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Abstract In thefirst two sections of this contributionweconstruct the groups (Sn,+)

and (L(Sn), ◦) in order to have an intuitive way to represent musical phrases by their
melodic contour. Later we derive an algorithm for composing music using a given
number and the group (L(Sn), ◦). Finally we offer a variation of the same algorithm
to be able to translate a piece of music in a finite digit number, with analytic and
deconstructive aims.

1 Introduction

Fix n ∈ N. Let Sn be the set whose elements s j , j ∈ {0, . . . , n − 1}, are sets of
intervals of 12

n j semitones, including its octaves; in other words,

s j =
{
12

n
j + 12m semitones | m ∈ Z

}
. (1)

Fixing n as a divisor of 12 we have the sets S1, S2, S3, S4, S6 and S12 whose elements
are equivalence classes. We shall name elements in Sn using letters in ascending
order starting from the letter a.

• S1 = {a = [0]}
• S2 = {

a = [0] , b = [
12
2

]}
• …
• S6 = {

a = [0] , b = [
12
6

]
, c = [

12
6 2

]
, d = [

12
6 3

]
, e = [

12
6 4

]
, f = [

12
6 5

]}
Nowwedefine the operation+ as the usualmodular arithmetic, that is [x] + [y] =

[x + y]. E.g. for a, b, f ∈ S6:

b + f = [2 semitones + 10 semitones] = [12 semitones] = a.
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We see that (Sn, + ) is a group with a being the identity element. Now lets define
g : Sn → Zn , g

(
s j

) = [ j], j ∈ {0, . . . , n − 1}, it is clear that g is an isomorphism
from Sn to Zn .

As an examplewe show the elements in S4 usingmiddle do (i.e. do4),1 as reference

for counting intervals: , where each pitch corresponds to
each element in S4. Since elements in Sn are equivalence classeswe have 6 partitioned
sets that can be visually represented as subsets of S12, being S12 the set of all pitches
in the chromatic scale:

S1 S2 S3

S4 S6 S12

2 (L(Sn), ◦)

Let L (Sn) be an infinite set of infinite strings with elements in Sn concatenated in
every possible order; also, each string has an infinite string of only a to the right. That
is, for S2, aa,2ba, aba, babbababa are in L (S2). For conveniencewewon’t write the
infinite string of a that goes with every element in L (Sn), this way babbababa will
be just babbabab, also aa will be just a. This way we can represent pitch sequences
as elements of L (Sn), that is representing the movement of the melody by sequences

1We use the do–si pitch nomenclature in order to avoid confusion between letters here used.
2We use over line notation to indicate repeating and never ending a.
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ofmusical intervals. For instance, the sequence
is seen as the element abab in L (S2). We note that having a to the right adds nothing
to music since it is a, identity element in Sn , concatenated infinitely times and it adds
no intervals.

This is how abbbbb ∈ L (S6) is seen in a staff:

This is the whole-tone scale starting at do4, the other whole-tone scale can be
generated in reference to do�4. Every possible sequence of sounds produced by the
use of this scale can be seen as an element of L (S6). It is trivial to note that every
sequence of sounds, as long as it uses some or all of the 12 pitches (disregarding
enharmonics) in Western music can be seen in L (S12) since the latest set includes
all possible sequence of intervals. Also, by fixing any n ∈ N and not just divisors of
12 we can extend Sn and later L(Sn) to microtonality. Obviously we may encompass
whole-tone scales using the same concepts.

Let’s start with a whole-tone scale example. We take a look at Debussy’s first two
bars of Prelude No. 2, Voiles, from his First book of Preludes for piano [3]:

We can represent the upper melody in reference to do4 as e f f f f a f ∈ L (S6) and the
lower melody as c f f f f f f ∈ L (S6). Whole-tone elements are present in much of
Debussy’s repertoire. Just to mention few examples: everything from Voiles except 6
bars; the solo between the English horn and the cello at the end of the first movement
in La Mer, and a number of passages in Les Images, livre I for piano solo.

Let s, s̀ ∈ L (Sn), s = [s1][s2] . . . [sn] . . . , s̀ = [s̀1][s̀2] . . . [s̀n] . . . Nowwe define
the ◦ operation as a coordinate-wise addition in the sense of s ◦ s̀ = [s1 + s̀1][s2 +
s̀2] . . . [sn + s̀n] . . . We note that the length of s and s̀ does not matter since every
element in L (Sn) has a to the right; this means there will always be an a to operate.
(L(Sn), ◦) is a group with a being the identity element.3 In the following example
we look at the first beat, bar no. 31 of Jeux d’eau for solo piano from Ravel [2]

. Using (L (S6) , ◦) in reference to do4 the upper melody performed

3It is important to distinguish between (L(Sn), ◦) and word algebra. We are using concatenated
elements in Sn with a coordinate-wise addition which is a fundamentally different operation to the
one used in word algebra.
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Fig. 1 Jeux d’eau, Ravel, bars 31 and 32

Fig. 2 Carrillo’s example 25

Fig. 3 Major scale,
accbcccb ∈ L(S12)

with the right hand, la� la� fa� sol� can be represented as the f aeb element in L (S6),
now we arbitrarily select f ace and operate f aeb ◦ f ace and we obtain eaa f which

is the second beat: . Nowwe represent the uppermelody in right hand from
bars 31 and 32 of Jeux d’eau (Fig. 1) as follows: bar 31, beat 1: f aeb in reference
to do4; bar 1, beat 2: f aeb ◦ f ace = eaa f ; bar 31, beat 3: eaa f ◦ baec = f aeb;
bar 31, beat 4: f aeb ◦ f ace = eaa f ; bar 32, beat 1: eaa f ◦ baac = f ae f ; bar 32,
beat 2: f ae f ◦ f aac = eaeb; bar 32, beat 3: eaeb ◦ f aaa = daeb; bar 32, beat 4:
caec in reference to do�4.

Next we explain the example 25 from Julián Carrillo’s treatise Leyes de metamor-
fósis musicales [Music’s Metamorphosis Laws][1] using (L(Sn), ◦). Here Carrillo
shows a “Major scale metamorphosed to its duple” (Fig. 2).

This is the result of doubling every interval in a major scale: where there was 1
semitone now there is 2 semitones and so on. Using (L(Sn), ◦) we represent every
pitch sequence as a sequence of musical intervals. For a Major scale (Fig. 3) that is
the element accbcccb in L(S12):

Nowwe do accbcccb ◦ accbcccb = aeeceeec. Since ◦ operation is a coordinate-
wise addition, the result of operating accbcccb to itself is adding every interval in
itself (see: Fig. 4).
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Fig. 4 aeeceeec ∈ L(S12)

This is the ascending part of the Major scale metamorphosed to its duple shown
above. Following this process we obtain aeeceeeclkkkekk which is the whole exam-
ple 25. We conclude that aMetamorphosis to its duple (according to Carrillo’s laws
of Metamorphosis) can be seen as an element in L(S12) operated to itself.

At the beginning of this exposition we defined n as a divisor of 12 which leaded
to 6 different sets, but, as mentioned before, we can extend Sn to microtonality if
we choose a different n ∈ N to produce an Sn whose elements are additions of any
arbitrary division of the octave. Then we use the obtained Sn and expand it to L(Sn)
and (L(Sn), ◦). An example is given with fixed n = 13:

• S13 = {
a = [0] , b = [

12
13

]
, c = [

12
132

]
, d = [

12
133

]
, . . . , l = [

12
1311

]
,m =[

12
1312

]}

3 Piph Music for Algorithmic Composition

For a first example on algorithmic composition using number representation, it is
convenient to quote one of the first compositions systematically using irrational
numbers: π (A game within the Circle’s Constant)[4] is an awarded composition by
Gabriel Pareyon, that uses the first 1000 digits of π in order to produce a solo for the
bass flute. This composition associates every chromatic pitch to each digit starting
by 0 as do, 1 as do� and so on.

In the leftmost part of this example we see the first sound: re� corresponding to 3,
then do� corresponding to 1. Afterwardswe find the succession 4, 1, 5, 9, 2, 6, 5, 3, 5
where each digit has its defined pitch. We see that for any 1 we will always find a
do� while a 9 will always be la.

As a creative possibility of (L(Sn), ◦) we present a different algorithm (Fig. 5)
capable of reading any given finite number and returning the sequence of pitches (as
equivalence classes) in order to compose music:
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1. Read first digit d �= 0 and define d instruments.
2. Start with the first instrument, i.e. instrument counter equals 1.
3. Next digit n defines the number of n pitches for the current bar.
4. For each of the next n digits apply4 g−1 : Zn → Sn and consider the corre-

sponding element in L(Sn) for the current bar, e.g. 021 will be acb ∈ L(Sn).
5. Check if the instrument counter is bigger than the first digit d.

5.1. If not, increase instrument counter and repeat step 3.
5.2. If yes, is this the end of the given number?

5.2.1. If not, repeat step 2.
5.2.2. If yes, end.

The use of digits in this algorithm limits the number of instruments in the score
and the number of pitches to a maximum of 9. Also, due to the decimal system
there is not much (L(Sn), ◦) interesting options, but this “lack”can be solved using
two digits instead of one for each process. Later we will see a different algorithm
capable to obtain a finite number from a score. Since by now we do not consider
any rhythmic, nor dynamical values, this leads, if waned, to different musical values
arising from the same finite number and vice versa.

What results from using the algorithm proposed by Pareyon is different to
what results using the (L(Sn), ◦) algorithm. Since we understand every element
in (L(Sn), ◦) as a melody that results in adding intervals, it is not obvious to find a
pitch with its corresponding digit, but will be easy to understand a whole melody as
a sequence of digits.

As a consequent exercise we prepared a music score5 for two treble and one bass
clefs from the number π up to the digit 190 using (L(S6), ◦) and starting in do. Metre
was assigned in equal durations

(
1
1

)
.

The first digit inπ is 3,meaning 3 instruments. Next we find 14, thismeans 1 pitch,
element 4 in (L(S6), ◦) corresponding to 8 semitones; since we start in do the pitch
must be sol�. Next there is 15, meaning 1 pitch, element 5 in (L(S6), ◦), that is la�.
Next 10 digits are 9265358979, meaning 9 pitches, element 265358979 in (L(S6), ◦).
Below are the first four bars with a space between bars where every bold digit, the
start of a new instrument, assigns how many pitches correspond for current bar: 3.
14159265358979 3238462643383 27950288419 71693993751058209749445923.

4g−1 : Zn → Sn , g−1 ([ j]) = s j , j ∈ {0, 1, 2, . . . , 9}.
5An audio sample of this can be listen to at https://soundcloud.com/emilioerandu/pi-in-ls6.

https://soundcloud.com/emilioerandu/pi-in-ls6
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Fig. 5 (L(Sn), ◦) algorithm flowchart

Five bars later there is a triple consecutive digits occurrence in the bass clef:
81284811174502:

Using the algorithmwithmore digits of π wewould reach theFeynman point 999999
which would result in the addition of the same 9 element in given Sn .

Since we observe that any non-trivially repeated numerical sequence, like π (and
typically other irrationals), contains phrases (i.e. sequences of ordered digits with
their own sequential expressiveness), thenwe can extend a generalizedPiphMusic as
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Fig. 6 Pareyon’s Xochicuicatl Cuecuechtli (2012), excerpt from the manuscript’s page 26, with
three teponaztlis (wooden, carved log instruments) with the labels Macuilli, Chicuei and Matlactli
(i.e. 5, 8, 10)

a branch ofGroupTheory.We use the termPiph after the given example ofπ asmusic
(Pi), containing segments of musical concatenation (phrase, therefore making the
name Pi + ph for any phrasing extracted from irrational numbers segmentation).6

4 Translating a Piece of Music into a Single Number

By the reverse usage of the algorithm shown above, we can translate a piece of music
into a single finite number. The process we follow is:

1. Number of instruments defines first d digit.
2. Start with the first instrument, i.e. instrument counter equals 1.
3. Count the number of pitches in the current bar and define the next n digit.
4. Next n digits are obtained applying7 g : Sn → Zn to the corresponding L(Sn)

element in the current bar, e.g. abc is 012.
5. Increase the instrument counter and check if this is bigger than the first digit

d.
5.1. If not, increase instrument counter and repeat step 3.
5.2. If yes, is this the end of the piece of music?

5.2.1. If not, repeat step 2.
5.2.2. If yes, end.

For the last example (Fig. 6) we apply a variation of the proposed algorithm to
the instrumental (teponaztlis) passage Macuilli, Chicuei and Matlactli (that is Five,
Eight and Ten, in Nahuatl language) in the musical score Xochicuicatl Cuecuechtli,
also composed by Pareyon [5]:

6Carrillo’s nomenclature is somehow alluded here: we extend the name of π to other irrationals
musically useful, as Carrillo employs the name of number 13 (the so called Sonido 13) in order to
indicate pitch cardinality bigger than the traditional twelve-tone class system.
7g : Sn → Zn , g

(
s j

) = [ j], j ∈ {0, . . . , n − 1}.
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For the numerical translation of this excerpt, we use (L(S2), ◦) with 1, b ∈ S2,
being the element that changes between high and low pitch and 0, a ∈ S2 the iden-
tity element. Next we numerically represent this example, with a space between
bars where every bold digit represents the start of a different instrument: 3 030000
51010000 003000 05101000 51010000 05101000 00510100 51010000 02000.

Although this number is “mathematically useless”, it may be useful to fulfil
a number sequence abstraction, such as the textural-orchestrational pattern, like
030500003050500050005500020 (i.e. only taking into account bold numbers), or
rather in order to abstract the contrapuntal number 353555552 as the key number of
this segment, in turn able to be treated as a source for musical development from the
same source.
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