
Mazzola’s Escher Theorem
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Abstract In this note we give a full proof of Mazzola’s Escher Theorem (Mazzola,
J MathMusic, 3(1):31–58, 2009, [4]). This theorem is needed for the development of
the theory that Mazzola seeks to realize, and it helps us to understand better the con-
cept of hypergesture as used in his work (Mazzola, J Math Music 3(1):31–58, 2009,
[4], Mazzola, Musical performance-A comprehensive approach: theory, analytical
tools, and case studies, 2011, [5], Mazzola and Andreata, J. Math. Music, 1(1):23–4,
2007, [6], Mazzola et al., Musical creativity-strategies and tools in composition and
improvisation, 2011, [7]). A gesture is a morphism from a digraph into a topological
space, and is one of the fundamental blocks in the Mathematical Theory of Perfor-
mance. A hypergesture is a gesture built upon another gesture, describing, in a way,
the variation of the latter. The non-trivial fact that the variation of the former gesture,
as described by the latter, is given by the same hypergesture is essentially the content
of the Escher Theorem.

1 Basic Concepts

We review the graph and category theory necessary for fixing notation and deliver
the concepts of gesture and hypergesture. The reader already familiar with those,
may skip the following paragraphs and proceed directly to Sect. 2.

Definition 1 We consider a digraph D as an ordered pair (VD, AD), where VD is a
set of vertices and AD a set of arrows, disjoint from VD , together with an incidence
function ψD that associates with each arrow of D an ordered pair of vertices (not
necessarily distinct) of D. This is ψD : AD −→ VD × VD. Generally speaking, if
ψD(a) = (u, v), we will call u the tail of a and v the head of a.
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Definition 2 Let D and G be digraphs. A morphism of digraphs f : D −→ G is
a pair (φ, θ) of functions φ : AD −→ AG and θ : VD −→ VG,making the following
diagram commute:

AD
φ−→ AG

ψD ↓ � ↓ ψG

V 2
D

θ2−→ V 2
G

where V 2
G = VG × VG and θ2 := (θ, θ) : V 2

G −→ V 2
G .

The category D of digraphs has as objects the collection Obj (D) of digraphs,
and for each pair of digraphs, Γ and Δ, the set Γ@DΔ = D(Γ,Δ) of morphism of
digraphs as arrows [1, 3].

The composition of morphisms of digraphs f = (u, v) ∈ Γ@DΔ, g = (w, z) ∈
Δ@DK with Γ , Δ and K digraphs, and where each of the morphisms u : AΓ −→
AΔ, v : VΓ −→ VΔ, w : AΔ −→ AK and z : VΔ −→ VK makes sense, is given by
pasting commutative squares. Namely

AΓ

Γ

u
AΔ

w

Δ

AK

K

V 2
Γ

v2
V 2

Δ z2
V 2
K

that is, g ◦ f = (w ◦ u, z ◦ v) ∈ Γ@DK .
Now consider the set

A−→
X = I@TopX := {c : I −→ X |c is a continuous curve}

with X ∈ Top (the category of topological spaces and continuous functions) and I a
fixed closed interval in R with its canonical orientation [9]. Thus we define

−→
X such

that A−→
X
is the set of its arrows and V−→

X
= X that of its vertices. It is clear that

−→
X is

a digraph.
The digraph

−→
X is a very special one, since it is defined inside the arbitrary topolog-

ical space X , and with the concepts above at hand, wemay consider the subcollection
(of the category D) of spatial digraphs, SD, as follows:

1. Obj (SD) = {−→X : A−→
X

−→ V 2−→
X
|X ∈ Top,

−→
X the incidence function, where A−→

X

are the arrows of a digraph
−→
X and V−→

X
= X its vertices}.

2. SD(
−→
X ,

−→
Y ) = −→

X @SD
−→
Y = {−→f :−→X −→ −→

Y |−→f is a digraph morphism induced
canonically by a continuous function f : X −→ Y in Top}.
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The aforementioned collection of objects is evidently contained in Obj (D) and
in the same way, the collection of arrows for every pair

−→
X and

−→
Y of spatial digraphs

is evidently contained in
−→
X @D

−→
Y .

The fact that SD is actually a subcategory of D is nothing but a straightforward
argument, and is left to the reader [8].

2 The Category of Gestures

This section aims at defining the category of gestures.

Definition 3 Let Γ ∈ Obj(D) and
−→
X ∈ Obj(SD) be given objects. A Γ – gesture

in a topological space X is a morphism g : Γ −→ −→
X between digraphs.

In this caseΓ will be called the skeleton of the gesture,meanwhile the topological
space X will be called the gesture space, and the curve defined into X given by g
will be called the body of the gesture.

Definition 4 Consider δ : Δ −→ −→
X and γ : Γ −→ −→

Y two gestures, a gesture
morphism ˜f : δ −→ γ consists of a pair of morphisms ˜f := ( f,

−→
h ), where f :

Δ −→ Γ is a digraph morphism, such that there is a digraph morphism
−→
h : −→

X −→−→
Y , not necessarily continuous, making the following diagram commute:

Δ

f

δ −→
X

−→
h

Γ γ
−→
Y

In particular, note that for gestures δ : Δ −→ −→
X , γ : Γ −→ −→

Y , and κ : K −→−→
Z , and the morphisms of gestures ˜f : δ −→ γ and g̃ : γ −→ κ, such that ˜f =
( f,

−→
h ) and g̃ = (g,

−→
j ) with f : Δ −→ Γ,

−→
h : −→

X −→ −→
Y , g : Γ −→ K and

−→
j :−→

Y −→ −→
Z , the following diagram commutes

Δ
f

δ

Γ
g

γ

K

v

−→
X −→

h

−→
Y −→

j

−→
Z

that is: g̃ ◦ ˜f = (g ◦ f,
−→
j ◦ −→

h ).
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If we now consider the collections given by:

1. Obj (G) := {δ : Δ −→ −→
X |Δ ∈ Obj (D),

−→
X ∈ Obj (SD) and δ a morphism}.

2. G(δ, γ) = δ@Gγ := { ˜f : δ −→ γ| ˜f = ( f,
−→
h ) are gesture morphisms with γ ◦

f = −→
h ◦ δ} (for every pair of gestures δ and γ in Obj (G)),

subject to the composition of gestures morphisms with ˜f ∈ δ@Gγ, g̃ ∈ γ@Gυ,
for all δ, γ and υ gestures, as we just mentioned above, then it is clear that we obtain
a category G, the category of gestures.

Now if we consider certain gestures as points in a space, it is possible to study
gestures inside a gesture space, which will be called hypergestures.

To define them, we need first to know how to make the set of gestures Δ@D
−→
X

into a topological space. This we will show below.

3 Hypergestures with an Approach to Escher’s Theorem

First consider the very particular case Δ :=↑, that is, a digraph with a single arrow.
It is well known how to get a topological space ↑ @D

−→
X ∼= I@TopX by using the

compact-open topology. This, along with the following proposition, is the basis for
all that follows.

Proposition 1 Let Δ be a digraph, then it is the direct limit of a direct system.

Proof Let 〈AΔ,=〉 be a preordered set. We can give the direct system {(Δa)a∈AΔ
,

(ϕab)a=b} where Δa := ↑a−→ (t (a), h(a)) for every a ∈ AΔ and (ϕab : Δa −→
Δb)a=b is a family of isomorphisms of digraphs such that:

ϕab = (ϕab, I d),

where ϕab :↑a−→↑b.
Now suppose there is a digraph Γ and a corresponding family of morphisms in

D ( fα : Δα −→ Γ )α∈AΔ
making the following diagram a commutative one:

Δ
φ

Γ

Δa

τa fa

φab

Δb

τb fb

Consider φ = f such that f |Δa = fa for each a ∈ �. Then
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(φ ◦ τa)(Δa) = φ(τa(Δa)) = φ(Δa) = fa(Δa).

Therefore Δ ∼= lim−−−→
a∈AΔ

Δα. �

Now that we can regard a digraph as a direct limit, the following results from
category theory are at hand. For the proofs, the interested reader may consult [2].

Proposition 2 If {Mi ,ψ j i } is an inverse system of digraphs, then there is an isomor-
phism

ω : D(Δ, lim←−Mi ) −→ lim←−D(Δ, Mi )

for every digraphΔ. i.e.,Δ@lim←−Mi
∼= D(Δ, lim←−Mi )∼= lim←−D(Δ, Mi )∼= lim←−(Δ@Mi ).

Proposition 3 If {Mi ,ψi j } is a direct system of digraphs, then there is an isomor-
phism

θ : D(lim−→Mi ,
−→
X ) −→ lim←−D(Mi ,

−→
X )

for every digraph
−→
X . i.e., (lim−→Mi )@X ∼= D(lim−→Mi , X) ∼= lim←−D(Mi , X) ∼=

lim←−(Mi@X).

Proposition 4 Let Δ,Γ be given digraphs, and {(↑i )i∈AΓ
(ψi j )i� j } and

{(↑c)c∈AΔ
, (ψcd)c�d} direct systems of digraphs, then there is an isomorphism

η : lim←−
b∈AΔ

(lim←−(
a∈AΓ

↑b @(↑a @X))) → lim←−
a∈AΓ

(lim←−(
b∈AΔ

↑b @(↑a @X)))

Proposition 5 If Γ,Δ are digraphs and X is a topological space, then there is a
canonical homeomorphism

Γ
−→
@Δ

−→
@X ∼= Δ

−→
@Γ

−→
@X

This last proposition is nothing but a weaker version of Escher Theorem as the
reader will find out in Sect. 4 below.

4 Topological Categories and Mazzola’s Escher Theorem

The last ingredient needed for the formulation of Mazzola’s Escher Theorem is that
of a topological category.

Definition 5 Let K be a category endowed with the property that its set of maps
is a topological space, and in which both functions, domain and codomain, and the
composition of morphisms as well are continuous.

In this case K is called a topological category.
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Example 1 The simplex categoy ∇ associated with the unit interval I.
In this case the set of maps is ∇ = {(x, y)|x, y ∈ I and x ≤ y} and the functions

domain and codomain are given by d(x, y) := (x, x), c(x, y) := (y, y) respectively.
The composition of morphisms is (x, y) ◦ (y, z) = (x, z), and the topology on ∇ is
the relative topology of the product inherited on I × I ⊂ R × R.

Definition 6 Let K , L be two topological categories. A topological functor F :
K −→ L is a functor which in turn is a continuous function between sets of mor-
phisms.

The definitions above give rise to the category TopCat of topological categories,
whose objects are topological categories and has as morphisms the topological func-
tors between topological categories. We denote this collection of morphisms by K
c©L := TopCat(K , L).
Mimicking the construction of a spatial digraph, we may consider two continuous

functors, tail and head, respectively by t, h : � c©K −→ K .
Now if ν : f −→ g is a natural transformation between morphisms (or, which is

the same, topological functors) f, g : � −→ K , then t (ν) = ν(0) : f (0) −→ g(0)
and h(ν) = ν(1) : f (1) −→ g(1).

The resulting topological diagram of categories and continuous functors is called
a categorical digraph

−→
K of K .

Thus if Γ is a digraph, then the set of morphism Γ@D
−→
K is the set of digraph

morphism in the underlying spatial digraph K . In otherwords, eachmorphismassigns
an object of K for every vertex in Γ, and a continuous curve (a topological functor)
� −→ K for every arrow of Γ. Then the digraph morphism g : Γ −→ −→

K will be
called a gesture with skeleton in and body in K.

Proposition 6 Let Γ@
−→
K be the set of gestures with skeleton in Γ and body K , with

K a topological category. Then Γ@
−→
K is a topological category.

Proof Recalling that Γ ∼= lim−−−→
a∈AΓ

Γα, in particular we have (Γa)a∈AΓ
∼= (↑a)a∈AΓ

.

On the other hand, we know that ↑ @
−→
K ∼= � c©K ∈ TopCat.

Thus

Γ@
−→
K ∼= ( lim−−−→

a∈AΓ

Γα)@
−→
K ∼= ( lim−−−→

a∈AΓ

↑a)@
−→
K ∼= lim←−−−

a∈AΔ

(↑a @
−→
K ),

since each ↑a @
−→
K ∼= � c©K is a topological category, then lim←−−−

a∈AΔ

(↑a @
−→
K ) ∼=

Γ@
−→
K is also a topological category, because of the properties of inverse limits.

�
Theorem (Mazzola’s Escher theorem [4]) Let Γ,Δ be digraphs and K a topolog-
ical category, then we have a canonical isomorphism of topological categories.

Γ
−→
@Δ

−→
@K ∼= Δ

−→
@Γ

−→
@K .
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Proof On one hand, this implies that the space of hypergesture Γ
−→
@Δ

−→
@K is the

limit ( lim−−−→
a∈AΓ

Γα)@(Δ
−→
@K ), but in particular we can say that (Γa)a∈AΓ

∼= (↑a)a∈AΓ
.

Then
Γ

−→
@Δ

−→
@K ∼= ( lim−−−→

a∈AΓ

↑a)@(Δ
−→
@K ).

Even more, being (_@(Δ
−→
@K )) a contravariant functor which converts direct

limits on inverses limits, this must be isomorphic to:

( lim−−−→
a∈AΓ

↑a)@(Δ
−→
@K ) ∼= lim(←−−−

a∈AΓ

↑a @(Δ
−→
@K )).

Proceeding similarly we get:

lim(←−−−
a∈AΓ

↑a @(Δ
−→
@K )) ∼= lim(←−−−

a∈AΓ

↑a @( lim−−−→
b∈AΔ

Δb@K )) ∼= lim(←−−−
a∈AΓ

↑a @( lim−−−→
b∈AΔ

↑b @K )).

Because (_@K ) is a contravariant functor and converts direct limits in inverse
limits

lim(←−−−
a∈AΓ

↑a @( lim−−−→
b∈AΔ

↑b @K )) ∼= lim(←−−−
a∈AΓ

↑a @(lim←−−−
b∈AΔ

(↑b @K ))

Thus, since (↑a @_) is a covariant functor preserving inverse limits

lim(←−−−
a∈AΓ

↑a @ (lim←−−−
b∈AΔ

(↑b @K )) ∼= lim(←−−−
a∈AΓ

lim←−−−
b∈AΔ

(↑a @(↑b @K ))) ∼= lim(←−−−
a∈AΓ

lim←−−−
b∈AΔ

(↑a @ ↑b @K )).

Then,
lim(←−−−
a∈AΓ

lim←−−−
b∈AΔ

(↑a @(↑b @K ))) ∼= lim(←−−−
a∈AΓ

lim←−−−
b∈AΔ

(↑a @ ↑b @K )).

By proposition 4

lim(←−−−
a∈AΓ

lim←−−−
b∈AΔ

(↑a @ ↑b @K )) ∼= lim←−−−
b∈AΔ

(lim(←−−−
a∈AΓ

↑a @ ↑b @K )),

and considering that (↑a @ ↑b) ∼= (↑b @ ↑a) ∼= I 2, then

lim(←−−−
a∈AΓ

lim←−−−
b∈AΔ

(↑a @ ↑b @K )) ∼= lim←−−−
b∈AΔ

(lim(←−−−
a∈AΓ

↑b @ ↑a @K )).

So
lim←−−−
b∈AΔ

(lim(←−−−
a∈AΓ

↑b @ ↑a @K )) ∼= lim←−−−
b∈AΔ

(lim(←−−−
a∈AΓ

↑b @(↑a @K )).
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Now, since (↑b @_) is a covariant functor preserving inverse limits,

lim←−−−
b∈AΔ

(lim(←−−−
a∈AΓ

↑b @(↑a @K )) ∼= lim←−−−
b∈AΔ

(↑b @lim(←−−−
a∈AΓ

↑a @K )),

and (_@K ) is a contravariant functor which turns direct limits into inverse limits

lim←−−−
b∈AΔ

(↑b @lim(←−−−
a∈AΓ

↑a @K )) ∼= lim(←−−−
b∈AΔ

↑b @(lim−−−→
a∈AΓ

↑a @K )).

Finally, (_@(Γ
−→
@K )) being a contravariant functor converting direct limits on

inverse limits, we have

lim(←−−−
b∈AΔ

↑b @(lim−−−→
a∈AΓ

↑a @K )) ∼= lim←−−−
b∈AΔ

(↑b @(lim−−−→
a∈AΓ

Γa@K )) ∼= lim←−−−
b∈AΔ

(↑b @(Γ
−→
@K ))

∼= (lim−−−→
b∈AΔ

Δb@(Γ
−→
@K )) ∼= (Δ

−→
@(Γ

−→
@K )) ∼= Δ

−→
@Γ

−→
@K .

Therefore Γ
−→
@Δ

−→
@K ∼= Δ

−→
@Γ

−→
@K . �
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