xk ∈ R
n is the state; uk ∈ R

m is the control input;
wk ∈ R

n is the exogenous disturbance with mean zero; yk ∈ R
l is the sensor

output; and A, B, C are time-invariant matrices with appropriate dimensions.
Note that wk, ∀k, are independent. The stochastic process {αk} models the
unreliable nature of the communication link from the controller to the actuator,
and {βk} captures the vulnerability of the link from the sensor to controller.

Without loss of generality, we assume that, in the cloud, the uplink and
downlink are facing the same probability of cyber threats, i.e., they are of the
same quality. Therefore, αk and βk are Bernoulli random variables with the same
probability mass function (PMF). The provided cloud service is divided into two
types including H-type and L-type. Specifically, each type of service has

αi
k =

{
1, with probability ρi,

0, with probability 1 − ρi,
(3)

for i ∈ {H,L}. In addition, we have 1 ≥ ρH > ρL > 0 to distinguish two types
of clouds.
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Remark: The value of ρi, i ∈ {H,L}, which represents the communication
quality has a direct influence on the control system performance given by (4).
In the IoCT framework, the real provided communication quality by the cyber
layer is determined by the offered contracts.

We consider the optimal control of the physical system in a infinite hori-
zon, and define the control policy as Π = {μ0, μ1, ..., μN−1}, where N is
the decision horizon, and function μk maps the information Ik to some con-
trol space, i.e., uk = μk(Ik). The information set Ik includes (α0, ..., αk−1),
(β0, ..., βk), (y0, ..., yk), and (u0, ..., uk−1), for k = 1, 2, ..., and specially for k = 0,
I0 = (y0, β0). With a given communication parameter ρi, the physical control
system aims to find an optimal control policy that minimizes the quadratic cost
function

J(Π∗|ρi) = lim sup
N→∞

1
N

E

{
N−1∑

k=0

(
xT

k Qxk + αi
kuT

k Ruk

)
}

, (4)

while considering the system dynamics (1) and (2), where i ∈ {H,L}, R � 0,
and Q � 0. Note that R and Q are two matrices that capture the cost of state
deviation and control effort, respectively.

For notational brevity, we drop the type index H,L when necessary according
to the context.

2.3 FlipIt Game for the Cloud Security

We use a FlipIt game to model the interactions between the defender (D) and
attacker (A) over a communication channel. Specifically, the strategies of D and
A are to choose f and g, the renewal and attacking frequencies with which they
claim to control of the communication channel. Note that f and g are chosen by
prior commitment such that neither D nor A know the opponent’s action when
making choices. In addition, we focus the FlipIt game analysis on periodic
strategies, in which the moves of D and A are both spaced equally apart, and
their phases are chosen randomly from a uniform distribution [9].

Based on f and g, we can compute the expected proportions of time that
D and A control the communication channel. Denote the proportions by z and
1 − z for D and A, respectively, and we obtain

z =

⎧
⎪⎨

⎪⎩

1, if g = 0,
f
2g , if g > f ≥ 0,

1 − g
2f , if f ≥ g > 0.

(5)

Notice that when g > f ≥ 0, i.e., the attacking frequency of A is larger than
the renewal frequency of D, then the proportion of time that the cloud is secure
is z < 1

2 ; and when f ≥ g > 0, we obtain z ≥ 1
2 .

Remark: When the defender controls the cloud, then the signals are suc-
cessfully transmitted over the communication channel through the cloud. In
addition, in the FlipIt game, when the interval between consecutive moves is
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small which results in high play rates of D and A, then z can be interpreted as
the probability of random variable αk being 1 in the control system. Therefore,
the FlipIt game outcome z determines the communication reliability measure
ρ in (3). We use z to represent the provided service of the cloud in the following.

Then, the optimization problem for the cloud SP under the H-type con-
tract (p̄H , pH , qH , vH) can be formulated as πH(p̄H , pH , qH , vH) = maxfH

{p̄H +
min {pHzH , pHqH}−CH(fH)−VH(qH , zH , vH)}, where p̄H , pH , qH , and vH have
been introduced in Sect. 2.1; fH is the defense strategy of the cloud SP; and zH

is obtained through (5) based on fH and gH , where gH denotes the attacker’s
strategy. CH and VH are defense cost and penalty functions which have map-
pings CH : R+ → R

+ and VH : (0, 1] × (0, 1] ×R
+ → R

+, respectively. The term
min

{
pHzH , pHqH

}
indicates that the physical system will not pay more to the

cloud for receiving better communication service as requested in the contract.
Similarly, for the L-type contract (p̄L, pL, qL, vL), the problem becomes

πL(p̄L, pL, qL, vL) = max
fL

{p̄L + min {pLzL, pLqL} − CL(fL) − VL(qL, zL, vL)} .

The attacker and defender in the FlipIt game determine an equilibrium
strategy (f∗, g∗) which has a unique mapping to z∗ through (5).

2.4 Contract Design for the Physical Layer

The type of the cloud is private information that the cloud SP can take advan-
tage of. Then, the CSA designs a menu of two contracts, (p̄H , pH , qH , vH) and
(p̄L, pL, qL, vL), based on the prior probability σ of the cloud being H-type.

Due to this asymmetric information structure, we find the optimal contracts
by formulating it as a mechanism design problem. Specifically, by using the rev-
elation principle [25], we address the contract design by focusing on the incen-
tive compatible and direct revelation mechanisms. The contract design problem
(CDP) for the physical CSA is as follows:

min
(p̄H ,pH ,qH ,vH)
(p̄L,pL,qL,vL)

σ

(

p̄H + pHz∗
H + φH

Uo − U(z∗
H)

Uo
− VH (qH , z∗

H , vH)
)

+ (1 − σ)
(

p̄L + pLz∗
L + φL

Uo − U(z∗
L)

Uo
− VL(qL, z∗

L, vL)
)

(6)

s.t. πH(p̄H , pH , qH , vH) ≥ πH(p̄L, pL, qL, vL), (7a)
πL(p̄L, pL, qL, vL) ≥ πL(p̄H , pH , qH , vH), (7b)
πH(p̄H , pH , qH , vH) ≥ εH , (7c)
πL(p̄L, pL, qL, vL) ≥ εL, (7d)
pH > 0, pL > 0, (7e)
qH,min ≤ qH ≤ qH,max < 1, (7f)
qL,min ≤ qL ≤ qL,max < 1, (7g)
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where φH and φL are positive weighting parameters, U : (0, 1] → R
+ is the

utility of the control system, and Uo denotes the optimal utility of control system
under z = 1 which is a known constant to the CSA. εH and εL are the minimum
required profits of H-type and L-type clouds, respectively. qH,min, qH,max, qL,min

and qL,max are bounds of the required communication quality in each contract.
Note that (7a) and (7b) are incentive compatibility (IC) constraints which

ensure that a cloud does not benefit from lying about its type to the CSA. In
addition, (7c) and (7d) are called individual rationality (IR) constraints which
indicate that a cloud accepts the contract only when its minimum profit is met.

Timing of contract design: The formulated problem in this section can be
divided into two main stages including the contracting and execution. First,
the nature reveals the type to the cloud but not to the CSA which introduces
the asymmetric information structure. Then, the CSA designs and offers two
contracts in terms of the type of cloud SP. The cloud picks one of the contracts
which completes the contracting stage. In the execution stage, based on the
accepted contract, the cloud owner makes a defending strategy against the cloud
attacker to achieve a certain level of security of the cloud resources. Then the
remote control of the physical system is enabled by the resulting cloud service.
If the provided communication quality does not meet the required one in the
contract, then the cloud SP pays a penalty.

3 Analysis of the Cloud Security and Physical Control
Systems

In this section, we first analyze the FlipIt game that captures the cloud layer
security, and then present the optimal control results of the physical systems. In
addition, we discuss the impact of cloud layer strategies on the performance of
physical control systems.

3.1 Security Analysis of the Cloud Layer

In order to design the strategy of the cloud defender, first, we need to analyze
the FlipIt game under each type of contract.

The cost function CM(fM) can be defined as

CM(fM) := ψM
D fM (8)

which comes from the FlipIt game, where M ∈ {H,L}, and ψM
D > 0 is unit

defending cost of the cloud. The penalty function VM(qM, zM, vM) needs to be
defined. The cloud provides different types of services in terms of the package
drop rate which is captured by 1 − z. The objective function of the cloud does
not include the terms related to the dynamics at the physical layer.

The penalty function VM admits the form

VM(qM, zM, vM) = vM(qM − zM)1{qM>zM}, (9)
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where zM is obtained through (5), and 1{•} is an indicator function.
Some natural assumptions on the parameters are as follows.

Assumption 1. For the penalty and payment parameters, we have

0 < pL < pH , (10)
0 < vL < vH , (11)
pH < vH ≤ vH,max, (12)
pL < vL ≤ vL,max, (13)

where vH,max and vL,max are the maximum unit penalty in the H-type and L-type
contracts.

Note that the inequalities (10) and (11) differentiate the unit payment and
penalty in the H-type and L-type contracts. In addition, (12) and (13) indi-
cate that the unit penalty in both contracts is larger than the unit payment and
bounded above.

Based on (5), we need to discuss two cases of the FlipIt game. Specifically,
when fH ≥ gH > 0, the FlipIt game for the cloud under the H-type contract
can be formulated as

FH
D (fH , gH |p̄H , pH , qH ,vH) = max

fH

{

p̄H + min
{

pH

(

1 − gH

2fH

)

, pHqH

}

− ψH
D fH − vH

(

qH +
gH

2fH
− 1

)

1{
qH>1− gH

2fH

}

}

,

FH
A (fH , gH |p̄H , pH , qH ,vH) = min

gH

{

ψH
A gH − uH

A
gH

2fH

}

,

where FH
D : R+×R

+ → R and FH
A : R+×R

+ → R are objective functions of the
cloud defender and attacker, respectively, and ψH

A > 0 and uH
A > 0 are unit cost

of attacking the cloud and unit payoff of controlling the cloud. For fL ≥ gL > 0,
the FlipIt game under the L-type contract can be formulated similarly.

Another nontrivial case in the FlipIt game is when gM > fM > 0, for
M ∈ {H,L}. The defender’s and attacker’s problems are

FM
D (fM, gM|p̄M, pM, qM,vM) = max

fM

{

p̄M + min
{

pM
fM
2gM

, pMqM

}

− ψM
D fM − vM

(

qM − fM
2gM

)

1{
qM>

fM
2gM

}

}

,

FM
A (fM, gM|p̄M, pM, qM,vM) = min

gM

{

ψM
A gM − uM

A

(

1 − fM
2gM

)}

.

Definition 1 (Nash Equilibrium). A Nash equilibrium of the FlipIt game
is a strategy profile (f∗

M, g∗
M) such that

f∗
M ∈ arg max

fM∈R+

FM
D (fM, g∗

M|p̄M, pM, qM, vM) , (14)
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g∗
M ∈ arg min

gM∈R+

FM
A (f∗

M, gM|p̄M, pM, qM, vM) , (15)

for M ∈ {H,L}.
Based on the Nash equilibrium of the FlipIt game, we obtain

πM(p̄M, pM, qM, vM) = FM
D (f∗

M, g∗
M|p̄M, pM, qM, vM). (16)

For example, under the H-type contract and when fH ≥ gH > 0, we obtain
πH(p̄H , pH , qH , vH) = maxfH

{
p̄H + min

{
pH(1 − gH

2fH
), pHqH

} − ψH
D fH −

vH(qH + gH

2fH
− 1)1{qH>1− gH

2fH
}
}

. Next, we analyze the cloud’s optimal strategy

for a given contract (p̄, p, q, v). We first have the following proposition.

Proposition 1. Given a contract (p̄, p, q, v), the Nash equilibrium strategy of
the FlipIt game leads to q + g∗

2f∗ − 1 ≥ 0 for f∗ ≥ g∗ > 0, and q − f∗

2g∗ ≥ 0 for
g∗ > f∗ > 0.

Proof. In the region of f∗ ≥ g∗ > 0, assume that q+ g∗

2f∗ −1 < 0, then p(1− g∗

2f∗ ) >

pq and min{p(1 − g∗

2f∗ ), pq} = pq. By focusing on FM
D in the FlipIt game,

there exists at least one pair (f ′, g′) such that f ′ < f∗ and 1 − g′

2f ′ = q. Then,
FM

D (f ′, g′|p̄, p, q, v) < FM
D (f∗, g∗|p̄, p, q, v) which indicates that (f∗, g∗) is not a

FlipIt game equilibrium. Hence, q + g∗

2f∗ −1 < 0 does not hold. Similar analysis

applies to the region g∗ > f∗ > 0, and we can obtain q − f∗

2g∗ ≥ 0. 	

The Proposition 1 indicates that the cloud will not provide better commu-

nication quality according to the contract. Otherwise, it can spend less pro-
tection effort on cyber defense to achieve more profits. Therefore, based on
Proposition 1, we can simplify the FlipIt game according to min

{
pM(1 −

g∗
M

2f∗
M

), pMqM
}

= pM(1 − g∗
M

2f∗
M

), vM(qM + g∗
M

2f∗
M

− 1)1{qM>1− g∗
M

2f∗
M

} = vM(qM +

g∗
M

2f∗
M

− 1), min
{
pM

f∗
M

2g∗
M

, pMqM
}

= pM
f∗

M
2g∗

M
, and vM(qM − f∗

M
2g∗

M
)1{qM>

f∗
M

2g∗
M

} =

vM(qM − f∗
M

2g∗
M

). Then, we can obtain the Nash equilibrium of the FlipIt game
as follows.

Theorem 1. The Nash equilibria of the FlipIt game are summarized as fol-
lows:

(i) when ψD
v+p < ψA

uA
, then f∗ = uA

2ψA
, and g∗ = ψD

2ψ2
A

· u2
A

v+p ;

(ii) when ψD
v+p > ψA

uA
, then f∗ = ψA

2ψ2
D

· (v+p)2

uA
, and g∗ = v+p

2ψD
;

(iii) when ψD
v+p = ψA

uA
, then f∗ = uA

2ψA
, and g∗ = v+p

2ψD
.
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Proof. For f ≥ g > 0, the cloud defender’s problem is maxf

{
p̄ + p(1 − g

2f ) −
ψDf − v(q+ g

2f − 1)
}
, which can be rewritten as maxf

{
p̄ + (p + v)(1 − g

2f ) −
ψDf − vq

}
. In addition, the attacker is solving ming

{
ψAg − uA g

2f

}
. Then, the

above FlipIt game is strategically equivalent to the game that the defender
solves maxf

{
(1− g

2f )− ψD
p+v f

}
, and the attacker solves maxg

{
g
2f − ψA

uA
g
}
, which

reduces the FlipIt game to the form in [9] and can be solved accordingly. The
analysis is similar for the case g > f > 0. 	


Under the Nash equilibrium presented in Theorem 1, the utility of the cloud
can be expressed as

π(p̄, p, q, v) = p̄ + p − uAψD
ψA

− v(q − 1), for
ψD

v + p
<

ψA
uA

, (17)

π(p̄, p, q, v) = p̄ − vq, for
ψD

v + p
≥ ψA

uA
. (18)

Remark: Under ψD
v+p ≥ ψA

uA
, the provided communication quality satisfies

z ≤ 1
2 which means that more than half of the total packages are lost dur-

ing transmission, and generally this is detrimental to the stability of the phys-
ical control system. Therefore, we mainly focus on the region of ψD

v+p < ψA
uA

in the following paper, and the equilibrium strategy of the FlipIt game is
f∗ = uA

2ψA
, and g∗ = ψD

2ψ2
A

· u2
A

v+p . Then,

z∗ = 1 − g∗

2f∗ = 1 − ψDuA
2ψA(v + p)

, (19)

and we further have qH,min > 1
2 , qL,min > 1

2 .
The difference between the H-type and L-type cloud’s profit under a certain

contract is critical in designing the optimal contracts in Sect. 4, and we define it
as follows.

Definition 2. For a given contract (p̄, p, q, v), the benefit of being a H-type cloud
over the L-type cloud is defined as δ := πH(p̄, p, q, v) − πL(p̄, p, q, v).

Note that δ is not a function of contract terms, since p̄, p, q, v are not coupled
with other parameters of the attacker and defender as seen from Eqs. (17) and
(18). Furthermore, due to the IR constraints, we obtain

δ ≥ εH − εL. (20)

To facilitate the optimal contract design, without loss of generality, we make
the following assumption of parameters at the cyber layer.

Assumption 2. The parameters satisfy ψH
D

ψH
A

<
ψL

D
ψL

A
, and uH

A = uL
A.

In Assumption 2, the inequality ψH
D

ψH
A

<
ψL

D
ψL

A
indicates that the H-type cloud is

more resistant to malicious attacks, and the equality uH
A = uL

A represents that
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the unit payoff of compromising two types of cloud are the same. Note that
Assumption 2 is not strict, and we use it to determine the sign of δ below.

Based on the Assumption 2 and (17), we obtain

δ =
uL

AψL
D

ψL
A

− uH
AψH

D
ψH

A
> 0. (21)

Thus, the profit of the cloud is larger of being H-type than L-type for a given
contract (p̄, p, q, v).

Remark: The parameter δ is not necessary positive, and Assumption 2 is
not strict. Without loss of generality, we choose δ to be positive. The results
obtained in this section can be easily extended to the case with negative values
of δ.

3.2 Physical Control System Analysis

The cloud defense strategy at the cyber layer and the contract design of CSA
are interdependent. At the physical layer, one critical problem is the stability of
the control system. First, we present the following theorem.

Theorem 2 ([26]). Let (A,
√

Q) be observable. Then, under the communica-
tion quality zM, the condition ensuring the mean-square stability of the physical
control system is

ζ := max |λ(A)| <
1√

1 − zM
, (22)

where ζ and λ(A) denote the spectral radius and the eigenvalue of system matrix
A, respectively.

Then, for M ∈ {H,L}, we define the utility function of the control system as

U(zM) = −J(Π∗|zM), (23)

where J(Π∗|zM) denotes the optimal control cost under zM.
Remark: Based on (19), if 1√

gM
2fM

≤ ζ, then the control system is unstable,

and U(1− gM
2fM

) → −∞ under which the contract design problem is not feasible.
Hence, the contract should be designed in a way such that if it is picked by the
cloud SP, the provided communication QoS stabilizes the physical system.

Another problem of the control system is to obtain the optimal control cost
J(Π∗|zM). We state the solution to the optimal controller over unreliable com-
munication channels as follows.

Theorem 3 ([26]). The optimal control law is

u∗
k = Gkx̂k, (24)
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where the matrix Gk = −(R+BT Kk+1B)−1BT Kk+1A, with Kk recursively given
by the Riccati equation

Pk = zMAT B(R + BT Kk+1B)−1BT Kk+1A,

Kk = AT Kk+1A − Pk + Q. (25)

The estimator x̂k takes the form

x̂k =
{

Ax̂k−1 + αk−1Buk−1, βk = 0,
xk, βk = 1.

(26)

In addition, when k → ∞, limk→∞ Gk = G, and the controller takes

G = −(R + BT KB)−1BT KA,

K = AT KA + Q − zMAT KB(R + BT KB)−1BT KA. (27)

Note that the control parameter K in Theorem 3 corresponds to the communi-
cation reliability zM. In addition, at the steady state, we have

J(Π∗|zM) = E{xT
N−1QxN−1 + zMuT

N−1RuN−1}
= E{xT

N−1QxN−1 + zMx̂T
N−1G

T RGx̂N−1}, (28)

where gain G is given in Theorem 3.
The relationship between zM and J(Π∗|zM) is critical during the contract

design stage. Specifically, we have the following lemma.

Lemma 1. Under ζ < 1√
1−zM

, the control cost J(Π∗|zM) of the physical system
is monotonically decreasing with the increase of zM.

Remark: The monotonicity of J(Π∗|zM) with respect to zM is verified by
case studies in Sect. 5. The interpretation is as follows. With smaller zM, i.e.,
the package drop rate over communication channels is huge, then the physical
system state and control input will encounter large deviations from nominal ones
frequently, and therefore the control cost J(Π∗|zM) increases.

4 Optimal Contracts Design Under Asymmetric
Information

We have analyzed the FlipIt game at the cyber layer and the optimal control
of the physical system over unreliable communication links in Sect. 3. In this
section, we design the optimal H-type and L-type contracts for the CSA under
the asymmetric information structure. First, we simplify the constrained contract
design problem formulated in Sect. 2.4 as follows.
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Proposition 2. The contract design problem in Sect. 2.4 is equivalent to

CDP′ : min
(p̄H ,pH ,qH ,vH)

{

σ

(

δ + εL + ψH
D f∗

H + φH
Uo − U(z∗

H)
Uo

)}

+ min
(p̄L,pL,qL,vL)

{

(1 − σ)
(

εL + ψL
Df∗

L + φL
Uo − U(z∗

L)
Uo

)}

s.t. pH > 0, pL > 0,

qH,min ≤ qH ≤ qH,max < 1,

qL,min ≤ qL ≤ qL,max < 1. (29)

Proof. Note that under ψM
D

vM+pM
<

ψM
A

uM
A

, we have πM(p̄M, pM, qM, vM) = p̄M +

pM(1 − g∗
M

2f∗
M

) − ψM
D f∗

M − vM(qM + g∗
M

2f∗
M

− 1)1{qM>1− g∗
M

2f∗
M

}, which yields p̄M +

pM(1 − g∗
M

2f∗
M

) − vM(qM + g∗
M

2f∗
M

− 1)1{qM>1− g∗
M

2f∗
M

} = πM(p̄M, pM, qM, vM) +

ψM
D f∗

M. Thus, the objective function (6) in CDP can be rewritten as

min
(p̄H ,pH ,qH ,vH)
(p̄L,pL,qL,vL)

σ

(

πH(p̄H , pH , qH , vH) + ψH
D f∗

H + φH
Uo − U(z∗

H)
Uo

)

+ (1 − σ)
(

πL(p̄L, pL, qL, vL) + ψL
Df∗

L + φL
Uo − U(z∗

L)
Uo

)

. (30)

Furthermore, based on the Definition 2, we have

πH(p̄L, pL, qL, vL) = πL(p̄L, pL, qL, vL) + δ,

πL(p̄H , pH , qH , vH) = πH(p̄H , pH , qH , vH) − δ. (31)

Then, plugging (31) into the IC constraints (7a) and (7b) yields

δ ≥ πH(p̄H , pH , qH , vH) − πL(p̄L, pL, qL, vL) ≥ δ,

⇒ πH(p̄H , pH , qH , vH) − πL(p̄L, pL, qL, vL) = δ. (32)

The constraints (7a)–(7d) can be equivalently captured by (32) together with
πL(p̄L, pL, qL, vL) ≥ εL since δ > 0.

On the other hand, notice that for given pM and vM, the objective func-
tion (30) is minimized if πM(p̄M, pM, qM, vM) achieves the minimum. The
underlying interpretation is that lower utility of the cloud leads to higher qual-
ity of the communication which is beneficial for the physical systems. There-
fore, based on (32) and the IR constraint πL(p̄L, pL, qL, vL) ≥ εL, we obtain
πH(p̄H , pH , qH , vH)−πL(pL, qL, vL) = δ, and πL(p̄L, pL, qL, vL) = εL. Therefore,
the constraints (7a)–(7d) further become

πH(p̄H , pH , qH , vH) = δ + εL, (33)
πL(p̄L, pL, qL, vL) = εL, (34)

which result in CDP′. 	
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Remark: Note that in CDP′, IC and IR constraints are incorporated into
the objective function. In addition, two separate minimization terms in CDP′ are
decoupled through the decision variables, and thus can be solved independently
which simplifies the optimal contracts design.

First, we focus on min(p̄H ,pH ,qH ,vH)

{
σ
(
δ+εL+ψH

D f∗
H +φH

Uo−U(z∗
H)

Uo

)}
, where

f∗
H = uH

A
2ψH

A
, and z∗

H = 1− ψH
D uH

A
2ψH

A (vH+pH)
based on (19). Three underlying constraints

are ψH
D

vH+pH
<

ψH
A

uH
A

, qH ≥ z∗
H , and ζ <

√
2ψH

A (vH+pH)

ψH
D uH

A
. Then, we obtain Lemma 2.

Lemma 2. The contract design is only dependent on the physical control system
performance, and larger value of vH + pH is desirable.

Proof. Notice that arg min
(p̄H ,pH ,qH ,vH)

{
σ

(
δ + εL + ψH

D f∗
H + φH

Uo−U(z∗
H)

Uo

)}
is equiv-

alent to arg max
(p̄H ,pH ,qH ,vH)

U(z∗
H), since f∗

H = uH
A

2ψH
A

is irrelevant to the contract para-

meters. Thus, the contract design only relates to the control system performance.
Through Lemma 1 together with z∗

H in (19), we obtain the result. 	

Next, through analyzing the impact of contract on the physical systems, we

can obtain the optimal H-type contract as follows.

Theorem 4. The optimal H-type contract (p̄H , pH , qH , vH) is designed as

p̄H = 0, (35)
qH = qH,max, (36)

vH = min
{

vH,max,
ψH

D uH
A

2ψH
A (1 − qH,max)

− pH

}

, (37)

pH =
uL

AψL
D

ψL
A

+ (qH,max − 1)vH + εL. (38)

Proof. From (33), we obtain πH(p̄H , pH , qH , vH) = p̄H + pH − uH
AψH

D
ψH

A
− vH(qH −

1) = δ+εL = uL
AψL

D
ψL

A
− uH

AψH
D

ψH
A

+εL, which yields p̄H +pH −vH(qH −1) = uL
AψL

D
ψL

A
+εL.

Therefore, pH +vH = uL
AψL

D
ψL

A
+vHqH − p̄H + εL. To maximize pH +vH , we obtain

p̄H = 0, qH = qH,max. We can also verify that qH = qH,max from the constraint

qH ≥ z∗
H . In addition, qH ≥ 1 − ψH

D uH
A

2ψH
A (vH+pH)

yields vH ≤ ψH
D uH

A
2ψH

A (1−qH)
− pH .

Therefore, together with the bound, the penalty parameter vH takes the value
vH = min{vH,max,

ψH
D uH

A
2ψH

A (1−qH,max)
− pH}, and then the unit payment pH is equal

to pH = uL
AψL

D
ψL

A
+ (qH,max − 1)vH + εL. 	


Remark: When vH,max >
ψH

D uH
A

2ψH
A (1−qH,max)

− pH , we can obtain the contract
terms vH and pH by solving Eqs. (37) and (38) jointly. In addition, if vH +pH ≤
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ζ2ψH
D uH

A
2ψH

A
, then no contract is placed to the H-type cloud, since the provided

communication service cannot stabilize the control system.
For the second part min(p̄L,pL,qL,vL)

{
(1−σ)

(
εL+ψL

Df∗
L+φL

Uo−U(z∗
L)

Uo

)}
in the

objective function of CDP′, we can equivalently solve the optimization problem
max(p̄L,pL,qL,vL) U(z∗

L). Remind that based on (34), πL(p̄L, pL, qL, vL) = p̄L +

pL − uL
AψL

D
ψL

A
−vL(qL −1) = εL, which gives p̄L +pL −vL(qL −1) = uL

AψL
D

ψL
A

+εL, and

thus pL +vL = uL
AψL

D
ψL

A
+vLqL − p̄L +εL. Then, the L-type contract (p̄L, pL, qL, vL)

immediately follows the similar analysis in Theorem 4.

Theorem 5. The optimal L-type contract (p̄L, pL, qL, vL) is given by

p̄L = 0, qL = qL,max,

vL = min
{

vL,max,
ψL

DuL
A

2ψL
A(1−qL,max)

− pL

}
,

pL = uL
AψL

D
ψL

A
+ (qL,max − 1)vL + εL. (39)

Similarly, when the optimal contract satisfies vL + pL ≤ ζ2ψL
DuL

A
2ψL

A
, then the

CSA will not place the contract due to the instability of the control system.
We have obtained the optimal contracts for CSA. Several characteristics in

both the optimal H-type and L-type contracts are summarized as follows:

1. In the focused region of ψD
v+p < ψA

uA
, i.e., the provided service z > 1

2 , the
contract design problem is simply reduced to the minimization of the control
system cost.

2. No contract will be offered to the cloud SP if the resulting communication
cannot stabilize the physical system. One reason accounting for this situation
is that the ratio between the unit defending cost and the unit utility of SP is
relatively large, and thus the cloud defender is reluctant to spend too much
effort on protecting the cloud resources.

3. In both H-type and L-type contracts, the transfer payment is equal to zero,
and the requested communication quality achieves the upper bound.

4. Under the accepted optimal contracts, the payoffs of the H-type and L-type
clouds are equal to δ + εL and εL, respectively, which are both constants.

5 Case Studies

In this section, we illustrate the designed optimal contracts via case studies.
In the physical layer, the control system is described by Eqs. (1) and (2),

and the system matrices are given by A =
[
1 −1
3 1

]

, B = C = R = Q =
[
1 0
0 1

]

.

Then the spectral radius of matrix A is equal to ζ = 2. Based on Theorem 2, to
stabilize the control system, the minimum communication quality is z = 0.75.
In addition, the exogenous disturbance to the system is with zero mean and unit
variance.
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Several parameters in the contract design are summarized as follows: ψH
A = 8,

ψL
A = 4, uH

A = uL
A = 20, vH,max = 100, vL,max = 90, εL = 10, εH = 20,

qL,min = 0.75, qL,max = 0.82, qH,min = 0.86, and qH,max = 0.93.
First, we illustrate the case of H-type contract design. Specifically, the unit

defending cost of the L-type cloud is chosen as ψL
D = 8, and we design the

H-type contract in the reasonable region of ψH
D that satisfies the conditions in

Assumption 2. The corresponding results are shown in Fig. 3. In the contractable
region of Fig. 3(a), with the increasing of ψH

D , the unit payment pH decreases
first and then keeps as a constant. In contract, in Fig. 3(b), the unit penalty vH

increases first and then becomes unchanged. The unchanging region of ψH
D is due

to the fact that vH achieves the maximum. The utility of the H-type cloud is
decreasing as the defending cost becomes larger as depicted in Fig. 3(c), and this
property can be verified by Eq. (33). Note that when ψH

D /ψH
A ≥ 1.59, no H-type

contract is accepted by the cloud since the cloud’s minimum utility εH cannot
be met by providing the service. The required and real provided communication
quality are presented in Fig. 3(d). As shown in Proposition 1, the provided zH

will never be greater than the required qH . In addition, in the middle region,
zH is decreasing as the increase of the defending cost. The reason is that the
penalty vH and the payment pH are constant, and then the cloud can earn more
profit by spending less effort in protecting the cloud resources which results in
worse communication service. Figure 3(e) shows the control cost of the physical
system. With larger zH , the control cost is lower which corroborates Lemma 1.
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Fig. 3. (a) and (b) show the unit payment pH and the unit penalty vH in the designed
H-type contract. (c), (d), and (e) represent the utility of the H-type cloud, the provided
communication quality zH , and the control system performance under the correspond-
ing contract, respectively.
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Fig. 4. (a) and (b) show the unit payment pL and the unit penalty vL in the designed
L-type contract. (c), (d), and (e) represent the utility of the L-type cloud, the provided
communication quality zL, and the average control system cost under the corresponding
contract, respectively.

In the L-type contract, we fix the unit defending cost of the H-type cloud
as ψH

D = 7, and study the optimal contract design by varying parameter ψL
D.

Figure 4 presents the results of the L-type contract. From Fig. 4(a), the unit
payment pL is increasing with larger unit defending cost ψL

D which is different
with that in the H-type contract. The unit penalty vL in Fig. 4(a) has the same
trend as that in Fig. 3(a). The utility of the L-type cloud is a constant in the
contractable region as shown in Fig. 4(c) which verifies Eq. (34). The provided
communication service zL first keeps the same as the requested one qL in the
contract, and then decreases as the defending cost ψL

D becomes larger, and finally
jumps to zero since no contract is agreed. The reason for uncontractable region
in this case study differs from that in H-type contract design. In the region
of ψL

D/ψL
A > 4.38, the provided service zL is smaller than 0.75 which is the

minimum communication quality that can stabilize the control system. There-
fore, comparing with that the minimum profit is not met in the H-type cloud,
when ψL

D/ψL
A > 4.38, no contract is offered to the L-type cloud which leads to

the uncontractable situation. Figure 4(e) shows the system control cost which is
smaller than that in Fig. 3(e), since the provided service satisfies zL < zH .

6 Conclusion

We have studied the optimal contract design for the cloud-enabled Internet of
Controlled Things (IoCT) under the asymmetric information structure. In the
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proposed bi-level cyber-physical framework, we have used a FlipIt game to
model the interactions between the cloud defender and attacker at the upper
cyber layer. The cloud defense strategy is influenced by the offered contracts
by the physical system administrator. At the lower physical layer, the devices
have adopted the optimal control based on the received communication quality
from the cyber layer. We have designed two optimal contracts in terms of the
type of the cloud. Case studies have been provided to corroborate the obtained
results. The future work would be quantifying the value of information to the
cloud service provider and extending the contract analysis to the entire region.
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Abstract. We study users’ incentives to become cybercriminals when
network security is interdependent. We present a game-theoretic model
in which each player (i.e., network user) decides his type, honest or mali-
cious. Honest users represent law-abiding network users, while malicious
users represent cybercriminals. After deciding on their types, the users
make their security choices. We will follow [29], where breach probabili-
ties for large-scale networks are obtained from a standard interdependent
security (IDS) setup. In large-scale IDS networks, the breach probability
of each player becomes a function of two variables: the player’s own secu-
rity action and network security, which is an aggregate characteristic of
the network; network security is computed from the security actions of
the individual nodes that comprise the network. This allows us to quan-
tify user security choices in networks with IDS even when users have only
very limited, aggregate information about security choices of other users
of the network.

Keywords: Interdependent security · Cybercrime · Security eco-
nomics · Game theory · Nash equilibrium · Security investments

1 Introduction

Due to technological reasons, network security features multiple layers of inter-
dependencies. Interdependent security has been extensively studied, see [20] for
a recent survey; however, most of the existing literature does not address the
strategic reasons of the losses; i.e., there is no explicit modeling of attackers’
incentives to become engaged in cybercrime. In this paper, we look at users’
incentives for becoming attackers (malicious users), and study how users’ secu-
rity choices and utilities are affected by the number of attackers.

Another distinctive feature of our setup, which is non-standard for the IDS
literature, is that our model can deal with large-scale IDS networks. In many
cases, the IDS papers do not emphasize the effects of large-scale games. Notable
exceptions closely related to our work are [24] and [1]. In the latter, the authors
consider a model with multiple IDS players similar to our setup, and in the
former, large-scale networks with different topologies are studied. Ideas from
[24] were further developed in [29], whose setup we expand to study incentives
for becoming a cybercriminal.
c© Springer International Publishing AG 2016
Q. Zhu et al. (Eds.): GameSec 2016, LNCS 9996, pp. 349–369, 2016.
DOI: 10.1007/978-3-319-47413-7 20
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We consider a large-scale IDS network with strategic players (i.e., network
users or nodes), who choose to which type they will belong, honest or malicious;
the players also make choices of their security investments; we allow continuous
security choices.

A common trend in numerous papers approaching economic aspects of cyber-
crime is inquiry into the “production technology” of cybercrime.1 Our approach
is complementary: we give virtually no details about the implementation side of
cybercrime. We take a large-scale, macro perspective, and reduce the problem
to the following base level parameters: risk aversion, loss size, degree of IDS, and
costs of improving security. In this paper, we consider a more aggregate perspec-
tive. We build on the framework of risk assessment for large-scale IDS networks,
developed by [29], and model users’ incentives to become cybercriminals. While
at present our model is minimalistic and stylized, it could be extended to include
more parameters, such as different costs of attacking, and attacks with different
IDS features.

Following a seminal contribution of Tullock [31], we approach incentives for
cybercrime in the perspective of rent seeking. The core idea of rent seeking was
originally coined by Tullock to study any non-productive wealth redistribution.
Rent seeking was demonstrated to be useful methodology for the analysis of
diverse subjects, ranging from monopolist’s (over)pricing and losses from impo-
sition of tariffs to corruption, fraud, theft, and other criminal endeavors. The
distinguished feature of rent seeking is its wasteful and oftentimes openly coer-
cive nature. The propensity of rent-seeking activities depends on institutions
and enforcement capabilities. The prevalence of inefficient, corrupt institutions
results in higher rent-seeking activities, and it is associated with poor economic
performance and growth.

In [26,27], Olson connected an increase of rent-seeking activities with
increased severity of the problem(s) of collective action. In the cybersecurity
economics literature, this problem is studied under the name of free riding. The
problem arises when individually and socially optimal actions differ, and a large
number of dispersed players is present, with each player’s gains or losses being
trivial in size. In such cases, mechanisms to align individually and socially opti-
mal actions are hard to find. Investments in cybersecurity are well known to
have a marked presence of free riding [2,3,32], and thus, in general, suboptimal.
Proliferation of rent seeking (in our case, cybercrime) negatively affects growth,
as it shifts resources away from productive activities.

Consider for example the papers modeling one of the most widespread cyber-
crimes – phishing. The modeling literature originated by [7] looks at specific
costs (number of targets, strength of the attack, probability of being caught,
and the size of the fine) and the benefits (revenues resulting from the losses of
the targets, such as stolen bank account information). The authors discuss the
difficulties of designing effective countermeasures. From their analysis, increased
penalties have limited impact. They advocate that improving the controls to pre-
vent trading of stolen data will be more impactful. Followup papers introduce

1 For example in [4,18,22], cybercrime is approached from value-chain perspective.
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additional considerations and tools, such as risk simulation approach [17]. At the
same time, the literature acknowledges practical complications: while preventing
trading will be highly effective, it is questionable that this recommendation can
be achieved in practice: it requires global enforcement institutions with novel
legal rights and technological capabilities.

In the world with global connectivity, crime is becoming global as well due
to the increased proliferation of the cybercrime. The global world is facing new
threats, with meager existing institutions to counteract them. This situation
requires developing novel tools to reduce user incentives for becoming malicious.
Designing new economic institutions to be charged with mitigating rent-seeking
incentives to engage in cybercrime is socially desirable as only such institutions
will preclude the formation and syndication of organized international cyber-
crime. Our work permits quantifiable assessment and comparative analysis of
various policy tools and institutions.

1.1 Applications

Our analysis can be applied to address robustness of large-scale cyber-physical
systems (CPS). In [16], Knowles et al. present a comprehensive review of security
approaches for CPS, and survey methodologies and research for measuring and
managing cyber-risks in industrial control systems.

Since modern CPS are increasingly networked, achieving robust performance
requires addressing the problem of interdependencies (see Sect. 6.2.3 of [16]).
The authors identify the importance of system-wide risk assessment for CPS,
and discuss three difficulties: (i) scant data availability, (ii) lack of established
framework for defining and computing risk metrics, and (iii) lack of reliable
performance evaluation of security measures. The focus of our paper is (ii). We
use IDS framework, and demonstrate how system security evolves when the
attacker choices are endogenous.

For example, the perpetrators of the Energetic Bear (a.k.a. Dragonfly) cyber-
espionage campaign exploited interdependence between energy companies and
industrial control system (ICS) manufacturers [30]. In order to penetrate highly-
secure targets (e.g., energy grid operators, major electricity generation firms,
petroleum pipeline operators in the U.S., Germany, Turkey, etc.), the attackers
compromised ICS manufacturers and inserted malware into software updates
distributed by these manufacturers, which were downloaded and applied by the
targets, leading to their compromise.

While Knowles et al. discuss the problem of interdependencies, they also
express skepticism about the realistic options of improving the current state of
cybercrime reality [16]. In fact, the authors expect slow progress due to lack of
incentives for private entities to share information about risks. Our setup allows
circumventing the problem of data limitations as our analysis relies on aggregate
information about network security only.

The remainder of this paper is organized as follows. In Sect. 2, we discuss
related work on interdependent security. In Sect. 3, we introduce our model
of interdependent security and incentives for malicious behavior. In Sect. 4,
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we study the Nash equilibria of our model. In Sect. 5, we present numerical
illustrations for our theoretical results. Finally, in Sect. 6, we offer concluding
remarks and outline future work.

2 Related Work

In this section, we provide a brief overview of the most related papers from the
interdependent security literature. For a more detailed review of the relevant
literature, we refer the interested reader to [20].

The interdependent security problem was originally introduced in the seminal
paper of Kunreuther and Heal, who initially formulated an IDS model for airline
security. They extended their model to cover a broad range of applications,
including cybersecurity, fire protection, and vaccinations [19]. They study the
Nash equilibria of the model, and examine various approaches for incentivizing
individuals to invest in security by internalizing externalities, such as insurance,
fines, and regulations. In follow-up work, they extend their analysis to study
tipping (i.e., when inducing some individuals to invest in security results in others
investing as well) and coalitions of individuals that can induce tipping [10,11].
Other authors have also used this model to study various phenomena, including
uncertainty and systematic risks [13,14,21].

Öğüt et al. introduce an interdependence model for cybersecurity, which they
use to study the effects of interdependence on security investments and cyber-
insurance [24]. Similar to the model of Kunreuther and Heal, the model of Öğüt
et al. is based on the probabilistic propagation of security compromises from
one entity to the other. In follow-up work, the authors extend their analysis by
considering subsidies provided by a social planner, and find that subsidies for
security investments can induce socially optimal investments, but subsidies for
insurance do not provide a similar inducement [25].

Varian introduces and studies three prototypical interdependence models for
system reliability: total effort, weakest link, and best shot [32]. In these models,
the overall level of reliability depends respectively on the sum of efforts exerted
by the individuals, the minimum effort, and the maximum effort. Later, these
models have been widely used for studying security interdependence.

For example, Grossklags et al. compare Nash equilibrium and social optimum
security investments in the total effort, weakest link, and best shot models [8].
In another example, Honeyman et al. address investment suboptimalities when
users cannot distinguish between security failures (weakest link), and reliability
failures (total effort) [12].

Khouzani et al. consider security interdependence between autonomous sys-
tems (AS), and study the effect of regulations that penalize outbound threat
activities [15]. The authors find that free-riding may render regulations ineffec-
tive when the fraction of AS over which the regulator has authority is lower than
a certain threshold, and show how a regulator may use information regarding
the heterogeneity of AS for more effective regulation.

In most interdependent security models, adversaries are not strategic
decision-makers. Nonetheless, there are a few research efforts that do consider
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strategic adversaries. Hausken models adversaries as a single, strategic player,
who considers the users’ strategies and substitutes into the most optimal attack
allocation [9]. This substitution effect creates negative externalities between the
users’ security investments, which are fundamentally different from the posi-
tive externalities considered in our model. Moscibroda et al. consider malicious
users [23] in the inoculation game, which was introduced originally by Aspnes
et al. [5,6]. In the model of Moscibroda et al., malicious users are byzantine:
they appear to be non-malicious users who invest in security, but they are actu-
ally not secure at all. Furthermore, the set of malicious users is assumed to be
exogenous to the model. Grossklags et al. introduce an interdependence model,
called weakest target, in which an attacker targets and always compromises the
user with lowest security effort [8].

In another related paper, Acemoglu et al. focus on security investments of
interconnected agents, and study contagion due to the possibility of cascad-
ing failures [1]. They analyze how individual and social optima behave in the
presence of endogenous attacks. The authors formulate the sufficient conditions
for underinvestment in security, and demonstrate that overinvestment occurs in
some cases. Interestingly, in contrast to our results, overinvestment in security
may intensify when attacks are endogenous in [1]. In our paper, the imposition
of fast growing security costs guarantees that underinvestment occurs.

3 Model

Here, we introduce our model of non-malicious and malicious users, their incen-
tives, and the security interdependence between them. A list of symbols used in
this paper can be found in Table 1.

We assume that the number of users is fixed and denoted by N . Each user
chooses his type, malicious or honest (i.e., attacker or defender). We will denote
the number of malicious users and honest users by M and N − M , respectively.
Each user’s objective is to maximize his expected payoff (i.e., utility) u

ui = ui(t, s) = max
ti,si

{ui, vi} ,

where vi = vi(t, s) and ui = ui(t, s) denote respective utilities of malicious and
honest users, and s = (s1, . . . , sN ) is a vector of the players’ security choices, and
t = (t1, . . . , tN ) is a vector of user types, with ti = 1/0, for malicious/honest user
respectively, which allows us to express the number of malicious users M as:

M :=
N∑

i=1

ti. (1)

Each honest user i objective is to maximize his expected utility ui = ui(t, s)

ui = [1 − Bi(s)] U(W ) + Bi(s)U(W − L) − h(si), (2)

where Bi(s) = Bi(si, s−i) is the probability that user i suffers a security breach,
U(w) is the utility with wealth w, W is the initial user wealth, and L is the
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Table 1. List of symbols

Symbol Description

Constants

N Number of users

W Initial wealth of a user

L Loss of a user in case of a security breach

µ Probability of a malicious user getting caught

q∞ Defined as limN→∞ q(N)N

Functions

q(N) Strength of interdependence between N users

h(s) Cost of security level s

Bi(s1, . . . , sN ) Security breach probability of user i

Gi(M, s1, . . . , sN ) Financial gain of malicious user i

U(. . .) Utility function of a user

Variables

si Security level of user i

M Number of malicious users

ŝ Equilibrium security level of honest users

loss in case of a security breach. We assume that L ∈ (0,W ). The function h(s)
is security cost function, with s ∈ [0, 1) denoting the security level of the user.
While we view h as the “cost” of attaining a given security level, we model these
costs as separable from U because security costs are often non-monetary (e.g.,
inconvenience and effort).

We assume h′(s) > 0 and h′′(s) > 0 for si ∈ (0, 1) for every s ∈ [0, 1), h(0) =
h′(0) = 0, and h(1) = ∞.2 In addition, we will impose h′′′(s) > 0 to simplify
the exposition. Intuitively, with these assumptions, the marginal productivity
of investing in security is decreasing rapidly, and the cost of attaining perfect
security is prohibitively high. We assume that the users are risk-averse, that is,
the function U is concave at any wealth w ≥ 0: U ′(w) > 0 and U ′′(w) < 0; also
we let U(0) = 0.

Each malicious user j maximizes vj = vj(t, s)

vj = (1 − μ)U(Gj(t, s)) + μU(0) − h(sj), (3)

where μ is the probability of a malicious user being caught and punished (e.g.,
by law enforcement), and Gj is the gain of user j from engaging in cyber-crime.
We assume that honest users’ losses are distributed evenly between the malicious
users:

Gj(t, s) =
∑

i∈honest users Bi(s)L
M

, (4)

2 In other words, the Inada conditions hold.



Becoming Cybercriminals 355

and M is given by Eq. (1).
In our model, each user has two strategic actions: (i) user decides on his type

(malicious or honest), and on his security level s (and thus, cost h(s)). In the
next section (Sect. 4), we will study the Nash equilibria of our model, which are
defined as follows.

Definition 1 (Nash Equilibrium). A strategy profile (t, s) is a Nash equilib-
rium if

– being malicious is a best response for every malicious user and
– being non-malicious and investing in security level si is a best response for

every non-malicious user i.

3.1 Interdependent Security Model

For breach probabilities Bi, we will assume interdependent security (IDS). Our
model builds on well-known interdependent security model of Kunreuther and
Heal [19].

In this model, a user can be compromised (i.e., breached) in two ways: (i)
directly and (ii) indirectly. The probability of a direct breach reflects the proba-
bility that an honest user is breached directly by an adversary. For each user i,
the probability of being compromised directly is modeled as Bernoulli random
process, with the failure probability equal to (1 − si) when security investment
is h(si). This means that the probability of user i being safe from direct attacks
is equal to that user’s security level si, and does not depend on other users’
security choices. We assume that for any two users, the probabilities of direct
compromise are independent Bernoulli random processes.

Indirect breach probability reflects the presence of IDS – the users are inter-
dependent. More specifically, we assume that in addition to direct compromise,
the user can be breached indirectly – i.e., via a connection to another user,
who was compromised directly. The assumption of indirect compromise reflects
the connectivity and trust between the users. Let qij(N) denote the conditional
probability that user i is compromised indirectly by user j in the network with
N users, given that user j is directly compromised. To simplify, for now we will
assume that qij(N) is a constant (independent of i and j): qij(N) = q(N). Then,
the probability of user i to be breached indirectly can be expressed as

Pr[compromised indirectly]
= 1 − Pr[not compromised indirectly] (5)

= 1 −
∏

j �=i

Pr[no indirect compromise from user j] (6)

= 1 −
∏

j �=i

(1 − Pr[user j is directly compromised] Pr[successful propagation])

(7)

= 1 −
∏

j �=i

(1 − (1 − sj)q(N)). (8)
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Next, let Bi = Bi(s) denote the probability that user i is compromised (i.e.,
breached) either directly or indirectly:

Bi = 1 − Pr[not compromised] (9)
= 1 − Pr[not compromised directly] Pr[not compromised indirectly] (10)

= 1 − si

∏

j �=i

(1 − (1 − sj)q(N)). (11)

In practical scenarios, q(N) must decrease with N (the number of network users).
As it is standard in aggregative games, we let the limit of q(N) equal to zero
as N approaches infinity.

4 Analysis

Next, we present theoretical results on our model of interdependent security and
incentives for malicious behavior. First, in Sect. 4.1, we consider breach probabil-
ities in large-scale networks. We show that the IDS model allows approximating
a user’s breach probability using the user’s own security level and the average
security level of the network. Second, in Sect. 4.2, we study equilibrium security
choices for a game with a fixed number of malicious users. Finally, in Sect. 4.3,
we study the equilibrium of the game where the number of malicious users is
endogenous: it is determined by user choices.

4.1 Large-Scale Networks

We begin our analysis by studying the honest users’ breach probabilities in
large-scale networks (i.e., when the number of users N is high). Our goal here
is to express the breach probabilities in a simpler form, which will facilitate the
subsequent analysis of the users’ equilibrium choices.

First, recall that in practical scenarios, q(N) approaches zero as N grows (i.e.,
limN→∞ q(N) = 0). Hence, we can discard the terms with q(N)2, q(N)3, . . ., and
obtain the following approximation for large-scale networks:

Bi(s) = 1 − si

∏

j �=i

(1 − (1 − sj)q(N)) (12)

≈ 1 − si

⎛

⎝1 −
∑

j �=i

(1 − sj)q(N)

⎞

⎠ (13)

≈ 1 − si

[

1 − q(N)N
(

1 −
∑

j �=i sj

N

)]

. (14)

Let s̄ denote the average of the security levels taken over all users; formally, let
s̄ =

∑
j sj

N . Next, we use that the fraction
∑

j �=i sj

N approaches the average security
level s̄ as N grows, and obtain:

1 − si

[

1 − q(N)N
(

1 −
∑

j �=i sj

N

)]

≈ 1 − si (1 − q(N)N(1 − s̄)) . (15)
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Finally, we assume that q(N)N has a limit as N approaches infinity, and this
limit is less than 1. Then, we let q∞ = limN→∞ q(N)N , which gives us:

1 − si (1 − q(N)N(1 − s̄)) ≈ 1 − si(1 − q∞(1 − s̄)) (16)
= 1 − si(1 − q∞) − siq∞s̄. (17)

Thus, for large-scale networks, breach probability Bi is a function of user security
si and the average security s̄:

Bi(si, s−i) = 1 − si(1 − q∞) − siq∞s̄. (18)

In the remainder of the paper, we use (18) for breach probability Bi of user i.

4.2 Game with Exogenous Number of Malicious Users

Next, let us consider a game with a fixed number M of malicious users, that
is, a game in which the strategic choice of every user i is limited to selecting
security si. From Eq. (3), malicious users incur no losses, thus, they will not
invest in network security (see Sect. 3.1). Hence, in any equilibrium, sj = 0 for
every malicious user j.

Let s̄H denote the average security level of honest users:

s̄H =

∑
j∈honest users sj

N − M
. (19)

Recall that malicious users contribute zero towards the security of the net-
work, that is, sj = 0 for every malicious user j. Hence, the breach probability of
an honest user i can be expressed as

Bi(si, s̄H) = 1 − si(1 − q∞) − siq∞s̄ (20)

= 1 − si(1 − q∞) − siq∞
N − M

N
s̄H . (21)

Using Bi(si, s̄H), the expected utility of user i can be expressed as

u = [1 − Bi(si, s̄H)] U(W ) + Bi(si, s̄H)U(W − L) − h(si) (22)
= U(W − L) + [1 − Bi(si, s̄H)] Δ0 − h(si), (23)

where
Δ0 = U(W ) − U(W − L). (24)

Our goal is to characterize the equilibrium security levels when user types are
given. Thus, in the game Γ (M) we assume that the users’ types are fixed and
their strategic choices are restricted to selecting security levels, and we study
the Nash equilibrium of this game.

Definition 2 (Nash Equilibrium with Fixed M). Consider the game Γ (M)
in which the number of malicious users M is given. A strategy profile (s1, . . . ,
sN ) is a Nash equilibrium if security level si is a best response for every user.
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Lemma 1. In any equilibrium of the game Γ (M), for each user type, security
choices are identical.

Proof. First, we notice that for any M , malicious users do not invest in security.
From the definition of malicious user utilities (3), they have no losses, and thus
have no incentive to invest in security: thus, for any M, it is optimal to choose
s∗

j (M) = 0 for every malicious user j.
Second, we show that every honest user has a unique best response, and this

best response is independent of user identity, which means that any equilibrium
is symmetric. Consider some s = (·, s−i). To find user i’s optimal security (i.e.,
the utility maximizing security si), we take the first derivative of (2) with respect
to si (user i FOC):

d

dsi
ui = − d

dsi
Bi(si, s−i)Δ0 − h′(si) = 0, (25)

where we use Bi given by (14)

d

dsi
Bi(si, s−i) =

d

dsi

(

1 − si

[

1 − q(N)N
(

1 −
∑

j �=i sj

N

)])

(26)

= −
[

1 − q(N)N
(

1 −
∑

j �=i sj

N

)]

. (27)

Since the second order condition (SOC) is negative:

d2

ds2i
ui = −h′′(si) < 0,

there exists a unique optimal response s∗
i to any s∗

i = s∗
i (M, s i), and it is given

by the solution of FOC (25).
For large N , we have:

d

dsi
ui = − d

dsi
Bi(si, s−i)Δ0 − h′(si) (28)

=

⎡

⎢
⎢
⎢
⎣

1 − q∞

(

1 − N − M

N
s̄H

)

︸ ︷︷ ︸
<1

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
>0

Δ0 − h′(si). (29)

Since h′(si) is increasing in si, the derivative u′ is a decreasing function of si.
Furthermore, since the first term is positive and h′(0) = 0, the derivative u′

is positive at si = 0. Consequently, user i best response s∗
i is interior (because

si = 1 cannot be optimal as it is unaffordable), and it is given by:

u′ = 0 (30)
[

1 − q∞

(

1 − N − M

N
s̄H

)]

Δ0 − h′(si) = 0 (31)

Δ0 =
h′(si)

1 − q∞
(
1 − N−M

N s̄H

) . (32)
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Finally, since the solution of (32) is independent of user identity, we infer that
best responses are identical for all honest users. ��

From Lemma 1, we infer that the honest users’ security levels are identical in
an equilibrium. The following theorem shows that the equilibrium security level
always exists, and is unique. This implies that there is a unique Nash equilibrium
of the game Γ (M).

Theorem 1. For a given M , the honest users’ equilibrium security s∗(M) is
unique.

Proof. By definition, identical security level s is an equilibrium if and only if
security level s is a best response for every honest user. Consequently, it follows
from the proof of Lemma 1 that an identical security level s is an equilibrium if
and only if

Δ0 = R(s,M), (33)

where

R(s,M) =
h′(s)

1 − q∞ + q∞ N−M
N s

. (34)

In order to prove the claim of the theorem, we have to show that Eq. (33) has a
unique solution.

First, notice that
R(0,M) = 0 (35)

since h′(0) = 0, and
R(1,M) = ∞ (36)

since h(s) grows without bound as s approaches 1. Therefore, there must exist
a value s∗ between 0 and 1 for which R(s∗,M) = Δ0 as R(s,M) is a continuous
function on [0, 1).

To prove that this s∗ exists uniquely, it suffices to show that d
dsR(s,M) > 0

on (0, 1). The first derivative of R(s,M) with respect to s is

d

ds
R(s,M) =

h′′(s)
[
1 − q∞ + q∞ N−M

N s
] − h′(s)q∞ N−M

N
[
1 − q∞ + q∞ N−M

N s
]2 . (37)

Since the denominator is always positive, we only have to show that the numer-
ator is positive on (0, 1). First, observe that the numerator is non-negative at
s = 0, since

h′′(0)
︸ ︷︷ ︸

≥0

[

1 − q∞ + q∞
N − M

N
s

]

︸ ︷︷ ︸
>0

−h′(0)
︸ ︷︷ ︸
=0

q∞
N − M

N
≥ 0. (38)
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Finally, we prove that the numerator is strictly increasing on [0, 1) by showing
that its first derivative with respect to s is positive:

d

ds

(

h′′(s)
[

1 − q∞ + q∞
N − M

N
s

]

− h′(s)q∞
N − M

N

)

= h′′′(s)
[

1 − q∞ + q∞
N − M

N
s

]

+ h′′(s)q∞
N − M

N

− h′′(s)q∞
N − M

N
(39)

= h′′′(s)
︸ ︷︷ ︸

>0

[

1 − q∞ + q∞
N − M

N
s

]

︸ ︷︷ ︸
>0

(40)

>0. (41)

Since the numerator is non-negative at s = 0 and it is strictly increasing in s
on [0, 1), it must be positive for any s ∈ (0, 1). Therefore, the first derivative of
R(s,M) is also positive, which proves that the solution s∗ exists uniquely for a
given number of malicious users M . ��

Equilibrium in the game Γ (M) exists and is unique. This allows us to define
the equilibrium security level as a function s∗(M) of M .

Theorem 2. As the number of malicious users M increases, the honest users’
equilibrium security s∗(M) decreases.

Proof. Since Δ0 = R(s∗(M),M) must hold for every pair (s∗(M),M) (see
Eq. (33)), we have

0 =
d

dM
R(s∗(M),M) (42)

0 =
h′′(s∗(M))s∗′(M)

(
1 − q∞ + q∞ N−M

N
s∗(M)

)
(
1 − q∞ + q∞ N−M

N
s∗(M)

)2

− h′(s∗(M))q∞
(−1

N
s∗(M) + N−M

N
s∗′(M)

)
(
1 − q∞ + q∞ N−M

N
s∗(M)

)2 (43)

− h′(s∗(M))q∞

(−1

N
s∗(M) +

N − M

N
s∗′

(M)

)
(44)

0 = s∗′
(M)

[
h′′(ŝ(M))

(
1 − q∞ + q∞

N − M

N
s∗(M)

)
− h′(s∗(M))q∞

N − M

N

]

− h′(s∗(M))q∞
−1

N
s∗(M) (45)

s∗′
(M) =

h′(s∗(M))q∞ 1
N
s∗(M)

h′(s∗(M))q∞ N−M
N

− h′′(s∗(M))
(
1 − q∞ + q∞ N−M

N
s∗(M)

) . (46)

Notice that the denominator of the above fraction is the inverse of the numerator
of the right-hand side of Eq. (37). Since we have shown in the proof of Theo-
rem 1 that the numerator of the right-hand side of Eq. (37) is positive, we have



Becoming Cybercriminals 361

that the denominator of the above fraction is negative. Further, the numerator
of the above fraction is obviously positive since it consists of only positive fac-
tors. Hence, s∗′(M) is negative, which proves that the honest users’ equilibrium
security decreases as the number of malicious users increases. ��

Unfortunately, s∗(M) cannot be expressed in closed form. Nonetheless, we
can easily find s∗(M) numerically for any M . On the other hand, we can express
the number of malicious users as a function M(s∗) of the equilibrium security
level s∗ in closed form:

Δ0 =
h′(s∗)

1 − q∞ + q∞ N−M
N s∗ (47)

q∞
N − M

N
s∗ =

h′(s∗)
Δ0

+ q∞ − 1 (48)

M(s∗) = N

[

1 −
h′(s∗)

Δ0
+ q∞ − 1

q∞s∗

]

. (49)

The value of M(s∗) can be interpreted as the number of malicious users which
induces the honest users to choose security s∗(M). Note that from Theorem 2,
we readily have that M(s∗) is a decreasing function of s∗.

4.3 Incentives for Becoming Malicious

In the previous subsection, we studied a restricted version of our game Γ (M),
in which the number of malicious users was exogenously given. We found the
equilibrium of the game Γ (M) as the solution of (34), from which the honest
users’ equilibrium security levels can be found.

Next, we will study the game Γ , in which users choose their types (honest or
malicious). We will solve the game Γ by building on the results of the previous
subsection.

First, Theorem 1 provides the honest users’ equilibrium security level s∗(M).
Thus, we can express a malicious user’s gain as a function Gi(M) of the number
of malicious users M :

Gi(M) =

∑
j∈honest users Bj(sj , s̄H)L

M
(50)

=
(N − M)

(
1 − s∗(1 − q∞) − s∗2 N−M

N q∞
)
L

M
. (51)

From Theorem 1, honest users choose s∗(M) in an equilibrium. Next, we will
find an equilibrium number of malicious users of M . For this purpose, we have
to determine the combinations of M and s∗(M) that form a strategy profile such
that being malicious is a best response for malicious users and being honest is a
best response for honest users.

Finally, now we are ready to prove that there always exists an equilibrium
of the game in which users self-select their types (honest or malicious). Effec-
tively, for each equilibrium number of malicious users M , the equilibrium security
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choices will be identical to equilibrium security s∗(M) in the game Γ (M) with
that same fixed number of malicious users M .

Theorem 3. There exists at least one Nash equilibrium.

Proof. Assume the reverse. Then, at any M ∈ [0, N −1] there exists (i) malicious
or (ii) honest user, for whom a deviation to the opposite user type is profitable:

v(M, s∗(M)) < u|M−1,s−i=s∗(M) := max
si

ui(M − 1, si, s−i), (i) (52)

or
u(M, s∗(M)) < v(M + 1, s∗(M)), (ii) (53)

where v(M, s∗(M)) and u(M, s∗(M)) denote, respectively, the malicious and
honest users’ utility with M malicious users and all honest users choosing security
s∗(M), and ui(M, si, s−i) denotes honest user i’s utility given that he chooses
security si and all other honest users choose s−i. From Lemma 1, the honest
users’ best response to M and s−i = s∗(M) is s∗(M), which gives:

u|M,s∗(M) ≤ u(M, s∗(M)). (54)

From Theorem 2, s∗(M) decreases in M , which gives:

v(M + 1, s∗(M)) < v(M + 1, s∗(M + 1)), (55)

because ceteris paribus, lower security benefits malicious users. Similarly, we
have from Theorem 2 and (54) that:

u|M̃,s∗(M̃+1) < u|M̃,s∗(M̃) ≤ u(M, s∗(M)) (56)

because ceteris paribus, higher security benefits honest users.
Let (52) hold3 for any M > M̃ , but not for M̃ . Hence, at M̃ + 1 we have:

v(M̃ + 1, s∗(M̃ + 1)) < u|M̃,s∗(M̃+1) . (57)

Then, if M̃ is not an equilibrium, (53) must hold:

u(M̃, s∗(M̃)) < v(M̃ + 1, s∗(M̃)). (58)

Combining (58) and (57) with (55) and (56) provides:

u(M̃, s∗(M̃)) < v(M̃ + 1, s∗(M̃)) < v(M̃ + 1, s∗(M̃ + 1)) (59)

v(M̃ + 1, s∗(M̃ + 1)) < u|M̃,s∗(M̃+1) ≤ u(M̃, s∗(M̃)), (60)

which contradict each other. Thus, Theorem 3 is proven. ��

3 If (52) holds for all M ∈ [1, N − 1], we let M̃ = 0.
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5 Numerical Illustrations

Here, we present present numerical results showcasing our model and illustrat-
ing our theoretical findings. First, we instantiate our model using the following
parameter values:

– number of users N = 500,
– initial wealth W = 100,
– potential loss L = 30,
– security interdependence q∞ = 0.5,
– probability of a malicious user getting caught μ = 0.2,

and we use the following security-cost function (see Fig. 1):

h(s) = 10
s2√
1 − s

(61)

and the following utility function:

U(x) = x0.9. (62)
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Fig. 1. The security-cost function h(s) and its first derivative h′(s) used in the numer-
ical illustrations.

Figure 2 shows the honest users’ equilibrium security level s∗(M) as a func-
tion of M . Furthermore, it also shows the honest and malicious users’ utilities u
and v for these equilibrium security levels (i.e., utilities given that there are M
malicious users and the honest users choose s∗(M)). We see that – as established
by Theorem 2 – the equilibrium security level is a strictly decreasing function of
the number of malicious users. Moreover, we see that the utilities are also strictly
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Fig. 2. The equilibrium security level s∗ and the resulting utilities u and v for honest
and malicious users as functions of the number of malicious users M . Please note the
different scalings of the vertical axes.

decreasing. For the honest users, this is easily explained by the decrease in both
the individual security level and the number of honest users who contribute.
For the malicious users, the utility decreases because the gain from decreasing
security levels is outweighed by the increasing competition between more and
more malicious users. Finally, we can see that the equilibrium number of mali-
cious users is at M = 96 since the users have incentive to become malicious for
lower values of M (i.e., utility for being malicious is much higher) and they have
incentive to become honest for higher values of M .

Figures 3 and 4 show respectively the security level s∗ and the number of
malicious users M̂ in Nash equilibrium as functions of the potential loss L and
interdependence q∞. Note that the values s∗ and M̂ are well defined because
the equilibrium exists uniquely for each parameter combination (q∞, L) in this
example. As expected, we see that higher potential losses lead to higher security
levels since honest users have more incentive to invest in security, and they lead
to higher numbers of malicious users since committing cybercrime becomes more
profitable. On the other hand, stronger interdependence leads to lower security
levels since the honest users’ breach probabilities becomes less dependent on
their own security levels, which disincentivizes investing or making an effort.
Conversely, stronger interdependence leads to higher numbers of malicious users
since propagating security breaches becomes easier, which makes cybercrime
more profitable.

Figure 5 shows the security level s∗ and the number of malicious users M̂ in
Nash equilibrium as functions of the probability μ of a malicious user getting
caught. Note that the values s∗ and M̂ are again well defined because the equi-
librium exists uniquely for each parameter value μ in this example. As expected,
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Fig. 5. Security level s∗ and number of malicious users M̂ in Nash equilibrium as
functions of the probability µ of a malicious user getting caught.

we see that a higher probability of getting caught disincentivizes users from
engaging in cybercrime and reduces the number of malicious users. On the other
hand, the probability of getting caught has an almost negligible effect on the
honest users security level.

6 Conclusion

We studied users’ incentives to become cybercriminals in networks where the
users’ security is interdependent. Based on a well-known model of interdepen-
dent security, we introduced a game-theoretic model, in which each user can
choose to be either honest or malicious (i.e., cybercriminal). First, we showed
how to compute security-breach probabilities in this model for large-scale net-
works. Then, we showed that if users are homogeneous, all honest users select
the same security level in an equilibrium, and this level exists uniquely for a
fixed number of malicious users. Furthermore, we found that this security level
is a strictly decreasing function of the number of malicious users, which means
that the overall security of a network drops rapidly as more and more users
choose to be malicious. Equivalently, the number of malicious users is a strictly
decreasing function of the honest users’ security levels, which is not surprising:
as users become less secure and easier to exploit, choosing to be malicious and
taking advantage of them becomes more profitable. Finally, we found that the
game always has a Nash equilibrium.

There are multiple directions for extending our current work. Firstly, we
plan to study heterogeneous users, who may have different initial wealth, prob-
ability of getting caught, etc. While our current model, which assumes homo-
geneous users, is very useful for studying how the users’ choices are affected
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by changing various parameters, a heterogeneous-user model will enable us to
study the differences between individual users’ choices. We conjecture that even
though users may choose different security levels, their equilibrium security lev-
els will decrease as the number of malicious users increases. Secondly, we plan
to extend our current model by considering cyber-insurance, that is, by allowing
users to purchase cyber-insurance policies in addition to investing in security.
In practice, the adoption of cyber-insurance is growing rapidly as the market size
is estimated to increase from $2.5 billion in 2015 to $7.5 billion in 2020 [28]. Con-
sequently, users’ security choices are increasingly affected by the availability of
cyber-insurance. We conjecture that increasing the number of malicious users will
have an opposite effect on cyber-insurance as compared to security investments:
decreasing security levels will result in increasing adoption of cyber-insurance.

Acknowledgment. This work was supported in part by FORCES (Foundations Of
Resilient CybEr-Physical Systems), which receives support from the National Science
Foundation (NSF award numbers CNS-1238959, CNS-1238962, CNS-1239054, CNS-
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Abstract. Security breaches often arise as a result of users’ failure to
comply with security policies. Such failures to comply may simply be
innocent mistakes. However, there is evidence that, in some circum-
stances, users choose not to comply because they perceive that the secu-
rity benefit of compliance is outweighed by the cost that is the impact of
compliance on their abilities to complete their operational tasks. That is,
they perceive security compliance as hindering their work. The ‘compli-
ance budget’ is a concept in information security that describes how the
users of an organization’s systems determine the extent to which they
comply with the specified security policy. The purpose of this paper is to
initiate a qualitative logical analysis of, and so provide reasoning tools
for, this important concept in security economics for which quantitative
analysis is difficult to establish. We set up a simple temporal logic of
preferences, with a semantics given in terms of histories and sets of pref-
erences, and explain how to use it to model and reason about the com-
pliance budget. The key ingredients are preference update, to account
for behavioural change in response to policy change, and an ability to
handle uncertainty, to account for the lack of quantitative measures.

1 Introduction

The security of systems is not simply a technical problem. While encryption,
robust protocols, verified code, and network defences are critical aspects of sys-
tem security, the behaviour of system managers and users, and the policies that
are intended to manage their behaviour, are also of critical importance.

Many security breaches are the result of users’ failure to comply with security
policies. Failure to comply may simply be the result of a mistake, because of a
misunderstanding, or derive from users’ being required to form an effectively
impossible task.

In recent years, many effective tools for analysing security behaviour and
investments have been provided by economics, beginning with significant work
by Anderson and Moore [2,3], explaining the relevance of economics to informa-
tion security, and Gordon and Loeb [10,11], considering optimal investment in
information security. Since then, there has been a vast development in security
economics, too extensive to survey in this short paper. Game theory and decision
theory have been significant parts of this development; see, for example, [1,20],
c© Springer International Publishing AG 2016
Q. Zhu et al. (Eds.): GameSec 2016, LNCS 9996, pp. 370–381, 2016.
DOI: 10.1007/978-3-319-47413-7 21
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and much more besides. Some of us have contributed to the use of methods from
economics to assess the role of public policy in the management of information
security [16] and in system management policy [14,15].

A key aspect of the management of system security policies concerns the
relationship between the human users of systems and the security policies with
which they are expected to comply. This relationship has been explored, in the
context of security economics, by Beautement et al. [5,6] through the concept
of the compliance budget. The idea here is that users have a limited appetite for
engagement in the behaviour that is required in order to ensure compliance with
policy if that behaviour detracts from their primary operational tasks.

In Sect. 2, we explain the concept of the compliance budget as introduced in
[5,6], building on earlier work in [7]. In Sect. 3, we introduce a simple temporal
logic with a semantics that is based on histories of events and agents’ preferences.
In Sect. 4, we consider an example of how agents’ behaviour can be understood
in terms of the compliance budget and reasoned about logically. In Sect. 5, we
consider our model of the compliance behaviour in the context of incomplete
information, and briefly set out a programme of further work.

This paper is intended to be conceptual rather than technical in nature and,
to this end, we deliberately employ a slightly informal style. Its purpose is to ini-
tiate a qualitative logical analysis of an important concept in security economics
for which quantitative analysis is difficult to establish. We are not aware of any
related work on logical analyses of the compliance budget or similar concepts.

This work was supported by UK EPSRC EP/K033042/1 and EP/K033247/1.

2 The Compliance Budget

Organizations’ security policies are enforced using tools of different kinds, rang-
ing from simple instructions from managers through to complex combinations
of hardware, software, and tokens. For example, access control via ‘something
you are, something you have, and something you know’. In situations in which
non-compliance with the policy is possible, most of an organization’s employees
will nevertheless comply provided compliance does not require additional effort.

If extra effort is required, individuals will weigh this extra effort, and the
opportunity cost that it implies in terms of their production task, against the
benefits they obtain from compliance. If there is good alignment (i.e., of incen-
tives) between the individual’s goals as an employee and the organization’s goals,
then there will be little or no conflict as the behaviour required from the indi-
vidual for compliance causes no friction.

However, most individuals will tend not to choose to comply with the secu-
rity behaviour required by an organization if that behaviour conflicts with the
behaviour that they perceive to be required in order to achieve their own goals.
In such a situation, goals are less likely to be met and effort is likely to be wasted.
This benefit-cost analysis is illustrated in Fig. 1.

Alternative rates of compliance expenditure are also shown for comparison.
Once the compliance threshold is crossed security effectiveness drops sharply as
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Compliance 
threshold  

Well-managed 
budget 

Poorly-managed 
budget 

Insecure 
behaviours 

Perceived individual cost 

Effectiveness of  
security policy  

Fig. 1. The relationship between the perceived cost to an individual of compliance
and the effectiveness of a security policy [5,6]. More effective policies achieve greater
effectiveness at a given cost to an individual.

employees elect to complete tasks that benefit them more directly as individ-
uals rather than security tasks that more benefit the organization as a whole.
A well-managed budget will spend perceived effort at a slower rate, so that
more security policies can be accommodated before the compliance threshold is
reached, resulting in a higher level of achieved security. If the limit is exceeded,
security policies are less likely to be followed; achieved levels of security will
decline.

Following [5,6], we remark that, in the absence of quantitative data, the
precise shape of the graph in Fig. 1 cannot be plotted precisely. Moreover, there
will be variations from individual to individual, although the same core features
will occur. These behaviours have been investigated in extensive empirical studies
[5–7], supporting the formulation of the concept of the compliance budget.

3 A Logic for the Compliance Budget

In this section, we introduce a (multi-modal) temporal logic of preferences with
which we can reason about the compliance budget. For convenience, we name
the logic CBL, for ‘compliance budget logic’.

The logic includes temporal modalities, modalities for agents’ preferences,
and a modality for preference update [4]. Each modality has a specific role in
our modelling of reasoning about the compliance budget.

– The temporal modalities, © (next time step) and U (until) are familiar from
temporal logic [19] (see [13] for a tutorial exposition) and are used to reason
about how properties of the system change over time.

– The modality ♦i, together with its dual �i, is used to reason about the pref-
erences of the agents (or principals, or players) i in a system. It denotes
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decision-making capability between outcomes with different ‘worth’ to the
agents in the system.

– The modality [!Φ], for a finite set of formulae Φ, is reminiscent of the key
modality in public announcement logic (see, e.g., [9] for a convenient sum-
mary); it is used to reason about how the preferences of agents in the system
are changed by the imposition of policies by those who manage the system.

The semantics of the logic is specified in terms of history-based structures [18],
and is explained below. Histories (sequences of events) can be used to represent
the trace semantics of complex systems models, and can be seen as a simple
version of the process-theoretic models explored in, for example, [8].

Definition 1 (Syntax of CBL). Given a set of propositional variables P, with
elements p, q, etc., the syntax of the logic CBL is defined as follows:

φ:: = p | ⊥ | � | ¬φ | φ ∨ φ | φ ∧ φ | φ → φ classical propositionals
| ©φ | φ U φ temporal modalities
| ♦iφ | �iφ | [!Φ]φ preference modalities.

We write formulae as φ, ψ, etc., and finite sets of formulae as Φ, Ψ, etc. The
existential preference modal operator for agent i is ♦iφ. The dual universal
preference modal operator for agent i is �iφ. When there is only a single agent
in the system, we sometimes drop the agent annotation. The temporal ‘next-
time’ operator is ©φ. The temporal ‘until’ operator is φ U ψ.

The preference update modality—which updates agents’ preferences—is writ-
ten [!Φ]φ and denotes that φ holds when the model is updated to disregard pref-
erences between pairs of histories that (respectively) do and do not satisfy some
formula in Φ. We refer to a formula as update-free if it contains no uses of the
preference update modality.

The compliance budget [5,6] is qualitative rather than quantitative concept,
and accepts that accurate measures of the effort taken to follow a given policy,
and the effort that an employee has to expend, can generally not be practically
obtained. As a result, a preference update consists of a set of formulae according
to which the preferences are updated without any formal notion of likelihood
or probability between the different facts; that is, it is a qualitative update to
preferences rather than a quantitative update. The preference-update modality
[!Φ] will be used to give a logical account of the behavioural changes brought
about by the implementation of a policy. The set of formulae Φ represents the
impact on agents’ decision-making under a new policy; we allow Φ to be a
finite set rather than a single formula in order to incorporate uncertainty in this
decision-making impact. This set-up will be essential to our logical description
of the compliance budget.

First, we need some notation. Let E be the set of events (the ‘global event
set of a model’) and A be the set of agents of a history-based model.

A history H over a set of events E is a possibly infinite sequence of events
drawn from the set E . ε denotes the empty history.
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If a history H is of at least length m ∈ N, then let H(m) be the mth element
of the sequence, Hm be the m-length prefix of the history. We emphasize that a
history is finite using lower case. Let h;H denote the concatenation of a finite
history h with a (possibly infinite) history H. In this case, we say that h is a
prefix of h;H. (Note that ε;H = H.)

A protocol H is a set of histories closed under finite prefix.

Definition 2. A preference relation ≺ is a strict partial order on a protocol.

In a system with multiple agents, we use a different preference relation for
each agent, to describe their separate interests. Such a collection of preferences
is specified as a preference structure.

Definition 3 (Preference structure). A preference structure for agents A
over histories H is given by a tuple (≺1, . . . ,≺n), where A = {1, . . . , n}, and,
for all i ∈ A, ≺i is a preference relation on the protocol H.

We write preference structures π, π′, etc., and sets of preference structures Π,
Π′, etc.

H, t |=M p iff Ht is defined and Ht ∈ V(p)
H, t |=M ⊥ never H, t |=M � always H, t |=M ¬φ iff H, t �|=M φ

H, t |=M φ∨ψ iff H, t |=M φ or H, t |=M ψ H, t |=M φ∧ψ iff H, t |=M φ and H, t |=M ψ

H, t |=M ©φ iff H, t + 1 |=M φ
H, t |=M φ U ψ iff there exists k ∈ N such that t ≤ k, H, k |=M ψ

and, for all l ∈ N, t ≤ l < k implies H, l |=M φ

H, t |=M ♦iφ iff there exist H ′ ∈ H and π ∈ Π
HπiH

′, and H ′, t |=M φ
H, t |=M �iφ iff for all H ′ ∈ H and all π ∈ Π,

HπiH
′ implies H ′, t |=M φ

H, t |=M [!Φ]φ iff H, t |=M[!Φ,t] φ

Fig. 2. Satisfaction relation

We can now define models of CBL. Satisfaction and model update are defined
mutually inductively.

Definition 4 (History-based preference models). A tuple (E ,A,H,V,Π)
is a history-based preference model (HBPM), or a history-based model for short,
if E is a set of events, A = {1, . . . , n} is a set of agents, H is a protocol, V is
a valuation function from propositions to subsets of H containing only finite
histories, and Π is a set of preference structures for agents A over H.
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Models are denoted M, M′, etc. The interpretation of the connectives and
modalities is given in Fig. 2, where satisfaction of a formula φ in history H at
time t in a model M is written H, t �M φ. Note that the semantics of preference
update depends on the definition of preference-based model update, which is
explained below. The necessary model update, as defined in Definition 6, requires
only the strictly smaller formula φ.

The modality ♦iφ denotes the existence of a history (trace) that is preferred
by agent i in some possible preference relation and in which φ holds. The modal-
ity ©φ denotes that φ holds at the next time point. The modality φU ψ denotes
that φ holds until some time point, at which ψ holds.

In order to reason about the impact of a policy, it is helpful to be able to
modify the preferences of the principals in the logic. This can be modelled using
preference updates, which can remove (but cannot add) preferences between
pairs of histories. A preference update is performed using a distinguishing for-
mula, φ. Given two histories H,H ′, if H, t |=Mφ but H ′, t 
|=M φ, then we call φ
a ‘distinguishing formula’ for (H, t) and (H ′, t). In this case, preference update
for agent i leads to a new preference relation ≺′

i such that H 
≺′
i H ′. The notion

of preference update in history-based models that we use in this paper was intro-
duced in [4].

Definition 5 (Preference relation update). Let ≺ be a preference rela-
tion and M = (E ,A,H,V,Π) be a history-based model. The preference relation
updated according to a formula φ at time t, ≺φ,M,t, is defined as

≺φ,M,t := ≺ \{(H,H ′) | H, t |=Mφ and H ′, t 
|=M φ},

Lemma 1. If M = (E ,A,H,V,Π) is a history-based model, ≺ is a preference
relation over histories H, φ is a formula, and t is a time-point, then ≺φ,M,t is
a preference relation over histories H.

Proof. Establishing this amounts to checking that the given relation is transi-
tive. Suppose H ≺φ,M,t H ′ ≺φ,M,t H ′′. If H, t |=Mφ, then H ′, t |=Mφ, so that
H ′′, t |=Mφ. Therefore H ≺φ,M,t H ′′.

We extend updates of preference relations pointwise to updates of preference
structures. We can then use preference relation update to update a model using
a finite set of distinguishing formulae.

Definition 6 (Preference-based model update). Let M = (E ,A,H,V,Π)
be a history-based preference model. The updated preference model M[!Φ, t] (with
respect to a finite set of distinguishing non-updating formulae Φ and time-point
t) is defined as M[!Φ, t] = (E ,A,H,V, {πφ,M,t | π ∈ Π and φ ∈ Φ}).

We represent a preference update within the logic via the [!Φ] modality.
Given a model M and a finite set of distinguishing non-updating formulae Φ, a
preference update modality is satisfied by history H at time t in model M (i.e.,
H, t |=M[!Φ]ψ), if and only if ψ holds in the model updated by Φ at time-point
t (i.e., H, t |=M[!Φ,t]ψ).
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Proposition 1. The logic CBL as defined in Fig. 2, together with the support-
ing definitions, is a conservative extension of the temporal fragment (classical
propositionals and temporal modalities) without the preference fragment (prefer-
ence modalities, ♦iφ, �iφ, [!Φ]φ).

Proof. Consider that all of the satisfaction clauses for the temporal modalities
are independent of the structures required to define the preference modalities.

Example 1. Suppose a set of events E = {c, d}, denoting compliance and devia-
tion from management-desired behaviour, and a set of histories of all traces over
the events of at most length two, that is H = {ε, c, d, (c; c), (c; d), (d; c), (d; d)}.

We consider only one agent in the system, an employee (that is, A = {1}).
The employee always prefers to deviate; that is, π = (≺) is given by the transitive
closure of

c ≺ d c; c ≺ c; d c; c ≺ d; c c; d ≺ d; d d; c ≺ d; d.

Let pc be a proposition that holds for a history when the last event in its
sequence is c; that is, h ∈ V(pc) if and only if h is of the form h′; c. Let pd be
defined similarly.

Let M = (E ,A,H,V, {π}). We can use the logic CBL to say that the
employee prefers to deviate from the behaviour desired by the manager at the
first opportunity; that is, (c; c), 0 �M ♦1 © pd.

Suppose the policy-maker introduces incentives to encourage greater com-
pliance with policy. In CBL, this is modelled as a preference update with the
formula φ = ©pc. Updating the preferences using this formula results in ≺φ,M,0,
consisting in just

c; c ≺φ,M,0 c; d d; c ≺φ,M,0 d; d.

This update removes the employee’s preference to deviate at the first opportu-
nity, but not at later opportunities; formally, (c; c), 0 �M [!{φ}]¬♦1 © pd.

To deal with the second opportunity to deviate from policy, let ψ = ©©pc.
Updating the original preferences using this formula results in ≺ψ,M,0, given by

c ≺ψ,M,0 d c; c ≺ψ,M,0 d; c c; d ≺ψ,M,0 d; d.

This update removes the employee’s preference to deviate at the second oppor-
tunity, but not at other opportunities; formally, (c; c), 0 �M [!{ψ}]¬♦1 © ©pd.

In some situations, the policy-maker may have less fine-grained control over
the employees. For example, they can prevent one deviation, but have no control
over which deviation is prevented. This is represented by updating the prefer-
ences using the set of formulae Φ = {φ, ψ}, resulting in the two possible pref-
erence relations above; that is, M[!Φ,0] = (E ,A,H,V, {≺φ,M,0,≺ψ,M,0}). This
update removes the employee’s preference to deviate twice. However, there is
now uncertainty about the preferences, and properties that hold for updates
according to φ and ψ no longer hold. Indeed,

(c; c), 0 �M [!Φ]♦1 © pd and (c; c), 0 �M [!Φ]♦1 © ©pd.
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We do, however, have the weaker property, that the employee does not prefer
to deviate at both opportunities; formally,

(c; c), 0 �M [!Φ]¬♦1((©pd) ∧ (© © pd)).

To see this, note that the only histories preferable to c; c are c; d, from the update
for φ, and d; c, from the update for ψ, and (c; d), 0 
|=M[!Φ,0] ((©pd) ∧ (© © pd))
and (d; c), 0 
|=M[!Φ,0] ((©pd) ∧ (© © pd)). ��

Building on this set-up, we now introduce a logical model of the compliance
budget. To this end, we let loadn(φ, i) denote that agent i has at least n distinct
situations in which it would prefer to violate the policy φ.

Definition 7. Let i be an agent and φ be an update-free formula. The load
formulae of these parameters are defined by

load0(φ, i) � �
loadn+1(φ, i) � (φ ∧ �iφ) U (

φ ∧ ♦i¬φ ∧ © loadn(φ, i)
)
.

Given a load formula loadn(φ, i), we refer to n as the load value, and φ as the
policy. The intuition for this is that if loadn(φ, i) holds, agent i has complied
with policy φ, but would have preferred to deviate on n occasions, so expending
compliance budget.

If we perform a preference update according to the formula loadn(φ, i), we will
remove the preference to deviate from the policy φ at the first n opportunities.
We can represent a bound on uncertainty on an agent’s compliance budget—
that is, uncertainty on how much more the agent will comply with policies—by
updating according to a set of load formulae with a range of load values:

loadm(φ, i), loadm+1(φ, i), . . . , loadn−1(φ, i), loadn(φ, i).

4 An Access Control Example

We illustrate the facility to model ideas from the compliance budget using an
example concerning remote access policy. We suppose a business setting, with an
internal (local) network that contains some core systems resources (for example,
databases, workflow tools, or email servers). This core system can be divided
into high security and low security components, where high security components
are more valuable or more vulnerable.

Principals using devices on the local network can access the entire core sys-
tem, both high and low security. Principals using devices on remote networks
can access the core system, but with certain restrictions based on the type of
connection that is used to access the resources.

The system is technologically configured so that a connection using a virtual
private network (VPN) can access the whole core system, but a connection using
a secure shell (SSH) can only access the low-security component of the core
system. This is an attempted implementation of the (currently informal) policy
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that the high-security component of the core system should only be remotely
accessed via VPN. Principals can, however, use SSH to connect to locally owned
machines, and then connect directly to the high component of the core system.
Hence, the policy can be circumvented by a determined principal.

Fig. 3. Access control from a remote network

This scenario is depicted graphically in Fig. 3. To model this, we consider the
policy-maker M , and the employee (principal) P . We assume a set of events E ,
comprising: ccloc, ccV , and ccS , connecting to the core system via the local net-
work, VPN, and SSH; dcloc, dcV , and dcS , disconnecting from the core system
via the local network, VPN, and SSH; cdS and ddS , connecting to and discon-
necting from an employee-controlled device on the local network via SSH; and
aL and aH , accessing the low- and high-security component of the core system.

The technological configuration places various constraints on the behaviour
of the system, represented by the set of histories that we consider, H. An access
event e occurs within the scope of a connection event e′ within a history h if
and only if there exist histories h1, h2, h3 such that h = h1; e′;h2; e;h3 and h2

does not contain any connect or disconnect events. For example, the aL event
does occur within the scope of the ccS event in the history ccS ; aL, but does not
occur within the scope of ccS event in the history ccS ; dcS ; aL.

The set of histories contains all finite sequences of the events, except for those
where some aL event does not occur within the scope of a connection ccloc, ccV ,
or ccS , and those where some aH event does not occur within the scope of a
connection ccloc or ccV . For example, the history ccS ; aH is not included in H, but
the histories ccV ; aH and cdS ; ccloc; aH are included in H. The history ccV ; aH

conforms to the informal policy that the high security component of the core
system should only be remotely accessed via VPN. The history cdS ; ccloc; aH ,
however, does not conform to the informal policy, but it is included in our set
of histories H as the aH event does occur within the scope of a connection ccloc.

There are various costs and benefits to the employee for their different
actions/events that they can choose. Working locally (on site) gives direct,
secure access, but comes with the possibility, for example, of being interrupted
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by a colleague. Working remotely removes the possibility of being interrupted,
but requires accessing the core system via some additional security mechanism.
Using a VPN to connect remotely to the core system gives full, secure access,
but has the costs that the VPN is harder (than SSH) to operate, is more faulty
(than SSH), and removes the ability, for example, to use a printer on the remote
network. Using SSH to connect remotely to the core system gives secure access
and is easier (than the VPN) to operate, is less faulty (than the VPN), and
retains the ability to use a printer on the remote network, but has the cost that
it has limited access only to the low security component of the core system.

We demonstrate how to model the imposition of a policy that explicitly guides
against using SSH to access the core system. In the remainder of this section, we
overload our syntax slightly and use an event e as a proposition which is satisfied
by a history if and only if the last event in the history is the given event. The
histories that comply with this policy are those that satisfy

φ � (cdS → ((¬ccloc) U ddS)

at every time step. Note that a finer-grained policy that only prohibits the use of
such connections to access high-security resources could be described similarly.

Consider a user working at a remote site, engaged in a task which requires two
accesses to the high-security resources at base, with intervening access to remote-
site resources that are not available when connected via VPN. As described
above, we endow the user with a preference relation favouring SSH connections
above VPN: ccV ; aH ; dcV ≺ cdS ; ccloc; aH ; dcloc; ddS (and similarly for longer
histories containing these as subsequences). The user may complete the task
with any of the following three histories:

ccV ; aH ; dcV ; ccV ; aH ; dcV (1)
≺ ccV ; aH ; dcV ; cdS ; ccloc; aH ; dcloc; ddS (2)
≺ cdS ; ccloc; aH ; aH ; dcloc; ddS . (3)

Consider a model M that embodies this scenario. To model the imposition
of the access control policy, we perform preference update according to the set of
formulae Φ � {loadi(φ) | i = 1, 2}, arriving at model M′ � M[!Φ] This update
reflects the policy-maker’s inevitable uncertainty in the compliance budget of
the user. Because of the user’s prior preference, compliance with policy φ comes
at a cost. Some of this cost is directly observable: witness the disconnections
and reconnections in history (1), the least-preferred, most-compliant behaviour.
However, other costs may not be observed, for instance the possible failure of
attempts to access resources at the remote site while connected via VPN. Not
only is the policy-maker unable to judge the effort available for compliance, but
also the effort required to comply is uncertain. In our model, updating preference
with loadn(φ) reflects the willingness of a user to deviate from prior preference
in favour of compliance up to n times. Model M′ contains a preference structure
for each n, that is, for each possible value of the (unmeasurable) compliance
budget. A highly compliant user (n = 2 in this example) becomes indifferent
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between histories 1–3. A user with low compliance budget (n = 1) retains just the
preference for history 2 over the fully-compliant 1. Thus for the highly compliant
user, preference and policy are aligned, so there is no reason to violate the
policy. For the less compliant user, after the first VPN connection the budget is
exhausted and the user prefers to revert to SSH, contravening the policy.

The scenario we have modelled ascribes at least some propensity for com-
pliance to the user: we do not include load0(φ) in the set of preference update
formulae. As a result, we are able to draw some conclusions about the preferences
of the user under the policy φ. For instance, each of the histories 1–3 satisfies

H, 0 |=M[!Φ]�(cdS → ¬(¬ddS U aH ∧ ©(¬ddS U aH)));

that is, the user would never prefer to adopt a behaviour incorporating two
accesses to high-security resources via SSH.

5 Further Work: Incomplete Information Reasoning

Our model of the compliance budget has been designed to account for the fact
that the ‘budget’ is not a quantifiable value, and the rate at which it is depleted
is unknown, as explained in [5,6]. This has led to a model in which we have,
for each agent, a set of possible preference relations over histories. That is, our
model incorporates uncertainty about the preferences of the agents: we know
that eventually the compliance budget will be exhausted, but we do not know
how long that will take. The impact of imposing a new policy φ is modelled by
updating the agents’ preferences with loadn(φ) for an uncertain value of n.

Uncertainty over preferences is the qualitative analogue of uncertainty over
payoffs. Harsanyi [12] demonstrates that all uncertainty over the structure of
a game can be reduced to uncertainty over payoffs. Our model is therefore a
simple qualitative setting in which to study situations of incomplete information.
Security policy decisions are typically incomplete information situations because
of uncertainty over the compliance budget of agents. As Harsanyi’s reduction
suggests, this uncertainty subsumes lack of knowledge of the consequences of
compliance on productivity. In the VPN example, the policy-maker insisting on
VPN for remote access is not aware of the implications for individual agents,
who may have difficulty accessing local resources (e.g., network printers) while
connected to a VPN. Such issues may or may not be the reason that compliance
is reduced, but, in our model, it does not matter: uncertainty in the compliance
budget accounts for uncertainty over the details of agent behaviour, allowing us
to model behaviour at an appropriate level of abstraction.

Much work remains, including: the metatheory of the logic and the theory of
load formulae (e.g., for the interaction of multiple policies); other logics, such as
epistemic variants to internalize uncertainty (note that history-based semantics
supports epistemic constructions [17]); decision- and game-theoretic considera-
tions such as optimality and equilibria; consideration of richer and larger models
in order to explore the value of the approach for security policy-makers.
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Abstract. In this paper, we formulate a deception game in networks in
which the defender deploys a fake avatar for identification of the com-
promised internal user. We utilize signaling game to study the strategy
of the deployed fake avatar when she interacts with external users. We
consider a situation where the fake avatar as the defender is uncertain
about the type of a connected external user, which can be a normal
user or an attacker. We attempt to help the defender in selecting her
best strategy, which is alerting to the system for detecting an attack or
not alert. For this purpose, we analyze the game for finding the Perfect
Bayesian Nash equilibria. Our analysis determines for which probabil-
ity of the external user being an attacker, the defender should launch a
defending mechanism.

Keywords: Network security · Deception · Fake avatar · Social
network · Game theory · Signaling game

1 Introduction

As the number and complexity of cyber-attacks has been increasing in the last
years, security becomes an essential requirement for any network [1]. Generally,
two categories of mechanisms used for guaranteeing the network security which
are prevention-based and detection-based techniques. The former technologies
that provide confidentiality, integrity and authentication security requirements
usually include cryptography, key management and so on [2]. This class of tech-
niques will fail against sophisticated attackers, and it is essential to utilize the
detection measures in some situations. One of the powerful detection techniques,
which has attracted the attention of many researchers recently, is deception.
Deception refers to the actions used by the defender to persuade an adversary
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to believe that false information they were given was actually true [3]. The use
of deception techniques increases the possibility of detecting attacks in the early
stage of the attack life-cycle. Deception has proved that has a positive effect for
the defenders, and conversely a negative impact on the attackers [4]. Various
deception techniques have been proposed in the literatures, such as honeypots
and fake avatars.

Avatar deployment is one of the deception techniques that can be used by a
defender for identifying malicious activity in various networks, especially in the
social networks. Avatars should appear realistic to the people from both inside
and outside the organization and has the positions that are likely to be inter-
esting to the attackers. In addition, such avatars should have closely monitored
accounts in the organization (e.g., active directory accounts), as well as valid
email addresses. Interaction with avatars should be regularly monitored by the
network administrator [1]. In this study, we consider this deception approach
and aim to model the defender-attacker interaction using game theory. In our
model, the attacker attempts to mislead the defender and subsequently, we try
to help the defender in making the best decision. Specifically, the scenario we
examine in this paper is described as follows.

A defender deploys fake avatars in her network. External users (e.g., inter-
ested in applying for a position in this organization) may contact the human
avatar. However, since internal users know the correct contact details, commu-
nication between an internal user and the avatar can be considered suspicious.
Such interactions could be a sign that the user’s account has been compromised
by an attacker [1]. With this assumption, the fake avatar can easily detect the
interaction from the malicious insider users. Moreover, as these avatars look like
a real entity for external users, they communicate her to gain some information.
Suppose that we can divide all communications between the external users and
fake avatars to two categories: suspicious or non-suspicious. Suspicious com-
munication refers to the communication type which is potentially risky and the
attacker can obtain a great success in her attack. However, a normal user can also
communicate with avatar through a suspicious connection and earn more infor-
mation and save money and time by using these communication type. Given the
above description, a fake avatar potentially receives suspicious or non-suspicious
signals that have been generated by a normal user or an attacker. Upon receiving
these signals, she should decide to whether provide an alert for the system admin-
istrator or not. This decision is a bit hard as she is not sure about the sender’s
type. Given this scenario, we make a game theoretical model to investigate the
involved parties interaction.

We use the signaling game to capture and analyze this interaction. Signaling
game refers to a class of two-player dynamic games in which one player (called
the Sender) is informed and the other (called the Receiver) is not. In other words,
the sender has the private information (i.e., its type) while the receiver has a
common information about the type distribution of the sender. The sender’s
strategy set consists of sending messages depends on its type, while the receiver’s
strategy set consists of actions contingent on the sender’s choices [2].
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In the scenario under study, the user moves first by choosing whether or
not to send a suspicious signal to the avatar, after which, the fake avatar decides
whether to alert or not. The incomplete information arises from the fake avatar’s
uncertainty of the user type. We aim to help the fake avatar to make the best
decision given the signal received from the user. To this end, we determine and
characterize the Perfect Bayesian Equilibria of the defined signaling game.

Several previous works focus on the deception as an effective defending tech-
nique [1,5–11]. In [1], Virvilis et al. proposed the use of multiple deception tech-
niques to defend against advanced persistent threats (APT) and malicious insider
attacks. In [8], Costarella et al. focused on the honeynet-aware botnet attacks
and attempted to improve the depth of deception levels by this approach. In [9],
authors proposed an system which can be interfaced with social networking sites
for creating deceptive honeybots and leveraging them for receiving information
from botnets. Our work is mainly different from the above work as we model
the mentioned deception technique by a mathematical tool. However, our ideas
partly derive from [1], but have significant differences. As authors in this paper
just introduced the fake avatar as a deception technique in the social networks,
but we formulate this type of the deception by a theoretical framework, which
is game theory. Additionally, we model the interactions between a fake avatar
and an external user, not an internal one, with a signaling game in the decep-
tion scenario. In addition, we seek the pure-strategy BNE. These equilibriums
determine when and how the avatar takes a defense action.

There is a number of work in which authors used the signaling game for
modeling different issues in different networks, for example [13] studied power
control management problem in wireless network. Since in this paper we focus
on the network security, we mainly review the researches in which this game
model is employed for formulating the security scenarios in computer networks,
such as [2,4,12,14–18]. In [17], authors model the interaction between a service
provider and his client in the presence of the attacker. Similarly, [16] modeled
the same situation, but in the cloud systems. [15] formulated the interaction
between the fingerprinter and the defender as a signaling game. In [19], authors
employ this game model for analyzing the intrusion detection in mobile ad hoc
networks. They model the interaction between an attacker and an intrusion
detection system. In a similar way, authors in [20] present a signaling game
model to analyze intrusion detection in wireless sensor network, with focusing
on the dropping packets attacks. In [21], authors propose a Bayesian signaling
game formulation for intrusion detection system in wireless ad hoc networks.
Multi-step attack-defense scenario on confidentiality has been modeled in [22]
by repeated signaling game. Among these work, [4,18] formulated the deception
scenarios by using this game model, but they mainly focused on the honeypot as
the deception technique. None of these mentioned works utilized the deception
as the defending strategy.

In summary, compared to all previous work, we focus on the fake avatar as
a deception technique that defender used. Moreover, we utilize a signaling game
model to decide the strategy of fake avatar in response to the received signal
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Fig. 1. System model: defender deploys a fake avatar in her network. Internal users
knows the details and the address of the fake avatar, but external user does not know.
The external user can be a normal user or an attacker. She can send a suspicious signal
or non-suspicious one. The avatar should decide to generate an alert or not under the
uncertainty about the user’s type.

from the external users. Note that in our model, the defender is a second mover
and has the incomplete information about the user type, while in the former
ones such as the honeypot scenario [8], the defender appears as the sender with
complete information.

The remainder of this paper is structured as follows. In Sect. 2, we describe
our system model. Then, we discuss our game model in Sect. 3. In Sect. 4, we
analyze the proposed signaling game and derive the set of equilibria. Finally,
Sect. 5 summarizes the conclusion.

2 System Model

In this paper, we focus on a system model depicted in Fig. 1. This model consists
of three main entities: a defender, a normal user and an attacker. The defender
protects her network by deploying some fake avatars1. Users from inside and
outside the network may connect to these avatars. Both the normal user and the
attacker are external users who convey messages to fake avatars to reach their
goals through receiving the necessary information. They send their requests to
the avatar. The fake avatar needs to deal with the attacker and the normal user
simultaneously, while she does not know explicitly about the sender type. The
fake avatar should decide whether this communication is coming from a normal
user or not, and subsequently alert to the system or not. She can not detect the
received signal is from which type of uses, as both of them may send a suspicious
signal. Hence, we need to model the uncertainty of a given fake avatar about the
user type as well as the dynamic nature of the user and the avatar movements.
We model this deception in the next section by a signaling game.

1 As fake avatars have been deployed by defender in our model, we use these words
interchangeably.
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3 Game Model

We model the interaction between a user (sender) and a fake avatar (receiver)
as a signaling game GFA presented in Fig. 2. User might be an attacker (denoted
by A) or a normal user (denoted by N) and its type is private information to
the fake avatar (denoted by FR). The game begins when the user attempts to
contact the fake avatar. Nature (C) chooses the type of the user. Nature chooses
either type attacker or normal user with probability θ and 1 − θ, respectively.
We interpret Nature assigns the type as the attacker randomly selecting a user
to contact the avatar. Let S and NS denote messages of suspicious and non-
suspicious, respectively. Therefore, the action space of the user, both normal one
and the attacker, is {S, NS}. The avatar receives the signal and then chooses
an action, which is either alert (A), or not (NA) to the system. Obviously, if
the defender knows the opponent, chooses her action given the type of the user,
A in facing an attacker and NA in response to a normal user.

If the avatar makes an alert upon receiving a signal from the normal user,
imposed the cost υ to the system, because of keeping busy the network resources,
as well as the cost ι for generating the false positive alert. Cost υ is incurred
to system even when the avatar receives a signal from the attacker while she
earns gain Φ for the attacker detection, result in correct alerting. This action
has a negative effect on the attacker and causes the cost κ to her. All other used
notations in this game as well as their description is summarized in Table 1.

We assume that users (i.e., both the attacker and the normal user) prefer to
send a suspicious signal if they know the avatar does not make any alert to the
system by receiving their signals. Given this assumption, the cost of sending the
suspicious signal than the received gain from choosing this action is negligible
(μ ≥ ca and ν ≥ cn). Furthermore, since compromising the system by the
attacker imposed a significant cost to the system, the following conditions could
be likely: υ ≤ Φ and ι ≤ Φ. We will analyze our model in the next section by
considering these assumptions.

4 Game Analysis

In this section, first we briefly define the Perfect Bayesian Nash Equilibria
(PBNE). Then, we analyze the deception signaling game for finding the pure
strategy PBNE. Finally, we present a case study and discuss our results.

4.1 Equilibrium Analysis

We now review the concept of Perfect Bayesian Equilibrium, the extension of sub-
game perfection to games of incomplete information. Basically, in non-Bayesian
games, a strategy profile is a Nash equilibrium (NE) if every strategy in that
profile is a best response to every other strategy in the profile. Resulting from
this definition, NE results in a steady state. But, in Bayesian games, players
are seeking to maximize their expected payoffs, given their beliefs about the
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Fig. 2. The representation of the fake avatar deception as a signaling game. The players
are a user and a fake avatar. The belief of the fake avatar about the sender type is
modeled by θ. The fake avatar observes the actions of the user, i.e., Suspicious and
Non-Suspicious signal. The actions of the fake avatar are Alert and Not-Alert.

Table 1. Deception game notations

Notation Description

S Specious signal

NS Non-suspicious signal

A Alert to the system

NA Not alert to the system

κ Cost of the attack detection that the attacker incurs

ω Gain of the attacker for successfully sending the signal

ca Difference between the cost of sending specious and non-specious signal
imposed on the attacker

cn Difference between the cost of sending specious and non-specious signal
imposed on the normal user

μ Difference between the gain from successfully sending specious and non-
specious signal earned by the attacker

ν Difference between the gain from successfully sending specious and non-
specious signal earned by the normal user

Φ Gain of the attacker identification earned by the defender

φ Cost of not detection of the attacker imposed on the defender

υ The defender’s cost for making the alert

ι The defender’s cost for generating the false positive alert

π Cost of alerting imposed on the normal user

ψ Benefit earned by the normal user from receiving the desired response



388 A. Mohammadi et al.

other players. Beliefs are represented as a probability distribution over the set
of decision nodes within an information set [23].

For the defined signaling game in Fig. 2, a pure strategy PBNE profile is
determined as tuple ((m(A), m(N)), (a(NS), a(S)), p, q). It consists of the
pair of strategies chosen by each type of the first player (user), the actions taken
by the second player (avatar) in response to each signal and the user’s beliefs.

Gibbons [24] states that a strategy profile is a PBNE if it satisfies the fol-
lowing four requirements:

Requirement 1: At each information set, the player who has moved must have
a belief about a decision node in the information set she has been reached.

Requirement 2: The action taken by the player with the move at an informa-
tion set must be optimal given the player’s belief at that information set and
the player’s subsequent moves.

Requirement 3: At information sets on the equilibrium path, beliefs are deter-
mined by Bayes’ law and player’s equilibrium strategies.

Requirement 4: At information sets off the equilibrium path, beliefs are deter-
mined by Bayes’ law and the players’ equilibrium strategies where possible.

Note that on and off equilibrium path imply to information sets which are
reached respectively with positive and zero probability, when the equilibrium
strategies are played. In each signaling game, two types of PBNE are possible,
called pooling and separating, which are defined as follows:

Definition 1 (Pooling equilibrium): A PBNE is a pooling equilibrium if the first
player sends the same signal regardless of his type [23].

Definition 2 (Separating equilibrium): A PBNE is a separating equilibrium if the
first player sends different signals, depending on his type [23].

For example, in our defined signaling game, if m(A) = m(N) at a given
PBNE, it will represent a pooling equilibrium. A PBNE in which m(A) �= m(N)
is a separating equilibrium.

4.2 Deception Signaling Game Equilibria

We now find the pure-strategy separating and pooling equilibria of the fake
avatar deception game, according to the above definitions.

Theorem 1. There is a pooling equilibrium on the strategy (NS,NS) of the
sender for every θ in GFA.

Proof. Suppose that the sender strategy is (NS,NS). In this case and according
to the rule of belief updating on the equilibrium path based on the Bayes’ law,
we have p = θ. Given the sender strategy, if FR chooses action A in response
to the strategy NS, gains payoff θ × (φ − υ) + (1 − θ) × (−υ − ι). On the other
side, if she plays action NA, obtains a gain equal to θ × (−Φ) + (1 − θ) × (0).
As υ ≤ Φ, we have 0 < υ+ι

φ+Φ+ι < 1. Hence, for each θ, there are the following
possible cases:
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1. θ ≥ υ+ι
φ+Φ+ι : Given the condition on the θ we have:

θ × (φ − υ) + (1 − θ) × (−υ − ι) ≥ θ × (−Φ) ⇐⇒ p = θ ≥ F :=
υ + ι

φ + Φ + ι

As a result, action A is the receiver’s best response to the sender strat-
egy NS. If q, which is the receiver’s belief off equilibrium path, is greater
than υ+ι

× φ + Φ + ι, the action A will be the best response to the strategy S.
Because q×(φ−υ)+(1−q)×(−υ−ι) ≥ q×(−Φ)+(1−q)×(0) ⇐⇒ q ≥ F =

υ+ι
φ+Φ+ι , where q×(φ−υ)+(1−q)×(−υ−ι) and q×(−Φ)+(1−q)×(0) are the
expected payoff of the receiver (avatar) from playing A and NA, respectively.
If the sender sends signal S instead of NS, it obtains payoff −κ − ca which
is less than −κ, which is not a profitable deviation. Similarly, if the normal
user deviates from strategy NS, it earns the benefit equal to −π − cn instead
of payoff −π for playing strategy S. Therefore, {(NS,NS), (A,A), q, p = θ}
is a PBNE for q ≥ F .

2. θ ≤ υ+ι
φ+Φ+ι : Given the condition on the θ, we have:

θ × (φ − υ) + (1 − θ) × (−υ − ι) ≤ θ × (−Φ) ⇐⇒ p = θ ≤ F =
υ + ι

φ + Φ + ι

Therefore, action NA is the best response to the sender’s strategy NS. If
q ≤ υ+ι

φ+Φ+ι , then the strategy A is the best response to the S. This is because
of q×(φ−υ)+(1−q)×(−υ−ι) ≥ q×(−Φ)+(1−q×(0) ⇐⇒ q ≥ F = υ+ι

φ+Φ+ι ,

where q × (φ − υ) + (1 − q) × (−υ − ι) is the expected payoff of the receiver
for playing A and q × (−Φ) + (1 − q) × (0) is the receiver’s expected payoff
for choosing the strategy NA. If the attacker picks up the strategy S instead
of the NS, she earns less payoff (−κ − ca < −κ). This is true for the second
type of the sender. As a result, {(NS,NS), (NA,A), q, p = θ} is a PBNE for
q ≥ F .

Theorem 1 states if the selected strategies of both user types (the attacker and
the normal user) are NS, then there is an equilibrium. In this case, depending
on the θ’s value, the defender selects one of the strategies A or NA. In other
words, if the probability of user being an attacker (θ) is greater than υ+ι

φ+Φ+ι , she
must alert to the system. Otherwise, her best response is NA. In both cases and
for q ≥ F , if the external user selects S, her best response is A.

Theorem 2. There exists a pooling equilibrium on the strategy (S,S) if θ ≤ F .

Proof. Assume that (S,S) is the sender’s strategy. In this case, we have: q = θ
based on the Bayes’ rule. Given the sender’s strategy (S), the fake avatar gains
payoff θ × (φ − υ) + (1 − θ) × (−υ − ι) if she plays the strategy A, and payoff
θ × (−Φ) + (1 − θ) × (0) if she takes the action NA in response to the strategy
NS. There are two possible cases for each value of θ as the following:
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1. θ ≥ υ+ι
φ+Φ+ι : Given the value of θ, we have:

θ × (φ − υ) + (1 − θ) × (−υ − ι) ≥ θ × (−Φ) ⇐⇒ q = θ ≥ F :=
υ + ι

φ + Φ + ι

Accordingly, the fake avatar should play the action A in response to the S,
as it is the best response. But, if the attacker violates from the sending signal
S, obtains payoff −κ or ω, which is more than −κ − ca, the payoff earned by
the attacker for choosing strategy S. Therefore, for θ ≥ υ+ι

φ+Φ+ι , the sender
strategy is not steady and subsequently there is no PBNE on S for this value
of θ.

2. θ ≤ υ+ι
φ+Φ+ι : According to the θ values, we have:

θ × (φ − υ) + (1 − θ) × (−υ − ι) ≤ θ × (−Φ) ⇐⇒ q = θ ≤ F =
υ + ι

φ + Φ + ι

Consequently, NA is the best response to the S. If the condition p ≤ υ+ι
φ+Φ+ι

being held, strategy NA will be the best response to the NS, due to the
following: p × (φ − υ) + (1 − p) × (−υ − ι) ≤ p × (−Φ) + (1 − p) × (0) ⇐⇒ p ≤
F = υ+ι

φ+Φ+ι . The attacker gets payoff ω instead of ω + μ − ca if she sends the
signal NS rather S. The former payoff value is less than the latter as μ ≥ ca.
The similar result will obtain for the normal user. Therefore, the strategy
profile {(S,S), (NA,NA), p, q = θ} is an PBNE for p ≤ F .

Theorem 2 states that if the value of θ is less than υ+ι
φ+Φ+ι , playing the strategy S

by both user type is an equilibrium. In summary, this means if the external user
knows that the belief of the defender in being the external user as an attacker is
less than the mentioned value, the user should take the strategy S. Otherwise,
there is no equilibrium. In this case (i.e., θ ≤ F ) and by observing the strategy
S, the fake avatar’s best response is not alerting to the system.

Theorem 3. There is no separating equilibria in the game GFA.

Proof. Consider (NS,S) represents the selected strategy by each type of the
sender, in which the attacker chooses strategy NS and the normal user plays the
strategy S. As a result of the Bayes rule, we have: p = 1 and q = 0. Subsequently,
given the payoff values for the fake avatar, the receiver best response will be A
to the strategy NS as well as NA to S. In more details, the fake avatar gains
payoff φ − υ for playing A in response to the sender’s strategy NS, which is
greater than the earned payoff for playing NA (which is −Φ). Therefore, she
should select A. In other hand, when the avatar receives the signal S from the
normal user, she obtains payoff zero by playing NA which is greater than the
negative value −υ − ι for choosing strategy A. Therefore, she will select NA
in response to S. Now, according to the fake avatar’s best responses, we should
check whether the deviation of the selected strategy by the sender is beneficial
for her or not. As shown in the Fig. 2, the attacker gains payoff −κ by playing
NS, as the fake avatar responds to this signal by A. If the attacker deviates
and chooses strategy S, she earns a payoff equal to ω + μ − ca, as the avatar
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Table 2. Perfect bayesian equilibria and their conditions

Condition on θ Possible PBNE profiles Preferred PBNE profile

θ ≥ υ+ι
φ+Φ+ι

PBNE1 = {(NS, NS), (A, A), q, p = θ} PBNE1

θ ≤ υ+ι
φ+Φ+ι

PBNE2 = {(S, S), (NA, NA), p, q = θ} PBNE2

PBNE3 = {(NS, NS), (NA, A), q, p = θ}

plays NA in response to S. This value is more than −κ. Hence, sending signal
NS instead S results in the more payoff for the attacker. As a result, there is
no PBNE on the (NS,S). With the same analysis, we can conclude that there
is no PBNE on the (S,NS), too.

The last theorem explains the situation in which the selected strategy by
the different type of the sender, i.e., the attacker and the normal user, is one
of the following strategy pair: (NS,S) or (S,NS). In this case and according
to the above theorem, there is no equilibrium. In other words and according to
the explained theorems, for being in the equilibrium, both type of the external
users should play the same strategy. Theorems 1, 2 and 3 characterize the Perfect
Bayesian Nash equilibria. But, as there is more than one equilibrium point for
some values of θ, the question is how the defender can use the above analysis
in the best way for choosing among these equilibria. We address this issue for
different θ values in the following:

– θ ≥ υ+ι
φ+Φ+ι : According to the Theorem 1, the only PBNE is the strategy profile

{(NS,NS), (A,A), q, p = θ}. We call it PBNE1.
– θ ≤ υ+ι

φ+Φ+ι : Given the Theorems 1 and 2, there are two equilibria. We call
them PBNE2 and PBNE3 and are presents as the follow:

PBNE2 = {(S,S), (NA,NA), p, q = θ}
PBNE3 = {(NS,NS), (NA,A), q, p = θ}

The attacker and the normal user payoffs in the strategy profile PBNE2 are
ω + μ − ca and ψ + ν − cn, respectively, while they gain payoffs ω and ψ for
playing in PBNE3, respectively. As ν ≥ cn and μ ≥ ca are held, the sender
prefers to play PBNE2 rather PBNE3, because of the more payoff she obtains.

We summarized the above explanation in Table 2 as well as in the following
corollary.

Corollary 1. In the signaling game GFA, the best response for the attacker,
normal user and defender for θ ≤ F and θ ≥ F are {(S,S), (NA,NA), p, q = θ}
and {(NS,NS), (A,A), q, p = θ}, respectively.
The above corollary specifies the best strategy for players in the game GFA. In
summery, it recommends to the attacker as well as the normal user to select the
strategy S when the value of θ is small enough, otherwise play the strategy NS.
The best response of the defender can be summarized as follow.
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1. If θ ≤ F , the best response for the avatar is (NA,NA).
2. If θ ≥ F , the avatar’ best strategy is (A,A).

4.3 Case Study and Discussion

Following the discussion of the previous subsection, we investigate a case study to
illustrate the decision process resulting from Corollary 1. Consider the following
values for system parameters: κ = 2, φ = 4, Φ = 5, ω = 5, υ = .5, ca = 1, cn = 1,
μ = 2.5, ν = 4, π = 1, ψ = 2 and ι = 0.5. These values states that the gain of the
fake avatar for attacker identification (Φ) as well as the gain of the attacker for
successfully achieving to her goal (ω) is high in respect to the other parameters,
such as the defender’s cost for generating false positive alert or making an alert.
Additionally, the cost imposed on the defender if she does not detect the attacks
(φ) is considered high. Assigned values to the other parameters are chosen with
the same reasoning.

Given these values, and by calculating the value of F as well as the expected
payoff of the sender and receiver for pooling and separating equilibria for different
values of θ, we can see in Fig. 3 that the expected payoff for the sender in
the pooling strategy profile on the S is greater than NS for θ = F = 0.105.
Hence, selecting the strategy pair (S,S) is more beneficial for the sender. For
θ = F > 0.105, there is just one equilibrium which is pooling on the NS. Hence,
she plays this strategy profile. Following the sender decision, the avatar should
plays the strategy profile (NA,NA) for θ < 0.105 and (A,A) for θ ≥ 0.105.

Typically, the following relations in the sensitive network environment are
valid: υ � Φ and ι � Φ. Therefore, θ = F = υ+ι

φ+Φ+ι has small value, as we

Fig. 3. Expected payoff of the (a) sender, (b) receiver in the case study. For θ < 0.105,
the sender’s expected payoff in the pooling strategy profile on the S is greater than NS.
Therefore, she must select (S, S). The receiver’s expected payoff for these θ values are
the same in both pooling equilibria. But, according to the sender strategy, the rational
fake avatar should select (NA, NA). After this point, there is no PBNE on the (S, S)
and the only PBNE is on (NS, NS). Hence, the sender’s best decision is (NS, NS)
and the avatar’s best response is playing (A, A).
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showed in the case study. In other words, because of the huge cost that the
network administrator should pay in the case of information thief by the attacker
(value of Φ), the cost of generating the alert as well as the false positive alerting
are neglectable. Consequently, the value of the θ = F converges to zero. Hence,
according to the little value of the θ and given the Corollary 1, if the probability
of the user being the attacker becomes more than F , the fake avatar should
alert to the system. Particularly, just when the environment is enough safe, the
avatar does not generate any alert. As soon as the risk of presence of the attacker
increases (θ > F ), the fake avatar should take the action A. This outcome is
consistent with the reality because of the high imposed risk to the system in
the case of the existence of the attacker and not alerting. But the result of the
signaling game analysis exactly specifies the border of this decision.

5 Conclusion

In this paper, we investigated a deception game in which the fake avatar deployed
by the defender interacts with an external user. As the fake avatar is unaware
from the type of the external user, we used the signaling game to capture and
analyze this interaction. We examined the game and determined its potential
equilibria. We then show how the defender can use this analysis to better chooses
her strategy in different situations. We illustrated our finding by a case study.
As results of our analyses, in Subsect. 4.3, we concluded that if the probability
of the user being the attacker becomes more than calculated F , the fake avatar
should alert to the system.
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Marcin Dziubiński(B), Piotr Sankowski, and Qiang Zhang

Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
{m.dziubinski,sank,qzhang}@mimuw.edu.pl

Abstract. We study a problem of a defender who wants to protect
a network against contagious attack by an intelligent adversary. The
defender could only protect a fixed number of nodes and does not know
the network. Each of the nodes in the network does not know the net-
work either, but knows his/her neighbours only. We propose an incentive
compatible mechanism allowing the defender to elicit information about
the whole network. The mechanism is efficient in the sense that under
truthful reports it assigns the protection optimally.

1 Introduction

The problem of protecting networks against external threats is of great practical
importance and has attracted interest from many research communities, from
graph theory, operations research and computer science, to physics and eco-
nomics. Examples of applications include telecommunication networks, power
grids, computer networks, social and financial networks. An interesting aspect is
protection against intentional, targeted, disruptions caused by intelligent adver-
saries aiming to exploit networks weakest spots. This is particularly relevant in
modern era where terrorist or cyber-terrorist attacks pose a realistic threat and
computer aided security support systems become increasingly important [13,21].
However, all previous works on this topic share one important weakness—they
assume perfect knowledge about the state and topology of the network. It seems
that in the modern distributed systems this assumption rarely can be justified.

This paper aims to study a novel model of network protection where the
defending agent does not have a full knowledge about the connections in the
network and needs to elicit it from nodes present in the system. We introduce
three stages in our model. In the first stage, the defender ask all the nodes in
the network to report their ties. In the second stage, the defender decides which
nodes to protect. In the last, third stage, the adversary attacks one of the nodes.
The attack is infectious and the infection spreads across the network through
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unprotected nodes. The main challenge in this model is to design a truthful
mechanism: can we incentivize the autonoumous and self-interested nodes to
reveal their true ties in the network via the protection mechanism only, and
ensuring, at the same time, that the network is well protected? We not only
show that this is possible but we present optimal truthful mechanism as well:
when nodes report truthfully, the mechanism assigns protection optimally. In
other words, we show that incentive compatibility does not entail any additional
costs for the defender.

One of the earliest papers addressing the adversary-defender model of net-
work protection is [5], where a problem of network attack and defence is stud-
ied. The players move sequentially. First, the designer chooses a network and
strengths of links. Then the adversary distributes his attacking resources across
all the links. A link is removed if the amount of assigned attacking resources is at
least equal to its strength. It is shown that the complexity of computing optimal
attack and optimal defence is strongly polynomial. The next paper [15] studies
the network attack and defence problem for a particular class of networks – com-
plete multilayered networks. The network is known to both the adversary and
the designer and they simultaneously choose how to distribute their attack and
defence resources across the nodes. A node is removed if the strength of attack
exceeds the strength of defence assigned to it. In more recent papers [9–11,16,17]
models of network defence are introduced where the defender chooses a spanning
tree of a network, while the attacker chooses a link to remove. The defender and
the adversary also move simultaneously. The attack is successful if the chosen
link belongs to the chosen spanning trees. Polynomial time algorithms for com-
puting optimal attack and defence strategies are provided for several variants of
this game.

A number of papers consider a model which is closely related to the model
introduced in this paper: attacks by an adversary are contagious and defence is
perfect. Aspnes et al. [2] present a model with random attacks, where infection
spreads from an infected node to all unprotected nodes with probability one.
The authors focus on computing Nash equilibria and show that the problem is
NP-hard. They provide approximation algorithms for finding the equilibria. A
number of follow up papers extend this model by: introducing malicious nodes
that cooperate with the adversary [20], considering link protection [14], consid-
ering links and nodes protection [12]. On the other hand, the paper [1] uses
random networks setting to study incentives to protect when nodes care about
their own survival only. Other related works [18,19] use techniques based on
mean field analysis to study the problem of incentives and externalities in net-
work security on random networks. Lastly, some papers study the problem of
network defence in combination with problem of network design. For example,
a problem of choosing both the network and protection of the nodes prior to
subsequent contagious attack by an adversary is considered in [8]. A similar
problem under non-contagious attacks was analysed by [7]. Paper [4] proposes
a problem of network design prior to decentralized protection decision by the
nodes, followed by an attack of an adversary. They show how inefficiencies due
to decentralization can be mitigated by choosing right network topologies.
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We stress that all the studies listed above assume that the network is known
to the defender (or the nodes, if defence decisions are decentralized) and focus on
finding optimal or stable protection. In this paper we relax the assumption of full
information about the network and consider a mechanism design problem with
the aim to assign protection optimally in situations where neither the defender
nor the nodes know the entire network. We propose a mechanism where truth
telling (revealing all the private information about the network each node has) is
a weakly dominant strategy. In other words, we propose an incentive compatible
mechanism. The mechanism is also efficient: it assigns defence optimally when
the network is reported truthfully.

Notice that designing a mechanism for defence allocation that would be incen-
tive compatible is not difficult: we could simply ignore the reports and assign
the defence in some predefined way. Having a mechanism that is incentive com-
patible and, at the same time, efficient is the challenge. The literature is full of
impossibility results for more or less general settings. We show that in our set-
ting it is theoretically feasible and, in addition, the defender is able to learn the
whole network topology, as a byproduct. To our knowledge this is the first paper
to consider this aspect of the problem and to propose a mechanism allowing for
network elicitation.

A mechanism presented in this paper may be useful in situations where the
defender has no full knowledge of the network and where discovering the network
topology is either infeasible or very costly. This might be an issue in the case of
ad hoc, content sharing software networks (like content sharing P2P networks,
networks of e-mail contacts, or social networks) as well as in the case of open
multiagent systems. Even if discovering the full topology of such networks was
feasible, it may be costly or restricted by the law. In such cases the mechanism
that we show in the paper offers an alternative method of gathering information
about the network, which might be less costly than other methods.

The rest of the paper is organized as follows. In Sect. 2 we provide a simple
example illustrating the problem studied in the paper. In Sect. 3 we define the
model and introduce all the graph theoretic and game theoretic notions used in
the paper. Section 4 contains the analysis of the problem and our results. We
conclude in Sect. 5.

2 Example

To see potential problems faced by the defender with incomplete information
about the network, consider the following example. Suppose that the actual
network is a star over 4 nodes, 1, 2, 3, 4, with node 1 being the centre of the
star (c.f. Fig. 1(a)). Suppose that defender’s budget allows him to protect at
most one node in the network. The protected network is going to be attacked
by an adversary, who will infect one node in the network and the infection will
spread through all unprotected nodes reachable from the attacked node. The
defender assumes that the adversary aims to infect as many nodes as possible.
Moreover, each node assumes the worst case scenario: it will get infected unless
it is defended.
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Fig. 1. (a) The actual network; (b) Neighbours reported by the nodes; (c) The network
reconstructed from reports.

If the defender knew the network, it would be optimal for him to protect
the central node, 1, and one of the periphery nodes would be removed by the
attack (since the nodes are pessimistic, each of the assumes to be the one to
get infected, hence each periphery node wants to receive protection). Suppose
that the defender uses the following, näıve, method of learning the topology of
the network. All the nodes are asked to report their neighbours. The defender
reconstructs the network by adding to it every link reported by at least one node.
The defender promises to protect one of the optimal nodes in thus reconstructed
network. Every periphery node has incentive to report all other nodes as its
neighbours (c.f. Fig. 1(b)). In effect the reconstructed graph would be a clique
(c.f. Fig. 1(c)) and each periphery node would receive protection with probability
1/4, instead of 0. Thus the simple method provides incentives for the nodes to
submit untruthful reports. Is there a method that would allow the defender to
allocate protection optimally when information about the network topology is
lacking? As we show in the paper, such a method exists. It removes incentives to
misreport from the nodes and it allows the defender to elicit the actual network
topology.

The important feature of the simple example above is that there are no
externalities, in the sense that every node wants to receive protection for itself
and no node can benefit from any other node receiving protection. This is a key
feature of the general model defined and studied in this paper.

3 The Model

Let N = {1, . . . , n} be a set of nodes (e.g. computers + their users in a computer
network). The nodes are connected forming an undirected graph G = (N,E),
where E is the set of links between the nodes from N . The set of all graphs
over a set of nodes M ⊆ N is denoted by G(M). The set of all graphs that can
be formed over the set of nodes N or any of its subsets is G =

⋃
M⊆N G(M).

The nodes are under a threat of contagious attack by an adversary, who infects
a chosen node in the network. To lower the damage an attack can cause to the
network, some nodes of the network can be protected. Protection is perfect and
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a protected node cannot be infected.1 The infection spreads from the attacked
node to any node in the network that can be reached from it by a path consisting
of unprotected nodes.

Before defining the problem of a defender who wants to allocate protection to
selected nodes in the network, we provide formal description of network attack.
We start with graph theoretic terminology that will be used. Undirected graph G
over a set of nodes N is a pair (N,E) such that E ⊆ {ij : i �= j and i, j ∈ N} is
the set of edges (or links) between nodes from N (where ij is an abbreviation for
{i, j}). We will use E(G) to denote the set of links of G. Given graph G = (N,E)
and a set of nodes M ⊆ N , G[M ] = (M,E|M ), E|M = {ij ∈ E : i, j ∈ M},
denotes the subgraph of G induced by M . G − M = G[N\M ] denotes the graph
obtained from G by removing the set of nodes M from it. Two nodes i, j ∈ N are
connected in G if there exists a sequence of nodes i0, . . . , im, called a path, such
that i = i0, j = im, and for all k ∈ {1, . . . , m}, ik−1ik ∈ E(G). A component of
graph G is a maximal set of nodes such that every two nodes from the set are
connected in G. The set of all components of G is denoted by C(G). Given node i,
component Ci(G) is the component in C(G) containing i. As is common, we will
abuse the terminology by using the term component to refer to a graph induced
by component (set of nodes) C, G[C]. Graph G is connected if |C(G)| = 1.
Throughout the paper we restrict attention to connected networks only.

Let G ∈ G(N) be a connected graph over the set of nodes N and let D ⊆ N
be the set of protected nodes in the network. The graph G − D, obtained from
G by removing all the protected nodes is called an attack network (of G and D).
An attack on an unprotected node x ∈ N\D, infects and removes the component
of the attack networks containing x, Cx(G − D). This leads to residual network
G − Cx(G − D). An attack on a protected node has no effect on the network.
An example of attack on a defended network is presented in Fig. 2.

Fig. 2. (a) Network G with defended nodes, D, marked with square frames; (b) Attack
network G − D and infection of node x and its component Cx(G − D) in G − D; (c)
Residual network G − Cx(G − D).

1 The assumption of perfect defence is not a crucial one and is made for presentation
simplicity. The mechanisms proposed in the paper would work even if protection
could fail with some probability. Crucial is the fact that every node prefers to be
protected to not being protected.
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The defender wants to allocate perfect defence to selected nodes in the net-
work (e.g. subsidise use of antivirus software). The defender has fixed number
b ≥ 1 of units of defence to allocate across the nodes. The defender knows the
set of nodes, N , but she does not know the set of edges.

The nodes do not know the entire network. Each of them has information
about its neighbourhood only. Given graph G over N and set of nodes M ⊆ N ,
∂M (G) = {j ∈ N\M : i ∈ M and ij ∈ E(G)} is the set of (external) neighbours
of M in G. In the case of M being a singleton set, M = {i}, we will write ∂i(G)
rather than ∂{i}(G). Private information of each node i is represented by i’s
type, θi(G) = ∂i(G), i.e. it is the set of nodes being i’s neighbours in G. The
vector θ(G) is the vector of all nodes’ types.

After the defence is allocated, one of the nodes in the network gets attacked,
after which the infection spreads. All infected nodes obtain utility 0. All the
remaining nodes obtain utility 1.

The above assumptions are reasonable in the settings where the nodes do
not care about knowing the whole network (knowing the whole network and
maintaining this information is usually costly). The assumption that the defender
does not know the network is in line with the mechanism design approach to
the problem. The objective is to propose a reusable mechanism that could be
applied in many circumstances and that could be used to allocate the defence
without the need to learn the network using other methods (which could require
additional cost and time). The worst case scenario approach is common in the
study of network vulnerability.2

Throughout the paper we will also use the following additional graph the-
oretic notation and terminology. A set of nodes X ⊆ N is called a k-cut of G
(for k ≥ 1) if |X| = k, G is connected, and G − X is not connected.3 Graph
G is k-connected, k ≥ 1, if there exists a k-cut of G and for all 1 ≤ k′ < k
there is no k′-cut of G. Graph G is k+-connected (at least k-connected) if there
exists k′ ≥ k such that G is k′-connected. Graph G is k−-connected, k ≥ 1, (at
most k-connected) if it is connected and there exists 1 ≤ k′ ≤ k such that G is
k′-connected.

Objectives and Payoffs. The objective of each node is to stay uninfected:
payoff to node i is 0, if i is infected, and it is 1, if i is not infected. Formally, let
D ⊆ N be a set of protected nodes, x be the attacked node, and G the graph.
Payoff to node i ∈ N from D, x, and G is

Πi(D,x,G) =
{

0, if i ∈ Cx(G − D),
1, otherwise. (1)

The objective of the defender is to maximise (utilitarian) social welfare from
network defence., i.e. the sum of nodes utilities in the residual network. Formally,

2 Another common approach is to consider average case scenario, which is common in
the study of network reliability (c.f. [3], for example).

3 This paper is concerned with vertex cuts. Therefore we will use a term ‘cut’ to refer
to vertex cuts (as opposed to edge cuts, which are not in scope of this paper).
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given set of protected nodes, D, the attacked node, x, and network G, social
welfare from network defence is

W (D,x,G) =
∑

i∈N

Πi(D,x,G) = n − |Cx(G − D))|, (2)

that is it is equal to the number of uninfected nodes.
The defender wants to maximise social welfare in the worst case scenario.

Therefore his objective is to maximise the pessimistic social welfare across all
possible attacks. Pessimistic social welfare from a given set of protected nodes,
D, and network, G, is

PW (D,G) = min
x∈N\{D}

W (D,x,G). (3)

Nodes’ approach is also pessimistic: every unprotected node assumes to get
infected in result of the attack. Hence, given defence D, pessimistic payoff to
node i is

PΠi(D) =
{

1, if i ∈ D,
0, otherwise. (4)

3.1 Mechanism

To allocate b ≥ 1 units of defence, the defender will use a (randomised) mech-
anism. A mechanism M is a pair (M,α), where M = (M1, . . . ,Mn) are sets
of messages of each player and α :

∏n
i=1 Mi → Δ(

⋃b
j=0

(
N
j

)
) is a (randomized)

protection allocation function: given a message profile m ∈ ∏n
i=1 Mi, α(m) is

a randomized protection, i.e. a probability distribution over the sets of nodes of
cardinality at most b, including no protection (∅). Given a finite set X, Δ(X)
denotes the set of all lotteries over X. Given set X and j ∈ [0..|X|], (

X
j

)
denotes

the set of all j element subsets of X.
Given mechanism (M,α), a strategy of node i is a function si : 2N → M ,

mapping his types to the message set M . Thus a message of node i with neigh-
bourhood θi is si(θi). In the case of direct mechanisms, the set of messages is
M = 2N and a strategy of node i determines the set of reported neighbours as
a function of the set of neighbours.

Given randomized protection allocation α ∈ Δ(2N ), expected payoff to node
i with set of neighbours θi, when the rest of the graph is unknown is

EαΠi =
∑

D∈2N

α(D)PΠi(D). (5)

Incentive Compatibility. Fix a (direct) mechanism M = (M,α). A strategy
si ∈ M2N

i of node i is (weakly) dominant if for every strategy profile of the
remaining nodes, s−i ∈ ∏

j∈N\{i} M2N

j , every graph G ∈ G(N), and every other

strategy s′
i ∈ M2N

i ,

Eα(si(θi(G)),s−i(θ−i(G)))Π
i ≥ Eα(s′

i(θi(G)),s−i(θ−i(G)))Π
i. (6)
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Mechanism M is incentive compatible if truth telling is a dominant strategy for
each node i ∈ N . A message profile, θ, where each node i reports its true type,
θi, is called truthful.

4 Analysis

Assuming that the defender knows graph G, it is optimal to protect set of b
nodes that maximizes defender’s welfare from the residual graph. Given graph
G and the number of defence resources, b, let

OPT (G, b) = arg max
D∈(Nb )

min
x∈N\D

|N\Cx(G − D)| = arg min
D∈(Nb )

max
C∈C(G−D)

|C| (7)

denote the set of all optimal b-element sets of nodes to protect.
We start the analysis with an easier case of one unit of defence. This intro-

duces the main ideas for the mechanism. The ideas for the case of more units of
defence build on them but are a bit more involved.

4.1 Case of b = 1

We start with the case where the defender can protect at most one node, i.e.
b = 1.

If G is 1-connected, then an optimal (singleton) set of nodes to protect is one
of the 1-cuts of G. If G is 2+-connected, then protecting any (singleton) set of
nodes is equally good to the defender. The following lemma on the properties of
optimal sets will be vital.

Lemma 1. Let G be a connected graph over the set of nodes, N , {i} ∈
OPT (G, 1), j ∈ N , i �= j, be two distinct nodes. Then the following hold

(i). {i} ∈ OPT (G + ij, 1).
(ii). For all l ∈ N , if {l} ∈ OPT (G + ij, 1), then {l} ∈ OPT (G, 1).

Proof. Take any connected graph, G, and any two distinct nodes, i, j ∈ N , such
that i ∈ OPT (G, 1), as stated in the lemma. If ij ∈ G, then the two points of
the lemma are trivially satisfied. Suppose that ij /∈ G. If G is 2+-connected, then
G + ij is 2+-connected as well. Consequently, OPT (G, 1) = OPT (G + ij, 1) =(
N
1

)
, and points (i) and (ii) follow immediately.
Suppose that G is 1-connected, in which case {i}, and any element of

OPT (G, 1), is a 1-cut in G. Let H = G + ij. Since {i} is a 1-cut in G so
{i} is a 1-cut in H and C(G − {i}) = C(H − {i}). Thus

max
C∈C(G−{i})

|C| = max
C∈C(H−{i})

|C|. (8)

Moreover, H is 1-connected and any element of OPT (H, 1) is a 1-cut of H.
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Fig. 3. Schematic presentation of graph G when i and l are 1-cuts. Oval regions rep-
resent sets of components, bold lines represent sets of edges between nodes i and l and
the components in the oval regions. The dashed line between nodes i and j represent
a possible link between the two nodes.

Suppose that {l} ∈ OPT (H, 1). It follows that

max
C∈C(H−{l})

|C| ≤ max
C∈C(H−{i})

|C|. (9)

If l = i, then the claim in the lemma follows automatically. Suppose that l �= i.
The set of components of C(G−{i, l}) can be partitioned into pairwise disjoint

subsets O, P, and Q (some of them possibly empty) such that (c.f. Fig. 3):

O = {C ∈ C(G − {i, l}) : ∂C(G) = {i}}
P = {C ∈ C(G − {i, l}) : ∂C(G) = {l}}
Q = {C ∈ C(G − {i, l}) : ∂C(G) = {i, l}}.

Since {l} is a 1-cut in H so it must be that j ∈ ⋃
O ∪ ⋃

Q ∪ {l}. Hence
C(G − {l}) = C(H − {l}) and

max
C∈C(G−{l})

|C| = max
C∈C(H−{l})

|C|. (10)

Moreover, since i ∈ OPT (G, 1) so

max
C∈C(G−{i})

|C| ≤ max
C∈C(G−{l})

|C|. (11)

Combining this with (8–11), we get

max
C∈C(G−{i})

|C| = max
C∈C(G−{l})

|C| = max
C∈C(H−{l})

|C| = max
C∈C(H−{i})

|C|.

Thus i ∈ OPT (H, 1) and l ∈ OPT (G, 1), which proves points (i) and (ii). 	


Mechanism. Consider the following (direct) mechanism M = (M,α). The set
of messages, Mi, of each node i ∈ N is the same across nodes and Mi = 2N . That
is, each player submits a set of nodes. Given a message profile m = (m1, . . . ,mn)
the defender allocates the unit of defence as follows.
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Let Ei(m) = {ij : j ∈ mi} be the set of (undirected) links reported by node
i. Let E(m) =

⋃
l∈N El(m) be the set of all links reported in message profile m

(note that a link can be propose by each of its ends). Let G(m) = (N,E(m))
be the graph obtained by including all links reported by each node. For each
node i ∈ N let E−i(m) =

⋃
l∈N\{i} El(m) be the set of links reported by all the

nodes but node i. Let G−i(m) = (N,E−i(m)) be the graph determined by the
reports of all the nodes but node i.

The allocation function α is defined as follows. The probability that node i
receives protection under message profile m depends on the graph G−i(m) only:

α{i}(m) =

⎧
⎨

⎩

1
|OPT (G−i(m),1)| if{i} ∈ OPT (G−i(m), 1)

and G−i(m) is connected,
0 otherwise.

(12)

The probability that no node receives protection is

α∅(m) = 1 −
∑

i∈N

α{i}(m). (13)

As we show below, mechanism M is valid and is incentive compatible.

Proposition 1. Mechanism M is valid and is incentive compatible.

Proof. To show that the mechanism is valid, we need to show that for all m ∈ M ,
α(m) is a valid probability distribution. Take any m ∈ M . It is clear that for all
i ∈ N , α{i}(m) ∈ [0, 1]. Thus what remains to be shown is that

∑
i∈N α{i}(m) ≤

1. Let β(m) be a probability distribution on
(
N
1

)∪{∅} mixing uniformly on the
set OPT (G(m), 1) of optimal nodes to protect in G(m), if G(m) is connected,
or assigning probability 1 to ∅, otherwise. Formally,

β{i}(m) =

⎧
⎨

⎩

1
|OPT (G(m),1)| , if i ∈ OPT (G(m), 1)

and G(m) is connected
0, otherwise,

(14)

and
β∅(m) = 1 −

∑

i∈N

β{i}(m). (15)

Clearly β(m) is a valid probability distribution. We will show that for all i ∈ N ,
α{i}(m) ≤ β{i}(m), which implies that α(m) is a valid probability distribution.
If {i} /∈ OPT (G−i(m), 1) or G−i(m) is not connected, then trivially α{i}(m) =
0 ≤ βi(m). Suppose that G−i(m) is connected and {i} ∈ OPT (G−i(m), 1).
By Lemma 1, OPT (G(m), 1) ⊆ OPT (G−i(m), 1) and {i} ∈ OPT (G(m), 1).
Hence α{i}(m) = 1

|OPT (G−i(m),1)| ≤ 1
|OPT (G(m),1)| = β{i}(m). This shows that

the mechanism is valid.
Next we turn to incentive compatibility. Clearly, the utility of any node i ∈ N

is independent of the message of the node, mi. Hence reporting mi = θi, i.e.
revealing the true set of neighbours, is a best response to any message profile
m−i. 	
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Since under truthful message profile, m, every link is reported twice (once
by each end) so, for all i ∈ N , G−i(m) = G(m) and OPT (G−i(m)) =
OPT (G(m)). Hence the mechanism is optimal. This is stated in the following
observation.

Observation 1. Let G be a connected network and m be a truthful message
profile. The allocation rule α(m) mixes uniformly on OPT (G(m, 1)). Hence it
implements optimal protection.

4.2 Case of b ≥ 2

The case of b ≥ n is trivial. An example of a direct incentive compatible mech-
anism is the one where each node reports its “neighbours” and the defender
protects every node with probability 1. Similarly, the case of b = n − 1 is triv-
ial, as in this case an optimal incentive compatible mechanism is the one where
each node reports its “neighbours” and the defender picks one of the nodes with
probability 1

n , and protects all the remaining nodes. For the remaining part of
this section we assume that 2 ≤ b ≤ n − 2.

Analogously to the case of b = 1, if the network is (b + 1)+-connected, then
protecting any b-element set of nodes is optimal for the defender. If the network
is b−-connected, then an optimal set to protect must be a b-cut of G.

The following lemma, extending Lemma 1, will be crucial.

Lemma 2. Let G be a connected graph over the set of nodes, N , X ∈
OPT (G, b), i ∈ X, j ∈ N , i �= j, be two distinct nodes. Then the following
hold

(i). X ∈ OPT (G + ij, b).
(ii). For all Y ∈ (

N
b

)
, if Y ∈ OPT (G + ij, b), then Y ∈ OPT (G, b).

Proof. Take any connected graph, G, any set of nodes X ∈ OPT (G, b) and any
two distinct nodes, i, j ∈ N , such that i ∈ X, as stated in the lemma. If ij ∈ G,
then the two points of the lemma are trivially satisfied. Suppose that ij /∈ G. If
G is (b+1)+-connected, then G+ ij is (b+1)+-connected as well. Consequently,
OPT (G, b) = OPT (G + ij, b) =

(
N
b

)
, and points (i) and (ii) follow immediately.

Suppose that G is b−-connected, in which case X, and any element of
OPT (G, b), is a b-cut in G. Let H = G + ij. Since X is a b-cut in G so X
is a b-cut in H and C(G − X) = C(H − X). Consequently,

max
C∈C(G−X)

|C| = max
C∈C(H−X)

|C|. (16)

Moreover, H is b−-connected and any element of OPT (H, b) is a b-cut of H.
Suppose that Y ∈ OPT (H, b). It follows that

max
C∈C(H−Y )

|C| ≤ max
C∈C(H−X)

|C|. (17)

If Y = X, then the claim in the lemma follows immediately. Suppose that Y �= X.
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Fig. 4. Schematic presentation of graph G when X and Y are b-cuts. Squares repre-
sent subsets of the two cuts (X\Y , Y \X and X ∩ Y ), oval regions represent sets of
components, bold lines represent sets of edges between the sets of nodes X\Y , Y \X,
and X ∩ Y , and the components in the oval regions. The dashed lines between squares
represent possible sets of links between nodes in X\Y , Y \X and X ∩ Y .

The set of components, C(G − (X ∪ Y )) can be partitioned into (pairwise
disjoint) subsets P, Q, R, S, T and U (some of them may be empty), such that
(c.f. Fig. 4):

O = {C ∈ C(G − (X ∪ Y )) : ∂C(G) ⊆ X\Y }
P = {C ∈ C(G − (X ∪ Y )) : ∂C(G) ⊆ Y \X}
Q = {C ∈ C(G − (X ∪ Y )) : ∂C(G) ⊆ X ∩ Y }
R = {C ∈ C(G − (X ∪ Y )) : ∂C(G) ⊆ (X ∪ Y )\(X ∩ Y )

and ∂C(G) ∩ (Y \X) �= ∅ and ∂C(G) ∩ (X\Y ) �= ∅}
S = {C ∈ C(G − (X ∪ Y )) : ∂C(G) ⊆ Y and

∂C(G) ∩ (Y \X) �= ∅ and ∂C(G) ∩ X ∩ Y �= ∅}
T = {C ∈ C(G − (X ∪ Y )) : ∂C(G) ⊆ X and

∂C(G) ∩ (X\Y ) �= ∅ and ∂C(G) ∩ X ∩ Y �= ∅}
U = {C ∈ C(G − (X ∪ Y )) : ∂C(G) ⊆ X ∪ Y and

∂C(G) ∩ (Y \X) �= ∅ and ∂C(G) ∩ (X\Y ) �= ∅ and ∂C(G) ∩ X ∩ Y ) �= ∅}.

Let A = (X\Y ) ∪ ⋃
(O ∪ R ∪ T ∪ U). Notice that a maximiser of {|C| :

C ∈ C(G − Y )} is either A or an element of Q, as otherwise it would hold that
maxC∈C(G−X) |C| > maxC∈C(G−Y ) |C|, a contradiction with the assumption that
X ∈ OPT (G, b). Since Y is a separator in H so it must be that either j ∈ A, or
i ∈ X ∩ Y .
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Suppose that j ∈ A. Since i ∈ X so the new link, ij, is either added to A, or
is between A and X ∩ Y . Either way adding the link does not affect the sizes of
components after cut Y is applied and so

max
C∈C(H−Y )

|C| = max
C∈C(G−Y )

|C|. (18)

Equality (18) follows in the case of i ∈ X∩Y , because then C(G−Y ) = C(H−Y ).
Since X ∈ OPT (G, b) so

max
C∈C(G−X)

|C| ≤ max
C∈C(G−Y )

|C|. (19)

Combining this with (16), (17) and (18), we get

max
C∈C(H−Y )

|C| = max
C∈C(H−X)

|C| = max
C∈C(G−Y )

|C| = max
C∈C(G−X)

|C|. (20)

Thus X ∈ OPT (H, b) and Y ∈ OPT (G, b). This proves points (i) and (ii). 	


Mechanism. Consider the following (direct) mechanism (M,α). The set of
messages for each node i is Mi = 2N . The allocation function, α, is defined as
follows. Given node i ∈ N , set of nodes D ∈ (

N
b

)
, and message profile m, define

ξi
D(m) =

⎧
⎪⎪⎨

⎪⎪⎩

1
|OPT (G−i(m),b)| , ifD ∈ OPT (G−i(m), b),

i ∈ D and G−i(m) is
connected,

0, otherwise.

(21)

Given set of nodes D ∈ (
N
b

)
and message profile m, let

ξD(m) = max
i∈N

ξi
D(m). (22)

The intended interpretation of ξD(m) is the “probability” of “considering” the
set of nodes D for protection (of course it requires showing that this quantity is
indeed a probability). After the defender chooses the set considered for protec-
tion, s/he protects a subset of this set according to the following procedure. Let
D = {i1, . . . , ib} be such that ξi1

D(m) ≥ . . . ≥ ξib
D(m). Conditioned on D being

considered for protection, the probability that set of nodes D(k) = {i1, . . . , ik}
is protected is

ζD(k)|D(m) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ
ik
D (m)

ξD(m) , if k = b and
ξD(m) �= 0

ξ
ik
D (m)−ξ

ik+1
D (m)

ξD(m) , if k ∈ {1, . . . , b − 1}
and ξD(m) �= 0

0, if ξD(m) = 0.

(23)

It will be convenient to extend the definition of ζ·|D(m) beyond the sets D(k)
by setting it to 0, i.e. given T ⊆ N with 1 ≤ |T | ≤ b,

ζT |D(m) = 0, if for all k ∈ {1, . . . , b}, T �= D(k). (24)
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The allocation function α is defined as follows. The probability of protecting
set of nodes T ⊆ N with 1 ≤ |T | ≤ b is

αT (m) =
∑

D∈(Nb )
ξD(m)ζT |D(m). (25)

The probability of protecting no node is

α∅(m) = 1 −
b∑

i=1

∑

T∈(Ni )
αT (m). (26)

The following theorem states the validity and incentive compatibility of the
mechanism M.

Theorem 1. Mechanism M is valid and is incentive compatible.

Proof. To show that the mechanism is valid, we need to show that for all m ∈ M ,
α(m) is a valid probability distribution. Take any m ∈ M and consider ξD(m),
D ∈ (

N
b

)
, first. Clearly, for all D ∈ (

N
b

)
, ξD(m) ∈ [0, 1]. We will show that

∑

D∈(Nb )
ξD(m) ≤ 1. (27)

Let β(m) be a probability distribution on
(
N
b

) ∪ {∅} mixing uniformly on the
set OPT (G(m), b) of optimal nodes to protect in G(m), if G(m) is connected,
and assigning probability 1 to ∅, otherwise. Formally,

βD(m) =

⎧
⎨

⎩

1
|OPT (G(m),b)| , ifD ∈ OPT (G(m), b) and

G(m) is connected
0, otherwise,

(28)

and
β∅(m) = 1 −

∑

D∈(Nb )
βD(m). (29)

Clearly β(m) is a valid probability distribution. We will show that for all D ∈(
N
b

)
, ξD(m) ≤ βD(m). If D /∈ OPT (G−i(m), b) or G−i(m) is not connected,

then trivially ξD(m) = 0 ≤ βD(m). Suppose that G−i(m) is connected and
D ∈ OPT (G−i(m), b). By Lemma 2, OPT (G(m), b) ⊆ OPT (G−i(m), b) and
D ∈ OPT (G(m), b). Hence 0 ≤ ξD(m) = 1

|OPT (G−i(m),b)| ≤ 1
|OPT (G(m),b)| =

βD(m). Combining this with the fact that
∑

D∈(Nb )
βD(m) ≤ 1 (30)

yields (27).



Network Elicitation in Adversarial Environment 411

For any D ∈ (
N
b

)
consider ζ·|D(m). Notice that for all T ⊆ N with 1 ≤ |T | ≤ b

we have ζT |D(m) ∈ [0, 1]. Moreover

b∑

k=1

∑

T∈(Nk)
ζT |D(m) =

b∑

k=1

ζD(k)|D(m) =
{

1, if ξD(m) > 0,
0, if ξD(m) = 0. (31)

By (27) and (31),

b∑

k=1

∑

T∈(Nk)
αT (m) =

b∑

k=1

∑

T∈(Nk)

∑

D∈(Nb )
ξD(m)ζT |D(m) (32)

=
∑

D∈(Nb )
ξD(m)

b∑

k=1

∑

T∈(Nk)
ζT |D(m) =

∑

D∈(Nb )
ξD(m) ≤ 1. (33)

This and the fact that αT (m) ≥ 0, for all T ⊆ N with 0 ≤ |T | ≤ b, implies that
α(m) is a valid probability distribution.

For incentive compatibility, notice that the utility of any node i ∈ N is inde-
pendent of its message, mi (the probability of i receiving protection is established
merely on the basis of G−i(m)). Hence reporting mi = θi, i.e. revealing the true
set of neighbours, is a best response to any message profile m−i. 	

Like in the case of one unit of defence, using the fact that under truthful message
profile, m, every link is reported twice, we observe that for all i ∈ N , G−i(m) =
G(m) and OPT (G−i(m)) = OPT (G(m)). In other words, mechanism M is
optimal. The following observation states this fact.

Observation 2. Let G be a connected network and m be a truthful message
profile. The allocation rule α(m) mixes uniformly on OPT (G(m, b). Hence it
implements optimal protection.

Fig. 5. (a) Network G; (b) Network extracted from reports where every node apart
from 1 reports all his neighbours and 1 misreports by reporting the true neighbours
and node 6 as a neighbour.

We end this section with an example illustrating how the mechanism works.
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Example 1. Consider network G in Fig. 5(a) and suppose that the defender has
b = 2 units of defence. There are 6 nodes, N = {1, . . . , 6}, with types: θ1(G) =
θ4(G) = {2, 3, 5}, θ2(G) = θ2(G) = {1, 4, 6}, θ5(G) = {1, 4}, and θ6(G) = {2, 3}.

Suppose first that every node i reports truthfully, i.e. submits its own type:
mi = θi(G), for all i ∈ N . In this case, since every link is reported by its both
ends, the networks G−i(m) = G, for all i ∈ N . The set of optimal 2-element
sets of nodes to protect is OPT (G, 2) = {{1, 4}, {2, 3}}. Hence ξi

D(m) = 1
2 , if

D ∈ OPT (G, 2), and is 0, otherwise; consequently, ξD(m) = 1
2 , if D = {1, 4},

and ξD(m) = 0, otherwise. Furthermore ζD(2)|D(m) = 1, if D ∈ OPT (G, 2),
and is 0, otherwise. In effect αD(m) = 1

2 , if D ∈ OPT (G, 2), and is 0, otherwise.
Thus the defender assigns protection optimally.

Now, suppose that m1 = {2, 3, 5, 6}, i.e. in addition to the true neighbours
1 reports falsely that 6 is its neighbour. Suppose also that all the other nodes
report truthfully (c.f. Fig. 5(b)). In this case for every i ∈ N\{1}, the network
G−i(m) = G′ where G′ is network G with an additional link, {1, 6}, and the
network G−1(m) = G. In result from adding link {1, 6}, {2, 3} is no longer
an optimal 2-element set of nodes to protect and OPT (G′, 2) = {1, 4}. There-
fore ξ1{1,4}(m) = 1

2 , ξ4{1,4}(m) = 1, and ξi
D(m) = 0, otherwise. Consequently,

ξ{1,4}(m) = 1, and ξD(m) = 0, otherwise. Quantities ζT |D(m) are non-zero for
D = {1, 4} and T ∈ {{4}, {1, 4}} only. Since 1 = ξ4{1,4}(m) ≥ ξ1{1,4}(m) = 1

2

so {1, 4}(1) = {4} and {1, 4}(2) = {1, 4}. Thus ζ{1,4}|{1,4}(m) = 1
2 and

ζ{4}|{1,4}(m) = 1− 1
2

1 = 1
2 . Hence α{1,4}(m) = 1

2 , α{4}(m) = 1
2 , and αT (m) = 0,

for all remaining T ⊆ N with |T | ≤ 2. Thus reporting an additional neighbour,
6, does not improve the chances of 1 receiving protection and so 1 does not have
incentive for this misreport.

4.3 A Note on Computational Complexity

Given the graph, G, over n nodes and b units of protection, the defender aiming
to protect the network optimally has to solve the following optimization problem:

min
Z∈(Nb )

max
C∈C(G−Z)

|C|. (34)

A decision version of this problem, called WeightedComponentOrderCon-
nectivity, was studied in [6]. The problem asks whether there exists a vertex
cut of size b such that the size of maximal component in the residual network is
at most l.

A straightforward reduction from MinimumVertexCover shows that prob-
lem (34) cannot be solved in deterministic polynomial time, unless P = NP. The
reduction involves solving the above optimization problem for subsequent values
of b, starting from 1, until the maximum size of a component in the residual
network is 1. Unfortunately, no approximation algorithms are known for the
problem above. A similar problem, called SumOfSquaresPartition, asking
for a vertex cut of size b that minimizes the sum of squares of component sizes
in the residual network was proposed and studied in [2]. It is shown that optimal
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solution can be approximated to within a factor of O(log1.5(n)). This could be a
suggestion that the problem (34) might have similar approximation guarantees.

A more promising approach could be by considering scenarios were defender’s
budget, b, is small (which, arguably, is a realistic assumption). It is shown in [6]
that exact solution for WeightedComponentOrderConnectivity can be
found in time n ·2O(b log l). This suggests that with low budget it may be possible
to find optimal solutions for the optimization problem (34) in a reasonable time.

5 Conclusions

In this paper we considered a problem of protecting a network against conta-
gious attacks by an adversary when neither the defender nor the nodes have
full information about the network. We proposed a mechanism that allows the
defender to allocate protection optimally by eliciting full information about the
network from the nodes. To our knowledge this is the first paper that considers
such a problem and proposes an incentive compatible mechanism that allows for
eliciting the information about the network.

Interesting problems for future research would include finding mechanisms
for network elicitation in adversarial domain where nodes form beliefs (in form
of probability distribution) about the unknown aspects of the network, instead
of using a pessimistic approach considered in this paper. Another interesting
question would be to consider a mechanism for network elicitation in the settings
where nodes care not only about their own survival but also about the value of
the residual network (e.g. the number of neighbours that survive the attack or the
size of their component after the attack). Lastly, algorithms for approximating
set OPT (G, b) maintaining the monotonicity conditions of Lemma 2 could be
sought in order to obtain an incentive compatible approximate version of the
mechanism presented in the paper.
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Abstract. In cyber-physical systems, malicious and resourceful attack-
ers could penetrate a system through cyber means and cause significant
physical damage. Consequently, early detection of such attacks becomes
integral towards making these systems resilient to attacks. To achieve
this objective, intrusion detection systems (IDS) that are able to detect
malicious behavior early enough can be deployed. However, practical
IDS are imperfect and sometimes they may produce false alarms even
for normal system behavior. Since alarms need to be investigated for
any potential damage, a large number of false alarms may increase the
operational costs significantly. Thus, IDS need to be configured properly,
as oversensitive IDS could detect attacks very early but at the cost of
a higher number of false alarms. Similarly, IDS with very low sensitiv-
ity could reduce the false alarms while increasing the time to detect the
attacks. The configuration of IDS to strike the right balance between
time to detecting attacks and the rate of false positives is a challenging
task, especially in dynamic environments, in which the damage caused
by a successful attack is time-varying.

In this paper, using a game-theoretic setup, we study the problem of
finding optimal detection thresholds for anomaly-based detectors imple-
mented in dynamical systems in the face of strategic attacks. We for-
mulate the problem as an attacker-defender security game, and deter-
mine thresholds for the detector to achieve an optimal trade-off between
the detection delay and the false positive rates. In this direction, we
first provide an algorithm that computes an optimal fixed threshold that
remains fixed throughout. Second, we allow the detector’s threshold to
change with time to further minimize the defender’s loss, and we provide
a polynomial-time algorithm to compute time-varying thresholds, which
we call adaptive thresholds. Finally, we numerically evaluate our results
using a water-distribution network as a case study.
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sion detection system
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1 Introduction

In recent years, we have seen an increasing trend of malicious intruders and
attackers penetrating into various cyber-physical systems (CPS) through cyber
means and causing severe physical damage. Examples of such incidents include
the infamous Stuxnet worm [13], cyber attack on German steel plant [17], and
Maroochy Shire water-services incident [1] to name a few. To maximize the
damage, attackers often aim to remain covert and avoid getting detected for
an extended duration of time. As a result, it becomes crucial for a defender to
design and place efficient intrusion and attack detection mechanisms to mini-
mize the damage. While attackers may be able to hide the specific information
technology methods used to exploit and reprogram a CPS, they cannot hide
their final intent: the need to cause an adverse effect on the CPS by sending
malicious sensor or controller data that will not match the behavior expected
by an anomaly-based detection system [7]. Anomaly-based detection systems
incorporate knowledge of the physical system, in order to monitor the system
for suspicious activities and cyber-attacks. An important design consideration
in such detection systems is to carefully configure them in order to satisfy the
expected monitoring goals.

A well-known method for anomaly-based detection is sequential change detec-
tion [11]. This method assumes a sequence of measurements that starts under
the normal hypothesis and then, at some point in time, it changes to the attack
hypothesis. Change detection algorithm attempts to detect this change as soon
as possible. In a sequential change detection, there is a detection delay, that is, a
time difference between when an attack occurs and when an alarm is raised. On
the other hand, detection algorithms may induce false positives, that is, alarms
raised for normal system behavior. In general, it is desirable to reduce detec-
tion delay as much as possible while maintaining an acceptable false positive
rate. Nevertheless, there exists a trade-off between the detection delay and the
rate of false positives, which can be controlled by changing the sensitivity of
the detector. A typical way to control detector sensitivity is through a detec-
tion threshold: by decreasing (increasing) detection threshold, a defender can
decrease (increase) detection delay and increase (decrease) false positive rate.
Consequently, the detection threshold must be carefully selected, since a large
value may result in excessive losses due to high detection delays, while a small
value may result in wasting operational resources on investigating false alarms.

Finding an optimal threshold, that is, one that optimally balances the detec-
tion delay-false positive trade-off, is a challenging problem [14]. However, it
becomes much more challenging when detectors are deployed in CPS with
dynamic behavior, that is, when the expected damage incurred from undetected
cyber-attacks depends on the system state and time. As a result, an attack on a
CPS which is in a critical state is expected to cause more damage as compared to
an attack in a less critical state. For example, in water distribution networks and
electrical grids, disruptions at a high-demand time are more problematic than
disruptions at a low-demand time. Hence, defenders need to incorporate time-
dependent information in computing optimal detection thresholds when facing
strategic attackers.
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We study the problem of finding optimal detection thresholds for anomaly-
based detectors implemented in dynamical systems in the face of strategic
attacks. We model rational attacks against a system that is equipped with a
detector as a two-player game between a defender and an attacker. We assume
that an attacker can attack a system at any time. Considering that the damage is
time-dependent, the attacker’s objective is to choose the optimal time to launch
an attack to maximize the damage incurred. On the other hand, the defender’s
objective is to select the detection thresholds to detect an attack with minimum
delay while maintaining an acceptable rate of false positives. To this end, first
we present an algorithm that selects an optimal threshold for the detector that is
independent of time (i.e., fixed). We call it as a fixed threshold strategy. Next, we
allow the defender to select a time-varying threshold while associating a cost with
the threshold change. For this purpose, we present a polynomial time algorithm
that computes thresholds that may depend on time. We call this approach the
adaptive threshold strategy. We present a detailed analysis of the computational
complexity and performance of both the fixed and adaptive threshold strate-
gies. Finally, we evaluate our results using a water distribution system as a case
study. Since expected damage to the system by an attack is time-dependent, the
adaptive threshold strategy achieves a better overall detection delay-false posi-
tive trade-off, and consequently minimize the defender’s losses. Our simulations
indicate that this is indeed the case, and adaptive thresholds outperform the
fixed threshold.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
our system model. In Sect. 3, we present our game-theoretic model and define
optimal fixed and adaptive detection thresholds. In Sect. 4, we analyze both
strategies and present algorithms to obtain optimal fixed and adaptive thresh-
olds. In Sect. 5, we evaluate these algorithms using numerical example. In Sect. 6,
we discuss related work on detection threshold selection in the face of strategic
attacks. Finally, we offer concluding remarks in Sect. 7.

2 System Model

In this section, we present the system model. For a list of symbols used in this
paper, see Table 1.

2.1 Attack Model

Let the system have a finite discrete time horizon of interest denoted by
{1, . . . , T}. Adversaries may exploit threat channels by compromising the system
through a deception attack that starts at time ka and ends at ke, thus spanning
over the interval [ka, ke]. Deception attacks are the ones that result in loss of
integrity of sensor-control data, and their corresponding danger is especially pro-
found due to the tight coupling of physical and cyber components (see [5] for
details). If an attack remains undetected, it will enable the attacker to cause
physical or financial damage. In order to represent the tight relation between
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Table 1. List of symbols

Symbol Description

D(k) Expected damage caused by an attack at timestep k

δ(η) Expected detection delay given detection threshold η

FP (η) False positive rate given detection threshold is η

C Cost of false alarms

P(η, ka) Attacker’s payoff for threshold η and attack time ka

L(η, ka) Defender’s loss for threshold η and attack time ka

Adaptive threshold

P(η, ka) Attacker’s payoff for adaptive threshold η = {ηk} and attack time ka

L(η, ka) Defender’s loss for adaptive threshold η = {ηk} and attack time ka

the CPS’s dynamic behavior and the expected loss incurred from undetected
attacks, we model the potential damage of an attack as a function of time.

Definition 1 (Expected Damage Function). Damage function of a CPS is a
function D : {1, ..., T} → R+, which represents the expected damage D(k)
incurred to a system from an undetected attack at time k ∈ {1, ..., T}.

The definition above describes instant damage at a time k ∈ {1, ..., T}. Fol-
lowing this definition, expected total damage resulting from an attack that spans
over some interval is defined as follows.

Definition 2 (Expected Total Damage). Expected total damage is denoted by a
function D̄ : {1, ..., T} × {1, ..., T} → R+, which represents the expected total
damage D̄(ka, ke) incurred to a system from an undetected attack in a period
[ka, ke]. Formally,

D̄(ka, ke) =
ke∑

k=ka

D(k). (1)

2.2 Detector

We consider a defender whose objective is to protect the physical system, which is
equipped with a detector. The detector’s goal is to determine whether a sequence
of received measurements generated through the system corresponds to the nor-
mal behavior or an attack. To implement a detection algorithm, we utilize a
widely used method known as sequential change detection [11]. This method
assumes a sequence of measurements that starts under the normal hypothe-
sis, and then, at some point in time, changes to the attack hypothesis. Change
detection algorithm attempts to detect this change as soon as possible.
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Example (CUSUM). The Cumulative sum (CUSUM) is a statistic used for
change detection. The nonparametric CUSUM statistic S(k) is described by

S(k) = (S(k − 1) + z(k))+,

where S(0) = 0, (a)+ = a if a ≥ 0 and zero otherwise, and z(k) is generated by
an observer, such that under normal behavior it has expected value of less than
zero [7]. Assigning η as the detection threshold chosen based on a desired false
alarm rate, the corresponding decision rule is defined as

d(S(k)) =
{

Attack if S(k) > η
Normal otherwise

Detection Delay and False Positive Rate. In detectors implementing
change detection, there might be a detection delay, which is the time taken by
the detector to raise an alarm since the occurrence of an attack.1 Further, there
might be a false positive, which means raising an alarm when the system exhibits
normal behavior. In general, it is desirable to reduce detection delay as much as
possible while maintaining an acceptable false positive rate. But, there exists a
trade-off between the detection delay and the rate of false positives, which can
be controlled by changing the detection threshold. In particular, by decreasing
(increasing) the detection threshold, a defender can decrease (increase) detection
delay and increase (decrease) false positive rate. Finding the optimal trade-off
point and its corresponding optimal threshold is known to be an important prob-
lem [14], however, it is much more important in CPS, since expected damage
incurred from undetected attack directly depends on detector’s performance.

We represent detection delay by the continuous function δ : R+ → N ∪ {0},
where δ(η) is the detection delay (in timesteps) when threshold is η. Further, we
denote the attainable false positive rate by the continuous function FP : R+ →
[0, 1], where FP (η) is the false positive rate when the detection threshold is η.
We assume that δ is increasing and FP is decreasing, which is true for most
typical detectors including the CUSUM detector.

3 Problem Statement

In this section, we present the optimal threshold selection problem. We consider
two cases: (1) Fixed threshold, in which the defender selects an optimal thresh-
old and then keeps it fixed; and (2) Adaptive threshold, in which the defender
changes detection threshold based on time. We model this problems as conflicts
between a defender and an attacker, which are formulated as two-player Stack-
elberg security games.

1 Note that any desired definition of detection delay may be considered, for example,
stationary average delay [21,22].
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3.1 Fixed Threshold

Strategic Choices. The defender’s strategic choice is to select a detection
threshold η. The resulting detection delay and false positive rate are δ(η) and
FP (η), respectively. We consider the worst-case attacker that will not stop the
attack before detection in order to maximize the damage. Consequently, the
attacker’s strategic choice becomes to select a time ka to start the attack. Note
that we consider damage from only undetected attacks since the mitigation of
non-stealthy attacks is independent of detector.

Defender’s Loss and Attacker’s Payoff. As an alarm is raised, the defender
needs to investigate the system to determine whether an attack has actually
happened, which will cost him C. When the defender selects threshold η and
the attacker starts its attack at a timestep ka, the defender’s loss (i.e., inverse
payoff) is

L(η, ka) = C · FP (η) · T +
ka+δ(η)∑

k=ka

D(k), (2)

that is, the amount of resources wasted on manually investigating false positives
and the expected amount of damage caused by undetected attacks.

For the strategies (η, ka), the attacker’s payoff is

P(η, ka) =
ka+δ(η)∑

k=ka

D(k). (3)

that is, the total damage incurred to the system prior to the expected detection
time. The idea behind this payoff function is the assumption of a worst-case
attacker that has the goal of maximizing the damage.

Best-Response Attack and Optimal Fixed Threshold. We assume that
the attacker knows the system model and defender’s strategy, and can thus
compute the detection threshold chosen by the defender. Hence, the attacker will
play a best-response attack to the defender’s strategy, which is defined below.

Definition 3 (Best-Response Attack). Taking the defender’s strategy as given,
the attacker’s strategy is a best-response if it maximizes the attacker’s payoff.
Formally, an attack starting at ka is a best-response attack given a defense strat-
egy η, if it maximizes P(η, ka).

Further, the defender must choose his strategy expecting that the attacker
will play a best-response. We formulate the defender’s optimal strategy as strong
Stackelberg equilibrium (SSE) [12], which is commonly used in the security lit-
erature for solving Stackelberg games.
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Definition 4 (Optimal Fixed Threshold). We call a defense strategy optimal
if it minimizes the defender’s loss given that the attacker always plays a best-
response. Formally, an optimal defense is

arg min
η,

ka∈bestResponses(η)

L(η, ka), (4)

where bestResponses(η) is the set of best-response attacks against η.

3.2 Adaptive Threshold

Although the optimal fixed threshold minimizes the defender’s loss considering
attacks at critical periods (i.e., periods with high damage), it imposes a high
false alarm rate at less critical periods. Adaptive threshold strategies directly
address this issue. The idea of adaptive threshold is to reduce the detector’s
sensitivity during less critical periods (via increasing the threshold), and increase
the sensitivity during more critical periods (via decreasing the threshold). As it
will be shown, this significantly decreases the loss corresponding to false alarms.
However, the defender may not want to continuously change the threshold, since
a threshold change requires a reconfiguration of the detector that has a cost.
Hence, the rational defender needs to find an optimal adaptive threshold, which
is a balance between continuously changing the threshold and keeping it fixed.

The adaptive threshold is defined by η = {ηk}T
k=1. The number of threshold

changes is described by N = |S|, where S = {k | ηk �= ηk+1, k ∈ {1, ..., T −1}}. If
the system is under an undetected attack, the detection delay for each timestep
k is the delay corresponding to its threshold, i.e., δ(ηk). We define detection time
of an attack ka as the time index at which the attack is first detected. It is given
by

σ(η, ka) = {min k | δ(ηk) ≤ k − ka}. (5)

Note that the equation above represents the time index at which the attack is
first detected, and not the detection delay. The detection delay for an attack ka

can be obtained by δ(η, ka) := σ(η, ka) − ka.

Strategic Choices. The defender’s strategic choice is to select the threshold
for each time index, given by η = {η1, η2, ..., ηT }. We call η to be the set of
adaptive threshold. Since we consider a worst-case attacker that will not stop
the attack before detection, the attacker’s strategic choice is to select a time ka

to start the attack.

Defender’s Loss and Attacker’s Payoff. Let Cd be the cost associated with
each threshold change. When the defender selects adaptive threshold η, and the
attacker starts its attack at a timestep ka, the defender’s loss is

L(η, ka) = N · Cd +
T∑

k=1

C · FP (ηk) +
σ(η,ka)∑

k=ka

D(k), (6)
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that is, the amount of resources spent on changing the threshold, operational
costs of manually investigating false alarms, and the expected amount of damage
caused by undetected attacks.

For the strategies (η, ka), the attacker’s payoff is the total damage prior to
the expected detection time,

P(η, ka) =
σ(η,ka)∑

k=ka

D(k). (7)

Best-Response Attack and Optimal Adaptive Threshold. The defini-
tions presented in this part are analogous to the ones discussed above for the
case of optimal fixed threshold. We assume the attacker can compute the adap-
tive threshold, and will play a best-response to the defender’s strategy, as defined
below.

Definition 5 (Best-Response Attack). Taking the defender’s strategy as given,
the attacker’s strategy is a best-response if it maximizes the attacker’s payoff.
Formally, an attack ka is a best-response given a defense strategy η, if it maxi-
mizes P(η, ka) as defined in (7).

Further, the defender must choose its strategy expecting that the attacker
will play a best-response.

Definition 6 (Optimal Adaptive Threshold). We call a defense strategy optimal
if it minimizes the defender’s loss given that the attacker always plays a best-
response with tie-breaking in favor of the defender. Formally, an optimal defense
is

arg min
η,

ka∈bestResponses(η)

L(η, ka), (8)

where bestResponses(η) is the best-response attack against η.

4 Selection of Optimal Thresholds

In this section, we present polynomial-time algorithms to compute optimal
thresholds, both for the fixed and adaptive cases.

4.1 Fixed Threshold

To compute an optimal fixed threshold, we present Algorithm1. Here, we con-
sider that any detection delay can be achieved by selecting a specific threshold
value. Therefore, the algorithm finds an optimal detection delay, from which the
optimal threshold value can be selected. To find the optimal detection delay, the
algorithm iterates through all possible values of detection delay and selects the
one that minimizes the defender’s loss considering a best-response attack. To
find a best-response attack ka, given a delay δ, the algorithm iterates through
all possible values of ka, and selects the one that maximizes the payoff.
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Algorithm 1. Algorithm for Optimal Fixed Threshold
1: Input D(k), T , C
2: Initialize: δ ← 0, L∗ ← ∞
3: while δ < T do
4: ka ← 1, P ′ ← 0
5: while ka < T do
6: P (δ, ka) ←∑ka+δ

ka
D(k)

7: if P (δ, ka) > P ′ then
8: P ′ ← P (δ, ka)
9: L′ ← P ′ + C · FP (δ) · T

10: end if
11: ka ← ka + 1
12: end while
13: if L′ < L∗ then
14: L∗ ← L′

15: δ∗ ← δ
16: end if
17: δ ← δ + 1
18: end while
19: return δ∗

Proposition 1. Algorithm1 computes an optimal fixed threshold in O(T 2)
steps.

Proof. The obtained threshold is optimal since the algorithm evaluates all pos-
sible solutions through exhaustive search. Given a pair (δ, ka), when computing
the attacker’s payoff P (δ, ka) in Line 6, we use the payoff computed in previous
iteration, and write P (δ, ka) = P (δ, ka − 1)+D(ka − 1)+D(ka + δ), which takes
constant time. Therefore, the running time of the algorithm is subquadratic in
the total number of timesteps T . �	

4.2 Adaptive Threshold

We present Algorithm 2 for finding optimal adaptive thresholds for any instance
of the attacker-defender game, which is based on the SSE. The approach com-
prises (1) a dynamic-programming algorithm for finding minimum-cost thresh-
olds subject to the constraint that the damage caused by a worst-case attack
is at most a given value and (2) an exhaustive search, which finds an optimal
damage value and thereby optimal thresholds. For ease of presentation, we use
detection delays δk and the corresponding maximal thresholds ηk interchange-
ably (e.g., we let FP (δk) denote the false-positive rate of the maximal threshold
that results in detection delay δk), and we let Δ denote the set of all attainable
detection delay values.

Theorem 1. Algorithm2 computes an optimal adaptive threshold.
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Algorithm 2. Algorithm for Optimal Adaptive Thresholds
1: Input D(k), T , C

2: SearchSpace ←
{∑ke

k=ka
D(k)

∣∣∣ ka ∈ {1, . . . , T − 1}, ke ∈ {n + 1, . . . , T}
}

3: for all P ∈ SearchSpace do
4: TC(P ), δ∗

1(P ), . . . , δ∗
T (P ) ← MinimumCostThresholds(P )

5: end for
6: P ∗ ← arg minP∈SearchSpace TC(P )
7: return δ∗

1(P ∗), . . . , δ∗
T (P ∗)

8: function MinimumCostThresholds(P )
9: ∀ m ∈ {0, . . . , T − 1}, δ ∈ Δ : Cost(T + 1, m, δ) ← 0

10: for n = T, . . . , 1 do
11: for all m ∈ {0, . . . n − 1} do
12: for all δn−1 ∈ Δ do
13: for all δn ∈ Δ do
14: if δn > m then
15: S(δn) ← Cost(n + 1, m + 1, δn) + C · FP (δn)
16: else if

∑n
k=n−m D(k) ≤ P then

17: S(δn) ← CostP (n + 1, δn, δn) + C · FP (δn)
18: else
19: S(δn) ← ∞
20: end if
21: if δn−1 �= δn ∧ n > 1 then
22: S(δn) ← S(δn) + Cd

23: end if
24: end for
25: δ∗(n, m, δn−1) ← arg minδn

S(δn)
26: Cost(n, m, δn−1) ← minδn S(δn)
27: end for
28: end for
29: end for
30: m ← 0, δ∗

0 ← arbitrary
31: for all n = 1, . . . T do
32: δ∗

n ← δ∗(n, m, δ∗
n−1)

33: m ← min{m + 1, δ∗
n}

34: end for
35: return Cost(1, 0, arbitrary), δ∗

1 , . . . , δ∗
T

36: end function

Proof (Sketch). First, we prove that our dynamic-programming algorithm, called
MinimumCostThresholds in Algorithm 2, finds minimum-cost thresholds
subject to any damage constraint P . Then, we show that our exhaustive search
finds an optimal damage constraint P , which minimizes the defender’s loss given
that the attacker plays a best response.

(1) Minimum-Cost Thresholds. In the first part, we assume that we are
given a damage value P , and we have to find thresholds that minimize the total
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cost of false positives and threshold changes, subject to the constraint that any
attack against these thresholds will result in at most P damage. In order to solve
this problem, we use a dynamic-programming algorithm. We will first discuss
the algorithm without a cost for changing thresholds, and then show how to
extend it to consider costly threshold changes.

For any two variables n and m such that n ∈ {1, . . . , T} and 0 ≤ m < n, we
define Cost(n,m) to be the minimum cost of false positives from n to T subject
to the damage constraint P , given that we only have to consider attacks that
start at ka ∈ {n−m, . . . , T} and that attacks are not detected prior to n. If there
are no thresholds that satisfy the damage constraint P under these conditions,
we let Cost(n,m) be ∞2.

We can recursively compute Cost(n,m) as follows. For any n < T and m,
iterate over all possible detection delay values δn, and choose the one that results
in the lowest cost Cost(n,m). If δn > m, then no attack could be detected at
timestep n, and Cost(n,m) would be the cost at timestep n plus the minimum
cost for timesteps {n+1, . . . , T} given that attacks may start at {n−m, . . . , T} =
{(n+1)−(m+1), . . . , T}. On the other hand, if δn ≤ m, then some attacks could
be detected at timestep n, and the worst of these attacks would start at n − m.
Hence, if

∑n
k=n−m D(k) ≤ P , then Cost(n,m) would be the cost at timestep

n plus the minimum cost for timesteps {n + 1, . . . , T} given that attacks may
start at {n + 1 − δn, . . . , T}. Otherwise, there would be an attack that could
cause more than P damage, so Cost(n,m) would be ∞ by definition since there
would be no feasible thresholds for the remaining timesteps. Formally, we let

Cost(n,m) = min
δn

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Cost(n + 1,m + 1) + FP (δn), if δn > m

Cost(n + 1, δn) + FP (δn), else if
n∑

k=n−m

D(k) ≤ P

∞ otherwise

.

(9)
Note that in the equation above, Cost(n,m) does not depend on

δ1, . . . , δn−1, it depends only on the feasible thresholds for the subsequent
timesteps. Therefore, starting from the last timestep T and iterating back-
wards, we are able to compute Cost(n,m) for all timesteps n and all values
m. Note that for n = T and any δT , computing Cost(T,m) is straightforward:
if

∑T
T−m D(k) ≤ P , then Cost(T,m) = FP (δT ); otherwise, Cost(T,m) = ∞.

Having found Cost(n,m) for all n and m, Cost(1, 0) is by definition the
minimum cost of false positives subject to the damage constraint P . The mini-
mizing threshold values can be recovered by iterating forwards from n = 1 to T
and again using Eq. (9). That is, for every n, we select the threshold correspond-
ing to the delay value δ∗

n that attains the minimum cost Cost(n,m), where m
can easily be computed from the preceding delay values δ∗

1 , . . . , δ
∗
n
3.

2 Note that in practice, ∞ can be represented by a sufficiently high natural number.
3 Note that in Algorithm 2, we store the minimizing values δ∗(n, m) for every n and

m when iterating backwards, thereby decreasing running time and simplifying the
presentation of our algorithm.
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Costly Threshold Changes. Now, we show how to extend the computation of
Cost to consider the cost Cd of changing the threshold. Let Cost(n,m, δn−1) be
the minimum cost for timesteps starting from n subject to the same constraints
as before but also given that the detection delay at timestep n−1 is δn−1. Then,
Cost(n,m, δn−1) can be computed similarly to Cost(n,m): for any n < T ,
iterate over all possible detection delay values δn, and choose the one that results
in the lowest cost Cost(n,m, δn−1). If δn−1 = δn or n = 1, then the cost would
be computed the same way as in the previous case (i.e., similarly to Eq. (9)).
Otherwise, the cost would have to also include the cost Cd of changing the
threshold. Consequently, similarly to Eq. (9), we define

Ĉost(n,m, δn−1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Cost(n + 1,m + 1, δn) + FP (δn) if δn > m

Cost(n + 1, δn, δn) + FP (δn) if
n∑

k=n−m

D(k) ≤ P

∞ otherwise

,

(10)
and then based on the value of δn−1, we can compute Cost(n,m, δn−1) as

Cost(n,m, δn−1) = min
δn

{
Ĉost(n,m, δn−1) if δn = δn−1 ∨ n = 1
Ĉost(n,m, δn−1) + Cd otherwise

.

(11)
Note that for n = 1, we do not add the cost Cd of changing the threshold.
Similarly to the previous case, Cost(1, 0, arbitrary) is the minimum cost subject
to the damage constraint P , and the minimizing thresholds can be recovered by
iterating forwards.

(2) Optimal Damage Constraint. For any damage value P , using the above
dynamic-programming algorithm, we can find thresholds that minimize the total
cost TC(P ) of false positives and threshold changes subject to the constraint that
an attack can do at most P damage. Since the defender’s loss is the sum of its
total cost and the damage resulting from a best-response attack, we can find
optimal adaptive thresholds by solving

min
P

TC(P ) + P (12)

and computing the optimal thresholds η∗ for the minimizing P ∗ using our
dynamic-programming algorithm.

To show that this formulation does indeed solve the problem of finding opti-
mal adaptive thresholds, we use indirect proof. For the sake of contradiction,
suppose that there exist thresholds η′ for which the defender’s loss L′ is lower
than the loss L∗ for the solution η∗ of the above formulation. Let P ′ be the
damage resulting from the attacker’s best response against η′, and let TC ′ be
the defender’s total cost for η′. Since the worst-case attack against η′ achieves
at most P ′ damage, we have from the definition of TC(P ) that TC ′ ≥ TC(P ′).
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It also follows from the definition of TC(P ) that L∗ ≤ TC(P ∗)+P ∗. Combining
the above with our supposition L∗ > L′, we get

TC(P ∗) + P ∗ ≥ L∗ > L′ = TC ′ + P ′ ≥ TC(P ′) + P ′.

However, this is a contradiction since P ∗ minimizes TC(P ) + P by definition.
Therefore, η∗ must be optimal.

It remains to show that Algorithm 2 finds an optimal damage value P ∗. To
this end, we show that P ∗ can be found in polynomial time using an exhaustive
search. Consider the set of damage values D̄(ka, ke) from all possible attacks
ka ≤ ke, that is, the set

{
ke∑

k=ka

D(k)

∣
∣
∣
∣
∣
ka ∈ {1, . . . , T}, ke ∈ {ka, . . . , T}

}

.

Let the elements of this set be denoted by P1, P2, . . . in increasing order. It is
easy to see that for any i, the set of thresholds that satisfy the constraint is
the same for every P ∈ [Pi, Pi+1). Consequently, for any i, the cost TC(P ) is
the same for every P ∈ [Pi, Pi+1). Therefore, the optimal P ∗ must be a damage
value Pi from the above set, which we can find by simply iterating over the
set. �	
Proposition 2. The running time of Algorithm2 is O(T 4 · |Δ|2).

Note that since possible detection delay values can be upper-bounded by T ,
the running time of Algorithm2 is also O(T 6).

Proof. In the dynamic-programming algorithm, we first compute Cost(n,m,
δn−1) for every n ∈ {1, . . . , T}, m ∈ {1, . . . , n − 1}, and δn−1 ∈ Δ, and each
computation takes O(|Δ|) time. Then, we recover the optimal detection delay for
all timesteps {1, . . . , T}, and the computation for each timestep takes a constant
amount of time. Consequently, the running time of the dynamic-programming
algorithm is O(T 2 · |Δ|2).

In the exhaustive search, we first enumerate all possible damage values
by iterating over all possible attacks (ka, ke), where ka ∈ {1, . . . , T} and
ke ∈ {ka, . . . , T}. Then, for each possible damage value, we execute the dynamic-
programming algorithm, which takes O(T 2 · |Δ|2) time. Consequently, the run-
ning time of Algorithm 2 is O(T 4 · |Δ|2). �	

Finally, note that the running time of the algorithm can be substantially
reduced in practice by computing Cost in a lazy manner: starting from n = 1
and m = 0, compute and store the value of each Cost(n,m, δn−1) only when it
is referenced, and then reuse it when it is referenced again. Unfortunately, this
does not change the worst-case running time of the algorithm.
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5 Numerical Results

In this section, we evaluate our approach numerically using an example. In par-
ticular, we consider the anomaly-based detection of deception attacks in water
distribution networks. In such networks, an adversary may compromise pressure
sensors deployed to monitor the leakages and bursts in water pipes. By com-
promising sensors, adversary may alter their true observations, which can then
result in physical damage and financial losses. Next, we present the system model
and the simulations of our results.

System Model. Figure 1 presents hourly water demand for a water network
during a day [9]. Since demand is time-dependent, the expected physical dam-
age and financial loss caused by an attack on sensors is also time-dependent.
That is, the expected disruptions at a high-demand time would be more prob-
lematic than the disruptions at a low-demand time. Therefore, for each timestep
k ∈ {1, ..., 24}, we can define the expected damage as D(k) = α ·d(k) where d(k)
is the demand at time k, and α ∈ R+ is a fixed value for scaling (for example,
water price rate). In our experiments, we let α = 2.

Fig. 1. Hourly water demand during a day [9].

To discover attacks, we use anomaly-based detection systems implementing
sequential change detection. Based on the results presented in [7], we derive the
attainable detection delays and false alarm rates for the detector as shown in
Fig. 2. We observe that for the detection delay δ = 0, the false positive rate
is FP (δ) = 0.95, and for δ = 23, the false positive rate is FP (δ) = 0.02. As
expected, the detection delay is proportional to the threshold, and the false
positive rate is inversely proportional to the threshold [6].
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Fig. 2. Trade-off between the detection delay and the false positive rate.
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Fig. 3. Best-response attack corresponding to the optimal fixed threshold δ∗ = 5.

Fixed Threshold. In the case of fixed threshold, the objective is to select the
strategy that minimizes the defender’s loss (2) while assuming the attacker will
respond using a best-response attack. Letting C = 7 and using Algorithm1,
we obtain δ∗ = 5, and the optimal loss L∗ = 171.30. Figure 3 shows the best-
response attack corresponding to this threshold value. The best-response attack
starts at k∗

a = 10 and attains the payoff P ∗ =
∑15

k=10 D(k) = 91. Note that if
the attacker starts the attack at any other timestep, the damage caused before
detection is less than P ∗.
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Next, letting C = 8, we obtain δ∗ = 6 as the optimal defense strategy, which
leads to the optimal loss L∗ = 181.86, and best-response attack k∗

a = 9, with the
payoff P ∗ = 99. We observe that, as expected, the optimal delay is higher for
the case of false alarms with higher costs.

Adaptive Threshold. Using the same setting, we use Algorithm 2 to find an
optimal adaptive threshold. We let C = 8 and Cd = 10. As shown in Fig. 4, we
obtain the optimal adaptive threshold δ(k) = 23 for k ∈ {1, ..., 11}, δ(k) = 1
for {12, ..., 15}, and δ(k) = 3 for {17, ..., 23}. The resulting optimal loss is
L∗ = 138.88. Figure 4 shows the corresponding best-response attack, which
starts at ka = 13 and, attains the payoff P ∗ = 39. This figure demonstrates that
the detection threshold decreases as the system experiences high-demand, so
that the attacks can be detected early enough. On the other hand, as the system
experiences low-demand, the threshold increases to have fewer false alarms.
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Fig. 4. Best-response attack corresponding to the optimal adaptive threshold. The
yellow points indicate the times at which the threshold change occurs.

Comparison. Keeping C = 8 fixed, Fig. 5 shows the optimal loss as a function
of cost of threshold change Cd. For small values of Cd, the optimal losses obtained
by the adaptive threshold strategy are significantly lower than the loss obtained
by the fixed threshold strategy. As the cost of threshold change Cd increases, the
solutions of adaptive and fixed threshold problems become more similar. In the
current setting, the adaptive threshold solution converges to a fixed threshold
when Cd ≥ 45.

Furthermore, letting Cd = 8, Fig. 6 shows optimal loss as a function of cost
of false positives for fixed and adaptive threshold strategies. It can be seen that
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Fig. 5. The defender’s loss as a function of cost of threshold change.

in both cases, the optimal loss increases as the cost of false alarms increases.
However, in the case of adaptive threshold, the change in loss is relatively smaller
than the fixed threshold.

6 Related Work

The problem of threshold selection for anomaly detection systems has been
widely studied in the literature. Nevertheless, prior work has not particularly
addressed the optimal threshold selection problem in the face of strategic attacks
when the damage corresponding to an attack depends on time-varying properties
of the underlying physical system.

Laszka et al. study the problem of finding detection thresholds for multi-
ple detectors while considering time-invariant damages [14]. They show that the
problem of finding optimal attacks and defenses is computationally expensive,
thereby, proposing polynomial-time heuristic algorithms for computing approx-
imately optimal strategies. Cardenas et al. study the use of physical models for
anomaly detection, and describe the trade-off between false alarm rates and the
delay for detecting attacks [7]. Pasqualetti et al. characterize detection limita-
tions for CPS and prove that an attack is undetectable if the measurements due
to the attack coincide with the measurements due to some nominal operating
condition [18].

Signaling games are also used to model intrusion detection [8,10]. Shen
et al. propose an intrusion detection game based on the signaling game in order to
select the optimal detection strategy that lowers resource consumption [20]. Fur-
ther, Alpcan and Basar study distributed intrusion detection as a game between
an IDS and an attacker, using a model that represents the flow of information
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Fig. 6. The defender’s loss as a function of cost of false alarms.

from the attacker to the IDS through a network [3,4]. The authors investigate
the existence of a unique Nash equilibrium and best-response strategies.

This work is also related to the FlipIt literature [15,16,24]. FlipIt is an
attacker-defender game that studies the problem of stealthy takeover of con-
trol over a critical resource, in which the players receive benefits proportional to
the total time that they control the resource. In [19], the authors present a frame-
work for the interaction between an attacker, defender, and a cloud-connected
device. They describe the interactions using a combination of the FlipIt game
and a signaling game.

In the detection theory literature, Tantawy presents a comprehensive discus-
sion on design concerns and different optimality criteria used in model-based
detection problems [23]. Alippi et al. propose a model of adaptive change detec-
tion that can be configured at run-time [2]. This is followed by [25], in which
the authors present a procedure for obtaining adaptive thresholds in change
detection problems.

7 Concluding Remarks

In this paper, we studied the problem of finding optimal detection thresholds
for anomaly-based detectors implemented in dynamical systems in the face of
strategic attacks. We formulated the problem as an attacker-defender security
game that determines thresholds for the detector to achieve an optimal trade-
off between the detection delay and the false positive rates. To this end, first
we presented an algorithm that computes optimal fixed threshold that is inde-
pendent of time. Next, we defined adaptive threshold, in which the defender is
allowed to change the detector’s threshold with time. We provided a polynomial
time algorithm to compute optimal adaptive threshold. Finally, we evaluated our
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results using a case study. Our simulations indicated that the adaptive threshold
strategy achieves a better overall detection delay-false positive trade-off, and con-
sequently minimize the defender’s losses, especially when the damage incurred
by the successful attack varied with time.

In future work, we aim to extend this work by considering: (1) Multiple
systems with different time-varying damage for each subsystem; (2) Sequential
hypothesis testing detectors, in which there exits a trade-off between false alarm
rate, missed detection rate, and detection delay; and (3) Moving target defense
techniques based on randomized thresholds.
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Abstract. Pursuit-evasion games model many security problems where
an evader is trying to escape a group of pursuing units. We consider a
variant with partial observability and simultaneous moves of all units,
and assume the worst-case setup, where the evader knows the location of
pursuer’s units, but the pursuer does not know the location of the evader.
Recent work has shown that the solution of such games is compactly rep-
resentable as a collection of finite-dimensional value functions. We extend
this result and propose the first practical algorithm for approximating
optimal policies in pursuit-evasion games with one-sided partial observ-
ability. Our approach extends the point-based updates that exist for
POMDPs to one-sided partially observable stochastic games. The exper-
imental evaluation on multiple graphs shows significant improvements
over approximate algorithms that operate on finite game trees.

1 Introduction

Pursuit-evasion games commonly arise in robotics and many security applica-
tions [1,9]. In these games, a team of centrally controlled pursuing units (a
pursuer) aims to locate and capture an evader, while the evader aims for the
opposite. From the theoretical perspective, a pursuit-evasion game on a finite
graph corresponds to a two-player finite-state discrete-time zero-sum partially
observable stochastic game with infinite horizon (POSG). We consider the con-
current setup where both players act simultaneously and we aim to find robust
strategies of the pursuer against the worst-case evader. Specifically, we assume
that the evader knows the positions of the pursuing units and her only uncer-
tainty is the strategy of the pursuer and the move that will be performed in
the current time step. We term these games as one-sided partially observable
pursuit-evasion games.

Even though in POSGs with infinite horizon and discounted rewards the
value of the game exists [2] and optimal strategies of the pursuer can be in gen-
eral approximated, there are no known practical approximate algorithms that
can be used to find these approximate strategies. Therefore, most of the existing
works on pursuit-evasion games use heuristic algorithms in order to find strate-
gies that are good in practice by relaxing some of the assumptions (e.g., [9]).
c© Springer International Publishing AG 2016
Q. Zhu et al. (Eds.): GameSec 2016, LNCS 9996, pp. 435–454, 2016.
DOI: 10.1007/978-3-319-47413-7 25
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Recently, a theoretic analysis has shown that a dynamic programming algorithm
can be designed for such type of pursuit-evasion games [3]. However, similarly to
models for sequential decision making that allow partial information, Partially
Observable Markov Decision Processes (POMDPs), a direct application of this
dynamic programming value-iteration algorithm is intractable in practice due to
“curse of history” and “curse of dimensionality”.

We extend these theoretic results to a broader class of one-sided partially
observable pursuit-evasion games and present the first practical approximate
algorithm based on the value iteration algorithm. We follow the approach used in
POMDPs and adapt the heuristic search value iteration (HSVI) algorithm [7,8]
that provably converges to approximate optimal strategies and provides an excel-
lent scalability when solving POMDPs. The key challenge and the main differ-
ence compared to the POMDP version is a limited control of belief transitions.
While beliefs over states are changed due to actions of the decision maker and
known transition probabilities only in POMDPs, the opponent of the decision
maker influence belief transitions in the case of a POSG.

Our paper addresses these challenges. After a brief description of POMDPs
and the main idea of the HSVI algorithm we follow by the description of one-
sided partially observable pursuit-evasion games. Afterwards we give all our con-
tributions: (1) we extend the original definition of one-sided partially observable
pursuit-evasion games to a more realistic setting compared to [3] by allowing the
pursuer to capture the evader also on the edges of a graph, (2) we present for
the first time a novel HSVI-inspired algorithm for approximating optimal strate-
gies in one-sided partially observable pursuit-evasion games, (3) we provide an
experimental evaluation of our algorithm. We demonstrate current scalability of
our algorithm and compare it with a sampling algorithm for solving sequential
games with a finite-horizon [4]. The results show that our novel algorithm can
closely approximate games with tens of nodes and two pursuing units in couple
of minutes and significantly outperforms the finite-horizon algorithm.

2 POMDPs and Heuristic Search Value Iteration (HSVI)

POMDPs represent the standard model for a planning problem with imperfect
information about the current state and uncertainty about action effects. For-
mally, a POMDP is described by a finite set of states S, a finite set of actions A,
a finite set of observations O, transition probabilities Ta,o(si, sj), reward func-
tion R(s, a), a discount factor γ ∈ (0, 1), and an initial belief b0. The space of
beliefs corresponds to a simplex over S (denoted Δ(S)).

A POMDP is typically solved by approximating optimal value function v∗

that returns the optimal reward for each belief. A value-iteration algorithm starts
with an initial estimate of the value function, v0, and iteratively improves the
estimate using the Bellman update in order to approximate the optimal value
function. In each iteration, vt is a piecewise linear function represented as a set
of vectors Γ = {α1, . . . , αΓ }, such that vt(b) = maxα∈Γ (α, b).

Practical algorithms approximate the simplex of beliefs by considering only a
finite set of belief points B and perform a point-based update for each such belief
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point. While the sampling of original point-based algorithms was close to being
uniform [5], HSVI algorithm samples the belief space according to a forward
simulation process that biases B to beliefs that are reachable from b0 given the
transition probabilities. The main idea of HSVI is to keep two estimates of the
optimal value function v∗ that form a lower bound (denoted v and represented
using a set of α vectors Γ ) and an upper bound (denoted v and represented as
a convex lower envelope of a set of points Υ ). In each iteration, these estimates
are tightened by:

1 sampling a belief space by forward search using transition probabilities so
that the belief point with the largest excess gap between bounds is targeted,

2 performing an update by (i) adding new α vectors into the lower bound set
Γ , and (ii) adding new points into the upper bound set Υ .

By using the forward exploration heuristic, selected belief points are reachable
and relevant to the initial belief and transition probabilities of the environment.
Moreover, by preferring the largest excess gap between the bounds the algorithm
is also guaranteed to converge.

Towards HSVI for One-Sided Partially Observable Pursuit-Evasion Games. Con-
trary to POMDPs, belief transitions in one-sided partially observable games are
controlled also by the opponent – the evader. Therefore, we use the intuition
behind HSVI to explore the belief space so that the convergence is guaranteed,
preferring belief states with the largest gap between the two bounds, and perform
a point-wise update to decrease this gap over time.

3 One-Sided Partially Observable Pursuit-Evasion Games

We now define one-sided partially observable pursuit-evasion games and sum-
marize existing key characteristics [3]. There are two players – the pursuer who
controls N units located in vertices of graph and aims to capture the opponent
– the evader. The evader knows the exact position of the units of the pursuer,
while the pursuer does not know the position of the evader. The pursuer aims to
capture the evader as quickly as possible – the reward for the pursuer is defined
as γt for capturing the evader in t steps, where γ ∈ (0, 1) is the discount factor.

The main result for this class of games is that to find optimal strategies it is
sufficient to consider strategies for the pursuer based only on the current state of
the pursuing units and the belief the pursuer has about the evader’s position [3].
Specifically, it is not necessary to consider the history of the actions played by the
pursuer. Next, we can formulate value functions in these games that are similar
to value functions in POMDPs. These value functions are piecewise linear and
convex (PWLC) in the belief about the position of the evader [3].

In the following we leverage the existing results, extend them to a more
realistic setting, and design a point-based value iteration algorithm for this class
of POSGs. We now formally define one-sided partially observable pursuit-evasion
games followed by the formal description of the value functions and value update.
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3.1 Definitions

The game is played on a finite undirected graph G = (V, E), where V =
{1, . . . , |V|} denotes the set of vertices and E stands for the set of edges. The set
of vertices adjacent to v will be denoted adj(v) ⊆ V, the set of edges incident
to v will be denoted inc(v) ⊆ E . We overload this notion to multisets of vertices
V = {v1, . . . , vn}, when adj(V ) =×i=1...n

adj(vi) and inc(V ) =×i=1...n
inc(vi).

Since the players move simultaneously, we talk about a stage in the game,
where both players act. A stage corresponds to a position of the pursuing units
sp = {v1, . . . , vN} ∈ VN (where sp is a N -element multiset of individual positions
of pursuer’s units, i.e. multiple units may be located in the same vertex) and a
position of the evader se ∈ V. The pursuer chooses his action E = {e1, . . . , eN} ∈
inc(sp), where ei = {vi, v

′
i} – i.e. makes his i-th unit traverse the edge ei and

reach vertex v′
i. Similarly the evader chooses her action {se, s

′
e} ∈ inc(se). After

the application of these actions, the evader is either caught if s′
e ∈ {v′

1, . . . , v
′
N},

or the game continues with the next stage where the pursuer is located in a new
position {v′

1, . . . , v
′
N} which we will denote as sE

p , and the evader is in s′
e.

The imperfect information of the pursuer about the position of the evader is
modeled as a belief – a probability distribution b̃ ∈ Δ(V) over the set of vertices,
where b̃i is the probability that the evader is located in vertex i ∈ V. Therefore, a
game situation

〈
sp, b̃

〉
is sufficient information for the players to play optimally

in the current stage [3]. In order to simplify the notation we will assume that
the probability that the evader is already caught in

〈
sp, b̃

〉
is zero, i.e. b̃i = 0

for all i ∈ sp. Note that the situation 〈sp, b〉 (b denotes belief where the evader

may be already caught) is strategically equivalent to the situation
〈
sp, b̃

〉
since

b̃i =

{
bi/(1 − β) i �∈ sp

0 otherwise
(1)

where (1 − β) is a normalization term corresponding to a probability of not
capturing the evader.

3.2 Value Functions and Strategies

Previous work showed that we can use a value-iteration type of algorithm to
approximate optimal strategies of a game with an infinite horizon [3].

This results from an observation, that value of a variant of this game with
a restricted horizon (horizon-t games, where players perform at most t moves)
can be represented by a collection of value functions, one for each position of
the pursuer. A horizon-t value function vt〈sp〉 : Δ(V) → R assigns the value
vt〈sp〉 (b) of a horizon-t game starting in situation 〈sp, b〉 for each belief b (where
the evader might be already caught)—i.e. the value of a game where pursuer
starts in sp and the evader starts in vertex i ∈ V with probability bi. For every
sp ∈ VN , the value function vt〈sp〉 is piecewise linear and convex (PWLC) and
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we can represent it as a set of α-vectors. Moreover the value of every fixed
strategy of the pursuer is linear in the belief.

The value functions can now be used to approximate the value of the game
(for some initial situation

〈
sp, b̃

〉
) by a repeated application of a dynamic pro-

gramming operator H such that v′ = Hv. Formally, v′ for state 〈sp〉 is computed
using the following equation:

v′ 〈sp〉 (b̃) = γ max
πp

min
πe

∑

E∈inc(sp)

πp(E) · v
〈
sE

p

〉
(bπe

) (2)

where, πp and πe are one-step strategies of the pursuer and the evader, respec-
tively; sE

p is the position reached from sp by playing action E, and bπe
is a

transformed belief about the position of the evader after playing strategy πe.
Formally, a strategy of the pursuer is a distribution over the actions available
in the current state sp – i.e., over edges that the pursuing units can take from
current vertices, πp ∈ Δ(inc(sp)). Similarly, a strategy of the evader is a mapping
πe : V → Δ(V). We will use πp(E) and πe(i, j) for the probability of travers-
ing edges E, or {i, j} respectively. Strategies πp and πe solving the maximin in
Eq. (2) constitute a Nash equilibrium of this one-step game.

Transformed belief bπe
depends on the previous belief in situation

〈
sp, b̃

〉
and

the probability with which the evader uses edges (i, j) ∈ E . Formally, probability
bπe,j of evader being in vertex j in the subsequent stage equals to

bπe,j =
∑

i∈V
b̃i · πe(i, j) (3)

3.3 Value Update

The dynamic programming operator H has a unique fixpoint v∗ that satisfies
v∗ = Hv∗, and for an arbitrary set of value functions v the recursive application
of H converges to v∗ (i.e. H∞v = v∗) [3]. To apply the operator H, we need to
solve Eq. (2) – i.e., to solve the maximin problem for the situation

〈
sp, b̃

〉
.

Each of the value functions v〈sp〉 is represented using a set of α-vectors
Γ 〈sp〉 =

{
αk | k = 1 . . . |Γ 〈sp〉 |}, αk = (αk

1 , . . . , α
k
N ). The evader seeks a strategy

πe that minimizes the payoff of pursuer’s best response to πe. This problem can
be solved by means of a linear program shown in LP 1.

Since value of every action E of the pursuer against a fixed strategy πe of
the evader equals to

v′ 〈sp〉 (b̃)E
πe

= γv
〈
sE

p

〉
(bπe

) = γ max
α∈Γ〈sE

p 〉
∑

j∈V
αjbπe,j , (9)
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min
V,b′,πe

V (4)

s.t. γ
∑

j∈V
αj · bπe,j ≤ V ∀E ∈ inc(sp),∀α ∈ Γ

〈
sE

p

〉
(5)

∑

i∈V
b̃i · πe(i, j) = bπe,j ∀j ∈ V (6)

∑

j∈adj(i)

πe(i, j) = 1 ∀i ∈ V (7)

πe(i, j) ≥ 0 ∀i, j ∈ V (8)

LP 1: Linear program for computing optimal evader’s strategy πe in game sit-
uation

〈
sp, b̃

〉
for state sp and belief b̃ (assuming the evader is currently not at

the position of the pursuer).

the maximum can be rewritten using a set of inequalities – one for each
α ∈ Γ

〈
sE

p

〉
(Constraints (5)). Constraints (6) ensure that the transformed belief

bπe
is computed according to Eq. (3), while constraints (7) and (8) ensure that the

strategy πe is valid (i.e., it assigns positive probabilities only to vertices adja-
cent to evader’s current position). The strategy of the pursuer πp is obtained
from the dual linear program of LP 1 – the dual variables corresponding to the
constraints (5) represent the optimal strategy of the pursuer.

4 Extended Value Update

The original approach [3] did not consider that the pursuer can capture the
evader on an edge – i.e., the case when both the evader and a pursuing unit choose
to use the same edge at the same time. While from the theoretic perspective the
results and methodology applies, designing a practical algorithm requires us to
formally extend the model since capturing on edges is a natural prerequisite.

The main difference is in the computation of the transformed belief bπe
that

can now also depend on the action E the pursuer played – if the game continues
after playing action E, the pursuer not only knows that the evader is not in
current vertices sE

p , but also that the evader has used none of the edges in E in
the previous move. We will thus denote the transformed belief as bE

πe
. Formally:

bE
πe,j =

1
1 − β

∑

i|{j,i}�∈E

b̃i · πe(i, j) (10)

Note that due to the exclusion of some of the edges, it is necessary to perform
normalization, where β again corresponds to a probability that the evader will
be captured in this step, β =

∑
{j,i}∈E b̃i · πe(i, j).
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Second, we also need to update the expected value of playing action E by
the pursuer, since the probability that the evader is caught has changed

v′〈sp〉 (b̃)E
πe

= γ
[
β + (1 − β) · v

〈
sE

p

〉(
bE
πe

)]
. (11)

Now, since each of the value functions v 〈sp〉 is represented using a finite set
Γ 〈sp〉 of α-vectors, its value in bE

πe
can be computed as

v〈sp〉 (bE
πe

) = max
α∈Γ〈sp〉

∑

j∈V
αjb

E
πe,j =

1
1 − β

max
α∈Γ〈sp〉

∑

j∈V

∑

i|{j,i}�∈E

αj · b̃i ·πe(i, j). (12)

Value v′〈sp〉 (b̃)E
πe

of playing action E against evader’s strategy πe is linear in πe

since the term (1−β) cancels out. This value is used to replace the best-response
constraints (5) in LP 1 and the resulting linear program can be used to compute
evader’s optimal strategy πe in the game with capturing on edges (see LP 2).
The optimal strategy of the pursuer is again obtained by solving a dual linear
program to LP 2.

min
V,πe

V (13)

s.t.V ≥ γ

⎡

⎣β +
∑

j∈V

∑

i|{j,i}�∈E

αj · b̃i · πe(i, j)

⎤

⎦ ∀E ∈ inc(sp),∀α ∈ Γ
〈
sE

p

〉
(14)

∑

j∈adj(i)

πe(i, j) = 1 ∀i ∈ V (15)

πe(i, j) ≥ 0 ∀i, j ∈ V (16)

LP 2: Linear program for computing evader’s strategy.

5 HSVI for Pursuit-Evasion Games

We are now ready to present the first approximate algorithm for solving pursuit-
evasion games with one-sided partial observability and concurrent moves. We use
the value update as described in Sect. 4 in a point-based manner and present a
new method for selecting belief points to be updated, compared to the original
version of HSVI (see Sect. 2). Specifically, we let the evader choose the new belief
(induced by his possibly suboptimal one-step strategy πe) in an optimistic way,
assuming that the value of the subsequent stage might be lower than the true
value. We will then either try to prove that this optimism is unjustified (i.e.
the true value of the subsequent stage is higher than what the evader thinks)
and hence make the evader change his strategy, or show that the strategy πe of
the evader is near-optimal. We model these optimistic values from the evader’s
perspective by value functions v, while the optimistic values from the pursuer’s
perspective are modeled by v. These value functions correspond to the ones used
in the HSVI algorithm for POMDPs.
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Fig. 1. Game used for demonstration of the ideas behind the algorithm. Pursuer starts
in vertex A, evader starts in either B or C with uniform probability.

We describe important building blocks of the algorithm. First, we present the
representation of value functions v and v used to approximate the optimal value
functions v∗ in Sect. 5.1. These value functions have to satisfy v ≤ v∗ ≤ v and
hence they must be initialized properly, which is discussed in Sect. 5.2. The value
functions v use the point-representation instead of the α-vector one and the linear
program for strategy computation presented in Sect. 4 is not directly applicable.
In Sect. 5.3 a modification of the linear program for computing strategies of
the players that uses the point representation of value functions is presented.
Similarly as in the case of the HSVI algorithm for POMDPs, we rely on point-
based updates. We discuss these updates in Sect. 5.4. Each point corresponds to
a game situation in our case. We sample these game situations using a forward
exploration heuristic, discussed in Sect. 5.5. This heuristic skews the sampling
process towards reachable game situations. Finally the complete algorithm is
presented in Sect. 5.6.

Example. We will be illustrating the ideas behind the algorithm on a simple
game with three vertices shown in Fig. 1. The pursuer starts in vertex A, while
the evader starts either in vertex B or C with uniform probability. The game
situation therefore corresponds to 〈A, {B : 0.5, C : 0.5}〉. Note that there is a
loop in vertices A and C (i.e. players can wait in these vertices), while there is
no loop in vertex B.

5.1 Value Functions Representation

The algorithm approximates the optimal strategies within ε tolerance by approx-
imating the optimal value functions v∗ corresponding to the values of infinite
horizon games. Similarly as in the case of the POMDP counterpart, we will use
a pair of PWLC value functions v and v to approximate v∗, however in our
case we have to consider a pair of value functions v〈sp〉 and v〈sp〉 for each posi-
tion sp of the pursuer. The collection of lower value functions v bound v∗ from
below and the collection of upper value functions v bound v∗ from above, i.e.
v〈sp〉 (b) ≤ v∗〈sp〉 (b) ≤ v〈sp〉 (b) for every sp ∈ VN and every belief b ∈ Δ(V).
The pair of lower and upper value functions v and v will be jointly referred to
as v̂. The goal of the algorithm is to reduce the gap between v and v at relevant
belief points (i.e., those reached when optimal strategies are played). We denote
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Fig. 2. A visualization of a projection to a lower envelope of a set of points in LP 3.

this gap in situation 〈sp, b〉 by

width(v̂〈sp〉 (b)) = v〈sp〉 (b) − v〈sp〉 (b). (17)

The lower value function v〈sp〉 is represented by a set of α-vectors, the upper
envelope of which forms the PWLC function v〈sp〉. The set of α-vectors rep-
resenting v〈sp〉 is denoted Γ 〈sp〉. Given the representation, equations for value
updates and linear program for finding optimal strategies from Sect. 4 are directly
applicable to v.

The upper value function v〈sp〉 is represented by a set of points Υ 〈sp〉, the
lower envelope of which forms the PWLC function v〈sp〉

Υ 〈sp〉 =
{

(xi
1, x

i
2, . . . , x

i
|V|) → vi

∣
∣
∣
∣ i = 1 . . . |Υ 〈sp〉 |

}

. (18)

The value of v〈sp〉 can be computed by means of the LP 3 that projects coor-
dinates (b1, . . . , b|V|) on the lower envelope of points in Υ 〈sp〉. Coordinates
(b1, . . . , b|V|) are expressed as convex combination of coordinates of points in
Υ 〈sp〉 (Eqs. (20) and (21)). The minimization of the convex combination of
the respective values (vi is the value of a point with coordinates (xi

1, . . . , x
i
|V|))

ensures that the projection lies on the lower envelope of Υ 〈sp〉 (Eq. (19)). The
idea of this linear program is depicted graphically in Fig. 2.

min
c∈[0,1]k

∑

i=1...k

ci · vi (19)

s.t.
∑

i=1...k

ci · xi
j = bj ∀j = 1 . . . N (20)

∑

i=1...k

ci = 1 (21)

LP 3: Lower envelope projection LP.

5.2 Initialization of Value Functions

The value functions have to be initialized so that v ≤ v∗ ≤ v holds for every state.
Each of the lower value function v〈sp〉 initially corresponds to the probability
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Fig. 3. Initialization of value functions

that the evader is caught in the current game situation and hence the pursuer
gets the reward γ0 = 1, i.e.

v〈sp〉 (b) =
∑

i∈sp

bi. (22)

This initialization disregards all future rewards that may be obtained by the
pursuer, thus it lower bounds the optimal value v∗〈sp〉 (b).

The upper value functions v are initialized by solving a perfect-information
version of the game (which is a discounted stochastic game solvable e.g. by Shap-
ley’s algorithm [6]). This is similar to the case of the HSVI for POMDPs, where
the values of a perfect-information version of the POMDP, a Markov decision
process, are used to initialize the value function. The values of the perfect-
information game define the value of v in extreme points of belief simplices.

Example. The initialization of value functions for the example game (Fig. 1) is
shown in Fig. 3. In order to provide cleaner visualization, we consider only a
subset of the belief space where the evader is caught with zero probability. The
lower value functions v are initialized to the probability that the evader is caught
in the initial situation, which is zero in the considered part of belief space. The
upper value functions are initialized by solving the perfect-information version
of the game: If the pursuer starts in vertex A, he captures the evader in one
move regardless of his initial position B or C (because he knows where she is
located) and gets a reward γ. If the pursuer starts in vertex B, he will need two
moves to capture the evader starting in A or C (the time needed to reach vertex
C) and hence the reward of γ2. Finally if the pursuer starts in vertex C, he will
need two moves to capture the evader starting in A (with reward γ2) and one
move to capture the evader starting in B (with reward γ). These values are used
to form points marked in Fig. 3.

5.3 Computing Strategies with Point-Represented Value Functions

In Sect. 4 we presented a linear program (LP 2) for computing strategies using
value functions in the α-vectors representation that are applicable for updating
the lower bound value functions v. Here we present the modification for updating
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value functions v represented by sets of points Υ 〈sp〉. Specifically we modify
Constraint (14) to use ideas from the projection LP 3.

Let us denote the probability that the evader was caught on edge when E
was played by the pursuer as βE

πe
=

∑
{i,j}∈E b̃iπe(i, j). The value of playing

action E in situation
〈
sp, b̃

〉
was presented in Eq. (11). This leads to a set of

best response constraints (corresponding to (14))

V ≥ γ
[
βE

πe
+

(
1 − βE

πe

) · v
〈
sE

p

〉(
bE
πe

)] ∀E ∈ inc(sp) (23)

The minimization over V allows us to rewrite every Constraint (23) using
Constraints (19) to (21) from the LP 3:

V ≥ γ

⎡

⎢
⎣βE

πe
+

(
1 − βE

πe

) ∑

(x,v)∈Υ〈sE
p 〉

cx,v
E · v

⎤

⎥
⎦ (24)

∑

(x,v)∈Υ〈sE
p 〉

cx,v
E · xj =

1
1 − βE

πe

∑

{i,j}�∈E

b̃iπe(i, j)
(
= bE

πe,j

) ∀j ∈ 1 . . . N (25)

∑

(x,v)∈Υ〈sE
p 〉

cx,v
E = 1 (26)

This set of constraints is however not linear. The linearity can be established
by multiplying both sides of Constraints (25) by (1 − βE

πe
) and introducing new

variables ĉx,v
E as a substitution for (1 − βE

πe
) · cx,v

E . The resulting linear program
is shown in LP 4. The strategy of the pursuer can be once again obtained from
dual variables corresponding to Constraints (28).

min
V,πe,ĉ

V (27)

s.t. γ
∑

(x,v)∈Υ〈sEp 〉
ĉx,v

E · v + γ
∑

{i,j}∈E

b̃iπe(i, j) ≤ V ∀E ∈ inc(sp) (28)

∑

(x,v)∈Υ〈sEp 〉
ĉx,v

E · xj =
∑

{i,j}�∈E

b̃iπe(i, j) ∀E ∈ inc(sp), ∀j ∈ 1 . . . N (29)

∑

(x,v)∈Υ〈s′
p〉
ĉx,v

E = 1 −
∑

{i,j}∈E

b̃iπe(i, j) ∀E ∈ inc(sp) (30)

∑

j∈adj(i)

πe(i, j) = 1 ∀i ∈ 1 . . . N (31)

πe(i, j) ≥ 0 ∀i, j ∈ 1 . . . N (32)
ĉx,v

E ≥ 0 ∀E ∈ inc(sp), ∀(x, v) ∈ Υ
〈
se

p

〉
(33)

LP 4: LP for computing evader’s strategy using point-represented v.
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5.4 Point-Based Updates

In the HSVI algorithm for POMDPs, the gap between value functions is reduced
by performing point-based updates. The lower value function is updated by
adding a new α-vector to the set Γ , obtained using the Bellman backup, and
the upper value function is updated by addition of a new point into the set Υ
by performing a one-step lookahead. In our algorithm, the point-based update
in a game situation 〈sp, b〉 is performed in a similar way, however unlike in the
POMDP case we have to account for strategies of both players.

The newly created α-vector to add into Γ 〈sp〉 corresponds to the value of
optimal pursuer’s strategy with respect to v in the game situation 〈sp, b〉 where
the point-based update is performed. This strategy is obtained by solving the
LP 2 and its value is linear in the belief b (and thus representable as an α-vector).
We will denote this α-vector LΓ (sp, b).

The update of the upper value function v〈sp〉 requires to compute the value
of the game situation 〈sp, b〉 when the value of the subsequent stage is given
by v (which is similar to the one-step lookahead). This value V is obtained by
solving LP 4. A newly formed point UΥ (sp, b) = b → V is added into Υ 〈sp〉
which completes the point-based update of v〈sp〉.
Example. The idea behind point-based updates will be presented on the game
from Fig. 1. We will perform point based updates of value functions depicted
in Fig. 3 in two game situations 〈A, {C : 1}〉 and 〈A, {B : 0.5, C : 0.5}〉 (i.e. the
pursuer is located in vertex A and the evader is located either in vertex C, or
she is located in either B or C with uniform probability).

The optimal strategy of the pursuer in situation 〈A, {C : 1}〉 with respect to
v depicted in Fig. 3 is to move along the edge {A,C}. This leads to immediate
capture of the evader located in vertex C and the pursuer hence gets a reward
γ. If the pursuer was located in vertex B instead, the pursuer would reach a
situation 〈C, {A : 1}〉 by playing {A,C}, where his reward according to current
state of v is zero. The value of this strategy is expressed by α-vector α1 shown
in Fig. 4(Left). The value of the one-step lookahead in situation 〈A, {C : 1}〉 is
γ which forms a new point on the upper value function v〈A〉.

The value of the one-step lookahead at situation 〈A, {B : 0.5, C : 0.5}〉 is
(γ+γ2)/2. A new point corresponding to this belief and to this value is added to
Υ 〈A〉 in Fig. 4(Middle). The optimal strategy of the pursuer to play in situation
〈A, {B : 0.5, C : 0.5}〉 with respect to v depicted in Fig. 4(Left) is to wait in
vertex A. The strategy guarantees him reward γ when the evader starts in vertex
A, and γ2 when the evader starts in C. The value of this strategy is represented
by α-vector α2 shown in Fig. 4(Right).

Note that these two point-based updates were sufficient to reduce the gap in
the initial game situation 〈A, {B : 0.5, C : 0.5}〉 to zero. In the next section we
present a heuristic approach to identify these points.
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Fig. 4. Visualization of point-based updates: (Left) update at 〈A, {C : 1}〉 (Middle)
upper value function update at 〈A, {B : 0.5, C : 0.5}〉 (Right) lower value function
update at 〈A, {B : 0.5, C : 0.5}〉.

5.5 Forward Exploration

In every iteration of the HSVI algorithm, a forward sampling is used to generate
a sequence of points to be updated using the point-based updates. In this section
we propose a heuristic approach to direct this sampling.

The HSVI algorithm for POMDPs uses the concept of excess to identify
observations (and consequently belief points) that contribute to the fact that
the value in the initial belief point exceeds the desired precision ε. We define
a similar concept of excess contribution taking pursuer’s actions into account
instead of observations.

Definition 1 (Excess contribution). Let 〈sp, b〉 be a game situation and v
and v be lower and upper value functions. Let πe be evader’s strategy for the first
stage of the game and E be action of the pursuer. We define excess contribution
of playing πe and E as

ρ〈sp, b〉(πe, E) = γ

⎡

⎣1 −
∑

i∈sp

bi

⎤

⎦ ·
⎡

⎣1 −
∑

{i,j}∈E

b̃iπe(i, j)

⎤

⎦ · width
(
v̂
〈
sE

p

〉
(bE

πe
)
)

(34)
where b̃ is the belief updated with the information that evader is located in none
of the vertices of sp computed using Eq. (1).

The forward sampling process aims to ensure that the excess contribution in
all game situations reachable from the current situation 〈sp, b〉 gets sufficiently
small in order to guarantee that the gap in the current situation width(v̂〈sp〉 (b))
does not exceed ε̂. Whenever a new game situation is to be sampled in the course
of forward exploration, the one with the highest weighted excess contribution is
selected. The weighted excess contribution takes both the excess contribution
reached by individual pursuer’s actions E and optimal optimistic strategy πe of
the evader (solved using LP 2 with respect to v) and the probability of play-
ing each of the actions of the pursuer according to his optimistic strategy πp

(obtained from LP 4 using value functions v) into account. First an action E
with the highest weighted excess contribution πp(E) · ρ〈sp, b〉 (πe, E) is selected
and then the new game situation

〈
sE

p , bE
πe

〉
is considered for further exploration.
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The forward sampling process terminates when we are able to guarantee that
the gap in the current game situation 〈sp, b〉 will not exceed the required gap
ε̂ after a point-based update at 〈sp, b〉 is performed. The sufficient condition to
guarantee that this happens is characterized by the following theorem.

Definition 2 (Values of a point-based update). Let 〈sp, b〉 be a game situ-
ation and LΓ (sp, b) and UΥ (sp, b) = b → V result from the point-based update at
〈sp, b〉. We define the values of a point-based update at 〈sp, b〉 as (LΓ (sp, b)) and
val(UΥ (sp, b)), where val(LΓ (sp, b)) is the value of α-vector LΓ (sp, b) evaluated
at belief point b and val(UΥ (sp, b)) = V .

Theorem 1. Let 〈sp, b〉 be a game situation and v, v be a collection of lower
and upper value functions corresponding to the game. Let πe be optimal strategy
of the evader with respect to v. Let ε̂ > 0 be chosen so that for every E ∈ inc(sp)
the following holds

ρ〈sp, b〉(πe, E) ≤ ε̂ (35)

then val(UΥ (sp, b)) − val(LΓ (sp, b)) ≤ ε̂.

Proof. We will show that the values of pursuer’s best responses to πe at 〈sp, b〉
with respect to v and v cannot differ by more than ε̂. The expected utility of
playing action E against πe with respect to v follows from Eq. (11):

vE =
∑

i∈sp

bi + γ

⎡

⎣1 −
∑

i∈sp

bi

⎤

⎦·
⎡

⎣
∑

{i,j}∈E

b̃iπe(i, j) +

⎛

⎝1 −
∑

{i,j}∈E

b̃iπe(i, j)

⎞

⎠·v〈
sE

p

〉(
bE
πe

)

⎤

⎦

(36)
Value vE representing the expected utility of playing E against πe with respect
to v is defined analogously. Note that

max
E∈inc(sp)

vE = val(LΓ (sp, b)) and max
E∈inc(sp)

vE ≥ val(UΥ (sp, b)). (37)

The first equality holds because πe is optimal with respect to v, while the second
inequality holds because πe might be suboptimal with respect to v. It holds for
every E ∈ inc(sp) that

vE − vE = γ

⎡

⎣1 −
∑

i∈sp

bi

⎤

⎦ ·
⎡

⎣1 −
∑

{i,j}∈E

b̃iπe(i, j)

⎤

⎦ · width
(
v̂
〈
sE

p

〉
(bE

πe
)
)

(38)

= ρ〈sp, b〉(πe, E) ≤ ε̂. (39)

Then

val(UΥ (sp, b)) − val(LΓ (sp, b)) ≤ max
E∈inc(sp)

vE − max
E∈inc(sp)

vE (40)

≤ max
E∈inc(sp)

[vE − vE ] ≤ ε̂.
��
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Example. Let us consider the game from Fig. 1 and value functions depicted in
Fig. 3. The initial game situation is 〈A, {B : 0.5, C : 0.5}〉. The optimal optimistic
strategy πp of the pursuer in this situation (chosen according to v) is to wait in
vertex A, while the optimal optimistic strategy πe of the evader (chosen according
to v) is to stay in the vertex C (if he started there), or to move from vertex
B to A (as he has no other option). As the action {A,A} is the only action
played by the pursuer with a positive probability according to πp, it has the
highest weighted excess contribution. New game situation after action {A,A}
and strategy πe are played is 〈A, {C : 1}〉. The optimal optimistic strategy of
the pursuer in the newly generated situation captures the evader immediately
(by moving from A to C) and hence its weighted excess contribution is zero and
the forward sampling process can terminate. Note that the situations generated
by the forward sampling process correspond to the situations considered in the
example from Sect. 5.4.

5.6 Complete Algorithm

We can now state the complete HSVI algorithm for one-sided partially-
observable pursuit-evasion games (Algorithm 1). First of all, value functions
v and v are initialized on line 1. This initialization was described in Sect. 5.2.

The algorithm then iteratively performs exploration (line 3) until the required
precision ε is reached (line 2). The goal of the exploration (line 8) is to ensure
that the gap between v〈sp〉 (b) and v〈sp〉 (b) is bounded by ε̂.

If this goal has not been fulfilled yet, there must then be according to The-
orem 1 an action E such that ρ〈sp, b〉(πe, E) > ε̂. This action is selected on
line 15 either using the weighted excess heuristic with probability 1−η (line 12),
or it is selected based on the excess contribution only to guarantee that all
actions are eventually explored (this happens with probability η on line 14). We
term the parameter η the exploration parameter. In order to make sure that
ρ〈sp, b〉(πe, E) ≤ ε̂, it must hold that

width
(
v̂
〈
sE

p

〉
(bE

πe
)
) ≤ ε̂/

⎛

⎝γ

⎡

⎣1 −
∑

i∈sp

bi

⎤

⎦ ·
⎡

⎣1 −
∑

{i,j}∈E

b̃iπe(i, j)

⎤

⎦

⎞

⎠ (41)

which follows from Theorem 1. This is satisfied by recursive application of the
Explore procedure (line 18) on the newly generated game situation.

The optimal strategy π′
e of the evader with respect to v need not equal

πe—however the strategy π′
e is used when the point UΥ (sp, b) is constructed.

For this reason, point-based updates are performed at the belief point bE′
π′
e

on
lines 19 to 23, where E′ is chosen similarly to line 15, however a pessimistic
strategy π′

e of the evader (chosen according to v) is taken into account. Finally,
point-based update is performed in the current game situation 〈sp, b〉 on lines 24
and 25.

In order to guarantee the convergence of the algorithm a game situation
〈sp, b〉 is selected randomly and a point-based update in this situation is per-
formed on lines 4 to 6. There is a non-zero probability of sampling a point where
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Data: Graph G, initial position 〈s0p, b0
〉
, discount factor γ, precision ε > 0,

exploration parameter η
Result: Set of approximate value functions v̂

1 Initialize v̂
2 while width

(
v̂
〈
s0p
〉
(b0)
)

> ε do
3 Explore(s0p, b0, ε)

4 〈sp, b〉 ← random game situation
5 Γ 〈sp〉 ← Γ 〈sp〉 ∪ {LΓ (sp, b)}
6 Υ 〈sp〉 ← Υ 〈sp〉 ∪ {UΥ (sp, b)}
7 return v̂

8 procedure Explore(sp, b, ε̂)
9 if width(v̂〈sp〉 (b)) > ε̂ then

10 πe ← optimal evader’s strategy at 〈sp, b〉 with respect to v
11 with probability 1 − η
12 πp ← optimal strategy at 〈sp, b〉 with respect to v
13 otherwise
14 πp ← uniform distribution over inc(sp)
15 E ← argmaxE′ πp(E

′) · ρ〈sp, b〉(πe, E
′)

16 ε̂′ ← ε̂/
(
γ
[
1 −∑i∈sp

bi

]
·
[
1 −∑{i,j}∈E b̃iπe(i, j)

])
// ε̂′ = ∞ in

case of division by zero

17

18 Explore(sE
p , bE

πe
, ε̂′)

19 π′
e ← optimal evader’s strategy at 〈sp, b〉 with respect to v

20 E′ ← argmaxE′′ πp(E
′′) · ρ〈sp, b〉(π′

e, E
′′)

21 if πp(E
′) · ρ〈sp, b〉(π′

e, E
′) > 0 then

22 Γ
〈
sE′

p

〉
← Γ

〈
sE′

p

〉
∪ {LΓ (sE′

p , bE′
π′
e
)}

23 Υ
〈
sE′

p

〉
← Υ

〈
sE′

p

〉
∪ {UΥ (sE′

p , bE′
π′
e
)}

24 Γ 〈sp〉 ← Γ 〈sp〉 ∪ {LΓ (sp, b)}
25 Υ 〈sp〉 ← Υ 〈sp〉 ∪ {UΥ (sp, b)}

Algorithm 1. HSVI algorithm for one-sided pursuit-evasion games

the approximation can be improved, and the probability of not sampling such a
point vanishes in time.

6 Experiments

We now turn to the experimental evaluation of the scalability of our algorithm.
We consider games with two pursuing units played on a m × n grid and assume
that the initial distance between the pursuers and the evader is maximal – i.e.,
the pursuer starts in the top left corner, while the evader starts in the bottom
right one. The pursuer knows the initial position of the evader, however he
does not observe her actions until the encounter. This scenario corresponds to a
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situation when a suspect is seen at some location and the goal of the pursuer is
to locate and capture her. An example of a m × n grid game is shown in Fig. 5.

Fig. 5. 3×4 grid game. Initial positions of the pursuer are marked by P , initial position
of the evader is marked by E.

6.1 Algorithm Configuration

As mentioned in Sect. 5.2, the initialization of the upper value functions can be
done by the Shapley’s value iteration algorithm [6] on the perfect information
variant of the game. The algorithm was run for at most 20 s, unless the maximum
change in the current iteration is lower than 10−3. In order to guarantee that
the value functions v upper bound the optimal value functions v∗, we initialized
Shapley’s algorithm with valuation assigning value 1 to every game state (and
the values thus approach v∗ from above).

For our HSVI algorithm, we set the exploration parameter to η = 0.1. The
algorithm was implemented in Java and IBM ILOG CPLEX 12.6.3 was used to
solve all linear programs.

6.2 Comparison with Online Outcome Sampling

Since there are, to the best of our knowledge, no other existing algorithms that
approximate optimal strategies in partially observable stochastic games with
infinite horizon, we compare the performance with the representative of the
algorithms for approximately solving games with finite horizon (or imperfect-
information extensive-form games; EFGs) – online outcome sampling algorithm
(OOS) [4]. The algorithm is a modification of Monte Carlo Tree Search for
imperfect-information games, so that the algorithm constructs the game tree
incrementally. While the algorithm is designed for finite-horizon games, the com-
bination of sampling and incremental building of the game tree allows us (in
theory) to use this algorithm for infinite horizon games and extend the horizon
over time. However, the size of the EFG grows exponentially in the horizon t,
thus increasing the horizon to improve the approximation is typically not an
option. This behavior is demonstrated on a 3× 4 grid game with discount factor
γ = 0.95 and horizon t = 8. The OOS algorithm runs out of 50GB of memory
before reaching a close approximation of the value of the infinite-horizon game.
Specifically, while our algorithm was able to compute 0.02-optimal strategy with
value 0.769 in 25.5 s, OOS found a strategy with value of only 0.553 after 160 s.
Less than 1 GB of memory was sufficient for our HSVI algorithm.
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Fig. 6. Convergence of the OOS algorithm on 3× 4 grid game, γ = 0.95, horizon t = 8

6.3 Scalability of HSVI

We now focus only on our HSVI algorithm and analyze its scalability. We show
how the computation time and the quality of found strategies depend on the size
of the graph, desired precision (parameter ε), and the discount factor γ. All of
these parameters influence the length of the samples generated by the forward
exploration heuristic (Sect. 5.5), the lower ε or the higher γ, the longer samples
may have to be generated in order to satisfy property required by Theorem 1.
We measure the runtime of the algorithm needed to reach 2ε precision on 3 × N
grid games with 4 independent runs for each parametrization.

Figure 7(Left) shows the computation times for increasing number of columns
of the grid N and for different desired precisions ε with discount factor set to
γ = 0.95. The runtime of the algorithm exhibits the exponential dependency on
N as well as on the desired precision ε. While an 0.02-optimal strategy for a 3×4
game was found in 15.1 s on average, sufficiently accurate strategy was not found
after 3 h in the case of the 3 × 8 game (the average gap in the initial situation
reached 0.0275 after 3 h). Figure 7(Right) displays the runtime dependency on
the discount factor γ. The higher the discount factor γ, the more important
future rewards are and hence longer plays have to be considered.

While on smaller graphs our algorithm can compute strategies that closely
approximate optimal strategies, the current approach has its limitations and
the convergence has a long tail on larger graphs. We illustrate such an example
on a game obtained from a 4 × 8 grid where six randomly selected edges were
contracted to a final graph with 26 vertices. The convergence of the lower and
upper bounds in the initial game situation is depicted in Fig. 8(Left). The long-
tail convergence is caused by two factors: (1) the increasing time of each iteration
as the number of α-vectors and points in the representation of the value func-
tions grows (shown in Fig. 8; Right) and (2) the necessity to play near-optimal
strategies in distant stages that are less likely to be reached using the forward
exploration heuristic.
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Fig. 7. Time needed to reach 2ε precision on a 3×N grid game. (Left) scalability in the
width of the grid N (γ = 0.95) (Right) scalability in the discount factor γ (ε = 0.025)

Fig. 8. Game with 26 vertices. (Left) convergence plot (Right) size of value functions

The algorithm was able to approximate the optimal value of the infinite game
within 0.147 tolerance in 2 h. The larger the representation of value functions
is (in terms of α-vectors and points), the larger the linear programs are. While
iterations took 1–2 s when value functions were represented using roughly 1000
vectors and 4000 points, the iteration time increases to 20–25 s when the number
of vectors reaches 7000 and the number of points reaches 40000.

7 Conclusions

The class of stochastic games with one-sided partial observability is a well-suited
model for decision making in security domains and designing robust control
strategies. We focus on pursuit-evasion games where the evader knows the posi-
tion of the pursuer, but the pursuer does not know evader’s position.

We present the first approximate algorithm for solving games from this
class. The algorithm builds upon recent theoretic results showing that the value
functions exhibit similar properties to their counterparts in Partially Observ-
able Markov Decision Processes (POMDPs); namely the convexity in the belief
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space [3]. The adversarial nature of the problem makes it however impossi-
ble to use POMDP techniques directly. Our algorithm thus extends the ideas
from approximate solving of POMDPs to one-sided partially observable pursuit-
evasion games. The experimental evaluation shows that our algorithm can closely
approximate optimal strategies, however, exhibits a long-tail convergence with
increasing size of the game.

Our first approximate algorithm for partially observable pursuit-evasion
games with infinite horizon opens a completely new line of research with sig-
nificant potential applications in security applications. Addressing the currently
limited scalability with novel tailored heuristics or pruning in value representa-
tions is a natural continuation of the presented work. Secondly, adapting this
approach for other game models relevant in security domain (e.g., sequential
security games) is another promising direction.

Acknowledgements. This research was supported by the Czech Science Foundation
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Abstract. In distributed detection based on consensus algorithm, all
nodes reach the same decision by locally exchanging information with
their neighbors. Due to the distributed nature of the consensus algo-
rithm, an attacker can induce a wrong decision by corrupting just a few
measurements. As a countermeasure, we propose a modified algorithm
wherein the nodes discard the corrupted measurements by comparing
them to the expected statistics under the two hypothesis. Although the
nodes with corrupted measurements are not considered in the protocol,
under proper assumptions on network topology, the convergence of the
distributed algorithm can be preserved. On his hand, the attacker may
try to corrupt the measurements up to a level which is not detectable
to avoid that the corrupted measurements are discarded. We describe
the interplay between the nodes and the attacker in a game-theoretic
setting and use simulations to derive the equilibrium point of the game
and evaluate the performance of the proposed scheme.

Keywords: Adversarial signal processing · Consensus algorithm · Dis-
tributed detection with corrupted measurements · Data fusion in mali-
cious settings · Game theory

1 Introduction

In distributed detection applications a group of nodes in a network collect mea-
surements about a certain phenomenon [1]. In centralized architectures, the mea-
surements are sent to a central processor, called fusion center (FC), which is
responsible of making a global decision. If needed, the result of the decision
is then transmitted to all the nodes. Though attractive for the possibility of
adopting an optimum decision strategy based on the entire set of measurements
collected by the network, centralized solutions present a number of drawbacks,
most of which related to the security of the network. For instance, the FC rep-
resents a single point of failure or a bottleneck for the network, and its failure
may compromise the correct behavior of the whole network. In addition, due to
c© Springer International Publishing AG 2016
Q. Zhu et al. (Eds.): GameSec 2016, LNCS 9996, pp. 455–466, 2016.
DOI: 10.1007/978-3-319-47413-7 26
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privacy considerations or power constraints, the nodes may prefer not to share
the gathered information with a remote device. For the above reasons, decentral-
ized solutions have attracted an increasing interest. Consensus Algorithm is a
fusion decentralized algorithm in which the nodes locally exchange information
to reach a final agreement about the phenomenon of interest [2,3]. Consensus
algorithm have been proven to provide good performance in many applications
like cognitive radio [4], social networks or experimental sociology [5], and many
others like flocking, formation control, load-balancing network, wireless sensor
networks, etc. [2].

Despite the benefits of decentralized solutions using consensus algorithm,
their nature makes them vulnerable to many security threats: for instance,
attacks that emulate the phenomenon of interest to have an exclusive benefit
from the resource, i.e., the Primary User Emulation Attack (PUEA) in cognitive
radio applications [6], or data (measurements) falsification attacks [7], in which
the attacker tries to induce a wrong decision by injecting forged measurements.
This kind of attack can be launched in one of two ways: either the attacker can
directly access the programmable device or, more simply, attack the physical link
between the phenomenon and the nodes. In the first case, the attacker has full
control over the nodes, and many effective solutions are proposed [8–11] whereas
in the second case, the attacker cannot control the node and then he is not part
of the network. In this paper, we focus on this second case.

In this attack scenario, when centralized systems are considered, by relying
on the observation of the entire set of measurements, the fusion center can easily
’detect’ the corrupted values and discard them, as long as their number remains
limited. In this way, a reliable decision can still be done, see [12–15]. Attempts
have been made to defend against those attacks in decentralized networks that
employ a consensus algorithm to make a decision [16–18], when the attacker is
assumed to control the nodes. Other solutions based on network control theory
are proposed in [8–11]. However, all these methods do not consider the possibility
that the attackers are aware of the defense mechanism adopted by the network
and hence have their own countermeasures.

In this paper, by focusing on the measurement falsification attack with cor-
ruption of the physical link, we propose a game theoretical framework to distrib-
uted detection based on consensus algorithm. Specifically, we propose to include
a preliminary isolation step in which each node may discard its own measure-
ment based on the available a priori knowledge of the measurements statistics
under the tho hypotheses. Then, the algorithm proceeds as usual, with the nodes
that continue to receive and dispatch messages from their neighbors. Under some
assumptions on network topology, that prevents that isolation step causes the
network to disconnect, the convergence of the consensus algorithm is preserved.
By following the principles of adversarial signal processing [19], we assume that in
turn the attacker may adjust the strength of the falsification attack to avoid that
the fake measurements are discarded. We then formalise the interplay between
the network designed and the attacker as a zero-sum competitive game and use
simulations to derive equilibrium point of the game.
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The rest of this paper is organized as follows. In Sect. 2, we introduce the
network model and describe the consensus algorithm. In Sect. 3, we introduce
the measurement falsification attack against the detection based on consensus
showing its powerfulness. In Sect. 4, we propose a refinement of the consensus
algorithm to make it robust to the measurement falsification attack. Then, the
interplay between the attacker and the network designer is casted into a game-
theoretic framework in Sect. 5. The equilibrium point is found numerically in
Sect. 6. Then, we conclude the paper in Sect. 7 with some final remarks.

2 Distributed Detection Based on Consensus Algorithm

In this section, we describe the distributed detection system considered in this
paper, when no adversary is present and introduce the consensus algorithm the
detection system relies on.

2.1 The Network Model

The network is modeled as an undirected graph G where the information can be
exchanged in both directions between the nodes. A graph G = (N , E) consists
of the set of nodes N = {n1, ..., nN} and the set of edges E where (ni, nj) ∈ E
if and only if there is a common communication link between ni and nj , i.e.,
they are neighbors. The neighborhood of a node ni is indicated as Ni = {nj ∈
N : (ni, nj) ∈ E }. For task of simplicity, we sometimes refer to Ni as the set of
indexes j instead than directly of nodes. The graph G can be represented by its
adjacency matrix A = {aij} where aij = 1, if (ni, nj) ∈ E , 0 otherwise.

The degree matrix D of G is a diagonal matrix with dii = ai1 +ai2 + ...+ain,
dij = 0, ∀i, j �= i [20].

2.2 The Measurement Model

Let S be the status of the system under observation: we have S = 0, under
hypothesis H0 and S = 1 under hypothesis H1. We use the capital letter Xi

to denote the random variable describing the measurement at node ni, and the
lower-case letter xi for a specific instantiation. By adopting a Gaussian model,
the probability distribution of each measurement xi under the two hypothesis is
given by:1

PX(x) =

{
N (−μ, σ), under H0,

N (μ, σ),under H1,
(1)

where, N (μ, σ) is the Normal Distribution with mean μ and variance σ2.
Let us denote with U the result of the final (binary) decision. An error occurs

if u �= s. By assuming that the measurements are conditionally independent, that

1 We are assuming that the statistical characterization of the measurement at all the
nodes is the same.



458 K. Kallas et al.

is that are independent conditioned to the status of the system, the optimum
decision strategy consists in computing the mean of the measurements, x̄ =∑

i xi/N and comparing it with a threshold λ which is set based on the a-priori
probability (λ = 0 in the case of equiprobable system states). In a distributed
architecture based on consensus, the value of x̄ is computed iteratively by means
of a proper message exchanging procedure between neighboring nodes, the final
decision is made at each single node by comparing x̄ with λ.

In this paper we consider the case of equiprobable system states. It is worth
observing that our analysis, included the game formulation in Sect. 5, can be
extended to the general case in which this assumption does not hold.

2.3 The Consensus Algorithm

Consensus algorithm for distributed detection is a protocol where the nodes
locally exchange information with their neighbors in order to converge to an
agreement about an event or a physical phenomenon [2], e.g. the existence of a
transmission signal in cognitive radio applications [4]. It consists of three phases:
the initial phase, the state update phase and the decision phase.

1. Initial phase: the nodes collect their initial measurement xi(0) about the
phenomenon they are monitoring, and exchange the measurement with their
neighbors.

2. State update phase: at each time step k, each node updates its state based
on the information received from its neighbors. Then, at step k + 1 we have:

xi(k + 1) = xi(k) + ε
∑

j∈Ni

(xj(k) − xi(k)) (2)

where, 0 < ε < (max
i

Ni)−1 is the update step parameter. This phase is

iterated until they reach the consensus value x̄(N ) = 1
N

∑
i∈N xi(0), which

corresponds to the mean of the initial measurements. It is proven that, with
the above choice for ε, the consensus algorithm converges to x̄ regardless of
the network topology [3].

3. The final decision phase: this is the last phase in which all nodes compare the
consensus value x̄ to a threshold λ to make the final decision u:

u =

{
1, if x̄ > λ.

0, otherwise,
(3)

In the symmetric setup considered in this paper λ = 0.

3 Measurement Falsification Attack Against
Consensus-Based Detection

In this section, we consider an adversarial setup of the setting described in the
previous section and show that even a single false measurement can result in a
wrong decision.
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3.1 Consensus Algorithm with Corrupted Measurements

In the binary decision setup we are considering, the objective of the attacker
is inducing one of the two decision errors (or both of them): decide that S =
0 when H1 holds (False Alarm), decide that S = 1 when H0 holds (Missed
Detection). For simplicity, we optimistically make the worst case assumption
that the attacker knows the true system state. In this case, he can try to push
the network toward a wrong decision by replacing one or more measurements
so to bias the average computed by using the consensus algorithm. Specifically,
for any corrupted node, the attacker forces the measurement to a positive value
Δ0 under H0 and to a negative value Δ1 under H1. For the symmetric setup,
reasonably, Δ1 = −Δ0 = Δ > 0. In the following we assume that the attacker
corrupts a fraction α of the nodes, that is the number of attacked nodes is
NA = αN .

Given the initial vector of measurements, the consensus value the network
converge to because of the attack is:

x̃ =
1
N

∑

i∈NH

xi(0) +
NAΔ

N
, (4)

where NH is the set of the uncorrupted nodes (|NH | = N − NA).
By referring to the model described in Sect. 2.2, it is easy to draw a relation

between Δ, α and the probability p that the attacker induces a decision error. By
exploiting the symmetry of the considered setup we can compute p by considering
the behavior under one hypothesis only, that is we have p = P (U = 1|H0) =
P (X̃ > 0|H0).

In the following we indicate with X̄(N ) the average of the measurements
made by the nodes in a set N .

The error probability p for a given NA can be written as:

p =P (X̃ > 0|H0) = P

(
N − NA

N
X̄(NH) > −NAΔ

N

∣
∣
∣
∣H0

)

(5)

=P

(

X̄(NH) >
N

N − NA

(

− NAΔ

N

)∣
∣
∣
∣H0

)

=

∞∫

− NAΔ

N−NA

N (−μ, σ/
√

N − NA).

Clearly, if there is no limit to the value of Δ, the attacker will always succeed
in inducing a wrong decision (see for example Fig. 1).

This shows how harmful the attack can be against distributed detection
based on consensus algorithm. Therefore, the issue of securing distributed detec-
tion with consensus algorithm must be studied, at the purpose to increase the
robustness of the consensus algorithm to intentional attacks.

4 Consensus Algorithm with Censored Data

With centralized fusion is quite easy to detect false measurements, since they
assume outlier values with respect to the majority of the measurements. In a
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Fig. 1. (a): Success probability of the attack versus Δ in the adversarial setup N = 20,
μ = 2.5, σ = 1, NA = 2(α = 0.1). (b): Effect of the attack on the convergence of the
consensus algorithm for Δ = 27, the network decides for H1 even if H0 is true.

distributed setting, however, this is not easy since, at least in the initial phase
(see Sect. 2.3), each node sees only its measurement and has no other clue about
the system status.

In contrary with most of proposed solutions in the literature [8,18], in this
paper we propose to tackle with the problem of the measurement falsifications
at the initial phase of the consensus algorithm (see for instance [2]), by let-
ting each node discard its measurement if it does not fall within a predefined
interval containing most of the probability mass associated to both H0 and H1,
being then a suspect measurement. In the subsequent phase the remaining nodes
continue exchanging messages as usual according to the algorithm, whereas the
nodes which discarded their measurements only act as receivers and do not take
part in the protocol. Due to the removal, the measurements exchanged by the
nodes follows a censored gaussian distribution, i.e. the distribution which results
by constraining the (initial) gaussian variable to stay within an interval [21].
Specifically, the nodes discards all the measurements whose absolute values are
large than a removal threshold η. By considering the results shown in Fig. 1a,
we see that, in the setup considered, if we let by letting η = 17.5 the error prob-
ability drops to nearly zero since the attacker must confine the choice of Δ to
values lower than 17.5. The proposed strategy is simple, yet effective, and allow
us to use a game theoretical approach to set the parameters (see Sect. 5).

For our analysis, we consider conditions on the network topology, such that
the connectivity of the network is preserved and then the algorithm converges
to the average of measurements which have not been discarded. For a given
graph, this fact is characterized by the node connectivity, namely, the maximum
number of nodes whose removal does not cause a disconnection [22]. Convergence
is guaranteed for instance in the following cases (see [23] for an extensive analysis
of the connectivity properties for the various topologies): Fully-connected graph;
Random Graph [24], when the probability of having a connection between two
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nodes is large enough; Small-World Graph [25] when the neighbour list in ring
formation is large and the rewiring probability is large as well; Scale-Free Graph
[26], for sufficiently large degree of the non-fully meshed nodes.

We now give a more precise formulation of the consensus algorithm based on
censored data. Let us denote with R the set of all the remaining nodes after the
removal, that is

R = {nj ∈ N : −η < xj < η}, (6)

and let Ri be the ‘active’ neighborhood of node i after the isolation, i ∈ R (i.e.
the set of the nodes in the neighborhood of i which take part in the protocol).
The update rule for node i ∈ R can be written as:

xi(k + 1) = xi(k) + ε
∑

j∈Ri

(xj(k) − xi(k)), (7)

where 0 < ε < (max
i

Ni)−1, and the degree refers to the network after the removal

of the suspect nodes, that is to the graph (R, E) (instead of (N , E)).
Under the above conditions on the network topologies, the consensus algo-

rithm converges to the average value computed over the measurements made by
the nodes in R, namely x̄(R). Otherwise, disconnection may occur and then it
is possible that different parts of the network (connected components) converge
to possibly different values.

5 Game-Theoretic Formulation

The consensus based on censored data is expected to be robust in the pres-
ence of corrupted measurements. On the other hand, we should assume that
the attacker is aware that the network takes countermeasures and removes sus-
pect measurements in the initial phase, hence he will adjust the attack strength
Δ to avoid that the false measurement is removed. We model the interplay
between the attacker and the network as a two-player zero sum game where
each player will try to maximize its own payoff. Specifically, we assume that
the network designer, hereafter referred as the defender (D), does not know the
attack strength Δ, while the attacker (A) does not know the value of the removal
threshold η adopted by the defender.

With these ideas in mind, the Consensus-based Distributed Detection game
CDD(SA,SD, v) is a two-player, strategic game played by the attacker and the
defender, defined by the following strategies and payoff.

• The space strategies of the defender and the attacker are respectively

SD = {η ∈ [0,∞)}
SA = {Δ ∈ [0,∞)}; (8)

The reason to limit the strategies of D to values larger than by λ is to avoid
removing correct measurements at the defender side and to prevent to vote
for the correct hypothesis at the attacker side.
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• The payoff function is defined as the final error probability,

v = Pe = P (U �= S) = P (X̄ > 0/H0), (9)

where X̄ = X̄(R), that is the mean computed over the nodes that remain
after the removal. The attacker wishes to maximize v, whereas the defender
wants to minimize it.

Note that according to the definition of the CDD game, the sets of strategies
of the attacker and the defender are continuous sets. We remind that, in this
paper, we consider situations in which the network remains connected after the
isolation and then convergence of the algorithm is preserved. Notice that, with
general topologies, when disconnection may occur, the payoff function should be
redefined in terms of error probability at the node level.

In the next section, we use numerical simulations to derive the equilibrium
point of the game under different settings and to evaluate the payoff at the
equilibrium.

6 Simulation Results

We run numerical simulations in order to investigate the behavior of the CDD
game for different setups and analyze the achievable performance when the
attacker and the defender adopt their best strategies with parameters tuned
following a game-theoretic formalization. Specifically, the first goal of the sim-
ulations is to study the existence of an equilibrium point for the CDD game
and analyze the expected behavior of the attacker as well as the defender at
the equilibrium. The second goal is to evaluate the payoff at the equilibrium as
a measure of the best achievable performance of distributed detection with the
consensus algorithm based on censored data.

Fig. 2. Payoff matrix of the game with N = 20, α = 0.1 and μ = 1 (SNR = 4).
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(b) The Defender Mixed Strategy.

Fig. 3. Equilibrium strategies in the following setup: N = 20, α = 0.1, μ = 1,
(SNR = 4). Payoff at the equilibrium: v = 0.0176.
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Fig. 4. Equilibrium strategies in the following setup: N = 20, α = 0.2, μ = 1
(SNR = 4). Payoff at the equilibrium: v = 0.1097.

To perform our experiments, we quantize the values of η and Δ with step 0.2
and then we consider the following sets: SD = {η ∈ {0, 0.2, ...}} and SA = {Δ ∈
{0, 0.2, ...}}. Simulations were carried out according to the following setup. We
considered a network with N = {20, 50} nodes where the measurement of each
node is corrupted with probability α ∈ {0.1, 0.2}. We assume that the probability
that the measurement of a node is corrupted does not depend on the other nodes
(independent node corruption). According to the model introduced in Sect. 2.2,
the measurements are drawn according to Gaussian distribution with variance
σ2 = 1 and mean −μ and μ under H0 and H1 respectively. In our tests, we take
μ = {1, 2}. For each setting, we estimated the error probability of the decision
based on the censored data over 105 trials. Then, we find the mixed strategies
Nash equilibrium by relying on the minimax theorem [27] and then solving two
separate linear programming problems.

Figure 2 shows the payoff matrix in gray levels for the game with α = 0.1
and μ = 1 (i.e., SNR = 4). Notice that the stepwise behavior of the values of
the payoff in correspondence of the diagonal, which is due to the hard isolation
(for each Δ, when η < Δ all the corrupted measurements are kept, while they
are removed for η ≥ Δ). When very low values of η are considered, the error
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probability increases because many ‘honest’ (good) measurements are removed
from the network and the decision is based on very few measurements (in the
limit case, when all measurements are removed, the network decides at random,
leading to Pe = 0.5). Figure 3 shows the player’s mixed strategies at the equilib-
rium. By focusing on the distribution of the defense strategy, D seems to follow
the choice of A by choosing the value η which is one step ahead of Δ, a part for
the presence of a peak, that is a probability mass (of about 0.075) assigned to the
value η = 5.6, which is the last non-zero value. Interestingly, a closer inspection
of the payoff matrix shows that all the strategies above this values are dom-
inated strategies; hence, reasonably, the defender never plays them (assigning
them a 0 probability). This is quite expected since for larger η it is unlikely
that an observation falls outside the range [−η, η] and then the ‘censoring’ does
not significantly affect the ‘honest’ measurements (i.e. R = N with very high
probability). When this is the case, it is clear that it is better for D to choose η
small, thus increasing the probability of removing the corrupted measurements.

A possible explanation for the peaked behavior is the following. When η
decreases, D starts removing good measurements which fall in the tail of the
Gaussian under the corresponding hypothesis, whose values are not limited to
Δ, but can take arbitrarily large values. Depending also on the setup considered,
it may happen that the positive contribution they give to the correct decision is
more relevant than the negative contribution given by the values introduced by
A. When this is the case, it is better for the defender to use all the measurements.
Therefore, the behavior of the defender at the equilibrium has a twofold purpose:
trying to remove the corrupted measurements on one side (by choosing η one
step ahead of Δ) and avoiding to rule out the large good measurements on the
other (by selecting the critical η). The error probability at the equilibrium is
0.0176 thus showing that the proposed scheme allows to get correct detection
with high probability despite the data corruption performed by A.

Figure 4 shows the equilibrium strategies for α = 0.2. Since the removal of the
large good measurements has more impact when α is large, a bit higher weight
is associated in this case to the peak. The error probability at the equilibrium is
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Fig. 5. Equilibrium strategies in the following setup: N = 50, α = 0.2, μ = 2
(SNR = 4). Payoff at the equilibrium v = 0.0556.
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v = 0.1097. Finally, Fig. 5 shows the equilibrium mixed strategies for D and A
when N = 50, α = 0.2 and μ = 2.

7 Conclusion

We proposed a consensus algorithm based on censored data which is robust to
measurement falsification attacks. Besides, we formalized the interplay between
the attacker and the network in a game-theoretic sense, and we numerically
derive the optimal strategies for both players and the achievable performance in
terms of error probability in different setups. Simulation results show that, by
adopting the proposed scheme, the network can still achieve correct detection
through consensus, despite the presence of corrupted measurements.

As a future work, we would like to extend the game-theoretic approach to
include the graph disconnection as a part of the defender payoff and then apply
our analysis to general topologies. In addition, we would like to extend the
analysis to more complicated statistical models for the measurements, e.g. the
case of the chi-square distribution, and to consider more complicated versions of
the game, e.g. by allowing the players to adopt randomized strategies.
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Abstract. A simplistic cyber encounter between an attacker and a
defender (security engineer) can be described by a zero-sum game
between two players who both have complete information about the
cyber system and their opponent. The rational moves of the two play-
ers are well-defined by saddle-points (Nash equilibria points) once the
costs and awards are defined over all game strategies. A reasonable ques-
tion to ask is whether this simplistic game model can be reasonable
adapted to Industrial Control System (ICS) security. In our presentation,
we describe some important differences between ICS attack scenarios and
this simplistic game, and then elaborate on sample modifications to the
security game model.

First, ICSs are not merely cyber networks. They are connected to
physical systems and are affected by the physical systems. Attacks
focused on the physical system can penetrate into the cyber network.
In addition, the operator of the control process is an important player
to consider. He or she dutifully monitors critical elements of the process
and makes optimal choices to maintain system operability given policy
constraints dictated by the system owner. There are clearly more play-
ers and more systems to consider than the attacker and defender in the
simplistic game. We propose a three-game model in which defender and
attacker play in the cyber regime, physical control devices and perturba-
tions (intentional or accidental) play in the physical regime, and operator
and system owner play in an abstracted process regime. All three regimes
and all players can affect each other in this complex game.

Next, one nominally assumes that if all of the information in the
game is readily available to the players, the players will choose the opti-
mal path so that they suffer the least cost. If cost is a monetary mea-
sure, this may not be true, especially for state-sponsored attackers. Their
defensive opponent however may indeed act to minimize monetary costs.
Even if cost measures were completely known of all players, players are
inefficient and often not rational. They can be coerced by psychological
affects or swayed by political demands of their peers and supervisors. For
extended attacks, multiple humans may play the part of a single actor.
Human behavior can be modelled in some circumstances so that these
uncertainties can be taken into account.
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Lastly, assuming costs and behavior can be modelled well, the attacker
will often not have complete knowledge of the three regimes when they
begin their attack. They may have done some reconnaissance work, but
will be missing important pieces of information. This lack of information
will affect their instantaneous strategy, and their path taken through
attack space may be highly dependent on the amount of information
available. Incomplete-information game models using Bayesian methods
can be used to accommodate this effect.

We describe a game-theoretical framework that incorporates these
effects, and some preliminary results using that framework.

Keywords: Industrial control system · ICS · SCADA · Game theory ·
Cyber security
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Many security infrastructures incorporate some sort of surveillance technologies to
operate as an early incident warning or even prevention system. The special case of
surveillance by cameras and human security staff has a natural reflection in game-theory
as the well-known “Cops-and-Robbers” game (a.k.a. graph searching). Traditionally,
such models assume a deterministic outcome of the gameplay, e.g., the robber is caught
when it shares its location with a cop. In real life, however, the detection rate is far from
perfect (as models assume), and thus required to play the game with uncertain outcomes.
This work applies a simple game-theoretic model for the optimization of physical
surveillance systems in light of imperfect detection rates of incidents, minimizing the
potential damage an intruder can cause. We explicitly address the uncertainty in
assessing the potential damage caused by the intruder by making use of empirical data
(i.e., diverging expert opinions, inaccuracies of detection mechanisms, etc.). This par-
ticularly aids standardized risk management processes, where decision-making is based
on qualitative assessments (e.g., from “low damage” to “critical danger”) and nominally
quantified likelihoods (e.g., “low”, “medium” and “high”). The unique feature of our
approach is threefold: 1) it models the practical imperfections of surveillance systems
accounting for the subjectivity of expert opinions, 2) it treats the uncertainty in the
outcome as a full-fledged categorical distribution (rather than requiring numerical data
to optimize characteristic measures), and 3) it optimizes the whole distribution of ran-
domly suffered damages, thus avoiding information loss due to data aggregation (re-
quired in many standard game-theoretic models using numbers for their specification).
The resulting optimal security strategies provide risk managers with the information
they need to make better decisions.
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Abstract. Nowadays, in order to avoid computational burdens, many
organizations tend to outsource their computations to third-party cloud
servers [2]. In order to protect service quality, the integrity of computa-
tion results need to be guaranteed. We define a game, where the client
wants to outsource some computation to the server and verify the results.
We provide a strategy for the client to minimize its own cost and force a
rational server to execute the computation task honestly, e.g. not-cheat
is a dominant strategy for the server. The details of our work appear in
the full paper [1]. We give a sketch below.

The Settings. In our model we have two entity: the client, who wants
to outsource some computation and the server, who will actually perform
the computation. Both of them have they own strategies: the server sets
ρ percent of the results to be random numbers while the client chooses
σ percent of the outputs to verify by recomputing them. Based on these
values, a detection rate Pd can be defined. However, ρ is unknown to the
client, it is infeasible to calculate Pd(σ, ρ). To tackle this, we define a
threshold cheating toleration rate θ. Now, if the server sets ρ above this
threshold then it will be caught at least with probability Pd(σ, θ).

The Game. We define a two-player Stackelberg game, where the client
makes an offer W (e.g. how much it willing to pay for the computation)
to the server. If the server rejects this, the game terminates. If the offer is
accepted, then the server carries out the computation with some level of
cheating (ρ). Then the client verifies the results and in case of detected
cheating it refuses to pay.

Results. Our analysis showed, that the only condition that must be
satisfied to make the not-cheat a dominant strategy for the server is the
following: W−1 < Pd(σ, θ). In other words, the inverse of the payment
is the lower limit for the detection rate. Furthermore, this rate corre-
sponds to a verification cost Vd which is the other part of the client’s
cost (besides the payment W ). So for each possible payment there is a
corresponding verification cost. By searching exhaustively amongst these
pairs (W + Vd), the client is able to determine the one with the lowest
sum, which is the game’s Nash Equilibrium.

Use Cases. We apply our model to two recommender algorithm
(Weighted Slope One and Stochastic Gradient Descent Matrix Factor-
ization) with two real world dataset (Movilens 1M and Netflix). We show
that the payment in the equilibrium is only slightly bigger than the cost
of the calculation.
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With the rise of interest in the development of smart traffic control systems in
the recent years [1], comes the increasing need to focus on their cyber security
challenges. In particular, a typical smart traffic control system would collect data
from the participants in the traffic, based on which it would make intelligent traf-
fic light control, or provide efficient routing plans to the participants. To this
end, these systems typically consist of many devices with limited computational
and power resources, as well as easy physical accessibility, thus, making them
easy targets against cyber attack [2]. In this work, we focus on a data manipu-
lation based attack scenario, motivated by the following example. Consider an
attacker who is interested in directing the traffic from route A towards route
B (a possible reason is that the attacker wants to use route A as an escaping
route, and thus, the emptier it is, the faster he can escape). To do so, he wants
to manipulate the traffic data of so that for the control system, which provides
route plans to the vehicles within the traffic, route B seems to be a faster route
than A (this attack is feasible as it can be done by, e.g., using an infected vehicle
cloud [3]). However, this data manipulation has to be carefully done, as smart
traffic control systems typically use some outlier detection algorithms to iden-
tify suspicious data, which then could easily pick up the malicious behaviour
(i.e., data is being manipulated) if the attack is not well designed. Therefore,
an interesting research question is that whether it is possible to manipulate the
data such that the manipulation will not be identified by outlier detectors.

In this work-in-progress, we first show that standard outlier detectors are
indeed vulnerable against data manipulation. In particular, we propose an effi-
cient data manipulation technique that will not be detected by standard out-
lier detection algorithms, and is provably optimal in minimising the number of
manipulated data. We then show how this data attack can be detected by using a
combination of outlier and change point detection. In the second part, we further
develop the previous attack algorithm by adding a randomisation module to the
method, making it resistant against the abovementioned change point detection
based defense. As future work, we aim to propose a security game based defence
mechanism that combines the previous defence methods with some (costly) data
verification approach to identify whether a data stream is under attack. The goal
of this approach is to calculate the (minimax) solution of the game, and thus,
to identify a robust defence strategy for the defender.
c© Springer International Publishing AG 2016
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